General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

DOCUMENTATION FOR THE MACHINE-READABLE VERSION CF THE CATALOCIIE OF STARS NITHIN 25 PARSE'CS IF THE SNO

Wayne H. Warren, Jr.

January 1982

National Space Science Data Center (NSSDC)/

TABLE OF CONTENTS

Section 1 - INTRODUCTION 1-1
Section 2 - TAPE CONTENTS 2-1
Section 3 - TAPE CHARACTERISTICS 3-1
Section 4 - REMARKS, MODIFICATIONS AND REFERENCES 4-1
Section 5 - SAMPLE LISTING 5-1
LIST CF TABLES
TABLE
1 Tape Contents 2-1
2 Tape Characteristics 3-1

The Catalogue of Stars within twenty-five parsecs of the sun (Woolley, Epps, Penston and Pocock 1970) was constructed at the Royal Greenwich Observatory in order to enlarge the Catalogue of Neariy Stars compiled by Gliese (1957). The catalogue contains cata on stars nearer than 25 pc which are not included in Gliese's catalogue, plus additional information published since 1957 on stars in the Gliese compilation.

The machine-readable version of the Catalogue of Stars within twenty-five parsecs of the Sun contains essentially all information given in table la of the published catalogue, plus positional data and all cross references to other catalogue numbers given in Table IIa. Not included from Table Ia are the flags (asterisks appended to catalogue numbers) indicating notes in the published catalogue, nor are the notes in machine-readable form. Omitted from Table IIa are the finding chart identifiers (Lowell G numbers or notes reference) and mescellaneous cross identifications to other names and catalogue identifiers. Tables $I b$ and $I(b$, containing 21 systems originally included in Gilese's (1957) catalogue, but for which revisea parallaxes have placed them farther than 25 pc, are not included ir the machine-readable version. A useful extension to the present machine-readable catalogue would be the addition of the cross identifiers and the creation of a separate file containing the notes.

This document describes the machino-readable version of the subject catalogue currently available on magnetic tape from the Astronomical Data Center. Although it should enable users to read and process the tape file without difficulty, and to interpret the data to some extent, the additional information given in the data descriptions and the notes in the published catalogue make it advisable to consult the latter when analyzing andor intepreting the data in the machine version.

SOURCE REFERENCE

woolley, R., Epps, E. A., Penston, M. J. and Pocock, S. B. 1970, Catalogu of Stars within twenty-five parsecs of the Sun, Roy. Obs. Ann., No. 5.

SECTION 2 - TAPE CONTENTS

A byte-to-byte description of the contents of the logical records in the Catalogue of Stars within twenty-five parsecs of the sun is given in Table 1. The suggested format specifications are presented in order to clarify the units and jata types, and they can be modified depending upon usage; howevar, care must be exercised when using integer and real format specieications in place of character (A) formats because some data fields contain blanks when data are absent. All tape data are recorded as integers, but real (F) format specifications are suggested when more appropriate and to show decimal point locations. Since data fields are blank for missing data, records should be buffered in or fields tested in some way to distinguish hetween blanks and zero, Alternate specificri: ns are given in parentheses. For complete data descriptions, the uner sl min censilt the published catalogue referenced on page 1-1.

Table 1. Tape contente. Catalogue of Stars within 35 parsecs of the sun

Byte (s)	Unite	Suggested Format	Description
1-4	---	I4	Star number. Numbers in Gilese's (1957) catalog retained; newly added stars have numbers starting at 9001 and increasing with α 1950, but since numbering of extension, new parallaxes have removed 9419 and added two new stars: 9849, 9850 (both at $\alpha_{1950}=4^{h} 19^{\mathrm{m}}$), The Sun (first record) has number 0 .
5	---	A1	Component identification (A, B, ...) for stars having the same number. Stars with soparately published parallaxes have generally been asisigned separate tumbers. Componente are given for extension stars when they are known or suspected to form a physical syatem.
6-8	*	F3. 3	Parallax (π). The main sources of trigonometric parallaxes are the Yale General Catalogue of Trigonometric Stellar Parallaxes and its supplement (Jenkins 1952, 1963). Some spectroscopic parallaxes are included and indicated by the probable error code following.

Table 1. (continued)

Byte(s)	Units	Suggested Format	Description
9-10	"	A2	Probable error of a trigonometric π. The two bytes given are the least significant digits in a number of the form $\pm 0.0 \times X$ which, for pure numbers, could be read in format $F 2.3$; however, for spectroscopic π, byte 9 is blank and byte 10 contains
11	---	Iq (A1)	$\begin{aligned} & \text { "8" if p.e. }(\pi)<158 \\ & \text { "g" if p.e. }(\pi)<108 \\ & \text { blank otherwise } \end{aligned}$
12-16	$8 \mathbf{y r}^{-1}$	F5.4	Annual proper motion μ_{α} in seconds of time; blank if not present. Note that most data are given to a precision of 080noi; however, many values are only quoted to 08001. In the latter case, byte 16 is blank, hence precision can be ascertained by reading the field in an A format and testing for a blank in byte 16.
17-22	$\cdots r^{-1}$	F6.3	Annual proper motion μ_{δ} in arcseconds; blank if not present. See note on precision for μ_{α} above.
23-27	$\mathrm{km} \mathrm{s}^{-1}$	F5. 1	Radial velocity taken from the GCRV (Wilson 1953), unmodified for Wilson codes a and b, revised for codes c and d if additional measures were available. Observed velocities are given for white dwarfs (uncorrected for gravitational redshift). Additional unpublished velocities from various observations are included where needed. Field blank if no datum presents if datum present, sign always in byte 23.
23	---	If (AI)	Radial velocity code: 1 if mean value of combined components of binary (symbol J in published catalogue): 3 if velocity variable (symbol V in published catalogue); otherwise blank.

Table 1. (continued)

Suggested
Byte(s) Units Format Description

29-32	$k m s^{-1}$	I/	U component of space velocity relati-e to Sun (blank if no data).
33-36	$k m s^{-1}$	I4	V component of space velocity relative to Sun (blank if no data).
37-40	$k m s^{-1}$	14	W component of space velocity relative to Sun (blank if no data).
41-45	---	F5.4	Box orbit parameter, $\dot{\omega}$, the distance of the epıcenter of the box from the Gaiactic center (see Woolley and Candy 1968). Note that the quantities $\bar{\omega}, e$ and i are normalized to the solar distance from the Galactic center and the unit of velocity is the Sun's circular velocity, taken to be $250 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$. The solar motion used is $u_{0}=$ $+10 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}, \mathrm{vo}_{0}=+10 \mathrm{~km} \mathrm{~s}^{-1}$. Wo $=+7 \mathrm{~km}$ s^{-1}. while the Oorn's constants adopted are $A=+14.6 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}, B=-11.5 \mathrm{~km}^{-1}$ kpc^{-1}. For mitiple syotens $\dot{\omega}, e$ and i have been computed for the first component only using available values of u, v, and w. Field blank if no datum.
46-49	---	P4. 4	Box orbit parameter, e, the eccentricity of the orbit, blank if no data.
50-53	---	F4.4	Box orbit parameter, i, the box angles blank if no data.
54	---	I1 (A1)	Luminosity clase code (MR or Mt. Wilson): 1-I or ci 2 - II or ci 3 - III or gi 4 - IV or sgi 5 - V or $d ; 6$ - VI or ad, 7 - D or wd. Blank for no data. Note: Intermediate luminosity classes have no codes, e.g., 4 ie given for clase IV-V.
55-57	---	$A 3$	Spectral type (NR where available, mostiy from Jamchek et al. 1964, preference given to Wilson 1953 for remaining types). peculiarity indicatore (n, e, etc.) given in upper case.

Table 1. (continued)

Byte (s)	Units	Suggested Format	Description
58	---	I1 (A1)	```Spectral-type code: 1 - MK; 2 - combined MK type for multiple system; 4 - combined non-MK; blank - non-MK.```
59-62	may	F4. 2	Magnitude V, m_{V} or $m_{p g} . V$ preferred, sometimes weighted means. Photoelectric data are given to $0 \mathrm{~m}_{0} 1$ precision, Mv and Mpg to $0{ }^{M} 9$ precision (byte 62 blank). Data always present except for Sun (first record).
63	---	I 1 (A1)	Magnitude code: 1 - combined light value for multiple system (symbol J in published catalogue): 2 - photographic magnitude (P in published cataloyue): 3 - varıable magnitude (V in published catalogue): otherwise blank.
64-67	mag	F4. 2	$B-V$ color. Field blank if no datas sign always in byte 64 if value present.
68-71	mag	F4. 2	$U-B$ color. Field blank if no data; sign always in byte 68 if value present.
72-75	mag	F4. 2	Absolute visual magnitude M computed from apparent magnitude and parallax: $M=m+5$ $+5 \log \pi$, reported to 0 M01 if both probable error of $\pi<10 \%$ and V magnitude given to 0 渟01.
76-77	hours	12	${ }_{\sim} 1900$
78-80	min	F3.1	Q1900
81	---	$A 1$	Sign of δ_{1900}
82-83	-	12	$\delta 1900$
84-85	'	I2	8.900

Byte (s)	Unita	Suggested Format	Description
86-87	hours	I2	a 1950 taken, in order of preference, from the Smithsonian Astrophysical Ohservatory Star Catalog (SAO 1966), the lists of Giclas et al. (1959-1969) and the General Catalogue (GC, Boss 1937). Positions precesich from those given in parallax references in other cases.
88-89	$m i n$	12	a 1950
90-91	sec	12	${ }^{0} 1950$
92	---	A^{9}	Sign of δ_{1950}
93-94	-	I2	$\delta 1950$
95-97	-	F3. 1	$\delta 1950$
98-102	---	A4, A1	Number in General Catalogue of Trigonometric Parallaxes (Jenkins 1952, 1963). For GCTP numbers form XXXX.X, the decimal point lies between bytes 101 and 102 ; i.e., the numbers can be read with format F5.1, but the field is blank when there is no value given.
103-108	---	16 (A6)	Henry Draper (HD) catalogue number. Blank for no data.
109-110	---	12 (A2)	DM zone. Signs are present in byte 109 only when $\|\mathrm{DMz}\|<10^{\circ}$; in other cases, the sign should be taken from the declination (byte 81 or byte 92). The HD convention of DM assignment is followed: BD ncrth of $-23^{\circ}, C D-23^{\circ} \geqslant \delta$ zone $\geqslant-52^{\circ}$, CPD south of -52•.
111-115	---	I5 (A5)	DM number. DM field is entirely blank for no data.
116-120	---	15 (A5)	Number in the GCRN (Wilson 1953). Blank if not present.

Table 1 (fontinued)

Byte(s)	Units	Suggested Format	Description
121-126	---	$\lambda 6$	Other proper-motion catalogue designations: byte 121 or bytes 121-122 can sontain the following letter codes: L - Luyten LTT catalogues (1957, 1961, 1962); C - Cincinnati Publ. No 18 (Porter et al. 1915): CC - Cincinnati Publ. No. 20 (Porter et al. 1930). A pure numerical designation implies a GC number. Priority is GC, CC, C, LTT. Field blank when no fata.
127-130	---	14 (A4)	YBS = HR number from Catalogue or Bright Stars (Hoffleit 1964). Blank for nussing number.
131-133	---	13 (A3)	Numbers in red-dwarf lists of Vyssotsky and collaborators (1943, 1946, 1952, 1956) and in supplementary list (Vyssotsky 1958). Blank for missing data.
134	---	A1	
135	---	A1	Remarks code as abcre. Two bytes are used to allow for at least two remarks for the same star.

SECTION 3 - TAPE CHARACTERISTICS

The information contained in Table 2 is gufficient to enable aser to read the machine version of the catalogue. Information for the entire catalog is given in the table, but parameters which are easily varied from installation to installation, such as block size (physical record length), blocking factor (number of logical records per physical record), total number of blocks, tape density, and coding (EBCDIC, ASCII, BCD, etc.) are not included. This information should always be supplied if secondary copies of the machine-readable catalogue are tranemitted to other users or installations.

Table 2. Tape Characteristics. Catalogue of Stars within twenty-five parsecs
of the sun.
NUABER OF PILES 1
LOGICAL RECOR ${ }^{\circ}$ LENGTH (BYTES) 135
RECORD FORMAT FB*
TOTAL NUMBER OF LOGICAL RECORDS 2150

[^0]
SECTION 4 - REMARKS, MODIFICATIONS AND REFERENCES

A magnetic tape version of the Catalogue of stars within twenty-five parsecs of the sun was received from the Centre de Donnees Stellairen, Strasbourg (CDS catalogue number 5004). As received the logical record length was 160 bytes and the file had been recorded in 026 character code. The file was converted to 029 code (f converted to + signs, etc.) and reformated to eliminate all unnecessary blank characteri, thus resulting if the current 135-byte logical record length. The remark cuding (bytes 134-135) originally included meven codes (2-8), as defined in Table 1; however, one star (9785) in the published catalogue (Table ra) contains the note "PL NEB", which had not beer assigned a remarks code. The code 9 has been assigned to the planetary nebula category and enteied into byte 134 of the record for stay 9785.

REFERENCES

Boss, B. 1937, General Catalogue of 33342 Stars, Publ. Carnegie rist., Washington, No. 469.

Jaschek, C., Conde, H. and de Sierra, A. C. 1964, Cataloguc of Stellar Spectra Classified in the Morgan-Keenan System, Publ. La Plata obs., Ser. Aetron. Vol. 28 , No. 2.

Jenkins, L. F. 1952, General Catalogue of Trigonometric stellar Parallaxes (New Haven: Yale University Observatory)

Jenkins, L. F. 1963. Supplement to the Genera? Catalogue of Trigonometric stellar Parallaxes (New haven: Yase Univerusty Observatory)

Luyten, w. J. 1957, Catalogue of 0687 Stars in the Southern Hemisphere with Proper Motions Exceeding 0:2 Annually (Minneapolis: The Lund Press).

Luyten, W. J. 1961 , Catalogue of 7127 Stars in the Northern Hemisphere with Proper Motions Exceeding 0." Annually (Minneapolis: The Lund Preas).

Luyten, W. J. 1962, First Suppleme.t to the LTT Catalogue (Minneapolis: Univ. Minnesota Observatory).

Porter, J. G., Yoweli. E. I. and Smith, E. 1915, Publ. Cincinnati Chs., No. 18.

Porter, J. G., Yowell, E. I. and Smith, E. 1930, Publ. Cincinnati Obs., No. 20.

Smithsonian Aetrophysical Observatory. 1966, Star Catalog, Saithsonian Publ. 4652.

Vyssotsky, A. N. 1943, Astrophys. J. 97, 381.

Vysmotsky, A. N. 1956, Astrophys. J. 61, 201.
Vyssotsky, A. N. 1958, Astrophys. J. 63, 211.
Vyssotsky, A. N. and Bateer, A. M. 1952, Astrophys J. 116, 117.
Vysmotsky, A. M., Janseen, E. M., Miller, W. J. and Walther, M. E. 1946, Astrcphys. J. 104, 234.

Wilson, R. E. 1953, General Catalogue of Stellar Radial Velocities, Publ. Carnegie Inst., Washington, No. 601.

REFERENCES (continued)

Woolley, R. v.d. R. and Candy, M. P. 1968, Mon. Not. R. Astron. Soc. 141, 277. Woolley, R., Epps, E. A., Penston, M. J. and Pocock, S. B. 1970, Catalogue of Stars within twenty-five parsecs of the Sun, Roy. Obs. Ann., No. 5.

The ample listing presented on the following pagea contains logical data recorde exactly as they are recorded on the tape. The beginning of each recoril and the bytes within the record are indicated by the column heading index acrose the top of each paqe (digits read vertically). Since each logical record la longer than 115 bytes, the remainder of the racord (byten 116-135) is printed in the following row.
いいいいいいしい

123572865
1424914337

$\begin{array}{lllllllllllll}925 G 5 & 5971+068+018 & 424 & 0 & 10+5753 & 0 & 338+58 & 95 & 7\end{array}$
8
8
9

$.066+010479$
$414011-49380344-49212$
$9950 \quad 11-49380 \quad 344-49212$

120516 655 290010
0
0
BZ9 62ロ6 0－
254G1 $1569+052$
-09429628
\qquad

2

28
$-0810-9820+6 \angle 690 \mathrm{~s}$
∞
n
n
n
$\begin{array}{cc}05 & 9 \\ 1 & 22589+4\end{array}$
90014045 日 $40330+$ 44885

90018045 8＋0330＋
～
$0-\angle E O-E \angle S O+8 \angle$ 6bOVZOO6
$\begin{array}{ccc}47 & 92 & 6 \\ 90028049 & 78 & \end{array}$
9002804978
S！
\cdots

tade file mame: stans < 25 fatsecs

[^0]: Fixed length blocks (last block may be short)

