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Introduction

The dimensions of space structures being considered for
future applications are on the order of several hundred meters
to several kilometers and will require a large number of actua-
tors and sensors for attitude and shape contrnl. A solar power
satellite, for instance, may require hundreds of control moment
gyros and thrusters to damp out surface vibrations caused by
periodic disturbances such as solar and gravity gradient torques.
The questions which naturally arise are: (a) where the actuators
and sensors should be placed, (b) what types should be used, and
(c) how many should be used.

Placement represents a substantial degree of freedom avail-
able to the designer and is usually not a very straightforward
question. It is even less apparent when one considers redundancy
in the system to allow for failures; even if the "optimal" posi-
tion of an actuator is known, it may not be so clear where a
backup actuator should be placed. The answer will likely depend
on, among other things, the operating strategy—such as whether
or not it is intended to use all available actuators at all times.

The types of control system components to be used is normally
decided ea-ly in the design process based on their utility, cost,
availability, reliability and other factors. This decision will
not be discussed further here although the effectiveness cf
different types of sensors and actuators can be evaluated using

the observability and controllability measures which will be
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developed. The number of components to be used must reflect
the trade-off of cost, weight, power, etc. vs. system perform-
ance—and the evaluation of performance should recognize the
likelihcod of some component failures during the lifetime of
the system.

In this work we develop a methodology for measuring the
performance of a system which reflects the type, number and
placement of the actuators and sensors on the structure. The
measures also reflect the expected loss of performance due to
component failures. These performance measures a_e intended to
be especially useful as guides to the choice of component number
and placement.

Problem Definition

It would be most helpful to the control engineer to have
some criterion at his disposal for placing actuators and sensors.
Unfortunately, modern control theory does not provide any such
measure of "controllability" and "observability." Controllabil-
ity is simply a binary concept—either a system is controllable
or it is not. It does not say how controllable a system is. A
vibratory mode of a beam, for example, is not controllable by a
force actuator placed exactly at one of the nodes, but it is
controllable by an actuator placed just off the node. One would
suspect that an actuator slightly farther out would have even
more control capability, but one can only verify that the sys-
tem will be controllable. The same ccnditions hold with respect

to observability for a sensor.
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What should a more quantitative measure of controllability
take into account? First, it is necessary to define a control
objective. The most likely choice is to return the system to
some specified state (usually the origin) after an initial dis-
turbance. Secondly, the criterion should include how much
control effort is required to accomplish this task. Finally,
one should somehow s*andardize the criterion by the magnitude
of the .initial disturbance. A larger disturbance returned to
the origin with the same amount of control as a less perturbed
system would likely have a more favorable degree of controllabil-
ity. It will also be necessary to normalize the initlal s=tates
so that one unit in each direction is equally "important," since
rarely are all states gxpressed in the same units or of equal
concern.

Many ideas for observability parallel those for controlla-
bility il the word "state" is replaced by "state estimation
error" (the difference between the estimate of the state and
the true state): (1) the objective of measurement is to re-
duce the error covariance toward zero, (2) accomplish this vsing
the measurements optimally, and (3) standardize the criterion by
the magnitude of tolerable errors.

Previous Work

Several papers have been encountered which deal with the
subject of controllability and observability, but only two
(Juang and Rodriguez [l1] and Likins [2]) formulate measures using

the types of standards just outlined. Horner (3] has consideresd
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optimum actuator placement but does it for the specific case

of passive damping of a free-free beam. Skelton and Hughes [4]
define measures in terms of controllability and observability
"norms" which apply to the individual modes of a system rather
than %o the system as a whole. Their approach is also tailored
to "linear mechanical systems" which have a special form of
representation as a second order matrix differential equation.
Although that form applies to space structure dynamics, we
prefer to define measures which have a physical interpretation
in terms of control or estimation error characteristics for
general linear systems.

In order to get a perspective on the measures of control-
lability and observability in the sections ithich follow, it may
be helpful to review the two papers which develop similar con-
cepts. Juang and Rodriguez take an approach very similar to
the linear quadratic regulator formulation. For the LTI state

equation,

x(t) = Ax(t) + Bu(t)

they Zefine the cost function
te
J = %- f (xTQx + uTRu) dt
%
where Q and R are weighting matrices on the state and control,

respectively. This is the same cost function as for the LQ

regulator problem except that the usual additive quadratic term



involving the final state is not defined becaus2 an infinite
time horizon is allowed and x(tf) converges to zero. Thus
the integral directly penalizes state excursion from the de-
sired final state (the origin) as well as control effort.
Performing the mirimization on J and letting tf-td-'co,

one obtains the optimal cost function,
J° = % xT(to) P°x(to)

where P® is the steady state solution of the matrix Riccati
equation

T 1.7

P = -PA - A“P + PBR "B‘P - Q.

Since the control effectiveness matrix B is a function of the
actuator locations {G&}, P° is also a function of the actuator
positions Ei. Thus, the opt.mal cost is a function of both
initial state and actuator positions.

For a fixed initial state, the optimal cost with respect

to actuator positions is defined as:
o - . (o]
J° (€,0%,) m%n I (€ x,)

where eb are the actuator locations giving the minimum cost.
Now since the initial state can have several directions in state

gspace, the expectation with respect to Xq is invoked:



or

where

The o

°%(e,) = 32“ E(3°(€)]

J°*(eb) - mén %— Tr (P°Q°)

Q® = Elx(t )x(t,)"]

ptimal placement of actuators is then defined to be the

position vector giving the absolute minimum of the expectation

of the cost function .

(1)

(2)

(3)

(4)

We found several objections to this method:

The weighting of control effort versus state excursion

is rather arbitrary.

If there is a particular direction Xq in which the system
is not very controllable, the information ie largely lost
when the cost is averaged over different initial states.
The degree of controllability is actually an inverse measure
since a higher cost function represents a lower degree of
controllability and actually becomes infinite when the
system is uncontrollable.

While control use is penalized, no effort is made to
bound it.

Likins develops a more sophisticated technique to be used

in the case oif bounded control effort. Using the variation of

constants formula,



t
x(t) =D(e,t)x(t) + DL, t) t ,T)Bu(TaT
(o] o] o] (o)
t
o

and choosing to-o and t=T, one can define the displacement
in state space 6 in time T

T
§=xp - x, = (1 -@"HT,O)]xT +fc§(o,t)su(t)dt
(o]

Choosing xT=0, & reduces to

T

6=f 0. 0rBucerat = -x,

o

where u of the original system has been normalized so that
‘ui| £ 1 and B redefined appropriately.

Likins then proceeds to define a "recovery region" R
as the volume of initial states that can be returned to the

origin in time T under bounded control ‘ui l s 1l1; i.e.,

R = x(o)|3u(t)r te[O,T]: Ul(t)‘ ‘ 1 for i=1,...,m X(T) = 0
The measure of controllability is chosen to be the minimum
distance from the origin, over all directions in initial state

space, of the outer surface of this region.



P2 inf | xco | % xwo ¢ R

‘The problem now reduces to finding the minimum norm of
8(or xo) on this surface. This is a difficult problem which
requires, in effect, the definition of optimum bounded control
trajectories which reach the origin in the specified time
from many different initial conditions. Likins expresses this
problem in terms of quadraturws which must, in most cases, be
computed numerically. One can only compute a finite number
of these and use the smallest computed Sas the controllability
measure. (A paralielogram approximation to the recovery region,
such as is indicated in Fig. 1, is suggested by the authors.)

If a system were actually uncontrollable there is no guarantee
that one would compute the trajectory for which 5 is zero.

The overriding objection to this method is the complication
involved in the multiple control case. An important attribute
of the measure of controllability will be its easy computation.
Another objection is that Likins chooses to bound control
magnitude and does not attempt to perform any sort of minimiza-
tion with respect to quantity of control used, citing bounded
control magnitude as the more realistic situation. It is
usually the case, however, that quantity of control (e.g., fuel
in thruster, stored angular momentum in CMG) is the primary con-

sideration, not saturation of the controller.



DYNAMIC MEASURE OF CONTROLLABILITY

The measure of controllability formulated here combines
some of the characteristics of both of these methods. Like
Juang and Rodriguez, it involves minimizing a cost function,
and as Likins, the final degree of controllability involves
a measurement in some "maximized" initial state space. The
difference is that the cost involves only the control. where
a quadratic is chosen for convenience to approximate magnitude,
and the initial state is maximized with respect to irtegrated
control utilization rather than running the control at satura-
tion for the duration of the control period in question.

The degree of controllability is the result of a four step
procedure:

(1) Find the minimum control enerqgy strategy for driving the
system from a given initial state to the origin in the
prescribed time. ["Control energy" is defined as
E = %— LT uTRudt, where R is a positive definite weight-
ing matrix.])

(2) Find the region of initial states which can be driven
to the origin with constrained control energy and time
using the optimal control strategy. This region is
bounded by an ellipsoidal surface in state space.

(3) Scale the axes so that a unit displacement in every
direction is equally important to control.

(4) The degree of controllability is a linear measure of the
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weighted "volume" of the ellipsoid in this equicontrol

space,

Step 1 can be stated mathematically as follows:
T
min E = %f uTRudt
o

’
subject to X = Ax + Bu (1}

4 x(0) = Xq

x(T) = 0

The Hamiltonian for this problem is:

H= % uTRu + PT(Ax +.Bu)

80 that
P = -ATP  P(o), P(T) free (2)
18Tp (¢) (3)

u*(t) = -R_

where u*(t) is the op:imal control.

To find P(t), combine the differential equations (1) and

(2) into matrix form using th= optimal control (3):

-, = - - - -
x [ A -pr~1pT %
- (4)
P 0 -aT P
b - L - b -
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Then denoting the state transition matrix for the augmented
T e, T .
state vector (x P*] as @(t), and making use of the
o ~
identities ¢(0)-I and @-A@ where K 18 the new state matrix

in (4), the costate variable is found tc be:

PN
m
~—

P(t) = -gﬁpp(t) Q_{p('r)'l (D %

where@xx, é«p' emd@p are tne respective partitions of the
state transition matrix (Xt).

Step 2: In ocder to carry out step 2 cf the procedure, we
will require an expression for the optimum cost,

E* = %—LTu*T Ru*dt, as a funct'on of the initial state.

To this end, we seek a relaticn of the form
x = VP _ (6)
gince P is a function of the initial state. Differentiating

(6), substituting (l), and noting that the resultinjy equation

set equal to zero must hold for arbitrary P, we find that

T _ sr71pT (7)

V = AV + VA
with the boundary ccndition

V{T) = 0 (8)
to satisfy the reguirement that x(T)=0 since in general P(T)

is not zero. We choose this boundary condition for V as a
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matter of convenience; any other terminal value which satisfies
the r.guirement V(T) P(T) = 0 would produce the same result for
the control energy. The reason for not using the usual rela-
tion P=Wx is that in order for P(T) not to be zero, W(t) would
have to be poorly defined at t=T.

Corresponding to the usual cost expression

I = % %(0)TW(0)x(0)

(S

we expect the energy cost to have the inverse form

E =3 x(0)Tv(0) "1x(0) (9)

» c2n he verified as follcws:

Generalize the initial time to to' Then

T
E = %-f uTRudt (10)
to
and we would like to show

1

m
(]
N

T -
x(t )" V(L)) x(t,) (11)

Differentiating (10) with respect to the initial time and

substituting (3) gives

dE 1

ato 2

P(t,) 'BR 1BTR (¢ ) (12)
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Substituting (6) into expression (l1) (which is to be verified)

we have

E = %‘-P(to)T V(t,) P(t) (13)

Differentiation of this and 3ubstitution of (2) yields the same
result as equation (12) so that the derivative of the gquadratic
expression for E in (9) is correct.

Also, the boundary condition matches as we can see by
letting to—™ T. Since the optimal trajectory tends toward
the constraint x(T)=0, the control energy E(to) tends to 0
as t —» T and x(to) ~—»0. The property E(to)—+ 0 as t—» T
is assured by the form of E given in (13) and the boundary

condition on V

lim vit,)) = v(T) =0 (14)
to_' T
Equation (9) defines an n-dimensional ellipsoidal surface
in initial state space. Any point within the ellipsoid can be
returned to the origin in time T with energy E using the optimal
control in eq. (3). Though the energy expression (9) is simpler
than that appearing in (1), the differential equation for V in
(7) remains to be solved. The solution to (7) for the case of

rigid body and vibratory modes of a spacecraft is presented in

the section on Applications.
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Step 3 is to scale the axes so that a unit displacement in
every direction is equally important. But what is meant by
"important"?
It may first occur to the reader to scale each state by

the magnitude of its maximum tolerable displacement,lx. I
max

- -
e O
Zo = | . . 1 Xo
e el

s¢ that a unit displacement in every directién is equally in-
tolerable. But this scaling is highly inappropriate for the
following v 30on. For a fixed amount of control ener3jy and
tirme, tt}@ larger the volume of initial states encompassed by
the quadratic surface in eq. (9) is, the better the system

can be controlled; larger initial states can be returned to
the origin with the same control effort and time. Increasing
the Xy dimension of the ellipsoid, for instance, indicates a
favorable control capability. But if Xy is scaled by dividing
its maximum tolerable value, Xlmax' Y€ observe the following

paradox: as xlmax is made smaller, meaning that smaller values
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of x, can be tolerated (or Xy is more important in terms of
system performance) then zl, the scaled variable, becomes
larger which signifies improved control capalbility.

It is apparent that the appropriate scaling should make
a more important variable transform to a smaller value in
the new space so as to emphasize the need to control that
variable. The problem is that controllability should not be
related to the accuracy with which a variable is ultimately
controlled (which is what the above scaling does), but rather
to the size of the excursion one would like to be able to
achieve. Thus let ximin be the minimum state excursions one

would like to be able to return to the origin in a given time

using a prescribed control energy. Then define the transforma-

tion
zZ =D x
T 1 7
% O
1mi
where D= . (15)
O =
X
I nminl
- p—

so that unit values of z in any direction represent controllable
dispiacements of equal importance. 1If controlling a given

state is deemed less important (which is useful to recoqunize
since it requires less control capability), the corresponding

state in z-space is made larger.
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Step 4 is to measure the controllability represented by this
ellipsoid in equicontrol space (z-space). Consider a two-
dimensional case in which it is as important to control an
initial displacement in the xldirection twice as large as one
in the X, direction. 1In this case the ellipsoid defined by
equation (9) is an ellipse in x-space. Let the ellipse have
the shape illustrated in Figure 2a. This represents the ideal
allocation of control since we are able to control a maximum
displacement in the 31 direction exactly twice as large as one
in the X, direction. Figure 2b illustrates that the ellipse
becomes a circle when transformed to equicontrol space via
equation (15). Thus any deviation from a circle in equicontrol
space represents a less than ideal control allocation.

After considering a number of alternatives, the de-

gree of controllability was chosen to be the following:

Vs 1/n
DC = [VS + @ (VE - VS)] (16)

where VE is the n-dimensional volume of the ellipsoid in

equicontrol space and V_ is the volume of the largest inscribed

S
sphere; n is the dimension of the state space. The first term
on the right side of (16) is the predominant term in the con-
trollability measure; it reflects the smallest magnitude of
initial state in equicontrol space which can be driven to the

origin ip the specified time using the specified control energy.

If the controls were ideally allocated, the initial condition
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surface would be a sphere and VS would be the controllability
measure. The second term in (16) adds a smaller amount to DC
to recognize the larger region of state space from which the
system can recover if the surface is not spherical. The addi-
tional volume, Vg-Vgr is scaled by ;% so that the most this
E—ico , is VS and so that DC is zero if there
is any direction from which the system cannot recover at all—

term can add, as V

this is the case of traditional uncontrollability, and VS-O.
The nth root of the weighted volume is taken as the controlla-
bility measure to make it proportional to the linear dimensions
of the region from which the system can recover. The volume
weighting scheme for a two-dimensional case (volumes are areas)
is depicted in Figures 3 (a-c)

Once one accepts (l16) as a reasonable assessment of
the controllability of the system, what remains to be shown are
the mechanics of computing the n-dimensional volumes Vg and Vg
Consider the quadratic form, xTA x = d, where x is a vector of
length n, A is an nxn matrix, and 4 is some scalar constant. For
the two dimensional case. this quadratic surface is an ellipse
and the enclosed area is given by Tab, where a and b are the
intersections of the ellipse with its principal axes. The
intersections are\/le- and\/;-%- where the l's are eigenvalues
of A so that the area equals?rdr-—%ﬁr— . For three dimensions,

A1 YA2
the surface is an ellipsoid and the enclosed volume is

4 3/2 1
3 TMa .

\; A1 J Az JA3
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For n-dimensions the volume is defined by n integrations over
the n axes (bounded by the intersections of the surface with
1
the axes) and is found to be K - where K is a
th ]xn
constant. Since volume for n » 4 has little absolute signifi-

cance the constant K is dropped and the volume is taken to be

simply
1

n -
ve= (T Ai) (17)
i=]
To apply this result to the case at hand, first sub-
stitute (15) into (9) to obtain the eauation of the ellipsoidal
‘surface in equicontrol space

1 T -1
E = 3 2z, (DVOD) z, (18)

V. is then given by (17) whereA.:.L are the eicenvalues of (DVOD)'l.

From (7) and (15) we observe that both D and V are symmetric
matrices so that the product DV,D is also symmetric. The eigen-
values of the inverse of a symmetric matrix are just the recipro-
cals of the eigenvalues of the original matrix. Therefore, if
I’i denote the eigenvalues of DV, D, the ellipsoidal volume is

also given by

n
v, = 1T (19)
BT VU

and the spherical volume is the shortest distance to the surface,

l/‘ﬁlmax' to the nth power, or alternatively,

’ n
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The degree of controllability can then be computed using (16),
(19), and (20) and actually becomes zero when the system is
uncontrollable; the ellipsoid collapses to zero in the uncon-

trollable direction so that Y is zero.

min
To find the least controllable direction in equicontrol
space (the point closest to the origin), we note that the
principal axes of the ellipsoid are in the same directions as
the eigenvectors of (DVOD)-l, and the eigenvectors of (DVQD)-l
are the same as those of DVOD. Therefore, the point of closest

approach is in the direction Unin’ where

v u (21)

DV,Du min “min

» =
O min

To recover the direction in the original state space, simply
multiply u . by p~L.

One further consideration is important in defining
the Degree of Controllability of a system; that is how the
measure varies with number of actuators. The Degree of Con-
trollability has been defined in terms of a constraint on
control energy with no reference to a constraint on control
magnitude. But it seems appropriate to recognize the fact
that a system with more actuators has greater control capability
when there is a limit on control magnitude—as is always the
case, The measure of controllability as defined above can be
made to vary directly with the number of actuators placed at

the same locations by scaling the elements of R inversely with

m—the number of actuators in the system. Usually R is taken
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diagonal, and if the diagonal elements R, are first chosen to
ii
reflect the relative cost of using the different actuators, then
the final elements of R are defined to be
Ry =R /m (22)

with m = total number of actuators.

Dynamic Measure of Observability

Any measure of tha observability of a dynamic esystem
should reflect as directly as possible the amount of information
which can be derived about the system states from the sensor
outputs in a given amount of time. The means of obtaining this
information is by attaching to the system an observer whose
states, x, are "estimates" of the true states of the system.
The more information that is obtained about the system, the
smaller the estimation error becomes.

A direct indicator of the amount of information one
has about the system states is the information matrix, the in-
verse of the error covariance matrix. In order to maximize
the amount of information, one should minimize the estimation
error. The linear estimator which minimizes the state estima-
tion error vector, e = Q - X, in a mean square sense, i.e.,

minimizes

S = el Me (23)

where M is some weighting matrix, is the Kalman Filter.

For the Kalman Filter, the error covariance equation

is
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T T,,~1

P=AP + PA” - PC'N "CP + Q (24)

where P is the estimation error covariance matrix, and N and Q
are the measurement and driving noise intensity matrices, respec-
tively. Since the measurement noise is a property of the set of
sensors being evaluated, we retain its inclusion in (24) in the
form of N but do not include the effect of state driving noise,
because that is an external influence not related to the sensor
set. Thus, if we set Q=0 and call the information matrix

J(wP-l), then (24) in terms of J becomes

T 1

J=-Ja-aTy + cIN"1c (25)

Take as the standard situation the case in which there
is no information about the state initially and data is collected
up to a specified time T. Then J(0) = 0 and one is interested
in J(T). Having the information matrix at time T, we are inte-
rested in measuring how much information has been accumulated.
One way of measuring the size of J(T) is by reference to the

quadratic surface

vI 37lv =1 (26)

As with equation (9) in the control case, equation (26) defines
an ellipsoidal surface in v-space. If J is a diagonal matrix
(one can always transform to principal coordinates), one observes

that increasing an element jii will expand the ellipsoid in the
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direction vy Thus the larger J becomes, the larger the
volume encompassed by the surface in (26) so that the more
information obtained about the system, the larger the volume
becomes.

Typically, however, some components of x will be
of greater concern than others—especially considering that
different units will apply to different components. Paralleling

the discussion of the control case, define the transformation

w = Fv
le, 1 )
Imax O
F = . (27)
O e,
n
L max _
where e, are the maximum errors one is willing to tolerate
max

in the direction Xy . The more error one is willing to tolerate
in that direction, the greater the transformed state so the
larger the veclume becomes. Thus the scaling is consistent with
the ideas presented in the last section. Also note that v has
units of reciprocal error, s0 w is dimensionless as was z in
the control case.

Now that the axes have been scaled so that it is
equally important to obtain information in each direction, one
can use the same definition for the degree of observability as

was used for control.ability when applied to equicontrol space.
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Again, the ideal sensor distribution would produce a sphere
in w-space, so that the degree of observability invclves a
spherical volume plus a lesser weighted excess volume due to the

nonideality of the distribution. Specifically,

v 1/n

- S -
DO = [Vs + v; (VE VS)] (28)

with

. AN
i=]
Vs '(\/z;;;;) i

and the l/i are the eigenvalues of FJ(T)~.
The remaining problem is to solve the differential

equation (25) for J so as to write out explicitly J(T). We have

J=-JA -a%g + cn"Ic

J(0) =0
This is similar to the corresponding problem in the definition
of the degree cf controllability. There we required V(0) with

1.T

V = AV + VAT - BR™!B
v(T) = 0

Define a backward time variable, T= T - t, so that = " a



Then in terms of T, equation (25) becomes

T T=1

J=JA + A°J - C'N °C

(29)
J(T) = 0

This is the same as the equation and boundary condition lor V

wit: the substitutions:

v eguation J eguation
A ) AT
B =Py cT
R =y N

So if a subroutine is prepared to produce V(0) given A, B, and
R, that same subroutire can be used to produce J{(T) by use
of the substitutions indicated.

It is worthy to note that the parallelism in computing
the degrees of controllability and observability stems from the
similarity between the quadratic forms (9) and (26), respectively.
However, the concepts which drove us to those forms were quite
different. Equation (9) represents an actual ellipsoid in
state-space which bounds the initial states that can bz returned
to the origin in time T with a prescribed energy E. For the
observability case, thz inf~rmation retrieval capabili:ty is
alresdy maximized through the use of a Kalman Filter, and one
is simply trying to formulate a measure of observability based
upon the size of the final information matrix. Thus equation
(26) serves only as an aid to the definition of the size of J,
and the space in which it is defined serves only to measure that

size volumetricaily.



APPLICATION TO ONE-DIMENSIONAL CASE

To demonstrate the procedure for obtaining the degree
cf controllability and observability, the above results were
applied to the vibistory modes cf a free-free beam. Start with

a series expans’‘on for the beam displacement vy,
y(€,¢) = Z¢i(€)lﬁ'i(t)
i

where ¢i(€) is an orthogonal set of modal shapes and v/i(";) are
the modal amplitudes, and substitute this into the governing

differentizl equation for a beam

4 2
EI fgx+m%t%-f(€.t)

where £ is the forcing term and m, E, and I are the beam mass

(M) /length (Z), modulus, and cross-section inertia, respectively.

Assuning the use of m point force actuators,

m
£(€,8) = ) HE- €) uj(e)
j=1

with éj being the actuator positions and uj (t) the control

magnitudes, one obtains the relations

d2yy' m
Uizwi(t) + —;?i - %4- Zqi(e' jluy(e) =0 (30)
=1
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where (Ji is the frequency of the ith mode.

The modal shapes for a free-free beam are given by

¢y

]
[ ad

)

(x - -2’3 ' (31)

@, x)

¢i(x) = coshﬂix + cos[? ;X - ai(sinhpix + sin ,01") 123

where the ﬂ i are the solutions to

1 - cosh Bl,e. cospi£= 0

and

= sinhpi;e + sinﬁiz
i coshﬁi;z - COs ﬁlL

The first two modes of the beam are rigid body modes and thus

have a frequency equal to zero. ykl kas the interpretation of

the rigid body translation of the center of mass of the beam,

and sz represents rotation cf the beam about its center of mass.
Next, consider casting (30) into the state space

form,

Ax + Bu

»
]

(32)
Cx

"
"
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where the number of modes has been truncated at N, and the use

of M force actuators at positions Ej and P translation rate

sensors at positions Cli has been assumed. The replacement of
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a force actuator at Ej by a torque actuator woald 63’.m)rolve
aQg. (€.
replacing the corresponding elements of B by —%x—L

for i = 1,...,N. The use of a deflection sensor at ai would

involve switching 0 and ¢j(ui) in each of the pairs

[0 ¢j (ai)] in the ith row of C. To include natural damping

in the model, the negative of the damping term, 2 Cui' would

appear in each diagonal block of the system matrix of (32) multi-

plying theli( term. For the present, this is considered negligible.
Equation (7) remains to be solved before the degrees

of controllability and observability can be computed. The solu-

tion orf this equation is facilitated by use of the following

real invertible transformation:

FII ] II
T =Y ¥ ¥y ¥y 35 B3 ... 2y by (33)
Jva v v v $l

where the v, are the generalized eigenvectors corresponding to
the zero eigenvalues and the a,. _t_:_i are the real and imaginary

parts of the eigenvector correspending to the complex eigenvalue
A= Gyt 3L

If a new matrix M is defined by the relation

V = TMTT (34)

and.Ais formed from the eigenvalues,
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[0 1 7
0 o0
o1 O
0 0.
é!'
A = 3 Wy (35)
B 73..}-_
O 'Sy Wy
L ~Cn G-N_

then substitution of both of these relations into (7 ) yields

1 1.T

M= AM+ MAT - v igr7 1Ty~ T (36)

This equation is nuch simpler to solve than equation (i) for v,
and the solution for M is presented in Appendix A. Conversion
back to V is attained through use of (34).

A computer program was written to calculate the degree
of controllakility (observability) for up to four actuators
(sensors) placed at various positions along a free-free or
simply supported beam (FORTRAN listing appears in Appendix B).

The programmer specifies the number of equally spaced positions
along a half beam length to be tested (mode shapes are symmetric),
and the program computes the degree of controllability for all

possible arrangements of actuators. The same program is used to
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compute observability with the appropriate changes outlined
in the last section. The present program assumes the use of
force actuators or translation rate sensors but can be easily
modified for torque actuators and deflection sensors.

The program accepts as input the system matrix A,
the number of flexible modes to be considered (maximum 5),
the number of actuators to be tested, the input weighting and
control scaling matrices R and D, and the control pericd T.
The mass, length, and modal frequencies of the beam were
chosen to correspond to those of the experimental beam set up
at NASA Langley Research Center (,&= 12 ft, m = 0.50 slugs,
h{ = 11.47 rad/sec, W, = 31.63 rad/sec.) In all trials, there
was no relative weighting of actuators (R = I), and the
amplitude rates were scaled by 1/(..}i relative to their respec-
tive amplitudes using D (amplitudes were considered equally
important).

In Figures 4 and 5, the degree of controllability
(DC) is plotted for one force actuator varied along the length
of a single mode beam. Figure 4 shows the expected correspondence
between the DC and the first mode shape. The maximum DC is
at the ends where there is maximum deflection, and the DC be-
comes zero at the nodes where the system is uncontrollable.
The correspondence between mode shape and degree of controllabil-
ity is again apparent in Fig. 5 when the second mode is con-

sidered alone.
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Figures 6-8 consider the first and second modes
simultaneously. 1In Fig. 6, a single actuator is tested
along the length of “he beam as in the previous two cases.

The maximum DC is again at the ends but the system becomes
uncontrollable at a node of either mode. The DC has an
intermediate peak at the 7th test posi“ion which corresponds
to an antinode of the 2nd mode.

In Fig. 7 one actuator is fixed at the middle of
the beam (antinode of 1lst mode) while the other is varied.
There is an overall increase in controllability because
of the presence of the second actuator, but the DC still goes
to zero at the nodes of the second mode because the fixed
actuator is at a node of the 2nd mode and thus contributes
nothing to the controllability of that mode. The degree
of controllability never goes to zero in Fig. 8 when the
fixed actuator is at the end. The optimal placement of the other
was found to be at position #7 if duplicate positioning at #1
is not allowed.

The degree of observability (DO) for two cases is
illustrated in Figures 9 and 10. In Figure 9, a rate sensor
was varied along the length of a single mode beam. The re-
sultant DO is strikingly similar to the DC of Fig. 4. The
.first and second modes are considered in Fig. 10 where one
sensor is fixed at the center of the beam and the other is
varied. The DO becomes zero at three points because the second

mode is unobservable at the location of the first sensor.
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CONCLUSION

While it is difficult to consider the degrees of
controllability and observability just developed in an abso-
lute sense, they serve well as quick relative measures of
controllability and observability. A more realistic measure
of contrcllability, for instance, might involve the integral
magnitude of control effort rather than the integral quadratic
form chosen for convenience. This degree of realism has been
sacrificed in favor of the analytic solution to the optimal
control problem. It is also true that the "size" of the
information matrix could have been defined in several other
ways, e.g., tr J, in computing the degree of observability.

The control period is also somewhat arbitrary, but if the modal
periods are short compared to T, the measures of controllability
and observability are independent of T in a relative sense.

The control measure does have several advantages over
the methods in (1] and [2]: (a) it does not arbitrarily weight
state excursions against control effort, (b) it calls attention
to the most uncontrollable direction by primarily weighting the
volume generated by that minimum distance—thus it is a worst
case analysis, (c¢) it seeks a ccontrol law minimizing integrated
control use, and (d) it is relatively siw:-le to compute.

For the observability case, the Kalman Filter already
provided the minimized least square estimate error for which
the covariance matrix is P. P determined the informatior matrix

J whose size was used to compute the degree of observability.
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The choice of measuring the size ¢t J by the weighted volume
within a quadratic surface made the computation of observa-
bility analogous to controllability.

The results of the DC and DO calculations in the
case of the free-free beam were entirely intuitive and could
have been anticipated from knowledge of the mode shapes. But
that example was taken in order that one could in*erpret the
results easily. The purpose in defining these measures of
controllability and observability is to assist the designer
of a control system for a plant of realistic complexity where
the best locations of sensors and actuators may not be so
obvious.

Now that these tools have been developed, they will
be applied to the problem of choosing the number and location
of sensors and actuators in the design of a large space
structure considering the likelihood of random failures among
these components. It is expected that the optimum locations
for components with possibility of failure will differ under

certain circumstances from those with no chance of failure.
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PPPENDIX A
SOLUTION OF THE MATRIX DIFFERENTIAL EQUATION (36)

This Appendix presents the solution to the differential

equation

M=AM+MAT - D (A-1)

where A is given by (35) and the driving matrix D is the

last term in (36).

The solution matrix M(t) is symmetric and has the follow-

ing form:
r" —
I \" II II II oe II
I II II II II
IIT 1V Iv . e IV
M) = IIT IV ... IV (A-2)
III ... 1V
- ITI

The Roman Numerals indicate 2x2 block solution types. If
the two rigid body modes are not included in the model, the
first and second row and column blocks are deleted from (A-2).

The block solutions have the form



Mac Med

Mye Mpy

If the solution is symmetric (mbc = mad), only Maa is given.

Note that a ani b are row indices, c and 4 are column indices.
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Aggendix B

J
FILE: DEGCON FORTRAN A VM/SP CONVERSATICWAL MONITOR SYSTEM

CoP0 00 ettt ateentttiadseuniIsveeesetisendcsttsnasutesnsvacssnassneesssssOEGOOOIO

Cc 0€£G00020
C THIS PROGRAM COMPUTES IHE DEGREE OF DEGO0030
Cc CONTROLLABILITY AND OBSERVABILITY 0EG00040
Cc FOR FORCE ACTUATORS AND RATE SENSORS ON A BEAM DEGOOQSO
¢ DEGOO080
Cre8e00880CeeeIeutitiutEceseticiteeeaviEvdtesvadeesddeudeestedsdaacsnne OEGOO070
Cc DEGOO080
C INPUT: N - NUMBER OF SYSTEM STATES DEGOOO90
c NA - NUMBER OF ACTUATORS (SENSORS) DEGOO 100
c I#41 - (1) FOR FREE-FREE BEAM DEGOO110
c (2) FOR SIMPLY SUPPORTED BEAM DEGOO120
c ISTART - FIRST ACTUATOR TEST POSITION DEGOO 130
c H0PAS - NUMBER OF POSITIONS TO 8E TESTED DEGOQ 140
c tAS ~ (1) TO COMPUTE CONTROLLABILITY DEGOO 150
c (2) TO COMPUTE GBSERVABILITY DEGOO 180
c {FIX - FIXED POSITION OF SECOND ACTUATOR WHEN DEGOO 170
c PLOTTING CONTROLLABILITY FOR 2 ACTUATORS DEGOO 180
c 8M - BEAM MASS DEGOO 190
c 8L ~ SEAM LENGTH DEGOO200
C DT - CONTROL PERIOOD DEGOO210
c FB - FRACTION OF BEAM LENGTH FROM END OVER DEGOO220
c WHICH ACTUATORS PLACED DEGO0230
c TOL - TERO TOLERANCE FOR REAL NUMBERS DEGOQ240
c TAU - ACTUATOR MEAN TIME TO FAILURE DEGO0O2%0
C TOP - SYSTEM OPERATING OR MISSION PERIGD DEGO0260
c OM - BEAM MODAL FREQUENCIES 0EGOO270
Cc BEYA - MODAL SHARE PARAMETERS DEGO0280
, c ODIAG - DIAGONAL ELEMENTS OF STATE WEIGHTING MATRIX DEGO0290
) C R - ACTUATOR WEIGHTING MATRIX DEGOQ300
Cc A - SYSTEM MATRIX DEGOO3 10
c DEGOO320
C OQUTPUT- tOC - EIGHT DIGIT LOCATION CODE REPRESENTING DEGO03I0
c POSITIONS QF 4 ACTUATORS: RIGHTMOST DEGO0340
c PAIR REFRESENTS LOCATION OF FIRST ACTUATOR 0EGO03%0
c AND LEFTMOST THE FOURTH ACTUATOR (IF THE PAIR DEGOOJ80
c EQUALS IFCODE=NQPOS+t, THE ACTUATOR HAS FALILED) DEGOO3T0
c LMAX - ACTUATOR LOCATIONS FOR MAXIMUM OC NOT DEGOO380
( CONSIDERING FAILURES DEGOO390
< OCMAX - MAXIMUM DC NOT CONSIDERING FAILURES 0EGO0400
c LMAXF - ACTUATOR LOCATIONS FOR MAXIMUM AVERAGE OC DEGOO4 10
c DCMAXF - MAXIMUM AVERAGE DC (FAILURES CONSIDERED) DEG0O0420
Cc UMIN - LEAST CONTROLLABLE DIRECTION IN ORIGINAL DEGOO430
Cc STATE SPACE ASSOCIATED WITH MAXIMUM DC DEGOC440
c UMAX - MOST CONTROLLABLE DIRECTION IN ORIGINAL DEGO0O430
c STATE SPACE ASSOCIATED WITH MAXIMUM OC DEGOO480
c DEGOQ4 70
Cr00etuttecoanossteeneiaeuaetieestestoestacsssndsecetoscessstsscnteneeereesDEGOO4B0
c DEGO0O490
C 0£GO0S00
DIMENSION A{10,10).B(1C,.4) . R(4,4), IACT(4),0M(2), OEGO0S 10
V(10.10),C1(24) W 1(%8 9 ,AA( 10,10}, . DEGO0320

- 0( 10, 10).0024G( 10).,0Vv( 10, 10).0VvD( 10, 10) . EV( 10), DE300830

Y WK (200).0VOSYM(SS) UMIN(10),UMAX( 10}, DEGOOS40

a RACT(4) WKAREA( 1Q) RINV(4,4) BRINVE(10,10), DEGOOS SO



b

FILE:

c
Ce* RE
c

-
NBNRAM
>

20

L A B X X J

c

DEGCON FORTRAN A

VM/SP CONVERSATIONAL MONITOR SYSTEM

RINVBT(4,10),0C4(12,12,12,12).0C3(12.12,12),0C2(12,12), DEGOOS60

DC1(12).BETA(S),2(10,10),T(10, 10),TINV( 10, 10),
TTRAN( 1O, 10) . TTINV( 10, 10) .BRIBTT( 10, 10),
OR( 10, 10) ,RW2(20),RZ2(200) ,AM( 10, 10) ,AMTT( 10, 10),
DVOINV( 10, 10) ,WKAR2(55) . XARRAY(23) . YARRAY(23)
COMPLEX W2(10),22(10,10),2N
EQUIVALENCE(W2( 1),RW2(1)),.(22(1,1).RZ2(1))
DATA IN,I10,IDGT, IND NW, IJOB, EPS/5.6.0,.1,55.4,1.E~1%/
CALL PLOTS(IDUM, IDUM,9)

AD AND ECHC INPUT

READ(IN.4) N, NA,IPMI,ISTART NOPOS,IAS, IFIX

READ(IN,.S) 8M.8L DT F8, TOL,TAU,TOP

READ(IN.6) (OM(1).1=1,2;,(BETA(I),1=1,.5),(00IAG(1),I=1,10)

READ(IN,7) ((R(I1,J),Jy=1.4),1=1,4)

READ(IN.8,END=17) ((A(I1.,J).u=t," :; T«1,10)

FORMAT(7I2)

FORMAT(3F10.4/4F10.4)

FORMAT(3(SF10.4/).5F10.4)

FORMAT(3(4F10.4/) ,4F10.4)

FORMAT( 19(5F15.4/).5F15.4)

WRITE(10,20) N.NA,IPHI IAS,IFIX,ISTART, K NOPQS,BM,BL,DT,
FB,.TAU,.TOP,(OM(I),I=1,5), (BETA(I),I=1,5),
((R(1.J),J=1,4) 1=1,4), (DDIAG(I),I=1,10)

FORMAT( 1X, 'N=’ 12/°NA=’ [2/°IPHI=’ _12/°1AS=’ 12/'1FIXw’, 12/

"ISTART=’ 12/°NOPOS»’ 12/ )

‘BM=’ F10.4/'8BL>’ F10.4/°DT=’ F10.4/°FB=' ,F10.4/
‘TAU=’ E15.4/°TOPs’ E15.4/°0M(1-8)=’ ,SF10.4/
‘BETA(1-3)=’ 3F10.4/

‘R=’/4(4F10.4/)//’0DIAG(1-10)=’ 5F10.4/12X,5F10.4////)

I1FCODE=NOPOS+ 1

Ce INITIALIZE VARIABLES

c

2

24

29

00 23 [=1,SS
GVDOSYM(1)=0.
CONTINUE
DO 24 I=t, 612
0C1(I1)=0.
00 24 J=1,12
0c2(1.d)ro.
D0 24 K=1,12
0C3(I,J.K)=0.
DO 24 L=t,12
0C4(I,V,.X,L)=0.
CONT INUE
D0 29 =1, %0
00 29 u=1,10
ov(I,J)=0.
2(1,J)=0.
ovD(1,J)=0.
BRINVB(I,J)=0.
CONTINUE
DO 36 [=1,10

OEGOOS70
DEGOOS80
DEGOOS90
DEGOO600
DEGOOS 10
DEGOO6IY
DEGOO630
DEGO0840
DEGOOESO
DEGOOS8SO
DEGOOE70
DEGO0E80
DEGO0690
DEGOO700
DEGOO710
DEGO0720
DEGOO730
DEGOO740
DEGOO7S0
DEGOO760
DEGOO770
DEGOO780
DEGOO790
DEGO08S00
DEGOO810
DEGO0820

'DEGO0830

DEGOO840
DEGOO8S0
DEGO08&0O
DEGOO870
DEGO08BO
DEGOO890
DEGO0%00
DEGOO910
DEGOO920
DEGO0930
DEGO0940
DEGOO9:0
DEGO0960
0EGO0970
DEGOOS80O
DEGO0980
DEGO 1000
DEGO1010
DEGO1020
DEGO 1030
DEGO 1040
DEGO 1050
0EGO 1060
DEGO1070
DEGO 1080
DEGO 1090
DEGO 1100



)

FILE: DEGCON FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
D(I,I1)=00TAG(L) - DEGO1110
00 36 J=t, 10 DEGO1120
IF(I.NE.J) O(I,J)=0. 0€GO1130
368 CONTINUE DEGO1140
NEsNe (N+1)/2 DEGO 1180
TEND=OT DEGO1160
DCMAX=0. DEGO1170
DCMAXF =0, DEGO1180
| LMAX20 DEGO1190
LMAXF20Q DEGO1200
c 0DEGO 1210
Ce FIND THE TRANSFORMATION MATRIX T USED IN COMPUTING V DEGO 1220
c DEGO1230
| 0O 671 I=1.N 0EGO1Z. v
| DO 671 J=1.N DEGO 1250
AA(T, J)e=A(T V) DEGO 1260
671 CONTINUE DEGO 1270
CALL EIGRF(AA,N,10,1J08B.RW2,RZ2, 10,WK, IER) DEGO 1280
00 672 Is1.N 0EGO 1290
DO 672 J*1,N.2 DEGO1300
T(I.J)=REAL(22(1,4)) DEGO1310
672 CONTINUE DEGO1320
00 873 I=t,N DEGO1330
00 673 J=2,N,2 DEGO 1340
T(I.J)®AIMAG(Z2(I,J-1)) DEGO 1350
673 CONTINUE DEGO 1360
CALL LINVAF(T _N,10,TINV_IDGT, WK, IER) DEGO 1370
DO 674 I=1.N DEGO 1380
i 00 674 J=1.,N DEGO 1390
TTRAN(I . J)eT(U.I) DEGO 1400
674 CONTINUE DEGO 1410
CALL LINVAF(TTRAN.N,10,TTINV, IDGT, WK, 1ER) DEGO 1420
, c DEGO 1430
! C* FOURTH ORDER DO-LOOP TO PERMUTE LOCATIONS OF 4 ACTUATORS DEGO 1440
Ce (NG TWo LOCATIONS ARE ALLOWED TO BE THE SAME) DEGO1450
c DEGO 1460
DO 46 1=1.4 DEGO1470
IACT(1)=1FCODE DEGO 1480
46  CONTINUE DEGO 1490
IACTA=IACT(4) JEGO 1500
! IACT3=1ACT(3) DEGO1510
{ IACT2=1ACT(2) DEGO1520
E IACT1=IACT( 1) 0£G0 1530
IF(NA.NE.4) GG TO 49 DEGO 1540
DO 181 IACT4{START,IFCODE CEGO 1550
IACT(4)=1ACT4 D:iG01560
GO TO %0 £:601570
49 IF(NA.NE.3) GO TO S1 DEGO1580
S0 00 171 IACTI=ISTART, [FCODE DEGO 1590
TACT(3)=1ACT3 DEGO 1600
GO TO 82 0EGO1610
sS4 IF(NA.NE.2) GO TO %53 OEGO1620
s2 00 181 JACT2=ISTART,IFCODE DEGO1630
IACT(2)=ACT2 DEGO 1640
s3 DO 151 LACT1=ISTART, IFCODE DEGO 1650
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IACT(1)=IACTY
c
Ce COMPUTE CONTROL EFFECTIVENESS MATRIX B
(~

DO 62 I=1,10
00 62 u=1,4
8(1.J)=0.
a2 CONTINUE
D0 63 I=2,N,2
00 63 J=1.NA
RACT{J)=(FLOAT(IACT(JY)-1)/FLOAT(NOPOS-1))+BL*FB
IF(IPHMI.EQ.2) GO TO 628
8(I,JU)=PHI(RACT(Y),BETL(1/2),.8L)/8BM

GO TO 627
625 8(1,J)=PHI2(RACT(J).1/2.8M.8L)/8M
627 IF(IAS.EQ.2) B(I,J)=8(I,J)*BM
é3 CONTINUE

1~
Ce ZERC-OUT COLUMNS OF B ASSOCIATED WITH INGPERATIVE ACTUATORS
c

IF(IACT4.NE.IFCODE) GO TO 633

DO 632 I=2,N,2

8(1,.4)=0.
832 CONTINUE
833 IF(IACT3.NE.IFCODE) GO TO 63%
00 634 I=2,N,2
B(I.3)=0.
834 CONTINUE
633 IF{IACT2.NE.IFCODE) GO TO 637
DO 636 [=2,N,2
8(I1.2)=0.
636 CONTINUE
837 IF(IACT1.NE.IFCODE) GO TO &S
00 638 1=2,N,2
8(I.1)=0.
638 CONTINUE
1) N8=0
DO 68 I=1,N

D0 66 J=1,NA
IF(ABS(8(I,J)).LT.TOL) NB=NB+1
a8 CONT INUE

IF(NB.EQ.N*NA) GO TO 154

c

Ce IF ALL ACTUATORS INOPERATIVE, GO TO NEXT TEST LOCATION

c
ITOTFsIFCODE® 10**8+IFCODE* 10»+4+FCODE * 100+ IFCODE
LOCSIACT4+109+8+1ACTI* 10=+4+IACT2¢ 100+IACT
IF(LOC.EQ.ITOTF) GO TO 203

Ce ADJUST INITIAL R TO ACCOUNT FOR ACTUATOR SATURATION
(
NOA=Q
DO 6681 I=1,4
IF(IACT(1).NE.IFCODE) NOA=NOA+1
681 CONTINUE

DEGO 1660
DEGO 1670
DEGO 1880
DEGO 1690
DEGO 1700
0EGO1710
DEGO1720
DEGO1730
DEGO1740
DEGO17%0
DEGO1760
DEGO177C
0EGO1780
DEGO 1790
DEGO 1800
DEGO 1810
DEGO 1820
DEGO1830
DEGO 1840
DEGO 1850
DEGO 1860
DEGO1870
0EGO 1880
DEGO 1890
DEGO 1900
DEGO1910
DEGO 1920
DEGO 1930
DEGO 1940
DEGO195C
DEGO 1960
DEGO1970
DEGO 1980
DEGO 1990
DEGO02000
DEGO2010
DEGO2020
DEGO2030
DEGO2040
DEGO2050
DEGO2060
0EGO2070
DEGH2080
DEGO2090
DEGO2 100
DEGO2110
DEGO2120
DEGO2130
DEGO2140
DEGO2150
DEGO2160
DEGO2170
DEGO2180
DEGO2190
DEGO2200



FILE: DEGCON

663
c

FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

00 663 I=1,4
RINV(I.I)=FLOAT(NOA)/R(1,1)
00 663 J=1.4

IF(I1.NE.J) RINV(I,J)=0.

CONTINUE

C* COMPUTE ORIVING MATRIX IN D.E. FOR M

c

CALL VMULFP(RINV,.B,NA,NA,N 4,10.RINVB,4,1ER)
CALL VMULFF(B,RINVB.N,NA M, 10,4 ,BRINVS, 10,1ER)

CALl. VMULFF(BRINVB,TTINV ,N,N,N, 10, 10,BRIBTT, 10, IER)

CALL VMULFF(TINV,BRIBTT,N,N,N. 10, 10,0R, 10, IER)

C*+ COMPUTE DIAGONAL BLOCKS OF M (TYPE III)

s

675
c

~0 67% I=1.N,2
SIG1sREAL(W2(1))
OM1=AIMAG(W2(1))

CALL OIAG(DT,SIG1,0M1,DR(I,.I),DR(I,.I+1),DR(X+1,I+1),

AM(I.I) AM(I, 2+1) AM(I+1,I+1))
AM(I+1, 1)=aM(I, I¢1)
CONT INUE

Ce COMPUTE OFF-DIAGONAL BLOCKS OF M (TYPE IV)

c

oo

676
c

IF(N.LT.4) GO TO 70
NM3=N-3
N taN- 1
00 876 I=1 ,NM3,.2
[P2=1+2
DO 876 Js=IP2 ,NM1,2
SIG1=REAL(W2(1))
OM1I=AIMAG(W2(I))
SIG2=REAL(W2(J))
OM2=AIMAG(W2(J))
CALL OFDIAG(OT,.SIG1.S1G2,0M1.0M2,DR(1,4),
DR(I.J+1).,DR(I+1,J).OR(1I+1,1+1),
AM(T.J) . AM(I.J+1), AM(I+.,J),
AM(TI+1,J+1))
AM(J,1)=AN(1.J)
AM(J+ 1, I )=AM(L, u+t)
AM(J, I+1)=AM(I+¢,J)
CAM(U+1 T+ )mAM(T+1,UsY)
CONTINUE

Ce TRANSFORM FROM M TO V

c
70

c

Ce TRANSFORM TO EQUICONTROL SPACE AND COMPUTE EIGFNVALUES OF OVD

c

CALL VMULFF(AM,TTRAN.N,N,N, 10, 10,AMTT, 10, IER)
CALL VMULFF(T ,AMTT ,N,N,N,10,10,V,10,1ER)

CALL VMULFF(D,V.N,N.N, 10, 10,0V, 10, 1ER)
CALL VMULFF(DV,D,N,N.N, 10, 10,0VD, 10, IER)
CALL VCVTFS(DVD.N, 10,DVDSYM)

0EGO2210
DE€GO2220
DEGO2230
0EGO2240
0€G022%0
DEGO2260
0€GO2270
DEGO2280
DEGO2290
0€GO0230Q0
DEGO2310
DEGO2320
DEG02330Q
0€GO2340
DEGO2350
DEGO2380
DEGO2370
DEGO2380
DEGO2390
DEGO2400
DEGO24 10
DEGO2420
DEGO2430
DEQ02440
DEGO24350
DEGO2480
DEGD2470
DEGO2480
DEGO2490
DEGO2%00
DEGO2510
DEGO2%520
DEGO2530
DEGO2%40
DEGO2550
DEGO2580
DEGO2570
DEGO2580
DEGO2590
DEGQ2600
DEGO2610
DEGO2620
DEGO2630
DEGO2640
DEGO26S0
DEGO2660
DEGO2670
DEGO2680
DEGO2690
DEGO2700
DEGO2710
DEGO2720
DEGO02730
0€GO2740
DEGO2730



FILE: DEGCON FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
CALL EIGRS(DVDSYM, N, IVOB,.EV,2, 10, WK, IER) 0EGO2760
TF((ABS(EV(1)).LT.TOL).OR.(EV(1).LT.0.)) GO TO 76 DEGO2770

c DEGO2780

C* . COMPUTE DEGREE OF CONTROLLABILITY DEGO2790

c DEGO2800
VS=SQRT(EV(1)*+N) DEGO2810
PRODEVe1.0 0€G02820
00 706 1=t ,N DEGO2830

PRODEV=PRODEVs EV(1) DEGO2840

706 CONT INUE DEGO28S0
VE=SQRT(PRODEV) DEGO2860
POWER=1.0/FLOAT () DEGO2870
DEGCON=(VS+(VS/VE)e(VE-VS) ) *=POWER DEGO2880

GO TO 80 DEGO2890

76 OEGCON=0. DEGU2900

[ DEGO2910

Ce STORE DOC IN APPROPRIATE ARRAY:; SEARCH FOR MAXIMUM DC 0£G02920

Ce AND RECORO ITS LOCATION, MAGNITUDE AND MAXIMUM ANO DEG02930

Ce MINIMUM CONTROLLABLE OIRECTIONS 0€G02940

c 0£G02930

80 IF(NA.NE.4) GO TO 83 DEGO2960
DC4(IACT4, LACT3, 1ACT2, 1ACT 1 )=DEGCON 0EGO2970
1F(DEGCON.GT.DCMAY.) GO TO 805 DEG0O2980
GO TO 151 0£G02990

80S IF((IACT1.EQ.IACY2).0R. (IACT1.EQ.IACT3).OR. DEGO3000
s (IACT1.EQ.IACT4).0R. (IACT2.EQ.IACT3).0R. DEGO3010

& (IACT2.EQ.:4CT4).0R. (IACTI_EQ.IACT4)) GO TO 15¢ DEGO3020
DCMAX=DEGCON DEGO3030

LMAX=LOC DEGO3040

DO 807 I=1.N DEGO30%0
UMIN(I)=2(1,.1)/D(1,1)*SQRT(EV(1)) DEGO3060
UMEX(I)=Z(I.N)/D(I,I)*SQRT(EVI(N)) DEGO3070

807 CONTINUE DEGO3080
GO TO 151 DEGO3090

83 IF(NA.NE.3) GO TO 87 DEGO3100
DC3(IACT3, IACT2,IACT 1)=DEGCON DEGO3110
IF(DEGCON.GT.DCMAX) GO TO 835 DEGO3120
GO To 151 DEGO3130

835 IF((IACT1.EQ.IACT2).0R.(IACT1 EQ.IACT3).0R. DEGO3140

s (IACT2.EQ.IACT3)) GO TO 15% DEGO3150

DCMAX=0EGCON DEGO3160

LMAX=LOC DEGO3170

00 847 I=t,N 0EGO3 180
UMIN(1)=2(1,1)/0(I.1)*SQRT(EV(1)) DEGO3190 -

UMAX(I)=Z(I,N)/0G(1,1)*SQRT(EV(N)) 0£G03200

847 CONT INUE 0£G03210

GO TO 131 0EG03220

87 IF(NA.NE.2) GO TO 89 DEGO3230
DC2(1ACT2,IACT1)=DEGCON DEGO3240
IF(DEGCON.GT .DCMAX} GO TO 873 DEGO3250
GO TO 151 DEGO3I260

878 IF(IACT1.EQ.IACT2) GO TO 151 0DEGO3270
DCMAX=DEGCON DEGO3280
LMAXeLOC 0EGO3290

D0 877 1= ,N DEGOIIO00



FILE:

877

89s

897
151

161
171

181
c

)

OEGCON  FORTRaAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

UMIN(I)=2(1,1)/0(1,2)*SORT(EV(1))
UMAX(I)=Z(I.N)/D(1,1)eSORT(EV(N))

CONT INUE

GO TO 181

DC1(IACT 1)=DEGCON

IF(DEGCON.GT .DCMAX) GO TO 898

GO TO 151

DCMAX =DEGCON

LMAX=LOC

00 897 Ist,N
UMIN(I)=2(I,1)/0(1,.1)*SQRT(EV(1))
UMAX(I)=Z(I,N)/G(2,1)*SQRT(EV(N))

CONT INUE

CONTINUE
IF(NA.LT.2) GO TO 203
CONT INUE
IF(NA.LT.3) GO TO 203
CONTINUE
IF(NA.LT.4) GO TO 203
CONTINUE

Ce COMPUTE AVERAGE DC AND SEARCH FOR MAXIMUM
p .

203

220
228
230

250
300

330

3%0

400

OCMAXF =0,
IF(NA.NE.4) GO TO 300
00 290 I~ISTART,IFCODE
DO 230 J=ISTART,IFCOOE
00 2350 K=ISTART,IFCODE
00 250 L=ISTART,IFCODE

CALL PM4EXP(DC4,IFCODE,TAU,TOP,I,J.K,L,DCAVE)

LOCel# 10se@8+ye {0 e4+K* 100+L
WRITE(10,225) LOC.0C4(1,J.K,L) . DCAVE

FORMAT( 'LOCATION=',1I8,5X,‘DC=’ E11.4,5X, ‘DCAVE~=" E11.4)

1F(DCAVE.GT.DCMAXF) GO TO 230
GO TO 2%0
IF((1.€0.J).0R.(I.EQ.K).OR.(I.EQ.L).OR.

(J.EQ.K).OR.(J.EQ.L).OR.(X.EQ.L)) GO TO 250

LMAXFule®1Q0e8+J s {004 +Ke 10002+
OCMAXF=OCAVE
CONTINUE
GO T9 700
IF(NA.NE.3) GO TO 400
DO 380 I=ISTART,IFCODE
D0 350 J=ISTARY,IFCOOE
DO 280 K=ISTART,1FCODE
CALL PMIEXP(DC3,IFCODE.TAU,TOP,1,J.K,DCAVE)
TF(DCAVE . 3T.DCMAXF) GO TO 330
GO TO 330
IF((1.€Q0.J).0R.(1.EQ.X).OR.(J.EQ.X)) GO YO 330
LMAXF«IFCODE* 10¢ 841 10004 +ye {00+K
OCMAXF=DCAVE
CONTINUE
GO YO 700
IF(NA.NE.2) GO TO 500

DO 4350 I=ISTART, IFCODE

DEGQOI310
DEGO3320
DEGO3330
0EGO3340
0EQO03380
0€G03360
0EQCIITO
DEQ@O3380
DEGO3IN0
DEGO0I400
DEGO34 10
DEGOI420
DEGO3430
0€GO03440
DEGO3450
DEGO3I480
DEGO3470
DEGO3480
DEGO3I490
DEGO3S00
DEGO3IS 10
DEGNIS20
DEGO3IBIO
OEGO3S40
DEGOISSO
DEGO33680
DEGO3S70
DEGOIS80
DEGO3S90
DEGO3COO
DEGO3IG 10
DEGO3620
DEGO3830
DEGO3640
DEGO3650
0EGOI860
DEGO3E70
DEGO3680
DEGO3690
DEGO3700
DEGO37 10
DEGO3720
DEGO3730
0EGO3I740
DEGOI7SO
DEGO3760
DEGO3770
DEGO3780
DEGO3790
DEGO3800
DEGO38 10
DEGO3820
DEGOJIL30
DEGO3840
DEGO3850
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WRITE(10,422) LOC,DC2(1.J),DCAVE 0£G038680
422 FORMAT( ‘LOCATION=’ ,18,5X,‘'DCs’ £11.4,8X, ‘OCAVE=" E11.4) DEGO3870
tF(DCAVE.GT.DCMAXF) GO TO 430 DEGO3880
GO TO 4%0 DEGO3390
430 IF(1.EQ.J) GG TO 450 0E£G0O3900
LMAXF=IFCODE *» 10+ 8+ IFCODE+ 102044+ 100+J 02603910
DCMAXF=0CAVE . 0€G03920
450 CONTINUE DEGO3930
GO TO 700 DEGD3940
SO0 DO S50 I=ISTART,IFCODE DEGO3IVBC
LOC={FCODE* 10«8+ IFCOOE* 10+« 4+ FCODE* 100+1 DEGO3960
WRITE(IO,52%) LOC.DC1(1) . DEGCO3NTO
525 FORMAT(’LOCATION=‘ 18 SX,‘0C=’ E11.4) DEGO398O
$S0 CONTINUE DEGOISSO
c 0EG04000
C* OUTPUT DC'S. LOCATIONS, AND PRINCIPAL DIRECTIONS ) DEGO4010
Cc DEQD4020
700 IF(NA.NE.4) GO TO 714 DEGO4030
WRITE(IO.705) DCMAX,LMAX OCMAXF  LMAXF , DEGO4040
s (UMIN(I), I=1,10), (UMAX(I),1=1_10) DEGO4050
708 FORMAT(1X, ’MAX DC FOR 4 OPERATIONAL ACTUATORS IS’,E11.4/ DEGO408O
& “AND THE LOCATION 1S ’,18// DEGO4070
[ Y *MAX DC FOR 4 FAILING ACTUATIRS IS’ E11.4/ DEGO4080
[} *AND THE LOCATION IS ‘. 18// DEGO4090
s UMIN="’/S(E11.4,.3X)/S(E11.4,5X)// DEGNH4 100
[ TUMAX=’/S(E11.4,5X)/95(E11.4,.8X)//) DEGO4 110
GO TGO 1000 DEGO4 120
71t IF(NA.NE.3) GO TO 714 . DEGO4 130
WRITE(10,71%) DCMAX,LMAX DCMAXF  LMAXF, DEGO4 140
a (UMIN(I), I=1,10), (UMAX(I), I=1t, 10) DEGO4 150
715 FORMAT(1X, ’MAX DC FOR 3 OPERATIONAL ACTUATORS IS’ . E11.4/ DEGO4 180
s AND THE LOCATION IS ’, 18/ DEGO4 170
s 'MAX DC FOR 3 FAILING ACTUATORS IS’ Et1.4/ OEGO4 180
Y AND THE LOCATION IS ‘,I18// DEGO4 190
[ ‘UMIN="/S(E11.4,5X)/S(€E11.4,5X)// DEGO4200
s ‘UMAX=’/S(E11.4,5X)/S(E11.4,5X)//) DEGO4210
<0 TO0 1000 DEGO4220
714 IF(NA.NE.2) GO TO 721 CEGO4230
WRITZ(10,720) LMAX, DCMAX,LMAXF DCMAXF, DEGO4240
& (UMIN(I) . I=1,10),.(UMAX(I).I=1,10) DEGO4250
720 FORMAT(//’LMAXs‘ 18, 10X, 'DCMAX=’ Et1.4/ DEGO4280
[y ‘LMAXF=* I8, 10X, ‘OCMAXF=‘ E11.4// DEGO4270
1 ‘UMIN®‘/5(E11.4,5X)/S(E11.4,5X)// DEGO4280
8 - TUMAX=‘ /S(E11.4,5X)/S(E11.4,8X)//) DEGO4290
GO TG 1000 DEGO4300
721 WRITE(IO,730) LMAX,DCMAX, DEGO4310
8 (UMIN(1).I=1,10),(UMAX(1).1=1,10) 0EGO4320
730 FORMA® _ MAXe‘ 18, 10X, ‘OCMAX=’ E11.4// DEGO4330
s ‘UMIN®’/S(E11.4,.5X)/S(€E11.4,5X)// 0DEGO4340
s UMAX=’ /S(E11.4,8X)/S(E11.4,3%)//) DEGO43%0
c DEGC4360
Ce PLOT OF DC VS. ACTUATOR POSITION FOR DEGO4370
C* 1 FIXED AND t VARIABLE ACTUATOR DEGO4380
¢ DEGN4390

1000 DO 1002 I=1, 21 DEG0O4400
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XARRAY( I)e@LeFLOAT(1-1)/20.0
1002 CONTINUE
DO 1004 I=t 11
- YARRAY(I)eDC2(1FIX,.I)
1004 CONTINUE
DO 100% l=t2,2¢
YARRAY(I)=DC2(IFIX.22-1)
1008 CONTINUE
CALL SCALE(XARRAY.8.0,2¢.1)
CALL SCALE(YARRAY 4.0,21,1)
CALL AXIS(O.,0.,'SCAM POSITION(FT)’,-17,68.0,0.0.
'Y XARRAY(22) . XARRAY(23))
CALL AXIS(O..0.,°DEGREE OF CONTROLLABILITY’, +32%.4.0.90.0.
YARRAY(22).YARRAY(23))
CALL LINE(XARRAY,(YARRAY,21.1,.+1.8)
CALL SYMBROL(0.5.9.0,0.21, ‘OEGREE OF CONTROLLABILITY’ 0.0.2%)
CALL SYMBOL(1.0.4.3,0.21,°FOR A FREE-FREE BEAM’,0.0,20)
CALL ENDPLT(12.0.0.0,999)
STOP
2000 WRITE(10, 100)
100 FORMAT(’THE MINIMUM E-VALUE IS ZERO')
00 2001 I=1,10
WRITE(10,2002) EV(I)
2002 FORMAT('Eve’ E11.4)
2001 CONTINUE
<TUP
END
c
Ce MODAL AMPLITUDE AT X FOR SIMPLY-SUPPORTED GEAM
c
REAL FUNCTION PM12(X,MODE,.BM,BL)
DATA P1/3.141%92834/
PHI2=SQRT(2.0/8M)+SIN(FLOAT(MODE ) *PIeX/BL

RETURN
END

c

C* MATRIX (ARRAY) TiMZS VECTOR (V)

c
SUBROUTINE MATVEC(M,N,ARRAY.V RET)
DIMENSION ARRAY(M.N),V(N) RET(M)
0O 10 I=1.,M
RET(1):0.
00 10 J=1,N

10 RET(1)=RTT{I)+ARRAY(I,J)eV(V)

RETURN :
END

c

Ce ADDS MATRIX 8 TO A

c

SUBROUTINE MATADO(N,A . B RET)
DIMENSION A(N,N) B(N,N) RET(N.N)
00 10 I=1.N
DO 10 U=1,N

10 RET(I,d)=A(1,J)*8(1, )
RETURN

DEGO44 10
DEGO4420
DEGO4430
0£G04440
DEGO4480
DEGO4480
DE€A04470
DEGO4480
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OEQO4520
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DEGO4 700
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END DEGO4980

c OEQ04970
C* SUBTRACTS MATRIX 8 FROM A DEG04980
(o ORGO4990
SUBROUTINE MATSUB(N.A,B.RET) 0EGO3000
OIMENSION A(N.N).B(N.N) . RET(N,N) DEQDB010

00 10 I= N 0€G0%020

CC 10 Jy=1{.N DEGOS0I0

10 RET(1.J)*A(L.V)-8(1,J) DEGOS040
RETURN DEGOSO%0

END DEGOS060

c DEGOS070
Ce MODAL AMPLITUOE AT X FOR FREE-FREE BEAM 0EGOS080
c DEGOS09%0
REAL FUNCTION PHI(X,BETA .BL) DEQOS 100
ALP-BETABL DEGOS 110

SH=Q .3 (EXP(ALP)-EXP(-ALP)) DEGOS 120
CH=Q.Se(EXP(ALP)+EXP(-ALP)) DEGOS 130
A=(SHSIN(ALP) )/ (CH-COS(ALP)) DEQOS 140
PHI=O. .S+ (EXP(BETASX)+EXP(-BETAX))+COS(RETAX)~ DEGOS 180

& As(O.S*(EXP(BETA*X)-EXP(-BETA*X) )+SIN(BETA=X)) OEGOS 160
RETURN DEGOS 170

END DEGOS 180

c : DEGO3 190
C* COMPUTES AVERAGE EXPECTED PERFORMANCE MEASURE FOR DEGOS200
C* 4 COMPONENTS ASSUMING EACH MAS SAME EXPONENTIAL DEGOS210
C* DISTRIBUTION OFf TIME TO FAILURE DEGOS220
Cc DEGO8230
SUBROUTINE PMAEXP(PM,IFCODE.TAU.TOP . L1,L2.L3,L4 PMAVE) DEGOS240
DIMENSION PM{12,12.12.12) DEGOB2%0
TT=TOP/TAU DEGOS280
PT1(1.0/(4.0°TT))e(1.0-EXP(-4.0°TT)) 0EGOS270
PT23=1.0/(12.0°TT)-(1.0/(12.0sTT))e(4.0-3.0°EXP(-TT))e DEGOS280

[y EXP(-3.0°TT) DEGOS290
PT81121.0/(12.0°TT)~(1.0/(12.02TT))*(6.0-8.00EXP(-TT)+ DEGOS300

8 3.0°EXP(-2.0°TT))eEXP(-2.0°TT) DEGOS310
PT1215=1.0/(4.0°TT)-(1.0/(4.0°TT))e(4.0-6.0%EXP(-TT)+ 0EGOS320

s 4.0€XP(-2.0eTT)-EXP(-3.00TT))eEXP{-TT) DEGOSI20
PT1821.0-(1.0/(12.0°TT))=*(~28.0~48_ 0°EXP(-TT)+ 0EGOS340

s 36.0°EXP(-2.0°TT)-16.0¢EXP(-3.0°TT)+3.0¢EXP(-4.0°TT)) DEGOS3s0
PMAVE=PT 1ePM(L1,L2,L3,L4)¢PT28«(PN(IFCODE. L2,.L3,L4)¢ 0EGOS360

[ PM(L?!, IFCODE, LI, La)+PM(LT, L2, IFCODE, L4)+ DEGOS370

[} PM(L1,.L2,L2,IFCODE) )+PTE11+(FM(IFCODE,IFCODE. LI, L4)+ DEGOS380

' PM(IFCCOE,L2.IFCODE.L4)+PM(ITCODE .£2.L2,IFCODE )+ 0FGOS390

8 PM(L1.IFCODE,IFCODE, L&)+PM(L T, IFCODE, LY, IFCODE )+ EGOS400

[} PM(L1,.L2,IFCODE,IFCODE))+PT1218«(PM(IFCODE, IFCODE, DEGOB4 10

s IFCODE L4 )+PM( 1 CODE, IFCODE, L3, IFCODE )+ DEGOS5420

'Y PM(1FCOOE, L2, IFCOOE, JFCOOE)~PM(L 1, IFCOOE, IFCODE, IFCODE)) 0€G0S420
RETURN DEGOS440

END DEGOS430

c 0€GO5480
Ce SAME AS PM4AEXP EXCEPT FOR 2 COMPONENTS DEGOS470
c DEGOB480
SUBROUTINE PM2EXP(PM, IFCOOE,TAU,TOP L1,L2,PMAVE) 0EGOS490

DIMENSION PM(12,12) DEGO3300
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Ce

c

Ce

C

c
Ce
c

SA

[ 2 X N N J

)

TT=TOP/TAU
PT12(1.0/(2.0°TT))e(1.0-EXP(=2.0°TT))
PT23e(1.0/TT)e((1.0-EXP(-TT))-0.8¢(1.0-EXP(-2.0°TT)))
PMAVE*PT 1+PM(L 1,L2)ePT22+(PM(IFCODE,L2)*PM(L Y, IPCODE))
RETURN

END

ME AS PMAEXP EXCEPT FOR 3 COMPONENTS

SUBROUTINE PMIEXP(PN, IFCODE, TAU,TOP LY, ,L2,L3,PMAVE)
OIMENSION PM(12,12,12)

TTY=TOP/TAU

PT12(1.0/(3.0¢TT))e(1.0-EXP(~-3.0°TT))
PT24°(1.0/(2.0°TT) )= (1.0-EXP(-2.0°TT))=(1.0/(2.0°TT))e

(1.0-EXP(~3.0°TT))

PTST7e(1.0/TT)e( 1. Q-EXP(-TT))~(1.0/TT)e{ 1.0-EXP(-2.0°TT))e
(1.0/(3.0°TT)7¢(1.0-EXP(-3.0TT7))

PMAVE=PT 1ePM(L1,L2.1L3)
+PT24(PM(IFCOOE . L2,L3)+PM(L1, IFCODE LI )+PM(LI, L2, IFCODE))
+PYS7<(PM(IFCODE ., IFCODE, L3 )+PM(1FCODE, L2, IFCODE )+
PM(L 1, IFCODE, IFCOODE))

RETURN

END

COMPUTES DIAGONAL SOLUTION BLOCKS O: M (TYPE III)

10

co

SUBROUTINE DIAG(OT,31G1,0M1,.011,D12,D022,AM11 AM12, AM22)
DATA EPS/0.000001/

IF(ABS(%IGY).LT.EPS) GO TO S

A=(D11+4322)/(4.0+S81G1)
8={0.5+SIG1°D12-0.2%5+OM1+(DN22-011))/(0OM1e0M1+S1G1+SIGY)
C=(0.5°0M1+D12¢0.25°S1G1+(D22-011))/(0OM1+0M1+S1G1+SIG1)
S=-2.0¢S1G10T

ARG=-2.0°0M 10T

AMYt=Ae(t O-EXP(S))-BoEXP(S)*SIN(ARG)-Ce(1.0-EXP(S)*COS(ARG))

AM125-C*EXP(S)*SIN(ARG)+8( 1. O-EXP(S)+COS(ARG))

AM22=Ae( 1. 0-EXP(S))+BoEXP(S)*SIN(ARG)+Le(1.0-EXP(S)*COS(ARG))

GO TO 10U
A=0.5¢(D22+011)

B=(022-011)/(4.0+0M1)

C=012/(2.00M1)

ARGe-2.0°0M 10T
AM112-A¢(-DT)+B¢SIN(ARG)-C*(1.0-COS(ARG))
AM12e-CeSIN(ARG)-8*(1.0-COS(ARG))
AM22e-A¢(-DT)-B¢SIN(ARG)+Ce(1.0-COS(AKG))
RETURN

END

MPUTES OFF-DIAGONAL SOLUTION BLOCKS OF A4 (TYPE 1V)

SUBROUTINE OFDIAG(DT,.SIG1,SI1G2,.0M1,0M2.011,D12,
D21,022,AM1 AM1I2, AM21,AM22)

SIGT=SIG1+S1G2

S=SIGTe(-0T)

ARGP v (OM2+40M1)e(-0T)
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. )
FILE: DEGCON FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

ARGM=(OM2-0M1)+(-0T) 0EG08080
A=-((OM2-OM"')+(D11+4D22)+S1IGT«(D12-021))/ 0£G060Q70
& (2.0v((CM2-0M1)*02+31GT*+2)) 0EG08080
Ba((OM2-0W1)e(D21-012)+%1AT«(D114D22) )/ 0€006Q90
8 (2.0°((OM2-0M1)e+2¢8IGTee2)) 0€Q0e 100
Ce-((OM2+0M1)+(D11-022)+31GT+(D214D12))/ DEGCE1 10
&  (2.0°((OM2+0M1)+024SIQT*2)) DEQOS 120
D=-((0OM2+0M1)+(D214012)+51GT¢(022-011))/ 0EGOS 130
& (2.0°/(0M2¢0M1)+e248IGTee2)]} OF 006 140
AM115B4D*EXP(S) o (A*SIN(ARGM) -8+COS( ARGK )+ 0€Q0s 150
) C*SIN(ARGP)-D+COS(ATGP)) DEGOS 160
AM12=-A-CoEXP(S)*(B*SIN(ARG")+A*COS(ARGM)+ DEGOS 170
[} D*SINCARGP ) *CeCOS(ARGP)) 0EGOS 180
ANM21=A-C+EXP(S)o(~B*SIN(ARGM) -A*COS(ARGM )+ DEGOS 190
'y D*SIN(ARGP } +C+COS(ARGP)) CeG08200
AM22=8-0+EXP(S)o(A+*SIN(ARGM) -B*COS(ARGN) - DEGOS2 10
'Y C*SIN(ARGP)+D*COS(ARGP) DEGOS220
RETURN 0€G08230

END DEGO8240
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