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Introduction

The dimensions of space structures being considered for

future applications are on the order of several hundred meters

to several kilometers and will require a large number of actua-

tors and sensors for attitude and shape control. A solar power

satellite, for instance, may require hundreds of control moment

gyros and thrusters to damp out surface vibrations caused by

periodic disturbances such as solar and qravity gradient torques.

The questions which naturally arise are: (a) where the actuators

and sensors should be placed, (b) what types should be used, and

(c) how many should be used.

Placement represents a substantial degree of freedom avail-

able to the designer and is usually not a very straightforward

question. It is even less apparent when one considers redundancy

in the system to allow for failures; even if the "optimal" posi-

tion of an actuator is known, it may not be so clear where a

backup actuator should be placed. The answer will likely depend

on, among other things, the operating strategy —such as whether

or not it is intended to use all available actuators at all times.

The types of control system components to be used is normally

decided ea;^ly in the design process based on their utility, cost,

availability, reliability and other factors. This decision will

not be discussed further here although the effectiveness cf

different types of sensors and actuators can be evaluated using

the observability and controllability measures which will be
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developed. The number of components to be used must reflect

the trade-off of cost, weight, power, etc. vs.system perform-

ance---and the evaluation of performance should recognize the

likelihood of some component failures during the lifetime of

the system.

In this work we develop a methodology for measuring the

performance of a system which reflects the type, number and

placement of the actuators and sensors on the structure. The

measures also reflect the expected loss of performance due to

component failures. These performance measures a_e intended to

be especially useful as guides to the choice of component number

and placement.

Problem Definition

. It would be most helpful to the control engineer to have

some criterion at his disposal for placing actuators and sensors.

Unfortunately, modern control theory does not provide any such

measure of "controllability" and "observability." Controllabil-

ity is simply a binary concept eithera system is controllable

or it is not. It does not say how controllable a system is. A

vibratory mode of a beam, for example, is not controllable by a

force actuator placed exactly at one of the nodes, but it is

controllable by an actuator placed just off the node. One would

suspect that an actuator slightly farther out would have even

more control capability, but une can only verify that the sys-

tem will be controllable. The same conditions hold with respect

to observability for a sensor.
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What should a more quantitative measure of controllability

take into account? First, it is necessary to define a control

objective. The most likely choice is to return the system to

some specified state (usually the origin) after an initial dis-

turbance. Secondly, the criterion should include how much

control effort is required to accomplish this task. Finally,

one should somehow standardize the criterion by the magnitude

of the initial disturbance. A larger disturbance returned to

the origin with the same amount of control as a less perturbed

system would likely have a more favorable degree of controllabil-

ity. It will also be necessary to normalize the initial mates

so that one unit in each direction is equally "important," since

rarely are all states expressed in the same units or of equal

concern.

Many ideas for observability parallel those for controlla-

bility if the word "state" is replaced by "state estimation

error" (the difference between the estimate of the state and

the true state): (1) the objective of measurement is to re-

duce the error covariance toward zero, (2) accomplish this Lasing

the measurements optimally, and (3) standardize the criterion by

thc magnitude of tolerable errors.

Previous Work

Several papers have been encountered which deal with the

subject of controllability and observability, but only two

(Juang and Rodriguez [1] and Likins [21) formulate measures using

the types of standards just outlined. Horner [3] has considered 	 '
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optimum actuator placement but does it for the specific case

of passive damping of a free-free beam. Skelton and Hughes [4]

define measures in terms of controllability and observability

"norms" which apply to the individual modes of a system rather

than to the system as a whole. Their approach is also tailored

to "linear mechanical systems" which have a special form of

representation as a second order matrix differential equation.

Although that form applies to space structure dynamics, we

prefer to define measures which have a physical interpretation

in terms of control or estimation error characteristics for

general linear systems.

In order to get a perspective on the measures of control-

lability and observability in the sections which follow, it may

be helpful to review the two papers which develop similar con-

cepts. Juang and Rodriguez take an approach very similar to

the linear quadratic regulator formulation. For the LTI state

equation,

x (t) - Ax (t) + Bu (t)

they define the cost function

tf

J	 f	 (xTQx + uTRu) dt
t0

where Q and R are weighting matrices on the state and control,

respectively. This is the same cost function as for the LQ

regulator problem except that the usual additive quadratic term

1'



involving the final state is not defined becausa an infinite

time horizon is allowed and x(tf ) converges to zero. Thus

the integral directly penalizes state excursion from the de-

sired final state (the origin) as well as control effort.

Performing the minimization on J and letting t f- o—• m ,

one obtains the optimal cost finction,

J° - I xT (to ) Pox (to)

where Po is the steady state solution of the matrix Riccati

equation

P - -PA - ATP + PBR-1BTP - Q.

Since the control effectiveness matrix B is a function of the

actuator locations { Eil, Po is also a function of the actuator

positions E i . Thus, the opt i mal cost is a function of both

initial state and actuator positions.

For a fixed initial state, the optimal cost with respect

to actuator positions is defined as:

J° * ( Eb , xo ) - min J° ( E, xo)

where E b are the actuator locations giving the minimum cost.

Now since the initial state can have several directions in state

space, the expectation with respect to x  is invoked:
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Jo* Mb) min EIJo W ]
E

or

Jo* (C-	 min= min 1 Tr (P°Q°)
E

where

Q° : E[x(t0)x(to)TI

The optimal placement of actuators is then defined to be the

position vector giving the absolute minimum of the expectation

of the cost function .

We found several objections to this method:

(1) The weighting of control effort versus state excursion

is rather arbitrary.

(2) If there is a particular direction x  in which the system

is not very controllable, the information is largely lost

when the cost is averaged over different initial states.

(3) The degree of controllability is actually an inverse measure

since a higher cost function represents a lower degree of

controllability and actually becomes infinite when the

system is uncontrollable.

(4) While control use is penalized, no effort is made to

bound it.

Likins develops a more sophisticated technique to be used

in the case: of bounded control effort. Using the variation of

constants formula,
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tx 	 - ^(t, to ) x (to ) +!(t,to ) f !(to,T)Bu('1")dT

to

and choosing t o=0 and t=T, one can define the displacement

in state space V in time T

T
r

a = xT - xo = [I -^
l ( T O)I X

 +
J 

&0,t)Bu(t)dt

0

Choosing xT=0, b reduces to

T

s= f ^ (0,t)Bu(t)dt - •-x0

O

where u of the original system has been normalized so that

I
ui ' < 1 and B redefined appropriately.

Likins then proceeds to define a "recovery region" A

as the volume of initial states that can be returned to the

origin in time T under bounded control 
I 
ui 

f 
L 1;	 i.e.;

R = x (0)I 3 u (t) , tE [O,T] , I u i W	 1 for i=1, ... ,m x (T) _ 0

The measure of controllability is chosen to be the minimum

distance from the origin, over all directions in initial state

space, of the outer surface of this region.

s
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p° inf ( I X(0) 11	 * x (0) 1 R
The p-oblent now reduces to finding the minimum norm of

S(or xo ) on this surface. This is a difficult problem which

requires, in effect, the definition of optimum bounded control

trajectories which reach the origin in t'ie specified time

from many different initial conditions. Likins expresses this

problem in terms of quadraturus which must, in most cases, be

computed numerically. One can only compute a finite number

of these and use the smallest computed V as the controllability

measure. (A parallelogram approximation to the recovery region,

such as is indicated in Fig. 1, is suggested by the authors.)

If a system were actually uncontrollable there is no guarantee

that one would compute the trajectory for which S is zero.
The overriding objection to this method is the complication

involved in the multiple control case. An important attribute

of the measure of controllability will be its easy computation.

Another objection is that Likins chooses to bound control

magnitude and does not attempt to perform any sort of minimiza-

tion with respect to quantity of control used, citing bounded

control magnitude as the more realistic situation. It is

usually the case, however, that quantity of control (e.g., fuel

in thruster, stored angular momentum in CMG) is the primary con-

sideration, not saturation of the controller.
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DYNAMIC MEASURE OF CONTROLLABILITY

The measure of controllability formulated here combines

some of the characteristics of both of these methods. Like

Juang and Rodriguez, it involves minimizing a cost function,

and as Likins, the final degree of controllability involves

a measurement in some "maximized" initial state space. The

difference is that the cost involves only the control, where

a quadratic is chosen for convenience to approximate magnitude,

and the initial state is maximized with respect to integrated

control utilization rather than running the control at satura-

tion for the duration of the control period in question.

The degree of controllability is the result of a four step

procedure:

(1) Find the minimum control energy strategy for driving the

system from a given initial state to the origin in the

prescribed time. ("Control energy" is defined as
T

E _ 111 f uTRudt, where R is a positive definite weight-
ing matrix.)

(2) Find the region of initial states which can be driven

to the origin with constrained control energy and time

using the optimal control strategy. This region is

bounded by an ellipsoidal surface in state space.

(3) Scale the axes so that a unit displacement in every

direction is equally important to control.

(4) The degree of controllability is a linear measure of the
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weighted "volume" of the ellipsoid in this equicon.trol

space.

Step 1 can be stated mathematically as follows:
T

min E - 1111 f uTRudt
0

subject to	 x - Ax + Bu	 (1)

X(0) - x0

x (T) - 0

The Hamiltonian for this problem is:

H - -7 
u Ru + PT (Ax + BU)

so that

P = -ATP	 P (o) , P (T) free	 (2)

u* (t) - -R-1BTP (t)
	

(3)

where u*(t) is the op':imal control.

To find P(t), combine the differential equations (1) and

(2) into matrix form using t}-a optimal control (3):

x	 A	 -BR-1BT	 x

-	 (4)

P	 0	 -AT	 P
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Then denoting the state transition matrix for the augmented
T

state vector (x 
T 

P T ) as 4(t), and making use of the

identities PO)-I and 4 -A !^, where A is the new state matrix
in (4), the costate variable is fount to be:

P (t) - - "PP (t) Cp (T) -1 ^fxy ( T) xo	115)

where
^f

xx , ^p , emd Ap are the tespect.ive partitions of the

state transition matrix it).

Step 2: In order to carry out step 2 rf the procedure, we

will require an expression for the optimum cost,
T

E* -	 u*T Ru*dt, as a funct: .on of the initial state.

To this end, we seek a relaticn of the form

X - VP	 (6)

since P is a function of the initial state. Differentiating

(6), substituting ( 1), and noting that the resulting equation

set equal to zero must hold for arbitrary P, we find that

V - AV + VAT - BR-1BT
	

(7)

with the boundar y .* condition

V;T) - 0
	

(6)

to satisfy the requirement that x (T)-0 since in general P(T)

is not zero. We choose this boundary condition for V as a
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matter of convenience; any other terminal value which satisfies

the r.:quixement V(T) P(T) - 0 would produce the same result for

the control energy. The reason for not using the usual rela-

tion P=Wx is that in order for P(T) not to be zero, W(t) would

have to be poorly defined at t=T.

Corresponding to the usual cost expression

T̂ = 2 x(0)TW(0)x(0)

we expect the energy cost to have the inverse form

E = i x(0) TV(0) -1x(0)	 (9)

^-	 ' ' Z' -.. F 4-u4 - ------s 4 ^ i vn 190 ver T 1 Pti as follows- L LLC VdlJ.U.L'.2' ` A. • AAa _ V.Arirv.r^v.. ^ 	 .^

Generalize the initial time to t o . Then

T
E _ f uTRudt	 (10)

t0

and we would like to show

E= 2 x ( t0 ) T V (t0) -1 x ( to )	 (11)

Differentiating (10) with respect to the initial time and

substituting (3) gives

dE
_ - 2 P (to ) TBRu1 BTP (t0 )	 (12)

0
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Substituting (6) into expression (11) (which is to be verified)

we have

E_ 1 P (to ) T V (to ) P (to )
	

(13)

Differentiation of this and substitution of (2) yields the same

result as equation (12) so that the derivative of the quadratic ,

expression for F in (9) is correct.

Also, the boundary condition matches as we can see by

letting t0—s T. Since the optimal trajectory tends toward

the constraint x(T)=0, the control energy E(to) tends to 0

as to--P T and x (to ) --o-O. The property E (to 0 as to- 9. T

is assured by the form of E given in (13) and the boundary

condition on V

lim V (to )	 V (T) = 0
	

(14)

t --P T
0

Equation (9) defines an n-dimensional ellipsoidal surface

in initial state space. Any point within the ellipsoid can be

returned to the origin in time T with energy E using the optimal

control in eq. (3). Though the energy expression (9) is simpler

than that appearing in (1), the differential equation for V in

(7) remains to be solved. The solution to (7) for the case of

rigid body and vibratory modes of a spacecraft is presented in

the section on Applications.
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Step 3 is to scale the axes so that a unit displacement in

every direction is equally important. But what is meant by

"important"?

It may first occur to the reader to scale each state by

the magnitude of its maximum tolerable displacement, Ix i 
I

max

1
x
ima	 O

Z  =
	 xo

.	 I

Q	
Ix
nmaxl

so that a unit displacement in every direction is equally in-

tolerable. But this scaling is highly inappropriate for the

follow-,ng r , Son. For a fixed amount of control energy and

tire, tr larger the volume of initial states encompassed by

the quadratic surface in eq. (9) is, the better the system

can be controlled; 'larger initial states can be returned to

the origin with the same control effort and time. Increasing

the x  dimension of the ellipsoid, for instance, indicates a

favorable control capability. But if x  is scaled by dividing

its maximum tolerable value, xlmax' we observe the following

paradox: as xl
max 

is made smaller, meaning that smaller values
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of x  can be tolerated (or x  is more important in terms of

system performance) then z l , the scaled variable, becomes

larger which signifies improved control capability.

It is apparent that the appropriate scaling should make

a more important variable transform to a smaller value in

the new space so as to emphasize the need to control that

variable. The problem is that controllability should not be

related to the accuracy with which a variable is ultimately

controlled (which is what the above scaling does), but rather

to the size of the excursion one would like to be able to

achieve. Thus let xi , be the minimum state excursions one
min

would like to be able to return to the origin in a given time

using a prescribed control energy. Then define the transforma-

tion

z = D x

1
x
lmi

where	 D=	 •

V

0
(15)

•	 1
x
nmin

so that unit values of z in any direction represent controllable

displacements of equal importance. If controlling a given

state is deemed less important (which is useful to recogiAze

since it requires less control capability), the corresponding

state in z-space is made larger.
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Step 4 is to measure the controllability represented by this

ellipsoid in equicontrol space (z-space). Consider a two-

dimensional case in which it is as important to control an

initial displacement in the xl direction twice as large as one

in the x2 direction. in this case the ellipsoid defined by

equation (9) is an ellipse in x-space. Let the ellipse have

the shape illustrated in Figure 2a. This represents they ideal

allocation of control since we are able to control a maximum

displacement in the x  direction exactly twice as large as one

in the x 2 direction. Figure 2b illustrates that the ellipse

becomes a circle when transformed to equicontrol space via

equation (15). Thus any deviation from a circle in equicontrol

space represents a less than ideal control allocation.

After considering a number of alternatives, the de-

gree of controllability was chosen to be the following:

VS	1/n
DC	 VS + V ( VE - VS )

E

where V  is the n-dimensional volume of the ellipsoid in

equicontrol space and VS is the volume of the largest inscribed

sphere; n is the dimension of the state space. The first term

on the right side of (16) is the predominant term in the con-

trollability measure; it reflects the smallest magnitude of

initial state in equicontrol space which can be driven to the

origin in the specified time using the specified control energy.

If the controls were ideally allocated, the initial condition

(16)
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surface would be a sphere and VS would be the controllability
measure. The second term in (16) adds a smaller amount to DC

to recognize the larger region of state space from which the

system can recover if the surface is not spherical. The addi-

tional volume, VE-VS , is scaled by V so that the most thisE
term can add, as VE-10, co, is VS and so that DC is zero if there
is any direction from which the system cannot recover at all—

this is the case of traditional uncontrollability, and V S -0.
The nth root of the weighted volume is taken as the controlla-

bility measure to make it proportional to the linear dimensions

of the region from which the system can recover. The volume

weighting scheme for a two-dimensional case (volumes are areas)

is depicted in Figures 3(a-c^

Oncc one accepts (16) as a reasonable assessment of

the controllability of the system, what remains to be shown are

the mechanics of computing the n-dimensional volumes V S and VF.
Consider the quadratic form, x 

T A x = d, where x is a vector of

length n, A is an nxn matrix, and d is some scalar constant. For

the two dimensional case; this quadratic surface is an ellipse

and the enclosed area is given by Irab, where a and b are the

intersections of the ellipse with its principal axes. The

intersections areand	 where the A's are eigenvalues
X1	 2

of A so that the area equals?Td 	 1
Al	

For three dimensions,
2

the surface is an ellipsoid and the enclosed volume is

3 ,rd 3/2	 1
^1 JA2 r4k3
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For n-dimensions the volume is defined by n integrations over

the n axes (bounded by the intersections of the surface with

the axes) and is found to be K 	 l	 where K is a
1	 n

constant. Since volume for n >, 4 has little absolute signifi-

cance the constant K is dropped and the volume is taken to be

simply

V	 (
 Tr

	 (17)(17)
i 1

To apply this result to the case at hand, first sub-

stitute (15) into ( 9) to obtain the equation of the ellipsoidal

surface in equicontrol space

E _	 zoT (DVoD)-1 zo
	 (18)

Vr is then given by (17) where A i are the eigenvalues of (DV oD)-1.

From (7) and (15) we observe that both D and V are symmetric

matrices so that the product DVoD is also symmetric. The eigen-

values of the inverse of a symmetric matrix are just the recipro-

cals of the eigenvalues of the original matrix. Therefore, if

V i denote the eigenvalues of DVoD, the ellipsoidal volume is

also given by

n
vV  _ ir	 i

and the spherical volume is the shortest distance to the surface,

1/% 	, to the nth power, or alternatively,

V^V	
n	 (20)

VS = (	 min )

(19)



The degree of controllability can then be computed using (16),

(19), and (20) and actually becomes zero when the system is

uncontrollable; the ellipsoid collapses to zero in the uncon-

trollable direction so that Umin is zero.

To find the least controllable direction in equicontrol

space (the point closest to the origin), we note that the

principal axes of the ellipsoid are in the same directions as

the eigenvectors of (DVoD) -1 , and the eigenvectors of (DVoD)-1

are the same as those of DVoD. Therefore, the point of closest

approach is in the direction umin' where

DVoDumin	 min umin
	 (21)

To recover the direction in the original state space, simply

multiply umin by D-1.

One further consideration is important in defining

the Degree of Controllability of a system; that is how the

measure varies with number of actuators. The Degree of Con-

trollability has been defined in terms of a constraint on

control energy with no reference to a constraint on control

magnitude. But it seems appropriate to recognize the fact

that a system with more actuators has greater control capability

when there is a limit on control magnitude -was is always the

case. The measure of controllability as defined above can be

made to vary directly with the number of actuators placed at

the same locations by scaling the elements of R inversely with

m—the number of actuators in the sys* Pm. Usually R is taken
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diagonal, and if the diagonal elements Ro are first chosen to
ii

reflect the relative cost of using the different actuators, then

the final elements of R are defined to be

Rii - R°ii^m

	
(22)

with m - total number of actuators.

Dynamic Measure of Observability

Any measure of tha observability of a dynamic system

should reflect as directly as possible the amount of information

which can be derived about the system states from the sensor

outputs in a given amount of time. The means of obtaining this

information is by attaching to the system an observer whose

states, x, are "estimates" of the true states of the system.

The more information that is obtained about the system, the

smaller the estimation error becomes.

A direct indicator of the amount of information one

has about the system states is the information matrix, the in-

verse of the error covariance matrix. In order to maximize

the amount of information, one should minimize the estimation

error. The linear estimator which minimizes the state estima-

A
tion error vector, e - x - x, in a mean square sense, i.e.,

minimizes

S - e  Me	 (23)

where M is some weighting matrix, is the Kalman Filter.

For the Kalman Filter, the error covariance equation

is
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P = AP + PAT - pCTN-1CP + Q
	

(24)

where P is the estimation error covariance matrix, and N and Q

are the measurement and driving noise intensity matrices, respec-

tively. Since the measurement noise is a property of the set of

sensors being evaluated, we retain its inclusion in (24) in the

form of N but do not include the effect of state driving noise,

because that is an external influence not related to the sensor

set. Thus, if we set Q-0 and call the information matrix

J(-P-1 ) , then (24) in terms of J becomes

J - - JA - AT  + CTN-1 C
	

(25)

Take as the standard situation the case in which there

is no information about the state initially and data is collected

up to a specified time T. Then J(0) - 0 and one is interested

in J(T). Having the information matrix at time T, we are inte-

rested in measuring how much information has been accumulated.

One way of measuring the size of J(T) is by reference to the

quadratic surface

v  J_ 1v- 1
	

(26)

As with equation (9) in the control case, equation (26) defines

an ellipsoidal surface in v-space. If J is a diagonal matrix

(one can always transform to principal coordinates), one observes

that increasing an element j ii will expand the ellipsoid in the
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a;

direction vi . Thus the larger J becomes, the larger the

volume encompassed by the surface in (26) so that the more

information obtained about the system, the larger the volume

becomes.

Typically, however, some components of x will be

of greater concern than others—especially considering that

different units will apply to different components. Paralleling

the discussion of the control case, define the transformation

w - Fv

jel	 Imax

F

O

O

• len	 I
max

(27)

where e.	 are the maximum errors one is willing to tolerate
lmax

in the direction xi . The more error one is willing to tolerate

in that direction, the greater the transformed state so the

larger the volume becomes. Thus the scaling is consistent with

the ideas presented in the last section. Also note that v has

units of reciprocal Error, so w is dimensionless as was z in

the control case.

Now that the axes have been scaled so that it is

equally important to obtain information in each direction, one

can use the same definition for the degree of observability as

was used for contro''"3bility when applied to equicontrol space,
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Again, the ideal sensor distribution would produce a sphere

in .#-space, so that the degree of observability involves a

spherical volume plus a lesser weighted excess volume due to the

nonideality of the distribution. Specifically,

V	 1/n

DO = [VS + VE (VE - VS)
l	 E

with

n

VE  Ir ^F
LJ 1

i=1
n

VS a

 yV-^
min,

and the	 i are the eigenvalues of FJ(T;".

The remaining problem is to so1Tre the differential

equation (25) for J so as to write out explicitly J(T). We have

J - JA - AT  + CTN-1C

J(0) - 0

This is similar to the corresponding problem in the definition

of the degree of controllability. There we required V(0) with

V - AV + VAT - BR 1BT

V (T) - 0

Define a backward time variable, 'r- T - t, so that di _ - dJ

(28)
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Then in terms of r, equation (25) becomes

J - JA + AT  - CTN-1C

(29)

J (T) - 0

This is the same as the equation and boundary condition :or V

wit: the substitutions:

V equation	 J equation

A	 AT

B	 CT

R	 =4	 N

So if a subroutine is prepared to produce V(0) given A, B, and

R, that same subroutine can be used to produce J(T) by use

of the substitutions indicated.

It is worthy to note that the parallelism in computing

the degrees of controllability and observability stems from the

similarity between the quadratic `orms (9) and (26), respectively.

However, the concepts which drove us to those forms were quite

different. Equation (9) represents an actual ellipsoid in

state-space which bounds the initial states that can bG returned

to the origin in time T with a prescribed energy E. For the

observability case, the information retrieval capability is

alrefdy maximized through the use of a Kalman Filter, and one

is simply trying to formulate a measure of observability basEd

upon the size of the Final information matrix. Thus equation

(26) serves only as an aid to the definition of the size of J,

and the space in which it is defined serves only to measure that

size volumetrically.
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APPLICATION TO ONE-DIMENSIONAL CASE

To demonstrate the procedure for obtaining the degree

cf controllability and observability, the above results were

applied to the vibratory modes of a free-free beam. Start with

a series expans ` or, for the beam displacement y,

y(E,t) i(E)i(t)i
where Oi c is an orthogonal set of modal shapes and V/,(*-) are

the modal amplitudes, and substitute this into the governing

differential equation for a beam

	

a 4	 a2EI a ̂ Y + m 
a 

f( E,t!

where f is the forcing term and m, E, and I are the beam mass

(M)/length (t), modulus, and cross-section inertia, respectively.

Assuming the use of m point force actuators,

m

f(E,t ) _ E6(E- Ej ) ui(t)
j-1

with E  being the actuator positions and u
i
(t) the control

magnitudes, one obtains the relations

2 1 1 	m
Wi2	

d

YIi(t) + 	 Eoi( c j )u j (t) - 0	 (30)
dt	 J-1
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where(Ji is the frequency of the ith mode.
The modal shapes for a free-free beam are given by

01 (x) = 1

02(x) = 12 (x - 21	 (31)

Oi (x) = cosh)Gix + cos f? 
ix - a

i (sinh 
)0 i

x + sin Pix) 1>0

where the 
Jai 

are the solutions to

1- cosh ) i ,Q, cos 
J 
J= 0

and

sinhPj + sin /"itai =
cosha j -cos 'DiZ

The first two modes of the beam are rigid body modes and thus

have a frequency equal to zero. 7 1 has the interpretation of

the rigid body translation of the center of mass of the beam,

and y/2 represents rotation of the beam about its center of mass.

Next, consider casting (30) into the state space

form,

x=Ax +Bu
(32)

y=Cx

F\
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where
T

0 0.($,) 0 A(Al ... 0 ^Oj„ tdl

0 0, (d?) 0 ^,^d►r^	 O mw Cdp^

0
Mt^,tE,l

O

0
141ac)

	

O	 0
'g o E	 A.CzI	 • • •	 -

	

0	 p

^^..cEa	 . • ^

	

0	 0

o ^

0 a ^_
o ^

where the number of modes has been truncated at N, and the use

of M force actuators at positions E
i 
and P translation rate

sensors at positions a i has been assumed. The replacement of
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a force actuator at E • j by a torque actuator would involve

replacing the corresponding elements of B by 
d O i (E •)

x

for i = 1, ... ,N. The use of a deflection sensor at «i would

involve switching 0 and O j ( (Yi ) in each of the pairs

[0 Oj ((X i ) J in the ith row of C. To include natural damping

in the model, the negative of the damping term, 2 ^Ui' would

appear in each diagonal block of the system matrix of (32) multi-

plying the * term. For the present, this is considered negligible.

Equation ('i) remains to be solved before the degrees

of contro llability and observability can be computed. The solu-

tion of this equation is facilitated by use of the following

real invertible transformation:

T	 vl 12 v 3 v4 a 3 b 3 ... aN bN 	(33)

I

where the v i are the generalized eigenvectors corresponding to

the zero eigenvalues and the a i , b  are the real and imaginary

parts of the eigenvector corresponding to the complex eigenvalue

k = Gi + iG1i -

If a new matrix M is defined by the relatioi^

V - TMTT

and A is formed from the eigenvalues,
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r,

J = _

0	 1

0	 0

01	 O

0	 0_
^3 WS (35)

U 3 ^3 __

O	 ^N W 

_ W Cr
N	 N

then substitution of both of these relations into ( 7) yields

(36)M = JAM + MA T - T-'BR 1BTT-T

This equation is much simpler to solve than equation ( 7) for V,

and the solution for M is presented in Appendix A. Conversion

back to V is attained through use of (34).

A computer program was written to calculate the degree

of controllability (observability) for up to four actuators

(sensors) placed at various positions along a free - free or

simply supported beam (FORTRAN listing appears in Appendix B).

The programmer specifies the number of equally spaced positions

along a half beam length to be tested (mode shapes are symmetric),

and the program computes the degree of controllability for all

possible arrangements of actuators. The same program is used to
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compute observability with the appropriate changes outlined

in the last section. The present program assumes the use of

force actuators or translation rate sensors but can be easily

modified for torque actuators and deflection sensors.

The program accepts as input the system matrix A,

the number of flexible modes to be considered (maximum 5),

the number of actuators to be tested, the input weighting and

control scaling matrices R and D, and the control period T.

The mass, length, and modal frequencies of the beam were

chosen to correspond to those of the experimental beam set up

at NASA Langley Research Center (L = 12 ft, m = 0.50 slugs,

"1 = 11.47 rad/sec, U2 = 31.63 rad/sec.) In all trials, there

was no relative weighting of actuators (R = I), and the

amplitude rates were scaled by 1 /L) i relative to their respec-

tive amplitudes using D (amplitudes were considered equally

important).

In Figures 4 and 5, the degree of controllability

(DC) is plotted for one force actuator varied along the length

of a single mode beam. Figure 4 shows the expected correspondence

between the DC and the first mode shape. The maximum DC is

at the ends where there is maximum deflection, and the DC be-

comes zero at the nodes where the system is uncontrollable.

The correspondence between mode shape and degree of controllabil-

ity is again apparent in Fig. 5 when the second mode is con-

sidered alone.
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Figures 6-8 consider the first and second modes

simultaneously. In Fig. 6, a single actuator is tested

along the length of the beam as in the previous two cases.

The maximum DC is again at the ends but the system becomes

uncontrollable at a node of either mode. The DC has an

intermediate peak at the 7th test position which corresponds

to an antinode of the 2nd mode.

In Fig. 7 one actuator is fixed at the middle of

the beam (antinode of 1st mode) while the other is varied.

There is an overall increase in controllability because

of the presence of the second actuator, but the DC still goes

to zero at the nodes of the second mode because the fixed

actuator is at a node of the 2nd mode and thus contributes

nothing to the controllability of that mode. The degree

of controllability never goes to zero in Fig. 8 when the

fixed actuator is at the end. The optimal placement of the other

was found to be at position #7 if duplicate positioning at #1

is not allowed.

The degree of observability (DO) for two cases is

illustrated in Figures 9 and 10. In Figure 9, a rate sensor

was varied along the length of a single mode beam. The re-

sultant DO is strikingly similar to the DC of Fig. 4. The

first and second modes are considered in Fig. 10 where one

sensor is fixed at the center of the beam and the other is

varied. The DO becomes zero at three points because the second

mode is unobservable at the location of the first sensor.

19



While it is difficult to consider the degrees of

controllability and observability just developed in an abso-

lute sense, they serve well as quick relative measures of

controllability and observability. A more realistic measure

of controllability, for instance, might involve the integral

magnitude of control effort rather than the integral quadratic

form chosen for convenience. This degree of realism has been

sacrificed in favor of the analytic solution to the optimal

control problem. It is also true that the "size" of the

information matrix could have been defined in several other

ways, e.g., tr J, in computing the degree of observability.

The control period is also somewhat arbitrary, but if the modal

periods are short compared to T, the measures of controllability

and observability are independent of T in a relative sense.

The control measure does have several advantages over

the methods in [11 and [2]: (a) it does not arbitrarily weight

state excursions against control effort, (b) it calls attention

to the most uncontrollable direction by primarily weighting the

volume generated by that minimum distance—thus it is a worst

case analysis, (c) it seeks a control law minimizing integrated

control use, and (d) it is relatively sl ^4^;::1e to compute.

For the observability case, the Kalman Filter already

provided the minimized least square estimate error for which

the covariance matrix is P. P determined the informatior matrix

J whose size was used to compute the degree of observability.



The choice of measuring the size ci J by the weighted volume

within a quadratic surface made the computation of observa-

bility analogous to controllability.

The results of the DC and Do calculations in the

case of the free-free beam were entirely intuitive and could

have been anticipated from knowledge of the mode shapes. But

that example was taken in order that one could interpret the

results easily. The purpose in defining these measures of

controllability and observability is to assist the designer

of a control system for a plant of realistic complexity where

the best locations of sensors and actuators may not be so

obvious.

Now that these tools have been developed, they will

be applied to the problem of choosing the number and location

of sensors and actuators in the design of a large space

structure considering the likelihood of random failures among

these components. It is expected that the optimum locations

for components with possibility of failure will differ under

certain circumstances from those with no chance of failure.
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P.'PENDIX A

SOLUTION OF THE MATRIX DIFFERENTIAL EQUATION (36)

This Appendix presents the solution to the differential

equation

M a JUM + MAY - D (A-1)

where A is given by (35) and the driving matrix D is the

last term in (36) .

The solution matrix M(t) is symmetric and has the follow-

ing form:

I	 V	 II II II ...	 II

I	 II II II ...	 II

III IV IV ...	 IV

Wt) =	 III IV	 ... IV
	

(A-2)

III	 ...	 IV

III

The Roman Numerals indicate 2x2 block solution types. If

the two rigid body modes are not included in the model, the

first and second cow and column blocks are deleted from (A-2).

The block solutions have the form

A



Mac. YMCA

M10c mbd

If the solution is symmetric (mbc - Mad" only m ad is given.

Note that a ana b are row indices, c and d are column indices.

A-2
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Appendix Q

FILE: OEGCON FORTRAN A
	

VM/SP CONVERSATIP:,4AL MONITOR SYSTEM

C DEG00020
C	 THIS PROGRAM COMPUTES THE DEGREE Of DEG00030
C	 CONTROLLABILITY AND OSEERVABILITY OE000040
C	 FOR FORCE ACTUATORS AND RATE SENSORS ON A BEAM DEG00050
C DEG00060
C•••••ww••••w•••t•••tw•rtew•••••••ew•••••rtt•+••tt•eww•ttt.•t•••tt^wrt• OEG00070
C OEGOOOBO
C	 INPUT:	 N - NUMBER OF SYSTEM STATES DEG00090
C	 NA - NUMBER OF ACTUATORS (SENSORS) DEG00100
C	 IPM - (1) FOR FREE-FREE BEAM OEGOO110
C	 (2) FOR SIMPLY SUPPORTED BEAM OEGOO120
C	 !START - FIRST ACTUATOR TEST POSITION OE000130
C	 NOPOS - NUMBER OF POSITIONS TO BE TESTED OEGOOt40
C	 IAS - (1) TO COMPUTE CONTROLLABILITY OEGO0150
C	 (2) TO COMPUTE 6BSERVABILITY DEGOO160
C	 IFIX - FIXED POSITION OF SECOND ACTUATOR WHEN OEGOO170
C	 PLOTTING CONTROLLABILITY FOR 4 ACTUATORS DE0001B0
C	 BM - BEAM MASS DEGO0190
C	 BL - BEAM LENGTH OEGO0200
C	 OT - CONTROL PERIOD OEGW210
C	 FB - FRACTION OF BEAM LENGTH FROM END OVER DEGW220
C	 WHICH ACTUATORS PLACED DEGO0230
C	 TOL - ZERO TOLERANCE FOR REAL NUMBERS OEGO0240
C	 TAU - ACTUATOR MEAN TIME TO FAILURE DEOW250
C	 TOP - SYSTEM OPERATING OR MISSION PERIOD DEGO0260
C	 OM - BEAM MODAL FREOUENCIES OEOW270
C	 BETA - MODAL SHAPE PARAMETERS DEGO0280
C	 OOIAG - DIAGONAL ELEMENTS OF STATE WEIGHTING MATRIX DEGO0290
C	 R - ACTUATOR WEIGHTING MATRIX OEGO0300
C	 A - SYSTEM MATRIX OEGO0310
C DEGO0320
C	 OUTPUT-	 LOC - EIGHT DIGIT LOCATION CODE REPRESENTING DEGO0330
C	 POSITIONS OF 4 ACTUATORS: 	 RIGHTMOST OEGO0340
C	 PAIR REPRESENTS LOCATION OF FIRST ACTUATOR DEGO0350
C	 AND LEFTMOST THE FOURTH ACTUATOR (IF THE PAIR DEGO0360
C	 EQUALS IFCOOE oNOPOS+1. THE ACTUATOR HAS FAILED) DEGO0310
C	 LMAX - ACTUATOR LOCATIONS FOR MAXIMUM DC NOT DEGO0360
C	 CONSIDERING FAILURES DEGO0390
C	 OCMAX - MAXIMUM OC NOT CONSIDERING FAILURES DEOW400
C	 LMAXF - ACTUATOR LOCATIONS FOR MAXIMUM AVERAGE OC DEGO0410
C	 DCMAXF - MAXIMUM AVERAGE OC (FAILURES CONSIDERED) DE000420
C	 UMIN - LEAST CONTROLLABLE DIRECTION IN ORIGINAL DEGO0430
C	 STATE SPACE ASSOCIATED WITH MAXIMUM OC OEOW440
C	 UMAX - MOST CONTROLLABLE DIRECTION IN ORIGINAL DEGO0450
C	 STATE SPACE ASSOCIATED WITH MAXIMUM DC DErw0O460
C OEGO0470
C••••w•••••••w•r•••u•w•wr••••••tt•••••t•••t••••• ••••s••s•••••••t••••t••DEGDD460
C 01GO0490
C OEGO0600

DIMENSION A(10.10).8(10.4),R(4,4),IACT(4),04(6). DEGOOS10
a	 V(10. 10).C1(24).WK1(SS.9).AA(/0.10). DEOW520

0(10.10),OO:AG(10).DV(10,tO).DVD(10.10).EV(10). DEOWS30
a	 WK(200).DVOSYM(55).UMIN(10).UMAX(1O). DEOW540
a	 RACT(4).WKAREA(10).RINV(4.4),BRINVB(10,10), OIGOOSSO



8	 RINVBT(4.10),DC4(12.12,12,12),OC3(12.12,12),DC2(12.12). OE000560
&	 DC1( 12),BETA(5).Z(10. 10).T(10, 10).TINV(10, 10). OE000570
8	 TTRAN(10,10).TTINV(10.10).BRISTT(10.10). OE000580
a	 DR(10.10).RW2(20).RZ2(200).AM(10.10).AMTT(10.10). DEGO0590
&	 DVOINV(10.10).MKAR2(55).XARRAY(23).YARRAY(23) DEG00600
COMPLEX M2(10).Z2(10,10),ZN OEG006/0
EOUIVALENCE(M2(1),Rr2(1)).(Z2(1.1).RZ2(1)) OEGO06-'J
DATA IN.I0.IOGT.IND.NM.IJOB,EPS/5.6.0.1,55.1.1.E-15/ DE000630
CALL PLOTS(IDUM.IDUM.9) DE000640

DEG00650
READ AND ECHO INPUT OEG00660

DEGO0670
REAO(IN.4) N.NA.IPHI.ISTART.NOPOS.IAS.IFIX DEG00680
READ(IN,5) BM,BL.OT.FB.TOL.TAU.TOP OE000690
REAO(IN.6)	 (OM(I),I=1.*^).(BETA(I),I-t.5).(DOIAG(I),I=l.10) DEGO0700
READ(IN,7)	 ((R(I.J).Jw1.4),Im1.4) DEGM710
REAO(IN,B,ENOs l7) DEGO0720

4 FORMAT(7I2) DEGO0730
5 FORMAT(3F10.4/4F10.4) DEGO0740
6 FORMAT(3(5F10.4/).5F10.4) DEGO0750
7 FORMAT(3(4F10.4/).4F10.4) OEGO0760
8 FORMAT(19(5F15.4/).5F15.4) DE000770
17 MRITE(I0,20) N.NA.IPMI.IAS.IFIX,ISTART,NOPOS.BM,SL,DT. DEGO0780
8	 FB,TAU.TOP.(OM(I),Is1.5).(BETA(I),I=1.5). DEGO0790
a	 ((R(I.J).J^1.4),I^1.4).(ODIAG(I),I n 1.10) DE000800

20 FORMAT(1X,'No '.I2/'NA n '.I2/'IPHI*'.I2/'IASn '.I2/ 1 IFIXu '.22/ DEG00810
6	 'ISTART n '.I2/'NOPOS='.I2/ DEGO0820
a	 'BM='.F10.4/'BL•'.F10.4/'DTo'.F10.4/'FB='.F/0.4./ DEGO0830
&	 'TAU-'.E15.4/•TOP•',E15.4/'OM(1-5)•'.5F10.4/ DE000840
a	 'BETA('-5) n 1. 5FI0.4/ DE000850
a	 'R*'/4(4FI0.4/)//'DOIAG(1-10)='.5FIO.4/12X.5F10.4////) DEG00860
IFCODE-NGPOS+1 DE000870

DEG00880
INITIALIZE VARIABLES DEGO0890

OE000900
DO 23 I u 1,55 DEGO0910

OVDSYM(I) nO. DEGO0920
23 CONTINUE DEGO0930

DO 24 I m 1.12 DE000940
OC1(I) WO. DEGO09SO
DO 24 Ja1 ,12 DEGO0960
OC2(I.J) rO. OEGO0970
DO 24 K n 1.12 DEGO0980

OC3(I.J.K) =O. OE000990
DO 24 L • 102 DEGO1000

OC4(I.J.K.L) a0. OEGO1010
24 CONTINUE OEG01020

00 29 I n 1.10 DEGO1030
00 29 J n 1.10 OEGO/040

OV(I,J) •O. DEGO1050
Z(I.0 =0. OEG01060
OVO(I.J) mo. DEGO1070
BRINVB(I.J)-O. DEGO1080

29 CONTINUE OEGOI090
00 36 I a 1.10 DEGO1100

C
C•
C

C
r •
C
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O(I.I) 000IAC(i)	 - OEGO1110
DO 36 J n 1.10 DEGO1120

IF(I.NE.J)	 0(I.J) •O. DEG01130
36 CONTINUE DEGOI140

NE nN*(N+1)/2 DEGO1180
TEN0w0T OEGO1160
OCMAX •O. DEGO1170
DCMAXF nO. DEGO1180
LMAX=O DEGO1190
LMAXF s0 DEGO1200

DEW 1210
FIND THE TRANSFORMATION MATRIX T USED IN COMPUTING V DEGO1220

DEW 1230
00 671	 I . 1.N OEG012.4

DO 671 J • 1.N DE001250
AA(I.J)%A(I.J) OEGO/260

671 CONTINUE DEG01270
CALL EIGRF( AA.N.iO.IJO8.RW2.RZ2.10.WK.IER) DEGO1280
00 672 I.1.N OEGO1290
DO 672 Je 1.N.2 DEGO1300

T(I.J) wREAL(Z2(I,J)) DE001310
672 CONTINUE OEGO1320

DO 673 I . 1.N DE001330
00 673 J•2.N.2 DEGO1340

T(I.J) • AIMAG(Z2(I.J-1)) DEGO1350
673 CONTINUE DE001360

CALL LINVIF(T.N.10.TINV,IOGT,WK.IER) DEG01370
DO 674 I m 1.N DEGO1380
DO 674 Jo1.N DEGO1390

TTRAN(I.J) nT(J.I) DEG014OO
674 CONTINUE DE001410

CALL LINVIF(TTRAN.N.IO.TTINV.IDGT.WK,IER) DEGO1420
OEGO1430

FOURTH ORDER DO-LOOP TO PERMUTE LOCATIONS OF 4 ACTUATORS DEGO1440
(NO TWO LOCATIONS ARE ALLOWED TO BE THE SAME) OEGO1450

DEGO 1460
00 46 I a 1.4 DEGO1470

IACT(I) w IFCODE DEGO1480
46	 CONTINUE DEGO1490

IACT 4u IACT(4) JEGO1500
IACT3 • IACT(3) OEGJ1510
IACT2 n IACT(2) ;1EGO1520
IACT1 • IACT(1) DEGO1530
IF(NA.NE.4) GO TO 49 DEGO1540
DO 161 :ACT4 • ISTART.IFCOOE DIWI550

IACT(4) • IACT4 DeGOISGO
GO TO 50 0-GO1570

49	 IF(NA.NE.3) GO TO 51 DEG01S80
SO	 00 171	 IACT3 w ISTART,IFCOOE DE001590

IACT(3) • IACT3 OEGO1600
GO TO 52 OEGO1610

S1	 IF(NA.NE.2) GO TO 53 OEG01620
52	 00	 161	 IACT2 • ISTART,IFCOOE DEGOI630

IACT(2) u tACT2 DEGO1640
53	 DO 151	 IACTI w ISTART.IFCOOE DE001650

C
C•
co
C

C
C•
C
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IACT(1)-IACT1 DEGO1660
C DECO 1670
C •	COMPUTE CONTROL EFFECTIVENESS MATRIX 8 OEGO1680
C OEGO 1690

DO 62 1=1.10 OEGO 1700
DO 62 J• 1.4 DEG01710
8(I.0 •0. DEGO1720

62 CONTINUE DEGO1730
DO 63 I s2,N.2 DEGO1740

DO 63 Ju 1.NA DEGO1750
RACT(J)=(FLOAT(TACT(J)-1)/FLUAT(NOPOS-1)) +BL*FB DEGO1760
IF(IPNI.E0.2) GO TO 625 OEGO1770
B(I.J) OPMI(RACT(J).SETC.(I/2).BL)/BM DEGO1780
GO TO 627 DEGO1790

625 B(I.J)*PMI2(RACT(J).1/2.BM.BL)/BM DEGO1800
627 IF(IAS.E0.2) B(I.J) n8(I,0+6M DEG0/810
63 CONTINUE DEGO1820

C DEGO1830
C•	ZERO-OUT COLUMNS OF 8 ASSOCIATED MITM INOPERATIVE ACTUATORS DEGO1840
C DEGO1850

IF(IACT4.NE.IFCODE) GCS TO 633 OEGO1860
DO 632 I w2.N.2 OEGO1870

B(I.4) 00. OEGO1880
632 CONTINUE DEGO1890
633 IF(IACT3.NE.IFCODE) GO TO 635 DEGO1900

00 634 I=2.N.2 DEGO1910
B(I.3) uO. OEGO1920

634 CONTINUE DEGO1930
635 IF;IACT2.NE.IFCODE) GO TO 637 DEGO1940

DO 636 I=2,N.2 DEGO1950
B(1.2)=O. DEW1960

636 CONTINUE DEGO1970
637 IF(IACTI,NE.IFCODE) GO TO 65 OEGO1980

DO 638 I .2.N.2 OEGO1990
8(I.1) =O. DEG02000

638 CONTINUE DEG02010
65 NB nO DEG02020

DO 66 I w 1,N OEGO2030
DO 66 Jm 1,NA DEG02040

IF(ABS(B(I.J)).LT.TOL) NB sNB+1 OEGO2050
66 CONTINUE DEG02060

IF(NB.EO.N•NA) GO TO 151 DEG02070
C DECP02080

I	 C• IF ALL ACTUATORS INOPERATIVE. GO TO NEXT TEST LOCATION DEG02090
C DEG02 iO0

ITOTF n IFCODE*10**6+IFCODE • 10* • 4+IFCODE • 100+IFCOOE DEG02110
LOC n IACT4 . 10•06+IACT3 . 100•4+IACT2*100+IACT1 DEG02120
IF(LOC.EO.ITOTF) GO TO 203 DEG02130

C DEG02140
C • ADJUST INITIAL R TO ACCOUNT FOR ACTUATOR SATURATION DEG02150

DEG02160
NOA n0 DEG02170
DO 661	 1 0 1.4 DEG02i80

IF(IACT(I).NE.IFCODE) NGA nNOA+1 DEG02190
661 CONTINUE DEG02200
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00 663 I n 1.4 OEG022f0
RINV(I.I) nFLOAT(NOA)/R(I.I) DEG02220
00 66a Ja 1,4 DE002230

IF(I.NE.J) RINV(I,0 60. OE002240
663	 CONTINUE DE0022SO

C DE002260
C • COMPUTE DRIVING MATRIX IN D.E. FOR M DE002270
C OE002260

CALL VMULFP(RINV.B.NA.NA ,N.4.10.RINV8.4,IER) DE002290
CALL VMULFF(B,RINVS.N,NA.N.10.4.BRINVS,10.IER) DEG02300
CAL1, VMULFF(BRINVB,TTINV,N.N,N.10.10.BRIBTT.I0,IER) DE002310
CALL VMULFF(TINY,BRIBTT.N.N.N.10.10,OR.10.IER) DEG02320

C DEW2330
C+ COMPUTE DIAGONAL BLOCKS OF M (TYPE III) DEG02340
C DEG023SO

^0 675 I n t.N.2 DEG02360
SIGI-REAL(W2(I)) DEG02370
OMI-AIMAG(W2(I)) DEG02380
CALL OIAG(OT. SIGI.OMI.OR(I.I).OR(I.I+1).DR(I +1.I+1). DE002390

3	 AM(I,I),AM(I.I+1).AM(I+1.I+1i) DE002400
AM(I+1.I) wAM(I,I+1) DEG02410

675	 CONTINUE DE002420
C DEG02430
C • COMPUTE OFF-DIAGONAL BLOCKS OF M (TYPE IV) DliG02440
C DEG02450

IF(N.LT.4) GO TO 70 DEG02460
NM3 •N-3 OE002470
Nf41 nN-1 DE002480
00 676 I n 1,NM3,2 DEG02490

IP2 n I+2 DEW2500
00 676 J m IP2,NM1.2 OE002510

SIGI sREAL(W2(I)) DEG02520
OM1 nAIMAG(W2(I)) DE002530
SIG2 uREAL(W2(J)) DEG02540
OM2 nAIMAG(W2(J)) DEG02550
CALL OFOIAG(OT,SIGI.SIG2.DM1.OM2.DR(I.J). DE002560

8	 DR(I.J+1).DR(I+1,J).OR(I +1.I+1). DEG02570
AM(I,J).AM(I.J+1).AM(I•:.J). DE002580

8	 AM(I+1.J+1)) DE002590
AM(J.I)*AM(I.J) DEG026W
AM(J+1.1) nAM(I.J+1) DEG02610
AM(J.I+1) wAM(I+ f .J) DEG02620
AM(J+1,I+1) wAM(I+1,J+1) DE002630

676	 CONTINUE DEG02640
C DE002650
C o TRANSFORM FROM M TO V DEG02M
C DE002670

70	 CALL VMULFF(AM.TTRAN.N,N.N.10,10,AMTT,I0.IER) DEG02680
CALL VMULFF(T.AMTT,N.N,N.10,10.V.10.IER) DEG02690

C DE002700
C • TRANSFORM TO EOUICONTROL SPACE AND COMPUTE EIGFNVALUES OF OVO DEG02710
C DE002720

CALL VMU I-FF(D.V.N.N.N.10.10.OV.10.IER) DEG02730
CALL VMULFF(DV,O.N.N,N,10.t0.DV0,10.IER) DEG02740
CALL VCVTFS(DVO.N.IO,OVDSYM) DEQ02750
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CALL EIGRS(OVOSYM.N.IJOS.EV.Z.IO.MK .IER) OE002760
IF((ASS(EV(1)).LT.TOL).OR.(EV(1).LT.O.)) 00 TO 76 DE002770

C DEG02780
Co . COMPUTE DEGREE OF CONTROLLABILITY DE002790
C 01602800

VS•SORT(EV(1) • *N) DEG02810
PROOEV• 1.0 OEGO2820
00 706 I n I.N OEGO2830

PROOEVwPROOEV v EV(I) DEG02840
706 CONTINUE OEGO2850

VE •SORT(PRODEV) OEGO2860
POMERw 1.0/FLOAT0l) DEG02870
OEGCONn (VS+(VS/VE) • (VE-VS)) ••POMER DEG02880
GO TO 80 DEG02890

76 OEGCONUO. DEGU2900
C DEG02210
C •	STORE OC IN APPROPRIATE ARRAY; SEARCH FOR MAXIMUM DC DEG02920
C •	AND RECORD ITS LOCATION. MAGNITUDE AND MAXIMUM AND DEG02930
C•	MINIMUM CONTROLLABLE DIRECTIONS DEG02940
C DEG02950

80 IF(NA.NE.4) GO TO 83 OEGO2960
DC4(IACT4.IACT3.IACT2.IACT1) uDEGCON OEGO2970
IF(OEGCON.GT.00MAr) GO TO 805 OEGO2980
GO TO 151 OE002990

805 IF((IACTI.EO.IACT2).OR.(IACTI.EO.IACT3).OR. DEG03000
b (IACTI.EO.IAC.T4).OR.(IACT2.EO.IACT3).OR. DEG03010
8 (IACT2.EO.:.CT4).OR.(IACT3.EO.IACT4)) GO TO 151 DEG03020

OCMAX nOEGCON DEG03030
LMAXmLOC DEG03040
DO 807 I m I.N DEG03050

UMIN(I) O Z(I.1)/D(I.I) •SORT(EV(1)) OEGO3060
UMAX(I)-Z(I.N)/O(I.I) OSORT(EV(N)) OEGO3070

807 CONTINUE OFG03080
GO TO 151 DEG03090

83 IF(NA.NE.3) GO TO 87 DEG03100
DC3(IACT3.IACT2.IACT1)-DEGCON OEG03110
IF(OEGCON.GT .00MAX) 00 TO 835 DEG03120
GO TO 151 OEGO3130

835 IF((IACTI.EO.IACT2).OR.(IACTI.EO.IACT3).OR. OEGO3140
8 (IACT2.EO.IACT3)) 00 TO 151 DEG03150

DCMAX aDEGCON DEG03160
LMAX wLOC DEG03170
DO 847 I e 1.N OEGO3180

UMIN(I)-Z(I.1)/0(I.I) •SORT(EV(1)) DEG03190
UMAX(I)-Z(I.N)/0(I.I)*SORT(EV(N)) DEG03200

847 CONTINUE DEG03210
GO TO 151 DE003220

87 IF(NA.NE.2) GO TO 89 DEG03230
DC2(IACT2.IACT1)"OEGCON DEG03240
IF(DEGCON.GT.DCMW, GO TO 875 DEG03250
GO TO 151 OEGO3260

875 IF(IACTI.EO.IACT2) 00 TO 151 DEG03270
OCMAX•DEGCON OEGO3280
LMAX wLOC DEG03290
00 877 I n 1.N DEG03300
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UMIN(I) •2(I.1)/0(I.I) •SORT(EV(1)) DEG03310
UMAX(I) O Z(I.N)/0(I.I)*SORT(EV(N)) DE003320

877 CONTINUE 09003330
GO TO 151 DE003340

89 OC1(IACT1)•OEGC0N DE003350
IF(OEGCON.GT .00MAX) GO TO 895 OE003360
GO TO 151 DE003370

895 OCMAX•OEGCON DE003380
LMAX nLOC DE003390
00 897 I w 1,N DE003400

UMIN(i) u2(I,1)/0(I,I) •SORT(EV(1)) OEG03410
UMAX(I) n 2(I.N) /0(I.I)*SORT(EV(N)) DE003420

897 CONTINUE DE003430
151 CONTINUE DEG03440

IF(NA.LT.2) GO TO 203 OE903450
161 CONTINUE DE003460

IF(NA.LT.3) GO TO 203 DE003470
171 CONTINUE DE003480

IF(NA.LT.4) GO TO 203 OE003490
181 CONTINUE OEGO3500

C DE003510
C •	COMPUTE AVERAGE OC AND SEARCH FOR MAXIMUM OEG03S20
C	 • DEG03530

203 OCMAXF-O. DEG03540
IF(NA.NE.4) GO TO 300 OEGO3550
00 250 I • ISTART,IFCOOE DEG03560

DO 250 J w ISTART,IF000E OEGO3570
00 250 Km ISTART,IFCOOE OEGO3580
00 230 L e ISTART.IFCODE OEGO3590

220 CALL PM4EXP(OC4 ,IFCOOE.TAU.TOP.I,J.K.L.DCAVE) DEG03600
LOC • I . 10••6+J • 10• *4+K*1OO+L DE003610
MRITE(IO.225) LOC.DC4(I.J.K.L).00AVE OEGO3620

225 FORMAT('LOCATIONa'. I8,5X ,'DC n ',E11.4.5X.'DCAVE-'.E11.4) DE003630
IF(OCAVE.GT .00MAXF) GO TO 230 OE003640
GO TO 250 OE003650

230 IF((I.EO .J).OR.(I.EO.K).OR.(I.EO.L).OR. OE003660
d	 ( J .EO.K).OR.(J.EO.L).OR.(K.EO.L)) GO TO 250 OEGO3670

LMAXF n I*10**6+J +tO**4+K*10**2+L DEG03680
OCMAXF nOCAVE DE003690

250 CONTINUE OEGO3700
GO T!I 700 OE003710

300 IF(NA.NE.3) GO TO 400 DEG03720
00 350 I n ISTART,IFCOOE OEGO3730

00 350 J m ISTART,IFCOOE OE003740
00 350 K n ISTART,IFCOOE DEG03750
CALL PM3EXP( DC3.IFCOOE.TAU.TOP.I.J.K,DCAVE) OEGO3760
IF(DCAVE.3T.00MAXF) GO TO 330 DEG03770
GO TO 350 OEGO3780

330 IF((I .EO.J).OR.(I.EO.K).OR.(J.EO.K)) GO TO 350 DEG03790
LMAXF • IFCODE • 10•06+I . 1000 4 +4 . 100+K DEG03800
OCMAXF nOCAVE DEG03810

350 CONTINUE DE003820
GO TO 700 DE003830

400 IF(NA.NE.2) GO TO 500 OEGO3840
00 450 I • ISTART,IF000E DE003850
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WRITE(I0,422) LOC,OC2(I,J).DCAVE DE003860
421	 FORMAT('LOCATION•',I6.5X.'DC•'.E11.4.6X.'DCAVEo'.E/1.4) 0EG03870

tF(DCAVE.GT.00MAXF) GO TO 430 DE003880
GO TO 450 DE003390

430	 IF(I.EO.J) GO TO 450 OE003900
LMAXF n IFCODE • 10••6*IFCOOE • 10••4*I . 100*J 0R003910
DCMAX F • DC A V E OEG031120

430 CONTINUE DE003930
GO TO 700 OE003940

500 DO 550 I n ISTART,IFCODE OF003950
LOC • IFCODE • 109 -6+tF000E • 10+ • 4*tFCODE • 100+I DE003960
WRITE(IO.525)	 LOC.00l(I) DE603970

525	 FORMAT('LOCATION s '.I8.5X.'DC n '.E11.4) DE003980
550 CONTINUE OE0039W

C DE004000
C •	OUTPUT DC'S, LOCATIONS, AND PRINCIPAL DIRECTIONS DEQ04010
C DE004020

700 IF(NA.NE.4) GO TO 711 DE004030
WRITE(I0.705) DCMAX.LMAX,DCMAXF.LMAXF. DE004040

6	 ( UMIN(I),Iu1,10).(UMAX(I),I.1,10) DE004050
705 FORMAT(1X,'MAX OC FOR 4 OPERATIONAL ACTUATORS IS'.E11.4/ DE004060

6	 'AND THE LOCATION IS '.IB// DE004070
a	 'MAX OC FOR 4 FAILING ACTUATORS IS'.E11.4/ OEGO4080
a	 'AND THE LOCATION IS '.IB// DE004090
6	 'UMINal/5(E11.4.SX)/5(E11.4.5X) // DEG14 /00
6	 'UMAXO'/S(E1l.4.5X)/S(E11.4.SX)//) OE004110

GO TO 1000 DE004120
711	 IF(NA.NE.3) GO TO 714 DEGO4130

WRITE(I0,715) DCMAX.LMAX.DCMAXF,LMAXF, DEQ04140
6	 (UMIN(I),I n 1.10).(UMAX(I),I n 1.10) DE004150

715 FORMAT(1X.'MAX OC FOR 3 OPERATIONAL ACTUATORS IS'.E11.4/ OEG04160
6	 'AND THE LOCATION IS '.I6/ DEQ04170
a	 'MAX OC FOR 3 FAILING ACTUATORS IS'.E11.4/ DE004180
6	 ' ►NO THE LOCATION IS '.I6// DE004190
6	 'UMINO'/S(E11.4,5X)/5(E11.4,5X)// OE004200
a	 'UMAX n '/S(E11.4.5X)/S(E11.4.SX)//) DE004210
'-C TO 1000 DE004220

71A	 IF(r;A.NE.2)	 GO TO 721 DE004230
WRITE(IO.720) LMAX,DCMAX.LMAXF.DCMAXF, OE004240

a1	 (UMIN(I),I n 1,10).(UMAX(I),I.1.10) DEQ04250
720 FORMAT(//'LMAXO '.I6.10X,'DCMAX e '.E11.4/ DE004260

a	 'LMAXF n 1,I6.IOX.'DCMAXF•'.E11.4// DE004270
6	 'UMIN n '/5(E11.4.5X)/5(E11.4,5X)// DE004280
a	 'UMAXO'/5(E11.4,5X)/5(E11.4.SX)//) OE004290

GO TO 1000 DE004300
721 WRITE(I0,730) LMAX.00MAX. OE004310

6	 (UMIN(I),I - 1.10).(UMAX(I),I.1.10) OEG04320
730 FORMA`	 MAX•l.I8.1OX.lDCMAX•l.E11.4// DE004330

a	 'UMINO'/S(E/l.4.SX)/S(Ell.4.SX)// DE004340
a	 'UMAX '/S(E11.4,SX)/S(E11.4.SX)//) DE004350

C OE004360
C •	 PLOT OF OC VS. ACTUATOR POSITION FOR DEOD4370
C •	1 FIXED AND 1 VARIABLE ACTUATOR OEG04380
C OEW%4390

1000 00 1002 I . 1.21 DE004400
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XARRAYM •6L • fLOAT(I-1)/20.0 DE004410
1002 CONTINUE 01004420

DO 1004 I n 1.11 DE004430
YARRAY(I) •DC2(IFIX.I) DE004440

1004 CONTINUE DEGO4460
00 1000 I-12.21 01004460

YARRAY(I) sOC2(IFIX.22 -I) 01004470
1009 CONTINUE DE004460

CALL SCALE(XARRAY,6.0.21.1) DE004490
CALL SCALE(YARRAY,4.0.21,1) OE4104500
CALL AXIS(0..0..'BEAM POSITION(FT)',-17.6.0.0.0. OE004510

&	 XARRAY(22),XARRAY(23)) OE004520
CALL AXIS(0..0..'DEGREE OF CONTROLLABILITY'.+29.4.0.90.0. OE004530

•	 YARRAY(22).YARRAY(23)) DE004540
CALL LIWE(XARRAY,YARRAY,21.1.+1,S) DE004590
CALL SYMBOL(O.S.S.0.0.2/,'DEGREE OF CONTROLLABILITY',0.0.29) OEQ045W3
CALL SYMBOL(1.0.4.S.0.21.°FOR A FREE-FREE BEAM'.0.0.20) OE004S70
CALL ENOPLT(12.0.0.0.999) DE004590
STOP DE004590

1000 WRITE(IO.100) DE004OW
100 FORMAT('THE MINIMUM E-VALUE IS ZERO') OEQO4610

00 2001	 I . 1,10 DE004620
MRITE(IO.2002) EV(I) DE004630

2002	 FORMAT('EV• '.E11.4) DE004640
2001 CONTINUE DE004650

!:TUP DE004660
END DE004670

C OE004680
C•	MODAL AMPLITUDE AT X FOR SIMPLY-SUPPORTEO BEAM DE004690
C DEQ04"100

REAL FUNCTION PHI2(X.MODE.BM ,BL) DE004710
DATA PI/3.141S92654/ DEGO4720
PHI2 •SORT(2.0/SM) OSIN(FLOAT(MODE) •PI •X/BL) DE004730
RETURN DEGO4740
END DE0047SO

C DEGO4760
C o	MATRIX (ARRAY) TOKS VECTOR (V) DFQ04:70
C DE004780

SUBROUTINE MATVEC(M.N.ARRAY.V,RET) DE004790
DIMENSION ARRAY(M.N).V(N),RET(M) DIEGO4800
DO 10 I w 1 , M 01004810
RET(I) , 0. OE004820
DO 10 Ju 1.N DE004830

10 RET(t)-PtTt:)+ARRAY(I.J)*V(J) 0[.00:840
RETURN DEiA4890
END OE004860

C DE004870
C •	ADDS MATRIX 6 TO A DE004880
C DE004890

SUBROUTINE MATA00(N,A.S.RET) DE0049W
DIMENSION A(N.N).B(N.N).RET(N.N) DE004910
DO 10 I-1.N 01004920
DO 10 J n 1.N DEGO4930

10 RET(I.k1)•A(I.J)+6(I.$) DE004940
RETURN DE0049SO



B-10

FILE: DEACON	 FORTRAN	 A	 VM/SP CM VERSATtONAL MONITOR SYSTEM

ENO 01004960
C 01004970
C • SUBTRACTS MATRIX 6 FROM A DE004980
C 01004990

SUBROUTINE MATSUB(N.A.S.RET) DEQ05000
OtMENSION A(N.N).B(N.N).RET(N.N) 0E805010
00	 10 I n 1. N DEGM20
CG	 10 J=1.N OEGM30

10 RET(I.J)•A(I.J)-B(I,J) 01009040
RETURN OEQOOOSO
END OE005060

C OEQ0S070
Co MODAL AMPLITUDE AT X FOR FREE-FREE BEAM 01005060
C OEQ05090

REAL FUNCTION PHI(X.Q4TA.BL) 0E009100
ALP-BETA •BL DEWS 110
SHm0.5*(fXP(ALP)-EXP(-ALP)) DEQO5120
CH nO.S • (EXP(ALP)+EXP(-ALP)) DEWS130
A-(SH+SIN(ALP))/(CH-COS(ALP)) DEGOS140
PHI &0.5 • (1XP(BETA•X)+EXP(-BETA•X))+COS(BETA •X)- OEGO61W

6	 A•(O.S•(EXP(SETA+X)-EXP(-BETA•X))+SIN(SETA•X)) OEQOS160
RETURN OEQ05170
END OE006160

C DEW5190
C o COMPUTES AVERAQE EXPECTED PERFORMANCE MEASURE FOR DE005200
C o 4 COMPONENTS ASSUMING EACH HAS SAME EXPONENTIAL DEWS210
C o DISTRIBUTION OF TIME TO FAILURE DEWS220

C DEWS230
SUBROUTINE PM4EXP(PIS.IFCOOE.TAU.TDP.LI.L2.L3.L4.PMAVE) 01005240
DIMENSION PM(12.12.12.12) DE0052SO
TT-TOP/TAU DE005260
PT1•(1.0/(4.0•TT))•(1.0-EXP(-4.0+TT)) DEWS270
PT23-1.0/(12.O+TT)-(1.O/(12.0•TT))+(4.0-3.0•EXP(-TT))• OEGO5280

6	 EXP(-3.0•TT) DE005290
PT611 u 1.O/(12.0*TT)-(1.0/(12.0• TT)) • (6.0-8.0*EXP(-TT)+ DE WS300

&	 3.0•(XP(-2.0•TT))•EXP(-2.0*TT) DE005310
PT1215-1.0/(4.0•TT)-(1.0/(4.00 TT)) • (4.0-6.0*EXP(-TT)+ OEQ05320

&	 4.0•EXP(-2.0•TT)-EXP(-3.0&TT))OEXP(-TT) D1005330
PT16 a 1.0-(1.0/(12.0*TT)) • 1-25.0-44.0• EXP(-TT)+ DEWS340

6	 36.0•EXP(-2.0•TT)-16.0•EXP(-3.0•TT)+3.0•EXP(-4.00TT)) DE005350
PMAVE-PT1 •PM(L1.L2.L3.L4)+PT25 • (PM(IFCOOE.L2.L3.L4)+ DEW5360

6	 PM(LI.IFCODE.L3.L4)*PM(LI.L2.IFCODE.L4)+ OFOO5370
6	 PO4(L1.L2.L3.IFCODE))+PT611•(FM(IFCOOE.IFCOOE.L3.L4)+ OEGO5380
6	 PM(IFCOOE.L2.IFCODE.L4)+PM(I7CDOE.L2.L3.IFCODE)+ DFW5390
6	 PM(L1.IFCOOE.IFCODE,L4)+PM(L1.IFCODE.L3.IFCODE)+ DEG05400
6	 PM(L1.L2.IFCOOE.IFCOOE))+PT1215•(PM(IFCDOE.IFCOOE. OEWS410
6	 IFCODE.L4) ♦PM(i:'-^00E.IFCODE,L3.IFCODE)+ DE WS420
6	 PM(IF000E.L2,IFCOOE.IFCOOE)^PM(L1.IFCODE.IFCODE.IFCODE)) DEGO5430
RETURN DE005440
END OEGOS450

C OEGO5460
C • SAME AS PM4EXP EXCEPT FOR 2 COMPONENTS DEGO5470
C OEQOS460

SUBROUTINE PM2EXP(PM,IFCOOE.TAU.TOP.L/.L2.PMAVE) OEQ05490
DIMENSION PM(12,12) OEQ105500
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TT-TOP/TAU 0EGOS510
PTI-(1.0/(2.0-TT))-(I.0-EXP(-2.0•TT)) 011005520
PT23-(1.0/TT)-((1.O-EXP(-TT))-0.5-(1.0-EXP(-2.0-TT))) DEGOSS30
P14AVC-►TI-PM(LI.L2)+PT22-(PM(tFCODE.L2)+PM(L1.IFCODE)) OEWS940
RETURN 0-305990
END 01009560

C DEWS570
C • SAME AS PO44EXP EXCEPT FOR 3 COMPONENTS DEGOSS60
C DEWSS90

SUBROUTINE PM3EX P( PU.IF000E . TAU.TOP . LI.L2 . L3.PMAVE) OE00l600
DIMENSION PM(12.12.12) OkGOS610
TT-TOP/TAU DEGOS620
PTI-(1.0/(3.0-TT)) 0(1.0-EXP(-3.0 0TT)) OE0011t30
PT249(1.0/(2.0-TT))-(1.O-EXP(-2.0-TT))-(1.01(3.0-TT))- OE005640

6	 (1.0-EXP(-3.0-TT)) 01009690
PTS7-(1.O/TT)-(1.0-EXP(-TT))-(/.O/TT)0(1.0-EX ►(-2.0-TT))+ DEG056i30

6	 (1.0.1(3.0-TT)j-(1.0-EXP(-2.0-TT)) DEGOS670
PMAVE-PTI-PM(L1.L2.L3) DEG056Y0

6	 +PT24 •( PM(IFCOOE . L2.L3)+PM(L1.IFCODE.L3)+PM ( LI.L2.IFCOOE)) 01005690
6	 +PT57 +( PM(IFC00E . IFCODE.^.3)+PM ( IF000E.L2.IFCOOE )+ OFOO5700
6	 PM(L/.IFCOOE.IFCOOE)) DEMN710
RETURN DECOS720
END DE005730

C OEGOS74G
C• COMPUTES DIAGONAL SOLUTION BLOCKS 0= 	 4 (TYPE III) DEWS750
C OEGO5760

SUBROUTINE DIAG(OT.SIGs.OMI.0/1.012.022.AMII.AM12.AM22) DEW5770
DATA EPS/0.000001/ OE005780
IF(ABS(SIG/).LT.EPS) GO TO 5 DEGM790
A-(01 1+')22)/(4.0-SIGT ) DEGO5800
6-(O.S-SIG1 -012-0 . 2S-OMI- ( 022-011) )/(DM1-OMI+SIGI-SIRI) DEGOSSIO
C-(0.5-OM1 -D12+0 . 2S-SIG1- ( 022-011 ))/( OMI-OMI+SIG2 - SIG1) DE005820
S--2.0-SIGI-OT DEGOS630
ARG--2.0-OM1-OT 0E005640
AM11-A-(1.O-EXP(S))-B-EXP(S)-SIN(ARG)-C-(1.0-EXP(S)-COS(ARG)) DEG06950
AM12--C-EXP(S)-SIN(ARG)+6 0 (1.0-EXP(S)-COS(ARG)) 0E005Jr30
AM22-A-(1.0-EXP(S))+6-EXP(S)-SIN(ARG)+C-(1.0-EXP(S)-COS(ARG)) DE005870
00 TO 10 DE009660

S A-0.5 • (022+011) OEG05690
8 6 (022-011)/(4.0-001) DECOGS900
C-012/(2.0-OWI ) DEGO59/0
ARG--2.0-OM/-OT 01005920
AMI1--A-(-DT)+B-SIN(ARG)-C-(1.0-COS(ARG)) DEWS230
AM12--C-SIN(ARG)-6 0 (1.0-COS(ARG)) DEWS940
AM22-- A-( -OT) -B-SIN(ARG)+C+(1.0-COS(ARG)) OEGO5950

10 RETURW 0EGOS960
END OEG0S970

C OEWS980
C • COMPUTES OFF-DIAGONAL SOLUtION BLOCKS OF :4 (TYPE IV) OEGOS990
C OEGLNKW

SUBROUTINE OFOIAG(OT.SIGI.SIO2.OMI.0042.011.012. OEG06010
•	 021.D22.AM11.AM12.AM21.AM22) DEG 0&020
SIGT n SIGI+SIG2 DEGO6030
S-SIGT • (-OT) DEGO6040
ARGP-(002+OM1)-(-DT) OEGO60SO



B-12

FILE: OEOCON FORTRAN A
	

VM/SP CONVERSATIOW.L MONITOR SYSTEM

ARGMn (OM2 .OM1) • (-OT) OEG06060
A n -((OM2-00") 9 (011+022)+SIGT • (012-021))/ OIGM70

•	 (2.0-((GM2-OM1)•.2+SI0T••2)) 01006060
8-((M  -0111) • ( 021-012)+7 1 I GT • ( 011+022)) / OE 006090

6	 (2.0*((OM2-OM1) + *2+SIGT* 9 2)) OE006/00
C n -((0112+OM1 ) • (011-022)+SIOT•(021+012) )/ OEG06110

6	 (2.0 9 ((OM2+0M1)+ . 2+SIGT •• 2)) OE006/20
0n -((OM2+001) 0 (021+012)+SIGT • (022-011))/ DEWO130

•	 (2.0• '(OM2+OM1) •• 2+SI0T •9 2)) OE006140
AM11 86♦0+EXP(S)*(A •SIN(ARGM)-O*COS(ARGM)+ 01006150

i	 C•SIN(ARGP)-0•COS(APGP)) OE006160
AM12 a -A-C+EXP(S) • (/*SIN(ARG4)+A+COS(ARGM)+ DEW6170

6	 D•SINiAROP)+C•COS(RRGP)) OE006160
AM21-A-C+EXP(S) • (-S+SIN(AMW)-A OCOS(ARGM)+ OE006190

i	 OOSIN(ARGP)+C*COS(AR(P)) DEGM200
AM22 .6-0+EXP(S)+(A • SIN(ARGM)-d •COS(ARGM)- DEW4210

•	 C•SIN(AROP)+0•COS(ARGP); DEW6220
RETURN OEW6230
END OEW62AO
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