N OTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Mns
 Technical Memorandum 82168

A Complete X-Ray Sample of the High Latitude ($\mathrm{lbl}>2 \mathbf{0}^{\circ}$) Sky from HEAO -1 A-2: Log N - Log S and Luminosity Functions

G. Piccinotti, R. F. Mushotzky, E.A. Boldt, S. S. Holt F. E. Marshall, P. J. Serlemitsos and R. A. Shafer

AUGUST 1981

National Aeronautics and Space Administration
Coddard Spece Flight Center Greenbelt, Maryland 20771

Mns

Technical Memorandum 82168

A Complete X-Ray Sample of the High Latitude ($1 \mathrm{bl}>\mathbf{2 0}^{\circ}$) Sky from HEAO -1 A-2: Log N-Log S and Luminosity Functions

G. Piccinotti, R. F. Mushotzky, E.A. Boldt, S. S. Holt F. E. Marshall, P. J. Serlemitsos and R. A. Shafer

AUGUST 1981

National Aeronautics and
Space Administration
Goddard Spece Filight Center
Greenbelt, Maryland 20771

A COMPLETE X-RAY SAMPLE OF THE HIGH LAMITUDE $\left(|\mathrm{b}|>20^{\circ}\right)$ SKY FROM HEAO-1 $\lambda-2:$ LOG N - LOG S AND LUMINOSITX FUNCTIONS

G. Plccinoteli, R.F. Mushotzky, E.A. Boldt, S.S. Hole, F.E. Marahall, P.J. Serlemtesos and R.A. Shafer ${ }^{2}$

*inboratory for High Energy Astrophyslas
NASM/Goddard Space Flight Center Greenbelt, Maryland 20771

ABSTRACT

The HEAO-1 experiment $A-2$ has performed a complete X-ray survay of the 8.2 staradians of the sky at $|b|>20^{\circ}$ down to a limiting sansitivity of $\leqslant 3.1$ $\times 10^{-11}$ arcs $/ \mathrm{cm}^{2} \mathrm{sec}$ in the $2-10 \mathrm{keV}$ band. Of the 85 detected sources (excluding the IMC and SMC sources) 17 have been ldentifled with galactic objects, 61 have baen ldentified with extragalactic objects and 7 remain unidentified. The $\log \mathrm{N}-\log \mathrm{S}$ relation for the non-galactic objects l - well fit by the Eucildean relationship. We have used the X-ray spectra of these objects to construct $\log N-\log s$ in physical unics. The complete sample of Identified sources has been used to construct X-ray iuminosity functions, using the absolute maximum likelthood method, for clusters of galaxies and active galactic nuclei.

Keywoxds: X-Ray Sources, Luminosity Function, Cosmic X-Ray Background
${ }^{1}$ NAS/NRC Resparch Asgoclate
${ }^{2}$ Also Dept. Physics a Astronomy, Univ, of Maryland

I. INTRODUCTION

The HEAO-1 satellite experinent $\boldsymbol{A - 2}$ (Rothschlid et al. 1979) with les extended energy range, complete sky coverage, low and stable internal background and moderate matial remolution has enabled us to create a complete catalog of X-ray sources at galactic latitudes $|b|>20^{\circ}$ down to a limiting sansitivity of 3.1×10^{-11} exg $/ \mathrm{cm}^{2} \mathrm{sec}$ Ln the $2-10 \mathrm{keV}$ band. Recent Identifications of these sources by modulation collimator experimentis on HEAO-1 and SAS-3 as well as imaging detectors on HEAO-2 has resulted in certain identifications of all sources of flux $\geq 4.0 \times 10^{-11}$ ergs/cm ${ }^{2}$ sec. pending confirmation of two clusters and NGC 7172, and reasonable Identifications for 78 out of the 85 (92\%) sources in the sample, A11 but 9 of these identifications are extremely likely or certain. This Ldentification ratio for the extragalactic sources compares to identification of 45 out of 67 (674) sources in the sample of Warwick and Pye (1979).

The completeness of this sample enables construction of the number-intensity distribution $(\log N-\log S)$ for X-ray sources as well as developing X-ray iuminosity functions for ciusters of galaxies and active galactio nuclel. In addition the body of X-ray spectral data returned by $A-2$ allows us to cast the $\log N-\log S$ distribution in absolute rather then instrument dependent units which enables comparison with the $\log \mathrm{N}-\log \mathrm{S}$ relation in different X-ray energy bands (cf. Giacconi et al. 1979).

Analysis of this data shows that the source counts are well fit by a "Euclidean" law with

$$
\frac{d N}{d S}=16.5 \mathrm{~s}^{-5 / 2}(\mathrm{R} 15 \mathrm{cts} / \mathrm{sec})^{-1} \mathrm{sr}^{-1}
$$

consistent with previous results despite the quite different samples (Warwick
and pye 1978; Schwarte 1979). The luminowity functions axe well fit by power law reprementationa with

$$
\frac{d N}{d L_{44}} \leqslant 3.50^{-7} \mathrm{~L}_{44}^{-2.15}\left(10^{44} \mathrm{erg} / \mathrm{sec}\right)^{-1} \mathrm{Mpc}^{-3}
$$

for clusters of galaxies, and

$$
\frac{d N^{d L}}{d 4} \leq 2.7 \times 10^{-7} \mathrm{~L}_{44}^{-2.75}\left(10^{44} \text { erg/aec) } \mathrm{Mpc}^{-1}\right.
$$

for active gatactic nuclei, similar to previous results (McKee et al. 1980 , Pye and Warwick 1979). Integration of the luminoslty functions over the $\leqslant 10^{42.5}-10^{45}$ erg/sec range within which they are well determined results in estimates of the contribution of clusters and active galactic nuclei to the integral $2-10 \mathrm{keV}$ unresolved X-ray background of 44 for clusters and < 208 for active galaxies. Using these luminosity functions, with no evolution, we estimate that $a 30 \%$ of the sources seen in the Einstein Observatory deep survey (Glacconi et al. 1979) should be relatively low Iuminosity $\left(L<1 \times 10^{44}\right.$ erg/sec) nearby $(z \leqslant 0.5)$ objects.
II. DATA ANALYSIS AND SOURCE SELECTION

The HEAO-1 A-2 experiment, describej in detail by Rothschild et al. (1979), provided two independent, low background, high sensitivity surveys of the entire sky six months apart. We have analyzed the A-2 data in order to obtain a complete flux limited sample of extragalactic X-ray bources. The ragion between -20° and $+20^{\circ}$ in galactic latitude has been excluded to minimize contamination from galactic sources. A circle of 6 degrees radius around the LMC sources has been also excluded to prevent confusion problems. Therefore, we remaln with 65.58 of the sky (8.23 ster). The statiftical

Algnificance of the exietence of the mources la teated by deternining the decrease $\ln X^{2}$ when the new source le added to the model. All sources in the sample give a decrease in X^{2} of at least 30. The probablility of having, by chance, a decrease of 30 in X^{2} with two degrees of freedom (scan angle and intensity) is 3×10^{-7}. This probability is almost the same as the one associated with a deviation of 50 in a Gausalan distribution (6×10^{-7}). Therefore, we can also state that the lowest mtatistical significance for the existence of the sources included in our sample is 50 , as required by the maximum likelihood methods we use to determine the $\log \mathrm{N}-\log \mathrm{S}$ parameters (see Section IV-1). Taking into account this statistical significance requirement we estimated the completeness level of the first and the second scan as 1.25 and 1.8 R15 counts/sec respectively, see Figure 1 . One R15 count/sec $\leq 2.17 \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$ in the $2-10 \mathrm{keV}$ onergy band for a power law spectrum with photon index 1.65. R15 is a counting rate derived using the $1.5^{\circ} \times 3^{\circ}$ FWHM flelds of view of the second layer of the argon counter and both layers of a xenon counter. This combination has a FWHM for the quantum efficiency from < 3 to < 17 keV (Marshall et al. 1979).

The second pass is less sensitive on average, because much more time was spent in pointing at sources. We shall be more concerned with the first pass data in deriving best fit parameters and use the second pass ones mostiy as an Independent confirmation.

III. OBSERVATIONS

A. The Sample

Table 1 contains all the relevant data for the 68 sources either brighter than $1.25 \mathrm{Rl5} \mathrm{c} / \mathrm{s}$ in the first scan which corresponds to days 248-437 of 1977, or brighter than 1.8 in the second scan, days 73-254 of 1978. Source names are listed in column 1. Column 2 contains previous catalog names.

First pass !luxes and 10 errors are in column 3, while the seoond pase ones are in coliunn 4. Sows fluxes may diffor silightly from proviously reported results, as different procedures have been used, e.g., in the recent paper by McKee ot al. (1980) fluxes have been obtained fixing the x-ray position at the optical position, instead here we have used the best fit X-ray position to derive the flux. Ayailable identificatione are ilsted in column 5, The type of object in in column 6. One * in column 7 indicates firm identification (1.e. as provided by the SAS-3 or HEAO-1 modulation collimators or by the Einstein X-ray telescope), two *indicates possible identification consistent with larger error boxes. Redshift values and references are given in column 8. Spectral information is now avaliable for more than half of our sources (Mushotzky et al. 1980; Worrall et al. 1980; Mushotzky 1979; Holt' 1980; Boldt 1980), we quote in column 9 conversion factors between Ry 5 counts/s and ergs $\mathrm{an}^{-2} \mathrm{~s}^{-1}$. When spectral information is lacking we assamed a 6 keV thermal breinsstrahlung spectrum for all yources identified with clusters and a 1.65 photon index power law for all sources identified with active galaxies. An average conversion factor value of 2.5×10^{-11} ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1} /$ R15 counts s^{-1} was assumed for the few unidentified sources. Columns 10 and 11 contain the first and second pass 1 uminosities in units of $10^{44} \mathrm{erg} \mathrm{s}{ }^{-1}$ calculated for H_{0} $=50 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ and $\mathrm{q}_{\mathrm{O}}=0.5$. Column 12 contailns notes.
B. Classes of Sources

Sixty of the 82 sources brighter than 1.25 counts s^{-1} in the first scan and not definitely assoctated with galactic objects have been assoctated with extragalactic objects. Oniy 7 remain unidentified at the present time. These 60 Ldentified sources subdivide almost equally between clusters of galaxies (30) and single galaxies (30). Most of the 30 galaxies are seyfert galaxies of class 1 or 2, but we have also 1 Q50 (3C 273), 4 日L Lac objects, and 1
"noxmal" galaxy (NGC 7172). Note that M31 and the Magellantc Cloud mources are not included in our axtragalatlc mample because they represent a local Inhomogenelty as part of the local group of galaxies. pable 2 lists the 17 high galactic latitude sourcea not included in our extragalactic sample because they have been ldentifled with galactic or "local" objecte. The second pass sample contains only 37 sources brighter than 1.8 R15 counts/aec, all but one ldentified. The source classification is consistent with the first pass. Assuming Poisson errors, cluscers contribute 50 ± 98 of the identifled sources in the first pass and $61 \pm 13 \%$ in the second. Galaxies contribute 50 ± 98 in the first scan and 39 ± 108 in the second. C. New Sources and Sample Completeness H0328+025 and H0917-075 are the only entirely new sources in rable 1. Figure 2 shows their error boxes. All the other sources in Table 1 have been 1isted somewhere else before. The improvement in our sample, as compared to previousiy reported ones, is due to a better rejection of non-extragalact c sources, made possible by the recent ldentifications, and to a uniform sky coverage to a relatively low ilmiting fiux.

As the instrument has a fairly large ($1.5^{\circ} \times 3.0^{\circ}$) angular resolution the possibility of source confusion must be considered. The total area of the sky inciuded in this survey is approximately 2.7×10^{4} square degrees, therefore there are about 6×10^{3} independent positions on it. As the high galactic latitude X-ray sources bright enough to give confusion problems at our sensitivity level cannot be more than a hundred using the $\log \mathrm{N}-\log \mathrm{s}$ relation derived later (taking into account als? the possibility that two weaker sources can simulate a source bright enough to be included in our ilst) we therefore expect negligible confusion. That ls using $\frac{d N}{d S} \leqslant 16.5 S^{-1.5}$ there are roughly 65 resolution elements per source, of $S>1.25 \mathrm{cts}$, well above the
corifusion level of 25 beam areas per mource often quoted in the literature. In addition the unf.form sky coverage at the chomen sensitivity levels provided by this experiment and the avaliablilty of two independent aete of data for crose-checking purposes support our confidence in the completenent of our sample.
D. Space Distribution of sources

Slnce the pioneering work of DeVaucouleure (1958) much attention has been davoted to finding evidence of a supercluster centered in the Virgo cluster of galaxies. We plotted the positions of our sources in supergalactic coordinates looking for some kind of aniteotropy. Figure 3 shows the lst pass Bample. Obviousiy, no anisotropy is observed as most sources lie beyond the supercluster. If we restrict our attention to the 12 sources with redshifts legs than .01 (in boxes in Figure 3), we see that 9 are in the center region of the supercluster while 3 are in the anticenter and that all but one have supergalactic latitude less than 30 degrees in absolute value $T h i s$ result, Which is significant at the few percent level, suggests that close X-ray galaxies may lie preferentially in the supergalactic plane. But no conclusion can sallely the inade from such a small number of objects at present.
IV. THE NUMBER-FLUX FUNCTION

The usual power law form

$$
\begin{equation*}
N(S)=K S^{-\alpha} \quad(R 15 \text { counts } / \mathrm{sec})^{-1} g r^{-1} \tag{1}
\end{equation*}
$$

has been assumed for the number-fiux relation. The various methods applied to estimate the coefficient K and the differential exponent α as well as to evaluate the goodness of the fit are outilned in the next aection.
A. Statistical Methods

1. Maximum Likelihood

Crawford, Jauncey ard Murdoch appliled the maximun likelihood method to unbinned dita in order to estimate the wope of the number-fiux relation of radlo sources. In the first paper (Crawford et al. (1970) a molution in worked out for error free data. In the econd paper (Murdoch et i. 1973) the method is extended to include errors on the measured fluxes. Numerical correctlons to the error free anmwor wore calculated for the mpeclal cane of Gaussian distributed errors. In the eame paper it was pointed out that a minimum signal-to-noise ratio of five is required so that the uncertainty in the correction factor due to weaker sources does not dominate the correction itgelf. This is why we excluded from our sample sources with statistical significance less than 5σ. In both fapers I and II the Kolmogorov-Smirnov test (here after: $\mathrm{K}-\mathrm{S}$ test) was suggested to evaluate the goodness of the fit obtained. In the remainder of this paper we will refer to this method as to the Maximum Likelihood (ML) method.
2. Absolute Maximum Likelihoad The NU method assumes the same underlying error distribution for all the souces in the sample, i.e. It assigns the same lo error to all the sources. As we deal with sources of greater than 50 significance the error assumed is one fifth of the minimum flux in the sample, $x x^{4} .25$ R15 counts \boldsymbol{B}^{-1} In the first acan and .36 R15 counts s^{-1} in the second. Table 1 shows that these values are not very far from the actual errors. However Lightman et al. (1980) have developed s_{i} refinement of the ML method In connection with the K-S test capable of handilng sources with their own experimental error. Following those authorg we will call this new statistical method the "Absolute Maxinum Likelihood" (AML) method. Lightman et al. (1980) worked out the AML method on general grounds and then applied it to the evaluation of globular ciuster

X-ray source masese. As this is the cirst application of the NM method to the number liux function, we glve short outling ne the mathod below. Asmuming the form (1) for the number-flux relation and oaveian form $\rho\left(F_{i, 1}, \sigma_{1}, 8\right)$ for the error dietribition of the meanured fluxes we evaluated numerically the integral probablilties F_{1} (a) as

$$
\begin{equation*}
\hat{P}_{1}(\alpha)=\frac{f_{m i n}^{L_{d F}} f_{c o}^{\infty} d s N(s, \alpha) \rho\left(F, \sigma_{1}, s\right)}{f_{m i n} f_{c o}^{\infty} d s N(s, \alpha) \rho\left(F, \sigma_{1}, s\right)} \tag{2}
\end{equation*}
$$

where S is the true fiux, F_{i} and σ_{1} are the masurai, fiux and error of the i-th source. $F_{c o}$ is a cutoff value used to avold the apparent divergence at F $=0$. As in Murdoch et a1. (3)73) the particular cholce of the cutoff value does not affect the value of the integral as long as the statistical significance of the sources is at least 50 . Fmin is the semsitivity ilmit of the sample. For every assumed α we computed the ${\underset{F}{i}}(\alpha)$ for all the sources. The $\mathbb{P}_{1}(\alpha)$ should be unlformiy distributed between 0 and I. Following Lightman et al. we evaluated the maximum deviation from the uniform distribution:

$$
\begin{equation*}
D_{\max }(\alpha)=\max _{i=1, N}\left[D_{i}(\alpha)\right]=\max _{i=1, N}\left(\left|P_{i}(\alpha)-\frac{1}{N}\right|\right) \tag{3}
\end{equation*}
$$

where N is the number of sources in the sample and the ${\underset{P}{f}}_{\mathbf{1}}(\alpha)$ have been sorted In ascending order. Then we calculate the probability $p\left(D_{\text {MAX }}(\alpha)\right)$ of observing deviations greater than $D_{M A X}(\alpha)$ from the formula for the $K-S$ statistic given by Birnbaum and Tingey (195i)n The $\left(\alpha, P\left(D_{\max }(\alpha)\right)\right.$ function is then plotted. The best fit value of α is the one corresponding to the maximum
value $P_{\text {max }}$ of the $P\left(D_{\max }(\alpha)\right)$ dietcribution. obviousily $P_{\text {max }}$ must be greatex than mone minlmum value (say 100) in order to accept the model. the range In a far resulte given below on a are evaluated from the valuen a_{1} and a_{2} of a, which reduce $P\left(L_{\max }(\alpha)\right)$ to $P_{\max } / 2$.
3.Chi-Square

Both the ML and the MU methode are Independent of the coefficient k of the number-flux relation, an k is lost in normalizing the probabilithes. Therefore, we used the x^{2} method to determine k. Bins with equal expected number of sourcen for $\alpha=2.5$ have been used for the x^{2} calculations. of course, in calculating conftdence bounds, we have assumed that the functional form of the distribution is the "true" one. If better data later shows that this is not true our confidence values are not applicable.
V. LOG N - LOG S RESULTS

The ML method applied to the 60 non-galactic sources brighter than 1.25 R15 counts s^{-1} in the first pass gives (in this section we use R15 counts s^{-1} as the unit)

$$
\alpha=2.67 \pm .23
$$

with a goodness of flt probability (evaluated using the KS test) of 39.5 percent.

For the 37 non-galactic sources brighter than 1.8 R15 counts s^{-1} in the second pass the Mu result is

$$
a=2.74 \pm .32
$$

with a probability of 17.5 percent.
The anc rasulte ara

$$
a=2.63 \pm .2
$$

in the firme pase, see Figure 4a, and

```
a=2.74 士.22
```

In the mecond, mee Figure 4 t.,
The 68 and 95 percent probmbility contourn for the lat pass values of k and a evaluated with the x^{2} methoa are plotted in Figure $4 c$ The X^{2} bent fit values and 10 errors for the number-flux function parameters are

$$
\begin{align*}
& \alpha=2.72^{-.10}+.15 \tag{4}\\
& \kappa=20_{+4.0}^{-2.6} \quad(\text { R15 counts } / \mathrm{sec})^{\alpha-1} \mathrm{ar}^{-1} .
\end{align*}
$$

The differential number-flux data as well as the best fit function

$$
N(S)=20 \mathrm{~s}^{-2.72} \quad(\text { R15 counts } / \mathrm{sec})^{-1} \mathrm{gr}^{-1}
$$

are plotted in Figure 5; the χ^{2} value of the fit is 2.79 for 6 degreas of freedom, corresponding to a probability $P\left(>x^{2}\right) \leq 838$. The ilmited size of the second scan sample does nec allow a good estimate of the probability but the results are consistent with the first pass ones.
C. Number Fiux Relation in Physical Unita

Using the converilions factors listed in column (9) of Table 1 we can
expreas the fluxes in erge $\mathrm{cm}^{-2} \mathrm{~m}^{-9}$ and ovaluate the number-flux relation accordingly. Conversion factors range approximately from 2.0×10^{-11} to $2.9 \times$
 spectra sources whose emission peak lies below our instrument energy window. As a consequence of the different conversions factors the completeness level of the samples when fluxes are in exgs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ is equal to the former completeness level in R15 councs s^{-1} times the maximum conversion factor: that is $\leqslant 3.6 \times 10^{-11}$ ergs $\mathrm{cm}^{-2} \mathrm{~g}^{-1}$ for the first pass and 5.2×10^{-11} ergs $/ \mathrm{cm}^{2} \mathrm{sec}$ in the second pass. The lst scan sample with this flux restriction contains 51 scurces: 25 ciusterg, 22 "gaiaxies" and 4 unidentified sources. The best fit values and 1σ errors for the number-fiux function parameters obtained with the three methods agree with

$$
\begin{align*}
& \alpha \leq 2.85 \pm .3 \\
& k \leq\left(5.65_{+1.9}^{-1.3}\right) \times 10^{-19}\left(\text { (ergs } \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)^{\alpha-1} \mathrm{Br}^{-1} \tag{5}
\end{align*}
$$

The 32 second scan sources brighter than 5.2×10^{-11} ergs $\mathrm{cm}^{\mathbf{- 2}} \mathrm{s}^{\mathbf{- 1}}$ give us a best fit of silightly steeper slope $\alpha \leq 3.1 \pm .4$.
vi. discussion of the results

All the first pass samples, whether fiuxes are expressed in R15 counts s^{-1} or in ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ are consistent with the five halves Euclidean slope (see Figures 6 and 7). The glight preference for a steeper than Euciedian slope is due to the distribution of the brightest few sources in calculating the likelihood functions. It is these sources that are most sensitive to changes in α by virtue of the relatively smail statistical error in their measured intensity. Our Euclidean best fit for the lst pass data is

$$
N(S)=16.5_{-2}^{+3} s^{-2.5} \text { (R15 counts/s) } \mathrm{s}^{-1}
$$

with a x^{2} of 5.5 for 7 degrees of freedomi $\rho\left(x^{2}>5.5\right) \leq 604$. The NaL probability for am 2.5 is 42.4. Assuming an average conversion factor of 2.4 $\times 10^{-11}$ erge $\mathrm{cm}^{-2} \mathrm{~g}^{-1}(\text { R15 counta s) })^{-1}$ the relation (4) becomen

$$
N(S) \leq\left(1.9^{+.35}-.25\right) \times 10^{-15} \mathrm{~s}^{-2.5}\left(\text { orgm } \mathrm{cm}^{-2} \mathrm{~m}^{-1}\right)^{-1} \mathrm{er}^{-1}
$$

In agreement with the exact result

$$
\left.N(s) \leq\left(2.2^{+.3}\right) \times 10^{-15} \mathrm{~s}^{-2.5} \text { (orgs } \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)^{-1} \mathrm{sr}^{-1}
$$

obtalned from the list pass complete sample for fluxes \ln ergs $\mathrm{cm}^{-2} \mathbf{B}^{-1}$ and using the conversion factors in Table 1.
VII. COMPARISON WITH PREVIOUS EXPERIMENTS

Both the Uhuru (Schwartz 1979) and Arlel 5 data (Warwlek and Pye 1978) gave a flux-number function conslistent with the Eucildean model. Their best fit values for the coefficient k with $\alpha=2.5$ and s in R15 counts a^{-1} are respectively

$$
K=16.5 \pm 3.9 \quad \text { using } I \text { Uhuru } \mathrm{ct} / \mathrm{s}=1.0 \text { R15 ct/sec }
$$

and

$$
K=15.8 \pm 4.2 \quad \text { ualing } 1 \text { Ariel-5 } \mathrm{ct} / \mathrm{sec}=2.12 \mathrm{R} 15 \mathrm{ct} / \mathrm{sec}
$$

In agreement wi.th our results at the 10 level. Theze conversion factors assume a mean k 15 conversion factor of $2.4 \times 10^{-11} \mathrm{ergs} / \mathrm{sec}, 1$ Uhuru $\mathrm{ct} / \mathrm{sec}=$ $2.4 \times 10^{-11} \mathrm{erg} / \mathrm{sec}$, and 1 Ariell-5 count $/ \mathrm{sec}=5.1 \times 10^{-11} \mathrm{erg} / \mathrm{sec}$. If we use the callbration of Marshall et al. (1979) appropriate for the active galaxies of $1 \mathrm{R} 15 \mathrm{ct} / \mathrm{sec}=2.17 \times 10^{-11} \mathrm{Erg} / \mathrm{cm}^{2} \mathrm{sec}$, we find KUhuru $\leqslant 20$ and

conalutent with our remult.

virit LUMINOSITY FUNCRION

A. Method and Data Bame

Many authora (Schwartx 1978; McHardy 1978, MoKee et al. 1980, Eivin et a1. 1977, Pya and Warwlok 1979, Tananbaum ot al. 1978; bolde 1980) have recently considered the problem of evaluating the x-ray 1 uminosity functlons for duferent classen of mourcea principaliy, clusters of galaxles and active galaxtes. Al, of them with the exception of pye and Warwick had to rely upon opt land data to adect complete samples. We present here X-ray luminosity functiona evalusted from X-ray flux 1 hated amples. Aa we ramaln with a few unidenthiled sources, our results have soine uncertadnty, but we belleve that the residual incompletaness should not be very important.

1. The Sampia*

The first pass sample of clusters of galaxias contains 30 objects. The second pass one includes 22 aources. Thinty "galaxies" are obsarved in the flust pass, but we oxalufa from our aanple the QSO 3C273, tha a BL Lac object, the pecullar galaxy M82 and the "normal" galaxy NGC 7172 as they are not homogeneous with the buik of the sampla which consists of Seyfert galaxies. Pharefore wo ramatn whth 23 active galactic nuclet. the gecond peas sample contalna only 12 objecte (after oxcluding 3C 273 and PKS 2155-304).

The complateness of the sample le checked using the Schmidt $\left\langle V / N_{M}\right\rangle$ test and with a K-S test on the distribution of the $V_{1} / N_{M_{i}}$ as suggested by Avni and Bahcall (1980). The resulte are lisuted in Table 3.

CLASS OF OBJECTS	- OBNECTS			K-S TEST
	SCAN	IN SAMPLE	$\left\langle\mathbf{V} / V_{M}\right\rangle$	$P(>d)$
Clumters of Galaxies	1	30	. $471 \pm .054$	18.1
Clusters of Galaxien	2	22	$.552 \pm .062$	11.8
Active Galaxien	1	24	.523土.059	50.4
Active Galaxies	2	12	$.557 \pm .083$	56.8

The 10 error quoted for $\left\langle V / N_{M}\right\rangle$ is the formal error $1 / \sqrt{12 N}$, where N is the number of objeatis in the sample (see Avnil and Bahcall). All the amples meet the requirements of the tests. However, we expect a ainisl degree of incompleteness due to the unidentified sources.
2. Methods of Analygis

Of the three methods outlines in Sec (IV-A) only the AML is suited for the determination of the luminosity function parameters. The relatively small sizes of the samples do not allow an efflcient use of the χ^{2} square method or of any other binned method. Moreover the ML method in the form developed by Crawford, Jauncy and Murdoch cannot be used because of its assumptions of a single underlying error distribution. This last hypothesis was reasonably satisfied by the flux data in the evaluation of the $\log \mathrm{N}$ log S parameters, as we already pointed out, but is not satisfied at all by the iuminosity data, as the errors are proportional to the square of the redshift of the sources:

$$
\begin{equation*}
\sigma_{L_{1}} \sim z_{i}^{2} \sigma_{F_{1}} \tag{6}
\end{equation*}
$$

On the contrary the AML method is well suited for the task. The description of Section IV-A still applies. However, Instead of calculating the probabilities of eq (2) we evaluated the probabilities:

Eq. (7) glves the integral normalized probabilities of observing a source with measured Iuminosity less or equal to L_{i}, assumipg a Gaussian error distribution with standard deviation $\sigma_{L_{i}}$, and for the differentiai luminosity function the form $f(L, q)$ where L is the true luminosity and q represents the functional parameters to be determined. $L_{\text {min }}$ and $I_{m a x}$ are the lower and upper boundaries of the luminosity function. $V_{M A X}$ lis the maximum volume at which one could detect the source and depends on the sensitivity limit of the sample. For a source of luminosity L in a sample of minimum sensitivity FMIN the maximum visibility volume $V_{M A X}$ is proportional to $\left(\sqrt{L / F_{\text {min }}^{\prime}}\right)^{3}$ Note that Eq. (7) does not take in account errors on the redshift 2. The AML method can determine the form of the luminosity function but not its absolute value. Therefore we have used a least squares fit to the unbinned data to evaluate the multiplicative coefficient.
B. Results

1. Clusters of Galaxies Luminosity Function We considered two different forms for the luminoaity function: the power law form

$$
f(L)=K L^{-\gamma}
$$

and the exponent ial form

$$
f(L)=K e^{-L / L_{0}}
$$

between the minimum ($L_{44 m i n}$) and maximum ($L_{44 m a x}$) observed luminosities, expressed in units of 10^{44} ergs sec^{-1}. The normalization for a power law Iuminosity function scales as $\mathrm{H}_{\mathrm{O}}{ }^{-1}$.

Clusters of Galaxies
Figure 9 represents the $A M L$ probabilities for the siope of the cluster of galaxies power law luminosity function. The lst pass best fit values for the power law parameters are

$$
\begin{aligned}
& Y=2.15^{+}=.12 \\
& K=(3.5 \pm 1.1) \times 10^{-7}\left(10^{44} \mathrm{erg} / \mathrm{s}\right)^{\gamma-1} \mathrm{Mpc}^{-3}
\end{aligned}
$$

K has been evaluated with the least squares method. The error on K has been determined by letting γ assume the 1σ extreme values of 2.03 and 2.32. Figure 8a gives a binned representation of the data with the best fit luminosity function. Each bin contains three sources, except for the highest luminosity bin which contains five. The second pass results are

$$
\begin{aligned}
& Y=2.13^{+.16} \\
& K=(3.8 \pm 2) \times 10^{-7} \quad\left(10^{44} \text { ergs }_{8}\right)^{Y-1} \mathrm{Mpc}^{-3}
\end{aligned}
$$

Figure 8 b give the binned representation. The minimum Iuminosity object in both the 1 st and the 2 nd pass at 2.4×10^{43} (ergs/s) is the Virgo cluster. The highest luminosity cluster is Abell 2142 with 2.8×10^{45} (ergs/s).

The exponential form of the luminosity function has also been considered, but the quality of the fit is poorer, see Figure 10.

As the Virgo Clueter of galaxies has alocal" character, we evaluated the cluster of galaxien luninoslty function without the Virgo cluster. The 1et pase ample is reduced to 29 sources, the mean $V / V_{M A X}$ is 0.486 ± 0.055 and che K-S text on the uniformity of the $V / V_{M A X}$ dietribution gives a probablility of 24.7. The 2nd pass sample concains 21 mources, the mean $V / V_{\max }$ is $0.576 \pm$.063 and the K-S probability is 6.1t. Figure 9 given the usual ($\gamma, P(\gamma)$) probability curves for the power law slope. The begt fit values for the parametera are

1st scan

$$
\begin{aligned}
& Y=2.03 \pm .18 \\
& K=\left(2_{-1.2}^{+1.2}\right) \times 10^{-7}\left(10^{44} \text { ergs/s }\right)^{\gamma-1} \mathrm{Mpc}^{-3}
\end{aligned}
$$

2nd scan $\gamma=2.07_{-.25}^{+.2}$

$$
K=(3.2 \pm 2) \times 10^{-7} \quad\left(10^{44} \mathrm{ergs} / \mathrm{s}\right)^{\gamma-1} \mathrm{Mpc}^{-3}
$$

The minimum luminosity is now $\leqslant 3.6 \times 10^{43}$ ergs/s (Abell 1060) in boch first and second scan. The exponential fit is again poorer, see Figure 10.
2. Active Galaxies

1. Luminosity Function

The ingert in Figure 11 represents the AML probability for the power law slope of the active galaxies differential luminosity function calculated from the lst pass data. The best fit values for the power law parameters are:

$$
\begin{aligned}
& Y=2.75 \pm .15 \\
& K=(2.7 \pm .15) \times 10^{-7}\left(10^{44} \mathrm{ergs} / \mathrm{s}\right)^{Y-1} \mathrm{Mpc}^{-3}
\end{aligned}
$$

NGC 3227 is the weakest source in the sample with 1.75×10^{42} ergs/s and

IIIZw2 is the brightest with 1.03×10^{45} ergs/m. Figure 11 ghow the binned representation (3 sources/bin), This result le sinilar to that of Boldt (1980) and Pye and warwick (1979). The exponential form for the luminosity function is not acceptable as the probabilities are alway lese than 28.

The second pass sample is too small for a good determination of the Iuminosity function, however we flnd power law slopes steeper but consistent whth the first pass ones

1i. A Lower Limit to the Active Galaxy Luminosity Function The active galaxies contribution to the cosmic X-ray background depends strongly on the lower luminosity limit of the luminosity function. The lower 1 uninosity 1 imit for which the function can represent the dara, $L_{44 M I N}$ can be caloulated by noting that the luminosity function must be consistent with the $\log N-\log s$ observations. Namely, we can set a lower limit on $L_{44 M I N}$ by requiring that the number of active galaxies brighter than 1.25 R15 counts/sec expected from the luminosity function does not exceed the observed number plus 1 or 2 times the square root of the expected number.

From eq (14.7.35) of Weinberg (1972), and assuming a power law
Iuminosity function we have (for $\gamma \geqslant 2.5$ and $\gamma \neq 3$)
where: S is the flux in ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
K and Y are the parameters of the differential power law luminosity function in $\mathrm{Mpc}^{-3}(\mathrm{erg} / \mathrm{sec})^{-(\gamma-1)}$
$L_{\text {MAX }}$ and $L_{\text {MIN }}$ are the upper and lower limit of the Iuminosity function (actually $N(>S)$ depends strongly on $L_{\text {MIN }}$ and very weakiy on $I_{\text {MAX }}$)
all the luminonities are in erge/a
$A \pm 3.20 \times 10^{-75}$
$B=4.7 \times 10^{-29}$ (assumling $H_{0}=50 \mathrm{~km} / \mathrm{m} / \mathrm{MpC}$)
$N(>S)$ in the total number of sources in the aky uncorrected for sky coverage. The second term of this equatalon represents a ilret order comological correction to the Eucledian result. (1)
(1) Footnote:

For L in units of $10^{44} \mathrm{erg} / \mathrm{sec}$ equation (8) has constants $A=3.2 \times 10^{-9}$
$B=2.3 \times 10^{-7}\left(H_{0} / 50\right)(1+\Gamma)$ where Γ is the spectral index of the source (here chosen to be .7)

Assuming an average conversion factor of 2.17×10^{-11} ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per R15 counts s^{-1} we find that the 10 lower 1 imit on $L_{M I N}$ is 4×10^{42} when γ is 2.75 and K is $2.68 \times 10^{-7}\left(10^{44} \text { ergs } / \mathrm{s}\right)^{-1} \mathrm{Mpc}^{-3}$ and L_{MAX} varles between 5 and $15 x$ 10^{44} ergs/sec.

In Table 4 we show the 1 and 2σ limits on $L_{\text {MIN }}$ as a function of $L_{\text {Max }}$ and γ. We note that we have not included in Table 4 the possibility that all (or some) of the unidentifled sources could be seyfert galaxies. However, consldering the distribution of identified sources with flux < 3 R15 cts/sec, we would expect, at most, 3 of these unidentified objects to be active galaxies.

$$
\begin{gathered}
\text { TABLE } 4 \\
\text { APPROXIMATE LMIN FOR VALUES OF } L_{\text {MAX }} \text { AND } \gamma \\
L_{\text {MAX }}=1.5 \times 10^{45} \quad L_{M A X}=3 \times 10^{45}
\end{gathered}
$$

	γ		γ			
2.6	2.75	2.9	2.6	2.75	2.9	
$10_{1.5 \times 10^{42}}$	2.5×10^{42}	4.5×10^{42}	1.5×10^{42}	3.0×10^{42}	4.5×10^{42}	
20						
4.5×10^{41}	1.5×10^{42}	2.5×10^{42}	5.5×10^{41}	1.5×10^{42}	3.0×10^{42}	

C. Discussion

1. Clusters of Galaxies

We note that our luninosity function for clusters of galaxies is very similar to the result of McKee et al. (1980). This indicates that, whatever selection effects are operating in making a X-ray or opticaliy complete sample, they do not strongly blas the result, However there is a strong overlap in the individual objects between this sample and McKec's. The method we have used has allowed us in principle to discriminate between exponential and power law luminosity functions for clusters. It is somewhat surprising that a power law is favored, since it requires a change in form at low luminosities in order not to exceed the space density of all clusters (Bahcall 1979). However, the contribution of clusters to the diffuse X-ray background (DXRB) depends oniy weakly on the lower limit chosen, we do remind the reader that an exponential form is not excluded. Our data are not capable of rejecting the exponential form. They are also not capable of determining well the three constants in Bahcall's (1979) suggested form of the luminosity function.

Keeping in mind that the mean X-ray spectrum of clusters differs significantly from the diffuse X-ray background we shall, for historical reasons, compare the $2-10 \mathrm{keV}$ volume emissivity of clusters to that of the diffuse X-ray background. For $q_{0}=1 / 2, H_{0}=50 \mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}$ the $2-10 \mathrm{keV}$ background has a volume emissivity of $\subseteq 2.4 \times 10^{39} \mathrm{erg} / \mathrm{sec} / \mathrm{Mpc}^{3}$. The
contribution of clusters is

$$
\int_{L_{M A X}}^{L_{M I N}} Y(L) L d L \leq 1 \times 10^{38} \text { arge/eec/Mpc }{ }^{3}
$$

fror $\mathrm{I}_{\text {MAX }}=3 \times 10^{45}$ ergs/mec, $\mathrm{L}_{\text {MIN }}=1 \times 10^{43}$ ergs/sec, where we have used the lst pass cluster power law luminosity funceton without the Virgo cluster). Therefore, in an average sense, clusters contribute 4 at of the $2-10 \mathrm{keV}$ background. (For a more accurate treatment of the problem which Includes the effect of the spectral differences of clusters from the background see McKee et al. 1980 and Marahall et, al. 1980), We note that the present value agrees well with the estimate made by Marshall et al. (1980) of the maximum possible contribution of clusters if they were not to distort the thermal bremsstrahlung fit to the spectrum of the DXRB in the $3-50 \mathrm{keV}$ band. We note that the relatively soft spectra of clusters should resuit in an increase in their contribution to the DXRB in the Einsteln observatory energy range.

2. Active Galaxies

The luminosity function derived here is in reasonable agreement with those derived previously by Pye and Warwick (1979) and Boldt (1980) in both slope and normalization. Using a lower bound of 3.0×10^{42} erge/sec and a upper bound of $1.5 \times 10^{45} \mathrm{erg} / \mathrm{sec}$ for our luminos!ty function results in a volume emissivity of $\leqslant 4.9 \times 10^{38}$ ergs/sec Mpc^{3} or a contribution of 5208 to the 2-10 keV DXRB. If the lower Iimit is 1.2×10^{42} (see Table 4) the contribution to the DXRB is < 408. In ract, in order not to exceed the DXRB the Iuminogity function of AGN's mast flaten at $L \geq 3 \times 10^{41}$ ergs/sec (De Zotti 1980). There is a strong indication of such a flattening in the optical Iuminosity function (Huchra and Sargent 1973; Huchra 1977; Huchra 1980) at

My $4-21.5\left(H_{0}-50\right)$ equivaient to optical bolometric iuminonity of $41.2 \times$ 10^{44} ergs/aec. Since the slope of the optical Iuninosity function, at higher Iuminowitles, is the mamo, within errore, (Huchra and sargent 1973; Weadman 1979) as the x-ray cunction it in tempting to aseoctate the bend in the optical luminomlty function with the bend in the X-ray function and therefore derive $L_{\text {opt }} / L_{x} \leqslant 35$. Thli value in rather larger than that found by examing Individual objects (Krdes et al. 1980, Elvie et al 1978). Inla may be due to the fact that most of the optical flux from low luminosity active galaxies does not come from the nucleus but from the atellar population. The total space density of X-ray emitting active galaries in the Iuminosity range $3 \times 10^{42}-1.5 \times 10^{45}$ is $<7 \times 10^{-5} \mathrm{Mpc}^{-3}$ which is 4.54 of all galaxies of $M_{p}<-19$ (Huchra 197\%). This comparen to a mace density of active galaries of $M_{p}<-19$ of $\leqslant 5 \times 10^{-5} \mathrm{Mpc}^{-3}$ (Huchra 1977, 1980). It thus seems, to first order, thet all active galaxies of $M_{p}<-19$ emit X-rays at L_{x} $>3 \times 10^{42}$ ergs/sec. For a flat universe there are (assuming no evolution) $\leqslant 4 \times 10^{7} \mathrm{x}$-ray emiteting active galaxies with $L_{x}>3 \times 10^{42}$ with $z<$ 3.5 .

We can also estimate, the number of sources per equare degree expected in the Einstein deep survey if the luminosity function used in this paper does not evolve strongly in elther siope or norm and that spectral effects, such as low energy absorption, are not important. With $q_{0}=.5, I_{m i n}=3 \times 10^{42}$ in the $2-10 \mathrm{keV}$ band and, $S_{\text {min }}=5 \times 10^{-14} \mathrm{ergs} / \mathrm{cm}^{2} \mathrm{sec}$ in the $2 \cdot 10 \mathrm{keV}$ band, (which corresponds to the Elinstein "deep survey" limit for a $\alpha=0.7$ source we predict $\leqslant 6$ active galaxies per square degree and $\leqslant 1.3$ clusters per square degree, compared to the 19 ± 8 total sources per square degree seen by the Einstein Observatory (Glacconl et al. 1979). Dezocti (1980) has performed a similar calculation and finds $\leqslant 5$ active galaxies per square dagree for $L_{m i n}=$
9.1×10^{41} and $4_{\max }-2.9 \times 10^{44}$ erge/eec in the $2-6 \mathrm{keV}$ band and amuming that the slope of the luminostey function le 2.5. gince mont of the objects are near $L_{\text {min }}$ we would expect many of the Einetein survey objeat: to be seyfort galaxien of $L_{x} \leqslant 5 \times 10^{42}$ exg/eec and $z \leqslant .20$. This is a consequence of the well known fact that if the luminosity function is steeper than 2.5, and barring etrong evolution, when one lookw at falnter objecte one le looking primarily lower in the luminosity function rather than at higher redehift objecte.

A mimple way to look ai the problem is to examine the number of objectis predicted by our best fit luminosity function which would have redshifte (z) $\{0.5$ and would have iuminomities high enough to have been included in the Einmtein Deep Survey. (We shall use $q_{0}=.5$ or 0 geometry for simplicity). For $S_{m i n}=5 \times 10^{-14}$ erge/ cm^{2} sec in the $2-10 \mathrm{keV}$ band and $\mathrm{q}_{0}=.5$ that we predict $<1.4 \times 10^{4}$ sources/eter due to active galaxies and $\leqslant 1.4 \times 10^{3}$ sources/ster due to clusters compared to the $6.3 \pm 2.6 \times 10^{4}$ sources/eter seen In the deep survey (Giacconi et al. 1979). We therefore predict that 425817
of the sources in the deep survey are low ($L \leqslant 4 \times 10^{43}$) close by ($z \leqslant .5$) active galaxies or clusters of galaxles of luminosity $>1 \times 10^{43} \mathrm{erg} / \mathrm{sec}$. That this was a likely dituation was noted by Fablan and Rees (1978). (If q_{0} $=0$ the number of sources increases to $\leqslant 2.1 \times 10^{4}$ sources/ster and the calculated contribution to the Einstein source counts to 35_{-11}^{+24}).

Both the contribution of active galaxies to the DXRB and their contribution to the Einstein source countis depend sensitively on the lower 1imit, $L_{m i n}$ of the iuminosity function used. It is poseible that the Iuminosity where the flatening of the luminosity function takes place could be higher than our calcuated value if we allow a two siope model of the Iuminosity function rather than our stmple single slope power law model with a
cutoff. However our date are not good anough to conatraln auch a model. ive therefor atrongly caution the reakar that these reauit are model dependent and should be treated as such.

IX. CONCLUSIONS

Wo have performed an all my aurvay of x-ray mourcen complate to a Ifmiting menditivity of $3.1 \times 10^{-11} \mathrm{ergm} / \mathrm{cm}^{2} \mathrm{sec}$ in the $2-10 \mathrm{keV}$ band. of the 85 detected sources only 7 remain without reasonable idantifications. The $\log \mathrm{N}-\log \mathrm{S}$ relation for extragalactic mources le well lit by a Eucilidean Law $\frac{\mathrm{dN}}{\mathrm{dS}}=16.5 \mathrm{~s}-2.5$ where S is in R15 ct/aec or $\frac{d N}{d S}=2.2 \times 10^{-15} \mathrm{~s}^{-2.5}\left(\mathrm{erg} / \mathrm{cm}^{2} \mathrm{~s}\right)^{-1} \mathrm{ra}^{-1}$ where s is in org $/ \mathrm{cm}^{2} \mathrm{~s}$ in the $2-10$ keV band. This complete sample has allowed conatruction of luminosity functions based on a flux ilmited sample for clusters of galaxies and active galactic nuclei. These functions are well represented by power laws of slope 2.05 and 2.75 respectively. The sample enables us to estimate that the 1uminosity function for active galaxies should flaten at $L \not\}^{3} \times 10^{42} \mathrm{arg} / \mathrm{sec}$ In the 2-10 keV band. The ciface density of X-ray emitting active galaxies is approximately the same as that of opticaliy selected seyfert galaxies.

Integration of the best fit luminosity functions indicates that clusters of galaxies contribute < 48 of the 2-10 keV diffuse X -ray background and active galactic nuciei < 204. 'me sum of these contributions is very similar to the 26 ± 118 contribution due to resoived due to sources seen in the Einstein deep survey. We also predict that many of the objects seen in the deep survey should be local, ($z<0.5$), relatively low luminosity active galactic nuclei and clusters of galaxies. In order to determine more accurately the contribution of low iuminosity active galaxies to the diffuse X-ray background one would have to sampie the luminosity range $10^{41-42.5}$ over large solid angles. This would require a complete sky survey with < 30 times the
ensitivity of the present one and a angular resolution 520 times better. Such a murvey would also extend the luminosity function up to luninosities of $\leq 10^{47}$ ergs/eec. We stress the importance of a complete unblased X-ray murvey with good identifications in determining $\log N-\log S$ and $\operatorname{luminosity}$ functions since there are various classes of sources of widely varying X-ray to optical luminosities. We feel that this strategy rather then deep observations over small solid angles will determine $\log \mathrm{N}-\log \mathrm{s}$ and the Iuminosity functions most accurately for the local epoch since for a given observing time and fixed instrumental parameters the number of observed sources greater than some statistical limit is maximized when the solid angle is maximized at a given completeness level for a photon ilinited experiment. ACKNOWLEDGMENTS

We thank J. Swank for extensive discussions and her major contribution to the HEAO-1 analysis program. We thank J. Huchra, D. Schwartz, W.H.M. Ku and C. Forman-Jones for communicating results prior to publication and G. DeZotti and T. Maccacaro for interesting discussion and D. Schwartz for a careful reading of the manuscript.
TABLE

（1）	（2）	（3）		（4）		（5）	（6）（7）	（8）		（9）	（15）	111	（12）
HAETE＋185	251／1／7＋187	1.64	.21	＜1．35		IIIZW2	1 －	． 1898	M3	2.175	12.3		
H5839－896	$\begin{aligned} & \text { 2A AE 39- } 966 \\ & \text { 4UEE37-1 } \end{aligned}$	2.64	． 24	3.21	.38	ABELL 85	6 ＊	．$\$ 499$	HSM	2.515	7.25	1． 82	
H－1754－815	2A0／054－815 4UR155－81	1.74	.33	2.13	.35	ABELL 119	6 ＊	． 8446	N	2.55	3.89	4.76	
HE111－149		1.49	． 22	． 93	． 35		7			2.501			1
H1122－591	2AD12每－591 CUE186－59	1.29	． 18	1.38	． 2	FAIRALL 9	1 ＊	． 8461	W3	2.175	2.63	2.41	
H8123－352	2AE12E－353 4U5115－3．6	2.52	.19	1．84	.28	NGC526A	1 ＊	． 118	W3	2.175	.772	.319	
HE286－019	H\％2\％6－819	1.34	． 23	． 87	.41	MKN598	1 －	． 127	W1	2.175	－ 0.91	5.59	
H8235－52	2A1235－52	2.12	1.4	． 99	.23		7						
H／256＋134	2A8255＋132 1M10254＋132 4UE254＋13	2.95	.24	3.83	． 33	ABELL AEI	6	． 8748	H	2.485	18.3	18.8	
H8316－443	$\begin{aligned} & 2 A 8316-443 \\ & 4 U 821-45 \end{aligned}$	1.82	． 19	1.87	.23	PKS5316－443	6 －	． .89	MA	2.521	16.7	9．42	
H8335＋896	2AE335＋896， 4U复344＋1！	1.14	． 22	1.86	－ 35	$8335+895$	6 ＊	． 84	SC	2．815	2.25	3.67	
He342－538	$\begin{aligned} & \text { 2A } 343-536 \\ & 1 \text { ME3 } 28-524 \\ & 4 U g 3 S-54 \end{aligned}$	1.4	． 16	1.42	． 27	CAE342－538	6 ＊	． 852	MO	2．52m	4．21	4.27	
HEA： $1+1$ \％	$\begin{aligned} & 2 A E 411+1 E 3 \\ & 1 \text { M最 } 45+1 E E \\ & 4 U 415+18 \end{aligned}$	2.61	． 3	2.66	． 34	ABELL 478	6	.109	8	2．405	23.6	24．1．	
H8430－615	$\begin{aligned} & 2 A M 438-615 \\ & 1 M / 426-635 \\ & 4 U K 427-61 \end{aligned}$	2.53	． 11	2.88	． 14	SERSICAEJ6	6 ＊	． $86 \pi 1$	V	2.48	15.1	11．4	
H1／431－134	$\begin{aligned} & 2 A 7431-136 \\ & 401 \pi 431-12 \end{aligned}$	2.16	.29	1.73	． 3	ABELL 496	6 －	.838	c2	2.525	3.189	2.48	
H54304．853	$\begin{aligned} & 25543.85 \\ & 4 U 5432+85 \end{aligned}$	2.85	.25	1.53	． 36	3C12I	1 ＊	.833	DV	2.175	2.12	1．59	
HE548－322	1ME545－322 4U5543－31	1.7	． 18	1.2	.25	PKS．548－322	23	． 869	FD	2.675	9.64	6.8	
H6557－385	4UF557－38	1.36	． 16	2.26	.21		1	． 8334	MP	2.175	1．62	2.71	

H) 6310 -561	$\begin{aligned} & \text { 2AB626-541 } \\ & \text { 4UF627-54 } \end{aligned}$	1.98	. 18	2.23	.13	SCE63.541	6	. 0552 V	2.52.	5.55	5.25
H8986-895	$\begin{aligned} & \text { 2AE9\#6-895 } \\ & \text { 4UE9EE- } 99 \end{aligned}$	3. 36	.28	4.16	.26	ABELL 754	6	. 8537 Cl	2.448	12.3	12.9

-
$-\infty$

,
\square $-\infty$

$-$
17.0
$-\infty-$

$2.4 \square$
3.87
25.5
3.42
3.25

 H1346-3
H1411-831
$\mathrm{H} 416+256$

CONFUSED? HITH 2A15194882 H15214282 2A1518+274 $H 1556+274 \quad 2 A 1556+274$
$411556+27$ H16末5-161 2A16AE +164
$1627+396 \quad 2 A 1626+396$
H1630+657 2A163\%4557
H1652+398 $41651+39$
H17日7488 2A1785486
4U17.17+78
4U1835-6E
$111849-781$
$4141916-79$
2A1914-589
4 $4924-59$
2A2.189-569
2A2.-15-115
2A2151-31E
H16.5.-161
H1829-591
H1846-786
H1917-587
H26.19-569
H2641-1E9
H2154-3E4

H2151-6.85	$\begin{aligned} & 2 A 2155-649 \\ & 1 H 2145-652 \\ & 402126-68 \end{aligned}$	1.29	. 21	1.35	. 25	STR2159-612	6 *	-15 WF	2.523	14.9	15.6
N2158-321	2A2151-316	2.08	. 23	1.4	. 29	NGC7172	4	- IE9 DV	2.571	. 18	. 126
H2289-471		1.157	. 21	1.83	. 28	NGC7213	1	. 0658 DV	2.175	.5338	55
H2216-m27	2A2225-822	1.55	. 24	. 98	. 29	3 C 445	2 *	. 8562 OKP	2.175	4.71	2.98
H2233-281	212237-256	1.39	. 22	1.94	. 3	NGE7314	2 c	. 5856 DV	2.175	.8415	.157
H23E1*886	2A22594885 4U23 $5 /+88$	1.77	.25	1.45	. 39	NCC7469	1	. $1167 \mathrm{H1}$	2.175	. 466	.302
H23E2-89\%	$\begin{aligned} & \text { 2A23E2-888 } \\ & 402385-87 \end{aligned}$	1.88	. 25	2.3	. 34	MC62-58-22	1	$.8479 \mathrm{M2}$	2.175	4.14	5.15
H2316-426	2A2315-428	2.51	.23	3.84	. 29	N6C7582	2	. 1848 DV	2.175	.1543	. 165
H23424889	4U2344*88	1.31	. 27	.93	. 33	ABELL2657	6	. H 114 N	2.521	2.49	1.77

COLUMN CAPTIONS:
(2) : PREVIOUS NAMES
(3) : IST SCAN FLUX AND 1-SIGMA ERROR (R15 COUNTSISEC)
(4) : 2ND SCAN FLUX AND 1-SIGMA ERROR (R15 COUNTS/SEC)
(5) : IDEMTIFICATION
(6): TYPE OF GZJECT: $1=$ SEYFERT 1 GALAXY M OR OTHER ACTIVE GALAXY
C2 = CORMIM,H.G.JR.,1974,A.J.,79,1356
V =DEVAUCOULEURS, DEVAUCOULEURS AND CORUTN SECOND REFERENCE CATALOG OF BRIGHT EALAXIES 1976

FO = FORMAN,U., JONES,C.,TANANBAUM,H.,1976,AP.J., 2 HE.L29
HSM = HIMTZEN.P.SCOTT,J.S. .MCKEE,J.D. 1985 AP.J. IN PRESS

HSM = HIMTEEN:P.SCOTT,J.S.,HEKEE,J.D. 190. AP.J. IN PRESS 3. MULTIPLE CLUSTERS PERREWOD AND HENRY $19 B 1$
HIGH LATITUDE (B) 2E DEG) X-RAY SOURCES EXCLUDED FROM LOG N-LOG S AMALYSIS

SOURCES IN AND NEAR THE LMC AND SMC HAVE BEEN OMITTED
FROM THIS TABLE AND FROM TABLE 1. THE EXPERIMENT
HAS DETECTED FLUX FROM SMX X-1, 2,3 LMC X-I,2,3, 4,5
AND THE LMC TRANSIENT SOURCE $.535-668$

REFERENCES

Avnl, Y., Bahcall, J.N. 1980, Ap, J. 235, 694.
Bahca11, N. 1979, Ap. J. 232. 639.
Birnbaum, Z.W., Tingey, F.M. 1951, Ann. Math. Stat 22, 592.
Boldt, E. 1980, Invited Talk at AAS Meetirg, NASA TM 80659.
Bradt, H., Doxmey, R.E., and Jornlgan, J.G. 1979, Advances In Space Expioration.

Charles, P. Thorstensen, J., Bowyer, S., and Middleditch, J.1979, Ap. J. (Letters) 231, L131.

Crawford, D.E., Jauncy, D.L., Murdoch, H.S. 1970, Ap. J. 162, 405. Devaucouleurs, G. 1958, A.J. 63, 253.

DeVaucouleurs, G., DeVaucouleurs, A, and Corwin, H. 1976, Second Reference Catalog of Bright Galaxies, Univ, of Texas Press.

DeZotti, G. 1980, preprint.
Doxsey, R., McCilintock, J., Petro, L., Remiliard, R., and Schwartz, D. 1981 B.A.A.S. 13, 559.

Elvis, M., Maccacaro, T., Wilsón, A., Ward, M., Penston, M., Fosbury, R., Perola, G. 1978, MNRAS 183, 129.

Fablan, A.C. and Rees, M.J. 1978, MNRAS 185, 109.
Forman, W., Bechtold, J., Blair, W., Giacconi, R., Van Speybroeck, L, and Jones, C. 1981, Ap. J. (Letters) 243, Ll33.

Garcla, M., Baliunaß, S.L., Conroy, M., Johnston, M.D., Ralph, E., Roberts, W., Schwartz, D.A., and Tonry, J. 1980, Ap. J. (Letters) 240, L107. Garcia, M., Conroy, M., Doxsey, R., Griffiths, R.E., Johnston, M., Ralph, E., Roberts, W., and Schwartz, D.A. 1980, BAAS 12, 527.

Glacconi, R., Bechtold, J., Branduaradi, G., Forman, W., Henry, J.P., Jones,
C., Kellogg, E., van der Laan, H., Liller, W., Marshall, H. , Murray,
S.S., Pye, J., Schreler, E., Sargent, H.G.W., Seward, Fo, and Tananbana, 4. 1979. Ap. J. (Letters) 234, L1.

Griffithe, R.E., Ward, M.J., Blades, J.C., Wllson, A.S. 1979, Ap. J. 232, L27. Griffiths, R.E., Lamb, D.Q., Ward, M.J., Wilson, A.J., Charlpe, P.A., Thorstensen, J., McHardy, I.M. and Lawrence, A. 1980, MNRAS 193, 25p. Holt, S.S. 1980, invited talk at Cambridge HEAD meeting, NASA TM 82010. Huchra, J.P. and Sargent, W.L.W. 1973, Ap. J. 186, 433.

Huchra, J.P. 1977, Ap. J. Suppl. 35, 171.
Huchra, J.P. 1980, private communication.
Kriss, G.A., Canizares, C.R., and Rtcker, G.R. 1980, Ap. J. 242, 492.
Lightman, A., Hertz, P., and Grindiay, J.E. 1980, Ap. J. 241, 367.
Marshall, F.E., Boldt, E.A., Holt, S.S., Mushotzky, R.F., Pravdo, S.H.,
Rothschild, R.E., and Serlemitsos, P.J. 1979, Ap. J. (Suppl) 40, 657.
Marghall, F:E:, Boldt, E;A., Holt, S.S., Miller, R., Mushotzky, R.F., Rōe, L.A., Rothsch11d, R., and Serlemitsos, P.J. 1980, Ap. J. 235, 4. Mchardy, I. 1978, MNRAS 182, 760.

McKee, J., Mushotzky, R., Boldt, E., Holt, S., Marshall, F.E., Pravdo, S., and Serlemitsos, P. 1980, Ap. J. 242, 843.

Murdoch, H.S., Crawford, D.F., and Jauncey, D.L. 1973, Ap. J. 183, 1. Mushotzky, R.F. 1979, Proceedings of the Erice Symposium on X-Ray Astronomy, eds. R. Giacconi and G. Setti, p. 171.

Mushotzky, R., Marshall, F.E., Boldt, E., Holt, S., and Serlemitsos, P. 1980, Ap. J. 235, 36.

Perrenod, S. and Henry, J.P. 1981, preprint.
Pye, J.P. and Warwick, R.S. 1979, MNRAS 187, 905.
Rothschild, R., Boldt, E., Holt, S., Serlemitsos, P., Garmire, G., Agrawal, P., Rlegler, G., Bowyer, S., and Lampton, M. 1979, Space Science

Instrumentation 4, 265.
Schwartz, D.A. 197a, Ap. J. 222, B.
Schwartz, D.A., Bradt, H., Briel, V., Doxsey,R.E., Fabblano, G., Grifflthe, R.E., Johnaton, M.D., Margon, B. 1979, Ap. J. 日4, 1560.

Schwartz, D.A., 1979 in (COSPAR) X-Ray Astronomy, W.A. Bality and L.E. Peterson (eds), Pargamon Press, Oxford and New York, p.453.

Schwartz, D.A. 1980, private communication.
Swank, J., Boldt, E.A., Holt, S.S., Rothschild, R.E., and Seriemitmom, P.J. 1978, Ap. J. (Letters) 226, L133.

Swank, J., Lamption, M., Boldt, E., Holt, S., and Serlemitsos, P. 1977, Ap. J. (Letters) 216, 571.

Tananbaum, H., Peters, G., Forman, W., Giacconi, R., Jones, C., and Avni, Y. 1978, Ap. J. 223, 74.

Tsikoudi., V. and Swank, J. 1981, in preparation.
Van Speybroeck, L, Epstein, A., Forman, W., Glacconi, R., Jones, C., Liller, W., and Smarr, L. 1979, Ap. J. 234, L45.

Warwick, R.S. and Pye, J.P. 1978, MNRAS 183, 169 +
Weedman, D. 1979, Invitted Talk at Montreal IAU Generai Assembly.
Ne Inberg, S. 1972, Gravitation and Cosmology
West, R.M., and Frandsen, S. 1980, ESO Scientific preprint, No. 110.
White, N.E., Sanford, P.W., and Weiler, E.J. 1978, Nature 274, 569.
Worrall, D., Boldt, E., Holt,S., Mushotzky, R., and Serlemitsos, P. 1981, Ap. J. 243, 53.

Figute 1. The completences level of the present furvey ve ecilptic 1atitude. The diamonds are for the first pase and the crosses for the second pass. The lower hletogram is the my fraction in each ecliptic latitude bin (right hand scale). The centre of the diamonds and crosses if 5 timen the mean error for a source located in that ecliptic latitude bin and the size of the error bar is the standard deviation of this error. since we truncate at 1.25 R15 counts all of our sources at ecilpthe latitude greater than 30° Ile well above the 50 level. We estinite that residual incompleteness of sources at levels less than 1.4 cts ls leas than 3 sources and mero mources greater than this ilmit.

Figure 2. The error boxes for H0328+025 and H0917-074. The inner and duter boxes are the 908 confidence boxes as described in Marshall et al. 1979. The inner box assumes that the source was roughly constant during our pertod of observation.

Figure 3. The distribution of the non-galactic sources detected in this survey in supergalactic coordinates.

Figure 4. The probability diatributions for k and α. The top panel shows the AML probabisuity vs, α in the first pass data, the middle panel shows the AMI, probability vs. x In the second pass. The bottom panel shows the 68 and 958 joint probability contour for K and a for the first pass data. The + marks the best 今it.

Figure 5. The ditferential $\log N=\log 5$ dietribution for our mample. The best fit is indicnted. The highest flux point is indicated by a danhed croms because le upper flux bound is not woll defined. (ist pase data)

Figure 6. The AML Kolomogorov-Smirnov test diatribution for an $a=2.5$ model. The 50 and 950 probability bounds are indicated. (int pass data)

Figure 7. The ratio of the number of obsarved sources $N_{o b s}$ to the number of expected sources for $\alpha=2.5 \log N-\log S$ law. (let pass data)

Figare 8a. The cluster of galaxies differential luminosity function for the first pass data.

8b. The same information for the second pass data. The best fit power $\quad 1 \mathrm{fw}$ models are indicated on both panels.

Figure 9. the AML probablitity vs. γ the slope of the power law differential Iuminosity function for clusters of galaxies for the first and second passes including and exciuding the Virgo cluster.

Figure 10. Same as Figure 9 but for the exponential luminosity function..

Figure 11. The Seyfert galaxy Iuminosity function for the first pass data. The best fit power law differential model is indicated. The insert shows the ANL probability vs. γ the slope of the luminosity function.

