NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

A STUDY OF MICROWAVE DOWNCONVERTERS OPERATING IN THE K_{u} BAND

University of South Carolina College of Engineering Columbia, S. C. 29208

Final Report

Contract Number NAS8-28660
Control Number PR-R-28660

By: Rufus G. Fellers
Principal Investigator Ted L. Simpsorn Bangjuh Tseng

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS iv
LIST OF TABLES vii
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Statement of Problems 4
1.3 Objectives and Outline of the Present Study 7
CHAPTER II CHARACTERIZATION OF MICROWAVE VARACTOR DIODES 10
2.1 Introduction 10
2.2 Circuit Elements of Packaged Varactor Diodes 12
2.2.1 Junction Capacitance 12
2.2.2 Series Resistance 16
2.2.3 Lead Inductance 18
2.2.4 Package Capacitance 19
2.3 Lumped-Element Equivalent Circuits 20
2.4 Measurement of Packaged Varactor Diodes 25
2.4.1 Measurement Setup 27
2.4.2 System Calibration 28
2.4.3 Measurement Technique 33
2.5 Determination of Equiyalent Circuit Parameters 36
2.5.1 Diode Test Mount Equivalent Circuit 36
2.5.2 Computer-Aided Optimization of Diode Parameters and Equivalent Circuit Elements 39
CHAPTER III THEORY OF NEGATIVE RESISTANCE PARAMETRIC AMPLIFIERS 43
3.1 Introduction 43
3.2 Pumping of Varactor Diodes 47
3.3 Small Signal Representation of a Nonlinear Capacitance 55
3.4 Circuit Analysis of Basic Amplifier Configuration 60
3.4.1 Transducer Gain 62
3.4.2 Noise Figure 68
Page
GEAPTER IV PROFERTIES OF MICROSTAIP TRANSMISSION IINGS 76
4.1 Introduction 76
4.2 Electrical Characteristics of Microstri-p Iines 79
4.2.1 Characteristic Impedance and Effective Dielectric Constant 79
4.2.2 Conductor and Dielectric Losses 86
4.3 Discontinuity Effects in Microstrip Lines 91
4.3.1 M1erostrip Open Circuits 91
4.3.2 Microstrip T-Junctions 96
4.4 Microstrip Parallel-Coupled 3and-Pass Filters 106
4.4.1 Aralysis of Parallel-Coupled Bard-?ass Finters 100
4.4 .2 Syuthesis of Farallel-Coupled Banc-?ass Filters 107
 112
5.1 Description of Computar Program CADIAC 112
5.1.1 Main Program 116
5.1.2 Subroutines RasTCN, 3FTHIT, and Functions CSENT, CCOSA, and CTANH 115
5.1.3 Sutroutines RANDCM, EVAL, IIESCT, and EXJOR 117
5.1.4 Subroutine SEMSIT 121
5.1.5 Sulroutines GRAT, DISFIY, and OULZJT 122
5.2 Lestga Examies 122
5.2.1 Examie 1 125
5.2 .2 Zxample 2 128
5.3 Expertuentai Resirits of an VIC Degenerate Amplifiser 135
CHATMR TI SUMMAY, GONCLOSIONS ATD RECCMENTATIONS TCR TURTEM STUDY 142
6.1 Sumany and Conclusions 141
ć. 2 Recommendations for Firther Study 142
AFOMDICES 146
25Fspavces 120

ORIGINAL rage is OF POOR QUALITY

LIST OF IIUUSTRATIONS

Fisure	Title	Page
2.1	Typical Varactor Wafer and Facikage Structure	11
2.2	Space-Charge Distributiocs: (a) Abrupt Junction, (b) Ilcearly-Giaded Junction	14
2.3	Pafiaged Varactor Representation (a) Parastitics Assoctated inth Packizg: (b) 3astc Three-Port Representation, (c) Distribrited-diemeint Equiralent Cirout	2
2.4	Iumped-2lement Equiraient Cincuits of Varactor Diodes	22
2.5	Dimensions of MA 4850g Varactor Diode	26
2.6	Superieterodjue Measirement System	29
2.7	Photograph of the Disassemined Diode Fest Mount	30
2.3	Dlode Test Mount	31
2.9	Standing-ijave Patiem on a Siutted-inee	34
2.10	Computer Pintout oin Measured Impedances	37
2.11	Diode Mount Representation (a) Diode Terninating Coancil Iine, (b) İode Moun才 Jautalent Circuit	38
2.12	Compariscn of Calculated and Keasured Reactances	40
3.1	Circut Illustrating Use oí Manley-Rowe Relations	4
3.2	Negative Resistance Paranetric Amplifier Conilguraion	61
3.1	Iqutralent Circuit of a Negative Resistance Farametric Amplitier	63
3.4	Revised Squivalant Ciscult	06
$3 \cdot 5$	Resistor Yoi.se Source Representation	70

ORIGINAL PAGE IS OF POOR QUALITY
Fisure Title Page
3.6 Equivalent Circuit of a Negative Resistance Parametric Amplifier 71
3.7 Equavalent Circuit with Noise Sources 73
4.1 Vartous Types of Microwave Integrated Circuits;
(a) Stripline, (b) Microstrip, (c) Slot Iine, (d) Coplanar Wavegitide 80
4.2 Characteristic Impedance (a), and Effective Dielectictc Constant (b), (c), and (d) as a Function of W / H 85
4.3 Micorstrip Dispersion Eefect, $\mathrm{H}=0.508 \mathrm{~mm}$, $\mathrm{H} / \mathrm{H}=1$ 87
4.4 Microstrip Conductor Attenuation Factor as a Fraction of i / H 90
4.5 Micmostrip Open Circuit Representation gh
4.6 Microstinp T-Junctica ?epresentation 97
4.7 Microstinip T-Junction 98
4.8 Parallel-Coupled Microstrip Iine 101
4.9 Layout of a Three-Resonator Microstrip 3and-Pass Filler 102
4.10 Circutt for Parallel-Coupled M土arostrip Line Anal, sis 103
4.11 A 5.5 Griz 3and-Pass Filter Charactezistics 111
5.1 Flow Chart of Program CADDAC 113
5.2 Simplified Fiow Cham of' a Computer-Alded Destign Program 115
5.3 Flow Chart of Subroutine DIFEC: 119
5.4 Fiow Chat of Subroutine ExpacR 120
5.5 3asic Ciニcuit Eopology for Ma Jegenerate Anplinfers 123

ORIGINAL PAGE IS OF POOR QUALITY
F1gure Title Page
5.6 Circuit Used in the First Desion Example in Section 5.2 126
5.7 Gain Characteristics of the Amplifier in the First Design Example 127
5.8 Circuit Used in the Second Design Example
in Section 5.2 129
5.9 Gain Characteristics of the Amplifier in the Second Design Example 130
5.10 Gain Sensitivities with Respect to Matching Network Parameters 132
5.11 Gain Sensitivities with Respect to Diode Parameters 133
5.12 Photograph of a 5.5 cHz .IIC Degenerate Ampitfiler on Duroid Substrate 136
5.13 Gain Characteristics of the Degererate Amplifier in Fig. 5.12 138
A. 1 Definition of Voltage and Currents for Two-Port Networks 146
A. 2 ABCD Firameters of Some Common Structures 147
A. 3 Cascaded Tro-Port Networks 249
A. 4 Tro-Port Metwork with Terataztions 149
C. 1 Sample Data Caris Eor Program CAJLAC 159

IIST OF TABLISS

Table Title Page
2.1 Manufacturer Supplied Data for MA 4850ge Varactor Diodes 27 -
2.2 Optimum Parameter Values for MA 4850ge Varactor Diodes 42
3.1 Ratto of Finst Fourier Coefficient to $D C$ Ca; initance as a Function of a 50
3.2 Normalized Second Foumer Coefficient as a Function of a 51
3.3 Nomalized Third Fourier Cobificient as a Function of゙ a 52
3.4 Normalized Fourth Fourier Coefficient as a Function of a 53
3.5 Normalized Pumping Power as a Function of a 56
4.1 Nornalized Dielecticic Attenuation Constants 92
4.2 Coefficients of for Equation 4.23 95
4.3 Even- and Odd-Mode Characteristics Inpedances for a Butterworth Band-Pass Filter with 8% Bandwidth 110
4.4 Dinensions of Parallel-Coupled Band-Pass Filłer 110
5.1 Inftial and Optinized Parameter Talues of the Sigral Matching Vetworls in Fig. 5.6 125
5.2 Initial and Optinized Parameter Values of the Signal Matching Metworls in Fig. 5.8 128

ORIGINAL PAGE IS OF POOR QUALITY

CHAPTER I INTRODUCTION

1.1 Background

Microwave parametric amplifiers, the subject of this investigation, are a class of amplifiers which utilize either nonlinear reactances, or reactances which can be varied as a function of time by applying a suitable pump source. The time variation of a reactive parameter can create the equivalent of a negative resistance in a certain frequency range, and this negative resistance can be used to provide amplification. This is the origin of the term negative resistance parametric amplifier, or simply parametric amplifier. There are two distinctive features of parametric amplifiers that are worth mentioning. First, electronic amplifiers use energy from an electrical source to incroase the power in a desired signal waveform, for most amplifiers, such as vacuum tube or transist,or amplifiers, this electrical source is a direct--current (dc) source, while for parametric amplifiers, it is an alternating-current (ac) source. The second feature of a parametric amplifier is its capability of low noise amplification. A vacuum tube or a transistor is essentially a nonlinear resistor, and it is well known that any resistor at non-zero temperature will generate thermal noise. On the other hand, a parametric amplifier utilizes mainly a nonlinear reactance, and a reactance does not contribute thernal noise. This was first pointed out by van der Ziel in 1948 when he analyzed the $71 \times d i n g$ properties of nonlinear capacitances [1]. It is this feature that makes parametric amplifiers the most attractive
candidate for low noise front ends in communication systems. When operated cryogenically, the noise figure of a parametric amplifier is comparable to that or a maser, yet its bandwidth and stability are far superior to those of a maser.

Although van der Ziel was the first person to point out the potential use of nonlinear capacitance as low noise amplifier, parametric amplification was tneoretically shown to be possible by Faraday in as early as 1831 [2], and later by Lord Raleigh in 1863 [3]. It was, however, one hundred years later, when the parametric effect was experimentally observed in an electro-mechanical nonlinear capacitance device [4]. In 1957; the first realization of a microwave parametric amplifier was ifnally made by Weiss [5], following the earlier propnsal iy Suhl [6], suggesting the use of the nonlinear effect in ferrites. This caused widespread interest anong microwave engineers, and in the following few years, with high qualIty semiconductor junction diodes (often referred as varactor diodes, or stmply varactors) more readily available, semiconductor parametric amplifiers were soon developed through the efforts of many researchers.

The semiconductor junction diode has a nonlinear capacitance. If a pump source at frequency f_{p} and a small amplitude signal at frequency f_{s} are applied stmultaneously, the nonlinear capacitance behaves like a timevarying linear capacitance at f_{s}. The miding of f_{p} and f_{s} will generate a third frequency component, $f_{P}-f_{S}$. This frequency is usually called the 1dler frequency, f_{1}. The idler frequency is an inevitable by-product of paramet工ic amplification, suppressing it would also suppress the destred
amplification at f_{s}. It should be pointed out that the closer the signal frequency is to half the pump frequency, the closer the idler frequency is to the signal frequency, and the more difficult it is to separate sigral and idler frequencies by filtering. If the signal and idler frequancies are 30 far apart that the signal circuit does not pass the idler frequency, the amplifier is called a nondegenerate amplifier. On the other hand, if the signal and idler frequencies are very close or if their spectra overlap, the signal circuit can no longer distinguish between them, and the amplifier is then called a degenerate amplifier.

- For degenerate amplifiers, the ordinary concepts of noise ilgure do not apply. Degenerate amplifiers are not amplifiers in the usual sense, because they ghive output at frequencies not included in the input. While the noise figure of a nondegererate amplifier is uniquely defined, the noise performance of a degenerate amplifie: depends on the type of input signal, the type of detector used, and the interpretation of the detector output. Still, two kinds of noise figure, single-sideband and doublesideband, are offten quoted by manufacturers.

The single-sideband noise figure is used in operation where the input signal spectrim is confined to one side of half-pump frequency. Although the signal circuit can not distinguish between the signal and the idler, a shatp illter in a subsequent stage can be used to select f_{s}. This type of operation is characterized by the reduction of useful amplifier bandWidth and a certain deşes of degradation in sigral to noise ratio. In operation in which the input spectrum surrounds the tale-pump frequency,
the double-sideband noise figure is used. For amplifiers built with diodes of the same quality, the noise figure of a nondegenerate amplifier is higher: than the double-sidebaric noise figure, yet lower than the single-sileband noise figure of a degenerate amplifier. However, it must be kept in mind that a degenerate amplifier and a nondegenerate amplifier can not be compared by their respective noise figures unless the system into which the amplifiers are to be incorporated is first specified.

It should be obvious that in some instances it is possible to realize system sensitivities calculated from the double-sideband noise figure. When this is so, the degenerate ampifier would be no doubt the better choice. Even in applications in which single-sideband noise figure must be used, there may well be practical considerations which would make the degenerate amplifier a better choice. By eliminating the idler circuit, the degenerate amplifier is a much simpler device to build. Its pump frequency is relatively low as compared to that of a nondegenerate amplifier. Also, as a consequence of circuit simplicity, the broadbanding of a degenerate amplifier is easier.

1.2 Statement of ?roblems

Since its inception, the parametric amplifier has been plagued by the problem of haviug very narrow bendwidth. Numerous researchers have proposed solutions for this problem [7][8][9][10][11][12]. In most cases, ovel simplified assumptions were made and parasitic elements of the diode
togeti:eI with signal circuit loss were neglected. This caused sisnificant discrepancies in theoretical and actual responses.

Seidel and Herrmann [7] appear to be the first to attempt broadbanding the parametric amplifier by use of a multiple-resonator matching circuit. They gave design criteria for a filter circuit of a degenerate amplifier, using the approach of setting the derivatives of the gain function equal to zero at midband. However, the varactor model is too simple, and loss in signal circuit is not included.

Matthaei [8] subsequently derived the gain expressions suitable for wideband design, using a complete varactor equivalent circuit, and demonstrated that, by using proper filters in signal and idler circuits, fractional bandwidth of 10% (at $=$ gain of $i 5 \mathrm{~dB}$) can be obtained. However, no drect way of choosing the proper filters is given, and a considerable amount of experimenting is involved.

Kuh and Fukada [9] developed an approxdmate synthesis technique besed on more rigorous network concepts. Starting from Bode's theorem on reflection coefficient limitation, equations for gain-bandwidth product are derived. From a designer's point of Miew, Kuh and Fukada's technique is more tractable than that of Matthaei, but it anso suffers from several deficiencies. Diode parasitics are not included in the equivalent circuit and the circulator is assumed to pass both the signal and the idler frequencies. Iu [10] subsequentiy derived a more exacting synthesis technique which, although it is more flexdble and more elegant, is less tractable than that of Kuh and Fukada, and also suffers From the same deficiencies.

Perhaps the most widely used synthesis technique is that developed by DeJager [11], with extensions by Connors [13] and Porra and Somervי [14]. However, this technique contains numerous approximations, employs a rather simplified varactor equivalent circuit, and is limited to only double tuned signal circuits. Egami [12] later developed a new design theory based on slope parameter concepts. He has included diode parasitics and signal circuit loss in his derivations. While the technique is more exact, it is also less tractable and is again limited to double tuned signal circuits only.

Many, if not all, of the above mentioned deficiencies can be removed if computer-aided design techniques are filly utilized in parametric amplifier design. With the high speed capability of a digital computer, one can afford to use i more realistic varactor equivalent circuit, to include sigral circuit loss in the computation of amplifier performances, and to explore more complicated topologies. In this research report, a computer program will be developed for parametric amplifier design with special emphasis on a degenerate parametric amplifier in the form of a microwave integrated circuit.

Because of their advantages of Iight weight, low cost and mass producibility, microwave integrated circuits have been increasingly used to replace coaxial cables and waveguides in many microwave instruments. Along with these advantages, \quad ifurowave integrated circuits also bring to microwave engineers some very chailenging design problems. Among these the most serious ts periaps the lack of tunability. To overcome this
difficulty, microwave integrated circuits are sometimes first built and tested with achesive copper foil on oversized substrate at relatively low frequencies, usually a few hundred megahertz (MHz). Tuning is possible, though very cumbersome, on this low frequency model. Once the circuit is tuned to achieve the desired performance, frequency scaling techniques* are used to bring the operating frequency into the microwave or millimeter-wave frequency range, usually from a few glgahertz to tens of glgahertz (GHz). This technique proves to be very useful for passive network design [15]. However, for active networks, the scaling is far more difficult and less satisfactory because of the difficulty in obtaining two active devices having all their parameters (size, junction and package capacitances, bulk resistance, and lead inductance) related to sach other by the same factor. This is particularly true for active networks with low stability and high sensitivity, such as parametric or tunnel diode amplifiers. This may well be the reason that only very few microwave integrated circuit parametric amplifiers are reported in the literature.

1.3 Oojectives and Outline of the Present Study

The objective of this study is to develop a computer program for parametric amplifier design with special emphasis on practical design

[^0]considerations for microwave integrated circuit degenerate amplifieas. To attain this objective, precision measurement techniques must be developed to obtain a more realistic varactor equivalent circuit, existing theary of parametric amplifier must be modified to include the new equivalent circuit, and microwave integrated circuit properties, such as loss characteristics and circuit discontinuities, must be investigated thoroughly.

In Chapter II the basic theory of semiconductor PN junction is briefly reviewed. Iumped-element equivalent circuits of packaged varactor for various frequency ranges are then proposed following a close examination of the structure of a typical varactor package. Techniques for precision measurement of driving-point impedances are given together with methods for extracting varactor parameters from measured impedance data.

Chapter III is devoted to the analysis of parametric amplefier circuits. The behavior of a varactor under the influence of a pump source is investigated. This is followed by the formulation of the smallsignal immittance matrix of a pumped varactor. Gain and noise figure expressions for amplifier circuits employed a complete equivalent circuit are presented in a manner which makes them suitable for inplementation in computer-aided design program.

The study of inicrowave integrated circuit properties is covered in Chapter IV. Computational methods for characteristic inpedance, effective dielectric constant, and attenuation constant are given along with numer-
ical results for several frequently used substrates. Circuit discontinuities, such as open circuits and T-junctions, are discussed in detail. Analysis and synthesis methods for one particular circuit component, the parallel-coupled band-pass filter, are presented.

The models and calculation methods developed in Chapter II through Chapter IV are used in Chapter V to design and construct a 5.5 GHz degenerate amplifier. 'The computer program used for this design is described in detail. Power gain and noise figure of this amplifier are reported.

In Chapter VI the results of this study are summarized and suggestions are siven for further research into all aspects of this study.

CHAPTER II CHARACTGRIZATION OF MICROWAVE VARACTOR DIODES

2.1 Introduction

The varactor diode is a semiconductor $p-n$ junction which is generally used not for its rectifying properties but rather for its voltage dependent nonlinear capacitance provided primarily by the depletion layer of the junction. By specifying the impurity profile throughout the junction region, the dependence of the depletion width and hence the nonlinear depletion capacitance on applied voltage can be controlled to suit the intended application. As depicted in Fig. 2.1.(a), the p-n junction is formed by diffusing p-type impurity atoms (e. g. boron) into an n-type epitaxial layer which is grown on top of an n^{+}substrate. The substrate is purely for mechanical support and is heavily doped (usually ith arsenic) to reduce the undesired bulk resistance. An ohmic contact is made to a small circular area on top of the wafer, and most of the epitaxal layer is etched away, except that which is directly undermeath the contact. In this way a mesa of destred geometry can be formed. The substrate is then bonded electrically and mechanically to a mounting post, or pedestal which is raised from one of the two conducting end caps of the packaze as shown in Pig. 2.1(b). The top of the wafer is connected to the other end cap using one or more lead wires or bonding straps. The two end caps are wrazed to a ceramic casing to ensure hermetic sealing. While such packages are rugged and convenient for handiling, they are also a source of parasitic elements which bocome significant at microwave frequencies.

(a)

(b)

In this chapter, the electrical characteristics of a varavtor will be dealt with first. By closely examining the varactor properties and the package structure, a realistic equivalent circuit is then proposed. Finally, means for determining the equivalent circuit are discussed. This includes the measurement setup, measurement technique, computational methods, and a computer-aided optimization technique for obtaining numerical values for the equivalent circuit elements from the experimental data.

2.2 Circuit Elements of Packaged Vara.ctor Diodes

2.2.1 Junction Capacitance. Although the formation of a p-n j-:ction is actually done by a diffusion process, let us visualize what would happen if two regions of semiconductor material possessing different type of conductivity, one of p-type and the other of n-type, are lrought into contact. Because of the concentration gradient, electrons would diffuse from the n-type region into the p-type region and quickly recombine with holes. Sinilarly, holes would diffuse from the p-type region into the n-type region and recombine with electrons. This process would leave a net positive charge in the previously neutral n-region near the junction, and a net negative charge in the p-region due to the ionized donor and acceptor atoms respectively. As the diffusion proceeds, an electric field is set up which retards and finally stops the diffusion of majority carfiers across the junction. After equilibrium is established, a narrow region called the depletion lajer or space-charge layer is left at the
junction, which is swept completely free of charge carriers by the electric field. The potential difference across the depletion layer is called the contact potential or barrier potential.

The width of the depletion layer depends on both the type of semiconductor material and the impurity distribution near the junction. Knowing the impurity distribution, the depletion layer width can be found by solving the one dimensional Poisson's equation for the scalar potential $\psi(x)$

$$
\begin{equation*}
\frac{d^{2} \psi(x)}{d x^{2}}=-\frac{P(x)}{\epsilon} \tag{2.1}
\end{equation*}
$$

With appropriate boundary conditions. Figure 2.2 shows the space-charge distributions of the two most commonly treated junction, namely, the abrupt junction and the linearly-graded junction. For the abrupt junction, the width of the depletion layer is given by*

$$
\begin{equation*}
w=\frac{2 \epsilon(\phi+V)}{q}\left(\frac{1}{N_{a}}+\frac{1}{N_{d}}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& q=\text { the electronic charge }\left(1.6 \times 10^{-19} \mathrm{C}\right), \\
& \phi=\text { the contact potential (volts), }
\end{aligned}
$$

[^1]
(a)

(b)

Fig. 2.2 Space-Charge Distributions
(a) abrupt junction
(b) Innearly-graded junction
$\epsilon=$ the permittivity of the semiconductor material (F / m),
$V=$ the applied voltage (volts),
$N_{a}=$ the acceptor concentration (m^{-3}),
$N_{\mathrm{d}}=$ the donor concentration $\left(\mathrm{m}^{-3}\right)$.
Since varactors are usually operated in the reverse bias region, for convenience, a siga convention is adapted such that a reverse bias voltage is positive, while a forward bias voltage is negative. Equation 2.2 can be written as

$$
\begin{equation*}
w=w_{0}(1+V / \phi)^{1 / 2} \tag{2.3}
\end{equation*}
$$

where W_{0} represents the width of the depletion layer at zero bias. The junction capacitance is

$$
\begin{equation*}
c_{j V}=\frac{\epsilon_{A}}{W}=\frac{c_{j 0}}{(1+V / \phi)^{\perp} \sqrt{2}} \tag{2.4}
\end{equation*}
$$

where A is the junction area, and $C_{j 0}=A\left(\epsilon_{/} W_{\rho}\right)$ is the capacitance at zero bias.

Simllarly, for linearly-graded junction, the width of the depletion layer at zero bias is

$$
\begin{equation*}
W_{0}=\left(\frac{12 \epsilon \phi}{q g}\right)^{1 / 3} \tag{2.5}
\end{equation*}
$$

where g is the impurity gradient as shown in Fig. 2.2(b). When bias voltage V is applied to the junction, the width of the depletion layer is changed to

$$
\begin{equation*}
W=W_{0}(1+V / \phi)^{1 / 3} \tag{2.6}
\end{equation*}
$$

The junction capacitance is then given as

$$
\begin{equation*}
C_{J V}=A \frac{\epsilon}{W}=\frac{C_{j 0}}{(1+V / \phi)^{1 / 3}} \tag{2,7}
\end{equation*}
$$

In practice, the impurity disticibution is far more complicated and usually can be approxdmated by either a gaussian or a complimentary error function, depending on the diffusion process. In this case, the capacitance-voltage relationship must be calculated numerically [17]. However, as a first order approdmation, the depletion layer width and the junction capacitance of a real p-n junction can be expressed

$$
\begin{align*}
W & =W_{0}(1+V / \phi)^{1 / n} \tag{2.8}\\
c_{j V} & =\frac{c_{j 0}}{(1+V / \phi)^{1 / n}} \tag{2,9}
\end{align*}
$$

where the value of n is in the range of 2 to 3 .
2.2.2 Series Resistance. The series resistance of a packaged diode consists of two parts: fixed resistance, R_{f}, and variable resistance, R_{v}. The fixed resistance includes that of the two end caps, the mounting post, the substrate, and the bonding straps, and is independent of the bjas voltage. R_{f} can be evaluated if the resistivities of the substrate and the conductors are given together with the package configuration. The variable resistance is due to the bulk resistance of the semiconductor
mesa excluding the depletion layer. For the case of an epitaxdal disde, this resistance is dominant and is given by

$$
\begin{equation*}
R_{v}=\frac{1}{A}\left[\int P_{p}(x) d x+\int P_{n}(x) d x\right] \tag{2.10}
\end{equation*}
$$

where the integration limits for the first term are from the top of the epitardal layer to the eige of the depletion region in the p-region, and from the epitaxial layer-substrate interface to the edge of the depletion region in the n-region for the second term. The p-type and n-type resistivities are functions of the acceptor and donor impurity concentrations, respectively. R_{v} is thus a function of depletion width which in turn is a function of the bias voltage. Consequently, the total series resi tance R_{s} is a finction of blas voltage. Larger bias voltage causes a wider depletion layer, which lowers the series resistance.

For abrupt junction, Eq. 2.10 san be calculated by making some simplifying approdmations. For instance, if the p-region is assumed to be negligibly thick, and $P_{P} \ll P_{n}$, so that $W \approx N_{n}$, then Eq. 2.10 becomes

$$
\begin{equation*}
R_{v}=\frac{1}{A} \int_{W}^{t} P_{n}(x) d x \tag{2.11}
\end{equation*}
$$

where t is the thickness of the epitaxdal layer. Since the assumption of an abrupt junction implies a constant donor concentration, $P_{n}(x)$ is constant, and thus

$$
\begin{equation*}
R_{v}=\frac{\rho_{n}(t-W)}{A} \tag{-2.12}
\end{equation*}
$$

Equation 2.12 can be expressed in terms of bias voltage explicitly. Using Eqs. 2.3 and 2.4, the following equation isi obtained

$$
\begin{equation*}
R_{v} * \frac{P_{n} t}{A}-\frac{\epsilon P_{n}}{C_{j 0}}(I+V / \phi)^{I / 2} \tag{2.13}
\end{equation*}
$$

The total series resistance can now be expressed in the form of

$$
\begin{equation*}
R_{s}=R_{1}-R_{2}(1+V / \phi)^{I / 2} \tag{2.14}
\end{equation*}
$$

where $R_{1}=R_{f}+P_{n} t / A$, and $R_{2}=P_{n} \varsigma / C_{j 0}$.
For a real varactor, Eq. 2.10 can be evaluated nutierically if the diffusion process is known. However, for the purpose of characterization, R_{s} can be simply expressed as

$$
\begin{equation*}
R_{s}=R_{1}-R_{2}(1+V / \phi)^{1 / n} \tag{2.15}
\end{equation*}
$$

and unknown parameters can be deternined experimentally.
2.2.3 Lead Inductance. All the metallic portions of the paciage contribute parasitic indur ance which appears to be in series with the junction capacitance. The most significant contribution undoubtedly comes from the lead wires or bonding straps which connect the semiconductor die to one of the end caps, because of their very small crosssectional dimensions. Typically, the connection consists of a single piece of gold wire with a diameter of 25 micrometers (m), or an ortho-
gonal pair of $25 \mu \mathrm{~m}$ thick by $75 \mu \mathrm{~m}$ wide gold straps, with the center attached to the semiconductor die and both dens to the end cap (rafor so Fig. 2.1 a).

The inductance of a round wire with length ℓ and diameter d is given as [18]

$$
\begin{equation*}
L=2 \ell\left[\ln \frac{4 \ell}{d}-0.75\right] \tag{2.16}
\end{equation*}
$$

where L is in nanohernies ($n H$), and ℓ and d are in centimeters. The low frequency inductance of a straight rectangular bur with length l, width w, and thickness t is [18]

$$
\begin{equation*}
L=2 \ell\left[\ln \frac{2 \ell}{w+t}+0.5+0.2235 \frac{w+t}{\ell}\right] \tag{2.17}
\end{equation*}
$$

where I is again in nH , and all dimension are in centimeters. The induc. tance values at microwave frequencies ; e affected by skin effect, but are lower than those given by the low frequency formula by less than 6 per cent [19].

The value of lead inductance associated with a particular iype of package can be obtained from the manvfacturer. However, the lead wires or bonding straps are almost universally installed by hand, thus the lead inductance usually varies from unit to unit. Therefore the data supplied by the ininufacturer must be verified experimentally.
2.2.4 Package Capacitance. In general, capacitance exists between any two separated conductors. Therefore, the package capacitance of a varactor diode comes from gany sources; between the two end caps, between the bonding stiaps and the bottom end cap, between the bonding straps and
the mounting post, and betwaen the top end cap and the mounting post. Even if the fringing field effect and discontinuities are neglected, evaluation of the package capacitance is still a formidable, if not impossible, task [20]. However, the value of the package capacitance can be easily obtained by measuring the capacitance of a dumy package at low frequencies.

2.3 Lumped-Element Equivalent Circuits

As depicted in Fig. 2.3(a), the parasitic apacitance and inductance are in fact distributed elements. Thus, the general approach to the package representation would seem to be either a three-port transformation matrix [21], or a distributed-element circuit, as iliustrated in Figs. 2.3(b) and 2.3(c), respectively. However, the transformation matrix suffers from two major drawbacks: one, that the matrix elements may not have any physical meaning and two, that each matrix evaluation 1.3 only valid at one irequency, While the distributed-element circuit does relate its elements to the physical parameters of the package structure, it also makes the analysis of the circuit much more difficult, and thus renders itselt undesirable. However, if the package dimensions are much smaller than one wavelength at the frequency of interest, these dificiencies can be readily removed by employing a lumped-element equivalent, circuat.

To see how the equivalent circuit in Fig. $2.4(\mathrm{a})$ is conceived, a
closer look at the distmbuted-element circuttin pig. 2.3(c) is in order.

(a)

Fig. 2.3 Packaged Taractor Representa:ion
(a) parasitics associated with package
(b) busic three-port representation
(c) distributed-element equivalent cirouit

Fig. 2. L L昷peci-Element Equivalent Cirouts of Varactor Diodes

The elements C_{j} and R_{s}^{\prime} represert the junction capacitance and the bulk resistance of the semiconductor material (i. e., the substrate and the underleted epitaxial layer). The resistance and inductances with subscript I through 4 are those contributed from the top end cap, the bottom end cap, the bonding straps, and the mounting post, in that order. C_{1} is attributed to the capacitance between the two end caps, while C_{2} is that between the bonding straps and the bottom end cap, with C_{3} being that between the: bonding straps and the mounting post.

In Fig. 2.4(a), it is obvious that C_{j} remains unchanged while R_{s} becomes the sum of I_{s} and all distributed resistive elements. The capacitance between the straps and the post in the immediate vicinity of the semiconductor wafer forms the first shunt element, C' ${ }^{\prime}$ ', with portion of the strap inductance and all the post inductance appearing immediately in series with tine semiconductor elements past the initial shunt capacitance as represented by $L_{s 2}{ }^{\prime}$. The second shunt element, $C_{p 2}^{\prime}$, represents the other part of the capacitance between the straps and the post,together with portion of the capacitance between the two end caps in the air volume. I'sl', the seccer serles element, consists of the other part of the strap inductance and all the end cap inductance. Finally, $C_{p l}$ represents the capacitance between the end caps in the ceramic casing.

This equivalent circuit does, to some extent, actually relate the circuit elements to the physical parameters to the package structure, and therefore is relatively invariant over a wide frequency range. Thus, in many applications tit is usefful over several octaves for frequencies as
high as that in the lower end of the millimeter-wave range. For lower frequencies, this equivalent circuit can be reduced to that of Fig. 2.4(b). This is done by observing that if two adjacent circuit elements, a series inductance and a shunt capacitance, having small immittances, but not small enough to be neglected outright, they may often be interchanged. in position. This will allow them to be combined with elements of the same type and thus reduce the number of loops in the circuit by one. Considering the I-section containing $I_{s 2}^{\prime}$ and $C_{p 2}^{\prime}$, the $A B C D$ matrix (see Appendix A) which represents this section is

$$
\left[\begin{array}{cc}
1 & 0 \tag{2.18}\\
j \omega C_{p 2}^{\prime} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & j \omega L_{s 2}^{\prime} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & j \omega L_{s 2}^{\prime} & \\
j \omega C_{p 2}^{\prime} & 1-\omega^{2} L_{s 2}^{\prime} C_{p 2}^{\prime}
\end{array}\right]
$$

If the positions of $I_{s 2}^{\prime}$ and $C_{p 2}^{\prime}$ are interchanged, then the $A B C D$ matrix becomes

$$
\left[\begin{array}{cc}
1 & j \omega L_{\mathrm{s} 2}^{\prime} \tag{2.19}\\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
j \omega C_{p 2}^{\prime} & 1
\end{array}\right]=\left[\begin{array}{cc}
1-\omega^{2} L_{\mathrm{s} 2}^{\prime} & C_{p 2}^{\prime} \\
j \omega L_{\mathrm{s} 2}^{\prime} \\
j \omega C_{p 2}^{\prime} & 1
\end{array}\right]
$$

Equations 2.18 and 2.19 indicate that the positions of $L_{s 2}^{\prime}$ and $C_{p 2}^{\prime}$ may be interchanged whout introducing significant erroc for frequencies satisfying the condition

$$
\begin{equation*}
\omega^{2} L_{s 2}^{\prime} C_{p 2}^{\prime} \ll 1 \tag{2.20}
\end{equation*}
$$

For most standard packaces, the criterion of $\Xi q .2 .20$ can be easily met for frequencies in the X -band ($8-12.4 \mathrm{GHz}$) or lower. The equivalent circuit can be further simplified to those in Figs. $2.4(c)$ and (i).

Because of their simplicities, these two circuits, in one form or the other, have been used by numerous authors. However, they are only valid at ultra-high frequencies or lower microwave frequencies, and any attempt to use them at high frequencies might cause significant discrepancies between theoretical and actual responses.

2.4 Measurement of Packaged Varactor Diodes

The measurement techniques of microwave varactor diodes can be lyoadly characterized into two catagories: the "transmission loss versus frequency" method due to DeLoach [22], with extensions by Roberts and Wilson [23], and the "impedance versus bias" method due to Houlding [24], with extensions by Harrison [25]. Diode parameters, namely C_{j} and R_{s}, are calculated from the measured data and expressed in terms of Q factor [26], from which amplifier performances can be roughly predicted. Parasitic elements are not of great importance, and thus are not accurately deternined, since they can be easily tuned out in waveguide or coaxial itine circuats. Unfortunataly, for the current study, this is not the case because of the lack of tunability in microwave integrated circuits.

In the following sections, a measurement technique is described which Will enable the determination of the diode equivalent circuit more accurateiy. The diodes used in this study are Microwave Associates' MA 4850 ge gallium-arsenide (GaAs) varactor diodes, commonly employed in microwave parametric amplifiers. Figure 2.5 shows its dimensions. Diode parameters at two reverse błas voltages, 0 and 6 volts, were supplied by the maru-

$$
\begin{aligned}
& A=3.04 \mathrm{~mm} \\
& B=0.58 \mathrm{~mm} \\
& C=0.71 \mathrm{~mm} \\
& D=0.25 \mathrm{~mm} \\
& \mathrm{E}=2.03 \mathrm{~mm}
\end{aligned}
$$

Fig. 2.5 Dimenst ons of MA 48509 Famactor Diode

ORiGi
OF POC.. , AILY
facturer, and are listed in Table 2.1.

Table 2.1 Manufacturer Supplied Data for MA 4850ge Varactor Diode

Parameter	Diode \#1	Diode \#2	Diode \#3
$C_{j 0}$ (pF)	0.578	0.552	0.594
$C_{j 6}(\mathrm{pF})$	0.271	0.252	0.280
$I_{s}(\mathrm{nH})$	0.3	0.3	0.3
$C_{p}(\mathrm{pF})$	0.292	0.292	0.292
$f_{c o}{ }^{*}(\mathrm{GHz})$	292	294	267
$\mathrm{~V}_{\mathrm{B}}(\mathrm{Volts})$	13	18	18

2.4.1 Measurement Setup. Since parametric amplifiers are generally used for low-level reception with signal level usually below -70 dBm (10^{-7} mif), the measurement must be carried out with power level compatible to the low -level condition. Preliminary investigations indicated that the diode parameters are affected by power levels when the incident power is above -15 ABm . As a result, the power level under which the diodes are to be measured was then decided to be about -20 dBm . This requires a measurement system with very high sensitivity, and consequentiy
the superheterodyne system shown in Fig. 2.6 was chosen.
A lafief description of the system follows. To eliminate the pulling effect, a circulator with one port terminated in a $50-\mathrm{ohm}$ load is inserted between the signal generator and the rest of the system. Frequency is measured by a precision frequency meter. Power level is continuously monitored through a directional coupler. Bias voltage is applied via a coardal bias-tee. The recision slotted-line is a $50-0 \mathrm{hm}$ HP tijpe 816 A with APC-7 connectors. Signal picked up by the untuned RF proos is fed to the low-noise mixer. The IF output from the fixer is then displayed by a precisely calibrated, 30 MHz amplifier (GR type 1236).

The drode test mount deserves a more detailed description since it plays the most important role in the whole system, and is not commercially available. To be compatible with the slotted-line, the diode test mount was designed around an APC-7 air line connector. Every part was machined in trass and then gold plated to minimize ohmic $+0 s s$. The diode is held between the inner conductor and a cylindrical slug with the center of one end silightly recessed to ensure that the diode will be properly centered. A fine thread screw is used to keep the slug, and thus the diode, firmly in position. Figure 2.7 is a photograph of the completely disassembled diode mount. Some critical dimensions are indicated in Fig. 2.8.
2.4.2 System Calibration. Before the diode measurement can be made, two important parameters of the system must be determined: the attenuation constant of the slotted-line, and the position of the reference plane consistent with the scale on the slotted-line. Losses on a slotted-line

Fig. 2.6 Superheterodyne Measurement System

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 2.7 Photograph of the Disassembled Diode Test Mount

Fig. 2.8 Diode Test Mount
are usually very small, and can be neglected in most cases. However, in this case, the diodes have a very small resistance, and hence the voltage standing-wave ratio (VSWR) is very high. As a result, neglecting the Ine loss car affect the measured data drastically. Bandler [i27] has shown that the attenuation constant, α, of a slotted-line is related to the short-circuited VSWR, S_{0}, by

$$
\begin{equation*}
\alpha=\frac{1}{s_{0} l^{2}} \quad \text { nepers } / \mathrm{cm} \tag{2.21}
\end{equation*}
$$

where Z is the distance between the position of the probe and the reference plane in centimeters. The attenuation constant measured by this method has a value of 0.00046 nepers/ cm at 5 GHz and 0.00056 nepers/cm at 6 GHz .

To establish the load reference plane, the center-recessed slug was replaced by another slug with identical dimensions, yet an even and smooth surfiace, which made finm contact with the inner conductor. The positions of standing-wave minima were recorded at intervals of approximately 1 GHz from 1 to 18 GHz . These positions were numert ally extrapolated by integer numbers of half-ravelength until they coincided, and this, of course, was the load reference plane. The value cocsistent with the slotted-line scall was determined to be -1.383 cm . The scatter through the whole frequency range was rather small and could well be attributed to experimetal errors, thus the system was belleved oo be substantially free from major defects.

For the diode measured in this report, the diameter of the larger end cap is 3.05 mm , which is identical to the diameter of the inner
conductor. Thus, the load reference plane can be further moved to the end cap-dielectric casing interface. As will be seen later in this chapter, this makes the data reduction procedure much simpler. Since the thickness of the end cap is 0.058 cm , the new load reference plane was then moved to -1.441 cm .
2.4.3 Measurement Technique. Due to the combination of low power and high VSWR, the accuracy of measurement by the "double-minimum" method [28] is rather poor because of the difficulty in precisely measuring the power level at locations of standing-ware minima. To overcome this problem, the "four-point" method [29] was employed. Referring to Fig. 2.9, this method requires the measurements of four positions (x_{1}, x_{2}, x_{3}, and x_{4}) and the difference between two power levels ($P d B$) which was usuaily taken to be about 10 dB . Measurements were made at intervals of about 200 MHz from 4.8 GHz to 6.2 GHz , and again from 10 to 12 GHz . At each frequency, measurements were made at $s i x$ different bias voltages: $0,0.5$, 1.0, 2.0, 4.0, and 6.0 volts. At each bias voltage, τ probe moved from one end of the slotted-1ine to the other covering all standing-wave minisa. Usually several hundred sets of data, were taken for each diode.

The calculation of standing-wave zatio, S, is quite straightforward. Let d_{1} be the distance between x_{1} and x_{2}, and d_{2} between x_{3} and x_{4}, then

$$
\begin{equation*}
s=\left[1+\frac{\operatorname{sxp}(0.23026 P)-1}{\sin ^{2}\left(\frac{\pi d_{2}}{\lambda_{g}}\right)-\exp (0.23026 P) \sin ^{2}\left(\frac{\pi d_{1}}{\lambda_{g}}\right)}\right]^{1 / 2} \tag{2.22}
\end{equation*}
$$

-34

where λ_{g} is the wavelength and P is the difference in $d B$ between the two power levels where the four positions were measured. However, Eq. 2.22 gives VSWR at the position of minimum $\left(x_{0}\right)$. For lossy slotted-line, the value at the load reference plane is [28I30]

$$
\begin{equation*}
S_{\ell}=\operatorname{coth}[\operatorname{arctanh}(1 / s)-\alpha l] \tag{2.23}
\end{equation*}
$$

where 2 is the distance between x_{0} and the load reference plane. If $S \gg$ I, and $\alpha \& \ll$ 1, Eq. 2.23 tecomes

$$
\begin{equation*}
s=\frac{1}{1 / S-\alpha l} \tag{2.24}
\end{equation*}
$$

and the load impedance at the reference piane is

$$
\begin{equation*}
z_{2}=z_{0} \frac{1-s_{2} \tan \theta}{s_{2}-j \tan \theta} \tag{2.25}
\end{equation*}
$$

where Z_{0} is the characteristic impedance of the slotted-line and θ is the electric angle between x_{0} and the load Feference plane, and is given 3.5

$$
\begin{equation*}
\theta=\frac{2 \pi Z}{\lambda_{G}} \tag{2.26}
\end{equation*}
$$

A computer program was written to process the reasured data according to Eqs. 2.22, 2.23, and 2.25. During the initial 5m, all data points were processed individually, and an "average inpedance" was calculated at each bias. The computer printout was carefully exanined and data point with value greatly different from the average value was considered
to be "bad point" due to experimental errors, and thus was discarded. After the cleanup, the data were reprocessed. Figure 2.10 shows one page of the computer printout on the initial run.

2.5 Determination of Equivalent Circuit Parameters

2.5.1 Diode Tesi Mount Equivalent Circuit. As has been discussed

 in great detatl by Getsinger [31], the impedance calculated from Eq. 2.25 is in fact the impedance of both the diode mount and the diode itself. Figme 2.i-(b) shows the diode mount equivalent circuit proposed by Getsinger. Circuit elements will now be briefly described.The first element from the left, C_{f}, is the fringing capacitance between the end cap and the outar conductor. The series inductance, I_{c}, is the coardal inductance caused by magnetic fields in the volume bounded by the outer conductor as indicated in Fig. 2.11(a). The pi-network formed by $C_{r 1}, I_{r}$, and $C_{z 2}$, is the equivalent network for the radial line [32] with length h, extending from the diode to the diameter D_{i} of the inner conductor.

Based on the dimensions of the diode and the diode mount, these parameters were calculated to be (see Appendix 3)

$$
\begin{aligned}
& C_{f}=0.062 \mathrm{pF} \\
& I_{C}=0.118 \mathrm{nH} \\
& C_{r 1}=C_{I 2}=0.025 \mathrm{pF} \\
& L_{I}=0.058 \mathrm{nH}
\end{aligned}
$$

To test its validity, the impedance calculated from this equivalent

F13. 2.10 Computer Printout of Measured Impedances
riginal Page is OF POOR QUALITY
-38-

Fig. 2.11 Diode Mount Representation
(a) diode terminating coaxial line
(b) dfocle mount equiralent circuit
circuit together with the diode parameters in Table 2.1 are compared With the measured impedances. Figure 2.12 shows excellent agreement between the calculated and measured reactances, and thus substantially confirms the validity of the equivalent circuit.

Once the equivalent circuit of the diode mount is dete:mined, the diode impedance, z_{d}, can be easily obtained from the measured impedance, Z_{ℓ}. The diode reactances at two bias voitages are also plotted in Fig. 2.12.
2.5.2 Computer-Aided Optimization of Diode Parameters and Equivalent Cirouit glements. The problem of obtaining numerical values for the equivalent circuit elements from the measured impedance data is usually solved by the least-square polynomial approximation method [33]. Conceptually, it is very straightforward. A polynomial function which fits the measured data is compared with a second polynomial function which renresents the impedance of the equivalent circuit. Numerical values of the circuit elements are solved from a set of simultaneous equations formed by equating the coefficients of like terms from these two polynomial functions. In pracince, this method is very tedious and involves enormous amount of computational efforts. iorse yet, the equivalent circuit thus determined is only valld at one bias voltage.

What is really desired is to deternine not just the equivalent circuit at any particular bias voltage. Instead, it is more desirable to determine the values of the parasitic elements and the diode parameters, namely, $\mathrm{n}, \phi, \mathrm{C}_{\mathrm{jO}}, \mathrm{R}_{1}$, and R_{2} as in Eqs. 2.9 and 2.15. Knowing these

F1g. 2.12 Comparison of Calculated and Measured Reactances
parameters, the equivalent circuit at any given bias yoltage can be contructed. Furthermore, these parameters also permit the more accurate calculation of pump power level and amplifier performance.

To determine these parameters, a computer-aided optimization technique was employed. This technique can be simply explained as follows. Initial parameter values are obtained by "educated guess" or any other judicial means. Following a certain strategy, or optimization method, each parameter is then adjusted (within certain constraints) so as to minimize the error between the measured impedance and those calculated. By doing this successively, the error is finally minimized, and thus the "optimum" parameter values are obtained. This is obviously not a systematic method, and a certain amount of experience and intuition is required. In fact, many factors such as initial parameter values, step sizes, optimization method, and error difinition, can all affect the final outcome.

A computer program employing a modified "direct search" method [34] was written for this study*. The error function is defined as

$$
\begin{align*}
\text { ERROR }=\sum & \left\{w_{1}\left[\operatorname{Re}\left(z_{d, c a l .}\right)-\operatorname{Re}\left(z_{d, \text { mea. }}\right)\right]^{-2}\right. \\
& \left.+w_{2}\left[\operatorname{Im}\left(z_{d, c a l .}\right)-\operatorname{Im}\left(z_{d, \text { mea. }}\right)\right]^{2}\right\} \tag{2.27}
\end{align*}
$$

[^2]where w_{1} and w_{2} are weighting coefficients, and the sumation is over all frequencies of interest. As is evident from Fig .2 .10 , the real part of the measured impedances is less repeatable, and thus less reliable, than the imaginary part. Therefore a value of 0.2 or less was assigned to the ratio of w_{1} / w_{2}. Measured data of each diode were usually optimized more than ten times, each with slightly different initial value and step size, for the equivalent circuit shown in Fig. 2.4(b). The results were then compared and the one with the smallest error was retained. Table 2.2 shows the optimum parameter values for the three diodes listed in Table 2.1.

Table 2.2 Opttimu Parameter Values for MA 4850ge Varactor Diodes

Parameter	Diode \#1	Diode \#2	Diode \#3
n	2.332	2.154	2.218
ϕ (volts)	1.214	1.147	1.126
$C_{j 0}$ (pF)	0.581	0.552	0.596
R_{1} (ohms)	1.04	1.03	1.11
R_{2} (ohms)	0.12	0.14	0.15
$I_{s} \quad(n H)$	0.317	0.324	0.325
$C_{p l} \quad(p F)$	0.251	0.251	0.247
$C_{p 2} \quad(2 F)$	0.043	0.046	0.051

where W_{1} and W_{2} are weighting coefficients, and the summation is over all frequencies of interest. As is evident from Fig. 2.10, the real part of the measured impedances is less repeatable, and thus less reliable, than the imaginary part. Therefore a value of 0.2 or less was assigned to the ratio of $\mathrm{H}_{1} / \mathrm{H}_{2}$. Measured data of each diode were usually optimized more than ten times, each with slightly different initial value and step size, for the equivalent circuit shown in Fig. 2.4(b). The results were then compared and the one with the smallest error was retained. Table 2.2 shows the optimum parameter values for the three diodes Iisted in Table 2.1.

Table 2.2 Optimua Parameter Values for MA 4850 F Varactor Diodes

Parameter	Diode \#1	Diode \#2	Diode \#3
n	2.332	2.154	2.218
$\phi \quad$ (volts)	1.214	1.147	1.126
$C_{j 0}$ (DF)	0.581	0.552	0.596
I_{1} (ohms)	1.04	1.03	1.11
R_{2} (ohms)	0.12	0.14	0.15
I_{s} (nH)	0.317	0.324	0.325
$C_{p 1}$ (DF)	0.251	0.251	0.247
$C_{p 2}$ (DF)	0.043	0.046	0.051

GHAPTER III TMEORY OF NEGATIVE RESISTANGE PARANETRIC AMPIIFIERS

3.1 Introduction

In the analysis of parametric amplifiers and converters, a set of power relations orfiginally ieveloped by Manley and Rowe [35] provedes a fundamental basis. It is convenient for the purpose of illustration to consider the general situation as represented by the circuit of Fig. 3.1. Two voltage generators at frequencies f_{1} and f_{2} together with associated series resistances and ideal band-pass filters are placed across a lossless nonlinear reactance. Each filter presents a short-alrcuit to the desired frequency, and an open-circuit to all other frequencies. In addition to the two voltage generators, an infinite array of ideal candpass filtets sud load resistances are also connected to the nonlinear reactance. These filters are tuned to the various sum and difference frequencies which will arise because of the nonlinear reactance. The equations that relates the power flowing into (positive power) and out of (negetive power) the nonlinear reactance are sinown by Manley and Rowe to be

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{n=-\infty}^{\infty} \frac{n p_{n, n}}{m F_{1}+n f_{2}^{\prime}}=0 \tag{3.2}
\end{equation*}
$$

$\frac{1}{f}$

Flg. 3.1 Circuit Illustrating Use of Manley-Rowe Relations
where $P_{m, n}$ is the average power flowing into the noninear reactance at the frequency $m f_{1}+n f_{2}$. Equations 3.1 and 3.2 are often referred as the Manley-Rowe relations. These relations are independent of the shape of reactance charactertstics and of the driving power level.

To illustrate the applications of the hanley-Rowe relations, a particular case will now be exanined in which power is permitted to flow at only three frequencies. If the nonlinear reactance is excited at f_{1} and \dot{I}_{2}, it whll generate a third irequency f_{3}. The circuit is assumed to present an open-circuit to all other frequencies. It is further assumed that the power from the voltage generator at f_{1} is much smaller than that from the voltage generator at f_{2} mioh is responsible for driving the nonlinear reactance, and which is usually called the pump source. If f_{3} is the defference frequency, i. e., $f_{3}=f_{2}-f_{1}$, Eqs. 3.1 aid 3.2 become

$$
\begin{align*}
& \frac{P_{1}}{f_{1}}-\frac{P_{3}}{I_{3}}=0 \tag{3.3}\\
& \frac{P_{2}}{f_{2}}+\frac{P_{3}}{f_{3}}=0 \tag{3.4}
\end{align*}
$$

Since yump power P_{2} is supplied to the nonlinear reactance and is positive, it follows that P_{1} and P_{3} are negative. This means that the nonlinear reactance is supplying power to the voltange generator at f_{1} rather than absorbing power from it. Since this power is indepencent of that supplied by the generator itself, it follows that infinite power gain is zossiole at \hat{f}_{1}. This is the case of the so-called negetive
resistance parametric amplifiers, and f_{1} and f_{3} are the signal and the idier frequency, respectively.

The nonlinear reactance can be either inductive or capacitive. In this study, the treatment is linited to the latter case in which the nonInnear depletior: capacitance of a varactor described in last chapter is employed. More precisely, a varactor has not only a nonlinear capacitance, but also a noninear resistance. Engelbrecht [36] has studied circuits containing both nonlinear capacitance and reststance for irequency converters. The time-varying capacitive and resistive elements were assumed to be 90° out of phase, i. e., they are pumped in time-quadreture. This arrangement allows the circuit to extibit non-reciprocai features not found in single nonlinear slement circuits. Other have also studied the cases in which the two nonlinear elements are pumped in ariftrany phase relationship [37][38]. However, for high quality varactors, the nonlinear effect in sertes resistance is insignificantly small, and may thus be neglected. Throughout the remainder of this report, the series resistance of a varactor will be treated as a varlable (i. e., dependent upon blas voltage) but innear element.

In the suosequent sections, the behavior of a varactor under the influence of a large-amplitude pump voltage will be investigated. This is followed by the formulation of the small-signal immittance matrix of a pumped varactor. The analysis of parametric amplifiers employing a sinplified equivalent circuit, i. e., a norlinear cajacitance and a Innear resistance, has been covered in a number of well-inown cooks [37]
[38][39][40I41], and numerous journal articles [42][43]. No attempt to review the vast iiterature will be made here. Instead, generalized expressions for power gain and noise figure will be derived for amplifiers employing a more realistic equivalent circuit.

3.2 Pumping of Varactor Diodes

In a parametric amplifier, let a large-amplitude pumping voltage of frequency f_{p} be applied across the varactor. By Fourier series expansion, the nonlinear capacitance can then be repiaced by a time-varying linear capacitance,

$$
\begin{equation*}
c(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{. j E \omega_{p} t} \tag{3.5}
\end{equation*}
$$

The puepose of this section is to calculate the Fourier coefficients c_{K}, and the required purping power. The discussion is limited to the case of voltage pumping, in which the voltage across tine noninnear capacitance is assumed to be sinucoidai. The calculation methods for the case of current pumplag, in which the current through the noninear capacitance is assumed to of sinusoidal, are similar to that of voitane pumpins, and are ofven eisewhere [38][41].

The range of the pumping voltage, ${ }_{p}(t)$, across the nonlinear capacttance is limited by the contact potential, p, in the forward cias refion, and by the 'oreaxiown voitage, V_{B}, in the reverse bias region. The pumping is said to be fuli if $y_{p}(t)$ varies iroll $-p$ to $T_{\bar{J}}$. In this case, the bias voltaze is chosen to be

$$
\begin{equation*}
v_{0}=\frac{v_{B}+\phi}{2} \tag{3.6}
\end{equation*}
$$

If the pumping power is limited, tifen the field of variation of $y_{p}(t)$ is narrower, and the pumping is said to be partial. In this case, the pias voltage should be chosen such that the following condition is met at any instant,

$$
\begin{equation*}
-\phi \leq v_{p}(t) \leq v_{B} \tag{3.7}
\end{equation*}
$$

Since the rcltage across the nonlinear capacitance is sinusoidal in voltage pumping, $v_{p}(t)$ can be expressed as

$$
\begin{equation*}
\nabla_{p}(t)=v_{0}+v_{p} \cos \omega_{p} t \tag{3.8}
\end{equation*}
$$

where, without loss of genersilty, the time orisin is chosen in such a way that the pumping prase is zero. From Eq. 2.9, the time-vanying capacitance nay be wititen as

$$
\begin{equation*}
C(t)=\frac{c_{j 0}}{\left[1+\left(Y_{0}+V_{p} \cos \omega_{p} t\right) / \phi\right]^{-1 / n}} \tag{3.9}
\end{equation*}
$$

Letting $a=V_{p} /\left(V_{0}+\phi\right)$, Eq. 3.9 becomes

$$
\begin{equation*}
C(t)=\frac{C_{v_{0}}}{\left(1+a \cos _{p} t\right)^{1 / n}} \tag{3.10}
\end{equation*}
$$

where $C_{j V_{0}}=c_{j 0} /\left(1+v_{\sigma} / \phi\right)^{1 / n}$, The Fouriar coeificients, C_{X}, are then Stiven as

$$
\begin{equation*}
c_{k}=\frac{1}{T} \int_{0}^{T} C(t) e^{-j \pi \omega_{p} t} d t \tag{3.11}
\end{equation*}
$$

Since $C(t)$ is an even function, it follows that

$$
\begin{equation*}
2\left|G_{k}\right|=\left|c_{k}+c_{-k}\right|=\left|\frac{2}{T} \int_{0}^{T} c(t): \operatorname{sos}\left(k \omega_{p} t\right) d t\right| \tag{3.12}
\end{equation*}
$$

Equations 3.10 and 3.12 yield

$$
\begin{aligned}
\left|c_{\mathbf{L}}\right| & =\left|\frac{c_{j V_{0}}}{T} \int_{0}^{T} \frac{\cos \left(k \omega_{D} t\right)}{\left(1+a \cos \omega_{p} t\right)^{1 / n}} d t\right| \\
& =\left|\frac{c_{j V_{0}}}{2 \pi} \int_{0}^{2 \pi} \frac{\cos k x}{(1+a \cos x)^{1 / n}} d x\right|
\end{aligned}
$$

Iquation 3.13 can be evaluated by either expansion in terns of hypergeometric functions [44 I45], or numerical integration. Tables 3.1 to 3.4 give the results of the computation of the first four Foumier coefincients for several different values of n in the range from 2 to 3.

The naxinum gain-bandwidth product of a negative resistance parametric amplifier as derived by Kuh and Fukada [9] is siven by

$$
\begin{equation*}
b\left(10208 f_{t}+0\right) \leq 13.04 \sqrt{f_{1} / f_{s}}\left(c_{1} / c_{0}\right) \tag{3.14}
\end{equation*}
$$

where 0 is the Iractional bandwidit, and G_{t} is the transducer gain. From

Table 3.1 Ratio of First Fourier Coefficient to DC Capacitance as a Function of a

Table 3.2 Normalized Second Fourier Coefficient as a Function of a

Table 3.3 Normalized Third Fourier Coefficient as a Function of a

			$\mathrm{CB}_{2} / \mathrm{c}$			
a	$\underline{n}=2.0$	$\underline{n}=2.2$	$n=2.4$	$\mathrm{n}=2.6$	$n=2.8$	$n=3.0$
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.05	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001
0.10	0.0009	0.0008	0.0007	0.0007	0.0006	0.0006
0.15	0.0021	0.0019	0.0017	0.0015	0.0014	0.0013
0.20	0.0038	0.0034	0.0030	0.0027	0.0025	0.0023
0.25	0.0061	0.0053	0.0048	0.0043	0.0039	0.0036
0.30	0.0089	0.0078	0.0070	0.0063	0.0057	0.0053
0.35	0.0123	0.0109	0.0097	0.0087	0.0080	0.0073
0.40	0.0165	0.0145	0.0129	0.0117	0.0106	0.0097
0.45	0.0214	0.0189	0.0168	0.0152	0.0138	0.0127
0.50	0.0273	0.0240	0.0214	0.0193	0.0176	0.0161
0.55	0.0342	0.0302	0.0269	0.0243	0.0221	0.0202
0.60	0.0425	0.0374	0.0334	0.0301	0.0274	0.0251
0.65	0.0524	0.04062	0.0412	0.0372	0.0338	0.0310
0.70	0.0645	0.0568	0.0507	0.0457	0.0415	0.0381
0.75	0.0793	0.0699	0.0624	0.0562	0.0511	0.0468
0.80	0.0983	0.0866	0.0773	0.0696	0.0633	0.0579
0.85	0.1235	0.1088	0.0970	0.0874	0.0794	0.0727
0.90	0.1598	0.1408	0.1255	0.1130	0.1026	0.0938
0.95	0.2215	0.195	0.1737	0.1562	0.1417	0.294

Table 3.4 Normalized Fourth Foumier Coefficient as a Function of a

			$1 c_{3} /{ }^{\text {c }}$			
2	$\underline{n}=2.0$	$\mathrm{Z}=2.2$	$n=2.4$	$\underline{n}=2.6$	$\underline{n}=2.8$	$\underline{n}=3.0$
0.00	0.0000°	0.0000	0.0000	0.0000	0.0000	0.0000
0.05	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.15	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.20	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002
0.25	0.0006	0.0006	0.0005	0.0004	0.0004	0.0004
0.30	0.0017	0.0010	0.0009	0.0008	0.0007	0.0006
0.35	0.0019	0.0016	0.0014	0.0013	0.0011	0.0010
0.40	0.0029	0.0025	0.0022	0.0019	0.0017	0.0016
0.45	0.0042	0.0037	0.0032	0.0029	0.0026	0.0023
0.50	0.0061	0.0053	0.0046	0.0041	0.0037	0.0034
0.55	0.0086	0.0074	0.0065	0.0058	0.0052	0.0047
0.60	0.0118	0.0102	0.0090	0.0030	0.0072	0.0065
0.65	0.0162	0.0140	0.0123	0.0109	0.0098	0.0089
0.70	0.0220	0.0191	0.0167	0.0149	0.0134	0.0121
0.75	0.0300	0.0260	0.0228	0.0203	0.0182	0.0165
0.80	0.0412	0.0357	0.0313	0.0278	0.0250	0.0227
0.85	0.0578	0.0500	${ }^{1} 0.0439$	0.0390	0.0350	0.0317
0.90	0.0844	0.0730	0.0640	0.0569	0.0510	0.0462
0.95	0.1359	0.2175	0.1030	0.0913	0.0818	0.0740

Eq. 3.14, it is obrious that a large C_{1} / C_{0} ratio is highly desirable. C_{1} / C_{0} increases, as is evident from Table 3.2, with (1) decreasing n, and (2) increasing a. The first condition dictates the choice of a varactor with junction being as nearly abrupt as possible. The second condition indicates the varactor should be pumped as hard as possible. However, this raises an important questions How bard can a varactor be pumped? In other words, what is the reasonable value for a? Obvtously the ac voltage swing can not be allowed to carry all the way to the contact potential because of the onset of formard conduction. Such a condition introduces shot noise, and thus must be avoided. At the present time, there is no theoretical analysis on madmum allowable a. Experimentally, this parameter appears to be from 0.85 to 0.95 , depending on the type of semiconductor materials and reverse treakdown voltages. For design purposes, a value of 0.90 will be assumed. With this assumption, it can be observed from these tables that $C(t)$ can be well approximated by only the first three terms of the Fourier series.

The current flowing through the nonlinear capacitance is [41],

$$
\begin{align*}
1(t) & =c(t) \frac{d v_{p}(t)}{d t} \\
& =\frac{C \cdot V_{0}}{\left(1+a \cos \omega_{p} t\right)^{1 / n}} v_{p}\left(-\omega_{p}\right) \sin \omega_{p} t \tag{3.15}
\end{align*}
$$

The pumping power then can be calculated from

$$
\begin{align*}
P_{p} & =\frac{1}{T} \int_{0}^{T} R_{s}[1(t)]^{2} d t \\
& =\frac{R_{s}}{2} c_{j V_{0}}^{2} \omega_{p}^{2} v_{p}^{2} \int_{0}^{2 \pi} \frac{(\sin x)^{2}}{(1+a \cos \dot{x})^{2 / n}} d x \tag{3.16}
\end{align*}
$$

If the cutoff frequency at a spectfied bias V_{0} is defined as

$$
\begin{equation*}
\omega_{c}=\frac{1}{R_{s}{ }^{C} V_{0}} \tag{3.17}
\end{equation*}
$$

and the normalization puping power at a specified blas V_{U} is defined as

$$
\begin{equation*}
P_{n}=\frac{\left(V_{0}+\phi\right)^{2}}{R_{s}} \tag{3.18}
\end{equation*}
$$

then Eq. 3.16 can be written as

$$
\begin{align*}
& P_{p}=\frac{1}{2 \pi}\left(\frac{\omega_{p}}{\omega_{c}}\right)^{2} P_{n} \int_{0}^{2 \pi} \frac{(a \sin x)^{2}}{(1+a \cos x)^{2 / n}} d x \tag{3.19}\\
& \frac{P_{p}}{P_{n}\left(\omega_{p} / \omega_{c}\right)^{2}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{(a \sin x)^{2}}{(1+a \cos x)^{2 / n}} d x \tag{3.20}
\end{align*}
$$

The integral in Eq. 3.20 can be evaluated by numerical integration, and results are given in Table 3.5.

3.3 Small Signal Fepresentation of a Nonlinear Capacitance

The relationsinips between the current flowing through a nonlinear

Table 3.5 Normalized Pumping Power as a Function of a

capacitance and the signal voltage across its terminals will now be developed. The amplitude of the signal voltage is assumed to be much smaller than that of the pumping voltage. The treatment is inmited to the case of negative resistance parametric amplifiers, 1., e., besides the pumping voltage, voltages at only two other frequancies are assumed to be of significant magnitude. These frequencies are the signal frequency f_{s}, and the idler frequency f_{i}. The respective voltages and currents at these frequencies are

$$
\begin{align*}
& v_{s}(t)=\frac{1}{2}\left[v_{s} e^{j \omega_{s} t}+v_{s}^{*} e^{-j \omega_{s} t}\right] \tag{3.21a}\\
& v_{i}(t)=\frac{1}{2}\left[v_{1} e^{j \omega_{i} t}+v_{i}^{*} e^{-j \omega_{i} t}\right] \tag{3.21b}\\
& 1_{s}(t)=\frac{1}{2}\left[I_{s} e^{j \omega_{s} t}+I_{s}^{*} e^{-j \omega_{s} t}\right] \tag{3.21c}\\
& I_{i}(t)=\frac{1}{2}\left[I_{i} e^{j \omega_{i} t}+I_{i}^{*} e^{-j \omega_{1} t}\right] \tag{3.21d}
\end{align*}
$$

where the asterisk denotes the complex conjugate. If it is assumed that only the first two terms in the Fowier series are significant, then $C(t)$ can expressed as

$$
\begin{align*}
C(t) & =C_{0}+C_{1}\left(e^{j \omega_{p} t}+e^{-j \omega_{p} t}\right) \\
& =C_{0}\left[1+\gamma_{1}\left(e^{j \omega_{p} t}+e^{-j \omega_{p} t}\right)\right] \tag{3.22}
\end{align*}
$$

where $\gamma_{1}=C_{2} / C_{0}$. The voltage across a nonlinear capacitance and the current inowing through it are related by

$$
\begin{equation*}
I(t)=\frac{d}{d t}[C(t) v(t)] \tag{3.23}
\end{equation*}
$$

or

$$
\begin{equation*}
i_{s}+i_{i}=\frac{d}{d t}\left[c(t)\left(v_{s}+v_{1}\right)\right] \tag{3.24}
\end{equation*}
$$

Substituting Eqs. 3.21 and 3.22 into Eq. 3.24, and equatiag the coefficients on the left- and Fight-hand sides at f_{s} and f_{i}, the following equation is obtained,

$$
\left[\begin{array}{l}
I_{s} \tag{3.25}\\
I_{i}^{*}
\end{array}\right]=\left[\begin{array}{cc}
j \omega_{s} C_{0} & j \omega_{s} \gamma_{1} C_{0} \\
-j \omega_{1} \gamma_{1} C_{0} & -\psi_{i} d_{i} C_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
V_{s} \\
V_{i}^{*}
\end{array}\right]
$$

In deriviag the small-signal admittance matrix of Eq. 3.25, it is implied that all unanted harmonics are short-circuited. In practice, a perfect short-cireutt can never be obtainea because of the inevitable series resistance. A different set of relationships which correspond to 2. condition of open-circuited harmonics can also be derived by taking several additional frequencies into consideration. These additional frequencies are $\omega_{3}=\omega_{p}+\omega_{s}, \omega_{4}=2 \omega_{p}-\omega_{s}$, and $\omega_{5}=2 \omega_{D}+\omega_{s}$. To account for the ω_{4} and ω_{5} terms, the second harmonic compcnent must de included in the expression of $C(t)$. Thus

$$
\begin{equation*}
C(t)=C_{0}\left[1+\gamma_{1}\left(e^{j \omega_{p} t}+e^{-j \omega_{p} t}\right)+\gamma_{2}\left(e^{j 2 \omega_{p} t}+e^{-j 2 \omega_{p} t}\right)\right] \tag{3.26}
\end{equation*}
$$

where $\gamma_{2}=C_{2} / C_{0}$. Following the same procedure as in the derivation of Eq. 3.25, the small-signal admittance matrix for the case of opencircuited harmonics is obtained as follows:

$$
\left[\begin{array}{c}
I_{s} \\
I_{1}^{*} \\
I_{3} \\
I_{4}^{*} \\
I_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
j \omega_{s} c_{0} & j \omega_{3} \gamma_{1} C_{0} & j \omega_{s} \gamma_{1} c_{0} & j \omega_{s} \gamma_{2} c_{0} & j \omega_{s} \gamma_{2} c_{0} \\
-j \omega_{1} \gamma_{1} c_{0} & -j \omega_{1} c_{0} & -j \omega_{1} \gamma_{2} c_{0} & -j \omega_{1} \gamma_{1} c_{0} & 0 \\
j \omega_{3} \gamma_{1} c_{0} & j \omega_{3} \gamma_{2} c_{0} & j \omega_{3} c_{0} & 0 & j \omega_{3} \gamma_{1} c_{0} \\
-j \omega_{4} \gamma_{2} c_{0} & -j \omega_{4} \gamma_{1} c_{0} & 0 & -j \omega_{4} c_{0} & 0 \\
j \omega_{5} \gamma_{2} c_{0} & 0 & j \omega_{5} \gamma_{1} c_{0} & 0 & j \omega_{5} c_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{s} \\
v_{1}^{*} \\
v_{3} \\
v_{4}^{*} \\
v_{5}
\end{array}\right] \text { (3.27) }
$$

I_{s} and I_{1}^{*} can be solved from Eq. 3.27 by the Perturbation method [37], and are given as follows;

$$
\left[\begin{array}{c}
I_{s} \tag{3.28}\\
I_{1}^{*}
\end{array}\right]=\left[\begin{array}{cc}
j \omega_{s} C_{0}\left(1-\gamma_{1}^{2}\right) & j \omega_{s} C_{0} \gamma_{1}\left(1-\gamma_{2}\right) \\
-j \omega_{1} C_{0} \gamma_{1}\left(1-\gamma_{2}\right) & -j \omega_{1} C_{0}\left(1-\gamma_{1}^{2}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
v_{s} \\
v_{1}^{*}
\end{array}\right]
$$

The small-signal admittance matrix of either Eq. 3.25 or Eq. 3.28 can be used for the analysis of negative resistance parametric amplifiers, depending upon whether the unwanted harmonics are more nearly shortcircuited or open-circuited. In practice, it is difficult to control
thils condition, and thus it can not be siad a priori that one is more accurate than the other. The difference in amplifier performance caicuLatad for both cases will be shown in Chapter V.

To loclude the effects of the series resistance and the parasitics, the admittance matrices must be invertod into impedance intrices. For either case the resulting matrix is

$$
\left[\begin{array}{c}
v_{s} \tag{3.29}\\
v_{i}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{j \omega_{s} C} & \frac{\gamma}{j \omega_{1} C} \\
\frac{-\gamma}{j \omega_{s} C} & \frac{-1}{j \omega_{1} C}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{s} \\
\\
I_{i}^{*}
\end{array}\right]
$$

where

$$
\begin{align*}
& \gamma=\gamma_{1} \\
& c=c_{0}\left(1-\gamma_{1}^{2}\right) \tag{3.30}
\end{align*}
$$

for the case of short-circuited harmonics, and

$$
\begin{align*}
& \gamma=\gamma_{1}\left(1+\gamma_{1}^{2}\right)\left(1-\gamma_{2}\right) \\
& c=C_{0}\left(1-2 \gamma_{1}^{2}\right) \tag{3.31}
\end{align*}
$$

for the case of open-circuited harmonics.
3.4 Circuit Analysis of Basic Amplifier Configuration

Figure 3.2 shows a practical configuration of a negative resistance parametric amplifier. A circulator is used to separate the input from the output since a negative resistance amplifier is in essence a one-port

Fig. 3.2 Negative Resistance Parametric Amplifier Configuration
amplifier, i. e., the input and output signals are of the same frequency ard at the same port. A circulator is a non-reciprocal device which transfers power from port 1 to port 2, from port 2 to port 3, and from port 3 to port 1, but not vice versa. Of course, it is possible to extract the output power from a load connected in series with the generator and the amplifier. This is not desirable, however, since some of the output power is lost in the generator resistance. The gain and noise figure of such a configuration are auch inferior to those of an amplifier maktag use of a circulator [41].

The boxes labeled f_{s} and f_{i} are band-pass filters centered around the sigral and the idler frequencr bands, respectively. Pump and bias circuits are not shown in Fig. 3.2, since they are assumed to be perfectly isolated, and thus need not ine included in the analysis. Expressions for transducer gain* and noise ifgure will now be derived. It should be pointed out that these expressions are intended for computer-aided design implementation, thus tine step-oy-step derivation is presented in such a way as to facilitate computer programing.
3.4.1 Mansducer Gain. In practice, the generator resistance R_{g}, and the load resistance A_{j}, are always equal to Z_{c}, the characteristic impedance of the circulator. Hence, the transducer gain of the amplifier is given by

[^3]

Fig. 3.3 Equivalent Circuit of a Negative Resistance Parametric Amplifier

Fig. 3.4 Revised Equivalent Circuit

$$
\begin{equation*}
G_{t}=\left|\frac{Z_{I N}+Z_{c}}{Z_{I N}+Z_{c}}\right|^{2} \tag{3.32}
\end{equation*}
$$

whore $Z_{\text {IN }}$ is the input impedance looking into the amplifier from port 2 of the circulator. Obrinisly, for the transducer gain to be computed, the input impedance, IIN, must first be determined. To accomplish this, consider the circuit in Fig.3.3, in which the diode is replaced by its equivalent circuit of Fig. 2.4(b). Z_{i} represents the impedance of the idler circuit together with the idler band-pass filter, while the sigal circuit and the signal band-pass filiter are represented by an ABCD matrix with elements $A\left(\omega_{s}\right), B\left(\omega_{s}\right), ~\left(\omega_{s}\right)$, and $D\left(\omega_{s}\right)$. To facilitate the analysis, the nonlinear capacitance is replaced by the small-signal impedance matrix of Eq. 3.29 with elements denoted as Z_{11}, Z_{12}, Z_{21}, and Z_{22}, as shown in Fig. 3.4.

If Z_{1} fepresents the impeciance of the circuit to the right of the matrix as indicated in Fig. 3.4, then

$$
\begin{align*}
z_{1} & =R_{1}+j \pi_{1} \\
& =R_{s}+\left(\frac{1}{j \omega_{i} C p 2}\right) \|\left[j \omega_{i} I_{s}+\left(\frac{1}{j \omega_{i} C_{p 1}}\right) \|\left(z_{i}^{\prime}\right)\right] \tag{3.33}
\end{align*}
$$

where the symbol " $\|$ " is used to designate tro inpedances connected in parailel. The impedance of the noolinear capacitance loaded by the idler circuit as seen from the signal circuit is

$$
\begin{align*}
z_{e q} & =z_{11}-\frac{z_{12} z_{21}}{z_{22}+z_{1}^{*}} \\
& =\frac{1}{j \omega_{s} C^{*}}-\frac{\gamma^{2}}{\omega_{s} \omega_{1} c^{2}\left(z_{i}^{*}-\frac{I}{j \omega_{1} C}\right)} \tag{3.34}
\end{align*}
$$

where the asterisk denotes the complex conjugate. At this point, it is perhaps worthwhile to digress from the derivation and show why this type of amplifier is called a negative resistance amplifier, and hou the amplication is achieved.

$$
\text { Substituting } Z_{i}^{*}=R_{1}-j X_{1} \text {, Eq. } 3.34 \text { becomes }
$$

$$
\begin{align*}
z_{e q}= & \frac{1}{j \omega_{s} C}-\frac{\gamma^{2}}{\omega_{s} \omega_{1} c^{2}\left[R_{i}-j\left(x_{1}-1 / \omega_{1} C\right)\right]} \\
= & \frac{1}{j \omega_{s} C}-\frac{\gamma^{2}}{\omega_{s} \omega_{1} c^{2}\left[R_{1}^{2}+\left(x_{1}-1 / \omega_{1} C\right)^{2}\right]} \\
= & \frac{1}{j \omega_{s} C}-\frac{\gamma^{2} R_{1}}{\omega_{s} \omega_{1} c^{2}\left[R_{1}^{2}+\left(x_{1}-1 / \omega_{1} C\right)^{2}\right]} \\
& -\frac{j \gamma^{2}\left(x_{1}-1 / \omega_{1} C\right)}{\omega_{s} \omega_{1} c^{2}\left[R_{1}^{2}+\left(x_{1}-1 / \omega_{1} C\right)^{2}\right]} \tag{3.35}
\end{align*}
$$

The second tern on the right-hand side of $3 q .3 .35$ oiviously represents
a negative resistance

$$
\begin{equation*}
-R_{N}=-\frac{\gamma^{2} R_{i}}{\omega_{s} \omega_{1} C^{2}\left[R_{1}^{2}+\left(x_{1}-1 / \omega_{1} C\right)^{2}\right]} \tag{3.36}
\end{equation*}
$$

If the signal circuit is assumed to be lossless and all reactances are tuned out, the impedarce looking into the signal circuit from port 2 is then a pure negative resistance (not necessarily equal to that of Eq. 3.36 since the signal circuit may contain impedance transformers), thus

$$
\begin{equation*}
z_{\mathrm{IN}}=-z_{\mathrm{N}}^{\prime} \tag{3.37}
\end{equation*}
$$

From Eq. 3.32, the transducer gain of the amplifier is

$$
\begin{equation*}
G_{t}=\left|\frac{z_{I Y}-z_{c}}{z_{I N}+z_{c}}\right|^{2}=\left|\frac{z_{c}-R_{N}^{\prime}}{z_{c}-R_{N}^{\prime}}\right|^{2} \tag{3.38}
\end{equation*}
$$

From Eq. 3.38, it is evident that amplification is achieved. When R_{i}^{\prime}
is made to equal to Z_{c}, the transducer gain becomes infinite.
Returning to the derivation of the transducer gain, the impedance at the varactor terminals seen from the signal circuit is

$$
\begin{equation*}
z_{s}=\left(\frac{1}{j \omega_{s} \mathcal{L}^{2} 2}\right) \|\left[j \omega_{s} I_{s}+\left(\frac{1}{j \omega_{s}^{C}{ }_{p l}}\right) \|\left(R_{s}+Z_{e q}\right)\right] \tag{3.39}
\end{equation*}
$$

If the elements of the $A B C D$ matrix of the signal circuit are $A\left(\omega_{s}\right)$,
$B\left(\omega_{s}\right), C\left(\omega_{s}\right)$, and $D\left(\omega_{s}\right)$, the input impedance is then

$$
\begin{equation*}
Z_{I N}=\frac{A\left(\omega_{s}\right) Z_{s}+B\left(\omega_{s}\right)}{C\left(\omega_{s}\right) Z_{s}+D\left(\prime_{s}\right)} \tag{3.40}
\end{equation*}
$$

The transducer gain can now be calculated from Eq. 3.32.
The preceeding formulation is applicable to both nondegenerate and degenerate amplifiers. For nondegenerate amplifiers, Z_{i} is the impedance of an extornal idler circuit which is completely unrelated to the signal circuit. However, for degenerate amplifiers, Z_{i} is the impedance looking into the stgaal circuit from the terminals of the varactor. Therefore

$$
\begin{equation*}
z_{i}=\frac{D\left(\omega_{i}\right) z_{c}+B\left(\omega_{i}\right)}{C\left(\omega_{i}\right) Z_{c}+A\left(\omega_{i}\right)} \tag{3.41}
\end{equation*}
$$

where $A\left(\omega_{i}\right), B\left(\omega_{i}\right), C\left(\omega_{i}\right)$, and $D\left(\omega_{i}\right)$ are the $A B C D$ matrix elements of the sigral circuit calculated at the idler frequency.
3.4.2 Noise Figure. The fundamental noise in a parametric amplifier is due mainly to the thermal noise generated by the sigaal circuit, the idler circuit, and the diode series resistance. Although numerous autiors have provided approximate expressions for ?redicting parametric amplifier noise performance [37I38I41I46I47], for computer-aided design, a more general expression for the circuit in Fig. 3.2 must be developed.

Thermal noise of a resistor results from the random motion of free electrons whin the resistor. This random motion causes a smail fluctuating voltage, or noise voltage, to exist at the terminals of the resistor. Nyquist [48] was able to show, based on fundamental thermo-
dynamic considerations, that the mean square noise voltage in the frequency interval Δf generated by a resistor R at an absolute temperature T is

$$
\begin{equation*}
\overline{a_{n}^{2}}=4 \mathrm{KNR} \mathrm{\Delta f} \tag{3.42}
\end{equation*}
$$

where k is Boltamann's constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{I}$). For analytical purpose, a noisy resistor can be replaced by either a noise voltage source in sories with a noiseless resistor, or a noise current source in parallel with a noiseless resistor, as shown in Fig. 3.5.

The equivalent circuit in Fig. 3.4 is reirawn in Fig. 3.6 for purpose of noise analysis. As indicated in the figure, $Z_{T s}$ and $Z_{T I}$ are the impedances looking from R_{s} into the signal circuit and the idier circuit, respectively.

$$
\begin{align*}
Z_{T s} & =R_{T s}+j X_{T 1} \\
& =\left(\frac{I}{j{\omega_{s}}_{C} \mathrm{p} 2}\right) \|\left[j \omega_{s} L_{s}+\left(\frac{1}{j \omega_{s} C_{p 1}}\right) \|\left(Z_{s \mathrm{sm}}\right)\right] \tag{3.43}
\end{align*}
$$

where

$$
\begin{equation*}
z_{s I I}=\frac{D\left(\omega_{s}\right) z_{c}+B\left(\omega_{s}\right)}{C\left(\omega_{s}\right) z_{c}+A\left(\omega_{s}\right)} \tag{3.44}
\end{equation*}
$$

and

$$
\begin{align*}
z_{T 1} & =R_{T 1}+j X_{T 1} \\
& =\left(\frac{1}{j \omega_{i} C_{p 2}}\right) \|\left[j \omega_{i} L_{s}+\left(\frac{1}{j \omega_{i} C_{p 1}}\right) \|\left(z_{i}^{\prime}\right)\right] \tag{3.45}
\end{align*}
$$

Fig. 3.5 Resistor Noise Source Representation

Fig. 3.6 Equivalent Circuit of a Negative Resistance Parametric Amplifier

As shown in Fig. 3.7, the thermal noise generated by resistances, $R_{T s}, R_{T 1}$, and R_{s}, can now be represented by noise voltage sources, $e_{n s}$, $e_{\text {ni }}$, and e ${ }_{\text {ad }}$, respectively. These noise sources are uncorrelated and, in addition, components of $\theta_{n d}$ at ω_{s} which excites the signal circuit are uncorrelated to the components of $e_{\text {nd }}$ at ω_{1} which excites the idler circuit.

The matrix equation for the circuit in Fig. 3.7 is

$$
\left[\begin{array}{c}
e_{n d}+e_{n s} \tag{3.46}\\
e_{n d}^{*}+e_{n 1}^{*}
\end{array}\right]=\left[\begin{array}{cc}
z_{11}+R_{s}+z_{T s} & z_{12} \\
z_{21} & z_{22}+R_{s}+z_{T 1}^{*}
\end{array}\right]\left[\begin{array}{c}
I_{n s} \\
\\
I_{n 1}^{*}
\end{array}\right]
$$

The noise current in the signal circuit due to the noise sources at ω_{s}, i. e., $e_{n d}+e_{n s}$, is

$$
\begin{equation*}
I_{n s s}=\frac{\left(s_{n d}+e_{n s}\right)\left(z_{22}+R_{s}+z_{T 1}^{*}\right)}{\left(z_{21}+R_{s}+Z_{T s}\right)\left(z_{22}+R_{s}+z_{T 1}^{*}\right)-z_{12} z_{21}} \tag{3.47}
\end{equation*}
$$

Thus, the output noise power at ω_{s} is

$$
\begin{align*}
N_{s} & =\left|I_{n s s}\right|^{2} z_{c} \\
& =\frac{\left(e_{n d}+e_{n s}\right)^{2}\left|z_{22}+R_{s}+z_{T 1}^{*}\right|^{2} z_{c}}{\left|\left(z_{11}+R_{s}+z_{T s}\right)\left(z_{22}+R_{s}+z_{m 1}^{*}\right)-z_{12} z_{21}\right|^{2}} \tag{3.48}
\end{align*}
$$

Fig. 3.7 Equivalent circuit with Noise Sources

Since $\theta_{n d}$ and $e_{n s}$ are uncorrelated, it follows that

$$
\begin{equation*}
\left(e_{\mathrm{dd}}+e_{\mathrm{ns}}\right)^{2}=4 \mathrm{kB}\left(T_{s} R_{T s}+T_{d} R_{s}\right) \tag{3.49}
\end{equation*}
$$

where

> B = effective amplifier bandwidth (Kz), $T_{s}=$ aigral clrcuit tomperature (${ }^{(} K$),
> $T_{d}=$ diode temperature (K).

Equation 3.48 then becomes

$$
\begin{equation*}
N_{s}=\frac{4 \mathrm{~kg}\left(T_{s} R_{T s}+T_{d_{s}} R_{s}\right)\left|Z_{22}+R_{s}+Z_{T 1}^{*}\right|^{2} Z_{c}}{\left|\left(Z_{11}+R_{s}+Z_{T s}\right)\left(Z_{22}+R_{s}+Z_{T 1}^{*}\right)-Z_{12} Z_{21}\right|^{2}} \tag{3.50}
\end{equation*}
$$

Similarly, the output noise power at ω_{1} is

$$
N_{1}=\frac{4 \mathrm{kB}\left(T_{1} R_{T 1}+T_{q} R_{s}\right)\left|z_{12}\right|^{2} z_{c}}{\left|\left(z_{11}+R_{s}+z_{T s}\right)\left(z_{22}+R_{s}+z_{T 1}^{*}\right)-z_{12} z_{21}\right|^{2}}
$$

where T_{i} is the ider circuit temperature.
The noise ifgre of the amplifier is given by [37],

$$
\begin{equation*}
F=\frac{N_{s}+N_{1}}{G_{t} k T_{0} 3} \tag{3.52}
\end{equation*}
$$

where $T_{0}=290 \mathrm{~B}$ is the standard noise temperature.
The preceeding formulation is again applicable to both nondegenerate and degenerate amplifiers. However, as discussed in Chapter I, degenerate amplifiers possess the distinction of having tro noise figrres, namely,
the single-sideband and the double-sideband noise figures. The singlestdeband noise figure can be calculated directly from Eq. 3.52, while the double-sidekand noise figure is one-half of that calculated from Eq. 3.52.

4.1 Introduction

In the process of technological evolution, continuous interaction exists between techniques of different fields. Often techaiques developed for one field stimulate and promote the development and progress in others. Such is the case of the microwave integrated circuit (MIC).

Prior to the early sixties, nearly all microwave systems utilized wavegutes and coarial lines. Semiconductor devices such as raracturs, tunnel diodes, and point-contact diodes were used in receivers. Varactor hamonic generators were used in a few systems as low power sources. But, for the rost part, tubes were still the frincipal microwave power sourses. Hence, although the MIC was introduced in the fifines [49], progress, botin theoretical and experimental, was very slow in the decade Sollowing its inception.
in the mid-sidutes, with rapid improvements in the low-frequency integratec cincuit (IC) techniques such as epitacial ofowh, passivation, photolitieograciy, and metal deposition by evaporaition or sputtering, nifrowave transistors as well as transferred eiectron devices and avalanche diodes were deveioped for solid-state microwave power sources. Schettiky-barrier diodes and FIN dicdes were also developed for recetvers and control circuits. With ail these solld-state devices arailable, it was only natural that attempts toward circuit miniaturization snould de made. To achieve niniaturization, the wic was of course one of the
choices considered. Not only did adrances in low-frequency IC techniques make these solid-state devices possible, they also made the fabrication of microwave integrated circults more precise and more reproducible. Out went the old and crude tachniques of glue and razor blades, along came the mare sophisticated and more reliable techniques of metal deposition and photolithography. "In the years following 1965, several semiconductor manufacturers, radar system manufacturers, and goverament laboratory started programs to develop mindaturized microwave circuits for applications in phased-ariay radar systems. This early work was culainated in the construction of a feasibility radar system by Texas Instrugents in 1968 [50]. TNis radar system uses more than six hundred transmitreceive ($5 / \mathrm{R}$) modules fabricated by MIC techniques. Each module contains a power amplifier, an IF amplifier, a varactor Erequency multiplier, a baianced Sciottiky-merier diode fixer, PIN diode switches, PIN diode phase shifters, and associated phase sinft logic circuits. The module is about I. Acm by 6.4 cm , and delivered $0.5 \mathrm{\#}$ at 9 ciz .
\#itn the feasioility demonstrated, nearly all manufacturers of microwave equipment entered the MC Field. Today, MCs are well accepted and are employed in essentially all the low- and nedium-power microwave applications.

Microwave integrated circuits can be broady divijed into two catagories: monolithic and hytrid. A monolithic MIC is one in which all components, active and passive, are formed simultaneousily on a single piece

it is extremely difficult, if not impossible, to specify a diffusion process that simultaneously optimizes the performance of every active device. Furthermore, the interconnections between active devices have relatively large timensions, espectally when distributed elements are used. This requires large substrate areas which are very expensive is the case of monolithic technology.

A hybrid MIC is one in which circuit interconnections are focmed by metal lines on a dielectric substrate and active devices are attached to the substrate. Depending upon the techniques by which the metallization is formed, the hybrid technology itself can de dirided into two classes: thin- and thick-film. In thin-film technology, the conductor filns are deposited in vacuum by evaporation or sputtering, followed by tlectroplating to increase the filn thickness, if necessam. The desired pattern is iefined by photolithograpinic techniques. In thick-filn technology, the retallization is usually formed by silk-screening, in which the desired pattern is incorporated into the screen.
dytmid MEs can aiso ch classified accoritig to tie types of circuit elements employed, namely, lumped and distributed. Limped-element circuits for applications at frequencies in the X-band have been reported [5] [52]. The limitation on the use of lumped-element circuits comes from the excessive circuit losses at higher frequencies.

For the distributed-element circutts, various tjpes of circult configurations are currently in use. Figure 4.1 shows the configuraticns of severai commonly used circutts; stripline [53], microstrip [49], slot

Inde [54][55], and coplanar waveguide [56]. Allong these, microstrip is certajoly the most popular configuration, and is most frequentiy identified with the tem "microwave integrated sircuit".

In the subsequent sections, electrical characteristics of microstrip Ines relevant to this study will be investigated. These include characteristic impedance, effective dielectric constant, conductor and dielectric losses, and frequency dispersion effects. Discontinuities in circuit structure, such as open circuits and T-junction, will be examined in detail. Finally, analysis and syathesis methods for one circuit component, parallel-coupled microstrip band-pass filters, 1111 be developed.

In dealing with various techniques in each area, the emphasis is placed upon those that are applicable to computer-aided destgn. In other words, closed form expressions which, in most cases they are derived empiricaily, are preferred over the more rigorous and more time-consumiag analytical techniques. However; $32 j o r$ works in each area will still be referenced, and interested readers are urged to consult the original pualicaticns.

Material selections and fabrication techniques, two important aspects in IIC tachnology, will not be covered here; they can be found in books dealiog with Low-frequency ICs or xICs $[57][58$ I 59$]$.

4.2 Eiectioncal Characteristics of Microstrip Innes

4.2.1 Characteristic Inpedance and Effective Dielectric Gonstant. The duificulty in microstrin analysis stems from the fact tinat electro-

(b)

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 4.1 Various mypes of Mıcrowave Integrated ciroutis, (a) StnipIne, (o) Microsirip, (c) Biot Iine, (i) Coplanar Taveguide.
magnetic waves propagete along the line in two regions with different dielectric constant, 1. e., in the substrate with a dielectric constant equal to $\epsilon_{I^{\prime}}$ and in the air with a dielectric constant equal to 1 . In such a composite structure, the concept of effective dielectric constant is quite useful. The effective dielectific constant is a weighted mean of the dielectric constants of the two regions, and has a value in the range from ϵ_{r} to 1 . If the substrate and the atr are both replaced by a material inth a dielectric constant equal to the effective dielectric constant, the capacitance betreen the center strip and the ground plane remains unchanged.

From basic electromagnetic theory, it is obvious that a transverse electromagnetic (IMM) wave can not exist in this structure since the wave velocity in the substrate is different irom that in the air. In fact, one can show that not even the pure transverse electric (IE) or transverse magnetic (TM) waves can exist alone in the structure, but that it can only support a hytrid mode in which both the longitudinal electric and magnetic components are non-zezo [60]. The effective dielectric constant therefore is dispersive, or irequency-dependent.

In microstrip analysis, two different approaches are usually taken. In the "quasi-TEM" analysis, the structure is assumed to support a TEM Wave. The problen then is reduced to one of determining the electrosiatic potential from a two-dimensional iaplace's equation with proper boundary conditions. Various techniques have been used to solve this problem. These inciude the conformai mapping rethoa by iheeler [ol], the Innte-
element method (relaxation method) by Stinehelfer [62], the moment method by Adams [63], and the variational method by Yamasita and Mitura [64]. Dispersion effects are accounted by separate equations, often obtained empirically. In the "wave theory" analysis, the dispersion effects are calculated directly from a hybrid mode analysis of the structure. Various analytical techniques have also been used in this problem [65][66][67].

Most of the analytical techniques mentioned above require lengthy computation that is generally reserved for a digital computer. No attempt to review these techniques will made here. Instead, analytical and synthetic equations by Wheeler [61] and Schneider [68], with extension by Hamerstad [09], will be introducec. These equations are in closed forms, and thus are suitahle for computer-aided designs.

The effective dielectric constant, $\epsilon_{\text {eff }}$, of a micrustrip with width W, and substrate thickness H, is given by

$$
\begin{equation*}
\epsilon_{e f f}=0.5\left(\epsilon_{I}+1\right)+0.5\left(\epsilon_{I}-1\right) /(1+12 \mathrm{H} / \mathrm{W})^{1 / 2} \tag{4.1}
\end{equation*}
$$

for the case of $\overline{\mathrm{i}} / \mathrm{H} \geq 1$, and

$$
\begin{equation*}
\epsilon_{e f f}=0.5\left(\epsilon_{I}+1\right)+0.5\left(\epsilon_{r}-1\right)\left[(1+12 i / W)^{-1 / 2}+0.04(1-\pi / H)^{2}\right] \tag{4,2}
\end{equation*}
$$

for the case of $W / H \leq 1$. The characterisicic impedance Z_{o} is given as

$$
\begin{equation*}
z_{0}=\frac{60}{\sqrt{\epsilon_{e f f}}} \ln (\pi / W+W / 4 H) \tag{4.3}
\end{equation*}
$$

for $N / H \leq 1$, and

$$
\begin{equation*}
z_{0}=\frac{376.73}{\sqrt{\epsilon_{\text {eff }}}}[\mathrm{W} / \mathrm{H}+1.393+0.667 \ln (\mathrm{~W} / \mathrm{H}+1.444)]^{-1} \tag{4,4}
\end{equation*}
$$

for $\mathrm{W} / \mathrm{H} \geq 1$.

For the purposes of synthesis, $1 / \mathrm{H}$ can be expressed in terms of desired characteristic impedace Z_{0}. For $\mathrm{W} / \mathrm{H} \leq 2$,

$$
\begin{equation*}
\mathrm{W} / \mathrm{H}=\frac{8}{\exp (\mathrm{~A})-2 \exp (-\mathrm{A})} \tag{4.5}
\end{equation*}
$$

and for $\mathrm{n} / \mathrm{B} \geq 2$,

$$
\begin{equation*}
x / \mathrm{H}=\frac{2}{\pi}\left[3-1-\ln (2 B-1)+\frac{\epsilon_{r}-1}{2 \epsilon_{r}}\left[\ln (B-1)+0.39-0.61 / \epsilon_{\mathrm{I}}\right]\right\} \tag{4.6}
\end{equation*}
$$

rivere

$$
\begin{equation*}
A=\frac{z_{o}}{120} \sqrt{2\left(\epsilon_{r}+1\right)}+\frac{\epsilon_{Y}-1}{\epsilon_{Y}+I}\left(0.23+0.11 / \epsilon_{I}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{591.766}{\sqrt{\epsilon_{I}} z_{0}} \tag{4.8}
\end{equation*}
$$

Vaiues of characteristic impedance and effective dielectric constant calculated from Eqs.4.1-4.4 are pletted in Fig. 4.2 for several dielectric materials, namely, Duroid $5880^{*}\left(\epsilon_{I}=2.22\right)$, fused quartz ($\epsilon_{I}=3.82$), and alumina ($\epsilon_{r}=9.0$).

[^4]

(b)
-85-

Fig. 4.2 Characteristic Impecance(a), and Eifective Dielectric Constant (b), (c), and (d) as a Function of d / A.

An ingenious empirical equation has been developed by Schneider [70] to describe the dispersion effects. The normalized phase velocity is expressed as

$$
\begin{equation*}
\nabla_{p}=\frac{\lambda_{g}}{\lambda_{0}}=\frac{1}{\sqrt{\epsilon_{r} \epsilon_{e f f}}} \frac{\sqrt{\epsilon_{e f f}} f_{n}^{2}+\sqrt{\epsilon_{r}}}{I_{a}^{2}+1} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\mathrm{D}}=\frac{4 \mathrm{E} \sqrt{\epsilon_{I}-1}}{\lambda_{0}} \tag{4.10}
\end{equation*}
$$

and λ_{g} and λ_{0} are the microstrip and the free-space wavelengths, respectively. Graphical plots for the normalized phase velocity are shown in Fig. 4.3. It is evident that, for the same W / H ratio, the dispersion effect is more profound for a substrate with a higher dielectric constant.
4.2.2 Conductor and Dielectric Losses. The losses in microstrip Iines are due to the finite resistivity of the center and ground conductors as well as the dissipation in the dielectric substrate. The attenuation constant α can be expressed as [72],

$$
\begin{equation*}
\alpha=\frac{P_{c}+P_{d}}{2 P} \tag{4.11}
\end{equation*}
$$

where P_{c} and F_{d} are the powers dissipated in the conductors and the dielectric substrate, respectively, and P is the power transmitted aiong the Line. Letting $a=a_{c}+a_{d}$, then

$$
\begin{equation*}
a_{c}=\frac{P_{c}}{2} \tag{4.12}
\end{equation*}
$$

Fig. 4.3 Microstrip Dispersion Effect, $\mathrm{H}=0.508 \mathrm{im}, \mathrm{N} / \mathrm{h}=1$.
and

$$
\begin{equation*}
a_{d}=\frac{P_{d}}{2 p} \tag{4.13}
\end{equation*}
$$

If the surface current density distributions on the strip conductor and the ground plane are known, Eq. 4.12 can be witten as

$$
\begin{equation*}
a_{c}=\frac{R_{s I}}{2 Z_{0}} \int \frac{\left|J_{1}(x)\right|^{2}}{|I|^{2}} d x+\frac{R_{s 2}}{2 Z_{0}} \int \frac{\left|J_{2}(x)\right|^{2}}{|I|^{2}} d x \tag{4.14}
\end{equation*}
$$

where $R_{s l}=\left(\pi f_{1} \rho_{1}\right)^{1 / 2}$ and $R_{s 2}^{\circ}=\left(\pi f_{\mu_{2}} \rho_{2}\right)^{1 / 2}$ denote the surface $s \cdot n$ resistivity in ohms per sqaure for the strip conductor and the ground plane, respectively, $J_{1}(x)$ and $J_{2}(x)$ the corresponding surface current densities, and I the total current per conductor. The quantities μ_{1}, μ_{2} and ρ_{1}, ρ_{2} represent the permeability and bulf resistivity of center and ground conductors, respectively, and f denotes the operating frequency. The inst integral is around the periphery of the center conductor, and the second integral is over the entire ground plane. Using a technique based on the so-called "Incremental inductance FIle" [71], Pucel et al. [72] were able to derive a set of approdmate equations for various line-w-dths. Assuming $R_{s l}=R_{s 2}$, the normalized conductor attenuation constant 1s, for $N / H \leqslant 1 / 2 \pi$,

$$
\begin{equation*}
\frac{\alpha_{c} z_{0} H}{R_{s l}}=\frac{8.686}{2 \pi}\left[1-\left(N^{\prime} / 4 \pi\right)^{2}\right]\left[1+H / W^{\prime}+\frac{i}{W^{\prime}}\left(2 n-\frac{4 N}{t}+\frac{t}{W^{\prime}}\right)\right] \tag{4.15a}
\end{equation*}
$$

For $1 / 2 \pi \leq \pi / H \leq 2$,

$$
\frac{\alpha_{c} z_{0} H}{R_{s 1}}=\frac{8.686}{2 \pi}\left[1-\left(H^{\prime} / 4 H\right)^{2}\right]\left[1+H / W^{\prime}+\frac{H}{W^{\prime}}\left(\ln \frac{2 H}{t}-\frac{t}{H}\right)\right]
$$

and for $W / H \geq 2$,

$$
\begin{gather*}
\frac{\alpha_{c} Z_{0} H}{R_{s I}}=\frac{8.686}{\left\{W^{\prime} / H+0.637 \ln \left[2 \pi e\left(W^{\prime} / 2 H+0.94\right)\right]\right\}^{2}}\left[\frac{H^{\prime}}{H}+\frac{W^{\prime} / H}{W^{\prime} / 2 H+0.94}\right] \\
{\left[1+\frac{H}{W^{\prime}}+\frac{H}{W^{\prime}}\left(\ln \frac{2 H}{t}+\frac{t}{H}\right)\right] \quad \text { (4.15c) }} \tag{4.15c}
\end{gather*}
$$

where $e=2.71828 . .$. is the case of natural, or Naperian logarithm, and t denotes the thickness of the strip conductor. The attenuation constant a_{c} is in $d B / C m$. The effective linewidth it $^{\prime}$ is given of [61],

$$
\begin{equation*}
W^{\prime}=W+\frac{t}{\pi}\left(2 n \frac{4 \pi W}{t}+1\right) \tag{4.16a}
\end{equation*}
$$

for $W / \mathrm{H} \leq 1 / 2 \pi$, and

$$
\begin{equation*}
W^{\prime}=W+\frac{t}{\pi}\left(2 \pi-\frac{2 H}{t}+1\right) \tag{4.16b}
\end{equation*}
$$

for $1 / \mathrm{H} \geq 1 / 2 \pi$. Figure 4.4 shows plots of the normalized conductor attenuation constant versus W / h for several thin values, calculated using Eq. 4.15.

To calculate the dielectric attenuation constant a_{d}, Eq. 4.13 can be shown to equal to

$$
\begin{equation*}
\alpha_{d}=\frac{\sigma_{j} \sigma^{2} i_{s}}{2 v^{2} / z_{0}} \tag{4.17}
\end{equation*}
$$

92. Dell-Imagine, R. A., "A Parallel Coupled Microstifp Filter Desisn Procedure," G-MTH 1970 Int. Microwave Symp. Digest, Pp. 29-32.
93. Childs, W. H., "Desiga Techniques for Bandpass Filters Using EdgeCoupled Miciostri; Lines on Fused Silica," G-MTT 1996 Int. Microwave Symp. Oigest, pp. 124-196.
94. Microwave Engineers' 'handbook and Buyers' Guide, Horizon House, Dedham, Mass., 1974.
95. Cisco, T. C., Design of Microstrip Components by Computer, Tech. Report NASA-CR-1982, March 1972.
96. Kaupe, A. F., Jr., "Algortthm 178: Direct Search," Commun. ACA, Vol. 6, pp. 313-314, June 1963.
97. Bell, M., and Pike, M. C., "Remark on 'Algorithm 178: Direct Search,'" Commun. AM, Vol. 9, pp. 584-685, September 1966.
98. Emery, F. E., and O'Hagen, M., "Optimal Design of Matching Networks for Microwave Transistor Amplifiers," EEEE Trans. on Microwave Theory and Technaques, Vol. MTT-14, pp. 696-698, December 1966.
99. Bandler, J. N., and Maccionald, P. A., "Optimization of Microwave Networks by Razor Search," Inam Trans. on Microwave Theory and Teciniques, Vol. MTT-17. pp. 552-562, August 1969.
100. Denlinger, E. J., et al., "Microstrip Varactor-Tuned MilineterWave IMPATT Diode Oscillators," IEw Trans. on Microwave Theory and Techniques, Vol. MTT-23, pp. 953-958, December 1975.
101. Tu, Y. S., and Rosenbaum, F. J., 'mide-Band Operation of Microstrip Circulators," İB: Trans, on Miorowave Theory and Techniques, Vol. MTM-22, pp. 849-856, October 1974.
102. Branner, G. R., and Chan, S.-F., "A New Technique for Sjnthesis of Broad-Band Parametric Amplifiers," Mris Mans, on Microwave Theory and Techniques, Yol. MIT-21, Pp. 437-444, july 1973.
103. Getsinger, V. J., "Coupled Rectangular Bars Between Parallel Plates," ITE Trans, on Microwave Theory and Techniques, Vol. MTT-10, pp. 05-72, January 1962.

Fig. 4.4 Microstrip Conductor Attemation Factor as a Function of N / H.
where σ is the conductioity of the dielectric substrate, E is the electric field intensity at any point inside the substrate, and V is the voitage across the center conductor and the ground place. The double integral is defined over the cross section of the substrate. Simpson and Tseng [73] have developed an efficient numerical algorithm for evaluating Eq. 4.17. The calculated results are in excellent agreement with the experimental data of Hyltin [74]. Table 4.1 gives the normalized dielectric attenuation constant, α_{d} / σ, for several dielectric constants.

Based on the concept of a "filling factor" defined by Poole [?5], Schneider has derived an approxdate equation for dielectric attenuation constant [76],

$$
\begin{equation*}
a_{\mathrm{d}} \approx 27.3 \frac{9 \tan \delta}{\lambda_{g}} \tag{4.18}
\end{equation*}
$$

where $\tan \delta=\sigma / 2 \pi f \epsilon_{I} \epsilon_{0}$ is the loss tangent of the substrate, and α_{d} is in $d B$ per unit length. The filling factor q is given by

$$
\begin{equation*}
q=\frac{1}{1+\frac{F-1}{\epsilon_{Y}(F+1)}} \tag{4.19}
\end{equation*}
$$

with

$$
\begin{equation*}
F=(1+1 G / W)^{1 / 2} \tag{4.20}
\end{equation*}
$$

Numerical results calculated from Eq. 4.18 are also otiven in Table 4.1.

4.3 Discontinut $\begin{aligned} & \text { affects in Microstri-D Lines }\end{aligned}$

4.3.1 Microstrida open Circutts. In construction of microstrip cir-

Table 4.1 Normalized Dielectric Attenuation Constants

	$\epsilon_{I}=2.22$		$\epsilon_{I}=3.82$		$\epsilon_{r}=9.0$	
W / n	$\alpha_{d n}^{*}$	$\alpha_{d n}^{* *}$	$\alpha_{d n}^{*}$		$\alpha_{d n}^{* *}$	$\alpha_{d n}^{*}$
0.4	743.8	743.9	594.6	596.9	405.0	406.8
0.6	760.2	764.3	606.0	611.1	417.9	415.1
0.8	774.7	780.9	616.2	622.6	418.0	421.7
1.0	787.9	794.9	625.5	632.3	423.4	427.4
2.0	836.8	844.9	659.5	666.7	443.3	447.3
3.0	871.2	877.8	683.6	689.2	457.5	460.3
4.0	896.4	902.1	700.8	705.8	467.3	469.8
5.0	976.4	927.1	714.3	718.6	475.1	477.2
6.0	931.1	936.5	724.7	729.0	181.1	483.2

* Results obtained by numerical integration [73].
** Results obtained by approximate equation [76].
cuits, an open circuit is usually realized by simply cutting the strip off square as illustrated in Fig. 4.5(a). The end region of an open circuit formed in this way will store considerably more charge per unft length than the remaining portion of the line. Thus, the ond effect can be represented by an equivalent capacitance, $C_{o c}$, as shown in Fig. 4.5(b). This capacitance can be calculated from

$$
\begin{equation*}
C_{o c}=\lim _{\ell \rightarrow \infty} \frac{l}{2}\left[c(\ell)-\ell C_{0}\right] \tag{4.21}
\end{equation*}
$$

where $C(2)$ is the total capacitance of the section of length 2 and width W as shown in Fig. 4.5(a), C_{0} is the capacitance per unit length of a unform line of the same wath. In actual calculation, l is not infinite, instead, it is equal to some large value beyond which the change in $C(2)-x_{0}$ is negligibie.

Alternatively, the end effect can be represented by a length of transmission line that corresponds to the capacitance $C_{o c}$, as shown in Fig. 4.5 (c). The iengtin Δl may be calculated from

$$
\begin{equation*}
\Delta l=\frac{C_{o c}}{C_{0}} \tag{4.22}
\end{equation*}
$$

Many researchers have studied this discontinuity [.77][78][79][80] [81.], and good agreements are usually observed betreen results calculated from different techniques, and between calculated and measured results. For design purposes, two empirical equations will now be given. Silvester and 3enedek [78] have, in addition to the grapicical piots,

(a)

(b)

(c)

Fis. 4.5 Microstrip Open Circuit Representation.
presented their calculated data for open circuit capacitance by an empirical expression

$$
\begin{equation*}
c_{o c}=\exp \left[2.303 \sum_{\mathrm{K}=1}^{5} c_{\mathrm{K}}\left(\epsilon_{\mathrm{r}}\right)\left(\ln \frac{\mathrm{W}}{\mathrm{H}}\right)^{\mathrm{k}-1}\right] \tag{4.23}
\end{equation*}
$$

where the coefficients c_{k} for six different values of ϵ_{r} are tabulated in Table 4.2.

Hammerstad [69] has found that it is possible to reduce these equations to one valid for all values of ϵ_{I} by expressing the capacitance in terms of an equivalent line extension Δl,

$$
\begin{equation*}
\frac{\Delta l}{H}=0.412 \frac{\epsilon_{\text {eff }}+0.300}{\epsilon_{\text {off }}-0.258} \frac{W / H+0.262}{W / H+0.813} \tag{4.24}
\end{equation*}
$$

Table 4.2 Coefficients ch for Equation 4.23

k	$\epsilon_{I}=1.0$	$\epsilon_{I}=2.5$	$\epsilon_{I}=4.2$	$\epsilon_{I}=9.6$	$\epsilon_{I}=16$	$\epsilon_{I}=51$
1	1.110	1.295	1.443	1.738	1.938	2.403
2	-0.2892	-0.2817	-0.2535	-0.2538	-0.2233	-0.2220
3	0.1815	0.1367	0.1062	0.1308	0.1377	0.2170
4	-0.0033	-0.0133	-0.026	-0.0087	-0.0267	-0.0240
5	-0.0540	-0.0267	-0.0073	-0.0113	-0.0147	-0.0840

4.3.2 Microstrip T-junctions. The microstrip T-junction, as shown in Fig. 4.6(a), is incorparated in a wide variety of microwave circuits. The characterizaition of the tee by a direct junction is inadequate since it ignores the equivalent reactances associated with the energy stored in the neighborhood of the function. Two different models are usually used to represent this discontinuity. In the model shown in Fig. 4.6(b), the T-junction is repcesented by three series inductances and one shunt capacitance. These equivalent inductances have been investigated by Thomson and Gopinath [82], and the capacitance can be calculated from a numerical technique developed by Silvester and Benedek [83]. However, these computations are extremely time consuming, and thus are not suitable for computer-aided designs.

The second model as depicted in Fig. 4.6(c) was originally developed for stripline T-junction by Franco and Oliner [84], with extensions by Leighton and Milnes [85], Vogel [86], and Hammerstad [69]. The microstrip T-junction is redrawn in Fig. 4.7 to identify the requisite parameters.

In this model, the most important parameter is the stub anm reference displacement, i. e., Δd as indicated in Fig. 4.7. As is evident from the figure, sd may be calculated from

$$
\begin{equation*}
\Delta d=D_{1} / 2-\dot{X}_{1} / 2-d_{2}^{\prime} \tag{4.25}
\end{equation*}
$$

where W_{1} is the 11 ewidth oir the main line, and D_{1}, d_{2} are given by

$$
\begin{equation*}
D_{I}=n_{0} H / v \overline{\epsilon_{e f f I}} Z_{I} \tag{4.25}
\end{equation*}
$$

Fig. 4.6 Microstrip T-Junction Representation.

Fig. 4.7 Microstrip T-Junction.

$$
\begin{equation*}
d_{2}^{\prime}=D_{1}\left\{0.076+0.2\left(\frac{2 D_{1}}{\lambda_{g 1}}\right)^{2}+0.663 \exp \left(\frac{-1.71 I_{1}}{Z_{2}}\right)-0.172 \ln \left(\frac{Z_{1}}{Z_{2}}\right)\right\} \frac{z_{1}}{Z_{2}} \tag{4.27}
\end{equation*}
$$

where Z_{1} and Z_{2} denote the characteristic impodance of the main line and the stub, respectively, and $\epsilon_{e f f l}$ the effective dielectric constant, $\lambda_{g l}$ the wavelength, of the main line. The displacement of the main line reference plane is generally very smail, and is given as

$$
\begin{equation*}
d_{1}=0.05 n^{2} D_{2} z_{1} / z_{2} \tag{4.28}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{2}= n_{0} i i / \sqrt{\xi_{e f f 2}} z_{2} \tag{4.29}\\
& n^{2}=\left[\frac{\sin \left(\frac{\pi}{2} \frac{2 D_{1}}{\lambda_{g 1}} \frac{z_{1}}{Z_{2}}\right)}{\frac{\pi}{2} \frac{2 D_{1}}{\lambda_{g 1}} \frac{Z_{1}}{Z_{2}}}\right]^{2} \cdot\left[1-\left(\pi \frac{2 d_{2}^{\prime}}{\lambda_{g 1}}\right)^{2}\right] \tag{4.30}
\end{align*}
$$

The shunt susceptance, B, can be calculated from

$$
\begin{equation*}
B=2 \pi\left(\frac{D_{1}}{\lambda_{g 1}}\right)\left(2 d_{1} / D_{2}-d_{2} / D_{1}\right) / Z_{2} \tag{4.31}
\end{equation*}
$$

this model has been observed to be in fair agreement with experimental results [69].

In a recent paper by MenzisI and Wolff [87], the scattering parameters of the I-junction are calculated using a mode-matching procedure. The dynamic effects are included in this model. The discussion on the feasibility of using this model in computer-aidec design will be defermed until

Chapter VI.

4.4 Microstrip Parallel-Coupled Band-Pass Filters

Parallel-coupled microstrip lines have been used extensively in the realizations of microwave band-pass filters and directional couplizs. This structire, as shown in Fig. 4.8, can simultaneously support two different modes of propagation, namel.y, even- and odd-modes. In the even-mode propagation, waves in the two strips propagate in the same direction; while in the odd-mode propagation, waves prupagate in the opposite direotions. Thus, there are four parameters associated with this structine, namely, the sven- and odd-mode characteristic impedances, and the even- and odd-mode effective dielectric constants. These parameters will be denoted by $Z_{0 e}, Z_{00}, \epsilon_{\text {effe }}$, and $\epsilon_{\text {effo }}$, respectively, and can be calculated by the analytical techniques developed by Bryant and Weiss [8] .

A microstrip parailel-coupled band-pass filter consists of a number of resonators each with a length of approxdmately half-wavelength. Fignre 4.9 shows the typical layout of a three-resonator band-pass filter. The analytical techniques and design procedure of this type of filters will now be given.
4.4.1 Analysis of Parallel-Coupled Band-Pass Filters. To facilitate analysis, a single section of parallel-coupled microstrip line is redrawn in Fig. 4.10(a), in which port 1 is connected to the previous section, port 3 is connected to the following section, and ports 2 and 4 are open-

Fig. 4.8 Parallel-Coupled Microstrip Line

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 4.9 Layout of a Three-Resonator Microstrip Band-Pass Filter

-104
circuited. Figure $4.10(\mathrm{~b})$ shows the current and voltage associated with each port together with the open circuit capacitances of ports 2 and 4. The current-voltage relationship of this circuit can be expressed in terms of an impedance matrix,

$$
\left[\begin{array}{l}
v_{1} \tag{4.32}\\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{llll}
z_{11} & z_{12} & z_{13} & z_{14} \\
z_{21} & z_{22} & z_{23} & z_{24} \\
z_{31} & z_{32} & z_{33} & z_{34} \\
z_{41} & z_{42} & z_{43} & z_{144}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]
$$

where the matrix elements as derived by Zysman and johnson [39] are given by

$$
\begin{aligned}
& z_{11}=z_{22}=z_{33}=z_{44}=z_{1}=\frac{1}{2}\left[\frac{z_{0 e}}{\tan \left(\gamma_{e}\right)}+\frac{z_{00}}{\tan \left(\gamma_{0} l\right)}\right] \\
& z_{12}=z_{21}=z_{34}=z_{43}=z_{2}=\frac{1}{2}\left[\frac{z_{0 e}}{\tan \left(\gamma_{e} \ell\right)}-\frac{z_{00}}{\tan \left(\gamma_{0}^{2}\right)}\right] \\
& z_{13}=z_{31}=z_{24}=z_{42}=z_{3}=\frac{1}{2}\left[\frac{z_{0 e}}{\sinh \left(\gamma_{e} 2\right)}-\frac{z_{00}}{\sinh \left(\gamma_{0} 2\right)}\right] \\
& z_{14}=z_{41}=z_{23}=z_{32}=z_{4}=\frac{1}{2}\left[\frac{z_{0 e}}{\sinh \left(\gamma_{e}^{l}\right)}+\frac{z_{00}}{\sinh \left(\gamma_{0} l\right)}\right]
\end{aligned}
$$

and γ_{e}, γ_{0} are the even- and odd-mode propagation constants, and are given 35

$$
\begin{equation*}
\gamma_{e(0)}=\tilde{u}_{e(0)}+i \hat{\beta}_{e(0)} \tag{4.34}
\end{equation*}
$$

The even- and odd-mode attenuation constants, α_{e} and α_{0}, can be calculated from Eqs. 4.15 and 4.17 with Z_{o} replaced by $z_{0 e}$ and Z_{00}, respectively. The even- and odd-mode phase constants, β_{e} and β_{0}, are given by

$$
\begin{equation*}
\beta_{e(0)}=\frac{2 \pi}{\lambda_{g e(0)}} \tag{4,35}
\end{equation*}
$$

where $\lambda_{g e}$ and $\lambda_{g o}$ are the even- and odd-mode wavelengths.
The current and voltage relations at ports 2 and 4 are

$$
\begin{align*}
& I_{2}=-j \omega c_{o c} V_{2} \tag{4.36a}\\
& I_{4}=-j \omega c_{o c} V_{4} \tag{4.36b}
\end{align*}
$$

Substitution of Eq. 4.35 into Eq. 4.32 yields (after some lengthy algebraic manipulation),

$$
\left[\begin{array}{l}
v_{1} \tag{4.37}\\
v_{3}
\end{array}\right]=\left[\begin{array}{cc}
z_{11}^{\prime} & z_{13}^{\prime} \\
z_{31}^{\prime} & z_{33}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{c}
I_{1} \\
I_{3}
\end{array}\right]
$$

where

$$
\begin{align*}
& z_{i 1}^{\prime}=z_{33}^{\prime}=z_{1}+\frac{\left(z_{2}^{2}+z_{4}^{2}\right)\left(z_{1}+\frac{1}{j \omega C_{o c}}\right)-z_{2} z_{3} z_{4}}{z_{3}^{2}-\left(z_{1}+\frac{1}{j \omega C_{o c}}\right)^{2}} \tag{4.38a}\\
& z_{i 3}^{\prime}=z_{31}^{\prime}=z_{3}+\frac{2 z_{2}^{z_{4}}\left(z_{1}+\frac{1}{j \omega C_{o c}}\right)-z_{3}\left(z_{2}^{2}+z_{4}^{2}\right)}{z_{3}^{2}-\left(z_{1}+\frac{1}{j \omega C_{o c}}\right)^{2}} \tag{4.386}
\end{align*}
$$

For computer-aided analysis, the impedance matrix is then transiormed to an ABCD matrix (see Appendix A),

$$
\left[\begin{array}{l}
V_{1} \tag{4.39}\\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
-I_{3}
\end{array}\right]
$$

where

$$
\begin{align*}
& A=D=z_{i 1} / z_{i 3} \tag{4.40a}\\
& B=C=\frac{\left(z_{i 1}\right)^{2}-\left(z_{i 3}\right)^{2}}{z_{i 3}} \tag{4.400}
\end{align*}
$$

The over-all $A B C D$ matrix for the filter can be readily obtained from the individual matrices. Then the input VSNR, insertion loss, and phase shift can be calculated as follows: Assuming both the source impedance Z_{s}, and load impedance Z_{2} are real and positive, the input impedance is given by

$$
\begin{equation*}
Z_{Z N}=\frac{A Z_{2}+B}{C Z_{2}+D} \tag{4.41}
\end{equation*}
$$

The reflection coefficient is

$$
\begin{equation*}
r=\frac{Z_{I N}-Z_{S}}{Z_{I N}+Z_{S}} \tag{4.42}
\end{equation*}
$$

and the input VSWR is

$$
\begin{equation*}
s=\frac{1+\mid:!}{1-|5|} \tag{4.43}
\end{equation*}
$$

The voltage transmission coefficient is defined as [90],

$$
\begin{align*}
T & =T_{r}+j T_{1} \\
& =A+B / Z_{\ell}+C Z_{s}+D Z_{S} / Z_{\ell} \tag{4.44}
\end{align*}
$$

and the insertion loss and phase shift, in terms of T, are

$$
\begin{align*}
I_{i} & =10 \log \left(|T|^{2} Z_{\ell} / 4 Z_{s}\right) \tag{4.45}\\
\theta & =\arctan \left(T_{i} / T_{z}\right) \tag{4.46}
\end{align*}
$$

where I_{i}, the insertion loss, is in $d B$, and θ, the phase shift, is in radian.
4.4.2 Synthesis of Parallel-Coupled Band-Pass Filters. The design procedure was orlginally developed by Cohn [91] for stripline, and later extended by Dell-Imagine [92] to include microstrip. Cohn has shown that each parallel-coupled section with a length of quarter-wavelength is equivalent to an ideal impedance inverter $n=$ th quarter-wavelength of line on either side. From this equivalent circuit, the even- and odd-mode characteristic impedances are derived as [91],

$$
\begin{align*}
& \frac{Z_{o e}}{Z_{0}}=I+\frac{Z_{0}}{Z}+\left(\frac{Z_{0}}{Z}\right)^{2} \tag{4.47a}\\
& \frac{Z_{00}}{Z_{0}}=I-\frac{Z_{0}}{Z}+\left(\frac{Z_{0}}{Z}\right)^{2} \tag{4.47b}
\end{align*}
$$

where Z_{0} is the terninating impedanc, (see Fig. 4.9), and K is the impedance of the ideai inpedance inverter, and can be calculated from low-pass
prototype elements [g1].
The length of each section is given by [92],

$$
\begin{equation*}
L=\frac{\lambda_{0}}{4} \frac{z_{o e}+z_{o 0}}{\sqrt{\epsilon_{e f f e}} z_{o e}+\sqrt{\epsilon_{e f f 0}} z_{o 0}} \tag{4.48}
\end{equation*}
$$

This procedure usually resilts, even for filters with moderate bandwidth, in very high $Z_{0 e}$ and very low Z_{00} for the first and the last sections. In terms of physical parameters, this means extremely narrow gaps between strips for these sections, and thus requires a high degree of accuracy in photolithographic techniques. However, it has been deternined that more workable parameters can be obtained by slightly perturbing, using computer-aided optimization techniques, the parameters calculated from this design procedure [93].

Using this tecinique, a four-section Butterworth (maximally-flat) band-pass ficter with 8% bendwidth for operation at 5.5 CHz 2 was designed For a Duroid 5880 substrate ($\#=0.508 \mathrm{~mm}$). The even- and odd-mode characteristic inpedances for-each section were first calculated from Conn's equations. A computer program* was then used to optimize these impedances. The initial and the optimized values are listed in Table 4.3.

[^5]The width of the first and the last gaps (S_{I} and S_{4} in Fig. 4.9) is increased from 0.07 mm to 0.11 mm , thus considerably lessening the tolerance requirements imposed on the photolithographic process. The physical dimensions are given in Table 4.4. Calculated and actual responses are plotted in Fig. 4.11. The passband insertion loss was measured to be 0.5 dB at 5.5 GHz as compared to the calculated value of 0.38 dB at the same frequency. The measured 1-dB bandridth is $430 \mathrm{MHz}(5 \cdot 30-5.73 \mathrm{GHz}$) as compared to the calculated bandwidth of $460 \mathrm{MHz}(5.27-5.73 \mathrm{gHz})$. Table 4.4 also gives the dimensions of a 11 GHz band-pass filter with 8% bandridth. Calculated and measured responses of this filter weit also in excelient agreement. The passband insertion loss was approdmately 0.7 dB .

Table 4.3 Even- and Odd-Mode Characteristic Impedances for
a. Butterworth Band-Pass Filter with $\%$ Bandwidth

Section	Initial Impedances		Optimized Impedances	
	z_{00}	z_{00}	$z_{0 e}$	z_{00}
1,4	74.01	38.56	70.15	40.84
2,3	54.84	45.95	55.79	46.08

(All impedances in ohms)

Table 4.4 Dimensions of Parallel-Coupled Band-pass Filters

Section	$W(\mathrm{~mm})$	$\mathrm{S}(\mathrm{nm})$	$\ell(\mathrm{mm})^{*}$	$\ell(\mathrm{~nm})^{* *}$
1,4	1.23	0.11	9.76	4.77
2,3	1.51	0.64	9.70	4.74

* $f_{0}=5.5 \mathrm{GHz}$
** $f_{0}=21 \mathrm{GHz}$

F1g. 4.11 A 5.5 GHz Band-Pass Filter Characteristics

GHAPTER V DESIGN AND REALIZATION OF MIC DEGENERATE AMPLITIERS

5.1 Description of computer program CADDAC

In recent years, a aumber of computer-aided design programs have been made available to microwave engineers on time-sharing systems [94]. Large microwave firms have also developed their own package programs that are only available to their design engineers. These programs usually require large computer memory, and are very costly. Moreover, they are general purpose programs which handle mostly passive networks with some including a. transistor, and others including a diode as the scle active device.

The computer program CADDAC (Computer-Aided Design of Degenerate Amplifier Circuits) developeī in this report is intended primarily for the design of degenerate parametric ampilfiers, though it is also u-ril for certain types of passive networks. It can be readily extended to include zondegenerate amplifiers. Furthermore, with a few minor changes, the program can be run on a mini-computer since it requires very little memory. The source listing of CADDAC, written in FORTRAN language, is given in Appendix C, together with circuft element identification codes and inqut data card requirements. Similar to that of Cisco[95] in structure, the program consists of the followings:

Main program
Subroutine RESPON
Subroitine BFyIT
Subroutine DIRECT

Fig. 5.1 Flow Chari of Program CADDAC

Sulmoutine EXPLOR
Subroutine RANDOM
Subroutine EVAL
Subroutine GRAFH
Subroutine DISPLY (with entry DISP)
Subroutine UUIPUT
Subroutine SENSIT
Functions CSINH, CCOSH, and CTANH.
The interrelations between these individual programs are illustrated in the fiow chart in Fig. 5.1. The arrows are understood to be drrected from the calling programs toward the called programs.

Before these programs are explained, a brief review on the basic itructure of a computer-aided design program is perhaps in order. Figure 5.2 shows a simplified flow chart of such a program.

The computer reads the circuit topology and indial parameter valies, and proceeds to calculate the actual response. Next, a comparison is made between the actual response and the objective function (desired response) from which an error function is generated under certain criterta. At this point, the error is tested to seo if it exceeds some prescribed value. If it does, the program goes to the optimization subroutine. The optimization subroutine generates a set of incremental parameter values, which, when added to the previous parameter values, will yield a smaller error. This procedure is iterated until the program is stopped when one of the following conditions occurs:

Fig. 5.2 Simplified Flow Chart of a Computer-Aided Design Program
(1) that the error is less than a prescribed value,
(2) that a specified number of iterations is exceeded, or
(3) that an allotted computing time is exceeded.

Returning to program CADDAC, each subprogram will be now duscribed.
5.1.1 Main program. The main program reads all input data which include objective function, frequencies of interest, circuit topology, circuit parameter values, and values of various parameters associated with the optimization procedure. It also decides whether the circuit is to be analyzed or optimized, whether a grapi of gain versus frequency is to be plotted, and whether sensitivity analysis is to be performed.
5.1.2 Subroutines RESPON, BPFTIT, and functions CSINH, CCOSH, and CTANH. This group of subprograms calculate the circuit response. The three functions calculate values of inyperbolic sine, cosine, and tangent functions with complex arguments.

Subroutine BPFIIT calculates the ABCD matrices of the parallelcoupled microstrip band-pass filter at all frequencies of interest ac. coriting to the equations derived in Section 4.4.1. To avoid repetitive computations, this subroutice is only callad by the rain program when the existence of a bend-pass filter in the circult is detected. Once the $A B C D$ matrices are calculated, they are stored and made avatlable to sutrautinc RESPON via a COMMON statement.

Subroutine RESPON calculates transcucer power gain according to the equations derived in Section 3.4.1. Algorithm for noise figure calculations is not included. However, with the turations derived in section
3.4.2, the implementation should be a straightforward matter.
5.1.3 Subroutines RANDOM, EVAL, DIRECT, and EXPLOR. This group of subroutines performs the optimization procedure and thus can be considered as the backbune of this program.

Subroutine RANDOM is a random number generator.
Subroutine EVAL evaluates the ercor between the objective function and the calculated response. In CADDAC, the error is defined as

$$
\begin{equation*}
\text { ERROR }=(E)^{1 / 2} /(\text { NFP }) \tag{5.1}
\end{equation*}
$$

where $\sqrt{\text { rP }}$ is the number of frequency points, and E is calculated from

$$
\begin{equation*}
E=\sum_{k=1}^{N F P}\left[G_{t}\left(i_{k}\right)_{c a i}-G_{t}\left(f_{k}\right)_{o b j}\right]^{2} \tag{5.2}
\end{equation*}
$$

Subroutines inamen and EXPLOR employ an improved "direct search" method to perfors circuit optimization. Aigorithms [96Ig7] for the originai cirect searin method developed oy Eooise and Jeeves [34] are availabie, and modisiled methods such as "spider searci" [98j, "razor search" [99] have also been pualisined. The algorithm used in CADLAC, when compared with others, has been observed to reduce the computing time considerabiy.

Basicaily, the dtrect searcin consists of two najor moves, namely, the exploratory gove and the pattem move. At the beginning, inttial values are assigned to N cincuit parameters wisch are to be optimized,
and error is evaluated at this set of parameter values (called "basepoint" in drect search). Next an exploratory move is made. The exploratory move varies ihe value of each parameter by some smell amount (called "step size"), and observes the effect of each of these variations on the ecror function. Those that reduce the error are retained. After the exploratory move is completed, certain parameters are increased, others decreased, and still others remain unchanged.

A "vector" in the N-dimensional hyperspace can be defined as the difference between the now and the initial set of parameter values. A move in the direction of this vector is then attempted. This move is called a pattern rove. If the pattern move is successiul in recucing the erzor, a move in the same direction with larger step size is taken. and so on, until iailure occurs. Upon the fatlure of a pattern move, the last "good" point is established as the new basepoint from which another exploratory move is conducted to deternine the new drection for pattern noves. If this exploratory hove also fails, the step size is reduced, and the riole process is repeated. The optinization process is teminated when the step size is smaller than a prescribed minfinum step size. The flow charts in Fige, 5.3 and 5.4 outiline subroutines JIRCTI and EXPLOR, Iespectively.

A number of features that are not shown in the flow charts will now be described:
(i) Both the exploratory and the pattern noves are restricted within a certain range imposed oy parameter constraints. This is zecessamy for,

Fig. 5.3 Fiow Chamt of Subroutine DIEECT

Fig. 5.4 Flow Chart of Sumpoutine EXPLOR
otherwise, certain parameters may acquire values that are physically meaningless, such as negative lengths, or values that are physically meaningful, but are difficult to be realized in practice.
(2) An accelerating factor is included in making the patiern noves, i. e., each nem move is always larger than the previous move in step size.
(3) In subroutine IIRECT, after an optimization process is terminated when the step size smaller than a prescribed minimum value, it can be restarted from a new basepoint generated randomly by subroutine RANDOM. This can be repeated as many times as the user wishes.
(4) The flow chart in Fig. 5.4 only indicates the exploratory move for one parameter. Actually, each time subroutine EXPLOR is called, 311 N parametors are explored at once. This is easily accomplished oy a D0-100p.
5.1.4 Subroutine SENSIT. The effect on transducer power gain by the variation of a parameter X is called the gain sensitivity with respect to parameter X, S_{X}^{G}, and is given by

$$
\begin{equation*}
S_{X}^{G_{t}}=\lim _{\Delta x \rightarrow 0} \cdot \frac{\Delta G_{t} / G_{t}}{\Delta x / x}=\frac{x}{G_{t}} \cdot \frac{\partial G_{t}}{\partial x} \tag{5.3}
\end{equation*}
$$

where x is the nominal value of parameter X. In subroutine SENSIT, which perforns sensitivity analysis, the partial differentiation is carried out numerfcally by

$$
\begin{equation*}
\frac{\partial G_{t}}{\dot{d x}}=\frac{G_{t}\left|x-G_{t}\right| x+\Delta x}{\Delta x} \tag{5.4a}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial G_{t}}{\partial x}=\frac{\left.G_{t}\right|_{x}-\left.G_{t}\right|_{x}-\Delta x}{\Delta x} \tag{5.4b}
\end{equation*}
$$

Cere Δx is taiken to be \mathbb{Z} of the nominal parameter value. The calculated sensitivities are expressed in terms of percentage gain variation with respect to one per cent variation in nominal parameter value.
5.1 .5 Subroutines GRAPH, DISPLY, and OUTPUT . This group of subroutines does most of the printouts.

Subroutine GRAPH plots the gain versus frequency. response
Subroutine IISPLY prints out optimized parameter values, number of iterations, aumber of functions evaluated, and error. Entry DISP prints out new basepoint.

Subroutine OUnPUT tabulates the gain versus $f=e q u e n c y ~ r e s p o n s e . ~$

5.2 Design Jxamples

Figure 5.5 shows the basic circuit topology chosen for degenerate 3mplifiers to be designed by CADDAC. Quarter-wavelength open-circuited transmission lines are placed in shunt one quarter-wavelength behinc the diode at both the pump and the signai frequencies. These Innes are intended to blocix pump frequency power from reaching the signal output port, and the signal frequency power from reaching the pump port. The combined insertion losses of these lines together with the respective bend-pass fillters were measured to be nearly 45 dB at the signal output yort for pump frequency power, and in excess of 50 dB at pump port for

Fig. 5.5 Basic Circuit Topology for MIC Degenerate Amplifiers
signal frequency power. They also provide a very high impedance in parallel with the diode at the respective frequencies so that circuit elements behind the diode need not considered in designing the matching networks. This means the signal matching network and the pump matching network can be designed independentily. The pump matching network design can be readily accomplished with a Smith Chart, or by experimental techniques [41]. It will not be covered here.

For signal matching network design, program CADDAC is used. Although, the program was also used successfully in desigoing amplifiers operated at 1.4 GHz using a Motorola MV 1863 D varactor, the discussion in this section will be limited to only the 5.5 GHz amplifiers which employ the MA 4850ge varactors listed in Tables 2.1 and 2.2. In the design examples to be given below, varactor $\# 2$ was used. Parameters of this varactor at 1.5 volts bias and 95 pumping ($a=0.95$) are:

$$
\begin{aligned}
& c_{j}=0.374 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{s}}=0.82 \mathrm{~B} \\
& \mathrm{I}_{\mathrm{s}}=0.324 \mathrm{pH} \\
& c_{\mathrm{p} 1}=0.25 \mathrm{pF} \\
& c_{\mathrm{p} 2}=0.046 \mathrm{pF} \\
& c_{0}=0.530 \mathrm{pF} \\
& \gamma_{1}=0.367
\end{aligned}
$$

The parameter constraints were set as follows:

$$
\begin{array}{ll}
\text { Impedance } & 15 \mathrm{C} \leq z_{0} \leq 100 \mathrm{Q} \\
\text { Length } & 0.1 \lambda \leq \ell \leq 0.5 \lambda
\end{array}
$$

where λ is referred to a frequency at the center of the signal frequency band.
5.2.1 Example 1. In the first example, a simple circuit containing two serfes sections of transmission lines and a parallel tuning stub as shown in Fig. 5.6 is chosen as the sigal matching network.

The desired response is 15 dB power gain in the frequency range of 5.4 GHz to 5.6 chz . Arbitrary initial parameter values of 60 ohms and 0.3 wavelength were assigned to each element. Table 5.1 shows the initial and the optimized parameter values. The calculated frequency response is plotted in Fig. 5.7. Power gain of this amplifier fiuctuates between 14.3 dB and 15.1 dB .

In calculating the frequency response, the condition of short-circuited harmonics was assumed for the pumped diode. Using the optimized parameter values, an analysis was made, assuming the condition of opencircuited harmonics, which yielded a lower gain and a narrower bandwidth. The frequency response is also plottod in Fig. 5.7.

Table 5.1 Initial and Optimized Parameter Values of the Signal
Matching Networs in Fig. 5.6

Parameters	Indtial Values	Optimized Values
z_{1}, l_{1}	$60 \Omega, 0.3 \lambda$	$25.0 \Omega, 0.2115 \lambda$
z_{2}, l_{2}	$00 \Omega, 0.3 \lambda$	$68.1 \Omega, 0.2787 \lambda$
z_{3}, i_{3}	$60 \Omega, 0.3 \lambda$	$25.0 \Omega, 0.4102 \lambda$

Fig. 5.6 Circuit Used in the First Design Example in Section 5.2

Fig. 5.7 Gain Characteristics of the Amplifier in the First Design Example
5.2.2 Example 2. In this example, the signal matching networ's contains two more elements than the pravious case, i. e., three series transmission line sections and two parallel tuning stubs, as shown in Fig. 5.8. The objective function is 18 dB power gain in the frequency range of 5.4 CHz to 5.6 cHz . The initial and the optimized parameter values are given in Table 5.2, and calculated frequency response is plotted in Fig. 5.9. In the frequency range of interest, gain fluctuates between 17 dB and 19.1 dB .

Table 5.2 Initiel and Dptimized Parameter Values of the Signal Matching Netrork in Fig. 5.8

Parameters	Initiai Values	Optimized Values
Z_{1}, l_{1}	$55 \Omega, 0.3 \lambda$	$52.36 \Omega, 0.304 \lambda$
Z_{2}, ℓ_{2}	$55 \Omega, 0.3 \lambda$	$36.63 \Omega, 0.346 \lambda$
Z_{3}, ℓ_{3}	$55 \Omega, 0.3 \lambda$	$52.48 \Omega, 0.441 \lambda$
Z_{4}, ℓ_{4}	$55,0.3 \lambda$	$20.11 \Omega, 0.168 \lambda$
Z_{5}, ℓ_{5}	$55 \Omega, 0.3 \lambda$	$53.34 \Omega, 0.488 \lambda$

In this example, the sensitivity analysis has been performed. Figure 5.10 shows the gain sensitivity with respect to the matcining getwork elements, while Fig. 5.11 shows the gain sensitivities with

Fig. 5.8 Circuit Used in the Second Design Example in Se:sion 5.2

Fig. 5.9 Gain Characteristics of the Amplifier in the Second Design Example

ORIGINAL YAGE IS

(a)

$$
-132=
$$

$$
\begin{aligned}
& \text { (1) } l_{1} \text { (2) } l_{2} \text { (3) } l_{3} \\
& \text { (4) } l_{4} \text { (5) } l_{5}
\end{aligned}
$$

(b)

$$
\begin{gathered}
\text { F-3. 5.10 Gatw Senstiviries with Respect to } \\
\text { Matching Yetwork Farame ters }
\end{gathered}
$$

ORIGINAL PAGE IS OF POOR QUALITY
(1) c_{0}
(2) r_{1}
(3) R_{s}
(4) I_{s}
(5) $c_{p 1}$
(6) $c_{p 2}$

Fig. 5.11 Gai. Sensitivities with Respect to Diode Parameters
respect to the diode parameters.
In view of these figures, one obvious conclusion can be immediately drawn; a degenerate amplifier is indeed a very sensitive device. The power gain is sensitive to both the circuit and the diode parameters. This is not limited to this particular circuit. For the numerous amplifier circuitsdesigned in this study, all with different topologies and different objective functions, the gain sensitivities with respect to one or more parameters invariably possess some values in excess of 15 . Therefore, not only must the diode parameters be precisely measured, but also extreme care must be exercised in the realization of amplifier circuits. This point can be easily demonstrated by considering, for example, curve \#5 in Fig. 5.10 (b).

The gain sensitivity with respect to the length of element \#5 (see Fig. 5.8) is approxdmately 38 at 5.5 GHz where the amplifier has a nominal gain of 18.34 dB . The nominal length of element \#5 is 0.488λ at 5.5 GHz which corresponds to an actual length (on a Duroid substrate with $\epsilon_{\text {eff }}=$ 1.88 for $Z_{0}=53.34 \Omega$) of approxdmately 1.94 cm . Thus, the power gain of this amplifier would decrease from 18.34 dB to 11.37 dB if the length of element \#5 is increased by 1% of 1.94 cm , or 0.194 mm . This should serve the purposes of illustrating the importance of precisely determining the microstrip discontinuity effects.

The computing time for the first example in which six parameters were optimized, ranged from 20 to 30 seconds with an IBM $360 / 75$ computer. For the second example, in which ten parameters were optimized, it usually
took 70 to 100 seconds.

5.3 Experimental Results of an MIC Degenerate Amplifier

Throughout this study, several dielectric materials with dielectric constants in the low to medium lange were investigated and compared. Specifically, they were quartz ($\epsilon_{T}=3.82$), polyolefin ($\epsilon_{r}=2.32$), and Duroid ($\epsilon_{r}=2.22$). Materials with high dielectric constants, such as alumira ($\epsilon_{I}=9.0-10.0$), were not considered because of their more profound dispersive characteristics and tighter tolerance requirements. Of the three substrate materials considered, Duroid has the adrantage over quartz in that the dielectric constant is lower, it is much easier to machine and fabricate, and the cost is much lower. However, the lower loss of quartz may make it more attractive at higher frequencies. The polyolefin material was found to be less stable mechanically than the Duroid, and variations in substrate thickness were considerably in excess of specified tolerances.

The amplifier described in Section 5.2 .1 was realized on a Duroid substrate with a thickness of 0.508 mm . A photograph of this amplifier, housed in a 10 cm by 10 cm aluminum casing, is shown in Fig. 5.12. Bias voltage was applied through a high impedance line ($Z_{0}=120 \Omega$) connected to the pump circuit. Quarter-wavelength open-circuited transmission lines, serving as RF chokes, were placed on the bias line one quarter-wavelength away from the main line a^{+}both the signal and the pump frequencies. The measured insertion losses, irom signal port to bias port at 5.5 GHz , and

Fig. 5.12 Photograph of a 5.5 GHz MIC Degenerate Amplifier on Duroid Substrate
from pump port to bias port at 11 GHz , are both in excess of 30 dB . The pump source employed a Varian X-13 klystron which can deliver an output power of 300 mir at 11 GHz . The signal port was connected to a Melabs $\mathrm{XH}-427$ circulator with an insertion loss of 0.3 dB from 4.5 GHz to 6.5 GHz , and an isolation ranging between 20 dB and 33 dB over the same frequency range. Isolation was 24 dB at 5.5 GHz . The characteristics of the amplifiex were measured with a Hewlett-Packard Swept Amplitude Analyzer (HP S $/ 55 \mathrm{~A}$).

The amplifier frequency response curve reproduced in Fig. 5.13 was the result of operation with a bias of 1.5 volts and a pump power level of approximately $j 2$ min at a frequency of 10.995 cHz . Amplifier gain was observed to be $17 \mathrm{~dB} \pm 1 \mathrm{~dB}$ over a frequency range of approxdmately 70 MHz . By increasing the pump power level to 38 mit , amplifier gain was raised to $19.5 \mathrm{~dB}+1 \mathrm{~dB}$ over a frequency of 50 MHz before oscillation occurred. The frequency agility was demonstrated by successfully operating the amplifier over a pump frequency range of 10.7 GHz to 11.14 GHz with bias voltage ranging from 0.05 to 3.07 volts, and with a minimum gain of 10 dB .

The amplifier gain characteristics in Fig. 5.13 were recorded at a signal power level of $-18 \mathrm{dBm}(0.016 \mathrm{mir})$. It was observed that below the signal power level of -15 dBm , amplifier gain changed insignificantly with respect to the variations in signal power level, while above -15 dBm , amplifier gain was decreasing noticeably with increasing signal power, and when the signal power was above approximately -9 dBm , amplifier gain ceased to exdst.

Fig. 5.13 Gain Characteristics of the Degenerate Amplifier in Fig. 5.12

The single-sideband noise figure for the amplifier was calculated, for the operating conditions under which the gain curve in Fig. 5.13 was recorded, at a diode temperature of $305{ }^{\circ} \mathrm{K}$ with a resulting figure of 3.3 dB . This calculation, however, did not include the transmission loss in the signal filiter (about 0.5 dB), matching networi loss (about 1 dB), and circulator loss (about 0.3 dB). Due to the lack of noise source in the frequency range of interest, a noise figure measurement was made using the simple and crude "signal generator" method [37] with a resulting figure of 5.7 dB . This method requires that the noise output of the amplifier be measured with zero power input and that the power input to double the output be measured. The output determinations in the presence of noise were difficult to accomplished accurately, and hence the accuracy of this measurement was estimated to be $\pm 1 \mathrm{~dB}$.

Certain discrepancies between the actual and the calculated responses were observed. When the amplifier was first constructed using parameter values from Table 5.1, amplifier gain was observed to be only 7 dB at 5.5 GHz over a frequency range of about 22 MHz . Additional elements were needed to adjust the gain to that shown in Fig. 5.13. These elements (the short stub behind the 5.5 GHz band-pass filler, and the long stub next to the diode as shown in the photograph in Fig. 5.12) were arrived at experimentally. This discrepancy may be caused by the non-ideal characteristics of the circulator and the microstrip to SMA connector transition. The asymmetrical T-junction near the diode is another possible source of trouble.

Another discrepancy exists in the bandwidths, namely, the actual bandwidth was only one-third of that predicted. This may be partially attributed to the fact that the simple structure used to separate the pump circuit from the signal circuit is only functional over a rather narrow frequency range centered at 5.5 GHz , outside this frequency range, the loading effect of the pump circuit on the signal circuit becomes significant, and thus can not be ignored outright. These discrepancies will be examined in more detail in Chapter VI together with possible. remedies.

GHAPTER VI SUMMSRY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTMER STUDY

6.1 Summary and Conclusions

The purpose of this study has been to investigate the feasibility of designing microwave parametric amplifiers by computer-aided optimization techniques, with special emphasis placed upon amplifiers in microwave integrated circuit form. That such an approach is feasible has been demonstrated. The salient features of this study can be summarized as follows:
(1) A precision measurement technique has been developed for varactor characterization. In implementing this technique, a diode test mount which can accommodate various types of diode packages, has been designed, and the test mount equivalent circuit has been accurately determined. Measurements have been made of the driving-point impedances of several MA 48509 varactors over a wide frequency range.
(2) A number of lumped-element equivalent circuits for packaged varactors valid at various frequency ranges have been proposed. Circuit elements and diode parameters have been successfully determined from the measured impedance data by computer-aided optimization techniques.
(3) Expressions of power gain and noise figure for parametric amplifiers employing a nore realistic equivalent circuit have been derived. These expressions have been presented in such a manner to facilitate computer programging.
(4) Electrical characteristics and discontinuity effects of microstrip
transmission lines have been investigated. Analysis and synthesis methods for parallel-coupled microstrip band-pass filters have been presented. It has been found that the synthesis method usually results in extremely high impedances which are difficult to realize in practice. This deficiency has been removed by employing computer-aided optimization techniques to perturb the impedances calculated from the synthesis method. Band-pass filters with moderate bandwidth have been successfully designed and fabricated at 5.5 GHz and 11 GHz . Actual and calculated responses have been observed to be in excellent abreement.
(5) A computer program, CADDAC, has been developed for degenerate parametric amplifier designs. It employs an improved "direct search" method to perform circuzt optimization which has been observed to reduce the computing time considerably when compared with other algorithms. The program requires very little computer memory, and thus can be modified for a mini-computer.
(6) An MIC degenerate amplifier has been constructed on a Duroid substrate. The amplifier has a power gain of $17.5 \mathrm{~dB} \pm 1 \mathrm{~dB}$ over a frequency range of 70 MHz . The single-sideband noise figure of this amplifier has been measured to be approdimately 5.7 dB .

6.2 Recommendations for Further Study

For the degenerate amplifier constructed in this study, the pump source and the circulator have not been integrated into the same substrate on which the amplifier was fabricated. Since circuit miniaturizatiou is
a major advantage of MIC technology, the integration is desirable, and it can be accomplished by using solid-state devices such as IMPATT diode oscillators [100], and microstrip Y-junction circulators [101]. Besides achieving circuit miniaturization, the integration also serves another purpose: it enables one to predict the amplifier response more accurately by including the circulator model, either analytical or experimental, in the computer program, and thus remove some of the discrepancies between the actual and the calculated responses as discussed in Section 5.3. The microstrip T-junction model developed in Section 4.3 is only applicable to symmetrical junctions, i. e., the main line impedances are identical on both sides of the stub. For asymmetrical junctions, the model of Menzel and Wolff [87], in which the T-junction is characterized in terms of scattering parameters, seems to be adequate. However, for computer-aided design purposes, this model suffers from two major drawbacks: one, that the calculations of these parameters are relatively time consuming, and two, that these parameters are calculated from line widths instead of line impedances. This implies that should this model be directiy inplemented in a computer-aided design program, physical parameters, not electrical parameters from which circuit responses are calculated, would be optimized, and thus computing time would be increased drastically. A possible approach is to first optimize the electrical parameters by simply neglecting the junction effects, Next, optimized electrical parameters are converted to physical paramete::s, and scattering parameters for all junctions in the circuit are calculated at frequencies of interest.

Optimization process is then restarted, but this time only the length of each element is to be optimized so that the scattering parameters remain valld and need not be calculated over and over again during the optimization process. However, it is not certain that convergence to objective function is achievable.

Although the computer program can perform broadband amplifier designs, broadband amplifier realizations were not attempted in this study. As discussed in Section 5.3, the simple structure used to separate the pump circuit from the signal circuit is only functional over a rather narrow frequency range. For broadband amplifiers, different structures must be used. It is also worthwhile to point out that in the case of broadband amplifier design, the computing time can be reduced considerably If the initial parameter values are obtained from one of the conventional synthesis methods discussed in Chapter I [102].

Finally, on diode characterization, it is highly desirable to have the diode measured in situ. Intuitively, the lumped-element equivalent circuit derived from slotted-1ine measurement with the diode mounted in a coardal test mount should remain valid when the diode is shunt mounted in a microstrip if the diameter of the diode package is much smaller than the microstrip linewidth. However, Lf the diameter of the diode package is comparable to, or even larger than the microstrip linewidth, the validity of the lumped-element equivalent circuit is doubtful. In order to measure the diode in situ, the launchers, i. e., the coaxdal-to-microstzip transitions, must first be precisely characterized. To
this end, measurement by automatic netrork analyzer is preferred over slotted-line measurement.

The purpose of this appendix is to give a refef review on ABCD parameters (also referred as general circuit parameters), which are often usad in two-part network representations.

In torms of Fig. A.1, the ABCD parameters are defined by the following equations

$$
\begin{align*}
& V_{1}=A V_{2}+B I_{2} \tag{A.1}\\
& I_{1}=C V_{2}+D I_{2} \tag{A,2}
\end{align*}
$$

or in matrix notation

$$
\left[\begin{array}{l}
v_{1} \tag{A.3}\\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
\mathrm{C} & \mathrm{D}
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
I_{2}
\end{array}\right]
$$

> F15. A. 1 Eeitrition of Voltages and Curents Eor Two-Port Vetworks

$$
A=1 \quad B=0
$$

$$
C=Y \quad D=I
$$

$A=D=\cosh (\gamma \ell)$
$B=Z_{0} \sinh (Y \ell)$
$C=\sinh (Y l) / Z_{0}$
$\gamma=$ propagation constant
$Z_{0}=$ characteristic impedance

Fig. A. 2 ABCD Parameters of Some Common Structures

For certain types of networks, the ABCD parameters are interrelated in the following special ways: If the network is reciprocal

$$
\begin{equation*}
A D-B C=1 \tag{A.4}
\end{equation*}
$$

If the network is symmetrical

$$
\begin{equation*}
A=D \tag{A.5}
\end{equation*}
$$

If the network is lossless, A and D are purely real. and B and C are purely inaginary. Figure A. 2 gives the ABCD parameters for several common structures.

These parameters are particularly useful in rslating the performance of cascaded networks to the performance of each network when operated individually. The $A B C D$ parameters of N cascaded networks as shown in Fig. A. 3 are given by

$$
\left[\begin{array}{ll}
A & B \tag{A.6}\\
C & D
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right] \cdots\left[\begin{array}{ll}
A_{N} & B_{N} \\
C_{N} & D_{N}
\end{array}\right]
$$

The input impedance $Z_{\text {INI }}$ clefined in Fig. A. 4 can be expressed in terns of the $A B C D$ parameters and the ternination Z_{2},

$$
\begin{equation*}
Z_{I N I}=\frac{A Z_{2}+B}{C Z_{2}+D} \tag{A.7}
\end{equation*}
$$

Fig. A. 3 Cascaded Two-Port Networks

Fig. A. 4 Two-Port Network with Terminations

Similarly, for the input impedance $Z_{\text {IN2 }}$ in Fig. A.4,

$$
Z_{\text {IN } 2}=\frac{A Z_{2}+B}{C Z_{2}+D}
$$

(A.8)
and

$$
\frac{t}{b}=0.205
$$

From Fig. 3 of Getsinger [103], $c_{\text {fe }} / \epsilon$ is found to be

$$
\frac{c_{f e}}{\epsilon}=0.32
$$

hence

$$
C_{f}=\pi \in D_{0}(0.32)=0.062 \mathrm{pF}
$$

B. 2 Evaluation of L_{c}

L_{c} is the coadal inductance due to the magnetic field in the volume outside an imaginary continuation of the inner conductor over the length, h. If it is assumed that the fields are not affected by the actual configuration of the package, then L_{c} is

$$
\begin{equation*}
L_{c}=\frac{\mu_{h}}{2 \pi} \ln \left(D_{\sigma} / D_{i}\right) \tag{3.4}
\end{equation*}
$$

where μ is the permeability in air and is equal to $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$. Substitution of numerical values into Eq. B. 4 yields

$$
L_{c}=0.118 \mathrm{nH}
$$

B. 3 Evaluation of $C_{r 1}, C_{r 2}$, and L_{r}

The admittance parameters of a radial line pi-network are given by Marcuvitz [32]. Special linear combinations of Bessel function have been defined particularly for this problem, and numerical values are given graphically. However, if both h and D_{1} are small in terms of wavelengths,
the pi-network elements can be found from a simple coaxdal line approxdmation [31],

$$
\begin{align*}
L_{r} & =\frac{\mu h}{2 \pi} \ln \left(D_{i} / d\right) \tag{3.5}\\
C_{r 1}+C_{r 2}=C_{r} & =\epsilon \frac{\pi\left(D_{1}^{2}-d^{2}\right)}{4 h} \tag{B.6}
\end{align*}
$$

Substitution of numerical values into Eqs. B.5 and B.6 yields

$$
\begin{aligned}
& I_{r}=0.0577 \mathrm{nH} \\
& C_{r}=0.050 \mathrm{pF}
\end{aligned}
$$

The problem of dividing C_{r} into $C_{r 1}$ and $C_{r 2}$ is not a simple natter. However, in the present case, this problem may be avoided by observing that at the highest frequency of interest, i. e., 12 GHz ,

$$
\omega^{2}\left(c_{r} / 2\right) I_{r}=0.008 \ll 1
$$

Thus the position of L_{r} and that of either $C_{r 1}$ or $C_{r 2}$ are interchangeable, as discussed previously in Scetion 2.3. It follows that no matter how C_{r} is divided between $C_{r 1}$ and $C_{r 2}$, the error will always be negligibly small. Therefore, it is possible to arbitrarily set

$$
C_{r 1}=C_{r 2}=0.025 \mathrm{pF}
$$

APPEMDIX C CADDAC COMPUTER PROGRAM

C. 1 Purpose

This program performs analysis and/or synthesis of lumped-element and/or distributed-element degenerate parametric amplifier circuits.

C. 2 Structure

This program recognizes ten different structures. These structures are listed below together with their type identification numbers and requirec parameters. All impedances are in ohms, capacitances in picofarads, inductances in nanohenries, and lengths in fractional wavelengths referred to a center frequency in GHz. A negative value for any parameter indicates that this parameter is to be optimized. However, diode parameters, source impedance, and band-pass filter parameters may not be optinized. A type number of 0 (zero) indicates the end of network configuration.
(1) Series-parallel RLC

Type : 1

Data : R, L, C
(2) Parallel-parallel RIC

Type : 2
Data : R, L, C

(3) Series-series RLC

Type: 3
Data : R, L, C
(4) Parallel-series RLC

Type : 4
Data : R, L, C

Type : 5
Data: Z_{0}, 2
(6) Parallel open-circuited
transmission line
Type : 6
Data: $Z_{0}, 2$
(7) Parallel short-circuited
transmission line
Type : 7
Data: Z_{0}, 2
(8) Pumped varactor

Type: 8
Data: $C_{0}, \gamma_{1}, R_{s}, L_{s}, C_{p 1}, C_{p 2}$

(9) Sourse impedance

Type : 9
Data : R_{g}

(10) Parallel-coupled
band-pass filter
Type : 10

Data : See Section C. 4

C. 3 Limitations

(1) Number of total circuit parameters ≤ 100.
(2) Number of circuit parameters to be optimized ≤ 50
(3) Number of sections ≤ 50
(4) Number of frequency points ≤ 101
C. 4 Input Data Caids

Variable
Columns
Description
First card :

FCIFNTR	$1-10$	Center frequency (GHz)
FSTART	$11-20$	Starting frequency (GHz)
FSTOP	$21-30$	Stopping frequency (GHz)
FDEL	$31-40$	Frequency increment (GHz)
FPUMP	$41-50$	Pump frequency (GHz)

Second card :
ZFIL
1-10
Upper limit of z_{o} (onms)

2LO	$11-20$	Lower limit of Z_{0} (ohms)
BHI	$21-30$	Upper limit of length (λ)
BLO	$31-40$	Lower limit of length (λ)
ALPHA	$41-50$	Line loss (dB/ λ)
GAINO	$51-60$	Desired power gain (dB)

Thisd card :

IERTA	$1-10$
IEIMIN	$11-20$
DRATIO	$21-30$
TOL	$31-40$

Inftial step size
Minimum step size
Step size reducing factor Minimum error

Description of circuit topology starts from the fourth card which must be the source impedance card (type 9). Except for the band-pass filter, each section takes one card and all parameter values are in F'10.0 format. The end of circuit topology description is indicated by a type 0 (zero) card.

For a band-pass filter, a type 10 card is placed in its normal position relative to the other sections. Following the type 0 card, the parameters of the band-pass are then given. For a filter with N sections, $N+1$ cards are required. The ifrst card contains: the number of sections, the conductivity of center conductor (10^{-6} mho/ cm), the conductivity of ground plane $\left(10^{-6}\right.$ mho/ cm$)$. The second card describes the first section, the third card describes the second section, and so on. Each card contains: even-mode impedance (ohms), odd-mode impedance (ohms), even-mode effective dielectric constant, odd-mode eifective
delectric constant, line width (cm), length (cm), gap width (mm), opencircuit equivalent capacitance ($\mathrm{p} F$) .

Following the filter cards, two more cards are required. The first card indicates whether a sensitivity analysis is desired. A letter Y on the first column indicates sensitivity analysis is desired, otherwise the card is left blank. The second card indicates whether a plot of frequency response (usually with smaller frequency increment and wider frequency range) is desired. Again, a letter Y on the first column indicates "yes", and blank otherwise. In the first case, FSTART, FSTOP, and FDEL must also be specified in F10.0 format starting from column 11.

A set of data cards used for the analy:is of the amplifier described in Section 5.2.2 are given in•Fig. C.1.

							09
5.5	5.4	5.6	L. C2	11.0			\% ${ }^{\circ}$
100.	15.	0.49	C. 15	0.113	18.0		O2
0.15	0.0005	0.2	0.1				\bigcirc
9.	50.						¢
10.							E
5.	52.3569	C. 3 (39					36
6.	38.63 CB	0.3457					
5.	52.4827	C. 441					
6.	20.1125	C. 1677					
5.	53.3374	C. 4877					
6.	50.	C. 125					
5.	50.	C. 125					
8.	0.5258	C. $2 \in \in S$	0. 8	0.32	0.251	0.046	
0.							
4.0	0.5885	10.2571					
70.145	40.841	1.stas	1.71 C	0.12313	0.98414	0.1119	0.01755
55.792	46.08	1.SESt	1.7929	O. 15 ill	0.97015	0.6437	0.02676
55.742	46.148	1.SE54	1.7548	0.15112	0.97015	0.653	0.02076
71.748	41.658	1.ct3	1.7684	0.12127	0.98134	0.1213	0.01734
YIS							
YES	5.0	¢.C	C. Cl_{1}				

F1g. C. 1 Sample Data Cards for Program CADDAC


```
|=|############################################
PROGRAM FOR CESIGNING SIGNAL CIRCLIT CF DPA
SUミスコUTINES ^EquIREC:
    1. z ESDON
    2. DIRECT
    2. EXOLCR
    4. 2А400M
    ミ. EVAL
    6. GPADP
    7. CUTコLT
    8. CIS?LY
    9. SEIVSIT
10. SDEILT
    ALSS THEEE FLNCTICNS: CSINH, CCOSH, AND CTANH.
MAIY DFOCRAA
EIMミ`SION 
EIME`SION 
COMNEN
COMMEN
CCMMCN
CCM+2N
C(Mu)N
COUPLEX
COMMCN
    P\ス(5C), ミLMENT(IO),G(IO1)
SIGN(EC),PARVAX(50),FARNIN(50)
P\RAM(:CC),IYYPE(ラЭ),L!ST(5))
FDLMF,FCENTR,FSTART,FCEL,GAIND
N2ARAツ,NLIST,NLMSEC,NEVAL,N=Rミ२
CELTA,CELMIN,TCL,DRATIC,ALPHA
AF(1C1),PF(1C1),CF(1C1),OF(101)
    IR=j
    IN=6
NMじう三C=0
VPコ=:"=0
*LIST=0
```

$K B P=0$
 REAC(IR, SCO) $-:$, ZLR,EHI, BLC, ALPHA,GAINO REAC(IQ,5CO) CELTA, DELNIN,ORATIO,TCL

500 FCRMAT(3F10.0)

WRITE $(I W, G I C C)=S T A R T, F S T C P, F F L M P$
61JO FCRMATIIHI,//, 2EF PARAMETRIC AMPLIFIER JESIGN,/,
15ト SIGNAL NETHORK,//,
3CH FREQLENCIES CF IATEREST/,
12F SIGNAL.......FE. $3,4 \mathrm{H}$ TC ,F8. $3,4 \mathrm{H} \mathrm{GHZ,/}$,
13 H PUMP ING......, F $8.3,4 \mathrm{H} \mathrm{GHZ,11}$
WFITE $I W$, G2OO) GAINC,ALPHA,ZHI, ZLC, BHI, 3LO
6 20J FCQuATI 17 H OOn ER GAIA.....,Fg.2,3H OE,1,

$A L$ OHA $=A L P \vdash A / 8 . \epsilon \varepsilon \epsilon$
NFREQ=(FSTJP-FSTART)/FDEL+1.も
10 READ(IR, SCJ) TYPE,IELMENT(I),I=1, (6)
INTYPE=TYPE+C.I
IF(INTYPE) $3 C, 11 C, \angle C$
$2 J$ IF(IVTYOE-10) $5 ., 56,2 C$
3J hरITE(In,6CO)
6CJ FORMATI///,13F INVALID CARD TYPE,/,I5,3F9.4,//1 GOTD SSB
50 GOTO ($\in C, \leqslant 0,6 C, \in C, \mathcal{I C}, 7 \mathrm{C}, 7 \mathrm{C}, 90,80,55)$, INTYPE
c
c
c
60 If(ELMENT(1)) $\epsilon \Sigma, \in 1, \in 2$
6: ELMENT(1)=1.E-6
E2 CC $64 \mathrm{I}=1,3$
NPARAM=NP AR $A M+1$
IF(ELMENT(I)) ЄЗ, Є4, Є4
E3 NLIST=VLIST+1
LIST(NLIST)=NFARAN
PARMAX(NLIST)=1CCC.*ABS(ELVENT(I))
PA24IN(NLIST)=2.CC1* AES(ELNENT(I))

$\because=3$
GCT: 103
TRAVSMISS:CN LIVE ELEVENT CARCS
ORIGINAL PAGE IS
OF POOR OTH.

c

70 CO 7E I＝1，2 NPARAM $=$ NPARAM +1
IF（ELMENT（I））7ミ，it，it
72 NLIST＝NLIST＋1
LIST（NLIST）＝NPムマAM
IF（I ．EQ－1）GOTC IE
PARMAX（NLIST）$=9+\mathrm{T}$
PARMIN（NLIST）$=$ BLC
GOTO 76
75 PARMAXIVLIST）$=Z H I$
PARMIN（VLIST）$=$ ZLC
$76 \quad P A R \operatorname{MM}($ NPARAM）$=A B \subseteq(E(M E N T(I))$
$\mathrm{n}=2$
GOTD $10:$
c
c
c
so $I=($ VUMSEC $+N P A R A M+N L I S T) \varepsilon 1, \varepsilon 2, \varepsilon 1$
8：nF！Tミ（In，ヒ！リ）
61J FORMATI／／， $26 H$ SZLRCE CARD NLST BE THE FCURTH CARDI
$82 \quad$ PP $\triangle R \triangle M=A P A P M M+1$
PAR AM（VPLRAM）$=43$ S（ELMENT（1））
$N=1$

（2）FORMAT（E8H INPLT NETHORK CCNFIGURATICN，／／，
GOTO ICJ

CO $04 \mathrm{I}=1$ ， v
$N P \Delta Z A M=V P \Delta R \Delta M+1$

NUMS $=C=V L 4 S E C+1$
ITYPE（NUMSEC）＝INTYPE
ПQITE（In，6Z0）NUMSEC，INTYDE，（ELYENTII），$I=1, N)$
S3．J FE＝MAT（214，SF12．4）
COTO 10
c
c
c
S5 NUMS $5 C=\because し い S E C+1$
ITYPミ（NUMSEC）＝IVTYFE
к $30=$ ：
WRITE（IW，（Зう5）VLMSEC，INTYPE


```
        GCTO 10
    100 NUMS EC=NLMSEC +1
        ITYPE(NLMSEC)=INTYPE
        WRITE(IW, ESO) NUMSEC,INTYPE,(ELMENT(I),I=1,N)
        GOTJ IC
    110 IF(NUMSEC-50) 13C,13C,12C
    120 WFITE(I'm,t40) NLMSEC
    640 FCRMATI//,29H TOC MANY SECTICNS IN NETWORK,[5,//)
        GOTO Sc&
    130 IF(NPARSM-1CO) IEC,15C,14C
    140 WRITE(IW,\epsilonSO) NPARAM
    ESO FCRMAT(//, 2OH TOL mANY pARANETERS,I5,//)
        ECTD ss&
    15.) [F(NLIST-EO) l\inE,l\inE,I\inC
    160 nRITE(In,660) NLIST
    e6J FCR:MAT(//,!9H TCC many vaR!\BLES,!5,//)
    GOTO g.s
c
    LEj IF(KEPF.EQ. C) GCTR 17C
    KFILT=0
    CALL BPFILT(KFILT)
    KFILT=1
C R RUN A EREQU
        IF(NLIST .NE. C) CCTO 13C
        WR!"E(IW,も70)
67J FC2MATI///,16F END CF AN\DeltaLYSIS,///
        GOTO 22S
C
130 CC 190 I=1,NLIST
    J=LIST(I)
190 PaR(I)=PARAM(J)
    CALL DIRECT(PAR,FNEFIT)
    IF(FMERIT-TOL) zCC,¿CC,21C
20J WFITE(IW,68))
68J FOEMAT(///,18F SEARCF SLCCESSFUL)
    GO-g 22J
21) WRITE(IN,:5SO)
69) Fこ244T(///,こ2ト ミRRCR ABCVE TCLERANCE)
22J Cご「こりUミ
```

```
    ORIGL!........... IS
    OF POOR QUALITY
                            WANT A SENSITIVITY ANALYSIS? INOICATE YES CR NO.
    225 REAL(IR,510) CHECK
        IF(CHECK-RYSS) <4C,ZミC,24C
    230 CALL SENSIT
C
    WANT A FREQUENCY RESPCNSE WITH FINER INCRENENT PLOTTEL
    INDICATE YES OR NC.
    IF YES, SPSCIFY-FSTART,FSTCF,AND FOEL.
    24.J REAO(IR,510) CHECK,FSTART,FSTCP,FLEL
    510 FO२МАТ(A1,9X,7F1C.C)
        IF(CHECK-QYES) <TC,ZSC,2TC
C
    25) NFREQ=(=STOP-FSTART)/=0ミL+1.6
        IF ( KBPC .EQ. J ) GCTD 2EE
        CALL EPFILT(KFILT)
    255 FREQ=FSTART
        CC 260 I= 1,NFREQ
        II= I
        CALL RESPON(G(I),FREQ,II)
    26) FFEQ = FR EQ + ODEL
        NF=NFREQ
        CALL GRAPH(FSTART,FCEL,G,NF)
    270 CごNTNUE
        <-2 1
    9९४ W&ITE(IW,7CO)
    7OJ FC₹4AT(//,29H ROLTIVE TERMINATEO BY ERRO2S,///
        GCTO 1
    ЭGG STOP
    END
    SUE=こUTINE RESPIN(GA!N,FREG,KSF)
C
    THIS SUQマJUTINE CALCLLATES GAIN CHARACTER!STICS
    CF OEGEVERATE DARANETRIC AVFLIFIEこS
    CIMEVSION EETA(2)
    COMMON
    COMMON
    CDMMON
    CCMMUN NPAFAN,NLIST,NUNSEC,NEVAL,NFREQ
    CJMMJN CELTA,DELNIN,TCL,ORATIC,ALOHA
    CCMPLEX Z:I,Z12,ZZ1,Z22,ZIP,ZEQ,ZIN,ZIT,RHO
    CJMPLEX GAMMA,CSINH,CこCSH,CTANH,CMOLX,CCNJG,CJ
    COMPLミX A(Z),巳(Z),C(Z),O(2),\Delta2(2),CZ(2),Z(2),Y(2)
    CCMPLEX -:(2),Q!(2),C:(2),D!(2),\J(2),5J!(2)
    COMPLEX &=(1C1),8=(1C1),CF(1C1),EF(101)
```

```
COMITON
AF,ZF,CF,OF
C
CJ=(0., !.)
FIOL ER=FPUMP-FREO
PI=3.141552654
OMEGAS=2.*P I*FREQ
GMEGAI=2.*PI*FIDLER
RETA(1)=OMEGAS/FCENTR
GETA(2)=CMEGAI/FCENTR
SJ(I)=CJ*OMEGAS
SJ (2)=CJ*OMEGAI
SJ1(1)=ちJ(1)*1.Eー?
SJ!(2)=SJ(2)*1.ミー3
CC 2 I= 1, <
A1(I)=1.
EI(I)=0.
CI(I)=0.
C1(I)=1.
IPOINT=1
NMAX=NUMSEC-1
IF(NAAX-1) 2CC,2CC,j
CC 180 J=乞,NMAX
JTYPE=ITYPE(J)
GOTI (1J,20,30,4C,EC,EC,IC,1&C,18C,80), JTYPE
c
C LUYPE& ... SERIES PARALLEL
C
    10 CO 15 I=1,2
        Z(I)=I./PARAM(IPCINT+i)+!&/(SJ(I)*PARAM(IPCINT+2))
    15 Z(I)=1./(Z(I)+SJI(I)*OARAM(IPCIVT+3))
        IPJINT=IPOINT+?
        CCTこ 15:
C
    20 [C 25 I=1,2
        Y(I)=1./PARAM(IPCINT+1)+1./(SJ(I)*PAR\DeltaM(IPOINT+2))
    25 Y(I)=Y(I)+SJI(I)*PARAN(IPCINT+3)
        IPSINT=IPGINT+3
        GOTO 1\inC
C LUMPEO ... SER!ES SERIES
3C CC 35 I= 1,2
    Z(!)=2 دO \M(IPCIVT+1)+SJ(I)*PARAM(IPCINT+2)
35
    Z(I)=Z(I)+!./(SJ!(I)*FARSN(IPCINT+3))
```

IP JINT $=I P C[N T+2$
GCTO 150
c
c
c
40 CO $45 \mathrm{I}=1,2$
$Y(I)=P A R A M(I P O I N T+1)+\subseteq J(I)$＊PARAM（IPCINT＋2）
$45 \quad Y(I)=1 . /(Y(I)+1 . /(\subseteq J I(I) \neq P A R A M(I P(I N T+3)))$
IPUINT＝IPTINT＋Z
GOTD 16 C
TRANSMISSIDN LINE ．．．SERIES SECTICN
ง CO $55 \mathrm{I}=1,2$
$\Delta L P H A L=A L P H L=P A マ \Delta M(T F C I N T+2)$
$E E T \Delta L=B E T د(I) * D A R \Delta N(I C C I N T+2)$
GIMMA＝CMPLX（ALPHAL，RETAL）
$A(!)=$ COJSト（なAMM」）
$C(I)=\Delta(i)$
E（I）$=$ CSIVN（GAMMA）
$C(i)=B(I) / P A B \Delta M(I P C I N T+I)$
$55 \quad B(I)=6(I) * P \triangle Q A M(I P C I N T+1)$
$I P \cap I N T=I P C I N T+2$
GOTD 170

SO CO $\in E I=1,2$
$\Delta L P H A L=A L P H A=P A R A M(I P C I N T+2)$
EETAL＝3ETA（I）＊PARAN（IPCINT＋2）
$G \Delta 44 \Delta=C 4 P L X(A L P H A L, B E T A L)$
E5 Y（I）＝CTANF（GAMMA）／PAQAN（IFCINT＋1）
IF INT $=$ IPSINT +2
GCTO 1E2

70 CG $75 \mathrm{I}=1,2$

$E \leq T \Delta L=8 \equiv T \Delta(I) * P \Delta F \Delta N(I P C I N T+2)$
C $\triangle M M A=C M P L X(\triangle L P H A L, B E T A L)$
$75 \quad Y(I)= \pm . /(C T A N F(G A N N A) * P A R A N(I F C I N T+1))$
IPOINT＝IPIINT＋ \bar{Z}
GOTO 150
C
C
C
C
C
C COUPLEDLIVミ BAVOPASSFILTER．

```
CO 35 I= 1,2
\Delta(I)=\DeltaF(ISF)
E(I)=BF(ISF)
C(I)=CF(ISF)
C(I)=DF(ISF)
    85 ISF=NFREO-KSF+1
COTO 170
C ABCD MATRIX OF SERIES SECTICN
    150 00 155 I= 1,2
        \Delta(I)=1.
        E(I)=Z(I)
        C(I)=0.
    15う [(I)=1.
        GCTC :70
C
    :GJ CO 165 i= 1,2
        A(I)=1.
        E(I)=0.
        C(I)=Y(I)
    165 C(I)=1.
C
17J CO 175 I= 1,2
    A2(I)=A1(I)*A(I)+AI(I)*C(I)
    Ei(I)=A!(I)*E(I)+E!(I)*D(I)
    \Deltal(I)=A2(I)
    C2(I)=Ci(I)=A(I)+DI(I)=C(I)
    C1(I)=C:(I)*Q(I)+DI(I)*D(I)
17j C1(I)=cこ(I)
IgJ CCNitmuE
RG=P AR AM(:)
    RL= ₹G
    ZIO=(01(2)*2L+31(こ))/(C1(z)*RL+A1(2))
    ZIO=1./ZID+5J1(2)*PARAM(IPCINT+5)
    ZID=1./ZIO+SJ(\overline{< *FADSN(IF(INT+4)}
    ZIO=1./ZIO+SJ1(2)*PARAN(IFCINT+6)
    ZIC=1./ZIC+PARAM(IPCINT+3)
    ZIP=CCNJG(ZID)
    \DeltaUX=1,-PARAM(IDCINT+\overline{c})*PARAN(IPOINT+2)
    Z11=1./(SJI(1)*PSQAM(IPCINT+I)*&しX)
    Z:2=PAR二4(IPOINT+2)/(SJI(2)*PAR\M(IPCINT+!)*\DeltaUX)
    Z21=-211*O1RAM(!PCINT+2)
    Z二2=-Z12/PARAM(iFCINT+\hat{L}
```

```
ZEQ=Z11-Z12*Z21/(ZIP+Z22)
ZEQ=LEJ+PAR4M(IPCINT+3)
ZEQ=1./ZEQ+SJ!!1)*F\DeltaRAM(IPCINT+o)
ZEQ=1./LEQ+SJ(1)*O4RAN(IFCINT+4)
ZEQ=1./ZEQ+SJ1(1)*P\DeltaRAM(I PCINT+5)
ZEO=1./ZEQ
ZIN=(A1(1)*ZEG+B1(1))/(C1(1)*ZEQ+Cl(1))
RHO=(ZIN-RG)/(ZIN+RG)
ARHO=CABS(RHO)
GAIN=ARHO*ARHC
GAIN=1O.*ALOGIC(GAIN)
20J RETURN
END
SUGROUTINE BOFILT(K)
THIS SURROUTINE CALCLLITES ABCJ DARAMETE=S DF A
CCUPLEO LINE RANCPASS FILTER AT ALL FREQUEVCY POINTS.
CIMENSIOM ZEVEN(IC),ZCCD(1Cr,W!DTH(1J),GAD(2J)
QE\L KEVEN(10),KCOO(1C),LENGTH(10),COP(10)
CCMPLEX Z1,ZZ,Z3,Z4,Z1F,Z2D,Z3P,Z4P,X,Y,Z
COMPLEX A,Z,C,C,\DeltaI,CI,CJ,ZTENF,CNPLX
CCMPLEX CSINH,CTANH,GAMNAC,GAMMAE
CCMMON SIGN(EC),PARNGX(50),PARMIN(50)
CCYMON DARAM(ICC),ITYFE(50),LIST(5O)
COMMON FPLMP,FCENTR,FSTART,FCEL,GAINC
CCMMON NPARAM,NLIST,NLNSEC,NEVAL,NFREQ
CCMMON CELTA,OELNIN,TCL,ORATIC,ALPHA
CCMDLEX A= (1C1), BF(1C1),CF(101),OF(101)
CCMMON }\triangleF,BF,CF,C
IR=5
IN=0
VC=29.57925
PI2=6.2&3185
CJ=(0.,1.)
IF( K .VE. O ) GOTR :S
REAC(IR,51) RN,SIGC,SIGG
N}=2N+0.
FACTDF=O.CCL*PI2*(SQRT(1./SIGC)+SGRT(:./SIGG))
WRITE(IN,61)
61 FORMAT(///,2OX,2CHFILTER CCNFIGURET!CN,//,
+ 4!r SECT ZEVEN ZCDO KEVEN KODD,
+ 3OF जIDTH LENGTH GAP,/,10X,3HOHM,
+ 6x,3HCHM,己EX,2HCM,7X,2HCM,10X,2HM4,//1
CO 1) I=:,N
RE৯こ(I2,51) ZEvミN(!),ZこCO(I),kEvEN(!),KこOO(!),
+ w!OTH(!),LENGTH(I),GAD(I),Cこう(!)
5! FこFMAF(3F:).0)
```

```
        WRITE(In,62) I,ZEVEN(I),ZCDC(I),KEVEN(I),KOOD(I),
            MIDTH(I),LENGTH(I),GAP(I)
        62 + FCPMATII5,2FG.3,2FC.4,FIC.4,F10.3,F10.4)
10 COP(I)=C.COL*COP(I)
FREQ=FSTART
    CO 30 I= I,NFREG
    \DeltaF(I)=1.
    eF(I)=0.
    CF(I)=0.
    CF(I)=1.
    OMEGA=PI 2*FREG
    RS= FACTOR*SQRT(FREG)
    CO 20 J=1,N
    ALPHAE=J.5*RS/(WICTH(J)*ZEVEN(J))*LENGTH(J)
    ALPHAC=ILPHAE*ZEVEN(J)/ZCDO(J)
    \DeltauX=SCRT(KEVEN(J))
    EETAE= ЗMEGA*ALX*LENGTR(J)/VC
    QETA0=3ミTAE*SORT(KC[D(J))/AlX
    GLMMAE=CMPLX(ALPHAE,EETAE)
    GAMMAC=CMPLX(ALPRAC,BETAC)
    Z1P=ZEVEN(J)/CTANF(GLMMAE)
    Z2O= ZODD(J)/CTANF(GANMAC)
    Z3P=ZEVEN(J)/CSINF(GANNAE)
    Z4P= ZJDC(J)/CSINH(GAMMAO)
    Z1=0.5=(Z1P+Z<P)
    Z2=0.5*(Z IP-Z CP)
    23=0.5*(Z3P-24P)
    Z4=0.5=(Z3P+Z44P)
    ZTミMP=Z1+1./(CJ=CMEGA*CDP(J))
    Z=Z3*Z3/ZTEMO-ZTEMP
    x=Z2-Z3*Z4/ZTEMP
    Y=Z4-2 2=2 I/ZTEMP
    Z10=Z1+(Z2*X+Z4*Y)/Z
    Z20}=Z3+(Z2*Y+Z4*X)/
    A=Z:P/L20
    C=A
    g=(Z1P=21P-Z2F=Z2P)/Z2P
    C=1./220
    \Deltal=\DeltaF(I)*\Delta+BF(I)*C
    BF(I)=A=(I)*B+BF(I)*D
    AF(!)=1!
    C1=CF(:)**A+DF:I)*C
    CF(I)=CF(I)*日 +DF(I)*C
    C=(I)=C!
20 CCVTINuE
    F二EQ=FマミO+FDEL
30 COVTINJ
    RETUQN
```

```
END
CCMPLEX FUNCTICN CSINH(Z)
HYPERBJLIC SINE FLNCTICN WITH COMFLEX ARGUMENT.
COMPLEX Z,CEXP
CSINH=(CEXP(Z)-CEXP(-Z))/2.
RETURN
END
COMPLEX FLNCTISN CCCSH(Z)
FYPEREJLIG COSINE FLNCTICN hITH CCNPLEX GRGUMENT.
CCMDLEX Z,CEXO
CCOSト=(CEXP(Z)+CEXF(-Z!)/2.
RETURN
END
CCMPLEX FLNCTICN CTANF(Z)
HYPERSJLIC TANGENT ELNCTICN HITH COMPLEX ARGUMENT.
CCHPLEX Z,ENPLX
X=2\equivAL(Z)
Y=\DeltaIMAG(Z)
IF((Y.GT. 4.7123) .AND. (Y.LT. 4.7124)) Y=4.7123
IF((Y .GT. 1.57C7).AND. (Y .LT. 1.5709)) Y=1.5707
CTANH=CMPLX(TANH}(X),T\DeltaN(Y))/CNPLX(1.,TANH(X)*TAN(Y)
RETURN
END
SURFCUTINE OIRECT(PARP,FVF)
COTIMIZATION SLZROLTINE -- DIPECT SEAFCH
THIS SUGRDUTINE PERFCRNS CIRCLIT CPTINIZATION
ZY USING CIRECT SE\triangleZCH METHCD.I I THE SEAFCH
FROM THE DRIGINAL EASEPEINT REACHES AN
UNSATISFACTORY RESLLT, THIS SLRRCLTINE IILL
GEVERATE A NEW 3ASEPCINT RANOOMLY ANO RESTART
THE SEARCH ROLTINE. THIS hILL BE REPEATED
MRANDU TIMES.
CIMENSION
PARP(EC),DARN(5C),PARB(5J)
SIGN(EC),PARVAX(50),PARNIN!50)
Pム2AN(:CC),ITYFE(5.) ,LIST(50)
FDUMP, FCENTR,FSTART,FDEL,GAINC
```

```
    COMMON
    CJMMIDN
    CCMPLEX
    COMMON
    IW=6
C
c INITIATICN
C
    MRANOU=4
    WRITE(In,1C)
    1J FOPMAT(1H1,////,
        +
        I X=77777
        CALL RANCCM(IX,IY,RNC)
        I X = ! Y
        KFANOU=C
        [ELINT=?ELTA
        NEVAL=0
        CC 20 I=1,NLIST
    20 PARB(I)=DARO(I)
    CALL EVAL(FMB,PARE)
    NEVAL=NEVAL+1
    NIT=1
    *O CO 50 I=1,NLIST
    SIGN(*)=1.
    50 PLRN(F)=PARP(I)
        CN'L EV:L(FMN,PARN)
        NEVG_=NEVAL +1
        IF(=MN-TDL) SCC, SCC,&C
    80 FMP=FMN
        CALL EXPLCR(FMN,FARN)
        IF(=MP-FMN) 4EC,4EC,1EC
    15) IF(=MN-TC!) &EC,\varepsilonEC,1\inC
    1() FACTOF=1.2
    17J FND=EMN
C
    FITTERV MCVE
    CC 300 I=1,VLIST
    TEMP=PARP(I,
    PAKP(I)=PARN(I)
    CELPAR=PARN(I)-TEMP
    PARN(I)=PARN(I)+CELPAP:=\triangleCTCR
C
```



```
    GCT2 3CC
20) IF(PAFN(I)-PARMIN(I)) 25C,3CC,30)
25.) PARN(I)=PARMIN(I)
3CO CCNTINUE
    CALL EVAL(FMN,PARN)
    NEVAL=NEVAL +1
    IF(FMN-TOL) &\subseteqC,\varepsilonEC, ZCE
    305 IF(FMN-FMP) 3:C,ミ\angleC,ミ2C
ミ1) FACTCR=FACTOR +C.z
    IF(FACTJR .GT. 3.) FACTOR=3.
    GOTO 17C
C IF THE PATTERN NOVE EAILS, EACK UF ENE STEP
    ANO YAKE mNCTHER EXPLCRATCRY MCVE
32J FMN= FMP
    CO & OO I=1,VLIST
40) PAZV(I)=PARP(I)
    C-LL EXPLCR(EMV,FARN)
    IF(=MN-TOL) 85C,&EC, <2C
42) IF(FMP-GMN) 4EC,4EC, I\inC
C
C REDUCE STEP SIZE
C
    45) DELTA=DELTA*DR2TIC
C IS STEO SIZE SMALLENCLGH?
    IF(DELTA-DELMIN) GCC,ECC,5CC
うつ) CCN-!NUE
    NIT=NIT+I
    COTJ 80
C
ECJ CO EJ4 i=1,NLIST
    L=LIST(I)
004 P:2AM(L)=PARP(I)
    CALL DISPLY(FMD,NIT)
    CALL OUTPUT
C
    SEARCH =ROM PREVICLS SET CF BASEPCINTS HAS FAILED,
    GミNミRムTミ\Delta NEh SET CF BASEFCINTS RANDCMLY ANO
    RE-START THE SEANCH RCLTINE
    f(=4Q-Zup) GCC,GCC,tCE
6コ5 =43=F40
    2C bJ6!=:, NLIST
```

```
60S PA=j(I)=PARO(i)
609 KRAIDU=KRANDU +1
            IF(KRANDU-4RANCL) \inIC,EIC,GCC
GLJ WRITE(In,OZO) KRANDL
93) FCRMAT(1+1,
        + ////,32F GENERATE A NEW SET OF BASEPOINTS,/,
        + 1\varepsilonH ### ATTEMPT NO.,II ,4H =**,//1
            CO 650 I=1,NLIST
            CALL RANOCM(IX,IY,RNC)
            IX=I!
            PARP(I)=0.5#(OARNAX(I)+PARNIN(I))+PARF(I)=(RNO-)..う)
            I=(OARP(I)-PARMAX(I)) E2C,E15,615
\epsilon15 PAPD(I)=د\triangleRMA)(I)
                @OTJ t
62J I=(OARP(i)-DAQMIN(I)) \epsilonZE,č25,650
Eこう PARP(I)=PARMIN(I)
65O CCNTINUE
                [E! - \=0ミLI*
                CO o60 [=1, vLIS
                L=LIST(I)
(S) OAR AM(L)=FA=O(I)
                WR!TE(IN,942)
04) FCRMAT(//,17H NEh EASEOCINT,//,
            + Z3H SECT TYPE FARAMETERS,//1
                CALL OISP
                ECT2 40
\varepsilon50 [C 860 I=1,NLIST
8\in) P\2P(I)=PAR\(I)
                FMP=FиV
                LC 870 I= 1, \LISi
                L=LIJT(I)
87) Pدズ心M(L)=P\DeltaRP(I)
                E[T] ¢эO
GOJ EC G10 I= N,NLIST
                PARO(I)=PARZ(I)
                L=LIST(I)
G1J P&2AM(L)=PARD(I)
                MR!三(In, Sくう)
```



```
                FMP= FMB
993 CONTII.UE
                CALL DISPLY(=Nつ,NIT)
                CAL: CUTPLT
                RETリご,
                E.}
                SUミマこUT:NEEXPLRR(FU2,FAQN)
```

ORIGINAL PAGE IS OF POOR QUALITY
-174
$\begin{array}{ll}C & \text { THIS SUQR JUTINE NAKES EXPLCRATCRY NCVES } \\ C & \text { TC JECIDE THE DIRECTION FCR PATERN MCVES．}\end{array}$
c
c

MENS ION	PARN（EC）
COMAON	SIGN（ EC），PARNAX（5C），PARMIN（50）
COMMDN	PSRAM（：CC），ITYPE（50），LIST（50）
COMMON	FPUMD，FCENTR，ESTART，FDEL，GAINO
COMMON	NPARAN，NLIST，NLMSEC，NEVAL，NFRE
COMMON	DELTA，DEL4IN，TCL，DKATIC，ALPHA
COMPLEX	$\Delta F(1 C 1), 8 F(1 C 1), C F(1 C 1), C F(101)$
CCMMUN	$\triangle F, B F, C=, 0 F$

c

C $T E 凶 口=P \operatorname{APN}(I)$

IFIPAFV（I）－OARMAX（I）） $15,1 \mathrm{C}, 10$

GCTO 25
15 IC（PARV（I）－OARMIN（I）） $20,20,25$
$2 J \quad D \pm 2 N(I)=$ PARMIN（I）
25 （ALL EVAL（ $=$ UN，PARN）
$N \equiv V S L=V E V A L+1$
IF（F4N－F4P）3L，4C，4C
इう FM？＝＝mid
GOTJ 10 C
c
40 SIUs：（：）＝－SIGN（！）
PAR＂（I）$=$ TE4P＊（1．＋SIGN（I）＊CELTA）
If（－sRvi！）－PARuAx（I））EC，5C，5C

ectc 7 J
EO $\quad I=($ P．PV（I）－PARMIN（I）$) \in 5,70,7 \mathrm{C}$

vこVAL＝VEVAL＋1

（i）$\quad F M D==M$ V
GOTO ICC
90 Pムスさ（I）＝TE゚～
10j CCITINUE
RETURN
Evo

c
\vdots
6


```
        CCMMON
        SIGN(Eこ),PARMAX(50),PARNIN(50)
        CCMMON
        CD4MSN
        COMMCN
        COMMCN
        CCMPLEX
        CCMMON
        IY=IX*ES5ミ9
        IF(IY) 1C,20,<C
    IY=I Y +21447483647+1
    RNO=I Y
    RNO=RNO*.4も5\in\inI2ES
    RETリスN
    ENQ
    SUSROUTINE EVAL(FM,PAR)
C
    THIS SJBRD'JTINE EVALLATES FIGLRE CF MERIT.
    CIMENSION
    Cこप:17N
    COMMON
    CCMMIN
    FPLUR,FENTR,FSTART,FOEL,GAINO
    COMMON: NPAGAN,NLIST,NUNSEC,NEVAL,NFREQ
    Cこ.4MJM CELTA,DELMIN,TCL,ORATIC,ALPHA
    CCMPLEX AF(1C1),BF(1C1),CF(1C1),OF(101)
    CCMMON: AF,BF,CF,DF
    CO 5 i=1,NLIST
    L=LIST(i)
    PARA4(L)=PAR(I)
    FM=0.
    FREQ=FSTART
    こC \つ i=1, MFマEQ
    II= !
    CALL FESPON(GAIN,FEEG,II)
    TEAP=GAIV-GATNO
    Eu= =u+TEM\rho=TEM\rho
    1) FFE2= F२Eん+FDEL
    Fu=SQRT(E4/N=REQ)
    こごJRN
    でこ
    SUBROUTINE GR\triangleDH(X,CX,Y,NF)
    THIS SUコRZUTINE PLCTS FPEGLENCY RESPCNSE.
    C!MごSION Y(1(1)
```



```
    \becauseーミcミ2 L!vミ(cI)/1H..Ec*lH,1H./
```



```
    COMMON
    CC*MON
    CCMMJN
    COMMON
    CCMPLEX
    CC\MCN
    IW=6
    WFITE(IW, \in\in6)
    665 FORMAT(1+1)
    YM }\DeltaX=Y(1
    YMIN=YM\DeltaX
    CO 10 I= 2,NP
    IF (Y(I).GT.YM\DeltaX) YM\DeltaX=Y(I)
10 IF (Y(I).LT.YNTV) YMIN=Y(I)
    CIFF=Y:AAX-YMIN
    IF (DIFF.NE.O) GCTこ くC
    *R!TE(IN,3OU) YMAX
    CCRMAT(IX,'FOR ALL VALLES OF X, Y EGUALS ',1PE12.5)
    CCTJ 30
    2J w2ITE(Im,1コ0)
100 FCOMAT (1F///2SX,51('.'))
    IF(YMAX.LT.O.CR.YMIN.GT.C) GCTO 50
    IZ=90.J*(-Y4IN)/CIFF+1.5
    TEMPZ=LINE(IZ)
    LINE(IZ)=VERT
    j0 CC 60 I= 1,VP
        IY=90. .*(Y(I)-YMIN)/DIFF+1.5
        TEMP=LINE(IY)
        LIVE(IY)=STAR
        XX=X + (I-1)* \X
        WFITE(IW,二人O) xx,Y(I),LINE
    FCRMAT (1X, 2G12.E,4X,SLAL)
&) L!!E(IY)=TEM0
    NFITE(IN,400)
    40) FこGMAT (2¢x, ¢1('.'))
    !f (YM&X.CE.C.AVC.YMTN.LE.C) LINE(IZ)=TEMPZ
8. ₹ETリニN
    ENこ
    SU3ROUTINE OLTPLT
C
    THIS SUQROUTINE PRIITS JLT FREQUENCY RESPCNSE.
CCHM=N
COMMON
    COMMフN
    CCMMON. NPAQAM,NLIST,NLMSEC,NEVAL,NFQEQ
    CCMuCN: CELTA,CELUIN,TCL,DRATIC,ALOHA
    CCMPLEX AF(1C:),GF(:C:),C=(10:),OF(101;
```

```
            CCH4 ON }\quad\triangleF,BF,CF,O
            I N=6
            WRITE(IW,G0O)
OUJ FORMAT(/////,1X,1&FFREQLENCY RESPCNSE,i/,
    + 19H FREQUENCY EAIN,/,
    IGH (EHZ) (CE),//)
        FR EQ = FSTART
    CO 2OC I= 1,NFREQ
    II= I
    CALL RESPON(GAIN,FREQ,II)
    WRITE(IW,G10) FREG,G\DeltaIN
61) FORMAT(2F10.3)
2つO FREQ=FREQ +FDEL
    RETUR:1
    E:!2
    SUBQOUTINE OISPLY(FMP,NIT)
C
    THIS SJGRGUTINE CISPLAYS CPTIMIZED PARAMETERS.
    CIMENSION RUFFER(IC)
    CCMMIN SIGN(SC),DARNAX(50),PARMIN(50)
    COMMCN P&QAM(ICC),ITYPE(5O),LIST(50)
    COMMCN FFLMP,FCENTR,FSTART,FDEL,GAINO
    CCMMON NPADAN,NLIST,NLMSEC,NEVAL,NFREQ
    CJMMCN CELTA,CELNIN,TCL,DRATIC,ALPHA
    COMPLEX AF(ICI),EF(1CI),CF(ICl),CF(1O1)
    COMMJA: }\triangleF,BF,CF,O
    I w=6
    WRITE(IW,GJO) NIT,NEVAL,FND
60)
    FO२4AT(///,23ト NC. CF ITERATICN = !!5,/,
    + 23H FLNCTICNS EVALLATEC = ,I5,/,
    wRITE(IN,もLO)
610 FCR^AT(////,2IH CPTIMIZED PARANETERS,//,
                        2ЗH SECT TYPE PムRAMETERS,//1
c
    ENTEY PEIMT
    ENTRY DISP
    JL!ST=1
    ITEMP= J
    CC 4OO I= , NUMSEC
    I=(JLIST-NLIST) ミCC,ミCC,4!J
302 J=!TYFミ(I)
    GC-2 ( ミ:C, ミ1C, ミ:C, ミ:C,32C,320,320,330,3->0,4 20),J
21) v= 3
```

GRTJ 350
$320 \mathrm{~N}=2$
GOTJ 350
$330 \quad N=5$
GCTD 35C
$340 \mathrm{~N}=1$
350 NMAX＝ITEMP＋N
$J F L A G=0$
C was this element variable
355 IF（LIST（JLIST）－NMAX） $2 \in 0,3 \in \mathrm{C}, 370$
36．J JLIST＝JLIST＋1
$J F I, A G=1$
IF（JLIST－NL：ST）ミ5E，255，37C
C was flae set duaine tre sevrch
$370 \quad$ ITEMP＝へMェx
IF（JFLAG）40C，4CC，38C
38．$I T \equiv M P=I T E M P-N$
CO $390 \mathrm{~K}=1$ ，N
$I T \equiv \sim P=I T \equiv M P+1$
3s0 EUFFER（K）＝PARAM（ITEMF）
WRITE（IW，$\epsilon 40)$ I，J，（BLFFER（L），L＝1，N）
（4）FC2：AT（14，［4，EFIC．4）
$4 C J$ CCVTINUE
$41 J$ EミTURV
END
SUBRJLTINE sEnsIt
c
c
c
c
c

```
    CこMMOA SIGN(EC),PARNAX(5C), RARMIN(50)
    CごMON P&RAW(ICC),ITYDE(50),LIST(50)
    COAMON FOLMC,FCENTR,FSTART,FDEL,GAINO
    COMMJN NDARAM,NLIST,NLMSEC,NEVAL,N=2EQ
    COMMJN CELTA,EELWIN,TCL,DRATIC,ALOHA
    COMPLEX A= (1C1),BF(1C1),CF(1C1),CF(101)
    CCMMON AF,RF,CF,CF
    IN=6
    GRITE(Im,&つつ)
6JJ FORM&T(1ト1,1//,28(1ト*),/,
    + 2&卜*** SSNSITI\ITY ANALYSIS ***,/,2S(1H*))
    CC 500 I=1,NP\FAM
```



```
    12F VALLE = ,FS.4,4H***,//,
```

```
+ 38t FREQLENCY GAIN GAIN-F GIIN-M,
    24H SENSIT-P SENSIT-N,/,
    3x,5H(GHZ), €X,4H(D8),4X,4H(08),6X,4H(08),
    5X,1OH(PER CENT),2X,1OH(PER CENT),//)
    FREQ=FSTART
    CO 400 J=1,NFREG
    JJ= J
    TEMP=PARAM(I)
    CALL RESPON(OEJ,FREQ,JJ)
    PARAM(I)=1.02*TEMP
    CALL RESPGN(OBJP,FREG,JJ)
    PARAM(I)=C.G8*TEMF
    CALL RESPON(OBJM,FREG,JJ)
    SENTYD=50. =(08J-C3JP)/C`J
    SEVTMM=50. = (OEJ-CENN)/EOJ
    MRITE(IM,GZO) FREG,CEu,OBJP,CBJM,SENTYP,SENTYM
(2) FORMAT(F12.3,F&.E, <FIC.3,2F12.2)
    PARAM(I)=TEMP
    FREQ= FR EO +F.OEL
40) CONTINJE
sou continue
    RETURN
    Eno
```

1. Van der Ziel, A., "On the Mixing Properties of Non-Lirear Condensers," J. Applied Phys., Vol. 19, pp. 999-1006, November 1948.
2. 'Faraday, M., "On a Peculiar Class of Acoustical Figures; and Certain Forms Assumed by a Group of Particles Upon Vizrating Elastic Surfaces," Phil. Trans. Roy. Soc., London, Vol. 121, pp. 299-318, May 1831.
3. Strutt, J. W., Lord Raleigh, "On the Crispations of Fluid Resting Upon a Vibrating Support," Phil. Mag., Vol. 16, pp. 50-53, July 1883.
4. Hartley, R. V. L., "Oscillations in Systems with Nonlinear Reactances," Bell System 'Tech. J., Vol. 15, pp. 424-440, July 1936.
5. Weiss, M. T., "A Solid-State Microwave Amplifier and Oscillator Using Ferrites," Phys. Rev., Vol. 107, p. 317, July 1957.
6. Suhl, H., "Proposal for a Ferromagnetic Amplifier in the Microwave Range," Phys. Rev., Vol. 106, pp. 38 385, April 1957.
7. Seidel, H., and Herrmann, G., "Circuit Aspects of Parametric Amplifiers," IRE WESCON Convention Record, Part 2, pp. 83-90, 1959.
8. Mathaei, G. L., "A Study of the Optimum Design of Wide Band Parametric Amplifiers and Up-Converters," IRE Trans. on Microwave Theory and Techniques, Vol. MTT-9, pp. 23-30, January 1961.
9. Kuh, E. S., and Fukada, M., "Optimum Synthesis of Mide-Band Parametric Amplifiers and Converters," IRE Trans, on Circult Theory, Vol. CT-8, pp. 410-415, December 1961.
10. Ku, N., "A Broad-Banding Theory for Varactor Parametric AmplifiersPart I," IBNE Trans. on Circuit Theory, Vol. CT-11, pp. 50-59, March 1964.
11. DeJager, J. T., "Mardmum Bandwidth Performance of a Nondegenerate Parametric Ampli.'ier with Single-tuned Idler Circuit," IERE Trans. on Microwave Theory and Techniques, Vol. MTN-12, pp. 459-467, July 1964 .
12. Egami, S., "A Design Theory for Wide-Band Parametric Amplifiers," IFKW Trans, on Microwave Theory and Techniques, Vol. MTT-22, pp. 119-125, February 19\%4.
13. Connors, W. P., "Maxdmally Flat Bandwidth of a Nondegenerate Parametric Amplifier with Double Tuned Signal Circuit," IEBE Trans. on Microwave Theory and Techniques, Vol. MTT-13, pp.251-252, March 1965.
14. Porra, V., and Somervuo, P., "Broadband Matching of a Parametric Amplifier by Using Fano's Method," IEEE Trans. on Microwave Theory and Techniques, Vol. MTT-16, pp. 880-882, October 1968.
15. Snell, W. W., Jr., 'Low-Loss Microstrip Filters Developed by Frequency Scaling," Bell System Tech, J., Vol. 50, pp. 1919-1931, July-August 199I.
16. Watson, H. A. (Ed.), Microwave Semiconductor Devices and Their Circuit Apolications, MoGraw-Hill, New York, 1969.
17. Lawrence, H., and Warmer, R. M., "Diffused Junction Depletion Layer Calculations," Bell System Tech. J., Vol. 39, pp. 389-403, March 1960.
18. Ternan, F. E., Radio Engineers' Handbook, MGraw-Hill, New York, 1969.
19. Caulton, M., Knight, S. P., and Daly, D. A., "सybrid Integrated Lumped-Element Microwave Amplifiers," IEBES Trans, on Microwave Theory and Techniques, Vol. MTT-16, pp. 397-404, July 1968.
20. Pence, I. N., and Khan, P. J., "Broad-Band Equivalent-Circuit Detergination of Gunn Diodes," IFWFE Trans. on Microwave Theory and Technisues, Vol. MTT-18, pp. 784-790, November 1970.
21. Mortenson, Z. E., Variable Capacitance Diodes, Artech House, Dedham, Mass., 1974.
22. DeLoach, B. C., "A New Microwave Measurement Technique to Characterize Diodes and an 800-Gc Cutoff Frequency Varactor at Zero Volts Bias," IEMR Trans. on Microwave Theory and Technique, Vol. MTT-12, pp. 15-20, January 1964 .
23. Roberts, D. A. E., and Wilson, K., "Evaluation of High Quality Varactor Diodes," Radio and Electronic Engr., Vol. 31, pp. 277-285, May 1966.
24. Houlding, N., "Measurement of Varactor Quality," Microwave J., Vol. 3, pp. 40-45, January 1960.
25. Harrison, R. I., "Parametric Diode Q Measurement," Microwave J., Vol. 3, pp. 43-46, May 1960.
26. Sard, E. W., "A New Procedure for Calculating Varactor Q from Impedanca Versus Blas Measurements," IBME Trans, on Microwave Theory and Techniques, Vol. MTT-16, pp. 849-560, October 1968.
27. Bandler, J. W., "Precision Microwave Measurement of the Internal Parasitics of Tunnel-Diodes," IBERS Trans. on Electron Devices, Vol. ED-15, pp. 275-282, May 1968.
28. Sucher, M., and Fox, J. (Ed.), Handbook of Microwave Measurements, Vol. 1, John Wiley, New York, 1963.
29. King, D. D., Measurements at Centimeter Wavelength, D. Van Nostrand, New York, 1952.
30. Harvey, A. F., Microwave Engineering, Academic Press, New York, 1963.
31. Getsinger, W. J., "The Packaged and Mounted Diode as a Microwave Circuit," IFaw Trans. on Microwave Theory and Techniques, Vol. MTP-14, po. 58-69, Feluruary 1966.
32. Marcuritz, N., Waveguide Handbook, Radiation Lab. Series, Vol. 10, MoGraw-Hill, New York, 1951.
33. Hildebrand, F. B., Introduction to Numerical Analysis, MoGraw-H111, New York, 1956.
34. Hooke, R., and Jeeves, T. A., " 'Virect Search' Solution of Numerical and Statistical Problems," J. Assoc. Comp. Mach., Vol. 8, pp. 212-229, April 1961.
35. Manley, J. M., and Rowe, H. E., "Some General Properties of Nonlinear Elements-Part I, General Energy Relations," Proc. IRE, Vol. 4, pp. 90.913, July 1956.
36. Ingeltrecht, R. S., "Parametric Energy Conversion by Non-Iinear Admittances," Proc. IRE, Vol. 50, pp. 312-321, March 1962.
37. Blaciowell, L. A., and Kotzbue, K. L., Semiconductor-Diode Parametric Amplifiers, Prentice-Hall, Englewood Cliffs, N. J., 1961.
38. Penfield, P., JI., and Rafuse, R. P., Varactor Applications, MIT Press, Cambridge, Mass., 1962.
39. Chang, K. K. N., Parametric and Tunnel Diodes, Prentice-Hall, Englewood Cliffs, N. J., 1964.
40. Howson, D. ?., and Smith R. B., Parametric Amplieiers, Mofraw-Hill, London, 1970.
41. Decroly, J, C., et al., Parametric Amplifiers, Macmillan, Iondon, 1973.
42. Mumford, W. W., "Some Notes on the History of Parametric Transducers," Proc. IRE, Vol. 48, pp. 848-853, May 1960.
43. Mount, E., and Begg, B., "Parametric Devices and Masers: An Annotated Bibliography," IRE Trans, on Microwave Theory and Techniques, Vol. MTT-8, yp. 222-243, March 1960.
44. Sensiper, S., and Weglein, R. D., "Capacitance and Charge Coefficients for Parametric Diode Devices," Proc. IRE, Vol. 48, pp. 1482-1483, August 1960.
45. Penfield, P., Jr., "Foumier Coefficients of Power-Law Devices," J. Franklin Inst., Vol. 273, pp. 107-122, February 1962.
46. Heffner, H., and Wade, G., "Gain, Bandwidth, and Noiss Characteristics of a Variable-Parameter Amplifier," J. Applied Phys., Vol. 29, pp. 1321-1331, September 1958,
47. Kurokawa, K., and Uenohara, M., "Minimum Noise Figure of the Vart-able-Capacitance Amplifier," Bell System Tech. J., Vol. 40, pp. 695-722, May 1961.
48. Nyguist, H., "Thermal Agitation of Electrical Charge in Conductors," Phys. Rev., Vol. 32, pp. 110-113, July 1928.
49. Assadourian, F., and Rimai, E., "Simplified Theory of Microstrip Transmission Systems," Proc. IRE, Vol. 40, pp. 1651-1657, December 1952.
50. Hyltin, T. M., "Microwave Integrated Electronics for Rader and Communication Systems," Microwave J., Vol. 11, pp. 51-55, February 1968.
51. Daly, D. A., et al., "Iumped Elements in Microwave Integrated Circuits," Imas Trans. on Microwave Theory and Techniques, Vol. MTT-25, pp. 713-721, December 1967.
52. Aitchison, C. S., et al., "Lumped-Circuit Elements at Microwave Frequencies," IBMs Trans. on Microwave Theory and Techniques, Vol. MTT-19, pp. 928-937, December 1971.
53. Peters, R. N., et al., Handbook of Tri-Plate Microwave Components, Sanders Associaies, Nashua, New Hampshire, 1956.
54. Cohn, 5. B., "Slot Line on a Dielectric Substrate," IMGGE Trans, on Miocowave Theory and Techniques, Vol. MTT-17, pp. 768-778, December 1969.
55. Mariani, E. A., et al., "Slot Line Characteristics," TSEP Trans. on Microwave Theory and Techniques, Vol. MTT-17, pp. 1091-1096, December 1969.
56. Wen, C. P., "Coplanar Wavegutde: A Surface Strip Transmission Line Suitable for Nonreciprocai Gyromagnetic Device Applications," IFRHE Trans, on Microwave Theory and Techniques, Vol. MTT-17, pp. 1087-1090, December 1969.
57. Maissel, I. I., and Glang, M. M., Hancibook of Thin Film Technology, MoGraw-Hill, New York, 1970.
58. Young, L., and Sobol, H. (Ed.), Advances in Microwaves, Vol. 8, Academic Press, New York, 1974.
59. Howe, H., Jr., Stripline Circuit Design, Artech House, Dedham, Mass., 1974.
60. Collin, R. E., Fleld Theory of Guided Naves, MoGraw-Hill, New York, 1960.
61. Wheeler, H. A., "Transmission Line Properties of Parallel Strips Separcisit by a Dielectric Sheet," Iman Trans, on Microwave Theory and Techniques, Vol. MTT-13, pp. 172-185, March 1965.
62. Stinehelfer, H. E., Sr., "An Accurate Calculation of Uniform Microstrip Transmission Lines," IEFEC Trans, on Microwave Theory and Techniques, Vol. MTT-16, pp. 439-444, July 1968.
63. Farrar, A., and Adams, A. T., "Characteristic Inpedance of Microstrip by the Mehtod of Moment," Imas Trans. on Microwave Theory and Techniques, Vol. MTT-18, pp. 65-66, January 1970.
64. Yamashita, E., and Mittra, R., "Variational Method for the Amalysis of Microstrip Lines," Imand Trans, on Microwave Theory and Techniques, Vol. MTT-16, pp. 251-256, April 1968.
65. Hornsby, J. S., and Gopinath, A., "Numerica.. Analysis of a DielectricLoaded Wavegulde with a Microstrip Line - Finite-Difference Method," IERE Trans, on Microwave Theory and Techniques, Vo?. MTT-17, pp. 684-690, September 1969.
66. Denlinger, 玉. J., "A Frequency Dependent Solution for Microstrip Transmission Lines," Imant Trans, on Microwave Theory and Techniques, Vol. MTT-19, pp. 30-39, January 1971.
67. Mittra, R., and Itoh, T., "A New Fechnique for the Analysis of the Dispersion Characteristics of Miczostrip Lines," IBARE Trans, on Microwave Theory and Techniques, Vol. MTT-19, pp. 47-56, January 1971.
68. Schneider, M. V., "Microstrip Lines for Microwave Integrated Circuits," Bell System Tech. J., Vol. 48, pp. 1421-1444, May-June 1969.
69. Hammerstad, E. O., "Equations for Microstrip Circuit Design," Proceedings of Fifth European Microwave Conference, Hamburg, Germany, pp. 268-272, September 1975.
70. Schneider, M. V., "Microstrip Dispersion," Proc. IEME, Vol. 60, pp. 144-146, January 1972.
71. Wheeler, H. A., "Formulas for the Skin Effect," Proc. IRE, Vol. 30, pp. 412-424, September 1942 .
72. Pucel, R. A., Masse, D. J., and Hartwig, C. P., "Tosses in Microstrip," IEKXS Trans. on Microwave Theory and Techniques, Vol. MTT-16, pp. 342-350, Jine 1968. Also "Correction to 'Losses in Microstrip'," ibid., p. 1064, December 1968.
73. Simpson, T. L., and Tseng, B., "Dielectric Loss in Microstrip Lines," IRME Trans. on Microwave Theory and Techniques, Vol. MTT-24, pp. 106-108, February 1976.
74. Hjltin, T. M., "Microstrip Transmission on Semiconductor Dielectric," THKNS Trans. on Microwave Theory and Techniques, Vol. MTM-13, pp. 777-781, November 1965.
75. Poole, C. P., Electron Spin Resonance, Interscience Publishers, New York, 1967.
76. Schneider, M. V., "Dielectric Loss in Integrated Microwave Circuits," Bell System Tech. J., Vol. 48, pp. 2325-2332, September 1969.
77. James, D. S., and Tse, S. H., "Microstrip End Effects," Electron. Lett., Vol. 8, pp. 46-47, Januaity 1972.
78. Silvester, P., and Benedek, P., "Tquivalent Capacitances of Microstrip Open Circuits," IEME Trans. on M1crowave Theory and Techniques, Vol. MTY-20, pp. 511-516, Augusi 1972.
79. Itoh, T., Mittra, R., and Ward, R. D., "A Method for Computing Edge Capacitance of Finite and Semi-Infinite Microstrip Lines," ance Trans. on Mimrowave Theory and Techniques, Vol. MTT-20, pp. 847-349, December 1972.
80. Stinehelfer, H. E., Sr., Microstrip Circuit Design, Tech, Report AFAL-TR-69-10, February 1969.
81. Troughton, R., "Design of Complex Microstrip Circuits by Measurements and Computer Modeling," Proc. IFSE, Vol. 118, pp. 469-474, March/April 1972.
82. Thomson, A. F., and Gopinath, A., "Calculation of Microstrip Discontinuity Inductances," IBNE Trans, on Microwave Theory and Techniques, Vol. MTT-23, pp. 648-655, August 1975.
83. Silvestar, P.。 and Benedek, P., "Microstrip Discontinuity Capacitances for Right-Angle Bends, T Junctions, and Crossings," TBNE Trans. on Microwave Theory and Techniques, Vol. MTM-21, pp. 341-346, May 1973.
84. Franco, A. G., and Oliner, A. A., "Symmetric Strip Transmission Iine Tee Junction," IRE Trans, on Microwave Theory and Techniques, Vol. MTT-10, pp. 118-124, March 1962.
85. Leighton, W. H., Jr., and Milnes, A. G., "Junction Reactarce and Dimensional Tolerance Effects on X-Band 3-dB Directional Couplers," ImBE Trans, on Microwav: Theory and Techniques, Vol. MTT-19, pp. 818-824, October 1971.
86. Vogel, R. W., "Effects of the T-Junction Discontinuity on the Design of Microstrip Directional Couplers," Vol. MTT-21, pp. 145-146, March 1973.
87. Menzel, W., and Wolff, I., "A Method for Calculating the FrequencyDependent Properties of Microstrip Discontinuities," Tancy Trans. on Microwave Theory and Techniques, Vol. MTT-25, pp. 107-172, February 19?7.
88. Bryant, T. G., and Weiss, J. A., "Parameters of Microstrip Transmission Lines and of Coupled Fairs of Microstrip Lines," TKW Trans, on Microwave Theory and Techniques, Vol. MTT-16, pp. 1021-1027, December 1968.
89. Zysman, G. I., and Johnson, A. K., "Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium," Impni Trans, on Microwave Theory and Techniques, Vol. MTT-17, pp. 753-759, october 1969.
90. Ghose, R. N., Microwave Circuit Theory and Analysis, MoGraw-iill1, New Yorik, 1963.
91. Cohn, S. 3., "Parallel Coupled Transmission-iine-Resonator Filters," IRE Trans, on Microwave Theory and Techniques, Vol. MMT-6, pp. 223-231, April 1958. EQUIVALANT CIRCUIT ETMMENTS

Numarical values for the diode test mount equivalent circuit elements in Fig. 2.11(b) will be evaluated here. Thr physical dimensions in Fig. 2.11(a) are as follows:

$$
\begin{aligned}
\mathrm{d} & =2.03 \mathrm{~mm} \\
\mathrm{~h} & =0.71 \mathrm{~mm} \\
\mathrm{D}_{\mathrm{i}} & =3.04 \mathrm{~mm} \\
\mathrm{D}_{0} & =7.00 \mathrm{~mm}
\end{aligned}
$$

B.1 Evaluation of C_{f}

The finging capacitance, C_{f}, is given by Getsinger [103] as

$$
\begin{equation*}
c_{f}=\pi \epsilon_{0}\left[\frac{c_{f e}}{\epsilon}\left(\frac{s}{b}, \frac{t}{b}\right)\right] \tag{3.1}
\end{equation*}
$$

For the structure in Fig. 2.11(a),

$$
\begin{align*}
& \frac{s}{b}=\frac{2 h}{D_{0}-d} \tag{3.2}\\
& \frac{t}{b}=\frac{D_{1}-d}{D_{0}-d} \tag{B.3}
\end{align*}
$$

Substitution of numerical values into Eqs. B. 2 and 3.3 jields

$$
\frac{s}{b}=0.287
$$

92. Dell-Imagine, R. A., "A Parallel Coupled Microstrip Filter Design Procedure," G-MTT 1970 Int. M1crowave Symp. Digest, pp. 29-32.
93. Childs, W. H., "Design Techniques for Bandpass Filters Using EdgeCoupled Micrestrip Lines on Fused Silica," G-MTT 1976 Int. Microwave Symp. Digest, Pp. 194-196.
94. Microwave Enginsers' Handbook and Buyers' Guide, Horizon House, Dedham, Mass., 1974.
95. Cisco, T. C., Design of Microstrip Components by Computer, Tech. Report NASA-CR-1982, March 1972.
96. Kaupe, A. F., Jr., "Algorithm 178: Direct Search," Commun. ACM, Vol. 6, pp. 313-314, June 1963.
97. Bell, M., and Pike, M. C., "Remark on 'Algorithm 178: Direct Search,'" Commun. ACM, Vol. 9, pp. S84-685, September 1966.
98. Emery, F. E., and O'Hagen, M., "Optimal Design of Matching Networiks for Microwave Transistor Amplifiers," IERE Trans. on Microwave Theory and Techniques, Vol. MTT-14, pp. 696-698, December 1966.
99. Bandler, J. M., and Macdonald, P. A., "Optimization of Microwave Networks by Razor Search," T3mi Trans. on Microwave Theory and Techniques, Vol. MTT-17, pp. 552-562, August 1969.
100. Denlinger, E. J., et al., "Microstrip Varactor-Tuned MillimeterWave IMPAT Diode Oscillators," IAEX Trans, on Microwave Theory and Technicues, Vol. MTT-23, pp. 953-958, December 1975.
101. Wu, Y. S., and Rosenbaum, F. J., '"Nide-Band Operation of Microstrip Circulators," Issis Trans, on Microwave Theory and Techniques, Vol. MTT-22, pp. 849-856, october 1974.
102. Branner, G. R., and Chan, S.-P., "A New Technique for Synthesis of Broad-Band Parametric Amplifiers," Tras Trans. on Microwave Theory and Techniques, Vol. MTT-21, pp. 437-44, July 1973.
103. Getsinger, W. J., "Coupled Rectangular Bars Between Parallel Plates," IRE Trans. on Microwave Theory and Techniques, Vol. MTT-10, pp. 65-72, January 19,62.

[^0]: * All circuit dimensions are reduced by a certain factor. Hence, the operating frequency is also increased by the same factor. For more details, see L15..

[^1]: * The derivation of Eq. 2.2 is well covered in essentially every semiconductor device theory book. See, for example, Chapter 5 of [16].

[^2]: * Two subroutine similar to "DIRECT" and "EXPICR" in Appendix C were used in this program to perform the "dtrect search". This method will be covered in more detail in Chapter V.

[^3]: * Transciucer gain is deftined as the zatio of the powe telivered to the ioad, to the availabie jouer of the source.

[^4]: * Trade name for a noc-woven glass microfiber-reifforced polytetrafluoreinjlene (3 THE) stulucture made by Rogers Corp., Chander, Arizona.

[^5]: * This program consists of three subroutines similar to "PPYTIT", "DIRECT", and "TXPIOR in Appendix C. See descriptions of tacse subroutines in Chapter $?$.

