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1. INTRODUCTION

The problem of system identification has been studied intensively

and has become one of the most active fields in engineering research.

Some investigators have obtained theoretical results on parameter identifi-

ability, convergence properties of parameter estimates [1,16,18,19], and

regions of parameter identifiability [7]. There are also investigators

working on developing computational algorithms for identifying certain

control system parameters, for example, the stability and control deriva-

tives of an aircraft from actual flight test data [17].

There are two main steps in solving rise system identification

problem: (1) Determine if the system parameters are identifiable, and

(2) if the parameters are identifiable, work out an algorithm for esti-

mating the parameters. To answer (1), we have to establish the definition

of identifiability first. The most significant recent work on parameter

identifiability when there are stochastic disturbances present in the

system are Tse [18] and Tse and Anton [19]. There are a number of

algorithms that have been proposed for solving (2).

Generally, if the system parameters are identifiable, they are only

locally identifiable, i.e., we must have a sufficiently good initial

estimate of the parameters such that the iterative estimation scuence

will converge to the true parameters. Herget [7] provided a procedure

for computing explicit regions in the parameter space in which the Gauss-

Newton method will converge to a unique solution. The systems considered

by him were deterministic.
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The definition of parameter identifiability when there are stochastic

disturbances present has been given by Tse and Anton (19]. They said

the parameters are identifiable if there exists a sequence of estimates

which is consistent in probability. They also established the necessary

and sufficient conditions for the unknown parameters to be identifiable

under some uniformity assumptions on the conditional density parametrized

by the unknown parameters. Tee [18] also gave the definition of local

parameter identifiability and proved that the positive definiteness of

the average information matrix implies local parameter identifiability.

The definition of local parameter identifiability is that there exists

an open region containing the vector of unknown parameters as an

interior point and there exists a local estimation sequence in the

closure of the region which is consistent in probability. Staley and

Yue [161 established a similar concept on stochastic parameter identi-

fiability. They stated that the parameters are identifiable if every

asymptotically efficient estimator converges to the true parameters in

mean square (which is stronger than convergence in probability.)

Wald X 20,21] considered the consistency and asymptotic properties of

the maximum likelihood estimation sequence. He showed that under certain

restrictions on the joint probability distribution of the observations,

the maximum likelihood equation has at least one set of roots which is

a consistent estimate of the unknown parameters. He also showed that 	 -

any root of the maximum likelihood equation which is a consistent

estimate of the parameters is asymptotically efficient.
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Based mainly on Wald-Kendall-AstrBm theory, Aoki and Yus [1]

examined the asymptotic properties of the maximum likelihood estimates

of unknown parameters of a class of linear, stable, constant, discrete-

time dynamic systems form where plant noise and observation noise are

present. The systems considered by them were restricted to have certain

cononical structure and were single-input and single-output.

For the identification of linear dynamical systems, Glover and

Willems [6] established the concept of parametrization and developed

sufficient conditions for local and global identifiability from the

transfer function. Bellman and Astrft [2] also provided an algorithm-

oriented least-square identifiability. It can be shown that for single-

input, zero state systems, local least-square identifiability is

equivalent to local transfer-function identifiability under some

assumptions on the least square criterion. The remaining second step

of the system identification is to identify the system parameter exactly

from input-output sequences for deterministic systems or to construct a

consistent estimation sequence by using the constrained maximum likeli-

hood method for stochastic systems. In both cases, it becomes an

optimization problem, i.e., we first set a performance criterion which

is a function of the unknown parameters and then find best estimates

such that the cost function will reach its minimum.

In general, the cost function and its derivatives are nonlinear

and an iterative procedure must be used to find the estimate. The best

known method of solving a set of simultaneous nonlinear equations in

which the increment in each iteration is computed as a linear combination



4

F'

1 .

of the residuals is the Newton method. Kantorovich's Theorem [12]

states certain sufficient conditions for the convergence of the Newton

iteration sequence. However, these sufficient conditions are generally

highly restrictive and are not easily examined. Moreover, in each

iteration, we have to calculate the Hessian matrix of the cost function

which includes the calculation of a bilinear form. These are the two

main disadvantages of using the Newton method from the point of view of

practical computation.

Later researchers have developed some modified versions of the

Newton method. The most significant for the problem of interest here

are by Ben-Israel [3] and Pereyra [11]. The main features of both of

their algorithms are: first, we only need to compute the first order

approximation of the Hessian matrix of the cost function; second, the

sufficient conditions for the convergence of the iteration sequence are

much easier to examine. Although Ben-Israel's algorithm and Pereyra's

algorithm are the same if the first order approximation of the Hessian

matrix of the cost function has full rank, Pereyra's sufficient con-

ditions are preferable again from the point of view of practical cal-

culation [131.

In the deterministic system identification problem, the solution

for the cost function is the true parameter, i.e., the cost function

will reach its global minimum, zero, if the output sequence generated

by the estimate matches the measured output sequence. For a known system

structure, i.e., a given parametrization, there may be more than one

isolated point in the parameter space that will generate the same oo tput
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sequence for a given input sequence, i.e., the solution to the identifi-

cation criterion is generally not unique globally. Herget [7) provided

a modified version of Pereyra's theorem and a computation procedure

employing interval arithmetic to find explicitly the regions centered at

each local solution in which the solution is unique and hence is locally

identifiable. The other feature of his work is the use of bilinear

operators to represent the linear system model. In doing so, the

identification problem of linear systems is equivalent to the initial-

state observation problem of quadratic-in-the-state bilinear systems.

This dissertation considers the parameter identification problem of

general discrete-time, nonlinear, multiple-input/multiple-output dynamic

systems with Gaussian-white distributed measurement errors. The knowledge

of the system parametrization is assumed to be known. Concepts of local

parameter identifiability and local constrained maximum likelihood

parameter identifiability are established. A set of sufficient conditions

for the existence of a region of parameter identifiability is proposed.

A computation procedure employing interval arithmetic is derived for-

finding the regions of parameter identifiability. It is shown that if

the vector of the true parameters is locally constrained maximum likeli-

hood identifiable, then with probability one, the vector of true parameters

is a unique maximal point of the maximum likelihood function in the

i
region of parameter identifiability and the constrained maximum likeli-

hood estimation sequence will converge to the true parameters.

Chapter 2 is a review of Wald's theory [20,211 on the consistency of

maximum likelihood estimates, the concepts of parameter identifiability
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ad local parameter identifiability established by Tee and Anton [19] and

F Too [18] and the application of these concepts to the system identi-

tcation problems [ 16].

Chapter 3 is a survey of Bellman and AstrBm's [2] definition of

.iast-squate parameter identifiability, atd Glover and Wiliem'8 [6] coa-

cepts of system parametrization and identifiability from the transfer-

function. The author's contributions in this chapter are as follows.

Sufficient condition for local least-square parameter identifiability is

derived by employing the constant rank theorem [10]. The Theorem of

Glover and Willsmss is modified to provide a sufficient condition for local

parameter identifiability of minimal dimensional linear dynamic systems

whose initial states are unknown, and a theorem is established to show

that for single-input, zero-state linear systems, local least-square

parameter identifiability is equivalent to local parameter identifiability

from the transfer function if some constant rank assumptions on the impulse

response matrix and its derivatives are satisfied.

Chapter 4 is a survey of the Newton-Kantorovich theory [12] on the

convergence of the Newton iteration method, Persyra's theory [13] on

solving nonlinear least-square problems, o-norms, interval arithmetic [11],

and Herget's results on regions of parameter identifiability [7] with

application to the parameter identification problem of deterministic

dynamic systems. A numerical example is provided by the author with the

computer program listed in the Appendix.
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Chapter S contains the principal new results of this dissertation.

It considers the parameter identification problem of general discret

time multiple-input/multiple-output dynamic systems with Gaussian-white

distributed measurement errors. It is mainly a modification of Herget's

results [7] on the parameter identification problem of deterministic

systems and a generalization of Aoki and Yus's result [l] on the parameter

identification problem of single-input/single-output canonical-form

linear dynamic systems with measurement noise. A numerical example is

included to illustrate the computation procedure for finding the regions

of CHL parameter identifiability.

Chapter 6 gives the conclusions of this dissertation and suggestions

for further research.
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2. MAXIMM LIXILIUOOD UTIMATI0N, PARAISTER
IDUTIFIABILITY AND LOCAL PARANCTER IDZaL MIABILITY

Relevant past investigations of maximum likelihood estimation

parameter identifiability, and local parameter identifiability are

discussed here. The first result is A. Vald's theory [20,21] on the

asymptotic properties and the consistency of the maximam likelihood

estimate of an unknown parameter of a discrete process. Then we will

discuss Toe and Anton's [19] definition on stochastic idantifiability,

the necessary and sufficient conditions for the unknown parameter to be

identifiable under some uniformity assumptions on the conditional density

parametrized by the unknown parameter, and Toe': [18] definition of local

identifiability. An identification problem of a class of linear, stable,

constant, discrete-time, single-input/single-output dynamical systems

discussed by Aoki and Us [1] will also be presented.

2.1 Preliminary Concepts

Definition 2.1

Let X denote an arbitrary nonempty set. A family of subsets R of X

is called a sigma field if

(i) for every AeK, then also AcSR where Ac is the complement of A

(ii) if Al,A2,---,An,--- is a countable sequence of elements of R.

then U•AnsR, and
nal

(iii) 06R where 0 denotes the empty set.

(iv) Elements of R are called events.
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Definition 2.2

A probability Pr. is a measure over a measurable specs (X.R); that is,

Pr. is a real-valued function which assigns to every ASR a number Pv.(A)

such that

(i) Pr. (#) e O for every ASR

(ii) Pr. (X) • 1, and

(iii) if (An }	 is any countable union of disjoint events, then
nol

m

Pr.( U An) - E Pr.(Aa)

	

awl	 n-1

Definition 2.3

`-•t X be a set, R be a sigma field and Pr. a probability measure

defined on R. then the triplet (X,R.Pr.) is called a probability space.

Definition 2.4

A random variable x is a real-valued function whose domain is X and

which is R-measurable, that is, for every real number ).,

t ips XIx(w) sl)s R.

Definition 2.5

Let xl,x2,---,xn,--- be a sequence of random variables, if there

exists s random variable x(W) such that

HE xn (W) U x(w) for almost all at, we say the:
U-"m

lim xn a x with probability one
a•.



10

Definition 2.6

Let x1,x2---9xn,---, be a sequence of random variables, we say the
m

sequence {xa}	 converges to x in probability or converges stochastically
n=1

to x if

lim Pr.(1xn (w) -x(w)1 is} =0
n-0 m

is satisfied for every s >0

Definition 2.7

A sequence of random variables ix n )	 is said to converge to x in
n=1

the mean square sense if
2

(i) E(jxnI } <w for all n,

(ii) E(jxj 2 } <-, and if

(iii) lim E(lx - x 12).0.

now
This is written

1 0i.m. xn=x.
n-sm

Definition 2.8

If x is a random variable, its distribution function F x is defined

by

F
x 
(g) = Pr. [x s g ] for all g t (-wpm)

Definition 2.9

A distribution function F is said to be absolutely continuous if

there exists a Borel measurable function p over (-m ,m) such that

9
F(g) -j'	p(t)dt

..m

for all t. The function p is called a density of F.
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Definiition^2.100

Let xl ,---,% be random variables, n z 1. The joint distribution

function of x l ,---,%, or the distribution function of the random vector

x M (xl,---,xn) , is defined to be

Fx(C 1 1` 6 9n) - Pr. (i01Lxi Stil)

where -m < F i <m, 1:9 1 in.

Definition 2.11

Let (xi ,XeA} be a family of random variables. They are said to be

independent if for every positive integer n and every n distinct elements

A l ,---,in in A , then

Fx),l,-- - ,x(91,---,F,n) jn l	 j(C j)

for a 11 LeRn.

if Fxli (9 i ) - Fxl 
j 

(9 j) for all a i ,i jeA, then (%,XcA) are said to be

independently and identically distributed.

Let xl,x2,--- ,xn,--- be a sequence of random variables with joint

probability denstiy function p(xl,x2,--- ,xn; A), n- 1,2,---, which is of

known functional form but p(xl,---,xn; A) depends upon an unknown vector

of parameters A that may have any value in a set C.I . This set will be

called the parameter space. Thus we are confronted with a family of joint

probability density functions denoted by (p (xl,---,xn; j): Aef), n

To each value of 0, 2C, there corresponds one member of the family de-

noted by (p(xl,---,xn; A): n m 1,2,---) which is a sequence of joint prob-

ability density functior.a parametrized by A. Let (p(xl,---,xn; 00).
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n a 1,2,- --I be a member of the family and let 40 be unknown, hen. An

estimate of 00 based on the observation sequence x l ,x2 , ... xn , n • 1,2,---

is a measurable function of txl,x2,---,xn}, n 1,2,---, and is denoted by

—ns_n(xl.--- *%) a no 1,2,---.

O
een}n-1 is then called an estimation sequence.

Definition 2.12

Any estimation sequence {jn }^-1 of 0040 which converges stochastically

to AO is called a consistent estimate for go.

Loma 2.1.a	 (The Strong Law of Large Numbers) [ 43

Let xl,x2,--- ,xk,---, be independent random variables such that

E xk -0. E xk2 'kCD. Let b
n 

10 converges up to +^.
OD	

2if E 
1 

E	 / 2 ^e, then
J1

xl +---+ xn
Pr. {n	

b
im	 0)-1.

n

Lemma 2.1.b

Let xl,x2,---,xk,--- be independent and identically distributed

random variables.

If E xl l `a, then

x l +---+ X 
Pr. {aim ^	 n	 E x i ) • 1

The concepts introduced abc , can be found in references [41, [51, and

[ 9].



2.2 The Consistency of Maximum Likelihood Estimates

is

This section summarizes the theory given by Wald in [20,21]. Let

{zn )n=1 be a sequence of independent, identically distributed random

variables with joint probability density function p(zl,---,zn; A),

n = 1,2,---, parametrized by the unknown parameter Gen c R P , where A is the

parameter space. Let 11-11 be a norms on RP . Let p(z; A) denote the

probability density function and F(z,A) denote the corresponding cumu-

lative distribution function of z i , i.e., F(z; 9) = Pr.(zi S z).

The following assumptions are made.

Assumption 1

F(z; 0) is either discrete or is absolutely continuous for all QM.

For the next assumption, we introduce the following notation; for

AK1 and p >0 let p(z; A,p) be

P(z ; e,P)	 suP	 P(z; e^)

For any r > 0, let # (x,r) be

*(z.r) 
_110sup 

p(z;e)

Furthermore, let

p(z;A,p) if p(z ;A,p) > 1

	1 	 otherwise

Similarly, let

	

*(z,r)	 if # (z,r)> 1
(r*(z,r)

1	 otherwise
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Assumption  2

For sufficiently small p and for sufficiently large r,

m

J log P (z;e. p ) dF(z 90) <m

and

m
J. log * (z,r) dF(z A) <m for all OM
_m

where 00 is the true parameter point.

Assumption 3

If lim 8i -2, then lim p(z Ai) - p(z;A) for all z except perhaps on a
i..	 J.-OW

set whose probability measure is zero according to the probability dis-

tribution corresponding to A0.

d.► 	 Assumption 4

If Al 
0 .2() , then F(z;Al) 0 F(z 20) for at least one value of z.

Assumption S

If lim JLijj =-, then lim p(z ;Ai) - 0 for every z except perhaps on a
i -O .a	 1-0W

fixed set whose probability measure is zero according to A0.

Assumption 6

m

f log p (z; 80) I dF(z; 00) < m

_m

Assumption 7

C2 is a closed subset of Rp.

A

Assumption 8

p(z; A, p) is a measurable function of z for 9en and p >0.
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Lemmas 2.2

If 0 f00 , then

E log p (Z; .2) < E log p (a; 00) (2.1)

Lemma 2.3

lim E log p(z; 8, p) - E log p(z; AO)	 (2.2)
P-00

Lemma 2.4

lim E log *(z,r) =-W 	(2.3)

r - cc

By the above lemmas, we can prove the following theorems.

Theorem 2.5

Let W cQ be a closed subset of A. If 90 does not belong to W, then

sup (zl,z2, --- ,zn ; 0)
AtW

Pr.(lim	 - 01 = 1.	 (2.4)
n "m P(zl,z2, --- ,zn ; 20)

Proof: By Lemma 2.4 we can choose r0 >0 such that

E log # (z, r0) < E log p (z ;A)	 (2.5)

Let W  be the subset of W such that

W l - LQ: IL011 s r0 , 19W }

For each kW 1 , we can choose a F 
e 
>0 such that

E log p(z; A, p 0) <E log p(z; A0)	 (2.6)
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The existence of p e is guaranteed by Lomas 2.1 and 2.2. The set W 1 is

closed and bounded; hence it is compact. Thus there exists a finite number

of pointsA1 ,---,Ak in Wi such that the union of the spheres with center

0 and radious1- 1	 k k
i	 pji'	

.---, ,	 covers W 1 0i4s0ei ,pe )
—i

We see that

k
Os up P (z l, z 29--- , zn; 9 SiME P (z1: .211 pew) ... P(zn; Ai l 99

+ *(z l ,r0) ... .*(zn,r0).

Thus we are going to show

P(z l: ei, Pei) ...p(zn; 11  Pei)
Pr.{nim
	P (zl: 90) ... (z,. ; .20)

0}	 1, i = 1---,k (2.7)

and

*(zl,r0) 0.0 *(zn,r0)
Pr. {nim P(z

l 90 )... P (zn; e
0) ' 0} = 1	 (2.8)

which is equivalent to showing that

Pr. 
(Jimln 

log P(z j , Bi , Pgi) - log P(z j c AO)] = -W} = 1

i = 1,---,k	 (2.9)

and
n

Pr. {lim^i l [log *(z j ,r0) - log p(z j ; AO)] _ -^}	 1.	 (2.10)
n.

But (2 . 9) and (2.10) follow immediately from (2.5), (2.6) and the strong

law of large numbers.

Theorem 2.6

Let 6n ( z
19

- --
9
zn) be a function of the observations such that
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P(zl,---,zn; An)

ac>0 ft

Pr. (n ^im a .0 
0
 s 1.

Y^

k	 '

Then

do

Proof: Let OH denote the set of limit points of ^n }n=1 , then it suffices

to show that for any e >0,

sup(IId - 0011: & Q } ss with probability one	 (2.12)

Suppose that there exists a $a OH such that IL - 9011 > s , then

sup	 P(zl,---,zn; A) Z P(zl,---,zn; ^n)
110-0 0 2 a

for infinitely many n. But this implies

sup	 P(zl,---,zn; e)
1lA-AOIIZs

Zc>0	 (2.13)P(zl,---,zn; 00)

for infinitely many n by (2.11).

By Theorem 2.5, (2.13) is an event with probability zero, thus (2.12)

holds with probability one. We recall that the maximum likelihood esti-

mate an is obtained by

p(zl,---,zn; 4 ) = Max P(zl,---,zn; A) for all n 	 (2.14)
OM

A
If An exists, then

2 1 for all n and for all x ,---,x .
P(zl, --- ,zn ; 20)	 1	 n

:f
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By Theorem 2.6 1, the maximum likelihood estimate is consistent.

2.3 Parameter Identifiability and
Local Parameter Identifiability

This section summarizes the work by Toe and Anton in (19] and by

Tse in [18].
W

Let (zn }n=1 be a sequence of observation statistics with joint

probability density function p(zl,---,zn; A), n = 1,2,---, parametrized

by the unknown parameter OM c ZP , where 0 is the parameter space which is

a compact subset of RP . Let 11-11 be a norm on RP . The true parameter 00

is known to lie in the interior of Cl. The parameter identification

problem is to estimate the true parameter 0 0 based on the observation

sequence (zn}n=l•

Definition 2.13

The parameter 00 is said to be identifiable if there exists a sequence

m
of estimates(Ate )

n=1 which is consistent in probability, i.e., for any 6,

e arbitrarily small, there exists an N(6,e) such that for n > N(6,$)

Pr.(116 - 0 11 >6)mot.
	 (2.15)

For brevity, we let

P(Zn ; e) = P(zl,---,zn;A) , 	 (2.16)

and

P(znIZn-1' A) - P(Zn ; e)/P(Zn-1 ; 9) for n-1,2,--- 	 (2.17)

For AeO and P > 0, let
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p(sn,P1Zn-1+.2) aILt' 0 11 s PUP	 p(an1Zn-l; g 1 )	 (2.18)

The following assumptions are made.

Assumption 1

p(Zn,A) is measurable in Zn with respect to p(Zn ;jo) Un and contin-

uous in SM for Zn almost everywhere, i.e., for e >0 and 9eA, there exists

a b (e) > 0 such that for all 0 *M with IL - A'II < 6 we have Ip (Z,;.2) -

p (Zn ; I') I < e for Zn almost everywhere.

Assumption 2

f n log P (an . P I Zn-1' 
9) P (Zn ; e0) dZn <m for some p > 0

and OM	 (2.19)

and

f n log P (an I Zn-1' e0) P (Zn ; AO) dZn <m	 (2.20)
R

for all n =1,2,---

Assumption 3

For all GM and some p0 >0,

n
Var. (kEl log P(Zk,PIZk-1'e)}= 0(n2)	 (2.21)

for all 0 s p s p0 , where 0(n2) is such that

lim 
O(n 
	

0
n -• m n

Assumption 4

Let the set B (0) be

B  (0).n [Zn : p (Zn ; A) -01



20

then for all 0
19
o2sn, we have

Bn(a-1) - Bn(0-2) for n-1,2,---

'	 Since the only information about J% is the observation sequence statisticst	 .

{s f with their joint density function p(Z n ;2) 9 n - 1,2,---, if thereU n-1
are two points 01,2240, 21042' such that

P (Zn ; 21) - P (Zn ; 22)	 (2.23)

or

P(anIZn-1; 21) - P(snI ?'n-1; 42) for all n	 (2.24)

we are not able to distinguish 21 and 02 in 0.

Definition 2.14

Two parameters 4112240 1 Al A2 are said to be unresolvable if the

equality

P(sn IZn-1 ; 21) - P(ZnIZn-1: 22)
	

(2.25)

holds with probability one for all except a finite number of integers

n >0, i.e., if (2.25) holds with respect to the measure p(Z n ;Id Un as
well as p(Zn ;42) dZn.

Definition 2.15

The set 0 is said to be identifiable if no two elements in 0 are

unresolvable.

By using the constrained maximum likelihood method, the identification

problem is: find dn4O as an estimate of 40 such that

p(Zn ; in) - ljax p(Zn ; 2), n- 1,2,---
QC

(2.26)
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Since C1 is compact and hence is closed and bounded, and p (Zn;s) is

continuous in A by assumption 1, s solution to (2.26) exists and the

estimate sequence 
On}n•1 

is a consistent estimate for 
.20 it 20 

is unique.

This follows from Theorem 2.6. However, if there are two points 21922400

11 #12' such that

lim p(Zn ; S 1 ) • Its p (Zn : QZ)	 (2.27)
U -00	 n"m

then it is obvious that 
jd} 

l will fail to converge.

Wi^nition 2.116

Two parlaseters A1,62an, Ol f A2,a re said to be CHL unresolvabla if

nin P (zn 1 Zn-1' 1) - nin P (zn Zn-1' A^	 (2.28)

with probability one.

Definition 2._17,

The set 0 is said to be CHL identifiable if no two elements in A are

CHL unresolvable.

The following theorem was given by Too and Anton in [19].

Theorem 2.7

If for all o1 ,o2K1, Al 0 02 , there exists an countably infinite set

L c I+ (I+ * the set of positive integers) such that

P(aI IZn-l; ol) 0 p(a,1 xn-1 ; 12)

with nonzero probability with respect to O 1 and 
0  

uniformly in ntL, then

0 is CHL identifiable.
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a

The above concepts on parameter identifiability am be applied to

the system identification problem.

Consider a linear discrete-time system described by:

'	 x(k+ 1) - Fx(k) +Gx(k)

x(k) aft (k)  + .y(k)	 (2.29)

where F is the (n x n) state transition matrix

G is the (a x q) input matrix

H is the (r x a) output matrix

x(k) is the n-state vector

.I(k)  is the r-output vector

u(k) is the q-input vector

IM is a Gaussian white noise with zero mean and convartance matrix Q.

Let the initial state x(0) -R ,30 . The Parameter 00 - (x0.F0.G0'HO'QO) is to

be identified. We assume 0000 C Ap where A is a compact subset of xp.

Furthermore, we "summa that

(1) the system is stable for all 060,

(2) the system is completely controllable, i.e..

-
rank[G,FG.---,Fn G] - n for all QM, and

(3) the s;stem le completely observable, i.e.

rank[H1 . (HF) ...•. (NFn-i)T] - T. for all QM.

The assumption o f controllability and observability implies that the system

is of minimal dimension and equivalent systems for (2.29) exist. The

joint probability density function of the observation sequence Lz(0),---

--- .s (M)). N-0.1,2.---. is given by
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P(s(0)	 (A(k) •FS(k);V

Coast. OW	 E EI(k) • ft(k)] Q 1EI(U
kuO

---

ire x(k) is the solution to (2.29) for a given 90. The CM estimation

method is then to find 
In 

as an estimate of 
4 

such that

p L (0) .--- tis 0'4 : am) ' Max P (A (0) .---.00;o)
_GM

M • 0 9 1 9 2 9---	 (2.31)

if there are 91,22s0, 
11012' 

that will both generate the sane HIL(k)

sequence when applied with a given input sequence, then

k.Opv(k) (s(k) -!Lt(k):O1) k^OPv(k)(k) •MI(k):112)

M • 0,1 0 2 0---	 (2.32)

for the same measurement noise distribution. Thus by definitions 2.14 and

2.16, Al and o2 are both snresolvable and CML unresolvable. Since system

(2.29) is minimal, the following theorem, which provides the sufficient

condition for unresolvability, follows ismediately.

Theorem 2.8

Let 91 a (1
01 ,F1.O 1 .g1.Ql) and

92	 2.F2^G2.M2'Q2) A 1 ,a260 P O1 0 A2.

21 and 02 are both unresolvable and CML unresolvable if there exists a

nonsingular, nonidentity matrix P such that
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H1 = H2 p 1

F 1 = PF2p 1

G  - PG 

x10 - Px20

Ql = Q2

Proof: Let the state vectors generated by Al and 02 be xl (k) and 
X2 

(k)

respectively. Then x l (k) -P'2(k) Hlxl (k) = H2P- -Px2 (k) = H232 (k) for any

input, and the two systems paramer ized by Al and A2 respectively are

equivalent.

Therefore

M

k:Opv (k) L (k) - Hlxl (k) ;.9l)

= Const . • exp{- k.0[z (k) -HIE1 (k)]TQ 1-1[ z(k) -H1x1(k)]}

- Const . • exp{- l E Cz (k) -H 2x^ (k)]TQ2 1[z (k) -HA(k)]}

M

=ksOpv(k) (Z(k) - 
H92 (k) ; 22)' M = 0,1,2,---

Hence Al and A2 are both unresolvable and CML unresolvable. The above

theorem is a modification of the one given by Tse and Anton in [19].

To illustrate Theorem 2.8, we have the following example. Consider

the system

x(k+ 1) =	 A3	 1.0	 1 
0

x(k) +	 u(k)
0	

04
	 05	 (2.34)

.I(k)  _ [ 1	 0 ] x (k) + v (k)

i



-1
P12

P22

(2.35)

P1 
	 P12	 A3

P21	 P22	 0

P11	 ?12	 0

P21 P22	 05

_ [1	 03	 PI 

P21

P12	 Al

P22	 e2

A	 1.0,

0	 of 4

0

A
5̂

[1	 0]

.w

Al	 P1 l

A2	 P21

and the solutions are

1.0 pi 

A4 	 P21

-1
P12

P22

25

x(0) U	
Al

A2

with 0- [9 
1  
A2 A3

 0
4 05 ]T to be identified.

By Theorem 2.8, the following equations are obtained
	

• a

P11 -1.0

P12-0

P21=A3-A4

P22 - 1.0

93+A4-A3 +84

A5 - e5

Al - Al

A2 2- A +P el
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pacifically, if we let

21 =[0.5, 0.1, 0.3, 0.7, 1.0], then

120 (0.5, -0.1, 0.7, 0.3, 1.0]

ind
1.0	 0

P=
-0.4	 1.0	 .

I.e., the following two systems

0.3	 1.0	 0

x(k+ 1) =	 x(k) +	 u(k)

0	 0.7	 1.0	 (2.36)

z(k) _ [ 1	 0 ] x(k)	 + v(k)

x(0) _ [0.5 , 0.1]T

and

0.7	 1.0	 0

x(k+ 1)	 x(k) +	 u(k)

0	 0.3	 1.0	 (2.37)

z(k) _ [ 1	 0 ] x 	 + v 

x(0) _ [0.5 , •0.1]T

are unresolved in any compact subset of R 5 containing A l and 02.

If there is more than one vector of parameters in 0 that will generate

the same observation sequence joint density function, the parameters are

not globally identifiable. However, if there exist regions around each

point and if there exists a local estimation sequence in each region, we
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are still able to identify those parameters by some identification algor-

ithms of local variation type. The following concept is established by

Tee in [18].

Definition 2.18

The parameter QoeO is said to be locally identifiable if

(i) there exists an open set S 0 such that 00 is an interior point of

S0 , and

(ii) there exists a consistent estimate

th }nil in SO where S0 is the closure of S0.

We will call S0 the region of parameter identifiability. By imposing

the same assumptions as the above on the joint density function of the

observation sequence, Tse [18] has the following theorem.

Theorem 2.9

If for all n -1,2,---, there exists a a 2 >0 such that

B log P (Zn { Zn-1 ; e0) a log P (Zn l Zn-1' e0) T

0	 ajo

> a2I
	

(2.38)
pxp

where Eto represents the expectation with respect to the density function

p(Zn ;00), than 00 is locally identifiable.

Another weaker sufficient condition for local identifiability was

also established. Define

b log Pk.j (0)	 b log P	 L) T

Jk , j(,aEe {[	 be	
}[	 ae—k=] }	 (2.39)
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where

It	 .

Pk,j`)aP($k 'ak+l'--- ,ZjIZk- 1' A)	 (2.40)

Noting that

a2 log Pk jL) _ -E 
^a log Pk 

O) a 
log Pk . j `) 1T} (2.41)EQ{ a 9

	
}	 9{	 a_	 a 9

and

a2 log Pk, jL) }=E { j 
a2 log P

E 0{

	

a e2	 9 j^ a A

= j 
E {a2 log Pi,iL) }

i=k 9	 a 02

j
i kJi, i L)

We have

_ i

Jk, j L) i kJi i LO)

(2.42)

( 2.43)

(2.44)

(2.45)
i

s

and

n
Jl,nLo) = jiji^i La)

Theorem 2.10

If there exists a X 2 > 0 such that

n
ni mi^Ji ^ i LO) = nim Jl , n LO) Z a 2I

then 00 is locally identifiable.
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DSfinition 2.19

A subset S CRP is said to be locally identifiable if all the elements

in S are locally identifiable.

Theorem 2.11

A sufficient condition for a subset S CR P to be locally identifiable

. J

is that

nim il ^ n`) 2: X 2 (0)1
pXp 
 ; a2 0) >0 for all 9eS

 CD

(2.46)

In the next section we will present a system identification example

given by Aoki and Yue [1].

2.4 An Example of System Identification

Aoki and Yue [1] examined the asymptotic properties of the constrained

maximum likelihood estimate of the unknown parameters of a class of linear,

stable, constant, discrete-time systems with observation and plant noise.

The system considered by them is in the completely observable companion

form and is single-input and single-output, hence the system representa-

tion is unique. Therefore local identifiability will imply global identi-

fiability for the class of systems considered by them. It is

obvious that global identifiability implies local identifiability.

Consider the dynamic system represented by

x(k+ 1) - Fx (k) + Gu(k)

y(k) - Hx (k)	 (2.47)

z(k) -Hx (k)+v(k)
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where F is an (n x n) matrix, G is an n-component vector, B - [10 --- 01 is

a (1 x n) matrix, and v(k) is a sequence of independent and identically

distributed random variables with zero mean and finite variance c 2 , i.e.,

v(k) — N(O,Q2), k- 0,1,2,---. F has the following completely controllable

companion form:

-a1 1 0 . . . 0

	

-a2 0 1 0	 0
F	 0	 .	 .	 .	 .

.	 .	 . . .

-a 0	 0
n

T
and G =[b19b29---,bn]

The initial state x(0) is an unknown n-vector. Our purpose is to

identify

A =[a l , --- ,an , b19---,bn]T, a 2n-vector,

and the unknown initial state x(0) a x0.

The input sequence u(k), k = 0,1,2,--- is known and is assumed to be

uniformly bounded.

Suppose we take M observations. Define

U - [ u(0) . u(1) .-•-, u(M - 1) ]T

	

VM -[v(0), v(1),---	
T

, v(M- 1,•,i

YM - [Y(0), Y( 1) Y(M• 1)]T

ZM - 1z(0), z(1) 9 ---, z(M- 1)]T	(2.48)
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Then

A^rYM - BMUM +	 (0)
	

(2.49)

where

AM
 - IMXM 

+iElaiSi

n	
i

BM iElbiS

Inn
EM - (- - - - )	 (2.50)

0M-n,n

and S is the MX M shift matrix with element S ij - 6 i,j+l . Another way to

express the input -output relation of (2.47) is as follows:

YM - H0+ EMx(0)
	

(2.51)

where

M - (-S^, -S IM,---, -SnYM, S_VM ,S 2UM ,--- ,S WUM)	 (2.52)

which is an M x 2n matrix.

We assume that the true parameter A 0 is an interior point of Q where

n
0 is a compact subset of R . Furthermore, we assume that the system

(2.47) is stable for every AeA. By (2.47) and (2.49), the output sequence

ZM can be expressed as:

ZM - HM + YM - IM + AM- 
1(BMUM + Ejgo)	

(2.53)

and the joint probability density function of ZM is
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P (ZMi A,xO) a Cons t. • exp (^1 ILZZM - AM 1(BMMM +	 0)'j 2)	 (2.54)
2Q

The constrained likelihood estimate of .9 and xo , denoted by dM and 
j^M

respectively, are obtained by

log Pam; , A3 
OM)
	 Max nlog p QZM ; A, x0)	 (2.55)

Ae(2,x0eR

For any Aen, Max log p( ẐM ; A, xO) is obtained by
xOef^Rn

_OM^) s C
EMT (AM 

T)-lA -1EM,-1ET 
(AM

T) - 1[ -
 AM 

-1 B
MUM] 	(2.56)

Then 6M is obtained by

oef2l 	
A I (BMUM +Erb-̀
 

bM L) )1) 2

AM	 lIl (B	 + %!OM M) ^^ 2	 (2.57)

and

i%M 0 x M V	 (2.58)

The following theorems were given by Aoki and Yue in [1].

Theorem 2.12

If the system (2.47) is completely controllable, and G is not a zero

vector, then the constrained maximum likelihood estimate Q converges to

the true parameter % with probability one if and only if

lim 1^ UM2n U	 > 0
M -*a	 + 'M, 2n

where

UM, 2n - (SUM ,S s2M ,---,S 4)	 (2.59)
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Theorem 2 1

if the system (2.47) is completely controllable, and 0 is not a zero

vector, then the constrained maximum likelihood estimate 
a 

converges to

the true parameter AO if and only if

lim M x 
T
^>0 for all SM.

We note that the positive definiteness of the two matrices in Theorem 12

and 13 are sensitive to the input sequence %; therefore, input synthesis

is ac important factor for the identifiability of the system parameters.
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3. LOCAL LEAST-SQUARE PARAMETER IDZNTIFIABILITY
AND LOCAL PARAMETER IDENTIFIABILITY FROM THE
TRANSFER FUNCTION OF LINM DYNAMIC SYSTEMS

In this chapter we will discuss specifically the parameter

identifiability of linear dynamic systems. We will establish the concept

of parameter identifiability without considering the identification

algorithm, the algorithm-oriented least-square identifiability [23, and

the transfer-function identifiability for linear dynamic systems [6].

Furthermore we will discuss the relation between the local least-square

identifiability and the local transfer-function identifiability.

3.1 Notation

We will present specifically the manipulation of the bilinear

operators in this section which is necessary for the approach later on.

For *U) a real-valued function of QM CRP , i.e., #:D-R,  if #(9)

is differentiable with respect to QM, we define

a el	a p

where

9 - cei,---,ep]T.

If9) is an m-component vector-valued function of IM, we define



t
	 3s

t

	

at l Q)	 ail O)

1 a ep
•

•

	

a -	 ^, p

a j

and

	

aej aek 	 j•1. ---,pk. 1,.... P

which is an (m x p x p) bilinear operator [141. For A(0) an (a x p) matrix,

A(S) - [A i j (0)1. we define

	

AL) j —^-^---	 j . 1 ^....P

	

k	 k • 1.---.P

which is an (m x p x p) bilinear operator. If B is an (m x p x p) bilinear

operator, then the product of B with a p-vect or A is an (m x p) matrix

whose i.j element is

P
(B 0) E Bi j 'k.1i jkek

Moreover, B 00 is a m-vector defined by

Bee n (Be) A

(B96) i - jEl(k:lBi jkek)ej

We denote the permutation of B as B , where

(B*) i jk - (B)ik j

.,
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3 is said to be symmetric if

BOB *

The transpose of 3 is denoted by 3T , where

(BT) ijk - (3)k1j

The product of a bilinear operator 3 with a (p x q) matrix is an (a x p x q)

bilinear whose i,j,k element is

(BA) i jk %SkSiOU

The product of a (q x a) matrix with an (m x p x p) bilinear operator is as

(q x p x p) bilinear operator whose i, j,k alament is

m
(A3) 

ijk - 44Au
B
G jk

Given two matrices

A' [ai j3 , i, j ` 1,---,n , and

3 0 [bi j3 • i • j • 1,•-- on 0

we form a new matrix C with elements cij;t`t obtained by multiplying each

element of A by each element of 3 in the following way:

C - [ci j;kt, J ` Caikb jt l

Here, the pair of integers (k,j) act as the first indsx, and the

pair of integers (k,,) act as the second index, where

i,k a 1,2,---,n,

Jet a 1,2,---,m.
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r..e matrix C is called the Rroaecker product [15] of the matrices A and

S and is denoted by

C w A x 8

For example. let A and S be second order matrices. Then their Kronecker

product is a fourth order matrix, which can be written as	 -

a llbll a11b12 812b11 a12b12

a llbll a11b22 al2b?1 d12b22C

a21b11 a21b12 a22b11 a22b12

a2lb21 a2lb22 a22 b21 a22b21

c11;ll c11;12 c11;21 cll;22

c 12;11 c12;12 c12;21 c12;22

C21;11 c21;12 c21;21 c21;22

c22;11 c22;12 c22;21 c22;22

For an (n x m) matrix A •[a i'], A is defined by

all
821

enl
812

;a
en2

81n
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3.2 Local Least-Square Parameter Identifiability

A general continuous-time deterministic dynamic system is described

by

t
	 x(t) - i (x-M , .9 (t) , t; e)

'VM -I(-r. (t), u(t), t; e)
	

(3.1)

V.;e%-e x(t) is the n-state vector, u(t) is the q-input vector, v(t) is the

r-outouL vector. to [O.m) = R+. $ : Rn x Rq x R+ x A - Rn. and C: Rn x Rq x R x A - Rr.

Atf2c Rp is the unknown parameter to be identified. If the system is dis-

crate-time, then it is described by

x(k+ 1) - *(x(k), u(k), k; A)

y(k) - .S(x(k), u(k), k; A)	 (3.2)

k - 0,1, 2,---

We assume that A is a compact subset of R  and the system is stable

for all GeO. We must note here that A may stand for the system model

coefficients only, e.g., the F, G, H matrices of the linear systems, or

it may include the unknown initial state. To distinguish the above two

cases, we have the following definitions. Let A denote the set of all

admissible inputs, let h(t;A) or h(k;A) denotes the output generated by

A when applied with a ue A

Definition 3.1.a

Let 0 stand for the system model coefficients only, then for the

continuous-time systems, 9 1 4260, A l # 02 are said to be unresolvable in

A if
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1(t:21) = j? (t

for all VO, usA, and tee.

For the discrete-time systems,A l and A2 are said to be unresolvable

in Q if

h(k;AI) = h(k;A2)	 -

for al l %ce, ueA, and ke I+.
Definition 3.1.b

If A includes the unknown initial state x0 , then for the continuous-

time systems, .21,.2 26()' Al #A2 are said to be unresolvable in 0 if

h(t;Al) "(t;-22)

for all u6A and teR+.

For the discrete-time systems, A I and A2 are said to be unresolvable

if

h(k;21) =h(k;A2)

for all yeA and keI+.

Definition 3.2

A parameter 00 ef) is said to be locally identifiable if there exists

an open sphere S QO,p) with radius p >0 centered at 0 0 such that there is

no other Ass Q0 , p) n n, go A0 which is unresolvable from A0.

The above definition is made independent of the method for recovering

20 . However, Bellman and Astr'om 12] established an algorithm-oriented

definition which is called the least-square identifiability. Specifically,
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1.1

,

they first not a least-square type criterion parametrized by the unknown

parameters and sought the unique local (or global) minimum of the criterion.

Parameter identifiability was then implied by the uniqueness of the

minima of the criterion.

Consider the criterion given by

T	 2
JTL) a 

J0 
jLh(t;A) - y(t) 11 dt, T>0	 (3.3)

for the continuous-time system, or

JM(0) Lk^OjL (k;e) -.X(k) 112,  M = 0,1,---	 (3.4)

for the discrete-time system. 11-11 denotes the norm, y(t) and y(k) are

the measured outputs of the continuous-time systems and the discrete-

time systems, respectively. The following definition was given by

Bellman and Astrom in (21.

Definition 3.3

Let 00 be the true parameter of a control system parametrized by the

unknown parameter 0. Then 00 is said to be locally least-square identi-

fiable if the criterion J  (0) or JM (0) has a local minimum at 0- 00 . if

the minimum is global, AO is said to be globally identifiable.

To establish the sufficient conditions for 00 to be (locally) identifiable,

we proceed as follows. We consider the discrete-time system. To find

the local minimum of JM (0), we take the derivative of J  & with respect

to 0 if JM LO) is a continuously differentiable function of 0. Since JM(A)

is a scalar, JM L) is a p-component vector function and JOG) is a (p x p)

matrix function. If 00 is the true parameter, then h(k;AO) - y(k),
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k - 0,1,---, and JM (1^0) no, M- 0,1,2,---. Since JM(Q) is nonnegatiw, i0
is a minimal point of JMLO) and hence .1 * (10) - 0. however, if S0 is to

be locally identifiable, 
SO 

must be the unique minimal point for JM(Q) in

some neighborhood of 90 , i.e., there must exist an open sphere 8 (gO ,p) cc)

with radius p >0 centered at % such that if 9s8(9090, 9090 9  then

JM (0) 00 and hence 0 is not a minimal point of J M (0). if we can establish

a sufficient condition such that JM (9) is an injective function (a one-to-

one mapping) in some neighborhood of 9 0 , then this condition will imply

that A0 is locally identifiable. We first state a result given by

Narasimhan in [10]•

Lemma 3.1

Let S be an open set in Rp and *:S- R  be a Ck mapping (a k-times

continuously differentiable function) with k z 1. Then if #'(9) has

constant rank j in a neighborhood of 9 0tS, # is locally injective at 90

if and only if j - p.

Theorem 3.2

A sufficient condition for 90 to be locally identifiable is that

there exists an open sphere S L90 ,p) CC) with radius p >0 centered at 90

such that the (p xp) matrix JM (0) is nonsingular for all 9eS(90100

Proof: Since JM L) is nonsingular for all SsS (GO ,p), it has constant

rank p for all OtS (2O ,p). By Lemma 3.1 JM (0) is locally infective on

S (00 ,p) . Let AtS (0O ,p) , 9 f 90 , then J' Q) 0 0 hence JM (-9) # 0, M - 0,1,29.

Thus 90 is the unique minimal point for JM (—G), M -0,1,2,---, in S (-0O,p).

The above theorem is an immediate result of Lemma 3.1. The least-

square identifiability and the identification algorithm for finding the
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region of parameter identifiability will be studied extensively in

Chapter 4.

3.3 Local Parameter Identifiability from the Transfer Function

In this section the systems considered are discrete-time. We will

first briefly introduce the realization theory established by Ho and

Kalman in [8] and explain the distinction between the realization and

identification. Specifically, the parameter identification from the

transfer function can be viewed as the realization from the transfer

function restricted to the given parametrization.

The quadruplet {F, G, H, D} defines the internal description of a

system, which we shall denote by E, via the equations:

x(k+ 1) - Fx(k) + Cu 
y(k) - Hx(k) + Du (k)
	

(3.6)

where F is the n x n state transition matrix

G is the n x q input matrix

H is the r x n output matrix

D is the r x q direct-coupling matrix

x(k) is the n-state vector

y(k) is the r-output vector

u(k) is the q-input vector

The external description of the system E is the zero-state impulsive

response description, namely the description in terms of an impulse input

and the corresponding output. There are two ways to represent the external
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description of E. One of them is the time domain description. From

equation (3.6), it can be easily seen that the impulse response of E is

given by

I ^^

WO . D

W1 HG+D

•	 M-1

WM {
iE1HFiG) + D

0 (3.7)

and the impulse response matrix is given by

HG  + D

HFG + HG + D

M-1

{ iE1HFiG) + D

(3.8)

By the frequency domain description, the input is related to the output by

the transfer function T(z) such that

Y 	 - T ( z)U(z)	 (3.9)

where
-1

T(z) - {H(zI - F) G+ D}	 (3.10)

ztC (the field of complex numbers).

WO

W1

W:	 i = i

WM
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Through the concept of realisation, the external description of a

system can be related to the internal description of a system. The prob-

lem of realisation can thus be stated as follows [8]: construct (F,G,H,D)

such that the identity (3.7) holds, i.e., given a sequence of constant

(r x q) matrices (Mi }i-D , find a quadruplet (F,G,H,D} of constant matrices

such that

MO - D

M1 - HG

•	 M-1
MM - HF G

The sequence (M 1 }i-0 is called the Markov parameters of the system E.

The dimension of E is defined by

dim(l) m dim(F)

We say that the realization (F,G,H,D} is minimal if the dimension of

F is less than or equal to the dimension of any other realization of E.

From the linear system theory, we know that a realization is minimal if

and only if E is both completely controllable and completely observable,

i.e., if and only if

rank[C FC	
n-1

•--,F G] - n (completely controllable)

and rank(HT ,(HF) T , --- , (HF
n-1) T

] - n (completely observable)
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[L-

Furthermore, given an external description, two minimal realisations

E1 = (F 1 ,G1 ,H1 ,D1 ) and 1:20 
(F29 G2 ,H2 ,D2

) are equivalent if and only if

there exists a nonsingular n x n matrix P such that

-1
F2 = PFIP

G2 = PG1

H2 = Hip 1

D2 = D 1	(3.9)

These two equivalent internal descriptions differ only in the co-

ordination of their state spaces.

Even though we have the knowledge of the external description and

the minimal dimension of E, generally we are not able to determine the

quadruplet (F,G,H,D) uniquely unless the structure of (F,G,H,D) is con-

strained in some specified form. We can illustrate the above statement

by the following example [2].

Consider

- (A1 + A2)
	

A3	 1

x(k+ 1)
	

x(k) +	 u 

A2	 -(G 3  + 04)	 0
	

(3.10)

y (k) -	 [	 1
	

0 J x (k)

The transfer function of (3.10) is

z+A3+04
T (z) - --1	 (3.11)

Z + z (A1'#.02+03+@4)  + (01+02)(03+04) - 0203
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Thus we have only three equations to solve the four unknowns

(01,02903904):

A3+04=a1

01 +02 +03 +04 = a2

(0 1 +0  2) (03 + 04) • 0203 = a3	 (3.12)

where al , a2 , and a3 are known constants. For this under determined set

of equations, one of the four unknowns has to be dependent on the other
4

three, hence the representation of (3.10) is not unique. However, if the

'	 system representation is constrained to have the canonical form:

0	 1	 A3

x(k+ 1)	 x 	 +	 u(k)

Al 02	 A4	 (3.13)
a

e	 y(k) _ [ 1	 0 ] x(k)

then

	

03z + 04 - 0203	a3z + 84
T(z) _ 	 (3.14)

	

z -02z-01	z2+a2z+81

and

Al = a1

+	 A2	 a2

f	 A3=a3

A4 = a4 - a 2a 3	(3.15)

is the unique representation for system (3.13). The identification
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(realization) of system (3.13) is an example of the canonical parameter

identification problem which has been thoroughly studied. By canonical

parameter identification, we mean finding a certain set of parameter in

a given canonical parametrization which when applied with the input

sequence from a given set of input-output sequence will generate a set of

output data which will match the given output sequence within some well

defined degree of accuracy. The primary reason for finding canonical

parameters is to obtain a model which gives a good match to the measured

input-output data. However, it may not be desirable to use a canonical

form for a given physical system. That is, it may be desirable to identify

specified parameters in a given parametrization. Hence the parameters

identified in a specified canonical form may have little or no recogniz-

able relationship to desired physical parameters. To expound the above

statement, we give the following example.

Given the frequency domain external description of a second order

zero-state system E:

T(z) = 22 c

z +az+b

The canonical parametrization:

(3.16)

0
	

1	 0

x(k+ 1)
	

x 	 +	 u(k)

Al
	 A2	A3	 (3.17)

y (k) - [ 1	 0 1 x (k)
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}

can be uniquely determined by

01• -b

4)2 • -a

4)3 
n c	 (3.18)

hence the canonical parametrization is globally identifiable. However,

if we are given the physical parametrization which is the same as the

example in section 2.3:

Al	 1.0	 0

j(k+ 1)	 x (k) +	 u (k)

0.0	 02	4)3	 (3.19)

y (k)	 [ 1	 01 x (k)

then we get the following set of equations:

0 1 +92 a-a

Ala2 a b

03 = c
	

(3.20)

i

	 It is obvious that 01 and 02 can be interchanged without affecting the

^-

	

	 transfer function. Hence this physical parametrization is not globally

identifiable but only locally identifiable since the two parameters:

Al a (01
,4)

2 ,03) and 02 s (4)2191,93)

will both generate the same transfer function even though they are isolated

in the parameter space if 0l 
0020
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1 :	 Definition 3.4

I

	

	 A parametrization of the system matrices (F,C,N A is a continuously
differentiable function which maps n, the parameter space, to the
n (a + q + r)+rq	 ,
R	 space; i.e., a parametrization is a c function

(F,G,H,D) (0) :fl cRp.. 
Rn(n+q+ r)+rq

For brevity, we let n(n+ q+ r)+rq -L. The above definition was given by

Glover and Willems in [6].

Definition

Given a parametrization of a system E. two parameters A l A26A, .210 A2

are said to be unresolvable from the transfer function if

HUI) (zI - F(el))-IG`l) +D( 1) - H(Q2) (zl - F(02))-1C`2) +D(-02)

(3.21)

for all W and z O (1(F (O l)) , X (F (-92))) where X(-)  denotes the sigenvalues

of the corresponding matrix, or equivalently,

D(91) - D(O2)

H(Ql)Fi (—QI)GL1) - HL2)Fi L2)GL2) 1- 0,1,2,---	 (3.22)

The following definition is similar to the one given by Glover and

Willems in [ 6].

Definition 3.6

A parametrization is said to be locally identifiable from the transfer

function at 0098 if there is an open sphere S (90 ,p) cA with radius p >0

such that there is no 's S(AO ,p), A 09 ,  which is unresolvable from AO i.e.,

if there is a SeS `0 ,p) such that
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so

WJI

D (0) • D (V

Rt4)Fi `)CC0) R(VF i(C(Y^, i 1,2.--•	 (3.23)

then 4 .0o.

By Lemma 3.1, an immediate result follows.

.=_3
Let (F ,C,H,D) (0) ; n- 1C be a parametrization of E. then the

parametrization is locally identifiable from the transfer function at

604 if the gradient of the Markov parameter matrix MQ) with respect to

0 has constant rank p in an open sphere S (%,p) with radius p >0 centered

at 00 where

D (0)

H eMO)

M (9)	 H(.0)F(0)G(9)

H(9)F (0)GL

If a parametrized system is of minimal dimension, then it is related

to its zero-state and zero-input equivalent systems by similarity trans-

formations. For the physical parameter identification problem, we are

interested in the equivalent systems which have the same parametrization,

i.e., we wish to investigate if .here is any transformation matrix which

will transform a parametrized system to an equivalent system with

different parameter values but with same parametrization. Specifically,
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we shall investigate the solution (Pj), PsOL (n), the space of nonsingular

(n x n) matrices, ijen, of the following set of equations:

PF(.9)P 1 - F(V

PG(9) - G(k)
H (f^) P 1 • H

D(q) - DV
	

(3.24)

where 4 is the true parameter. It is obvious that if there is an open

sphere 8 (90 ,p) cA such that (Inxnjo) is the unique solution of (3.24) in

GL(n) x S QO ,p) , then the parametrization is locally identifiable from the

transfer function at 4. The following theorem provides the sufficient

condition for (3 .24) to have unique solution locally which was given by

Glover and Wi1I ms in [61.

Theorem 3.4

•

	

	 Let (F ,G,H,D): 
0-4t 

be a given parametrization of the system matrices

{F,G,R,D) and suppose (F,G,R,D) is minimal.

Let

PF (1) P-

PG(2)
8 (P, A) ^ H(k)P i

D( )

If there exists an open sphere SLO ,p) with radius p >0 centered at

00 such that v(PIP e0j) has constant rook n 2 +P at P • I and for all

AtS(fo,p), then the parametrization is locally identifiable from the

transfer func! !on at 4. The matrix v (P02) RPM evaluated at the point
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0^ (P, A) I	 =(P.e) 
	(I.e)

(Inxn(S FT (2) F (2) O Inxn) 2 2
n xn

(1 (3)n 
GT (0) )	 2ngXn

(-H (0) C Inxn)	2rnxn

rgxn2

FL)
22 XP

GL)
ngxp

_H L) rnxp

D L) rgXp

(3.25)

which is an (n 2 + nq + rn + rq) by (n2 +p) matrix.

We give an example to illustrate the above theorem. Consider the

system parametrized by

0 1

F =
Al A2 .

0
G =

A3 	(3.26)

H=[ 1	 0),

D = [ 0 )

A [A1 A2 03)T,

then
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v	 E(P,A) I	 a
(P &	 a d)

0al00 0	 0	 1 0 000

1 02 00 0	 0	 0 1 1 00

00 001 01 0	 02 0 000

00 lA2 0	 A1 0 A 010

0 A3 0 0 0 0 0

00 093 001

-10 00 000

0-100 000

0 0 0 0 0 0 0

a

0 Al -1 0 0 0 0

1 A2 0 -1 1 0 0

-A1 0 -A2 Al 0 0 0

0 -A1 1 0 0 1 0

0 A3 0 0 0 0 0

0 0 0 A3 0 0 1

-1 0 0 0 0 0 0

0 -1 0 0 0 0 0

0 0 0 0 0 0 0 (3.27

which is of rank 2 2 + 3- 7 for all At R3 hence the parametrization is

globally identifiable from the transfer function.

We will extend the above theorem for the case that 0 includes the
x

unknown initial state, i.e., A a _0 , where n is the unknown system

parameter vector contained in (F,G,H,D) with a specified parametrization.
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Then the augmented parametrization is a mappi

to the e(n+q+r) + rq+n space. Let t,' =n

that

x0 = E InXn' Onx (p-n) 1e
and 11 - CO (p-n) xn I (p-n) x (p-n)

Let AO = x00 denote the true parameter. Z

following set of equations is sought

Px0 x00

PFQj)P-1 = F(110)

PG (t])	 G (t30)

H (]) P-1 - H (130)

D (')) = D (.Do)

The following theorem is established imm

Theorem 3.5

Let (A0,F,G,H,D}(9):O—Rt, be a given pa

E and suppose (F,G,H,D) is minimal. Let

Px0

PF(,i')P-1

8 (P,9) = PG(M)
-1

H P

D (^)
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If there exists an open sphere S Q0,p) CD with radius p >0 centered

at 00 such that 0(p^e)E*(P,A) has constant rank n2 + p at P al UXn  and for

all GIs LO ,p), then 00 is locally identifiable (by definition 3.2).

o (p ,e) E* (P j) evaluated at (Inxn ,A) is given by

	

(InxnCX) 30T) 2	 %0)

	

nxn	
nxP

(Inxn ^Z F
T (t^) - F (t) 0 Inxn) 2 2 (V (^) ) 2n2 	 n xp

(P,2)

(I ,A)
(InXn O CT 

(D) )	
2	

(via (m) ) ngx
Pngxn

(-H   O Inxn) rnxn 2 	 ^)) rnxp

0r qxn 2	 rqxp

(3.30)

which is an V by (n2 + p) matrix. We note here that x0 -; 0  since x0 is

a colunm vector and hence 0030 = [Inxn' 0nx(p-n)
] by (3.28).

Comparing Definition 3.2 and 3.6, and Theorem 3.4 and 3.5, we see

that identifiability from the transfer function is equivalent to the

zero-state parameter identifiability according to Definition 3.2 which is

a more general definition.

M:



56

3.4 Region of Least-Square Identifiability and
Transfer-Function Identifiability

In this section we will discuss the relation between the least-square

ideal fiability and the transfer-function identifiability. We consider

a parametrized single-input, zero-state linear system E with system

matrices (F,G,H,D)• Let the true parameter be 0 0. Its measured impulse

response matrix is given by

2(0)	 D LO)

Y( 1)	 H(QO)G(QO) +D(QO)

.y(2) 	 H (_GO) F (,GO) G (9O) + H (0O) G (0O) + D (0O)
Y =
—M

M
Y (M)	 { iEOH (0O) F i LO) G (QO)) +DLO)

which is an r(M+ 1)-component vector where r(M+ 1) Z p.

(3.31)

The output sequence generated by the unknown parameter 0 when applied

with the impulse input is given by

	

h (0; A)	 D (0)

	

h(1; A)	 H(0)GL) +D(G)

	

hM L) s h(2; A)	 HL)FL)GL) +HL)GL) + DL)

M
.b (M; 0){ iEOHL)Fi LO)GL)) +DL) (3.31)

Let the identification criterion be
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JM (G) , lc;o[h(k; e) - y(k)]T [h(k;

[hM L) • _YM]T[hM L) - yM]

Then

which is a p-component vector function, an

p^ L) = [4 q) ]TCX LS) ] + LP L) ]

which is a (pxp) matrix function of 0.

We note that

JMLo) = 0 ,

-0M 
La) = 0 ,

and pM Lo) _ [.ham' LO) ]T[hM LO) ]

Recalling that the Markov parameter matrix

D L)

H L) G L)

ML) =	 H(G)F(0)G(0)

HL)FM-1L)GL)

By performing row reduction on hM L) , its easily seen that

rank[ILO) ] = rank[hM L) ] for all OeO

and rank[R'L) ] = rankLhML) ] for all QM. 	 (3.36)
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E

'	 Moreover, from the matrix theory we lmow that

rank[ "(Q)] p if and only if rank%(9)) T(h ( • P.

For brevity, let

.!M  `) — _hNI`) —M
	 (3.37)

and NM(Q) R 1 ' (9) ]TW (9) ] .	 (3.38)

Our purpose is to find a region S LO ,p) such that 00 is both least-

square identifiable and identifiable from the transfer function in S QO,p).

We first state the following Lemma.

Lemms

Let B and C be two (n x n) matrices. Let 11 -11 be a norm on the space

of (n x n) matrices.

If (i) B is nonsingular,

(ii)JIB 1 11 lot,

(iii) 11C - B{{ S 6, and

(iv) orb < 1,

then C is nonsingular and 11C -l ^{ s 1.^. f 016

Theorem 3.7

1;	 Let E be a zero-state, single-input linear system parametrized by

the unknown parameter 0. Let the true parameter be 8 0 . Let 11 . 11 be a

norm on the respective spaces. If

(1) NMLO) is nonsingular,

(2) there exists an open sphere S LO ,p) with a radius p >0 centered

at 00 and a set of positive numbers (X,y,o) such that
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(i) IINM 1 (00)1! s1,

(ii) 11[ L) I, (—O) II sY

(iii) IINM) I! s µ

(iv) 1 (µP +Y) < 1,

for all 1eS(Q080,

for all ACS Lo ,p) ,

then 90 is both least-square identifiable and identifiable from the

transfer function in S (200 9P).

Proof: By 2(111) we have

IINM (0) - NM (00) II s Pµ for all QCS (9o,p)

Moreover , IINM 1 (00)11 s 1 by 2(1).  Applying Lemma 3.6 to this situation,

we have a - 1, 6 - pµ, and 1p4 < 1 by 2 ( iv) . Thus NM (0) is nonsingular and

IINM 1(0)11 s 1 
x1	 for all AcSL0,p)

WP

Since NM L) _[h  L) ]T[ hM (0) ] and NM L) has constant rank p in S LO , p) ,

therefore l^L) has constant rank p in SLO ,p) and ML) has constant rank

p in S La ,p), hence AO is locally identifiable from the transfer function

by Theorem 3.3. We now show that JM L) is nonsingular for all ACS L0,p)

and JML) is locally in jective on S Lo ,p) .

By (3.34)9

therefore

IINML) -L) II - IIUM (0) TIMLO) II SY

for all 99S La ,p) by 2 (11). Applying Lemma 3.6 again, we have a -^—,
WP
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6 n y, and orb a 1	 < 1. Thus '(8) is nonsingular, i.e., 	 (
OP

constant rank p for all OsS (GO,p). This implies that A0 is loca

least square identifiable by Theorem 3.2.

A computation procedure for finding explicitly S (A0,p) will

presented in the next chapter.
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4. REGIONS OF PARAHMR IDENTIFIABILITY FOR
DETERMINISTIC LINEAR DYNAMIC SYSTEMS

In this chapter we will study the identification algorithm exten-

sively. We will first study Pereyra's [13] theory on the modified Newton

method, which we shall call the Gauss-Newton method, for solving nonlinear

least square problems. Then we will present the identification algorithm

proposed by Herget [7] for finding the regions of parameter identifi-

ability.

4.1 Nonlinear Least-Square Problems and
the Gauss-Newton Method

In this section we will study the sufficient conditions for the con-

vergence of the Newton iteration sequence and the Gauss-Newton iteration

sequence.

Definition 4.1

A real-valued function 11'11 defined on the Rn space is called a

norm if

(i) JLxII Z 0	 for all xtRn,

(ii) ILII - 0	 if and only if x -0,

(iii) IL+YII s 1L11 + bil	 for all x,Yee, and

(iv) 1141 - Ic,I1IxII	 for all aeR and all xeRn.

Definition 4.2

A mapping W) c Rp • Rm is said to be Frechet-differentiable at G,

where 9 is an interior point of Q, if there is an (m x p) linear operator

A such that

1 i ( 1 /ILlI)1l*(6 +k) - *(6) - Akjj -0
ILkI1.O
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for all k such that O+ ken. A is denoted by #'(1) and is called the F-

derivative of # at Q.

By a least square problem, we mean given a nonlinear transformation

h:Q C Rp Rm between the set Q C RP and the Rm space (p s m in sonars 1) ,

and the sequence of observations lee, find a parameter 0040 such that

the Euclidean norm of h(9) - Y is minimized at A0, i.e., we want to find

the stationary points of the criterion JL (Q) -111 .

For brevity, let f09) = hL) -.X 6  If f() is at least twice Frechet-

differentiable on Q, then we can differentiate the criterion to find the

minimal point of the criterion. Let

J(9) _ [h(9	 T[h(9) - Y] = fT ^) f q)

which is the square of the Euclidean norm of h(9) - Y. Then

p (_) s 1 /2 J' (Q) - [ f' (10) 3 T_f (0-)
	

(4.1)

where f' L9) is an (m x p) matrix function of A and .0L) is a p-componant

vector function of Q.

To find the stationary points of J L), we let

i W - 0	 (4.2)

Many questions arise. (1) Does there exist some 9OsQ such that f (9O) - 0?

(2) If 90 exists, is 
k0 

unique locally or globally? (3) If 00 is unique

locally in some region, can we find explicitly the region? (4) If 20

exists, how do we construct an iteration sequence which will converge

to 90?
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To answer these questions, we proceed as follows. The standard

Newton iteration sequence for solving the equation 0(0) n 0 is defined by

owow.1
91*1 '4n -	 (%) 1 jl (%). n- 0 2 1,.--,	 (4.3)

E

r
where

A' (—Q) - [f' (0) 1Tf I %) + [I .  (4) 1Tf (—Q) -	 (4.4)

and f" (0) is an m x p x p bilinear operator defined by

"	 a2fi(a)	 i - 1,---,m
f(A) -'I 	j - 1,---,p	 (4.5)bojbGk 	 ke 1,... ,p

The manipulation of the bilinear operator follows that given in Sec. 3.1.

The Newton-Kantorovich Theorem provides sufficient conditions for the

convergence of the iteration sequence (4.3) and the uniqueness of the

solution for (4 . 2) in a region.

Theorem 4.1	 [Newton-Kantorovich] [12]

Assume that I:A c Rp • Rp is P-differentiable on a convex set C20 CC1

and that

119 1 01) - '9 1 02 ) II AYILI -1211 for all Ai,A2MOO

Suppose that there exists an 90600 such that 11i' 00)11 s $ and a - 0y7j t l /2

where	 ^(00)1- iP LO}II s^1•

Let

-1[1 - (1 - 2a)1. P2 • (9r' • [1+ (1 - 2a)^].

and assuage that SLe0 ,o 1 ) Ca  where S(2O ,o i ) is the closure of the sphere
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OW
S (4Q ,p l) with radius p 1 centered at 0Q. Than the iteration sequence

WV 3

is well-defined, remains in S t4Q ,p l) and converses to a solution 
a  

of

j (0_) • 0 which is unique in S (S-Q,p 2) nno . Moreover, the error estimate

0	

(	
s^JJ20 -OnIl a (Oy2) (2ar)2n• n•O^l^...^

holds.

By (4.4 ) 9 we see that by using Newton ' s method, we must calculate

f (J) which is a bilinear operator in each iteration. This is a compu-

tational inconvenience. Ursyra [13] developed a modified Newton method

which we shall call the Gauss-Newton method. The modification is that

^' L) is replaced by its first order approximation U' (p) ] Tf' (1) and the

modified iteration sequence is defined by

n 6 0,1 9 --_ 	 (4.6)

Due to the approximation on I' L), another set of sufficient conditions

for the convergence of (4.6) and the uniqueness of the solumion of (4.2)

was established by Pereyra [13].

Theorem

jnf l • on - [ L `ten) ] Ln) .

Assume m:A-Rp is ?-differentiable. For brevity, let N& a

T L) ] .1 L) . Letlogo. I f

(1) NLQ) is nonsingular,

(2) there exists a sphere S 4O ,p)CM of radius p centered at 
—90 

such

that
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(i) II N 1 (t0)II t1/2I► .

(ii) I I U"L)]Tft4) - [ "(o0) ]Tit40)pSy for all St8(o0•P)•

(iii) 11(j"(to) Af—(%) II tY

.	 (iv) II p I L) II to for all Se8 (%,p)

(vi) -n t P • where n n 
I - 'A+y

Then the iteration sequence defined by (4.6) converges to the unique

solution 20 of JL) n 0 in the sphere 8 Lo oil) * Moreover, the error

estimate is given by

ILO ' 2011 tk Y.

where k - 2a (µp + y) .

The above theorem provides a convergence region centered at the

initial iteration point such that the solution of (4.2) is unique in that

region. If we have the knowledge of the solution of (4.2), then we are

able to find a region centered at the solution 20 such that 2O is the

unique soluW,n of (4.2) in that region by modifying the above theorem.

This will be uudied in the next section.

4.2 Regions of Parameter Identifiability

After introducing the theory and algorithm for solving the nonlinear

•	 least-square problems, we are now going to apply it for the control system

parameter identification problem. We shall first introduce the 4 m norm

which will be employed by the identification algorithm developed in this

section.
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The well-known class of norms on Rn apace is the tp-norm defined by

I^pp - (Ji 1xil p)1/p f 1<p<m

When p -2, the t2 norm is usually called the Euclidean norm.

The limiting case of the t, p-norm is the t,m norm defined by

II=IIo o n 	 Max I xi Ilsisn
We can thus now induce a norm on the space of linear operators from

n
R to•R m . We denote this space by L(Rn,Rm). Given any two norms 

II
-I) and

11011  on Rn and Rm respectively, and any AeL(Rn ,R1Q), the norm of A with

respect to 
II • II 

and II . 11' is defined by

IIAII -	 sup 11411'
I.1,- 1

Such a matrix norm satisfies the properties:

(i) IIAII 2 0 for all AcL(Rn,Rm)

(ii) IIAII - 0 only if A - 0,

(iii) IIaAII- I a I IIAII for all acL (Rn,Rm),

(iv) IIA+ B11:1 IIAII + IIBII 
for all A,BcL(Rn ,Rm) .

The t l-, t, 2-, and t.-norms are the most useful in numerical analysis

work. For the system identification problem concerned in this section,

we will employ the t,. -norm. We denote the t, OD 	 of a matrix A by IIAII,.

The following theorem provides the explicit expression of IIAII, [12].

Theorem 4.3

Let AsL(O,Rm) where both Rn and Rm are normed by the t, CD -norm.

Denote A -[ai3].
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Then
n

llAIL - Max	 El I ai j I	 (4.7)
lsism j

Proof: For any 390,

Il ALXilcm = Max I () i i
111 S

= Max i lka x I
1 si Sm j' ij j

S1 Mix m j^l aij ll xj l

n
S Max	 j F.1 1aij l-( Max Ixjl)
lsism	 lsjsn

_ c l Max
s i s m 

j.El l ai j l) llxllm	 (4.8)

It sufficies to show that there exists an x eRn such that the equality

is attained in (4.8). Let k be the index such that

Max	 Ellaijl = Ellakj I
lis s jm	 j

Define x* by

	

*	 akj /lakjI	 , akj #0

	

xi
j	 1	 , akj =0

j = 1,---,n

i
t.	 Then

1LX* 11m = 1, and



Max I (*)
isism	 i

Max I I a 3
1 s ism J

u l ij

If 10 k, then

n	 *	 n

I jElaijxj l 
s jEllaijllxj

s J
u l laij l i11

= jEllaijl

s 
J
u l I ak j 1

If i - k, then

*	 n

I Julakjxj I -jEl
 la, 

I
a , %"

IL-

n
Thus Ax* _ E	 =	

n
ll _ pm j=liakjl 1	

m	
laijl, and the equality in (4.8) is

attained.

We can also induce ant -norm on an (m x p x p) bilinear operator B

defined by

11 B11 =	 sup Il BX1100	 11x11 -1

We now consider the problem of identifying the vector of unknown

parameters rM, and the unknown initial state w(0) of a parametrized

deterministic system whose state at time k, is the vector, w(k), where

k= 0,1 9 2---. Let x(k) a 
3 w(k)	 -

 , which we shall call the augmented state
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vector, and let x(k) be a p-component vector. Then 0 & 2i(0) _ Y(0)  is

to be identified. We assume that the true parameter 00 is an interior

point of a known compact subset A CR P , and the system is stable for all

admissible inputs and OM. We note here that after the augmentation,

the identification problem of the original system is equivalent to the

initial-state observation problem of the augmented system. We assume

that the function g (x,k) is known as a function of x and k and that

x(k+ 1) - .S(x(k) ,k)
	

(4.9)

We also assume that the inputs to the system are known implicitly

inB x,k) .

Furthermore, we assume that observations of the state can be written

40	 in the form

(4.10)y(k) _ Cx(k)

where c is a known (r x p) constant matrix.

Let

y(0)

y(1)
Y =
M

y (M)

(4.11)

be the m-component vector of observations, where m = r(M + 1) 2 p. Let
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Cx(0)

Cx(1)
h L) s	 (4.12)

Cx (M)

where x(k) is the solution to (4.9) when x(0) - .2. Moreover, let

fM(0) x lM(0) - YM 	 (4.13)

We assume that we have obtained a solution, say A 0 , such that

fly! 
LO) = 0	 (4.14)

i.e., AO is the parameter value which when applied with the input sequence

from a given set of input-output sequence will generate a set of output

data which will match the given output sequence. In order that 00 is

identifiable, AO must be an interior point of an open sphere S LO ,p) CO

with radius p >0 centered at AO such that AO is the unique solution to

the equation

fML) = 0
	

(4.15)

in S LAO ,p). We are now going to establish the sufficient conditions for

the existence of S LO ,p). Let the identification criterion be

JML) = C fM(—Q) ]T IME)
	

(4.16)

We see immediately that JMLO) = 0 if and only if fM LO) = 0. Since JMLQ) is

nonnegative for all 0, therefore its minimal value is zero. If we have
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the knowledge of 00 , then JM20) 
-4(00) 

-0 and 90 is the minimal point of

s
	 JM(0) . Let

r.	

jM(0) s 1/2 JM(0) [ (0) T 1(9) .	 (4.17)

then

.M L) [_fML) ]TfML) + [_ L) ]TfM 0)	 (4.18)

Let

NM L) = LfM (B) 
]T f , 

L)	 (4 .19)

Note that

A
m 

(20) no,	 (4.20)

and

!I^LO) _[M`0) ]TfM 00) - NM LO)	 (4.21)

Thus if there exists an open sphere S LO ,p) such that IML) is non-

singular for all GeS (GO ,p) , theng^ Q) is locally in jective on S ^O,p)

and thus 00 is locally identifiable by Theorem 3.2. The following theorem,

established by Herget [7], provides sufficient conditions for the existence

of such S (AO,p).

Theorem 4.4

Let Rp and Rm be the vector spaces of p and m-tuples respectively

over R. Let 11 -1I denotes any norm on the respective spaces. Let	 (0) be
3

an m-vector function of AsRp which is twice F-differentiable on Q CRP.
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If (1) there is 0 
0M 

such that 4(e0) = 0,

(2) NM (0O) is nonsingular,

(3) there is a sphere S (QO ,p) with radius p >0 centered at AO and a

set of positive numbers (a,y,µ,in) such that

(i) IINM 1 (90) 11 s X/2,

(ii) II fLi (0)] f L)I) S 	 for all AtSLO,P).

(iii) IINML) II s µ	 for all OCS LO,p)

(iv) bm L)11 S Tn.
	 for all 6eS(00,p),

(v) a?1 s p/4,

(vi) l ( 2µp +y) S 1/2,

then AO is locally identifiable in SLO ,p). Moreover, for any AOeSLO,p/2),

the iteration sequence

en+l = An - NM Ln7JM(9n) , n-0.1,2,---

converges to the unique solution AO of ML) = 0 in S LO ,p/2) .

Proof: We shall first prove that NM L) is nonsingular and IINM 1 L) II s a

for all AeS LO ,p) . By 3(111) , we have

IINM L) - NM LOO) 11 9 4 for all eeSLO,p)

Applying Leuaa 3.6 to this situation, we have a - X/2, d - lip and cv

Xpp/2 1118. Therefore N M LA) is nonsingular and JINM l L)11 s	 X4 2
1-

1+ (1 - 7 4
p) ^ X for all AeSLO,p).	 2

A result due to Bartle in Herget [ 7] is:	 If (^L) -fMLO) I1 s0 for

all AtSLO , p}, then II ML 1 ) -^ML2) - ^MLO) Lei - e2)I^ s slL 1 - e2 11 for all

211224S Q010. In our case, DLO) =NMLO) by (4.21). Thus by 3 ( 11) and
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(iii)

Ik(0) - J^(4o) 11- 11%(8) - NM (%) + C, (Q) !TIM W H

is µp for all 2e8 (20,p)

F;	 Therefore we have

IWM(—Ql -'M(e2) -A; LQa) Ll -12)11 s (►+P + v) IL l --2211

for all 01-12"(2801P).

Also, look at

NM L) • ^M L0) = NM L) - NM LOO)

Thus

IINM L) - ^ La) 1I s µp for all QtS La,p)

LetAOeS LO , p/2) , and

Awl =An -NM 1 (A 1)mM (An), n=0,1,2,---

We want to show that AnsS L 0 ,p/2) for all n. We prove it by induction.

A l -20 - NM 
1 Leo 

) 0M Leo)

."V	 iy	 N	 IV

Thus bel -.2 0 JJ s X-n s p/4. Hence 0 1eS LAO , p /2) and 9 1eS LO ,p) . Now assume

AveSLQ ,p / 2) for v -1,---,n. Then we have

'	 -NM`v-1) Lv - 2v- 1) iPM `-v-1)

3
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N	
^
N
g	

N	 N
Thus fM (—Qv) a 'M lv) - P-IR( -1 ) +im (—Qv- 1)

^g
V 	 N

g	
N	 A/ N

--OM`=v) ^ ("w1)-NMLv-1)`v-Awl)

^	 N	 .v	 N N

Am `v) P-M(Q-v-1) P̂ (10) `v - 0v-1)

^,^	 N	 N N
t	 + Cp^09O) NM (—Ov-1) ^ Lv -Awl)

Ov
Therefore (m (-9v) I1 s (WP + Y) ILv - .2v- 1 11 + "'P ILv - °v- 1 11 - k l In - ev-111

where k - 24p +Y.
N N	

(^dd 
N

Now IIAv - A
v-I II S X1kMLv-1) II

which implies

Lev"0 - w 
Av- l II S'Xkl'=

v-1 - 2v- 211

s (ak)v-lILO, -.2011

Look at
N	 N	 -1 N	 N

An+l -0n -NM (2n)  mM)

N	 N	 /r

ILn+I -.211 s x1loon) II

N Ns (X k) I^ - en- 1 11

Therefore

ILn+1 - n1 1 S (Xk) nlL, - 2011-

Note that

N n N	 N

en+l - e0 - V00 ^ •.+I n ^

a

.	 r



7s

Thus

I^1- A0^^ v,^^W-1 - 2v11

 OW OW
s v

E0 (hk)v ^ Q - 90^i

s 
v£0 

(Xk) vll of - -00

_ 1	 ''e~e ~
1 - hkicl - AOII

s (T3►Tc)

S	 1	 . gg =p/2i

	

(1/2)	 4

~
which implies Ant1tS LC ,p/2), thus the induction proof is completed.

Next, we shall show that Len)n=O is a Cauchy sequence. Let m>n and

m = n + j , then

e- e= e - e Ej-1 [e - e ].
—m ^n —n+j —n vin —v+1 —v

Thus

1Q	
- 

1	
t

y	 Ifni, j - en il s vEEn be%+1 - 9vli

	

n+j-1	 v ~ ~
s E (Xk) IL 1 - a 11

v=n	 O

n J-1	 ,..
(11k) [ vEO C k) v]lL' l - -'Oil

s	
V-0	 LIQ 1k)v]l 	- AOII

(% k) 
091-A0I1



...
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i'

76

kn

k ns1 /2 ( )

(Xk)
n

 (,P^)

Since Xk s 1/2, therefore lim (h k) 	 0 and hence 
(n)n-O 

is a Cauchy
n ♦ Go

sequence.

pSince R is a complete norned space, (%) n.0 converges to some point

!lase 0 p) . We must show that AO - Al . On the contrary suppose 01 ^,

then we can write

0
0 

-0 1 - NM 1 LO) NMLO) LO - .21)

'	 1NM (29O) rim (90 -AM (—QO) -DLO) L 1 - OO)

+ (NM LAO) - M La)) (9O - A 1)

since §M LOO) mML1) - 0 and NM LO)	 Leo)

ThusThus

IL0 - 01 11  s x (wP +Y + WP) ILO - 21 11

s 1/2 ILO -0lII

which is a contradiction. Thus A
O 
-0 

1  
and the proof is completed.

Remarks:

(1) SLO0 p) is the region of parameter identifiability, i.e., A O is

the unique solution for 4 Q) - 0 in S Leo p), but the convergence
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of the Gauss-Newton iteration sequence is assured in 800,02).

This is an added feature. However, our primary interest is the

uniqueness of the solution of f—M 
L) • 0 in some region in A. We

have assumed we already know 00.

(2) if we are concerned about the uniqueness of the solution only,

•	 then conditions 3(i), (ii), (iii) of Theorem 4.4 and X(µp + y) <2

suffice for the existence of S LO,p). To prove this, we suppose

that there is a 0 1e8 (20 ,p) such that fM (O1 ) - 0o, then A^(.Ql) • 0.

Thus we can write

0
0 

-0 1 • NM 1 (go)NM coo) LO -0 1

-1
. NM (so) ("M(291) - Lo) -Lo> (0

l 
-0 0

+ (NM (ro) - ^ (oa)) L0 - 01) )

Thus

ho - 2 1 11 s % / 2 (wp + Y)1Lo -.2111

< ILo -.2 11

which is a contradiction. The region implied by these set of sufficient

conditions will generally be of larger radius since A(µp + y) S1/2 is more

conservative than X (y,p +y) < 2.

(3) Theorem 3.2 is implied by Theorem 4.4. To prove this, we first

recall that NM L) is nonsingular and IINM 1 L)II <1 for all

06S LO , p) , and 'L) - N
M 

LQ) + [ f" L)3 T fML) . Therefore

1I NM L) ',L)I1 • 11[tM L)]TfM L)11 sY
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for all Os S (40 , p) • Apply Lemma 3.6 again, we have ask, 6 • y

and Xy s 1/2 <1. Thus ,1L) is nonsingular for all O88 (40,P)

and AM (S) is locally in jective on 8 (40 ,p) .

We now derive a set of recursive formulas for computationally veri-

fying condition 3(1) to 3(vi) of Theorem 4.4 for the case of dynamic

systems.

Recalling that

fML)	 L) YM

Cx (0)	 Y (0)

Cx(1)	 y(1)

Cx (M)	 y (IQ

Cx (0)	 y (0)

CBL(0) • 0)	 Y(1)

s	 ^	 .
•

CA WM - 1) .M - 1)	 Y (M)

C

CA , Lx(0)  t 0)

fit W

C11 Lx 	 1),M- 1) ---g'q(0).0)

Thus

(4.22)



if

crO )
cr1(g)

CTM(o)	 (4.23)

whore rk L) - 'S'  L (M - 1) ,M - 1) r,,- 	, k - 1 9 ---,M	 (4.24)

and I'0 ,2) • Ipxp (p x p) identity matrix, 	 (4.25)

Cr 

all1 (j)

f^M L1

cr(o)	 (4.26)

Where rkL)'[j" (x(k- 1),k- 1) rk
-1 LO) ] rk-1^A)

	

+ j'(x(k- 1),k- 1) rk_ 1 L), k• 1,--- , M	 (4.27

and

r0 L) - 0	 (4.28)

To compute the bounds on the norms given in the hypothesis of Theorem 4.4,

we choose the L,-norm since the procedure is relativbly straightforward

if we employ the interval arithmetic [11].

Let

07m (set of all finite closed intervals [s,b]:a,bsR,a sb)

The interval I • [a,a] is called a degenerate interval. The interval



s0

arithmetic operations are defined by

I * J a [x * y:=I,ysJ} for all i oej	 (4.29)

where the symbol "*" indicates one of the arithmetic operations +,-,•,

and /, azcept that I/J is not defined if OeJ.

For example,

[a,b] + [c,d] -[a+ c,b+  d]

[a,b]'[c,d]-[min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

[a,b]/[c,d] -[a,b]•[l/d,l/c], provided OE[c,d].

If the real number E is to belong to the closed interval CCL ,gR] on the

real numbers, 
CL 

:q we denote this interval by

W =_
	

[9] - 191, R] for brevity.

If *(x) is a continuous, real-valued function of xe R, then the interval
n

function [*([x])] is defined by

.1

[*([x])] = (y:y =i(x),xs[x])

An interval function •gill be called a rational function if it is

defined and can be expressed as a rational interval arithmetic expression

in the interval variable and a finite set of constant coefficient intervals.

For simplicity, we shall assume that all of our functions of AsRp are

rational functions so that interval arithmetic suffices to evaluate their

norms. It is always true that the true interval function is a proper

subset of the computed interval, i.e.,

M,
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U * ([x ,x]) = [KID] ^ IKx])
xe[x]

where 1*( [x]) is the computed interval obtained by replacing x by [x] and

evaluating * by interval arithmetic instead of ordinary arithmetic. The

following Theorem in [11] proves the above statement.

Theorem 4.5

Let I - [ a,b]e N and

A- (Je,9: JcI)

Let I - {fir : * - n91 -0j, # is continuous on JI 1, and d be a metric on ji such

that (*,d) is a complete metric space. For any rational function #c (.,d)

and arbitrary Ar912

U * ([x,x]) ^ I* (J)
xe [x]

Proof: From (4.29) , it follows that if I , J, k, Le j, I c k and JCL, then

I *J C k * L

provided in the case of division that OLL. This property of interval

arithmetic is called "monotonic inclusion". Hence the result is obvious

from the monotonic inclusion property and the definition of the rational

interval function. Since a finite number of these operations is involved

and since for every xeJ . [x,x ] cJ, [x,x ]e,91 , then *([x,x])cI*(J). To

prove that equality need not be attained, it suffices to give an example.

Let *(x) =x2, J- [-1/2,1]

2Then 1*(J) - J - [-1/2,1],
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but ['([x])]'10,13,
thus [-1/2,1] Qt [0,1].

We can now apply the interval arithmetic to the evaluations of norms

required in Theorem 4.4.

The closed sphere S (O0 p) is the vector interval given by

[e ] a(0 ,P) =i l[A ] = n [e - p,e +P3	 (4.30)
0	 0	 Oi i-1 Oi	 Oi

which is the Cartesian product of closed intervals. We consider condition

Mv) of Theorem 4.4 first. We wish to have a bound on

sup	 I[tM L9) II -	 sup	 Max J 
OMi 

L) I 
.AtSLO , p)	 &SLOO,P) lsisp

[oMi (1-001) ] = 10MLi [-9.01), OMRi (Leo]) ],

sup	 I^MLQ)II -	 Max {Max[ IOML ([e
0 ])

 I, I$M ([A
0 ]) I]}.

CSL p)O ,	 lsiSp	 i	 Ri 

The computation of Itm([A0]) is generally much easier than that of the

[AM([_AO])], moreover, by Theorem 4.5,

sup	 Ik II s	 Max (Max[ I 
ILOMi 

([e0]) I , I IR^Mi ([_e0]) ( ] }
AtSLO ,P)	 1 S i sp

(4.31)

Hence we will compute the right hand side of (4.31) as the bound of

the norm of PM (Q) .

For condition -I (ii)'of Theorem 4.4, we let

Let

then
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A(4) _[aij %)J a ^4(a-) hm (G-)
	

(4.32)

for brevity.

Then

1	 sup IIAL) II s	 Max [ ill Max(I ILai 
j (1203)1'   I IRaij (LOO ]) I }J

29  L90, P)	 1:9 i P
(4.33)

For condition 3(111) of Theorem 4.4, we let

B(G) _ 
[bi jk 0) J 

= NM L)	 (4.34)

where

ML) _ [L) JTfML) + ( [ fML
O) JT (_e)) T 	(4.35)

i	 Then

sup	 IIB'(0)II =	 sup	 [ sup II B(9).t II] 	 (4.36)

is Lo , P )	 9e S L O ,P) IIVII - 1

`

	

	 We note that IKII =1 if and only if g i =± 1 for some i =1,---,p. Hence-

we introduce the following notation. For i,n = 1,---,p, let
r

[gi]n = [-1,+1] if i # n

l	 and [ § i ] i = [+1,+1]

For i =1,---,p and n = p+ 1,---,2p, let

[^'i ]n - 	 if i A n - p

[g i ]n 
= [-1,-1] if i = n - p

Then we have

sup JIBL)IIs Max [ Max jE1 kE1Max(IILbi jk (C_e0 ])' [9k3ni,
29S (RO, P)	 1:5. 1 s p l s n:9 2p

I I Rbijk ([aO ]) • [C k ]n l)]	 (4.37)



w  (k+ 1)	 ^1

w2 (k+1)	 0

0

+	 u(k)

713

	

1	 wl (k)

	

r1 2	w2 (k)

wl (k)
y(k) - [ 1 0 ]	 k- 0,1929---

1w 2 (k)

k
84

We summarize this algorithm by the flow graph in Fig. 1.

4.3 An Example of Computing the Region
of Parameter Identifiability

If a system is linear, time-invariant, and its parametrization is

known, then its augmented system has the quadratic -in-the-state bilinear

representation.

x(k+ 1) - [F+Dx(k)]x(k) + [G+ Ex(k) ]u(k)

y (k) - Cx (k) ,	 (4.38)

i.e.,

B(_x,k) -[F+ Dx]x+ [G+ Ex]uu(k) , 	 (4.39)

where u(k) is a q-vector, F is a (p x p) matrix, G is a (p x q) matrix, D

is a (p x p x p) bilinear operator, and E is a (p x q x p) bilinear operator.

Then

g' (X, k) - F+ (D +D*  x + E*u (k) ,	 (4.40)

and

g" (x,k) - D+D* 	(4.41)

We now give an example to illustrate the algorithm of Theorem 4.4.

Consider the parametrized system which has already been given in Sec. 2.3.

(4.42)

- _-L
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The block diagram of this system is depicted in Fig. 2. We note that

by reversing the positions of -1-- and . 1 , and by transforming the
Z-712 	 z-^1

initial conditions by a similarity transformation, the resulting equivalent

system will generate the same output sequence. The equivalent transfor-

mation matrix is given by

1	 0

P =
711 - r12 	1

which has already been obtained in Sec. 2.3. The parameter Q- [w 1(0),

w2 (0) -1 	 712 9 113 ]T is to be identified. Letting x(k) _ [w 1 (k) , w2 (k) ,

71 1 , 71
21

 113 ]T , this system can be written in the quadratic-in-the-state

bilinear system form as given in (4.38) if we let

0 1 0 0 0

0 0 0 0 0

F= 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0

0

G =	 0

0

0	 ,
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0 0 1 0 0 0 0 0 0 0 00000 00000 00000

00000 00010 00000 00000 00000

D= 00000 00000 00000 00000 00000

00000 00000 00000 00000 00000

00000 00000 00000 00000 00000,

0 0 0 0 0

0 0 0 0 1

E	 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

and

C=[10000]

We have used the notation in [14] for representing the bilinear form

D, and E degenerated to an ordinary matrix since u(k) is a scalar.
T

Let 0 = [wl (0) , w2 (0) 0 7110 112 , 113 1 . It can be easily seen that

0 = [w1 (0) , w2 (0) + (71l 
+n 2)

 wl  (0) , 
71
2 0 111, 

113 
]T is a point in 0 which is

unresolvable from 0 by the equivalent transformation. Hence the solution

to the equation fML) = 0 is not unique in R5 and only local identifiability
can be imposed on the parameters of systems (4.42). We applied the

algorithm of Theorem 4.4 to this example with 00 =[0.5, 0.1, 0.3, 0.7,

1.0] 1 . We note that G i n [0.5, -0.1, 0.7, 0.3, 1.0] T will give exactly the

same set of y(k) sequence for any input sequence u(k) and hence is

unresolvable from 60 . However, the distance from 00 to Al is 0.4 by using

the 4m norm. Therefore 00 and 0l are each locally identifiable in the
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spheres S (k,p) and S (O 1 ,p) respectively where p <0.4. By applying

Theorem 4.4 and the algorithm developed in the above section, we are able

t	 to find two spheres centered at 0 and A l respectively such that ,A0 and

Al are locally identifiable in those two spheres respectively. To

demonstrate this situation, we use an input sequence u(k) - 100 sin (krr/4) ,

`	 for k -0,1,---, 19, we found that with twenty observation, the sphere

centered at AO is of radius p -0.21 and

= 0.1314 x 16-7

rl = 0.3646 x 107

Y - 0.2284 x 108

µ - 0.2124 x 107

X?i - 0.0479<0.0525 = p/4

X (2µp +Y) = 0.312<0.5 .

Thus the hypotheses of Theorem 4.4 are satisfied, and we conclude

that 00 is locally identifiable in S (O0 , 0.21) and the Gauss-Newton

sequence will converge to 00 starting from any point in the sphere

S (Q0 , 0.105). We also tested the conditions of Theorem 4.4 about the

point A l and found that p -0.31. Hence 01 is locally identifiable in

S Ll , 0.31) and the Gauss-Newton sequence will converge to 0 1 starting

from any point in the sphere S(91 , 0.155).

Since Theorem 4.4 gives sufficient conditions for convergence, and

because of the upper bounding implied by the use of interval analysis, the

question of whether these results are overly conservative naturally arises.
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However, this example illustrates that the computed sphere of convergence

is of reasonable size in view of the distance from A0 to A1 , i.e., the

theoretical radius of the region of identifiabili q.

The computer program for testing the conditions in Theorem 4.4 for

the above specific example is listed in the Appendix.
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START

READ: p0 , Ap t 90 , Ym
s
 M. LnUT

INITIALIZE:	 x(0) = AO

r0 
LO 0 BY BQ (4.24)

FOR k = 1 TO M

COMPUTE:	 x(k) BY EQ. (4.11)

rk LO) BY EQ. (4.24)

COMPUTE	 fM LO) BY EQ (4.23)

tiM (90) BY EQ (4.19)

DET NM LO)

YES 19	 NM LO)SINGULAR? ,	 Nn

STOP

W1

Figure 1. Flow Graph for Computing Regions of Parameter Identifiability
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COMPUTE:	 21INM 1 (-9O)')
LET:	 0 a p0

ITERATION - 1

1

INITIALIZE:	 1.0 BY EQ. (4.30).y

I ro BY EQ. (4.25)

I ro BY EQ. (4.28)

FOR k - 1, ---, M

COMPUTE:
COMPUTE: I x(k)

I hM

I ,ffm

I rk

I rk

BY	 DQ . (4.9)

BY	 SQ. (4.12)

BY	 EQ. (4.13)

BY	 EQ. (4.24)

BY SQ. (4.27)

Figure 1. Continued
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COMPUTE:	 I BY	 EQ. (4.23)

I .f" BY	 EQ. (4.26)

I NM BY .	EQ. (4.35)

I& BY	 EQ. (4.17)

I A BY	 EQ. (4.32)

I B BY	 EQ. (4.34)

y	 RRS	 of SQ. (4.33)

µ	 RHS	 of SQ. (40'37)

11	 RNS	 of EQ. (4.31)

Figure 1. Continued
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Y X ^1 .6 p/4
	

NO
 f Y) f 1/2

PRINT p
STOP

YES	 ITERATION a LDnT
	

NO

PRINT: "UNABLE TO FIND RHO"

STOP

LET:	 p-p'4p

ITERATION - ITERATION + 1

00 TO T

Figure 1. Continued
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5. LOCAL PARAMETER IDENTIFIABILITY AND
LOCAL CML PARAM11TER IDENTIFIABILITY OF DYNAMIC

SYSTEMS WITH NEASURBMENT NOISE

In this chapter we will study the parameter identification problem

of general discrete-time, multiple -input/multiple -output dynamic systems

with measurement noise. Specifically, we will establish the concept of

local parameter identifiability and provide a computation procedure for

finding the explicit regions of parameter identifiability. Moreover, we

will show that the constrained maximum likelihood estimation sequence

converges to the locally identifiabile parameters with probability one.

5.1 Local Parameter Identifiability and Local
CML Parameter Identifiability

Let 
Li):-0 

be a sequence of random vectors, which we shall call the

observations, with joint probability density function p (Z-O,---,zM; 9),

M 00,1,2,---, parameterized by the unknown parameter 9e(IC Rp . Rp is the

space of real p-tuples with an arbitrary norm denoted by 11-II 0 and 0 is a

compact subset of RP . We let Z  -(z 0 11 
1 
9---,z M ),,  and we assume that the

true parameter AO lies in the interior of Q. Furthermore, we assume that

p (ZM ;A) is continuous with respect to 9eO for Zvi almost everywhere,"i.e.,

for e >0 and IM, there exists a 8(e) >0 such that for all WeO with

IL - I < 8 we have I p (ZM ;9) - p (ZM ;9 ') I	 for Z  almost everywhere.

Following Tse and Anton [19], we make the following definitions.

Definition 5.1

Two parameters 9 119260, 91 09 2 ,  are said to be unresolvable if the

lity

^;^^ T:^l^dG PAGE BLANK NJ'[ rILMLG

c-L
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M.;

P(Z	 ) - P(I;92)
	

(5.1)

holds with probability one with respect to 9 1 and 12 
for all except a

finite number of integers a > 0, i.e., for all except a finite number of

integers n >O * (5.1) holds with respect to the measure p%;91)d4 as

well as p(-ZM;92)dZM'

Definition 5.2
	 .

A parameter 00 is said to be locally identifiable if there exists

an open sphere S ($0 ,p) cQ with radius p >0 centered at A O such that there

is no other AeS LO,p), 004 0 ,  which is unresolvable from 90.'

The problem of constrained msximum likelihood (OM) estimation is

as follows: find bon, an estimate of the true parameter A0, where QM

is such that

P (zm ;,aM = Max p (ZM ;A) , M - 0,1, 2,---
960

(5.2)

Since k'j is closed and bounded and p%4 ; .2) is continuous on A for

Z  almost everywhere, a solution to (5.2) exists. However, if 9 1 and 92

are unresolvable in 0, then they cannot be identified by the CML esti-

mation method constrained to A. Therefore the following definition is

established.

Definition 5.3

A parameter 
00M 

is said to be locally CML identifiable if there

exists an open sphere S L9o ,p) with radius p >0 centered at 90 such that

the sequence k}o converges to 90 with probability one, where	
m

M-0	 }M-0

is constructed by
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p(; )	 Man P(M:O). M-0,1,29---	 (5.3)

S (Jo ,p) denotes the closure of S (SO,p) . We will call S loop) given above

the region of parameter identifiability.

We now consider the problem of identifying the vector of unknown

parameters, M, of a system whose state at time k is the vector w(k) where
•	 w(k)

k- 0,1,2,---. Let x(k)

	

	 and assume x(k) is a p-component vector
M

which we shall call the augmented state vector. Let the initial state

w (0)
^(0) also be unknown, then A x(0)	 —	 is the parameter vector to be

identified. The identification problem is then equivalent to the initial-

state observation problem of the augmented system. We assume that the

function g (xx,k) is known as a function of x and k and that

3(k+1) - g(X(k),k)	 k - 0,1,2,---.	 (5.4)

Observations of the state are taken which we will assume can be written

in the form

J(k) -Cx(k)

.1 (k) -y(k) + v(k)	 k - 0 , 1,2,---.	 (5.5)

where C is a known (r x p) matrix and v(k) is a Gaussian-white noise vector

with r components which has zero mean and covariane matrix Q - v2I
rxr

a2 < m. The observation sequence of system (5.4) and (5.5) is

=M j LT (0),aT(1),--- , aT(M)]T

and the joint probability density function is given by
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P($M :1) - Conat. ` exp[• .1 tio(I(k) - q(k) )TQ-1(^,(k) •Cg(k))](S.6)

where x(k) is the solution to (5.4) when jj (0) - 0, and M - O f 1. 2. --•.

We assay that the structure of gLx,k) is such that the following

assumptions hold.

(1) The inputs to the system are known implicitly in g Lx,k).

(2) For every admissible input sequence and all 9M, the states x(k)

and the deterministic part of the observations, v(k), generated

by .2 when applied with the input sequence are bounded.

(3) 8 Lx,k) is at least twice continuously differentiable with

respect to 9, and hence so is p% ;'2)-

5.2 Regions of Parameter Identifiability

Let the assumptions given in Section 5.1 hold, and let us define

M

M `)
M+ 1 k La (k) - Cx (k) ]TL (k) - q(k) ]

for M- 0,1,2,---.	 (5.7)

Then the CML estimation method in Sq. (2) is equivalent to finding

^g
A

Min
  L`) 

-I^y`M). M-0,1,2,---.

Following the notation in Chapter 4, we let

WO)

h  L) -

Cx(M)	 (5.8)

be the m-component vector where m - r(M + 1) a p and x(k) is the solution to

equation (4) when x(0) -0.

a



Let

V
"M

fM(i

and

i^

Then

L" (g
	 M+ 1 amL)^yL) •	 (5.13)

AM L) ' 1 109) •

Let

Then

I'm(S)' M+1 S ;(
0
)J TsM L).	 (5.14)

V`) M+1 {^ML)^T^sML))+[_eML)]TeML)}. 	 (5.15)

and
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We note that

L) o fML)

and

sM L) f,M — .

Let

NM L) M+ 1UML)]T .4L) ]

By eqs. (5.5), (5.11), (5.12), and (5.13),

`) M + 

_
C

1 1f 0) _ Y
M]TLfM L) ^]

or

JMLj a j +̀-14  (1)4(9) • (L ,I 14(—Q) ]TVM + M 1 IM Y*	 (5.19)

Let us define

L* LO) - lieu EC LM LO) ]•
M " cc

The following Theorem is a generalization of Aoki and Yue ' s Theorem given

in I ll .
Theorem 5.1

Let the assumptions given in Section 5.1 hold.
*

Then lim LOG) -L L) for all 9M with probability one. Furthermore,
M-0=

L* LO) - Mim 
1oC TLfM

L) ]T 
fm 

LO)+ ro2 .	 ( 5.20)
-00

Proof. By assumption (2), hM L) has bounded elements for all OM and Y 

has bounded elements. Hence 
4 

L) - hM L) - YM has bounded elements for all



Then there exists a K <ao such that If  (0) I s K for all OM and for all k.

Thus

lim (92) ] TNL) = lim 1^ kE1fk2LA)

s lim r + 1 K2 = rK2 .	 (5.21)
M^^ M +1)

Therefore the limit in (5.20) exists.

Consider the second term on the right hand side of (5.19). Let

V1

V
2

V
—M

V
m

M

M+ 
l[ fM (—Q) I —M = 

M+ 1 J1fk0)Vk'
Since EVk = 0, EVk2 = c2 for all k, applying Lemma 2.1.a to our

ition, we have xk = fk (0)Vk , b  = M, and

Exk2 = m f2 (0) EVk2 s c2K2 OD l < m
k=1	 k-1	

k2	 k^l
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Thus

m	 m

M_+L1 k;	 M+
_

1 
Af

k (J)V
k_ O with probability one. 	 (5.22)

Consider the third term on the right hand side of (5.19).

U

M + 1 "M "M M +I k•FVk

Applying Leams 2 . 1.b to this situation, we harm %a Vk2 ' RIxI I . BV12 0

r 22 < as. Thus

1	 m 2	 2
M11 kE1Vk ♦ rQ with probability one.	 (5.23)

By (5.21), (5.22), and (5.23), the theorem is proved.
If A is the true parameter, then L %) = ry a min L* LO) . The

following theorem provides sufficient conditions for the existence of a

sphere S (% p) such that AD is the unique minimal point of J* LA) for all

tS LAO ,p). The form of the theorem was motivated by the work of

Pereyra [13].

We first recall that the t,
2
-norm, or the Euclidean norm on the 

in

space is defined by

IW1 2 - (JI ,xi , 2) 4 , for all xtRn.

Theorem 5.2

Let 11'112 denotes the Euclidean norm. For brevity, let

A = [ a ]• -=- f ` LA) .ij ^+1 M

Note that ATA - NM L) which is an m x p matrix.

v^
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If (1) there is a 00on such that .1090) = 0 and hence

Mim M= 44 (40) 600) 0,

(2) %(Q) is nonsingular for all Met+ $ and

'	 (3) there is a sphere S (O p) CO with radius p >0 centered

at .% and a set of positive numbers (1,y,4 ,K) such that

for all Me I+

(i) ON- 	 s1' 2

(ii) I I jL(CATA]
,j

 )  } s K for all 9eS (00,p)

(iii) M+ fo 3 11 sy for all Ae S LO ,P) r

(iv) IN(0)II rb for all AeS(e ,p), and

(v) 1(µp +y) < 1.

Then (a) AO is the unique point in S (OO ,p) such that fM (.!O) • 0 for all

Mel and is the unique minimal point for Mim W+ fM T `)^ L9)
y

in S LO ,p). *. e., AO is the unique point in S LO ,p) such that

L W - ra2 a L LO) .
(b) AO is the unique minimal point for lim ML) in S (Q p) with

M-0 0 
probability one.

Proof. A result due to Bartle in Herget [7] is:	 If II^M^) - ^M^O)II s
2

for all AeS LO , p) , then I11M LI ) ' AMLO2) 	 LO) L1 ' A2)11 2 s dlel - 22 112 for

all 611.22 eS LO , p) . In our particular case, &Q ) - NM L) + I [ fM 0)1 IM`)M
+1

and*A000) % LOO
) .

Thus II.Mq) - ' M'LO) II 2 s µp +y for all esS LO , p) by 3(111) and (iv) .

Therefore we have
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Il,csl) '2M(42> ' 2M^o) CR1 -s2 )11 2 s (PP +Y)Ih1•12112

for all Il "2eS Lo ,P) .

Now suppose there is another point S leS ( 0#0 8 11012
9
 such that

1	 _
M-00 M+^ gL91) ml) 0.

i.e.

Mim I +1 gM`1)II 22=0.

We can write

90-210 % 
 LG

o)NMLo) Lo - el)

= NM Leo) { L1) - LO) L1 -.20)

+ ^%Qo) - J010 )I L9 - 91)

- 0ML1) +%L90)) for all MeI+.

We note that

P.MtOo = NM LO) and m* LO) = 0. There f are

ILO-91112 =11*- 1`o)CAM`1) -^* O)
L1 • _e0) -m*`1 )]112

s IINM 1 Leo) 11 24;L91 ) - A^`d- .OmLeo) (el -.20) 11 2

+ IINM 1 L )11o2 11 (11 )112

s 1(OP +Y)IL1 -20112+xIifMLeI)1I

< ILO - 2l II 2 + %IkM L 1)112 for all Ms I+.

.

.
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we now want to show that

Mim 
p+^(301)112n ot

But IL1)1122'^^`TL1)L1)

•	 (—) 2 111 ( I) JTjmL1))T(C-09l ) )

• ._-2 fM Le f I L1) J[1 L1) )Tim L1)
(M+ 1)

s I I H f'(f^ )J f L9 )JTI12lt 1 fTL)f)4%)

The	

(M+ 1) ^- M 1	 1	 J `N+ 1 4 1 4 1 J

The final inequality follows easily from Schwarz inequality said properties

of a norm, i .e. LTABI s IL11211ALL112 s JJAJ'2'll3Lll22•

We now state a result given in [14 ]. if B is a p x p matrix,

B- [bi jJ. then II BII 2 6 (Ji J!l (bij)2) -
Now look at

M+ A;L91) J[,0L1) JT

[3h!+ 1 -4N Le 
J[/m+ 1 

f
M`1) JT

AAT

T
re [AA J ij - 

k!laikajk.
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Thus 11" 11  s { ieEl . (^aika jk) 2j
_ a s p

{JEJ jEl A ,alaikaV aua jk}

1 lamatiausij),i:i j.l 1rn

p p	 2
{J1 j1 118kiakj) }

` I ip	 jI([ATA]i )2}^

s K for all Os8 (20 ^p) and llte by 3(11).

Therefore

UM(I )1122 61 C	 TL1)	 1)^ `	 + 1 fM (41 ) !1 2 2 •

Thus lim lw;(—ol) 
N22 

= 0, and we conclude that
M-0m

Iwo ' 9 1 11 < IWO -.2111

which is a contradiction, and so we conclude 41 n 00. This completes the

proof of put a.

To prove part (b). we see that

LM (1)L*(.0) with probability one for all 14

and Le (4) <a for all 0W by aaeoreo 5.1.
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I^.

Thus
lgMQO) -P L ($0) with probability one.

It 0 f SO , then e(.0) > L* (QO) v therefore there exists a b L,V >0 such that

L*()-L*(0)>6>0

Since LM L) • L*L) with probability one, there exists a MO(6) such that

ILM LO) - L* (4) 1 <6/2 with probability one

*
JLM^O) - L (!O) I <6/2 with probability one for 411 M>MO(6)

(L,,(4) - L* (A)) + (LMLO) - L* QV) I <3 with probability one.

Now look at

LM L) -L M  LGO) I

I (LM (1) - L*	 + L* (4) - L* (10) - (LM Lp) - L*

> 1 L* (S) - L* (JO) ( + I (LM L) - L* (j)) - (LM LO) - L* (OO) )

> 0 with probability one for all M>MO(8)•

This completes the proof of part (b).

The above theorem gives explicit forms for the desired sphere S LO,p);

however, use of the Euclidean norm was needed in the proof of the theorem

rather than an arbitrary norm. It is usually difficult to compute the

indicated bounds using the Euclidean norm, and so we present in the

and

Thus
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following theorem a set of conditions in terms of a more general norm.

Again, let 
11 . 11 2 denote the Euclidean norm on the particular real vector

space under consideration. We will say that any other norm, II•II, is sub-

ordinate to II • II2 
if ILII slhx^ 2 for all x. We see that if we let MeRp , and

define	 ' i

ILX-11cc= l^	 pIzil'

then 
11.11W 

is subordinate to 11-0 2* This fact makes the computation of all
the required bounds particularly simple if we use interval arithmetic [11].

Theorem 5.3

Let 110
112 denotes the Euclidean norm, and let 0 . 11 be any norm which is

subordinate to 116112.

If (1) there is a 00sO such that fMLO) = 0 for all Mt I+ and hence

M^ WTI -M LO) fML0) = 0,

(2) NML0) is nonsingular for all MeI+,

(3) there is a sphere S L0 ,p) with radius p >0 centered at 00

and a set of positive numbers (i,y,µ,O) such that for all

MCI

(i) IINM 1 Lo) II s a

(ii) I fM+ 1 [f LG) ]TII s s for all AsS LO,p)

a ` -	 (iii) M+ML)]T ,gL) ^I sY for all AeSLO,p)

V],
(iv) II NM L) II s µ for all 9eS 

LO , p)
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n

(v) XW+Y) <1

Then conclusions (a) and (b) of Theorem 5.2 are true.

Proof: As in the proof of Theorem 5.2, we suppose there is a 0 1IS LO,p),

Al 0.20 9  such that

.	 M;m M+ 1 ^ ` 1)'EM(11^ 
0

Hence,

Mim I +1 —fM`1)11200

Since 11 .11 is a subordinate to 11'112.

Mi mU 1 f ('Q 11- 0.

Again we have

IL0 - 2lII<ILo - 2 1 11+aII (9_ 1 ) for all rss I+

Now look at

II^M^I )II	 fM^1)]TfM(_91 )II

s I + l f (01)]T 11  1 + 1 sm(_9 I

s ^I M+1 fM(1-01)11

Hence Iim II;LAl ) II = 0
M ^ ao

Therefore we conclude that

1Lo --9 1 11 < U90 - 2111
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which is a contradiction, and so A l
 
-10. Part b is the same as in Theorem

5.2. This concludes the proof of the theorem.

Now let SLO ,p) be a sphere such that Oe8L0 ,p) and L*L) =L*(Po)

Implies 0 - 00 , e.g. as provided in Theorems 5.2 and 5.3. Now consider the

OIL estimation problem: find eS (AO,p) as an estimate of 00 where At
is constructed by

_^

IriV _ _Min LM (-Q), M=0,1,2,---	 (5.27)
ACS (%,p)

S Leo p) denotes the closure of S L0 , p) .

To show that VM=0 converges to 00 with probability one, we need

the following Lemma.

Lemma 5.4 [Wald- Kendal l-Astr8m] [Aoki and Yue, 1]

Let 
(&)M

.O be constructed by (5.2), then {9 }M 0 
converges to

9*eQ* n Q with probability one, where Q * is defined by

LO: L* (0) = L*LO) }•

Theorem 5.5

Let S (O p) be given by Theorems 5.2 or 5.3 and let {Ar1 }M=0 be con-

structed by (5.27). Then the CML estimation sequence WM =0 converges

to 00 with probability one.

Proof: Since 00 is the unique A in S LC p) such that L* L) = 
L* L0)

Q * n S LO ,p) _ Le0 ) is a singlL_on.

Q*=

Hence the result follows immediately from Lemma 5.4.
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Corollary 5.6

Let S (O p) be the given in Theorem 5.2 or 5.3, then A O is to

CHL identifiable.

5.3 An Example of Computing the Region of
Parameter Identifiability

We now give an example to illustrate the algorithm of Theorem 5.3.

Consider the system

w (k + 1)	 ^	 1	 w (k)	 01	 1	 1	 +	 u(k)
w2 (k+ 1)	 0	 T12	 w2 (k)	 'n3

y(k) - [ 1 0	 ]	
w1 (k)

w2 (k) (5.28)

	

z (k) - y(k) + v(k)	 k-0 , 1,2,---

v(k)  is N(O,a2) , c2 <CD.

The block diagram of this system is depicted in Fig. 3. The deter-

ministic part of this system is the same as system (4.42) hence by

reversing the positions of 1 and 1_, and by transforming the initial

	

Z - Ill	 z 712
conditions by a similarity transformation, the resulting equivalent system

will generate the same y (k) sequence.

T
Let Q = [w 1 (0) , w2 (0) , r11 , 712 , 713 ]	 Recalling from Sec. 4.3,

0 _ [ y l (0) , w2 (0) + (rt l - 11 2)w 1 (0) , r1 2 , rtl, r13] is a point in 0 which is

unresolvable from 0 by the equivalent transformation. Hence the solution

r

	

	 to the equation f  (9) - 0 is not unique in R 5 and only local identifiability

can be imposed on the parameters of system (5.28). We applied the
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algorithm of Theorem 5.3 to this example with 0
0
 - (0.5, 0.1, 0.3, 0.7,

1.0) T. We note that A
l 
-(0.5 9 -0.1 9 0.7, 0.3, 1.0)T will give exactly

the same set of y(k) sequence for any input sequence u(k) and hence is

unresolvable from A0. However, the distance from A0 to Al is 0.4 by

using the norm II • pW. Therefore A0 and Al are each locally identifiable

in the spheres *S LAO ,p) and S % ,p) respectively where p <0.4. Using an

input sequence u(k) - 100 sin (kn/4) for k - 0, 1,---, the following data

{
	 listed in Table 1 are obtained.

We see that uniqueness is guaranteed in a sphere of radius p =0.33.

We know the true radius to be p -0.4 in this example. Again, this

example illustrates that the computed sphere of parameter identifiability

is of reasonable size in view of the distance from A l to A0. Moreover,

the region size obtained by applying Theorem 5.3 is larger than that

obtained by applying Theorem 4.4 since condition 3(vi) of Theorem 4.4 is

more conservative than condition 3(v) of Theorem 5.3.



112

O O O O O

in
N	 !r1	 l+1	 l+1	 N

O O O O O

%C
0

%a
O

'a
0

%D
O

%D0

rd ..r r~ .-r rd
x x x x x

^p
N m rl A

Go S
N r1 rl

O O O O O

O O
^O ^O

r4O
^0 0%0'4 rr rH .-I r♦

x x x x x
N ^ O coN

00 N 11 O
.O in N

O O O O O

^l0
%A0 ^ ^0 0 `QO

x x x x x

co m e+1 O ^

0% co N N

O O O O O

%O Co 0% O% 00

1 0 1 0 1 0 1 0 10
ra -4 1-4 .4 r♦
^i x x x x

cn O ^O
in r•1 ..4 N

'+ rd N N N

O O O O O

N .1 %0 co 0

OL

n

00N
u1

8
N
Y

W
O

L
vd

44
.O	 O.
to
vd
W
+1
61
C
N
:C

F+
dL
N
e

N

0.

W
O

C
O

to
GI	 0
CG	 R

O
W ad

•	 O Q

W	 O Li

to

f'a 	Q



113

N

v
7 W

.yt
v

N

.f6
v

N
3

N
rl

N

IM11

N
N

L

W
0

M
00
W

A

X
u0
rr
to

14

W
1+
0
00
^.1
k.

c+1

v



'.	 114

i
=	 6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

i

E	 Concepts of local identifiability and local CHL identifiability

E	

of parameters which parametrizes the Joint probability density function of

r

	

	 the observation sequence are established. They are applicable to the

identification problem of control systems where there are stochastic

disturbances present. The local least-square identifiability and the

transfer-function identifiability of parameters of deterministic linear

dynamic systems are also introduced. Sufficient conditions for their

identifiability are provided. It has been shown that for single-input,

zero-state linear systems, we are able to find a region containing the

true parameter as an interior point such that the true parameters are

both locally least-square identifiable and identifiable from the transfer
M

function in the same region under certain constant rank assumptions on

the impulse response matrix and the derivatives of the identification

criterion.

By modifying Glover and Willems' theorem in [61, a theorem is given

to show that if a system is of minimal dimension, the system parameters

(including the unknown initial state) are locally identifiable if it has

unique equivalent system locally when the system is restricted to a given

parametrization.

A brief survey on the theory of solving nonlinear least-square prob-

lens, m-norm, and interval arithmetic is given. Employing these techniques,

a least-square type identification algorithm for finding explicitly the

regions of parameter identifiability of general linear deterministic
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dynamic systems is developed. A numerical example is included to

illustrate this algorithm.

By modifying Herget's result [7], a theorem providing sufficient

conditions for local CHL identifiability of parameters of general dynamic

systems with Gaussian-white measurement errors is established. A eom-

U, '	 putation procedure is provided by the theorem for finding the regions of

parameter identifiability. It has been shown that with probability one,

the true parameter vector is the unique extremal point of the maximum

likelihood function parametrized by the unknown parameter vector and the

constrained maximum likelihood estimation sequence is consistent in the

region of parameter identifiability. A numerical example is included to

illustrate this computation procedure.

The system parameter identification problem of Gauss-Markov stochastic

control systems driven by rlant Gaussian-white noise and observed with

Gaussian-white noise is an an area of further endeavor.

It has been shown the parameter identification problem of linear

dynamic systems is equivalent to the initial-state observation problem of

the quadratic-in-the-state bilinear systems. Hence the observability

theory of quadratic-in-the-state bilinear systems needs to be studied

more extensively.

Since the sufficient conditions for parameter identifiability are

sensitive to the input sequence, further work in the area of optimal

input synthesis for system identification may prove fruitful.
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9. APFMIX

This Appendix contains a listing of the computer program used to

conduct the parameter identification example of the parameterized system

given in Sec. 4.3. It has been written in Fortran language using double

precision.

If actual input/output measurement data are available, "GREUTE

INPUT AND OUTPUT SEQUENCES" in this computer program should be removed.

Proper dimensioning of the matrix arrays should be noted.

W, 1
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W ~~~ à ~ aaz i
U) OOxOxxV u

N) O
N N

uuu	 uuu



I-
x

w
.r
1
^ w w

JVI	 .+
v Z	 •	 U1
F •	 w	 W
< VI	 Z	 v
O z	 •.
J •	 X
1L 04	 H
O O w N	 <

1 • v X
Ox O	 W
•. •	 x .r	 I

O X X 01 X

	

Z V v Z w v	 a• Zv •Jo
N " W " v 0 w w l9
11	 ^> 11 O <	 N
Y O^w X`.yvv W

N <	 11 s.,xx	 I-
p ; AZ o04 x 11

.. <itN
•^Y J JN.. J^+..N 2

11 v J N J u V V

S
we t O O e v X X W
J X V O X V> x x V

w
O
N

v v V

O
O

O
0

CL

00 We
11 11 Y
r 7 •

N N
•
«+

we w v
a

O O x

123

I

w
w	 ^
z	 1

X	 ^:
.x
* w	 •
w '	 zw •	 V
Z a0	 =• V	 '

t'

	

X	 {^
•+ +	 x

t x	 w	 w
f *	 w	 w
N w	 1	 •

x	 •	 •	 •
+ M	 Z	 Z
/► V	 •	 V

• x	 v	 =
^"'•	 a	 <
• " w	 O	 O

•y .^ +	 x	 x
V J J	 +	 1
113 + V	 w	 w

x 1- 3	 Y	 z
.. < x	 {/► 	 •	 •
+ O +	 W	 4	 w

	

J w	 U	 •	 ..
v IL
• O •	 Ix	 A v	 x
• 1 •	 <	 O 2	 w

... O .»	 Z	 O t	 O

.^ w ...	 p

n$xV	 z no° ax 	 oa0a^Zx ,► x	 Z zz-z..	 ZZOZn
• N 7 11	 <	 • •Y • Y	 • . * .IL
we w w w 	 t7 •r .y •' •	 w .+ p •r X
N Y YI Y	 11 11 n 11 4	 II II li 11 11
Z•^ • W W "" • Z	 W •. 7 w z .n
1 '^ ^ F o r ^r

•
 ^ ^ 	 '7

to o
CM	 we "m
oo v J v F- W •+ .+ Z .r Z 1- F
	

v •+ v
d.

Op 55 00- u W OV t9000vOOWOIL
O x x x v v O O x O x v v O O x O x

to	 1	 O co
N	 N	 In N
•+	 •w	 •4 p.

V V v



r

124

a

a

	

a \	 •

	

a	 ^	 A

	

x	 • x	 nl

	

•	 Q w	 ..

	

O	 W ac	 <

	

2	 F 1►

	

•	 A	 W <	 A

	

o s	 n	 •A	 •	 2	 A
X w • \ •	 a z	 •	 N
► 	 a O \..	 O	 .+	 ..

	

z IL	 •	 11	 x	 2	 11	 <N	 • Z	 x	 "1	 s	 • r	 111	 J49 	 a rr
Z Z x Ct A	 \ z	 \	 +	 _

	

• •	 '	 A	 Q	 A	 01) A	 A

z	
I-	 •

^a <a o	 •^.	 ..
O	 CL 1L	 Z	 ..	 2	 ...	 ..
H	 • z V	 •• O •+	 ..	 O .+	 J

z IL (aL =
	 Z	

W	

Z	
N	 T .. Z

i^izxaa•. axxn nA	 ' x=<

	

Z Z X Z .. In 7 Z	 •• « I
•	 • • 11	 • • • 11	 •	 • •	 • 1	 v	 Z

	

N 1-	 •	 J
w Q J w • •y •+ •► Z • w^yA	 • • ^pw • < < Z •

t/l i o	 n• Ii •-	 J A M P-
W 2 I. m .r .. R •+ 7 • > 1141 	 7 • W .. 1► . .+ p 7  	 = W O N N►
H	 ct 	 f 	 N	 •+ 7 of cu  	 cm	 11	 O N 11 O 	 P

ac	 1-^m^mglo•• t-<m`^o••^o1.<oa"oz 	 M11 it
 JJ27 ♦2 P 1`IL j  fl- NIL NZZ1' ► —M*-m..H 7X Z
Z JJ•• a w	 Z J`"	 z	 ^Ix < x 44OJJIr
0 vv	 o006	 VuIILLg°oxuoonu° MONX u=ra

	

f ♦ 	 H	 N	 N N N	 P ►

V V V

XM
CK w
(1-	 a< zI	 •
W	 11

^ w
a ^
IL	 •+

V

1-Ox• Z

n=no
7 1f1 •► ~

^pp 
N

«zn^• t ►0 ►^
I- zztozz w a •.
°u aa.IL a

0 n ^
•»	 In	 ^o



,I

Z
a
0

J

	

Q	 ^+

	

W	 .^

	

^	 u
a

Q	 Y	 Q
O	 Z	 O
IL	 r	 W

	

X	 •J	 In	 .+	 .+	 J
w <	 W	 Q	 v	 <
N >	 V	 ►•	 I	 >
• Q	 r	 t	 <	 Q
N W	 Q	 Z	 ^	 W
•^ ^'	 ^.	 w w w	 N	 `.
W Z	 <	 O O O	 W	 m	 2• r	 w w w ^. w ^	 •••	 ^	 Z	 •	 r
•	 OOVOV	 (,ww	 r
N Z	 • • • • • Q	 • •	 •	 Q	 Y	 Z
V	 • • • • •	 ^-	 • • •	 •	 '^
I

X	 00000 W	 O.+• ► 	 «^	 111	 •	 x
•y 	••••• 0	 v v v	 v	 J	 w	 r

i a	 0 .+ ...• ...	 x X X	 m	 m	 •-
J	 H	 .....r ..•• O	 J J J	 11	 tp ..
• < aoXxXxX Z I

	

as Q a$aaQ..	 pp	 QQ
• Z Z 2 J J J J J < Z 7 Z Z	 Z Z Z Y	 0 Z Z Z 0 ii Za	 a	 •	 • V u U • •	 •	 • •	 ..
p < •• w Z	 2 m •• w •• N 11 11 wr we.+ 'f 	 t^ .• w ^ ^ Y W
•	 N N	 V u U V	 11 tl 11 ^+ •..+ N 11 N • ; 	 tl 11 N	 •^+	 >	 •• '1	 it n n It	 >	 7 Y YMr «^^f Yr	 >	 •+^1Y	 •! >I. IL wwr.. w	 • • •	 v Z IL	 w •
e "' O(p 7 NN1 IA	 W 0 W 'l^NNhha r w (► N N •+ w
I	 V Al N • • • . • u we as we . • • .• •+ 04 N 	 V	 .+ •+ we J am• Uf[ W	 wwe M0 h W	 be Cm	 rZ W	 j  W/J a ouw%ww..r	 a QUOW W WU OWO a 0 V t V

	

coiti<• In 000G) tato$omu	 0 OVW
N	 O	 %0	 h	 N
NI	 N	 N	 •r	 r
N

U V u	 UVV	 UUU	 V u u



00

o..
c: o
O «

a Q 
r v

Z Z J J

11 u••^uN
o► a^n

•+ N

S g t, t,
Ok«

cO
o •»
Oo

O •+
x x

of

Qk on of

a • •
we «

8V"v"
P
Ok

W
Oz
u
I
Q' —_ O	 N1 t
1► Om W O«	 ''11
4
• N^O z 1 11

Ip ... 1 11	 ..
v r — w a = « In «

49 	 Ccp	 • •gyp 11 1Z 00
OZ If M

W p ^► •. S .. « N
aLLSSgasaa

1

O
LL

W

z•.

x
.r

a'

u

a
LL

u
W
CL
N

Wu
M
Q

s

z
z

0
z

A

i

V

«

t
z

u

O
<
z

LL
oft

W
a
N

126

A^	
w

1+	 0I A w w

♦ 	 ♦ O I

G	 O ^► •+ N
• w ^' • . a Q w w w ^•goon	 .P,401.

• I — • o 0 • • • • — w
a-•oacozZO«r000
^OC^1` OQ 1 1 1'1 Oo H O •+

O •+ 0000 Q 0..0000v ^. y r • • v v v v r v .•
x x x x U« x x x x x x o ••
^d9adxxaa^d9exx
=zzz dd zzzrsz ieA v V u V= v v u V u v =

_ If

-- u db	 Vv
« N « N h II « N « N « N 11 11

« « NN••N W W ««N N «N
r ^.. v ^. v v^< r v ^. ^. ^. v
W WWWWWM• ►-MH1-H^^
LL W LL LL O V W W LL LL LL LL t70

V V u
	 V u V



127

.^	 w

.^	 V
V	 •

w	 . w w	 w

	

'^ N"N N	 N

	

^► 	 •• V	 J V	 •	 V

	

V	 V •	 " •	 •

	

<	 ^. w	 w	 • .y 	X •.	 •	 w

	

O O	 Q w V	 < V .r	 N

	

•+	 p •.	 p vw	 w r <	 1

	

^.	 ..	 • x N	 J N Z	 •

	

N	 .+ O O	 p <•	 •• Z	 .•.

	

>	 N • •	 • •1	 '1 <	 .r
w .	 <	 O r	 O "' •	 • • ^	 <

N	 •	 Q ^. v	 v J .r	 r ^..	 •	 Z
I- x	 x	 x	 •..	 ^•..	 Z

• •	 .+	 J J	 .J 1 <	 IL < 1	 <

Q&	 W	 19 = 	i r=N I< Z N ►••^ ^N
v v	 ^• w >	 UU	 V `^ t	 V .. U m U
X x w""	 w< a 4 w p	 11	 11	 m U it m	 11 < 11 O V II
J .r N •. /V v y r Z Z 1 ^+ w	 w ry r w %W %W %, w • %r	 a s
Q^^w  	 • . .+ .• Q aNf1 JO N Q JONONOON ZZ
iZ W W .• N N<<	 .+..	 Z Z • Z O • Z O • O •• O •	 ••
V V 4% 4a 	 %...1. 1--	 II 11

w	

^ 10'^ • • 1 •^< ^ •^< 1<'!w< 1 w•ww^
11 11	 ^ W W sy^ W WI-	 w 1 W • •• • W w	 • .o	 H • .+	 •	 *.-)I-  • ul 11 11 11

w	 W IL IL t7 11 11 Z V	 ^+ N r `^ 11 II «' 11	 Z •+ II	 Z r Z ^'" • Z r O "" 1 Y
.rN 11 11 11 11 11 — + r <QO •^+	 v Zr'^v,J^r ^w. Jp.•+vr^.rrr y Z

rH..N;OIAvv JwNNvj1-S ^O^pZmJJZ Q^JJZ JZ V' JZNNNN
t<•+r•+••..W ► J.•	 Z Z	 = JJZ JJZ JZ 11 Z Z1~uw<i« <ii^a$o^uu^u °o83OOVV OOOV<VOVOVV OVO°OS

..o	 a	 c	 %0
w ..
N N



128

A w
.. Nuu

A ^ A w
p A Y Y ^+ ^+

• A Y Y .r N .^
p v v ^! u V
• A N 1 W `' •	 . • A

O Y W .• << A A A A A N
• • V J r- In d •• •+ •' v

W W u V
"p-,

^.	 •r • 1. .	 • •	 . W ^► 	 X •+
X r+ I- <	 A A w w we N N N G	 < V
JJ., < O	 ptI Y YUU 00 •	 •	 •
a Q ! J	 •• Y Y •• w w •• p	 A A
a C LL	 O O • • A A .y 1r A w •	 ^' Y
V V IL N	 • • M ^+ w M v v w •^ Q	 • V

0	 • • W^ Iu H t7 V W M- O	 >•+ N Z
O •.	 Oo ILa00 •• 00 aV<

•	 • < Z Q y r V V ^I V A A V M .r N X Z V V
YY • IUIX X J J00 V1.^.+ U100 .." J •JO
•.
17 II

.. 2
Z • d d .•

•	 g O
^`<

Z J J
•r'v

Z R G "w
•` <V V

W 1^ a •+	 C
<t = 11	 <N

•• WW Y w.^! I
In

N H	 H H m4 W
11 VVYZ^ZZ VV

.^^	 W
11

.^F r 11	 II W
11 ZZ !! 2WW

r 1- ^ r H h V
ZZ II•+r F r	 - 11	 ^•+	 ..	 N w	 r	 Z "	 A11	 N	 ^yv rr < w II •. A A. Z •...

a s C O 1	 •••  A w •r •+ .r so v v w— — Y O	 Y
l W .. Y .+ .+ r r .+ J J J J N v v I- M J J 41 I- .+ N V P) J J r
! z JJJJ W 1-Z JJ 44ot J JW

4cO W S .•..UW t- O ««Wt- OQNNQu
V tv7

« 1-F-
O	 V<<<

0  X >O<<>
J	 O O O O V u V u 0 0 00 V V W W O V V<

w w N In

N

V u V



129

t^

f

F

A

•^ • N
U "' •	 V

IA A A A A ^ AW N J V = i	 •rA .+ V V V Y
..
V

U
•

..
A

•	 .
A we

X •
< fa

A
w •	 Y.^	 •• A A

< v u V rA N Y •

^•	 x •• > < O • i O
O	 < y <

Z Y Y.+
0

V J IJl .^.^	 A A A < v • 7 v 7 ^ '	 A•	 •y Y Y w x 7. N• .	 9
4V 4c

•	 .^ H W V a p. .. ... .,	 fr

A ArQ < t EA U
...
a
.

UV< OD Q 0 V 4c
<v 44 X 	 .,..

J	 O
..
m

aa
Z2..^ .. O

..r,^a....A
Z J O Z

.. p ..	 aaU	
Z ZO	 O"rI•

I
..	 O

<t O t7 •	 • W u:.• ^ove 0TW 0	 O.+	 • .11	 <N 14 .r"<t ♦ wi4 ♦.+ < ♦
01 < + < ♦ 	 .r •+u ^+ F F -^^ Il	 Z V W

11 7^.r
W
1.-

11	 11	 .f F Y
u. '1W W • 11	 $- F- YiZ= • ,iII	 1-Z Z^i.. Y	 Y W 11 U

N	 11	 IN fr fr .. Z .r u < 11	 11	 7 1" .. f.. «r n n r.+ 'f fr '! Zw..... Y O Y «•	 fl t[ O O	 d% ..r • N • • •	 • ...y .r
v Nv1f1 J„1F

ZJ Y
Y1Y► v N vlf1J OJ`J Jv. .J•• J..1..+•+

<ouvu<i

Z
<ia^O OO°vuLL< °«gou °O^uugu <v^V uiuvy0o

.r N we N O
O O h YI N
M1 P ►

V V V



A
.n
v

A
Y

• N
J V
^r •

O Z V
• Z •O ^ A

O •

v ^ 7
x Y .

. r
V

• t N
U r 2 u
u	 •• Z N

CL<-

Y Z J O Y
;.r < 1)

•n j
Z w	 < r

2 ~ J J 12
^o «<u
g pu u ou

M
W
u
FI

H
<
Z
W
2

Q
CA.

ZI
u
W

<
cc
W
Z
W
0

130

u
A Y

V J
A ^ A

• N < U
J u I •A A I •.

w I •^ .r O < V
• < • Y O • A

O I
Z .. o .. •

O < . • • . Y —
• V Y J O Y • O

J '^ 2 13 ^ • G

••• tv < V ^^u u
u •+ ^+ V 1J 11 v A 11 v

n .. Z n u A f Z_ x.. a '^ w w .r 2: .. J
0 41 44
V 0+ . Y I^OY 2nna

2Z
a x% ww w aim

•	 Z Y aa •4.. ^+ • a
2

n C u2•. J .
•

^O	 Zp J	 • • .
Z	 •

• ZZJ . .
•

J``.	 .	 . JOJp
4

'I Z

;^+ w	 .r
II	 11	 It	 N

<	 ...• •+
F	 1	 11	 11	 11

•+ .r
^► 	 tl	 II

•r 7 .r
tl	 •	 11

<
•

.... J .+
W	 11	 11	 11	 •	 n

r-1 -J	 • 2 Z Z • 	 .+ '! j • ,., ' J ,., Z Z	 r r n J	 Z
r r •+ .. z r v r .. ^r •

0.0 ok Ok %0& r•rNNNvP1^MXFt x  • yr e,
NNN'7N JJZ ►- NNNI N NNZN JJ ^NNtU..e'^

gO O V< V i< t p u o O< o u O< o d a U V o u '.? J
0	 o o c u u V V 0 0 0 0 0 0 V O V U V V O O D O O

P N
N N N

u V u



N— W
-	 ..
..	 v

v
.»

u ^

-	 J
Y	 . ..

J	 • W .• V•	 r
1	 ..

!
...

..
V

•

!	 t9 Q — •
J

! N— J > > N
ID U

Y ('l1^ w v N	 w	 %V w
• u o < u	 0	 Qv

— •	 J Z .	 •	 !	 .
w ..	 .
♦ J	 '^

..	 =
0	 <

w	 O	 31, ••	 —
V	 •	 < J

Y •	 • O •	 l7 •	 G	 V	 •
• M	 w w
!

Z 0	 . ..	 •
••	 .. V < .. ^	 p	 .. •

• ••	 i	 11 O	 J •	 "P	 1 "'	 J
r r	 !"' V	 ! w i

•	 •
p	 w

•^	 X	 • v	 v	 —
v 	 J	 •• Q	 Q	 ^n

Q	 < ♦
V' ^N^9Y

•+ r	 v
X i

r v 
v
ol; •

J O 
-o :

a uJ i
a	 J

• •!	 •

IL	 v^
N^^av	 Z Z QY q Z	 O N

S (^	 -;o..	 .. . J . .^g J< w••v
• • •-

! <J	 • wwww.• Y

^^ • F •	 W'12.+7
q	 M	 q	 11 H

JZ
^	 N	 11	 II	 11	 •	 11	 1^	 • W	 q	 q	 q	 ^ 11	 11 ..
Zw..'!J1! Z	 73 so	 J ••+^1

It
} ..	 Q.r •+ a 00 •O •goweas	 w	 r•• NN NvP1 N•r

J.J — JZI- ^ W mm - m J J J r 	mmmI- mm^+
J
J^"" m m m•• l+1 4

W i<` 04400  
VV Vv #j vv V

V O Q O
001LOv

e Q O O O i$< e a 0 O	 S a 00 O W
VII. VOS

sV
VIL	 L^ 0	 V

s M	 f p p	 w	 N	 on

.
N	 N O PI	 N1	 In

w

V V V V V V



y

^'9 r J ^
^r w

M f^1 O 1r1

J	 1	 ••

e

t
`r

1

Ow
I'll, 
m

A
w
a

	

r	 A

	

1[	 w

v

	

•	 A

	

w	 =

	

r	 A
•
r
A

	

A	 A	 •
I•	 AV	 ^
•	 V

A A	 A
lot a	 w

	

AN	 .•u	 ^.

	

V u	
^_	 i	 A ^:	 w► 	 N	 w

	

p •l ..	 C " V V	 4wp	 w

	

• v	 w	 ^, •w w •

	

r ^	 =	 W	 • r r .^	 •	 •

	

r Q	 w. w .	 p r w v	 w

	

O F • N O	 w A	 S

	

so
Cpl V	 w4..A.t^t !l	 ^	 •r

Nv to

ZZ	
<NM W <

	•• rr v	 O w •	 QQ K r v v	 •_! • _•x Sa	 ^b • < Z J ^.^	 UI	 ,9•KZ • S

	

Ow IV	 win1$712
l^ ••p K^^•+ W r ^l rl^fl^N r < WP-+ W

	

r •+ 11 ^r w	 !•	 A •+ r •• r A r p	 ^ ^,.
•r• Jr^ `r^ Z	 $ MI^+M^ J•r^^r^r<<Z	 ppp.. J w	 r	 r op ``

r rp
wdt^0 V Q

OQO^VddtZi^t4^. V OOVYQVO • Z1 Zdb. V

	

PP 0^	 O	 p+	 P)

	

• •	 W	 A
VVV	 VVV

%I

A
w
V
AJ

A 16

c

O	 ':
Q rv r



133

I

A
A

r

F
A

	

v	 A	 •ft

V	 V

	

•	 A	 A

	

A	 Z	 ZA	 ^	 • A	 •
N	 ^+	 1 N	 J A

	O 	 . V	 r N
r	 w	 Z	 N	 A r w	 N. V
V	 V A	 •	 0 4 V	 • r
•	 • N	 A	 • Q •	 A V

•	 A • A	 O	 •	 p A •	 • ' Z
r	 0 r •.	 •	 • ,^ '!	 Q	 • •

a

	

 rOV. O	 <	
• •	 .. 1

	

•	 . w	 r •
•	 <	 A A	 x r r	 r	 •

	

O O• 	 1 H Q	 x d r
Q	 •O w	 <r	 <	 Q Z	 J 4<
N. a	 0 IL 	 ••O <V	 = W< a 	O 1<<r	 p rQQ rr	 VO	 n Q V nn rr V Q Q Z Q

	

N Z ^
J
cZ^O	 <=N 

• .	 ZZZl N ZJOp N	 Z, VN ZJV

	

w 0 r^ <	 •ose x p^0 1G ^+w •^Z r i Z rrw__ •+i7

	

• N= MH ♦{fi r <x^rl • 	N N	 • M	 •W N M M•.^+ v 7Z Z V•r M < <1► r W w	 1	 1^w ^Z JZ •
r to Z	 N or •+ M r A t UU F'	 • •+ .• •	 1 to

^Q
so ID O'	 A0-49 Z`< ^ 000" O	 w••r we •••	 •♦. Mf r^J^ w M O« ^ ^ ^OOO"'QJ^Q^^p^p^p^^OJ J..

W&V OOU«oN0o0ao v $°0°04834wiuo88i8<<,vi
F6	a 00	 Q
Pt	 M1 M	 MI	 0

n
v v v



•

M
V	 w
•	 w
Z V
•	 w o1	 ^ «•	 •Vr	 J •
^•	 w v w
^	 o tvt	 w

.. o
•	

d ^ab
it	 =	 11	 1,M O	 O	 • •J

•	 O.	
O• 0w

w	 w	 •
0	 O i w	

w ~	 J ^!
Q	 V	 O'er r	 r v	 Q Nr	 Z	 ac x	 tt x	 ^, a Z Z v

	y^ •w•+Es+ww^[ L .r^^+ wd M 
p 

M	 ww	 N M www'• ..7 04

3pppu.AAArrwO^ pp ^^n ^ wr0•• 44043saftipww=F	 .rO 4O000 Jr 1► • p N•i•► `t1^A A w wo- l r. P A P

W808^8o g V^:88M:8^08u8 » gin u80 00u^dK
•	 O 16 66 	 1► 	 AAfl.



O
O
f

O
H

m m AO O A

Z O O N
G

~ l'-

S O O z

N s" A	 t
It S:olu

^ O W
O =
• O . . f

AON .
F
of-

yyĤ
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