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Summary locations of these specimens were obtained by
performing three-dimensional finite-element structural

Three-dimensional elastic and elastic-plastic stress- analyses under a joint NASA-Air Force program. Lewis
strain analyses using the MARC nonlinear, finite-element used the NASTRAN computer program (ref. 8); the Air
program were performed for double-edge wedge Force Aero Propulsion Laboratory used the ISO3DQ
specimens subjected to thermal cycling in fluidized beds. computer program (ref. 9). The results of these elastic
Four cases involving different nickel-base turbine blade analyses are reported in reference 10. The experimental
alloys tested under the same cycling conditions were results from the fluidized-bed tests are summarized in
analyzed in order to obtain the stress-strain histories at references 11 and 12.
the locations of maximum total strain range for the Nonlinear finite-element computer programs such as
purpose of developing life prediction methods. The alloys MARC (ref. 13) are available for more rigorous three-
considered in this study were IN 100, Mar-M 200, NASA dimensional cyclic analyses of components involving
TAZ-SA, and Ren_ 80. Specimens of each alloy were inelastic plastic and creep strains. These programs have
thermally cycled by alternate 3-minute immersions in had some limited use as research analytical tools, as in the
fluidized beds at 316" and 1088" C. turbine blade airfoil studies described in references 14 to

Elastic analysis results from the MARC program were 16. However, nonlinear programs have not been applied
in good agreement with previous results of elastic to the design of engine hot-section parts mainly because
analyses from the NASTRAN and ISO3DQ finite- of the extensive demands they make on computer
element programs. In the elastic-plastic analyses all four resources and because of inadequacies in cyclic property
alloy cases exhibited plastic strain reversal during cycling, data on superalloy materials and in the current state of
Comparison of MARC elastic and elastic-plastic analysis transient heat transfer analysis methods. The NASA
solutions showed that the maximum equivalent total Lewis Research Center has instituted a program to
strain ranges computed from the two types of analyses improve the quality of the material and temperature
agreed within 3 percent but that the mean effective input and to increase the computational efficiency of
stresses were significantly different. Elastic analyses nonlinear structural analyses.
always resulted in compressive mean stresses. For two of This study was conducted to determine the elastic-
the four alloys (IN 100 and NASA TAZ-8A) elastic- plastic stress-strain histories at the critical locations for
plastic analyses showed tensile mean stresses. In the double-edge wedge specimens that were thermally cycled
highest plastic strain case (Ren_ 80) the mean stress in fluidized beds. These analytical results are required in
increased in the compressive direction, order to use the experimental failure data in the

development and evaluation of life prediction methods at
Lewis.

Introduction The structural analyses were performed with the
MARC nonlinear finite-element program using a

Hot-section components of aircraft gas turbine combined isotropic-kinematic hardening model. The
engines, such as combustor liners and turbine blades and specimen geometry was modeled with 20-node,
vanes, are subject to cyclic thermomechanical loading, isoparametric, three-dimensional elements. A total of
which can result in progressive fatigue damage and four cases involving different nickel-base turbine blade
eventual cracking. Life prediction methods to assess the alloys (IN I00, Mar-M 200, NASA TAZ-8A, and Ren6
durability of these components have been under 80) were studied. The specimens analyzed were cycled in
development at the NASA Lewis Research Center and are fluidized beds that were maintained at 316" and 1088" C
discussed in references 1 to 6. In order to apply these with an immersion time of 3 minutes in each bed. For the
methods, it is first necessary to determine the stress- same alloys, geometry, and thermal cycling conditions,
strain-temperature history of the part at the critical elastic and elastic-plastic solutions from the MARC
location where cracks will initiate, computer program were compared. In addition, to verify

As part of the life prediction studies at Lewis, wedge the analyses as much as possible, the MARC elastic
specimens have been thermally cycled in fluidized beds as solutions were compared with the elastic solutions from
described in reference 7. In these tests two fluidized beds the NASTRAN and ISO3DQ computer programs given
were used to rapidly heat and cool prismatic bar in reference 10. The ability of the analyses to predict
specimens of double-edge wedge cross section. The bars critical locations for crack initiation could not be
were tested so that they failed by thermal fatigue substantiated because of the uniformity of conditions
cracking. Elastic stress-strain histories at the critical edge over large regions of the wedge edges.



Analytical Procedure ratio of the leading-edge midspan temperature to that of
any other span location was nominally the same for all

Elastic-plastic stress-strain states were calculated for four alloys. A least-squares best-fit parabola was
double-edge wedge specimens of four alloys that were determined for each time increment and this is presented
thermally cycled in fluidized beds. The alloys and test in table IV. This parabolic temperature variation along
conditions for the four cases studied are presented in the span was assumed over the complete chord of the
table I. Alloy compositions are given in reference 17. wedge.

The temperatures at the midspan were determined
Input for Analyses from the appropriate plot in figure 3. For locations other

The specimen geometry, material properties, and than midspan the temperatures were determined by using
thermal loading that were used as input to the structural the midspan temperature modified by the values given in
analyses are described in this section, table IV. Therefore by using figure 3 and table IV the

Geometry.--The geometry of the double-edge wedge temperature distribution at any point of the wedge was
specimen is illustrated in figure 1. To be consistent with determined.

the NASTRAN and ISO3DQ analyses of reference 10,
the leading-edge and trailing-edge radii were squared off Methods of Analysis

to 1.02- and 1.53-millimeter lengths, respectively, for the Elastic and elastic-plastic stress-strain distributions in
finite-element model. Otherwise the finite-element model the wedge specimens were calculated from the MARC

duplicated the geometry exactly, nonlinear, finite-element computer program.
Material properties.--The physical properties of the Computations were performed for 34 time increments (17

alloys were obtained from reference 10 and are heating, 17 cooling) into which the thermal cycle was
reproduced in table II. An elastic-plastic analysis requires subdivided, as shown in figure 3. Elastic solutions using
mechanical properties to define the work-hardening MARC were compared with the NASTRAN and
behavior under plastic straining; these data were obtained ISO3DQ analyses of reference 10 in order to check the
from reference 17 and are given in table III. Since the program input and the finite-dement model. The elastic
MARC program requires instantaneous coefficients of analyses were obtained by setting the material yield
thermal expansion, the mean coefficient data in table II strength to a fictitiously high level. The elastic-plastic
were converted to instantaneous values for input, analyses only had to be performed for two cycles for IN

Thermal loading.--The transient temperature loading 100, Mar-M 200, and NASA TAZ-8A in order to attain

on the double-edge wedges was determined from reasonably stable stress-strain hysteresis loops. The
thermocouple data. Calibration specimens of the four elastic-plastic analysis for the Ren_ 80 was performed for
alloys were instrumented chordwise at the midspan with three cycles and was then terminated because of the
five embedded thermocouples and cycled in the fluidized excessive computing time involved, although the analysis
beds (schematically shown in fig. 2). The location of the had not yet shaken down to a stable stress-strain
thermocouples at the wedge cross section is shown in hysteresis loop.
figure 3. The Inconel 600 sheathed Chromel-Alumel Plasticity computations were based on incremental

thermocouples were mounted in grooves milled in the plasticity theory using the commonly used von Mises
surface of the specimen and secured by a ceramic cement, yield criterion and normality flow rule. The yield surface
The grooves were 0.56 millimeter wide and 0.5 millimeter under reversed loading was found from the monotonic
deep. Other details of the installation and procedure are stress-strain behavior in conjunction with the combined
given in reference 7. The thermocouple outputs were isotropic-kinematic hardening model option described in
cross-plotted to give midchord temperatures at the reference 13. A preprocessor program converted the
midspan at various time increments after immersion into thermal loading data from the wedge specimen into the
the fluidized beds. These data are presented in figure 3 form of a sixth-order polynomial equation. A
for the four cases analyzed. It was assumed that there was subroutine, which was inserted into MARC, interpolated
no temperature gradient through the thickness of the from these equations for the local temperatures at the
wedge. Gaussian integration points in the finite-element model.

Another set of thermocouple data was taken with five Another subroutine, which was inserted into the MARC

thermocouples mounted along the leading edge over half program in the form of yield strengths and work-
the span. These data revealed a longitudinal (along the hardening slopes as functions of temperature, was used
span of the specimen) temperature gradient that varied to determine the stress-strain properties for the local
with the different time increments. The maximum temperatures at the Gaussian integration points.
variation was about 16 percent greater at the ends of the Output from the program included the effective,
wedge than at the midspan and occurred after 30 seconds normal, and shear stresses, the equivalent total and
of heating. However, for any one time increment the plastic strains, the normal and shear total and plastic



strains, and the nodal displacements. Stress and strain treating each of the 34 time increments into which the
output were given for the Gaussian integration points. To thermal cycle was subdivided as separate steady-state
prevent excessive generation of computer printout, the conditions. Figures 5 and 6 show a comparison of MARC
output was restricted to high-strain regions of the model results with the results from similar elastic analyses using
and some other locations required for comparison with ISO3DQ and NASTRAN that are presented in reference
the results of reference 10. Contour plots of effective 10. The finite-element models in the order from finest to
stress, longitudinal stress and total strain, equivalent coarsest were the NASTRAN model with 354 solid
plastic strain, and temperature were obtained at thetime 8-node elements, the ISO3DQ model with 64 solid
increments of maximum and minimum total strain in the 12-node elements, and the MARC model with 36 solid
cycle. 20-node elements. The MARC results shown in figures 5

Approximately 17 hours of execution time per cycle on and 6 apply to locations close to the span positions
a Univac 1100/42 computer was required to perform the indicated in the figures but not exactly at those span
elastic-plastic analyses. If some of the thermal cycle positions because of differences in the finite-element
increments were condensed, it should be possible to run a models and in program output modes.
cyclic elastic analysis with about an order of magnitude In figure 5 stress solutions from NASTRAN, ISO3DQ,
less computer time than was necessary for a two-cycle and MARC are compared for IN 100 after 15 seconds
elastic-plastic analysis, into the heating part of the cycle. Longitudinal stresses

are shown along the midchord at one-quarter span, which
Finite-Element Model was approximately the critical span location for this case.

The results from the three programs are in close
The finite-element model is illustrated in figure 4.

agreement. As expected, the relatively hot leading and
Because of symmetry only one-fourth of the wedge trailing edges were in compression.
specimen needed to be modeled; this model was the

In figure 6 longitudinal stresses calculated from
volume enclosed by the surface and intersecting ISO3DQ and MARC at leading-edge critical locations are
midchord and midspan planes of symmetry. The element shown as a function of cycle time for each alloy. The
used was a 20-node, isoparametric, three-dimensional highest compressive stresses were reached during the first
block with 8 corner nodes and 12 edge midpoint nodes. 30 seconds of heating and the highest tensile stresses
This element had 27 Gaussian integration points. The during the first 15seconds of cooling. Good agreement is
model consisted of 36 of these elements with a total of shown in figure 6 between the ISO3DQ and MARC
315 nodes and 778 unsuppressed degrees of freedom, elastic analyses.

All nodes initially on the midspan and midchord faces
of the model were constrained to lie on the midspan and Comparison of MARC Elastic and Elastic-Plastic
midchord planes, respectively. In addition, one node at
the leading edge was constrained chordwise (leading to Analyses

trailing edge) in order to prevent rigid-body motion in The results of the MARC elastic and elastic-plastic
that direction, analyses are presented in figure 7 for each of the four

alloys in terms of the effective stress-equivalent total
Results and Discussion strain response at the critical location. To construct the

The results of the MARC elastic and elastic-plastic stress-strain hysteresis loops from the effective stresses
analyses of thermally cycled double-edge wedge and equivalent strains, which are always calculated as
specimens of IN 100, Mar-M.200, NASA TAZ-8A, and positive values, signs were assigned based on those of the
Ren6 80 alloys are discussed herein. Elastic results from principal stresses or strains with the greatestmagnitude at
MARC are compared with results of ISO3DQ and the time increment under consideration. Critical
NASTRAN analyses taken from reference 10 for the locations shown in figure 7 were only approximate since
same alloys and cycling conditions. MARC elastic and the total strains were relatively constant over large
elastic-plastic stress-strain-temperature histories are then regions of both leading and trailing edges. The apparent
compared for each case at the critical location (the contradiction between the critical locations in figures
location where the maximum total strain range occurred). 7(b), (c), and (d), which were based on MARC elastic-
Finally MARC elastic-plastic results for the four alloys plastic analyses, and those in figure 6, based on ISO3DQ
are evaluated, and predicted crack locations are analyses from reference 10, was due to the ISO3DQ
compared with experimental results, analyses excluding from consideration any location not

at the leading edge. Elapsed times during the heating
Comparison of MARC, ISO3DQ, and NASTRAN and cooling phases of the thermal cycle are indicated in
Elastic Analyses figure 7.

Elastic-plastic analyses were performed for two cycles
171_ti_ analYses usin_ MARC were Performed by for IN 100, Mar-M 200, NASA TAZ-8A and three cycles



for Ren6 80. The stability of the second cycle was shown NASA TAZ-8A and Ren6 80. The trailing edges were
by the cooling part of the stress-strain hysteresis loop slightly hotter during the cooling phase of the cycle for all
essentially coinciding with that of the first cycle for the the alloys.

IN 100 (fig. 7(a)), Mar-M 200 (fig. 7(b)), and NASA Effective stress (figs. 9(b) and 10(b)) and longitudinal
TAZ-8A (fig. 7(c)) alloys. For the Ren6 80 the strain stress (figs. 9(c) and 10(c)) distributions were also

ratchetting of the stress-strain hysteresis loops shown in approximately symmetrical about a central longitudinal
figure 7(d) continued for a third cycle, at which time the axis, especially in the upper half of the model. An
elastic-plastic analysis was terminated; this cycle is not exception was NASA TAZ-8A, which exhibited

shown because it would have unnecessarily complicated markedly higher stresses at the trailing edge than at the
the figure, leading edge. The longitudinal total strain distributions in

The results show that the wedge edges went into figures 9(d) and 10(d), which include thermal

compression during the heating part of the cycle and deformation components, also show little change along
reached minimum strains after 9 to 30 seconds immersion the wedge edges in the upper half of the model.

in the heating bed. As the metal temperatures approached The relative uniformity of the temperatures, stresses,
equilibrium, the strains increased and became tensile and longitudinal strains over large regions of the leading
during the cooling part of the cycle. Maximum strains and trailing edges in figures 9 and 10 indicates that failure

occurred after 3 to 15 seconds immersion in the cooling could be expected almost anywhere in these regions
bed. The elastic-plastic analyses exhibited compressive because of variations in temperatures and material
plastic strains at the critical locations during heating and properties. The predicted critical locations for crack
plastic strain reversal during cooling for all the alloys, initiation illustrated in figure 7 were based on the location
These plastic strains caused the hysteresis loops to shift in the model where the maximum equivalent total strain
under cycling as shown in figure 7, with Ren6 80 range was computed for the second thermal cycle. These
experiencing the greatest and NASA TAZ-8A the least critical locations occurred at approximately a quarter of
shifting, the specimen span--at the leading edge for IN 100 and at

The strain ranges and mean stress levels from the the trailing edge for Mar-M 200, NASA TAZ-8A, and
hysteresis loops of figure 7 are summarized in figure 8 in Ren6 80. Wedge specimen cyclic test data reported in
bar graph form for convenience of comparison. As references 11 and 12 demonstrate that cracks appeared at
shown in figure 8(a) the equivalent total strain ranges at approximately all the predicted critical locations,
the critical locations computed from elastic analyses were although initial cracking tended to occur at the leading
within 3 percent of those computed from the more costly edge. The ability to predict the crack initiation location
elastic-plastic analyses. However, mean effective stresses was not substantiated because of the uniform conditions

derived from the two types of analysis were significantly over much of the wedge edges. Therefore there was no
different, as shown in figure 8('0). Elastic analyses specific critical crack initiation location. The highest
calculated compressive mean stresses at the critical equivalent plastic strains occurred along the leading edge
locations for all the alloys. For IN I00 and NASA for IN 100 and Mar-M 200 and along the trailing edge for
TAZ-8A the elastic-plastic analyses showed tensile mean NASA TAZ-8A and Ren6 80, as shown by the contour
effective stresses at the critical locations after two cycles, plots of figures 9(e) and 10(e). Ren6 80, which had the

Ren6 80, which exhibited the greatest plastic flow, lowest yield strength of the four alloys, had the highest
showed an increased mean stress in the compressive equivalent plastic strains in figures 9(e)and 10(e)and
direction, exhibited the greatest amount of stress reversal in figure 7.

The primary results of this study from the standpoint
of evaluation of life prediction methods were the

Comparison of Elastic-Plastic Results for Alloys equivalent total strain ranges and effective mean stresses
Temperature-stress-strain distributions along the computed from the elastic-plastic analyses. These results

specimen midchord plane are displayed in figure 9 at the demonstrate large variations in strain range and mean
time of minimum strain and in figure 10 at the time of stress for the various alloys under the same thermal
maximum strain for the four alloys. The contour plots of cycling conditions. As shown in figure 7 the variations in
temperature, effective stress, longitudinal stress and total the maximum total strains were much greater than the
strain, and equivalent plastic strain were obtained from variations in the minimum total strains. It is noteworthy
the elastic-plastic analyses during the second thermal that the greatest temperature gradients between the
cycle, wedge edges and center on cooldown, as shown in figures

Temperature distributions shown in figure 9 and 10are 3 and 10(a), were (in descending order) for Ren6 80,
approximately symmetrical about a longitudinal axis NASA TAZ-8A, Mar-M 200,and IN 100; this ranking
through the center of the model. During the heating also coincides with the ranking of the four alloys in terms
phase of the cycle, temperatures were somewhat higher at of equivalent total strain range in figure 8. Apparently
the leading edge for IN 100 and at the trailing edge for the dominant factor in determining the relative strain



ranges at the critical locations for this class of materials good agreement even though the finite-element models
was the rate of cooldown of the wedge edges in the were substantially different.
fluidized-bed tests.

The principal potential sources of error in the elastic- Lewis Research Center
plastic analyses lie in inaccuracies in the input data, National Aeronautics and Space Administration
particularly in the material properties. NASA Lewis is Cleveland, Ohio, December 23, 1980.
currently engaged in a major program to improve the
quality of the input data required for cyclic nonlinear
analyses. The analytical results from this study will be References
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TABLE I. - ALLOYS AND CONDITIONS ANALYZED

Alloys Fluidized-bed cycling conditions for all alloys

100, Mar-M 200, Heating bed temperature, 1088 ° C

NASA TAZ-SA, and Cooling bed temperature, 316 ° C

80 Immersion time in each bed, 180 seconds

TABLEII. -ALLOY PHYSICAL PROPERTIES

Temperature, IN 100 Mar-M 200

oC
Modulus of Mean Modulus of Mean

elasticity, coefficient elasticity, coefficient

MN/m 2 of thermal MN/m 2 of thermal

expansion, a expansio_ a
m/m °C m/m °C

260 203x103 13.0xlO -6 210xlO 3 12.2x10 -6

316 199 13.1 207 12.4

371 197 13.3 205 12.6

427 194 13.5 201 12.8

482 191 13.7 199 13.0

538 187 13.9 194 13.1

593 184 14.0 191 13.3

649 180 14.4 188 13.5

704 177 14.6 182 13.7

760 173 14.9 178 14.0

816 168 15.4 173 14.2

871 162 15.8 168 14.8

927 157 16.4 163 15.1

962 151 16.7 158 15.8

1038 145 17.5 152 16.7

1093 139 18.2 147 17.6

Poisson's ratio 0.2981 0.3039

NASA TAZ-SA Ren_ 80

260 202x103 12.1xlO °6 188x103 12.4x10 -6

316 201 12.1 186 12.6

371 199 12.2 184 12.8

427 198 12.4 181 13.0

482 197 12.6 179 13.1

538 194 12.8 174 13.3

593 192 12.8 172 13.5

649 190 13.0 168 13.7

704 187 13.1 164 14.0

760 183 13.3 159 14.4

816 178 13.5 154 14.8

871 168 13.9 147 15.1

927 146 14.2 139 15.7

982 139 14.6 126 16.2

1038 133 14.9 122 16.7

1097 128 15.3 114 17.5

Poisson's ratio 0.3166 0.3183

aFrom room temperature to indicated temperature.



TABLE_I. - ALLOY MECHANICAL PROPERTIES _ONOTONIC)

Alloy Temperature, Ultimate 0.02-Percent 0.2-Percent Reduction

°C strength, yield strength, yield strength, in area,

MN/m 2 MN/m 2 MN/m 2 percent

IN 100 21 986 614 765 14

(Jocoat) 850 765 607 731 8
925 565 345 462 12

1000 386 200 296 20

Mar-M 21 1041 758 889 11

200 871 800 558 738 4

927 655 434 558 4

982 510 303 393 5

NASA 21 993 689 821 6

TAZ-SA 850 848 538 745 6

925 648 338 517 7

1000 469 234 365 11

Ren_ 80 21 993 689 820 6

850 683 421 538 29

925 510 276 359 33

1000 331 172 228 33

TABLE IV. - TEMPERATURE VARIATION ALONG SPAN

[Tx, z = Tx,ms (Az2 + Bz+ C), where Tx, z is temperature at any

x,z coordinate gig. 4), Tx, ms is temperature at x coordinate
at mids)an, and z is span coordinate.]

Time Heating bed Cooling bed

A B C A B C
see

Temperature, °C

0 -0.00870 0.0517 0.9205 -0.00666 0.03957 0.9427

3 .04401 -.2614 1.3891 -.01775 ,i055 .8447

6 .03739 -.2221 1.3290 -.02384 .1416 .7911

9 .03688 -.2191 1.3372 -.02548 .1514 .7786

12 .03806 -.2261 1.3344 -.02731 .1622 .7622

15 .03695 -.2195 1.3300 -.02889 .1716 .7480

30 .02758 -.1638 1.2504 -.03047 .1810 .7338

45 .01769 -.1051 1.1630 -.03141 .1866 .7224

60 .01432 -.08506 1.1324 -.03442 .2044 .6905

75 .01006 -.05978 1.0934 -.03265 .1939 .7093

90 .00833 -.04948 1.0791 -.02867 .1703 .7440

105 .00557 -.03311 1.0528 -.02445 .1452 .7843

120 .00627 -.03722 1.0571 -.02276 .1352 .7981

135 .00440 -.02614 1.0415 -.01876 .1142 .8323

150 .00371 -.02205 1.0357 -.01533 .09107 .8622

165 .00297 -.01762 1.0285 -.01278 .07593 .8832

180 .00262 -.01553 1.0243 -.01212 .07198 .8876



Trailing-
edgeradius,
0.102-, I, 635

oo'" ,eading-e,ge

I radius,0.066
i0. 16

Figurei. - Double-edgewedge.(All lineardimensions
in centimeters.)

%

- Positionedby

..... pneumatic
actuators_

",t, ,-Alumina
!i /

" .. , retainer

Heatingbed .. "_'--_
(23cm diam)--,,_ _| " I

Alumina
particles-4, _, .

Silicon i

carbide i _I
heating --
elements ,--
(12) --_'_ _ Coolingbed

;, (36cm diam)

Refractory _!,5, i!?i_II Specimens
insulation _' _ ,_::!!

,4__ Insulation
Inspectionport_"

z

i 4Therm°c°upleJ Air S_ ._ Cooling, air heat
Retort-_ ," exchangeri

/

Inspectionport- Calrodheating;
elements(3) _

Air

Figure2. - Schematicof fluidized-bedtestfacility.



Trailing
edge

+ Thermocouplelocations
Leading Leading

/--Trailing edge--x /-- Trailing edge-_
edge \ / edge _\

/ \ / x

_+ Midchord _ Midchord+ 4_ + +//
Timeafter immersion

into heatingbed, Timeafter immersion

1100 I-leati_ bed sec into coolingbed,
150 sec

1000
6O

45 3

9OO 30

6

12

_ 9
ff
= 700 30

6
E
_- 3

45
60O

60

75
50O

90

4OO 135

0

300 Position along midchord

(a) IN 10Oalloy.

Figure3. - Temperatureof midchordat midspanatvarioustimesafter immersioninto fluidizedbeds.



Leading 4- Thermocouplelocations Leading
,,- edge-x ,,- Trailing edge_x
/ ,. _ edge \
I \ I \I

Midchord Midchord

* t if- +
Time after immersion

into heating bed,

1100 Heatingbed sec

F _- Time after immersion150 into coolingbed,135
120 sec

10(30 105
90 0
75

60

900 45

30

800 15
12 3

o_ 9 6
_f

100 6 9
12

3 15E

600 30

500 60

75

400 105120
135
150

0 165
180

3OO
Position along midchord

(b) Mar-M 200alloy.

Figure3. - Continued.

lO



4- Thermocouplelocations Leading
Leading eOge

i- 1railing edge_ f- Trailing x,,, / edge "

,edge _ "' __t, Aidchor_d_
..... _+ +

_+- + _ Timeafter immersion
into heatingbed,

Heatingbe_ sec TimeafterimmersionJ intocoolingbed,
............ 180 sec

, ]5o
75
6O

45

30 0

3
6

15
12 g

9 12

o_ 6 15
f

45

6O

501 75
90

0 Coolingbed

Y3(3 Positio-nalong midchord

(c)NASATAZ-8Aalloy.

Figure3. - Continued.

II



-I- Thermocouplelocations

Leading Leading
/- Trailing edge-x /-Trailing edge-,,

i edge \ // edge "
/ \ / \

Midchord Midchord

+ .4-

Timeafter immersion
into heatingbed,

----" --Hea_tm.j.gbeo. sec Timeafterimmersion
165 intocoolingbed,

io5 sec
go
75

6O 0

45

go0

30 3

80(] 15 6

]2 9
g

6
"_ 7o0 ]5

E

3 30

45

60

75

gO

135
'150

0 Coolingbed 165180
3O0

Positionalongmidchord

(d)Rene"80alloy.

Figure3.-Concluded.

12



Leading
, edge

Trailing i
edge_ 7 1 f

¢

Midspan- I'_

, 1.7 I_ cm
• / Z

Ji _._ 1.633cm

Figure4. - Modelandtypicalelementusedfor MARC
analysiswithcoordinateconvention.

0
Computer I-1
program

_ NASTRAN
-200 [] ISO3DQ

----- O MARC
_- -300

_ -400

-500

-600

-lO0 ....,,.-Trailing edge(-1.519cm)
Centroidof

-800 cross section

-I.6 -1.4 -1.2 -i.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8
x-coordinate,cm

Figure5.-ComparisonofelasticresultsusingMARC,ISO3DQ,andNASTRANcomputerprogramsforIN100alloyafter
15secondsheating(alongmidchordatz-5.08cm).

13



E
700-

&

F- Leading
500 // edge

Trailing

Longitudinal

_. ,-Critical

,'" location

400 _ direction.._. / ,./ _¢/ -'_2. 54 crn20O _ 0 O0__ zs4cm

"'"°-'7/I/FC-4oo_ I IIII LC,itic,i

-60 _ _ location

_ uumPUter
"_ pro(jram

-80C

1000 ------------_L. _ /S03/)OMARC

0 60_ _o_
Cycle time, sec ]80

(a_IN 100alloy.

.ooy

zoo

_" 500 - _ /'-'Leading

- / edgeIrailina _ I

_t dge __ ^.

_ I /"t.rltical

F /ell / location_i_,_n_/ ii ii,
Longitudinal _ I I It

_
._, -ZOO
_, -4O0

800 60

-6_

Cycletime, sec ]20 180

(b) Mar-M 200alloy.

Figure6. - Comparisonsof elasticresultsusingA'IARCandIS03DQcomputerprogramsat critical tocationsduring atypicalthermal

cycle.

14



1100

..9.= 700 _ /-- Leading

"_ _ / edge

_ /
E Trailing--,,

500 - edge \ /--Critical
I location

300 J J I Longitudinal /

direction--,,, _-- ].21 cm
x, 1.21cm

700 -- Computer

_z 500 -- program _ , \

:_ 300 -- -- ISO3DO I I-_ MidspanJ \- Critical_" Inn- O MARC location

-a -i08

.E

-500

-700 I I I I I I
60 120 180/0 60 120 180

Cycletime,sec

(c)NASATAZ-SAalloy.

1100--

_" /--Leading
700 / edge

_. Trailing--_ /
E edge \ /-Critical
_" 500 - \ / location

/
Longitudinal i

300 I ] direction-_ 0.64cm

\,,, 0._cmr

700 MidspanJ \
50(] "--Critical

location

o -500

-70Q I I I I I I
0 60 120 180/0 60 120 180

Cycletime, sec

(d)Rene"80alloy.

Figure6. - Concluded.

15



ElapsedHeatingJcooling
time, Temperature,C
sec

0 344 1049

3 632 921 Elapsed
6 666 849 time,
g 149 810 sec
12 771 793

301.Sf9
600-- 15 799 771 _ Elastic 60.._,

30 888 682 ---- ElasUc-plastic. 90_._'/" 6 Coohng
400 45 938 604 ,,'_ _"120/ _,-_-- 60 977 543

75 I010 499 _' _,_...w-_603_._ 990 1021 463 ,,

200-- 120 1060 410 O-ff;_' 120_3

18o lO77 _3 ./'::_ _,floo 120,/-.-" .,
%::'_o./" _ _L.ding

-200-- 75 _,;',_"90J // Trailing ,,edge

6k,_ .,...,, ]_/ edge--. _ p Critical"111_J../" location
• ,.,,"" 6 j 90 LongitudinalJIIIr--f-_cmo--40030"l_"_; 1 directi°n---H'l_-_f"

,o,;,, 60 ,_LJa"cm

4_ _" location-soo 3_ I I I I I I I I I I I I I I I I I 1
e_E (a)IN100alloy.

ElapsedHeatingJCooling
:_ time, Temperature,C
_" sec

o 349 993
800-- 3 666 827

6 699 804
9 154 Ill 129

,Sw
,'n, 500 12 766 749 ....

15 793 721 Coolin 30.-_'_.._, _ 3

400 45 888 599 60 ,,,,j_3060 927 543
75 943 501 120._//

200 90 977 457 O_.'_W60

120 1010 414 _.-'_0__1_0
_,_o180 1049 341 . _ ,,-,'.;

i' -" F Leading
1_0_- _ Trailing I edge

-200-- Heat.ng _." _1_"'/" edge-_ /

Critical-.-,__

_,/,s_I2_ ", FLongitudinallocation"- _ direction
-400-- 60,,flY'/,90"

0 ,_J"O//
_(0//'/__ 2.44cm3.3,

l_jO_,, s' Z.44cmL_L_ ,,_Midspan-600-- 9_0_3 Critical
oJ']5 .o . location--"

-8oo,I "I I I I I I I I I I I I I I I I I I I I
-4400-4000-3600-3200-2800-2400-2000-1600-1200-800-400 0 400 800 12001600 2000240028003200360040004400

Equivalenttotalmicrostrain

/b)Mar-M200a11oy.

Figure7.-Stress-strainresponseatcriticallocationdeterminedfromMARC elasticandelastic-plasticanalyses.

16



ElapsedHeating]Cooling
time, Temperature,Csec

0 346 927 Elapsed
800_- 3 682 854 time,

6 727 810 sec 15

g 777 777 Cooling ,1560C 12 788 738

15 821 710 45
30 glO 616 60 3

40(3 45 949 560
60 g88 501
75 1021 457 0

20( go 1043 436 0

120 1060 386 120,_180 1071 341

75 r- Leading
60 Trailing / edge

-2C -- Heating edge4. i
Critical "'_F Longitudinal
location-. I lllJ' direction

-401-- 2.11cmr_.]_
2.11cml(Till_-Midspan

Critical ,'-tP• /
locationJ

-8o0 I I I I I I I I I I I I I I
_ (c)NASATAZ-8Aalloy.
z
:E

Elapsed HeatingICooling
time, Temperature,CP
sec

._>o 0 329 1010
"_ 3 621 860

6 699 7gg Elapsed
g 74g 754 time,

800 12 788 732 sec
15 804 6gg m Elastic 15
30 904 604 --- Elastic-plastic

600 45 954 533 "g

60 98,S 491 Cooling
75 1016 451 .- 3

400 go 1032 422
_s120 1066 380

180 1082 333 90 ,,,.s 45
200

go
1201351.50165i 1 t 90_s' 75

0 15-

[_01-600 Heatin'_S " I _,J 90 s_.s..s. "_'S_,,. 15_-_0120s Trailingedge-_\ ,/r-\edgeLeading

45,,._// Critical .- Longitudinal
/ / , location_- direction/ /

/ / 2.44cm
/ ,,,.

2.44cm '--Midspan

•"3" Critical/
location--'

-800 I I I ) I I I I
-4400-4000-3600-3200-2800-2400-2O00-1600-1200-800-400 0 400 800 1200 1600 20002400 280032003600 4000 4400

Equivalenttotalmicrostrain
(d)Rend80alloy.

Figure7. - Concluded.

17



9000--

[] Elastic

8000- [] Elastic-plastic

6000--

5OOO-- //
c_

3000- i

2000-- _/, i
I

I000--

IN100 Mar-M200 NASATAZ-8A Rene'80

(a)Equivalenttotalstrain range.

8(;--

% -40-
NASATAZ-8A

_ Mar-M200
//,.., Rene"80

-120-- ///
7/.
y/

-160-- _/

-200 -- -_
IN100

-240--
(b)Meaneffectivestress.

Figure8. - Comparisonofelasticandelastic-plastic(secondcycle)analysis
resultsfor critical locations.

18



ContourIN 100i Mar-M2001NASATAZ-SAIRene"80
Temperature,°C

1 33 28 26 28
2 133 120 115 121
3 233 212 204 213

333 304 293 306433 396 382 398
6 533 488 4/1 491
l 633 580 560 583
8 /33 6?2 640 6/6
g 833 764 738 768

10 933 856 827 860

Traiting Leadingedge
edge Midspan

7-IT7T---T---T-T7, i7_'-IT--T---[-ITi-r;

,ll_, , _, _,,I I,q ..... _'" ...........

,_-T-?---,+---,_-.-: ,77TqT--T--/,*-,*-I
l_ :I l _ _} l. " i _ ._ .I I I "! •

,i,l , , , ,,
',_,_,_, ', /: _,L: ,_,_,_,_ ',_',_,
...............t,__, ,;: " I-T-_:,---_;.

i, I I I .

I _! i I J tJ I I, I I I I I

IN 100;30secondsheating Mar-M200;g secondsheating

_]'?-[---:--F:FTl-I ,,._.][_[-!---i--[_]TF,,,'L I ' /'/'_ k i_ ....

ITL-F--T--FrFTFI f l |_l_l '

I:| !L II I I II I| l' I: • il I: I , i " I",_L,, ,_ , _,F. _ _ ,I_,_ q:. , I.,_,_ /;
_l.p_- -14---+--_-.,'-- -H--rl _.'-+ - + --+- _-+" .'--

;I! :I :/ : J:[ _ III ; 7: :! : 7 : F 'I.._,_.__._,.___ ._,_._,_,_,i__l

F1,_ /TfL..... F _,)£_Y,.______}__i¢_i_ ,_r__:.__:.___.__.__o
NASATAZ-SA;0secondsheating Rene"80; 12secondsheating

(a)Temperature.

Figure9. - Temperature-stress-straindistributionsalongrnidchord
planeat timeof minimumtotal strainduring secondcycle.

19



Contour IN 100[Mar-M200[NASATAZ-SAIRene'80
Stress.MNIm2

1 27 36 37 39
2 83 108 111 128
3 139 179 185 21?
4 195 250 259 306
P 251 322 333 395
6 307 394 40/ 484
l 363 465 481 573
8 419 536 555 662
9 475 60/ 629 751

10 531 679 703 841

_IF,II ,! 1, 1
,b ,b , ,:.._L_2i _o

II11, |,1/,

,_ir-FTi-IT '_
- 4._}]t, _ 4-

I I I

I I

• • __:___,

IN100;30secondsheating Nar-M 200;9secondsheating

I_,_71--F_" : _b_;i_Li[liLG_}@
_;t,i!',!_:/l-l-i-rl_,_F_IT_ nl,_rnlI3,,c_FNT_I-ill

fl_LLLiLL!iL_LL!LW ll_r,,x-x,,_rfTF,,t_

NASATAZ-BA;9secondsheating Rene"80; 12secondsheating
(b)Effectivestress.

Figure 9. - Continued.
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Figure9.-Continued.
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Contour IN 100lMar-M2001NASATAZ-BAIRene"80
Temperature,°C
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Figure10.-Temperature-stress-straindistributionsalongmidchord
planeattimeofmaximumtotalstrainduringsecondcycle.
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Contour IN 1001Mar-M2001NASATAZ-SARene'80
Stress,MNIm2

1 34 42 41 34
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Figure 10. - Continued.
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Figure 10. - Continued.
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{d)Longitudinalstrain.

Figure10.- Continued.
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(e) Equivalent plastic strain.

Figure 10. - Concluded.
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