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ABSTRACT 

An i n v e s t i g a t i o n  of t he  methodology f o r  mapping  snowcover 
from Landsat   data  and employing  the  snowcover  information 
i n  snowmelt  runoff  forecasting was performed as p a r t  of 
the  Nat ional   Aeronaut ics  and Space  Administration's (NASA) 
Applicat ions  Systems  Verif icat ion and Transfer   Pro jec t .  
The s tudy was conducted on s ix   wa te r sheds   r ang ing   i n   s i ze  
from 277 km2 t o  3460 km2 i n   t h e  Rio  Grande  and  Arkansas 
River  basins  of  southwestern  Colorado.  Six  years  of 
s a t e l l i t e   d a t a   i n   t h e   p e r i o d  1973-78 were analyzed and 
snowcover maps prepared  for  all a v a i l a b l e  image da tes .  
Seven   snowmapping   techniques   were   explored;   the  
p h o t o i n t e r p r e l a t i v e   m e t h o d  was s e l e c t e d  as t h e   m o s t  
accurate.   Three schemes t o   f o r e c a s t  snowmelt runoff 
employing s a t e l l i t e  snowcover   obse rva t ions   were  
i n v e s t i g a t e d .   T h e y   i n c l u d e d  a c o n c e p t u a l   h y d r o l o g i c  
model, a s t a t i s t i c a l  model, and a graphica l  method. A 
reduct ion of 10% in   t he   cu r ren t   ave rage   fo recas t   e r ro r  is  
e s t i m a t e d  when snowcover  d a t a  i n   s n o w m e l t   r u n o f f  
fo recas t ing  is shown t o  be extremely  promising.  Inabili ty 
to   ob ta in   repe t i t ive   coverage   due   to  the 18-day cycle   of  
Landsat,   the  occurrence  of  cloud  cover and slow image 
de l ive ry  are obs t ac l e s  t o  the  immediate  implementation  of 
s a t e l l i t e   d e r i v e d  snowcover in   opera t iona l   s t reamflow 
fo recas t ing  programs. 

iii 





ACKNOWLEDGMENTS 

Investigations  conducted  on  behalf  of  the  National  Aeronautics  and  Space 
Administration  (NASA)  in  Colorado  were  a  team  effort  involving  federal, 
state  and  private  organizations. 

Special  thanks  are  due  to  Mr.  Jack  Washichek,  retired  Snow  Survey  Super- 
visor  for  the  Soil  Conservation  Service,  for  his  leadership  of  the  project 
during  the  first  three  and  a  half  years.  Jack  provided  the  impetus  to  get 
the  project  off-the-ground  and  set  the  tone  of  the  research  effort.  His 
knowledge of snow  hydrology  gained  from  many  years  experience  in  Colorado 
was  invaluable  in  guiding  the  direction  of  the  investigation. 

Mr.  Robert  Hansen of the U.S. Bureau  of  Reclamation  is  gratefully  acknow- 
ledged  for  the  assistance  provided  by  him  and  his  staff  in  training  project 
personnel  in  the  many  aspects  of  remote  sensing.  Without  his  assistance, 
many  exploratory  tests  in  snow  mapping  techniques  could  not  have  been 
performed. 

Appreciation  is  extended  to  Dr.  James  Smith  of  Colorado  State  University 
for  his  efforts  in  conducting  trials  in  digital  computer  snow  mapping. 

A  sincere  expression  of  gratitude  is  accorded  Dr.  Albert  Rango of NASA  for 
his  tireless  work  and  encouragement  in  undertaking  and  completing  this 
study.  His  understanding  of  technical  and  organizational  problems  asso- 

- ciated  with  the  Colorado  study  aided  substantially  in  their  eventual  reso- 
lution. 





CONTENTS 
Page 
... ABSTRACT ................................................... zzz 

ACKNOWLEDGEMENTS ............................................ v 

LIST OF FIGURES ............................................ ix 

LIST OF TABLES ............................................ x i i  

SECTION 1: INTRODUCTION .................................... 1 

Study  Area ........................................ 2 

SECTION  2:  SNOWMAPPING  PROCEDURE ........................... 5 

INTRODUCTION ........................................... 5 

Zoom  Transfer  Scope ............................... 5 
Aerial  Photography ................................ 7 
Density  Slicing ................................... 7 
Color  Additive  Viewer ............................. 7 
Computer  Assisted  Classification .................. 8 
Grid  Sampling ..................................... 8 
NOAA/NESS  Snowcover  Maps .......................... 8 
Comparison  Summary ................................ 9 
Index  Baseline  Method ............................. 9 
Problem  Areas ..................................... 14 
Snowcover  Depletion  Curves ........................ 15 

SECTION 3: THE  GRAPHICAL  METHOD  OF  ANNUAL  RUNOFF 
PREDICTION ...................................... 22 

INTRODUCTION ........................................... 22 

Conejos  and  South  Fork ............................ 23 
1977 Runoff  Predictions ........................... 24 
1978 Runoff  Predictions ........................... 24 
Cumulative  Seasonal  Flow-Snowcover  Relationship ... 26 
Arkansas  River .................................... 26 
Results ........................................... 27 

SECTION 4: STATISTICAL  TREATMENT  OF  SNOWCOVER IN 
FORECASTING ..................................... 31 

Interbasin  Snowcover  Correlation .................. 31 
Snowcover . Seasonal  Volume  Correlations .......... 31 
Snowcourse  Index/Snowcover  Forecasts .............. 32 
Peak  Flow .......................................... 41 
Cost  Analysis ..................................... 41 
Results ........................................... 42 

V i i  

. 



CONTENTS 
Page 

SECTION 5: CONCEPTUAL  FORECAST  MODELING  EMPLOYING 
SNOWCOVER ....................................... 43 

Computerized  Short-Term  Streamflow  Forecasting .... 43 
Subalpine  Water  Balance Model Fo recas t i ng  

Procedure .................................... 43 
Model C a l i b r a t i o n  ................................. 45 
Forecas t ing  System  Design ......................... 53 
Contro l   Funct ions ................................. 53 
Area  Water  Equivalent  vs . Telemetered Snow 

Course (SNOTEL) Data ......................... 59 
Residual  Water  Equivalent vs . Snowcover Ex ten t  .... 59 
Resu l ts  ........................................... 59 
1977  Operational  Forecasts ........................ 59 
1978  Operat ional   Forecasts ........................ 67 
Resu l ts  ........................................... 68 

SECTION 6: SUMMARY AND CONCLUSIONS ......................... 69 

REFERENCES .................................................. 71 

APPENDICES 

I AREA-ELEVATION CURVES FOR  COLORADO  ASVT  STUDY 
WATERSHEDS 

I 1  LANDSAT DERIVED BASIN SNOWCOVER ESTIMATES FOR 
COLORADO  ASVT  WATERSHEDS 

I11 APRIL-SEPTEMBER MONTHLY  STREAMFLOW  FOR 1973-1978 
AT  COLORADO  ASVT  STUDY  WATERSHEDS 

Viii 



Number 

LIST OF FIGURES 

Page 

1.1 
1.2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

3.1 

3.2 

3.3 

3.4 

3.5 

4.1 

4.2 

4.3 

4.4 

Location  of  Colorado ASVT Study  Drainages ......... 2 
Photomosaic  of  Colorado ASVT Study  Watersheds ..... 4 

Selected index basel ine network f o r  the Conejos 

Landsat derived snowcover deplet lon curves f o r  

Landsat derived snowcover depletion curves f o r  

Landsat  derived  snowcover deple t ion  curves   for  

Landsat derived snowcover deplet ion  curves   for  

Landsat  derived  snowcover  depletion  curves  for 

Landsat derived snowcover deplet ion  curves   for  

Rfver drainage  basin,  Colorado .................. 12 

Arkansas Rl’ver .................................. 16 

Rio Grande ...................................... 17 

South Fork Rio Grande ........................... 18 

Alamosa River ................................... 19 

Conejos River ................................... 20 

Culebra  Creek ................................... 21 

Annual runoff volume vs. l inear  displacement  of 
snow areal   extent   recession  curves  ( F i g .  2.6) 
for Conejos River ............................... 22 

Annual runoff volume vs. l inear  displacement o f  
snow areal  extent  recesston  curves  for  South 
Fork of the Rio Grande .......................... 25 

function  of  Landsat  derived  basin snowcover 
f o r  Conejos  River  near Mogote ................... 28 

Adjusted  snowcover  depletion  curves f o r  Arkansas 
River  Basin ..................................... 29 

Annual runoff volume vs. l inear  displacement  of 
snow area l  extent recession  curves  for 
Arkansas  River .................................. 30 

April-September  accumulated  streamflow  as a 

Pooled l i nea r   r eg res s ion   ana lys i s  between 
snowcover on  May 1 and normalized  April- 
September  streamflow ............................ 33 

Arkansas River near Ne1 l s v i  1 l e  May 1 fo recas t  
equation u s i n g  a snow course index and Landsat 
derived  basin  snowcover ......................... 35 

Rio  Grande near Del Norte May 1 fo recas t  
equation u s l n g  a snow course index and 
Landsat derived basl’n  snowcover ................. 36 

South Fork Rio Grande a t  South Fork May 1 
forecast   equat ion u s i n g  a snow course index 
and Landsat  derived  basin  snowcover ............. 37 

iX 



LIST OF FIGURES 

Page Number 

4.5 

4.6 

4.7 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

A1 amosa River above Terrace  Reservoir May 1 
forecast   equat ion  using a  snow course  index 
and Landsat  derived  basin  snowcover ............. 

Conejos  River  near Mogote May 1 fo recas t  
equation  using a snow course  index  and 
Landsat  derived  basin  snowcover ................. 

Culebra Creek a t  San Luis May 1 fo recas t  
equation using a  snow course  index  and 
Landsat  derived  basin  snowcover ................. 

General  flow  chart  of  Subalpine Water  Balance 

Conejos River near Mogote showing d iv is ion  o f  
Model ........................................... 
watershed  into 10 geographic   subdivis ions  for  
hydrologic  simulation. A t o t a l   o f  20 hydrologic 
subunits were simulated .......................... 
watershed  into 6 geographic   subdivis ions  for  
hydrologic  stmulation. A t o t a l  of  12  hydro- 
logic   subuni ts  were simulated ................... 
divis ion  of   watershed  into 5 geographic sub- 
divis ions  for   hydrologic   s imulat ion.  A t o t a l  
of 10 hydrologic subunits were simulated ........ 
division  of  watershed  into 2 geographic sub- 
divis ions  for   hydrologic   s imulat ion.  A t o t a l  
of 4 hydrologic subunits were simulated ......... 
watershed  into 4 geographic   subdivis ions  for  
hydrologic  sfmulation. A t o t a l   o f  11 hydro- 
log ic  subunits were simulated .................... 

Culebra Creek near Chama showing d iv is ion   of  

Upper Rio Grande a t  Wagonwheel  Gap showing 

South Fork Rio Grande a t  South  Fork  showing 

Arkansas River a t   S a l i d a  showing d iv is ion   of  

Simulated vs. observed  annual  runoff,  Conejos 

Simulated vs. observed  annual  runoff,  Culebra 

Simulated vs. observed  annual  runoff, Upper 

Simulated vs. observed  annual  runoff,  South 

Simulated vs. observed  annual  runoff,  Arkansas 

Colorado ASVT short- term  forecast ing model 

Conejos River simulated peak water   equivalent  

River, 1958-1971 ................................ 
Creek near Chama, 1961-1972 ..................... 
Rio Grande a t  Wagonwheel  Gap, 1958-1971 ......... 
Fork a t  South  Fork, 1973-1977 ................... 
River a t   S a l i d a ,  1970-1976 ...................... 
configurat ion ................................... 
vs. Upper San Juan snow course (SNOTEL) ......... 

38 

39 

40 

44 

48 

49 

50 

51 

52 

54 

55 

56 

57 

58 

60 

60 

X 



LIST OF FIGURES 

Number 

5.14  Preliminary  relationship showing residual  water 
equivalent   as  a function  of  percent snowcover 
on the Conejos  River . The lowermost  curve was 
derived from the 1978  snowmelt runoff  season ....... 

5.15 Prel iminary  re la t ionship showing residual  water 
equivalent   as   a   funct ion  of   percent  snowcover 
on Culebra Creek near Chama ........................ 

5.16  Preliminary  relationship showing residual  water 
equivalent   as   a   funct ion of percent  snowcover 
on South  Fork a t  South Fork ........................ 

5.17  Preliminary  relationship showing residual  water 
equivalent  as  a  function  of  percent snowcover 
on Arkansas  River a t   S a l i d a  ........................ 
f o r   t h e  1978  snowmelt  runoff  season . TWE a r e  
target  water  equivalent  adjustments  in  response 
t o  SNOTEL and Landsat  data ......................... 

5.18  Simulated  water  equivalent for the Conejos River 

APPENDIX I :  AREA-ELEVATION CURVES FOR COLORADO ASVT STUDY 
WATERSHEDS 

Alamosa Creek  above Terrace  Reservoir ................ 
Culebra  Creek a t  San Luis ............................ 
South Fork a t  South Fork ............................. 
Rio Grande near Del Norte ............................ 
Conejos  River  near Mogote ............................ 

Arkansas  River  near We1 1 s v i l   l e  ....................... 

APPENDIX 11: LANDSAT DERIVED SNOWCOVER ESTIMATES FOR COLORADO 
ASVT WATERSHEDS 

Arkansas  River  near  Wellsville ....................... 
Rio Grande near Del Norte ............................ 
South  Fork a t  South Fork ............................. 
Alamosa Creek  above Terrace  Reservoir ................ 
Conejos  River  near Mogote ............................ 
Culebra  Creek a t  San Luis ............................ 

APPENDIX 111: APRIL-SEPTEMBER MONTHLY STREAMFLOW FOR 1973-1978 
AT COLORADO ASVT STUDY WATERSHEDS 

Rio Grande near Del Norte ............................ 
Arkansas  River  near  Wellsville ....................... 
South  Fork Rio Grande a t  South  Fork .................. 
Alamosa River  above  Terrace  Reservoir ................ 
Conejos  River  near Mogote ............................ 
Culebra  Creek a t  San Luis ............................ 

61 

62 

63 

64 

67 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 

11-1 
11-2 
11-3 
11-4 
11-5 
11-6 

111-1 
111-1 
111-2 
111-2 
111-3 
111-3 



LIST OF TABLES 

Page Number 

2.1 

2.2 

4.1 

4.2 

4.3 

4.4 

4.5 

5.1 

5.2 

5.3 

5.4 

5.5 

Comparison of six  methods o f  snow  mapping 
performed  in  the  Colorado  ASVT Study ............ 9 

Conejos  River  Drainage  Basin  snow  areal  extent- 
baseline  index  values ........................... 13 

Interbasin  correlation of snowcover  using 23 
common  image  dates .............................. 31 

Correlation  between  basin  snowcover  and  April- 
September  volume  runoff ......................... 32 

Simple  correlation  coefficients  between  indicated 
variables  and  April-September  flow  normalized 
to 1963-1977 average ............................ 34 

Correlation  between  basin  snowcover  on  May 1 and 
maximum  daily  snowmelt  peak ..................... 41 

Cost  analysis of employing  snowcover in 
forecasting ..................................... 42 

Geographic  descriptions of Colorado  ASVT  Index 
watersheds ...................................... 45-46 

Hydrometeorological  benchmark  stations  for 
Colorado  ASVT  index  watersheds .................. 47 

Observed  vs.  simulated  streamflow,  Conejos 
River,  1972-1975 ................................ 53 

Conejos  River,  Rio  Grande  Drainage  Basin 
Composite of  20 substations (10/10/76-9/30/77). .. 65 

Conejos  River,  Rio  Grande  Drainage  Basin 
Composite of  20 substations  (10/10/77-9/30/78). .. 66 

xii 



OPERATIONAL  APPLICATIONS  OF  SATELLITE  SNOWCOVER  OBSERVATIONS 
COLORADO  FIELD  TEST  CENTER 

Bernard A. Shafer 
SoiZ Conservation  Service 

Denver, Cozorado 

Charles F. Leaf 
ConsuZting  HydroZogist 

SterZing, Co Zorado 

Dr.  Jeris A. Danielson 
George F. Moravec 

CoZorado State  Engineer's  Office 
Denver, Co Zorado 

SECTION I: INTRODUCTION 

Knowledge  of  areal  extent  of  snowpack  coverage  has  long  been  a  desire  of 
snow  hydrologists  for  both  seasonal  volume  prediction  and  flood  forecasting. 
Until  recently  this  desire  has  been  largely  unfulfilled  due to the  expense 
and  time  requirement  of  acquiring  and  processing  aerial  photo  coverage. 
Since  the  early 1970's  satellites  have  made  available  relatively  high  reso- 
lution  imagery  on  a  repetitive  basis  from  which  snow  covered  areas  could  be 
determined.  Techniques  for  identifying  and  mapping  snow  covered  areas  from 
satellite  derived  products  have  been  documented  by  Barnes  and  Bowley (1974). 

Leaf (1971) and  Rango,  et  a1 (1975) demonstrated  applications  of  snowcover 
estimates  in  forecasting  seasonal  snowmelt  runoff.  However,  use  of  satellite 
derived  snowcover  was  not  widespread  in  any  major  ongoing  forecast  program. 
The  National  Aeronautics  and  Space  Administration  (NASA)  in 1974 undertook 
the  task of demonstrating  the  feasibility  of  using  remotely  sensed  snowcover 
from  satellites  in  operational  streamflow  forecasting  programs. 

As  part  of  their  Applications  Systems  Verification  and  Transfer  (ASVT) 
program  NASA  funded  four  demonstration  projects  in  the  Western  United  States 
to  study  the  ways  in  which  Landsat  derived  snow  maps  could  be  constructed 
and  incorporated  into  existing  schemes  for  forecasting  snowmelt  runoff. 
Further,  evaluations  were to be  conducted  in  each  study  site  to  ascertain 
the  potential  improvement  in  forecast  accuracy  which  could  be  ascribed  to 
use  of  snowcover  data.  The  four  demonstration  study  centers  chosen  were 
Arizona,  California,  Colorado  and  the  Northwestern  United  States.  This 
study  effort  within  the  ASVT  program  was  called  the  Operational  Application 
Satellite  Snowcover  Observations  (OASSO). 

In  Colorado  three  agencies  were  involved  in  carrying  out  the  intent  of  the 
ASVT  program.  The  USDA  Soil  Conservation  Service  (SCS)  was  given  lead 
responsibility  with  assistance  provided  by  the U.S.  Bureau  of  Reclamation 
and  the  State  of  Colorado  Division  of  Water  Resources  (State  Engineer). 
Charles  F.  Leaf,  consulting  hydrologist,  was  retained  to  incorporate  satellite 
snowcover  observations  into  a  physically  based  hydrologic  simulation  model. 
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The  study  approach in Colorado  involved  a  four-step  analysis: (1) identify 
specific  drainage  basins  and  acquire  the  Landsat  imagery  to  cover  them; 
(2)  examine  various  techniques of mapping  the  snowcover  and  determine  which 
method  is  most  useful  in  an  operational  mode; (3) develop  a  methodology  for 
including  snow  covered  area  in  a  forecast  of  snowmelt  runoff  and, ( 4 )  evaluate 
the  adequacy  of  the  forecasting  techniques  which  employed  snowcover. 

Study Area 

The  Rio  Grande  Basin  in  Colorado  was  chosen  as  the  primary  drainage  for 
study  and  the  Upper  Arkansas  River  as  a  secondary  study  basin.  Within  the 
Rio  Grande  Basin  five  watersheds  were  singled  out  for  detailed  analysis.  In 
all,  six  watersheds  encompassing  some 3,427 mi2 (8 ,876 km2) were  analyzed  in 
the  study  which  corresponded  to  streamflow  gaging  stations  currently  fore- 
casted  by  the  Soil  Conservation  Service.  They  include  Arkansas  River  near 
Wellsville,  Rio  Grande  above  Del  Norte,  South  Fork  Rio  Grande  at  South  Fork, 
Alamosa  River  above  Terrace  Reservoir,  Conejos  River  near  Mogote,  Culebra 
Creek  at  San  Luis  (Figure 1.1). The  latter  five  watersheds  are  all  in  the 
Rio  Grande  Basin  and flow into  the  San  Luis  Valley  where  they  comprise  the 
mainstem  of  the  Rio  Grande.  For  the  computer  simulation  modeling  portion  of 
the  study,  the  six  major  watersheds  were,  in  some  instances,  further  sub- 
divided  for  more  intensive  study. 

I -  ARKANSAS  RIVER 
2 -  

4 -  
3 -  

6 -  
5 -  

DRAINAGE  AREA 
K m Z   MI^) 

3756  (1450) 

DRAINAGE  AREA 
K m Z  ( M I ~ I  7 I > 

3756  (1450) 
RIO GRANDE 
SOUTH FORK OF RIO  GRANDE 559  (2161 

3460 (13361 

ALAMDSA  RIVER 277 1107) 

m C O L O R A D O  

L O C A T I O N   M A P  

I 

Figure 1.1 Location  of  Colorado ASVT Study  Drainages. 
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Both  the  Rio  Grande  and  Arkansas  basins  represent river systems  whose  pri- 
mary source of water is snowmelt. The  San Luis   Val ley fs a v i r t u a l   d e s e r t  
which  could  produce little i n  terms of a g r i c u l t u r e  were i t  n o t   f o r   t h e  
snowfed streams which  enter  i t .  Mean annua l   p rec ip i t a t ion  on t h e   v a l l e y  
f l o o r  which  averages  7,500 f t  (2,460 m) e l e v a t i o n  is  only 7 in.   (17.8 cm) 
while   the  headwaters  a t  e l eva t ions   t o   14 ,000   f t .   ( 4 ,267  m) averages 45 i n .  
(114 cm) annual ly .  Over 80 percent  of the  annual  flow  of  the  Rio  Grande is  
a t t r i b u t a b l e   t o   t h e  snowpack cont r ibu t ion   which   runs   o f f   in   the  A p r i l  through 
September  period. 

The mountain snowpack normally  begins   bui lding i n  la te  October  and  reaches a 
maximum n e a r   t h e   f i r s t  of Apr i l .  Near t h e   f i r s t  of A p r i l  melt a t  lower 
e l eva t ions  i s  t ak ing   p l ace   wh i l e  a t  the   h igher   e leva t ions   accumula t ion  may 
c o n t i n u e   i n t o   t h e   f i r s t   p a r t  of May. The n e t   e f f e c t  is gene ra l ly  a dec l ine  
i n   t h e   o v e r a l l  snowpack commencing n e a r   t h e   f i r s t  of Apr i l .  However, f r e -  
quent ly   l a rge   s torms   dur ing   Apr i l  and e a r l y  May can  have a s i g n i f i c a n t  
impact on t h e   b a s i n ' s   t o t a l  w a t e r  production. 

Permanent  snowpacks i n   t h i s   r e g i o n  are c h a r a c t e r i s t i c a l l y   c o l d  and  of 
l i gh te r   dens i ty   t han   t hose   found   i n  areas a f f e c t e d  by  more maritime a i r  
masses. I n t e r n a l  snowpack temperatures  are  s u b f r e e z i n g   u n t i l   i s o t h e r m a l  
condi t ions  occur  l a te  i n   A p r i l  and e a r l y  May. The l i g h t   d e n s i t y  snow i s  a 
consequence of t he   g rea t   d i s t ance   i n l and  and t h e   r e l a t i v e l y   h i g h   e l e v a t i o n s  
of the  mountain  ranges.   Snowfall   tends  to  be  frequent  throughout  the  winter 
r e s u l t i n g   i n  a g radua l   bu i ld ing  of the  pack as opposed to   packs   which   resu l t  
from  only a few  major  storms. The major  sources of w in te r   mo i s tu re   fo r   t he  
area are P a c i f i c  a i r  masses on southwes ter ly   and   nor thwes ter ly   t ra jec tor ies .  
Of t h e  two, southwester ly   f low  general ly   provides   the  most   intense  s torms.  

The Arkansas  basin is similar t o   t h e  Rio  Grande.  Valley  f loor  elevations 
are between  8,000 f t  (2,438 m) and 9,000 f t  (2,743 m) and rise t o   h e i g h t s  of 
14,400 f t  (4,389 m). Mean annua l   p rec ip i t a t ion  varies between 10 i n  (25 cm) 
on t h e   v a l l e y   f l o o r   t o  40 i n  (102 cm) i n   t h e   h i g h e s t   r e a c h e s  of t he   bas in .  
The mountain snowpack produces  about 75 percent  of the  annual   f low.  

F igure  1 . 2  is a photomosaic of the   s tudy  area produced  from  Landsat  imagery 
taken  August,  1978. It has   been  reduced  to  66 percent  of i t s  o r i g i n a l   s c a l e  
of 1:1,000,000  yet ,   provides   an  excel lent  means  of r e l a t i n g   t h e   b a s i n s   i n  
the i r   geographic  and topograph ic   s e t t i ng .  

Area ve r sus   e l eva t ion   cu rves   fo r   each  of t h e   s i x   s t u d y   w a t e r s h e d s  are con- 
t a i n e d   i n  Appendix I. The curves are use fu l   i n   desc r ib ing   t opograph ic  
d i v e r s i t y  of the   watersheds ,  and are h e l p f u l   i n   e x p l a i n i n g   t h e   r e s u l t s  of 
f o r e c a s t i n g   e f f o r t s .  

Accura te   forecas ts  of streamflow  in  both  the  Rio  Grande  and  Arkansas  basins 
are e s s e n t i a l   f o r  several r easons .   Agr i cu l tu ra l   i n t e re s t s   wh ich   r e ly  upon 
t h e  snowmelt waters f o r   i r r i g a t i o n   r e q u i r e   p l a n n i n g   i n f o r m a t i o n  on t h e i r  
p rospec t ive  water s u p p l y   t o   e f f e c t i v e l y  manage the i r   opera t ions .   Secondly ,  
waters of both streams are regu la t ed  and d i s t r i b u t e d   a c c o r d i n g   t o   i n t e r s t a t e  
compact  agreements  between  Colorado  and  downstream states. Adminis t ra t ion 
of t h e  compact agreements   in   an   equi tab le  and t imely manner  depends  upon 
r e l i a b l e  estimates of streamflow  both  before  and  during  the  runoff  season. 
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Figure 1.2 Photomosaic of Colorado ASVT Study  Watersheds. 
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SECTION 2: SNOWMAPPING  PROCEDURE 

Introduction 

During  the  period  of  the  study  seven  standard  methods  of  mapping  snowcover 
were  investigated  on  one  or  all  watersheds.  They  included  zoom  transfer 
scope,  low  level  aerial  photography,  density  slicing,  color  additive  viewer, 
computer  assisted  classification,  grid  sampling,  and  National  Oceanic  and 
Atmospheric  Administration/National  Environmental  Satellite  Service  (NOAA/ 
NESS)  basin  snowcover maps prepared  by  Mr.  Stanley  Schneider.  Each  of  these 
methods  had  some  advantages  and  disadvantages. In  addition,  an  index  base- 
line  method  for  making  snowcover  estimates  from  partially  snow  obscured 
imagery  was  developed. 

Zoom . . .  Transfer  Scope 

The zoom  transfer  scope  was  the  primary  snowmapping  tool  and  the  standard 
against  which  the  performance  of  other  techniques  was  judged. A l l  mapping 
was  accomplished  using  multispectral  scanner  (MSS)  Band 5 (0.6-0.7Am) 
because of  the  high  contrast  apparent  between  snow  and  other  terrain  fea- 
tures.  This  instrument  allows  the  operator  to  simultaneously  view  a  Landsat 
image  and  a  base  map  of  the  drainage  he  is  mapping.  A  variable  magnifica- 
tion  feature  allows  the  operator  to  compensate  for  differences  in  scale 
between  the  image  and  the  base  map.  In  Colorado  mapping  was  done  at  a  scale 
of 1:250,000 from  Landsat 1:1,000,000 positive  transparencies.  Manual  snow 
mapping  from  Landsat  images  is  somewhat  subjective  due  to  the  image  resolu- 
tion  and  watershed  conditions.  Cloud  cover,  vegetative  cover,  slope,  aspect, 
sun  angle  and  snowpack  conditions  call  for  judgments  by  the  image  interpreter 
as to  the  placement  of  the  snow  line.  To  reduce  this  subjectivity so that 
consistent  results  could  be  achieved,  a  rigid  set  of  interpretation  parameters 
were  established  and  followed.  These  parameters  vary  for  individual  water- 
sheds  as  their  characteristics  vary.  Parameters  were  developed  by  exarnina- 
tion  of  a  number of Landsat  images  depicting  a  wide  range  of  snow  conditions 
and  watershed  characteristics. 

The  following  set of basic  image  interpretation  parameters  were  developed 
for  the 

1. 

2. 

3 .  

4 .  

Colorado  ASVT  study  area: 

A definite  mappable  snow  line  is  assumed  to  exist  although  it  may 
be  interrupted  by  tree  cover,  clouds,  shadows  and  other  natural 
obstacles. 

In  areas  of  open  country  and  thin  forest  cover  where  the  snow  line 
is  easily  differentiated,  the  snow  line  is  mapped  as  it  appears. 

Isolated  patches  of  snow  must  be  mapped  separately  from  the  main 
snowpack  unless  they  are  very  close  to  the  true  snow  line.  Then, 
they  can  be  included  in  the  main  pack. 

Isolated  patches  of  snow  smaller  than .01 in2  or 100 acres  at a 
scale of 1:250,000 are  disregarded  unless  they  can  be  grouped. 
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5. 

6 .  

7. 

8. 

9.  

10. 

11. 

Once the 

Vertical and near  ver t ical  walls on  canyons  and  mountains are 
assumed t o   b e  snow covered  provided  they are above  the snow l i n e ,  
This  may n o t   b e   t r u e   i n   r e a l i t y ,   p a r t i c u l a r l y  on  windward  and 
south-facing  s lopes  or  i n  la te  season,   but   they  have a r e l a t i v e l y  
small area and  have l i t t l e  e f f e c t  on hydro logic   cons idera t ions .  

For  steep  slopes  with  north  aspect  and  deep  shadows,  snowcover may 
be masked.  However, i f  snow is v i s i b l e  a t  the   base  of  such  slopes,  
t he   s lope  is considered  to   be  100  percent  snow covered. 

For s t eep   s lopes   w i th  a sou th   a spec t ,   t he  snowpack is  gene ra l ly  
ev ident   un less  tree covered   or   rock/so i l   re f lec tance   approaches  
t h a t  of snow. In  such cases, i n d i r e c t  means must be employed t o  
determine snowcover  such as low a l t i t u d e  aer ia l  photography  or 
ground t ru th .   I f   such   da ta   cannot   be   ob ta ined ,   the   t echnique   used  
for   de te rmining  snowcover  under trees may be   appl ied .  

For areas of dense tree cover  and  repeated  annual  snowcover 
p a t t e r n ,   t h e  snow l i n e  can be est imated by the   fo l lowing  method. 
Open patches of tree cover ,   adjacent   barren  s lopes  or   c leared  cuts  
can  be  used  to estimate t h e   e l e v a t i o n  of t h e  snow l i n e .   I f  enough 
such  c leared areas e x i s t ,  a b e s t   f i t   c o n t o u r   l i n e  may be  used  to  
connect   these known p o i n t s   t o   e s t a b l i s h  a snow l i n e .  

Previous snow maps of similar snow l i n e s  may b e   r e f e r r e d   t o   i n  
o r d e r   t o   f i l l   i n   b l a n k   s e c t i o n s .  

Areas of poss ib l e  snowcover are not   inc luded   un less   p rev ious  snow 
maps i n d i c a t e   t h a t   t h e r e  i s  a v e r y   h i g h   p r o b a b i l i t y   t h a t  snow 
e x i s t e d   i n   t h e  area under similar condi t ions ,  o r  t h e r e  is  another  
means of s u b s t a n t i a t i n g   t h e   f a c t .  

If s t a n d a r d   i n t e r p r e t a t i o n  methods  prove to   be   inadequate ,   the  
method t h a t  works best  should  be  standardized  and  documented. To 
in su re   cons i s t ency ,  a l l  i n t e r p r e t e r s   s h o u l d   u s e   t h i s  method. 

snow areal extent  has  been mapped f o r  a watershed,   the  area is 
p lan ime te red   t o   de t e rmine   t o t a l  snow area. A l l  areas mapped are  i n c l u d e d   i n  
t h i s   t o t a l   r e g a r d l e s s  of s i z e .  

T i m e  requi red   to   p roduce  a snow map varied  from a minimum of one  hour up t o  
a maximum of four  hours  depending upon t h e   s i z e  of drainage and incidence of 
cloud  cover.  Average times were on the  order  of two and  one-half  hours p e r  
drainage.  

Major  advantages of t he  zoomscope are i ts  s i m p l i c i t y  of opera t ion ,  re la t ive 
inexpens iveness ,   shor t   t ra in ing  time fo r   u se ,  and  speed i n  which  mapping 
could  be  done. A major  disadvantage is t h e   r e s t r i c t e d   f i e l d  of  view  requir- 
i n g   s e v e r a l   r e g i s t r a t i o n s   a n d / o r  images f o r   l a r g e   d r a i n a g e s .  
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Aerial  Photography 

Low a l t i t u d e  ae r i a l  photography w a s  acquired  from a l i g h t   a i r c r a f t   u s i n g  a 
handheld 70mm Hasselblad 500 EL/M wi th  a lOOmm l e n s .  Aerial photography w a s  
f i r s t  used i n   t h e  program i n   A p r i l  1976,  and aga in   dur ing   the   1978 snow 
season. The photography w a s  i n t ended   t o   a id   i n   i n t e rp re t ing   Landsa t   images  
and for  documentation of s p e c i f i c  problem areas f o r   v a r i o u s  snow condi t ions .  
Low a l t i t u d e   o b l i q u e  aerial  photography  proved  valuable   in   resolving  the 
following  problems: snow under  coniferous tree cover,  shadow areas i n  deep 
canyons  and  on  north  aspect   s lopes,   landsl ide areas and   bare   boulder   f ie lds ,  
and in   deciduous  forest   (aspen)   where  bare  trees caused a s h i f t   i n   g r a y   t o n e  
to   resemble  rock  or   bare   ground.  

During  the  1978 snow season aer ia l  photography w a s  u sed   i n   con junc t ion   w i th  
the   Index   Base l ine  Method of e s t ima t ing  snow cove r   t o  estimate snowcover f o r  
the  Conejos  River  Basin. Two estimates of snowcover were made Apr i l  3 and 
A p r i l  13. A i r c r a f t  estimates were consis tent ly   lower  than  s tandard  Landsat  
snow mapping  measurements,  but are s u f f i c i e n t l y   a c c u r a t e   f o r   u s e   i n  most 
ana lyses .  

Density S1 ic ing 

Dens i ty   s l i c ing   t echn iques  w e r e  a l s o   i n v e s t i g a t e d  a t  t h e  U.S. Bureau  of 
Reclamation (USBR) Remote Sens ing   Labora tory   in   Denver .   Di rec t   ass i s tance  
f o r   t h i s   p r o j e c t  w a s  provided by M r .  Robert  Hansen, Remote Sens ing   Spec ia l i s t  
w i th   t he  USBR. I n   t h i s  method a pos i t ive   Landsa t   t ransparency  i s  l a i d  on a 
l i g h t   t a b l e   w i t h   a n  opaque mask covering a l l  bu t   t he   d ra inage   bas in   t o   be  
mapped. A camera records   the   var ious   shades  of gray  and  breaks them down 
i n t o  1 2  d i s c r e t e   l e v e l s  which are displayed on a mon i to r   i n  1 2  f a l s e   c o l o r s .  
S ingle   o r   mul t ip le   co lors   which   the   opera tor   th inks   matches  what  he  believes 
t o   b e   t h e  snow covered area  are e l ec t ron ica l ly   p l an ime te red  and repor ted  as 
a percent  of t he   bas in  area. A major  advantage  of  this  system i s  the  speed 
with  which a basin  can  be mapped. Unfor tuna te ly ,   in   bas ins   having  a dense 
fores t   cover  it is  d i f f i c u l t   t o   d i s t i n g u i s h  snow under trees; e r r o r s   a l s o  
a r i se  from  highly  ref lect ive  surfaces   such as boulder   f ie lds   above  t imber-  
l i n e  which  appear much l i k e  snow t o   t h e  machine.  Reliable mapping  and 
i n t e r p r e t a t i o n  of r e s u l t s  is dependent upon t h e   o p e r a t o r ' s   f a m i l i a r i t y   w i t h  
the   bas in .  A t  bes t ,   the   sys tem i s  prone   to  a r a the r   h igh   deg ree  of machine 
e r r o r  as w e l l  as error   induced by opera tor   dec is ion  on snow c l a s s i f i c a t i o n  
r e l a t i v e   t o   t h e  1 2  d i s c r e t e  mapping co lo r s .  

Color  Additive Viewer 

A color   addi t ive  viewer   provided by the  U.S. Bureau  of  Reclamation  which 
uses   four  70mm t r anspa renc ie s   co inc id ing   w i th  MSS bands 4 ,  5, 6 ,  7 w a s  used 
t o  map snow areal ex ten t .  M r .  Robert Hansen provided  guidance  and  technical 
s u p e r v i s i o n   f o r   t h i s   t e c h n i q u e .   I n   t h i s  method the   fou r   ch ips  are r e g i s t e r e d  
wi th  one  another   to   produce  e i ther  a f a l se   co lo r   i n f r a red   compos i t e   o r  a 
na tura l   co lor   composi te  a t  a scale of 1:500,000. A mylar  overlay  base map 
is then  used  for   manual ly  mapping t h e  snow covered area. The snow areal 
e x t e n t  i s  t h e n   e i t h e r  computed  by  hand p l an ime te r   o r   an   e l ec t ron ic   p l an i -  
meter such as tha t   found   i n   t he   dens i ty  slicer. Mapping  and i n t e r p r e t i n g  
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times are similar t o   t h e  zoom t ransfer   scope .  A major   advan tage   i n   t h i s  
technique is i t s  ease i n   s e t t i n g  up and  producing a snowcover map. Since 
t h e  70mm ch ips   a r r ived  as much as two t o   t h r e e  weeks  ahead  of  standard 
Landsat  imagery,  the  t imeliness of t h i s   t e c h n i q u e  is  ano the r   s ign i f i can t  
advantage. The only  major  disadvantage of t h i s   s y t e m  i s  t h e   r e l a t i v e l y   h i g h  
cost   (about $15,000) of the  instrument .  

Computer  Assisted  Classification 

Two d i g i t a l  computer  techniques were explored  using  computer  compatible 
tapes  (CCT) of Landsat  scenes.  The f i r s t  of t h e s e  computer  techniques w a s  
completed a t  the  EROS Data Center i n  Sioux  Falls,   South  Dakota  on  the Image 
100 in t e rac t ive   sys t em by M r .  Jack  Washichek. A second  run w a s  made of t h e  
same scene a t  Colorado State Univers i ty  by D r .  James Smith  using  the CDC 
6400 computer to   produce  grayscale  maps of snow covered areas. Both  computer 
processes   requi red  a g r e a t   d e a l  more e f for t   than   any   o ther   p rocedure  attem- 
p ted   in   the   Colorado  ASVT study.  Once the   appropr i a t e  C C T ' s  w e r e  ob ta ined ,  
i t  w a s  necessa ry   t o  combine,  sample,   geometrically  correct  and  register them 
t o  a spec i f i c   wa te r shed   p r io r  t o  ana lys i s .  The  Image 100 u t i l i z e s  a so- 
c a l l e d   s u p e r v i s e d   c l a s s i f i c a t i o n  mode employing  "training sets'' s e l e c t e d  by 
the   ope ra to r   t o   t each   t he  computer t o   r ecogn ize   t e r r a in   cove red  by  snow. 
The  computer o p e r a t o r /   i n t e r p r e t e r   t h r o u g h   h i s   p r i o r  knowledge  of  what 
c o n s t i t u t e s  snowcover i n  a s p e c i f i c   b a s i n  is  inva luab le   i n   p roduc ing  a 
reasonable  snowcover estimate. The a n a l y s i s  a t  CSU involved a somewhat 
d i f fe ren t   approach   than   the  Image 100. This  method r e l i e d  upon a semi- 
s u p e r v i s e d   c l a s s i f i c a t i o n  scheme incorporat ing  user   def ined  confidence 
i n t e r v a l s   f o r   c l a s s i f y i n g   g r o u p s  of s p e c t r a l   d a t a  as snow o r  non-snow 
according  to   a lgori thms  specifying  upper   and  lower  grayscale   boundaries .  
Both t h e  Image 100 and CSU analyses  were awkward and  expensive  in  terms of 
time and money f o r   t h e   s p e c i f i c  tests conducted. Estimates of  computer 
c o s t s   f o r   a n a l y s i s  of one  scene  for  the  Conejos  River  drainage w a s  $500 and 
$750, r e spec t ive ly .  Both  techniques are q u i t e   s u c c e s s f u l   i n   c l a s s i f y i n g  
snow i n  open areas, bu t   p roduce   suspec t   resu l t s  when a p p l i e d   t o  areas of 
heavy  forest   cover .  From an   ope ra t iona l   po in t  of view, i t  w a s  f e l t   t h a t  
t h i s  method d id   no t   l end   i t s e l f  w e l l  t o   t ime ly  and accu ra t e  snow mapping. 

Grid Sampl i ng 

A grid  sampling method w a s  at tempted on s e v e r a l   b a s i n s .   I n   t h i s   t e c h n i q u e  a 
g r i d  w a s  superimposed  onto  an image  and the  degree  of  snow cover   in   each  
c e l l  w a s  ass igned a va lue  of 1, .75, .50 or   .25   accord ing   to   the   subjec t ive  
judgment of t h e   i n t e r p r e t e r .  The c e l l s  were to t a l ed   t o   p rov ide   an  estimate 
of  snowcover.   This  method  did  not  prove  satisfactory  due  to  the  length of 
time necessary   to   p rocess   the  image  and the   poor   r ep roduc ib i l i t y  of r e s u l t s  
be tween  in te rpre te rs .  

NOAA/NESS Snowcover- Maps~ 

Snowcover maps of t he  Rio  Grande prepared by Stanley  Schneider of t h e  
National  Environmental S a t e l l i t e  Service w e r e  u t i l i z e d   t o   o b t a i n   a n  estimate 
of snowcover on smaller watersheds   inc luded   wi th in   h i s  mapped area. An 
over lay  of a small watershed was superimposed  on M r .  Schneider 's  map and 
snowcover t raced  onto it. This  map w a s  then  planimetered  to  produce a 
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snowcover  estimate. A s  expected,  tests  revealed  that  the l o s s  of  detail 
inherent  in  this  technique  led  to  poor  estimates  of  snow  areal  extent  for 
basins  with  drainage  areas  of  several  hundred  square  miles. 

Comparison  Summary 

Table 2.1 provides  a  comparison  of  some  trials  of  the  above  mentioned  snow 
mapping  methods. In all  cases,  it  appeared  that  the  zoom  transfer  scope 
technique  yielded  the  most  accurate  and  reliable  estimates  of  basin  snow- 
cover;  additionally,  it  was  the  easiest  to  use. 

Table 2.1 
Comparison  of  Six  Methods  of  Snow  Mapping  Performed  in  the 

Colorado ASVT Study 

Image  Date 
" " 

May 12, 1974 
~" 

May 30, 1974 

June 3,  1975 

A p r i l  3,  197E 

A p r i l  13, 19; 
.~ " 

_, ~ 

r a i n a g e  
. 

Conejos 
A1 amosa 
South  Fork 
Rio  Grande 

Conejos 
Alarnosa 
South  Fork 
Rio  Grande 

Alamosa 
Conejos 

South Fork 
Rio  Grande 

Conejos 

1:onejos 
. I  

A e r i a l  
Photo-  
9 r a  P hY" 

a7 

81 
.. ~ 

PI 
Zoom Trans 

Scope 
. .  . 

42 
51 

27 

16 
19 

6 
7 

47 
63 
30 
25 

28 

a9 

a4 

cent. I 
Addi  - 
C o l o r  

ti ve 

37 
39 
30 
8 

14 
19 
12 

3 

43 
44 
40 
20 

. . .. .. 

; in_Snow 
lens i ty 
jl i c e r  

. .  . - 

38 
35 
31 

6 

15 
17 
10 
2 

31 
28 
31 
9 

IC0 v e r  
G r i d  

22 

28 
11 

3a 

. "  

I mag< 
100 

1 
~ 

csu 
Comp 

12 

Index  Baseline ~ Method 

A method of measuring  snow  areal  extent  from  marginal  Landsat  images  where 
cloud  cover  is  the  primary  problem  was  needed. It was  found  that  none  of 
the  existing  methods  could  eliminate  the  deleterious  effect  of  cloud  cover 
for  direct  snowcover  measurements;  as  a  result  indirect  approaches  were 
investigated. 

One  approach  to  estimating  snow  area  was  presented  by  Haeffner  and  Barnes 
(1972). They  showed  that  snowcover  for  small  index  areas  in  one  mountainous 
watershed  could  be  used  to  accurately  estimate  snowcover  for  the  entire 
watershed  or  an  adjacent  similar  watershed  where  no  control  was  available. 
They  also  demonstrated  that  aerial  photos  could  be  used  to  make  snowcover 
measurements  for  the  small  index  areas.  Although  small  index  areas  are 
impractical  for  use  with  Landsat  images  because  of  image  resolution,  the 
same  principles  can  be  applied in a  somewhat  different  manner  by  substituting 
a  network of index  baselines  for  the  smaller  index  areas. 
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Examination of Landsat  images for   mountainous areas of Colorado  revealed 
numerous l i nes   cu t t i ng   d ra inage   bas ins   where   t he  snow s u r f a c e  i s  v i s i b l e .  
Many of these   l ines   can   be   connec ted   to   form a network  that  w i l l  cover  most 
dra inage  areas. L i n e s   v i s i b l e  on  Landsat  images  and clear of o b s t r u c t i o n s  
can  be  used t o  i d e n t i f y  snow l i n e   p o s i t i o n   w i t h i n  a bas in .  The snow l i n e  
pos i t ion   has   been  shown t o   b e   i n d i c a t i v e  of t h e  snow areal ex ten t  of a 
bas in  where snow r e g r e s s i o n   p a t t e r n s  are repea ted .  

Estimates of snow areal extent can  be made us ing  a basel ine  network by 
developing a t a b l e  of   index   va lues   re la t ing  snow l i n e   p o s i t i o n  on ind iv idua l  
base l ines   t o   t he   co r re spond ing  snow areal e x t e n t  of t he   bas in .  Once t h e  
t a b l e  of index   va lues   has   been   es tab l i shed ,   the  snow areal e x t e n t  estimate 
f o r  a new image i s  made by l o c a t i n g   t h e  snow l i n e - b a s e l i n e   i n t e r s e c t i o n s  
over   the  basel ine  network  and  referr ing  to   the  table   of   index  values   to  
find  the  corresponding  snowcovered area. Each b a s e l i n e  measurement wi th in  
a network  and  the  resul t ing snow areal ex ten t  estimate i s  independent of 
other   basel ine  measurements   and  the  associated snow areal ex ten t   va lues .  
Therefore ,   the   g rea te r   the  number  of baseline  measurements made, t h e   g r e a t e r  
w i l l  be   the  accuracy of t h e   o v e r a l l  estimate. 

The advantage of using a network of index   base l ines  is  that   the   network  can 
be   cons t ruc t ed   t o   cove r   t he   en t i r e   bas in  so  t h a t  some of t h e   l i n e s  are 
v i s i b l e  even  under a r e l a t ive ly   h igh   pe rcen tage  of cloud  cover.  An esti-  
mate of snow areal extent   can  be made i f   o n l y  a l i m i t e d  number  of snow 
l ine -base l ine   i n t e r sec t ions   can   be   i den t i f i ed .  

The method  of  indexed  baselines w a s  developed  on  the  assumption  that   within 
a bas in   t he  snow l i n e   r e g r e s s i o n  w i l l  f o l l o w   b a s i c a l l y   t h e  same p a t t e r n  
year -af te r -year .   Loca l   var iances   occur   in   the   pa t te rn   due   to   mesosca le  
meteorologic   inf luences  which  include  precipi ta t ion,  wind  and temperature .  
These  influences are gene ra l ly   sho r t  t e r m  and random i n   n a t u r e ,   t h e i r  
e f f e c t s  are temporary  and  cause  only  minor   var ia t ions  in   the snow l i n e  
regress ion .   For   th i s   reason ,   any   g iven   pos i t ion  on t h e  snow l i n e  i s  ind i -  
c a t i v e  of t h e   t o t a l  snow areal ex ten t   over   the   bas in  a t  t h e  time of  measure- 
ment. 

Once the  snow l ine   r eg res s ion   pa t t e rns   have   been   e s t ab l i shed   fo r  a dra inage  
bas in ,  a network of indexed   base l ines   can   be   devised   tha t   accura te ly   descr ibe  
t h e  snow l i n e   r e g r e s s i o n .   S e l e c t i o n  of l i nes   fo r   an   i ndexed   base l ine  
network  should  conform  to a d e f i n i t e  se t  of c r i t e r i a .  The f o l l o w i n g   c r i t e r i a  
are suggested: 

a.  Lines w i l l  include  measured snow courses ,  when poss ib l e .  

b .   L ines   mus t   be   v i s ib l e   ove r   t he i r   en t i r e   l eng th .  

c .   Lines  must r e p r e s e n t   s i g n i f i c a n t   p a t h s  of  repeated snow reg res s ion ,  

d. A s u f f i c i e n t  number of base l ines  must   be  es tabl ished  within a 
dra inage   bas in  so  tha t   an   adequate  number  of base l ines   can   be  
measured  under  marginal  cloud  conditions. 
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e.  The  baseline  network  must  include  all  areas  of  significant  snowpack. 

f. Baselines  will  be  fixed  and  identifiable so that  repeated  accurate 
measurements  of  snow  line  position  can be made. 

g. The  terminal  point  of  a  baseline  should be located  at  the  last 
point  of  snow  remaining  prior  to  snowpack  disappearance  in  the 
basin  or  along  baseline  segments. 

Figure 2.1 is  an  example of a  network  of  baselines  for  the  Conejos  drainage 
basin  developed  using  these  criteria. 

Most of  the  baselines  in  the  network  were  determined  from  analysis  of 
Landsat  imagery  and  verified  by  ground  reconnaissance. A number  of  different 
terrain  features  were  found  suitable  for  index  baselines.  In  nearly  all 
cases,  the  index  lines  consist  of  areas  of  bare  ground  or  very  low  ground 
cover.  These  clear  areas  included  roads,  avalanche  paths,  clearcuts, 
landslides,  and  stream  courses. 

Index  values  relating  snow  line  regression  to  snow  areal  extent  of  a  basin 
are  straight  line  distances  measured  from  the  snow  line-baseline  inter- 
section  to  the  terminal  point  of  the  baseline.  The  following  operations 
must  be  performed  on  each  image  to  determine  index  values  for  the  baseline 
network : 

1. Interpret  and  outline  snow  areas. 

2. Measure  total  snow  area  of  the  basin. 

3. Superimpose  network of baselines  over  the  image. 

4 .  Make  baseline  distance  measurements  in  millimeters  from  the  snow 
line-baseline  intersection  to  the  baseline  terminal  point  for 
each  baseline. 

Operations 1 and 2 are  only  performed  in  order  to  build  the  table  of  index 
values.  Once  the  table  has  been  established,  the  only  image  interpretation 
required  to  make  a  snow  areal  extent  estimate  is  that  of  identifying  the 
snow  line-baseline  intersections. 

The  baseline  distance  from  snow  line-baseline  intersection  to  the  baseline 
terminal  point  can  be  made  directly on the  image  using  a  zoon  transfer 
scope  modified  with  an  eyepiece  graduated  scale  reticle  and  an  index  base- 
line  network  drafted  on  mylar. 

The  index  baseline  values  and  the  corresponding  snow  areal  extent  values 
for  the  Conejos  basin  are  tabulated  as  in  Table 2.2. 

Interpolation  between  index  values  for  a  single  baseline  is  possible,  but 
the  accuracy  of  such  an  interpolation  is  affected  by  the  difference  between 
the  measured  values,  the  rate  of  change  of  the  variables  affecting  snowmelt, 
changes  in  topography,  and  curvature  of  the  baseline.  For  these  reasons, 
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Figure  2 . 1  Selected  Index  Basel ine Network f o r   t h e  
Conejos River Drainage  Basin,  Colorado. 
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Table 2.2 

Conejos River Drainage Basin Snow Areal Extent:Baseline Index Values 
SNON COVER AREAL EXTENT, CONEJOS RIVER DRAINAGE BASIN 
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index  values  cannot  be  represented  by  a  single  relationship  or  a  simplified 
mathematical  formula.  The  method  is  empirical  in  nature  and  accuracy  can 
only be improved  by  repetition  of  baseline-snow  areal  extent  measurements 
over  the  entire  range  of  values  for  each  index  baseline. 

To  use  the  index  baseline  method  for  estimating  snow  areal  extent,  once  a 
table  of  index  values  has  been  established  steps 3 and 4 outlined  previously 
are  followed.  The  baseline  distance  value  thus  determined is compared  to 
the  table  of  index  values  for  each  baseline  and  the  corresponding  snow 
areal  extent  estimate  is  found.  This  procedure  is  followed  for  each  base- 
line  in  the  network  where  the  actual  baseline-snow  regression  line  inter- 
section  can  be  identified.  All  snow  areal  extent  values  are  then  averaged 
together  to  produce  a  single  snow  areal  extent  estimate  for  the  basin. 

The  fact  that  this  method  is  dependent  upon  establishing  a  data  base  of 
index  values  for  a  network  of  baselines  does  not  present  a  great  problem 
due  to  limited  Landsat  images  because  index  values  can  be  derived  from 
other  sources,  including  aerial  photography  and  possibly  from  NOAA  weather 
satellite  imagery.  The  index  baseline  method  has  proven  successful  in 
actual  practice. It does,  however,  take  considerable  time  to  build  a  table 
of  index  values  for  each  watershed,  and  also  to  make  baseline  measurements 
on cloud-obscured  images  for  operational  use.  The  practicality  of  this 
technique  for  any  particular  application  must  be  weighed  against  the 
criticality  of  obtaining  a  snowcover  estimate  and  the  number  of  watersheds 
to  be  analyzed  in  a  limited  time  frame. 

Problem Areas 

Throughout  the  four-year  period  from 1975-1978 difficulties  in  attaining 
the  avowed  goals  of  the  program  were  encountered.  For  instance,  delivery 
times  for  standard  Landsat  imagery  averaged  almost  one  full  month.  NASA 
Quick-Look  imagery  averaged  about 10 days.  Quick-Look  imagery  from  Inte- 
grated  Satellite  Information  Service  (ISIS)  in  Saskatchewan,  Canada  took 
five  days  during  the 1977 season.  With  these  types  of  delays  it  was  diffi- 
cult  to  implement  snowcover  into  operational  forecasts. 

A  high  incidence  of  cloud  cover  during  some  years  resulted  in  the loss of 
potentially  valuable  snowcover  estimates.  For  the  six  years  of  imagery 
processed, 40 percent  of  the  available  images  during  the  March-June  period 
were  unacceptable  due  to  cloud  cover.  Another 10 percent  were  partially 
cloud  covered  but  with  increased  interpreter  time  a  snowcover  estimate  was 
obtained.  Computer  printouts  which  specified  percent  cloud  cover  by  image 
were  not  reliable  for  use  in  determining  whether  an  image  was  suitable  for 
snow  mapping.  Some  images  with  cloud  cover  as  high  as 60 percent  were 
sometimes  usable  for  mapping. If historical  imagery  is  desired  for  mapping, 
all  available  dates  should  be  procured  regardless  of  cloud  cover. 

Changes  in  personnel  doing  the  snow  mapping  during  the  study  period  led to 
obvious  difference  in  judgment  as  to  what  constituted  snowcover.  Because 
of  this  personal  bias  some  undefined  degree  of  error  creeps  into  the  areal 
estimates  of  snow.  Four  of  the  six  watersheds  were  completely  remapped  by 
one  individual  to  reduce  this  source of error.  Accuracy  in  mapping  snowcover 
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is  certainly  desirable  albeit  difficult to measure.  More  important  than 
accuracy,  however,  is  consistency.  Without  consistent  interpretation  from 
one  observer  to  another  any  technique  is  bound  to  yield  questionable 
results. To obtain  the  level  of  consistency  felt  necessary  for a  meaningful 
analysis  only  two  interpreters  performed  final  mapping  in  the  Colorado 
study. A  handbook  of  interpretation  techniques  for  each  watershed  was 
developed  for  future  mapping  to  assure  as  high a  degree of standardization 
as possible. 

Snowcove-r ~ . . . . . - . . Depletion . . . . Curves 

All  usable  images  in  the  March-June  meltout  period  were  used  to  produce  the 
snowcover  depletion  curves  of  Figures  2.2  through  2.7.  A  summary  of  basin 
snowcover  interpretation  by  date  is  contained  in  Appendix 11. These  curves 
depict  the  gradual loss of  watershed  snowcover  during  the  primary  melt 
season.  Although  the  curves  were  developed  from  only  six  years  of  data, 
they  represent a fairly  wide  spectrum of hydrologic  conditions. A  fre- 
quency  analysis of streamflow  and  snow  course  data  reveal  that  the  drought 
conditions  which  prevailed  in  the  1977  season  have  a  recurrence  interval  of 
100 years.  The 1973  and  1975  seasons  were  relatively  high  and  had a 
recurrence  interval  of 10 years. 

Examination  of  the  snowcover  depletion  curves  shows a melt  sequence  which 
is similar  from  one  year  to  the  next  resulting  in  roughly  parallel  curves. 
The  displacement  of  the  curves  with  time  in  different  years  is  directly 
related  to  the  amount  of  water  stored  in  the  snowpack.  In  low  snowpack 
years,  melting  begins  and  ends  earlier  resulting  in  reduced  runoff.  In 
high  years  the  onset  of  melt  is  initially  retarded  owing  to  the  depth of 
the  snowpack  and  the  increased  energy  requirement  necessary  to  bring  the 
pack  to  isothermal  conditions.  Meltout  and  the  corresponding  runoff  are 
prolonged  accordingly. 

Snow  areal  extent  during  the  main  melt  period  is  thus  a  good  measure of the 
water  stored  in  the  snowpack,  and  the  volume  of  runoff  which  wil1,likely  be 
produced.  This  relationship  appears to be  valid  except  when  large  scale 
late  season  storms  significantly  alter  the  watershed  mean  areal  water 
equivalent.  Such  an  event  occurred  on  May 8,  1978.  Figure  2.6  shows 
effects  of  the  storm  in  the  form  of  displacing  the  snowcover  depletion 
curve  in  time  from  where  it  would  normally  have  been.  Events  of a lesser 
magnitude  have  little  effect  as  evidenced  by  the  same  storm  on  the  Arkansas 
(Figure  2.2)  which  did  not  change  appreciably  the  watershed  mean  areal 
water  equivalent. 
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Figure  2.2 Landsat  Derived  Snowcover  Depletion 
Curves f o r  Arkansas River. 
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Figure 2.4  Landsat  Derived  Snowcover  Depletion 
Curves f o r  South Fork Rio Grande. 
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Figure 2.5 Landsat  Derived  Snowcover  Depletion 
Curves  for  Alamosa  River. 
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Figure 2.6 Landsat  Derived  Snowcover  Depletion 
Curves for Conejos River. 
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SECTION 3: THE  GRAPHICAL METHOD OF ANNUAL RUNOFF PREDICTION 

Introduction 

The  graphical  technique  of  annual  runoff  from  snowmelt is empirical in 
nature,  and  is  based on the  relationship  of  snowcover  recession  derived 
from  Landsat  imagery to time.  The  method is  simple  and  demonstrates  the 
direct  application  of  Landsat  derived  snowcover  data to basin  runoff  pre- 
diction.  The  method  consists  of  two  graphs.  The  first  is  a  comparison  of 
time  and  percent of snow  areal  extent  for  a  given  basin  (Figures  2.2-2.7). 
The  second  graph  is  a  semilogarithmic  plot  of  annual  runoff  volume  for  the 
basin  and  linear  displacement  of  snow  area  recession  curves  measured  from 
the  first  graph  (Figure 3.1). Annual  streamflow  was  used in this  technique 
as  opposed  to  seasonal  runoff  because  of  the  operational  requirement  of  the 
Colorado  Division of Water  Resources  to  administer  streams  in  the  Rio 
Grande  Basin  on  a  calendar  year  basis  according to the  terms  of  an  existing 
interstate  compact. It was  appreciated  that  such  a  concession  would  likely 
lead  to  a  reduction in prediction  accuracy  due  to  the  lack  of  snowmelt 
contribution  to  runoff  in  late  summer,  fall  and  winter. 

DISTANCE  BETWEEN CURVES mm 

Figure  3.1  Annual  Runoff  Volume  vs.  Linear  Displacement  of  Snow 
Areal  Extent  Recession  Curves  (Figure 2.6) for  Conejos  River. 
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Annual  runoff  volume  is  read  directly  from  the  second  graph  in  acre-feet 
(cubic  meters).  The key to  making  the  method  work  is  timellness  and  con- 
sistency  of  snow  mapping  data.  Snow  areal  extent  data  is  derived  from 
standard  Landsat  imagery. 

The  graphical  method  was  successfully  applied  to  two  watersheds  in  the  Rio 
Grande  Basin  of  Colorado,  the  Conejos  River  and  South  Fork of the  Rio 
Grande.  The  method  was  also  applied  to  the  Arkansas  River  Basin  for  com- 
parative  purposes  in an effort  to  determine  the  limits  of  application. 

Conejos and South Fork 

Figure  2.6  for  the  Conejos  River  near  Mogote  is a family  of  similar  curves 
comparing  time  to  snowcover  remaining.  Each  curve  represents  a  snowmelt 
runoff  season.  Every  drainage  basin  studied  appears  to  have  a  unique  set 
of  curves, so that  a new set of curves  must  be  constructed  for  each  basin. 
Snowcover  data  interpreted  from  an  image  is  plotted  relative  to  the  time  of 
the  Landsat  pass.  As  the  snow  season  progresses,  each new data  point  is 
plotted  until  a  straight  line  segment  can  be  identified.  This  usually 
occurs  when  snow  area  remaining  on  the  basin  is  around 80 to 90 percent. 
Once  this  straight  line  segment  has  been  identified,  the  displacement 
between  the  new  curve  and  a  reference  curve  can  be  measured.  The  reference 
curve  may  be  the  maximum  volume  runoff  curve  or  some  convenient  curve 
common  to  the  family  of  curves.  Displacement  can be measured in any 
convenient  measurement  system  since  the  displacement  is  relative.  Mili- 
meters  were  used  in  this  study. 

At  first  glance,  the  curves  in  Figure 2.6 appear  to be stereotyped.  How- 
ever,  in  other  sets  of  curves  developed  for  different  watersheds,  this  is 
not  the  case.  Each  curve  is  unique  and  reflects  climatological  variations 
for  each  season.  The  straight  line  segments  common  to  all  of  the  curves 
are  not  necessarily  parallel  although  they  are  very  close  to  being  parallel. 
This  is  true  because  the  data  points  are  not  perfect  estimates  of  snow 
areal  extent,  and  weather  conditions  which  differ  appreciably  from  the  norm 
exert  their  influence.  The  straight  line  parts  of  the  different  curves  are 
a  best  fit  of  these  data  points.  Image  error  and  interpretation  error  are 
significant  and  to  a  great  extent  random. 

The  displacement  of  the  family  of  curves  has  been  found  to be  a  near  log- 
arithmic  relationship  with  total  annual  volume  of  runoff.  This  relation- 
ship  exists  for  two  study  basins  tested,  the  Conejos  River  and  South  Fork 
of  the  Rio  Grande.  When  the  displacement,  measured in milimeters,  is 
plotted  on  semi-logarithmic  paper  with  total  annual  runoff  volume  in  acre- 
feet (m3), a  near  straight  line  results.  Thus,  when  the  displacement  for  a 
new curve  can  be  measured  from  the  first  set  of  curves,  the  displacement  is 
plotted on the  semi-log  plot  and  total  annual  runoff  volume  is  read  directly 
in  acre-feet (m3). 

The  graphic  method  was  first  tested  on  the  Conejos  River  and  South  Fork of 
the Rio Grande  in  1977  with  a  high  degree  of  success.  The  lowest  annual 
flow  on  record  was  predicted  for  both  streams. 
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1977 Runoff  Predict ions - 

The  procedure  was  followed  for  making  a  prediction  of  annual  streamflow; 
however,  the  resulting  displacement  of  the  1977  snow  remaining  versus  time 
curve  fell  beyond  the  lower  limit  of  the  plot  in  Figure  3.1.  The  plot  was 
projected  to  the  displacement  value  and  the  value  of  annual  streamflow 
read.  Annual  flow  for  the  Conejos  River  was  found  to  be  approximately 
100,000 acre-feet  (122 x 106 m3). Actual  annual  streamf  low  was  78,000 
acre-feet  (951.3 x 105 m3). The  prediction  was in error  by  22,000  acre- 
feet  (268.3 x 105 m3) or  28%.  However,  average  annual  flow  for  the  river 
is 243,000  acre-feet  (296.4 x 106 m3) . If we compare  the  22,000  acre-feet 
(268.3 x  105 m3)  to  the  average  annual flow, error  appears  to be  relatively 
small,  or  about 9 percent. 

The  most  significant  fact  about  this  estimate  is  that  it  represents  a 
prediction  of  the  lowest  flow  on  record  for  the  Conejos  River.  The  lowest 
flow  recorded  was  104,000  acre-feet  (126.8 x 106  m3)  in  1934.  This  pre- 
diction  was  made  before  April 5, 1977  prior  to  the  snowmelt  season. 

Snow  areal  extent  data  for  South  Fork  is  shown  in  Figure  2.4.  The  dis- 
placement  between  the  curves  was  plotted  on  semi-log  paper  relative  to 
annual  streamflow  (Figure  3.2).  The  plot  resulted  in  a  nearly  straight 
line  relationship  similar to the  plot  for  the  Conejos  River.  By  using  the 
1977  snow  areal  extent  curve,  a  displacement  for  the  1977  snowmelt  curve 
was derived.  This  value  when  plotted  on  semi-log  paper  (Figure  3.2) 
resulted  in  a  predicted  annual  flow  of  53,800  acre-feet  (656.2  x  105 m3). 
Actual  annual  streamflow  for  South  Fork  was  51,721  acre-feet  (630.8  x  105 
m3) , a  difference  of  2,121  acre-feet  (258.7 x 104 m3). This  difference 
represents  an  error  of 4 percent.  The  average  annual  flow  for  South  Fork 
is  168,000  acre-feet  (204.9 x 106 m3)  for  26  years  of  record.  The  lowest 
flow  recorded  was  74,700  acre-feet (911.1 x  105  m3)  in 1940. Again,  the 
empirical  method  successfully  predicted  the  lowest  annual  flow  on  record 
for  a  stream. 

1978 Runoff  Predict ions 

In  1978  late  arrival  of  imagery  and  a  late  season  massive  snow  storm  had  a 
detrimental  effect  on  formulating  runoff  prediction  for  the  Conejos  River 
and  the  South  Fork. An annual  runoff  prediction  of  161,000  acre-feet 
(196.4 x  106  m3)  was  derived  for  the  Conejos  before  the  May 8, 1978  snow 
storm,  and  72,000  acre-feet  (878.2  x 105 m3)  for  the  South  Fork.  Total 
mean  areal  water  content  from  the  May 8, 1978  storm  may  have  been  as  much 
as 2 inches  (5.08  cm).  The  effects  of  this  storm  on  total  runoff  cannot  be 
fully  assessed  because  of  lack  of  adequate  recording  instrumentation. 
However,  the  Conejos  watershed  may  have  received  as  much  as  30,000  acre- 
feet  (366.9  x  105  m3)  in  the  form  of  snow. If 50% of  this  water  reached 
the  stream  as  runoff,  and  the  estimate  revised,  the  new  estimate  would  have 
been  176,000  acre-feet  (214.6  x  106  m3).  The  uncorrected  streamflow  esti- 
mate  for  the  Conejos  was  in  error  approximately  15,000  acre-feet  (182.9  x 
105  m3)  or  8.5%. 
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Figure 3.2 Annual  Runoff  Volume vs. Linear  Displacement of Snow  Areal 
Extent Recession  Curves for  South  Fork of the Rio Grande. 
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The May 8, 1978  storm  may  have  added  as  much  as  23,000  acre-feet  (281.0 x 
105 m3> of  water on the  South  Fork  watershed,  and  if  50%  of  this  water 
reached  the  stream  as  runoff , 11 , 500 acre-feet  (140.3 x 1051113) , the  revised 
estimate  would  have  been  83,500  acre-feet (101.8 x lO6m3). The  approximate 
annual  flow  for  South  Fork  was 97 , 000 acre-feet  (118.3 x lOh3).  The 
uncorrected  estimate  was  off  by  25,000  acre-feet  (30.8 x lO6m3)  or  26%,  and 
the  corrected  estimate  was  off  13,500  acre-feet (164.6 x 105m3)  or 14 
percent. 

It is  obvious  that  major  snow  storms  of  the  May 8 ,  1978 magnitude  must  be 
considered  in  any  snowmelt  runoff  prediction. How  much  weight  should  be 
given  to  such  a  storm  must  be  determined  at  the  time  of  occurrence.  Addi- 
tional  study  and  better  instrumentation  are  needed  before  an  effective 
method  of  revising  forecasts  using  the  graphical  method  can be developed 
for  the  basins  considered  in  this  investigation. 

Cumulative  Seasonal Flow - Snowcover RelationshiP 

Another  procedure  relating  basin  snowcover  to  accumulated  seasonal  stream- 
flow  was  tried  with  limited  success.  Plots  were  developed  for  each  of  the 
six  available  years  between  basin  snowcover  extracted  from  the  snowpack 
depletion  curves  of  Figures  2.2  through  2.7,  and  accumulated  seasonal 
runoff  on  each  study  watershed.  Figure  3.3  is  a  result  of  the  analysis  for 
the  Conejos  River  near  Mogote. 

It was hoped  that  a  family  of  type  curves  could  be  developed  which  would 
enable  forecasts  of  streamflow  to  be  made  at  any  point in the  snowmelt 
season  from  an  average  curve  given  knowledge  of  the  basin  snowcover  and 
streamflow  occurring  to  date.  Unfortunately,  such  a  wide  latitude  was 
exhibited  by  the  family  of  curves  developed  for  the  six  year  study  as  to 
render  this  procedure  unacceptable.  The  type  analysis  conducted  for  the 
Conejos  was  the  most  promising  of  all  those  completed  and  yet,  it  falls 
short  of  expectations. 

Arkansas  River 

The  graphical  method  was  also  applied  to  the  Arkansas  River  drainage  above 
the  Salida,  Colorado  stream  gage.  The  basin  differs  significantly  from  the 
Conejos  and  South  Fork  of  the  Rio  Grande  drainage  basins  in  size,  snowpack 
accumulations  and  watershed  characteristics.  Area  versus  elevation  profiles 
for  the  Arkansas  and  Conejos  (Appendix I) illustrate  the  topographic  dis- 
parity  between  the  two  basins.  Snow  conditions  in  the  Arkansas  are  signi- 
ficantly  affected  by  the  high  range  of  mountains  along  the  Continental 
Divide  of  the  western  boundary  of  the  valley.  This  range  of  mountains 
exceeds 14,000 feet (4267 m)  and  its  eastern  slopes  are  the  principal 
catchment  and  runoff  production  areas  for  the  Arkansas  River.  The  valley 
floor  and  a  large  part of the  east  side  of  the  valley  are  in  a  precipitation 
shadow,  and  in  the  south  and  eastern  parts  of  the  valley  near-desert  condi- 
tions  prevail. 

A  graphical  runoff  analysis  performed  using  the  snowcover  depletion  curves 
of  Figure  2.2  did  not  produce  the  same  relationship  of  total  annual  flow  as 
found  in  the  other  basins  studied.  A  set  of  snow  areal  extent  versus  time 
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curves were developed  for   the  Arkansas  River @figure 3 . 4 )  by f o r c i n g   t h e  
d a t a   i n t o  sh i la r  curves   wi th  a s t r a i g h t   l i n e  segment.  These  curves  did 
d i sp lay   t he   bas i c   r e l a t ionsh ip  of snow areal e x t e n t  and t i m e  t o   t o t a l  
annual   f low  wi th   the   except ions   tha t   the   curve   for  1978 w a s  ou t  of o rde r ,  
and   the   re la t ionship   be tween  curve   d i sp lacement   and   to ta l   annual   f low w a s  
n o t  a near   logar i thmic   func t ion   (F igure  3.5). 

There are a number of p o s s i b l e   e x p l a n a t i o n s   f o r   t h e   n e g a t i v e   r e s u l t s .  The 
g raph ica l  method may n o t   b e   v a l i d   f o r   b a s i n s  as l a r g e  as the  Arkansas ,   or  
the  Arkansas may be a bas in   wi th   un ique   watershed   charac te r i s t ics   which  
p reempt   an   ana lys i s   o f   t h i s   t ype .  

Results 

The g raph ica l   p rocedure   fo r   p red ic t ing   annua l   f l ow  us ing   Landsa t  snowcover 
estimates can   be   cons idered   an   inexpens ive   and   fa i r ly   re l iab le   p rocedure ,  
p a r t i c u l a r l y   i n   r e g i o n s   l a c k i n g   h i s t o r i c a l   p r e c i p i t a t i o n  and snow course 
records .   Graphica l   methods   have   def in i te   l imi ta t ions   in   appl ica t ion   to  
la rge   bas ins ,   in   account ing   for   abnormal   weather   condi t ions ,   and   in   account -  
i ng   fo r   va r i ab le   wa te r shed   cha rac t e r i s t i c s ,   such  as subsoi l   mois ture .  
However, t h i s  is n o t   t o   s a y   t h a t   t h e  method cannot   be   appl ied   to  a wider 
range of dra inages   than   tes ted .  Each dra inage   bas in   appears   to   be   un ique  
and  must  be  approached  on a basin-by-basin  basis .  
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SECTION 4: STATISTICAL  TREATMENT  OF  SNOWCOVER IN FORECASTING 

Interbasin " Snowcover  Correlation 

The r e l a t i o n s h i p  of  snowcover estimates between  adjacent  and  nearby water- 
sheds w a s  explored  in   the  hope  of   reducing  the amount  of i n t e r p r e t e r  t i m e  
needed t o  map each   dra inage   separa te ly .  Snowcover c o r r e l a t i o n s   f o r  23 
common image d a t e s  were computed among a l l  wa te r sheds   i n   t he   s tudy  area and 
are shown i n   T a b l e  4.1.  

TABLE 4 . 1  

In t e rbas in   Cor re l a t ion  of Snowcover  Using 23 Common Image Dates 

r B a s  i n  

Arkansas 
Rio  Grande 
South  Fork 
Alamosa 
Cone j os  
Culebra 

i rkansas  

1 .0  

Cor re l a t ion   Coef f i c i en t  
Rio I South I 
Grande I Fork I Alamosa 

.90 

1.00 
.94  1.00 
.90 .97 1.00 
.85  .89 

I Conej o s  Culebra :t:i 
.95 

1.00 
1.00 

Table 4 . 1  shows tha t   exce l len t   to   modera te   re la t ionships   ex is t   be tween snow- 
cover estimates on the   va r ious   d ra inages .  The a n a l y s i s  shows a d i s t i n c t  
p r o b a b i l i t y   t h a t   s a t i s f a c t o r y  estimates of  snowcover  on adjacent   watersheds 
can   be   ob ta ined   i f   necessary ,   bu t  w i l l  be   sub jec t   t o  a varying  degree  of 
p rec i s ion .  The necessi ty   might   be  occasioned by cloud  cover  obscuring a 
watershed,   missing  images,   or   the   press  of t i m e  i n  making f o r e c a s t s  of 
streamflow. 

Sno-wLoler - Seasonal Vol ume  Correl  afions 

A s t a t i s t i c a l   a p p r o a c h  w a s  t a k e n   t o   e v a l u a t e   t h e   r e l a t i o n s h i p  of bas in  
snowcover to   seasonal   s t reamflow  product ion .  A s i m p l e   l i n e a r   r e g r e s s i o n  
a n a l y s i s  w a s  performed  between  watershed  snowcover on A p r i l  1, May 1, and 
June 1 and  April-September  streamflow. Snowcover v a l u e s   f o r   t h e   a n a l y s i s  
were derived  from  snowcover  depletion  curves of Figures  2.2-2.7.  Table 4 . 2  
i s  a summary of t h e   r e s u l t s .  
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TABLE 4.2 

Correlation  Between  Basin  Snowcover  and  April-September  Volume  Runoff. 

Bas  in 

Arkansas  near  Wellsville 
Rio  Grande  near Del Norte 
South  Fork  at  South  Fork 
Alamosa  River  above  Terrace  Res. 
Conejos  River  near  Mogote 
Culebra  Creek  at  San  Luis 

* Significant  at the 5% level. 
** Significant  at the 1% level. 

Number  of 
Observations 

6 
6 
6 
6 
6 
6 

~~ 

Correlation  Coefficient,  r 

April 1 

.9  6** 

.86* 

.79 

.85* 

.89* 

.24 

May 1 

.87* 

.98** 

.97** 

.95"* 

.97** 

.67 

~ 

June 1 

.89* 

.95*5 

.92*J 

.98*J 

.96*J 

.65 

"~ 

A  high  degree  of  correlation  is  apparent on all basins  with  the  exception 
of  Culebra  Creek.  A  possible  explanation  for  this  exception  may  lie  in  the 
fact  that  only 40 percent  of  the  watershed  is  in  the  main  water  producing 
zone  above 10,000 ft (3,048m) as  compared  to  between 65 and 80 percent  for 
all  other  watersheds  in  the  study.  (Area  versus  elevation  curves,  Appendix 
I). It is  also  the  only  watershed  studied  located  in  the  Sangre  de  Cristo 
mountain  range.  Streams  in  this  range  of  mountains  exhibit  characteris- 
tically  high  coefficients  of  variation  owing  to  the  reduced  snowmelt  contri- 
bution  to  seasonal  runoff.  Their  flow  can  be  substantially  influenced  by 
summer  convective  storm  occurrences.  Flows  at  the  stream  gaging  station  at 
San  Luis  are  also  affected  by  substantial  irrigation  diversions  upstream. 
A  summary of  monthly  streamflow  April  through  September  for  each  of  the  six 
study  basins  is  given  in  Appendix I11 for  the  period 1973 through 1978. 

In an  effort  to  increase  the  sample  size,  snowcover on May 1 for  Conejos, 
Alamosa  and  South  Fork  watersheds  were  pooled  and  a  correlation  run  against 
their  respective  April-September  flows  normalized  to  their 1963-77 averages 
(Figure 4.1). A  moderately  high  correlation  coefficient  of 0.92 and  a 
coefficient  of  determination  of 0.85 with  a  standard  error  of 18.5 percent 
resulted. 

Snowcourse  Index/Snowcover  Forecasts 

Although  a  strong  positive  correlation  is  evidenced  by  the  data  of  Table 
4.2 and  Figure 4 . 1 ,  it  is  instructive  to  compare  them  with  the  performance 
of  forecast  techniques  utilizing  only  snow  course  data,  and  with  techniques 
using  both  snowcover  and  snow  course  data.  Snowcover  and  snow  courses  both 
serve  to  index  watershed  moisture  stored in the  form  of  snow;  both  are 
accounting  for  much  the  same  proportion in streamflow  variance  and  are, 
therefore,  highly  intercorrelated.  One  possible  method  to  assess  their 
relative  contribution  in  explaining  the  variance  in  runoff  would  be  to 
perform  a  linear  multiple  regression  analysis  with  a  number  of  snow  courses 
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and  snowcover  as  predictor  variables.  Unfortunately,  the  length  of  record 
and  resultant l o s s  of  degrees  of  freedom  in  thls  study  was so short  as  to 
preclude  this  type  analysis. 

I 
SF= SOUTH FORK 
A = ALAMBSA 
C = CONEJOS 

OSF I 
40 60 

MAY 1 BASIN SNOWCOVER ( % )  

C 

.A 

r 2  = 0.85 

r : 0.92 

S.E. = 18.5 

1 0 0  

Figure 4 . 1  Pooled  Linear  Regression  Analysis  Between  Snowcover 
on  May 1 and  Normalized  April-September  Streamflow. 

An  alternative  approach  was  therefore  devised  which  would  give  an  indicat- 
ion of the  improvement  in  forecast  accuracy  which  might  be  obtained  by 
incorporating  snowcover  into  operational  forecast  techniques.  A  simple 
linear  regression  was  calculated  between  a  weighted  snow  course  index 
composed of snow  course  variables  currently  used  to  forecast  each  drainage 
on  May 1 and  April-September  flow  normalized  to  the 1963-1977 average. A 
second  regression  was  computed  relating  the  product  of  the  snow  index  and 
the  fractional  amount  of  basin  snowcover  on  May 1 to  the  normalized  runoff. 
Both of these  analyses  were  compared  to  the  regression  analysis  relating 
May 1 snowcover  and  streamflow  tabulated  in  Table 4 . 2 .  Table 4 . 3  presents 
the  results of  this  investigation. 

I 
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TABLE 4.3 

Simple  Correlat ion  Coeff ic ients   between  Indicated  Variables  and 
April-September Plow  Normalized t o  1963-1977  Average. 

Drainage 

brkansas 
Rio  Grande 
South  Fork 
Alamosa 
Cone j os  
Culebra 

Number of 
Observations I Variab le  

Weighted Landsat 

May 1 May 1 Index May 1 
and  Snowcover Snow Cover Snow Course 

Snow Index 
Combined 

- 

Cor re l a t ion   Coef f i c i en t ,  r 

0.9853;s; 
0.974** 
0.907"" 
0.941** 
0.979** 
0.881* 

L 

0.834 
0.9793c-k 
0.972** 
0.946** 
0.976** 
0.670 

0.895* 
0.998** 
0.981** 
0.998** 
0.999** 
0.874* 

* S i g n i f i c a n t  a t  5% l e v e l .  
** S i g n i f i c a n t  a t  1% level. 

F igures  4 . 2  t h rough   4 .7   g raph ica l ly   i l l u s t r a t e   t he   u se  of t h e  combined snow 
index / snowcover   va r i ab le   i n   exp la in ing   va r i ance   i n   s t r eamf low on t h e   s i x  
Colorado ASVT study  watersheds.  Streamflow i s  presented  as a normalized 
percentage of t he  1963-1977 average  April-September  flow  (See  Appendix 
111).  

An e x t r a o r d i n a r i l y  good r e l a t i o n s h i p  i s  evidenced  between  April-September 
flow and the  snow index/snowcover   var iab le .   In   four   o f   the   s ix   d ra inages ,  
a d d i t i o n  of snow covered area to   t he   fo recas t   p rocedure  improved the  accuracy 
over snow cour se   da t a   a lone ;   i n  one i t  decreased  accuracy,  and i n  one i t  
remained  unchanged.  This  would  lend  support t o   t h e  argument t h a t   u s e  of 
snowcover  could  lead t o   b e t t e r   f o r e c a s t s .  However, care must be   exerc ised  
i n  drawing  conclusions  from  such a small sample.   Given  the  data  in  hand, 
i t  appears   tha t  a one   pe rcen t   r educ t ion   i n   abso lu t e   e r ro r   cou ld   be   an t i -  
c ipa ted  by us ing  snow covered area in   cu r ren t   fo recas t   p rocedures  of  volu- 
metr ic   seasonal   f low.   This  i s  roughly   equiva len t   to  a 10 p e r c e n t   r e l a t i v e  
improvement in   ave rage   fo recas t   e r ro r   i n   t he   wa te r sheds   s tud ied .  
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Figure 4.2 Arkansas  River  near Wellsville May 1 Forecast   Equation 
, us ing  a Snow Course  Index  and  Landsat  Derived  Basin  Snowcover. 
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Figure 4.3 Rio Grande  near Del Norte May 1 Forecast 
Equation using  a  Snow  Course Index and 
Landsat Derived Basin Snowcover. 
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Figure  4.4 South  Fork  Rio  Grande a t  South Fork May 1 Forecast   Equation 
us ing  a Snow Course  Index  and  Landsat  Derived  Basin  Snowcover. 
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Figure 4.5 Alamosa River Above  Terrace  Reservoir  May 1 Forecast 
Equation using  a Snow  Course  Index and Landsat 
Derived  Basin  Snowcover. 
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Figure  4 . 6  Conejos River near  Mogote May 1 Forecast   Equation  Using a 
Snow Course  Index  and  Landsat  Derived  Basin  Snowcover. 
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Figure 4.7 Culebra  Creek at San Luis May 1 Forecast 
Equation using a  Snow  Course Index  and 
Landsat Derived Basin Snowcover. 
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Peak . F1 ow 

The  magnTtude  of  snowmelt  peaks  is  also  known  to  be  related  to  watershed 
snowpack. The  date  of  occurrence of the  maximum  daily  snowmelt  peak is 
plotted  on  the  snowcover  depletion  curves of Figures 2.2 through 2.7. Per- 
cent  snowcover  on  the  date  of  the  peak  flow was correlated  with  the  dis- 
charge.  Table 4.4 summarizes  the  results  of  this  analysis. 

TABLE 4.4 

Correlation  Between  Basin  Snowcover  on  May 1 and 

Basin 

Arkansas  near  Wellsville 
Rio  Grande  near  Del  Norte 
South  Fork  at  South  Fork 
Alamosa  Creek  above  Terrace 
Conejos  River  near  Mogote 
Culebra  Creek  at  San  Luis 

* Significant  at the 5% level. 
*Jc Significant  at the 1% level. 

_ .  

Maximum  Daily  Snowmelt  Peak. 

Number  of 
Observations 

~ ~~ 

6 
6 
6 
6 
6 
6 

Correlation 
Coefficient,r 

.88* 

.99"* 

.94** 

.96** 

.93** 

.81* 

A  high  correlation  between  peak  discharge  and  watershed  snowcover  is 
observed.  Correlations  range  from 0.81 on  Culebra  Creek  to 0 . 9 6  on Alamosa 
River.  This  relationship  is  of  sufficient  accuracy  to  be  considered  useful 
for  making  forecasts  of  peak flows. Making  a  forecast  of  the  date  when  the 
peak  will  occur  is  much  less  precise.  A  review  of  the  snowcover  depletion 
curves  in  Figures 2.2-2.7 shows  the  peaks  generally  occurring  in  a  range of 
about 15 percent  in  the  last  third  of  the  melt  period  with  only  a  few 
exceptions. 

Cost Analysis 

An  effort  was  made  to  identify  costs  associated  with  implementing  snowcover 
into  operational  streamflow  forecasting  programs.  Experience  gained  during 
the  course of the  study  was  the  yardstick  for  these  estimates.  Cost  were 
broken  down  into  three  major  categories:  image  procurement,  image  inter- 
pretation  and  forecasting.  Since  the  six  study  watersheds  were  nonuniform 
in  size  and  complexity  a  total  (dollar)  figure  was  calculated  for  the 
entire  group,  and an average  cost  per  basin  computed.  The  analysis is 
based on using  snowcover in forecasting  during  the  period  mid-March  to  mid- 
June.  Table 4.5 is  a  summary  of  these  costs. 
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TABLE 4.5  

Cost  Analysis  of  Employing  Snowcover  in  Forecasting 

Item 

Imagery  procurement 

Image  interpretation 

Forecast  procedure 

Remarks 

8 image  dates/season, 
5 framesldate 

2 man-dayslimage  set, 
16 man-days/season 

Four  forecasts 
2 man-days/forecast 

Total $1,800 

Total  Cost  for 
Six  Watersheds 

$400 

$800 

$600 

Cost Per 
Watershe 

$66.67 

$133.33 

$100.00 

$300.00 

The  figures  in  Table 4.5 assume  snow  mapping  performed  using  the  zoom 
transfer  scope  technique. No capital  investment  cost  for  purchasing  the 
zoom  transfer  scope  are  included.  Forecast  procedural  costs  are  based  upon 
using  a  combination  of  statistical  and  computer  simulation  techniques. 

The  $300/year/basin  figure  is  a  "ballpark"  estimate  predicated  on  two  major 
considerations: (1) Landsat  imagery  will  be  available  in  an  operational 
time  frame  (within 4 days  after  photos  are  taken),  and (2) forecast  proce- 
dures  have  been  developed  and  standardized  to  include  snowcover  data. In 
the  present  state of affairs,  the  first  consideration  has  not  been  met  but 
conceivably  could  be  if  institutional  arrangements  were  changed;  the  second 
consideration  is  partially  fulfilled  in  each of the  ASVT  study  areas,  but 
expansion  to  other  drainages  would  require  substantial  "start  up"  investment 
for  processing  the  appropriate  historically  available  imagery. 

Resu l t s  

Linear  regression  analyses  of  six  years  of  snowcover  data  on  six  watersheds 
reveal  that  snowcover  is  highly  correlated  with  seasonal  streamflow.  Com- 
bining  snow  course  water  equivalent  information  with  Landsat  derived  snow 
areal  extent  data  is  extremely  promising  as  a  forecast  tool  near  the  first 
of  May  when  melt  is  well  underway. It is  estimated  that  inclusion  of 
snowcover  into  current  multiple  linear  regression  forecast  techniques  would 
reduce  average  forecast  error  by 10 percent.  Forecasts  of  the  magnitude  of 
the  snowmelt  peak  flow  and  to  a  lesser  degree,  the  date  of  the  peak  can  be 
predicted  from  Landsat  snowcover  data.  An  estimated  cost  of  $300/year/ 
basin  is  projected  to  incorporate  Landsat  derived  snowcover  into  forecast 
procedures.  Timeliness  in  processing  and  receipt  of  Landsat  products  is 
the  biggest  hurdle  in  attempting  to  use  satellite  derived  snowcover  in  an 
operational  forecasting  program. 

42 



SECTION 5: CONCEPTUAL  FORECAST  MODELING  EMPLOYING  SNOWCOVER 

Computerized  Short-Term  Streamflow  Forecasting 

Statistical  and  graphical  methods  are  reliable  tools  for  making  seasonal 
forecasts.  However,  extensions of these  early-spring  forecasts  to  a  short- 
term  basis  using  such  methods  is  difficult  since  precipitation  and  meteoro- 
logical  conditions  during  the  ensuing  melt  season  can  vary  widely  from 
year-to-year.  Because  short-term  forecasts  which  respond  to  varying  hydro- 
meteorological  conditions  are  becoming  increasingly  important  in  water 
resource  management,  several  procedures  have  been  developed  for  making  such 
forecasts.  For  example,  one  method  used  by  the  National  Weather  Service  is 
the  "Extended  Streamflow  Prediction  (ESP)"  model  (Twedt,  et al, 1977). 

In  Colorado  the  Subalpine  Water  Balance  Model  developed  by  Leaf  and  Brink 
(1973a,  1973b) is being  used  for  making  and  updating  residual  streamflow 
forecasts.  Updating  of  this  model  during  the  snow  accumulation  season  is 
accomplished  by  means  of  the SCS Snow  Telemetry  (SNOTEL)  data  acquisition 
system.  During  the  snowmelt  season  when  snowcover  on  the  watershed  is  less 
than 100 percent,  forecasts  are  revised  on  the  basis of percent  snowcover 
and  associated  residual  water  equivalent. 

Subalpine . = . . . . . Water . . Balance . .  Model ~~ Forecasting  Procedure 

The  Subalpine  Water  Balance  model  was  developed  by  the  USDA  Forest  Service 
to  simulate  daily  streamflow.  This  model  simulates  winter  snow  accumula- 
tion,  the  shortwave  and  longwave  radiation  balance,  snowpack  condition, 
snowmelt  and  subsequent  runoff  on  as  many  as 25 watershed  subunits.  Each 
subunit  is  described  by  relatively  uniform  slope,  aspect,  and  forest  cover. 
The  simulated  water  balances  on  each  subunit  are  compiled  into  a  "composite 
overview"  of  an  entire  drainage  basin. 

Detailed  flow  chart  descriptions  and  hydrologic  theory  have  been  published 
(Leaf  and  Brink,  1973a, 1973'13). A  flow  chart of the  system  is  shown  in 
Figure 5.1. Operational  computerized  streamflow  forecasting  procedures 
which  utilize  the  Subalpine  Water  Balance  model  are  keyed  to  real-time 
telemetered  snowpack  (SNOTEL)  data  and  satellite  imagery.  Satellite 
systems  such  as  Landsat  and  near  real  time  data  acquisition  systems  like 
SNOTEL  are  used  to  update  the  model  at  any  time  by  means  of  "control 
curves"  for  a  given  drainage  basin  which  relate: 

1. Satellite  snowcover  data  to  residual  water  equivalent on the 
basin,  and, 

2. SCS  SNOTEL  data  to  area  water  equivalent on the  basin. 

Using  these  relationships,  simulated  residual  volume  streamflow  forecasts 
can  be  revised  as  necessary  to  reflect  the  current  meteorological  condi- 
tions  and  amount  of  snow. 
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Figure  5 .1   General  Flow Chart of Subalpine Water Balance  Model. 
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Model Cal ibration 

During   the   s tudy   per iod ,   the   Subalp ine  Water Balance Model w a s  c a l i b r a t e d  
t o  several index  watersheds  in  the  Rio  Grande  and  Arkansas River Basins as 
fo l lows  : 

1. Rio  Grande  Basin 

a. Conejos River near  Mogote 

b.  Culebra  Creek  near Chama 

c. Rio  Grande River above Wagonwheel Gap 

d.  South  Fork a t  South  Fork 

2. Arkansas  Basin 

a. Arkansas River above  Salida 

Maps of each  watershed are shown in   F igu res  5.2  through 5 . 6 .  A l l  are key 
headwa te r   t r i bu ta r i e s  which charac te r ize   the   hydro logic   reg imes  of t h e  two 
bas ins .   Table  5 . 1  summar izes   per t inent   geographic   charac te r i s t ics  of each. 

Dai ly   t empera ture   ex t remes   and   prec ip i ta t ion   in   the   subuni t s  of each  index 
watershed w e r e  es t imated by extrapolat ing  observed  temperatures  and p rec i -  
p i t a t i o n  a t  s e l e c t e d   b a s e   s t a t i o n s :  Wolf Creek Pass l E ,  North  Lake,  and 
Taylor  Park  (Table 5 . 2 ) .  Peak  snowpack  accumulation on the   index  water- 
sheds w a s  es t imated by ex t r apo la t ing  snow course   da ta   publ i shed  by t h e   S o i l  
Conservation Service. The SCS snow courses   used  in   making  the  peak es t i -  
mates for   each  index  watershed are shown i n   T a b l e  5 . 2 .  Where " (ad jus ted)"  
fol lows a p a r t i c u l a r  snow course,  area water equ iva len t s  on the   bas in  were 
est imated by means  of r e l a t ionsh ips   such  as Figure 5 . 1 3 .  On t h e  Upper Rio 
Grande  and  Upper  Arkansas  Basins, w a t e r  equiva len ts   f rom  the   var ious  snow 
courses  were not   ad jus ted .  

TABLE 5 . 1  

Geographic  Descriptions of Colorado ASVT Index  Watersheds 

Watershed 
and 

Subdivis ions 

:one j os  River 
1 
2 
3 
4 
5 
6 

X 
X 
X 
X 
X 
X 

4: 

Areal 
(km2) 

730 
66 
35 
97 
7 9  
62 

104 

Mean Elev. 
(m m.s.1.) 

3 , 200 
3 , 352 
3 , 505 
3 , 200 
3 , 200 
3 , 352 
3 ,352 

~~ 

Aspect 

SE 
SE 

. N N w  

E 
sw 

ESE 
~ _ _ _ _  NNE 

Slope 
% 

20 
34 
34 
28 
33 
25 
23 



TABLE 5 . 1  (Continued) 

Watershed 

Subdivisions 
1 and 1 Areal 

I t I I I 

I 
Upper  Arkansas 

1 ,  
2 X 

4 3 (11 Sub- X X x p p  X 
Units; 

- 1/ Total,  Forest,  Alpine and  Range. 

3,152 
1 , 0 4 2  

985 
482 
643 ! Mean Elev. 

(m m.s.1.) 

3,124 
3 ,200 
3 ,352 
3 ,200 
2 ,743 

Slope 
Aspect % 

~~ . 

SSE 
30 ENE 
30 

30 sw 
30 NE 

25 sw 

~ ~~ 
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TABLE 5.2 

Hydrometeorological Benchmark S ta t ions   fo r   Co lo rado  ASVT 
Index  Watersheds 

Watersheds 

Cone j o s  River 

Culebra  Creek 

Upper Rio  Grande 

South  Fork 

Upper Arkansas 

Temp. and  Ppt. 
Benchmark S t a t i o n  

Wolf Creek  Pass 1 E 

North  Lake 

Wolf Creek Pass 1 E 

Wolf Creek Pass 1 E 

Taylor  Park 

Benchmark 
Snowcourse(s) 

Upper  San  Juan  (adjusted) 

Culebra  (adjusted)  

Porcupine,   Pool  Table M t . ,  
Lake Humphry 

Grayback  (adjusted) 

Monarch P a s s ,  Gar f i e ld ,  
Trout  Creek Pass, 
Independence Pass, Twin 
Lakes  Tunnel,  Four Mile, 
Fremont Pass, Hoosier Pass 



CONEJOS NEAR MOGOTE 
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Figure 5.2 Conejos River near  Mogote  Showing  Division of Watershed 
into 10 Geographic Subdivisions for Hydrologic Simulation. 
A total of 20 hydrologic subunits  were simulated. 
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CULEBRA  CREEK  NEAR  CHAMA 
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Figure 5.3 Culebra  Creek  near  Chama  showing  division 
of watershed  into 6 geographic  subdivisions 
for  hydrologic  simulation. A total of 12 
hydrologic  subunits  were  simulated. 
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UPPER RIO  GRANDE AT WAGONWHEEL  GAP 
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Figure 5 .4  Upper Rio  Grande at Wagonwheel Gap  showing  division of 
watershed into 5 geographic subdivisions for  hydrologic 
simulation. A total of 10 hydrologic subunits were 
simulated. 
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SOUTH FORK AT SOUTH FORK 
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Figure  5.5 South  Fork  Rio  Grande a t  South  Fork  showing  division of 
watershed   in to  2 geographic   subdivis ions  for   hydrologic  
s imula t ion .  A t o t a l  of 4 hydrologic   subuni ts  were 
simulated.  
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ARKANSAS AT SALIDA 
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Figure 5.6 Arkansas River at Salida showing division of watershed 
into 4 geographic subdivisions for  hydrologic simulation. 
A total of 11 hydrologic subunits  were simulated. 
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Figures  5.7-5.11 show observed vs. s imulated  runoff  on a water-year   basis  
fo r   t he   f i ve   i ndex   wa te r sheds .  Areas of the  index  watersheds  vary  from  73 
mi2 (189 km2) on Culebra  Creek  near Chama t o  1218  m i 2  (3155 km2) on  the 
Arkansas River a t  Sa l ida .  The number of subun i t s   u sed   t o   cha rac t e r i ze  a 
given  watershed  varied  from 4 (South  Fork)  to 20 (Conejos  River).   This 
range of s i z e  and level of d e t a i l   h a s   i n d i c a t e d   t h a t   t h e  model  performs 
w e l l  on bo th   l a rge  and small  watersheds.  

A s  s e e n   i n   F i g u r e s  5.7-5.11, the  best   agreement  between  simulated and 
observed water y i e l d s  w a s  obtained on t h e  smaller watersheds.   Poorest  
r e s u l t s  w e r e  obtained on t h e  Upper Arkansas  and Upper  Rio  Grande dra inages .  
These  watersheds are large,   have more topographic   divers i ty ,   and  runoff  is 
considerably  inf luenced by i r r i g a t i o n  and r e s e r v o i r   s t o r a g e .  Data from 
t h r e e   t o  as many as e i g h t  snow courses  were r e q u i r e d   t o  estimate area water 
equiva len t  on the   l a rge r   bas ins   (Tab le   5 .2 ) .  

Having f ixed  model  parameters  for 1958-1971  on the  Conejos River, fou r  
subsequent  years (1972-1975) w e r e  then   used   for   va l ida t ion .   These   resu l t s  
are sliown in   Table   5 .3 .  

TABLE 5.3 

Observed vs. Simulated  Streamflow,  Conejos River, 1972-1975. 

Year 

1972 
1973 
1974 
1975 

O c t .  1 - S e p t .  30  Runoff i n   I n c h e s  (cm) I 
Simulated 

8.6 (21.8) 
20.1 (51.0) 
10.9 (27.7) 
18.4 (46.7) 

~~~ 

I - O b s e r v e d \  

8.0 (20.3) 
21.8 (55.4) 

9.5 (24.1) 
18 .2  (46.2) 

Forecasting System Design 

The way i n  which the  Subalpine Water Balance  model is  used  to   update  
s t reamflow  forecas ts  is  schemat i ca l ly   i l l u s t r a t ed   i n   F igu re   5 .12 .  The 
primary model response is  area snowpack water equ iva len t ,  and t h i s   v a r i a b l e  
is p l o t t e d  as a func t ion  of time in   F igu re   5 .12 .   Typ ica l ly ,   t he  snowpack 
b u i l d s   t o  a "peak" I n  the  l a te  spr ing .  To t h e   l e f t  of the  peak i s  t h e  
win ter  snow accumulation  season (100 percent  snowcover),  and t o   t h e   r i g h t  
i s  t h e  snowmelt runoff  (snowcover  depletion)  season. 

Control  Functions 

A s  seen  in   Figure  5 .12,   pr imary  control   of   the   hydrologic   moder   during  the 
win ter  months is from SNOTEL, whereas  during  snowmelt  runoff,  control  of 
t he  model de r ives   f rom  Landsa t .   I f   f i e ld   da t a   ob ta ined  from t h e s e  two 
sys t ems   i nd ica t e   t ha t   t he  model is over   o r   under   p red ic t ing   the  snowpack, 
measures  can  be  taken  through  use of t h e   c o n t r o l   f u n c t i o n s   t o  make t h e  
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CONEJOS RIVER NEAR MOGOTE 

1 - 1 1  ~ I I 1 -  -1 - 7  

Figure  5.7  Simulated vs. Observed  Runoff 
Conejos River 1958-1971. 
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CULEBRA CREEK NEAR CHAMA 
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Figure 5.8 Simulated vs. Observed Annual  Runoff 
Culebra  Creek  near  Chama, 1961-1972. 

55 

50 

-40  

v) 

-30 5 
t- 
W 
5 
t- 
W 
z 
- 

-20 0 

-10 

0 



UPPER  RIO  GRANDE AT WAGONWHEEL  GAP 
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Figure 5.9 Simulated vs. Observed Annual Runoff 
Upper  Rio  Grande at Wagonwheel  Gap,  1958-1971. 
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Figure 5.10 Simulated vs. Observed Annual Runoff 
South Fork at South Fork, 1973-1977. 
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Figure 5.11 Simulated vs. Observed Annual Runoff 
Arkansas River at Salida, 1970-1976. 
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appropr i a t e   co r rec t ion .   These   ad jus tmen t s   t o   t he  model are ca l led   "Targe t  
Water Equivalents" (TWE), and  can  be made as o f t e n  as f i e l d   d a t a  are 
received.  

Area . .  Water . Equivalent . .  vs. . . ~  Telemetered . "  Snow Course- . ~. (SNOTEL) .~ Data 

Figure  5.13 shows the   re la t ionship   be tween  the  Upper  San Juan snow course 
and  simulated snowpack water equiva len t  on the  Conejos River watershed. A s  
previously  discussed,   data   te lemetered  f rom a SNOTEL loca t ion   such  as Upper 
San Juan I s  t he   bas i s   fo r   upda t ing   t he   hydro log ic  model throughout   the snow 
accumulation  season. 

Re-sidual . .  . Water- . .  Equivalent . . . . vs. . Snowcover . . . Extent 

F igures  5.14-5.17 show p r e l i m i n a r y   r e l a t i o n s h i p s   d e r i v e d   f o r   f o u r  of t h e  
f ive   index   watersheds   us ing   the   Subalp ine  Water Balance  and  Landsat snow- 
cover  data.  It should   be   no ted   tha t   these   curves  w i l l  a lways   be   subjec t   to  
r e v i s i o n  as more d a t a  become a v a i l a b l e ,  and fo recas t ing   t echn iques  and 
methods for   de te rmining  areal snowcover ex ten t  are pe r fec t ed   fo r   each  
bas in .  A s  s e e n   i n   F i g u r e s  5.14-5.17 a "family"  of  snowcover-residual water 
equivalent   curves   has   been  developed  for   each  watershed.   During a year  of 
high snow accumulation,  the  uppermost  curve i s  used,  whereas i n  a dry   year  
t h e  lowermost  curve is used as t h e   b a s i s   f o r   a d j u s t i n g   r e s i d u a l  water 
equiva len ts .  

Results 

To i l l u s t r a t e   u s e  of t he   fo recas t ing   sys t em of Figure 5.12,  o p e r a t i o n a l  
s t u d i e s  were conducted  on  the  Conejos  River  during  1977  and  1978.  Both 
yea r s  were unique.  Runoff  during  1977 w a s  the  lowest  of r eco rd ,   and   i n  
1978 a large  spr ing  s torm  occurred  on May 8 when t h e  snowpack  on t h e  
Conejos w a s  almost 50 percent   depleted.   This   s torm  added  considerably  to  
the   runoff  and  extended  the m e l t  season  perhaps  three  weeks.  

1977 . . ~  Operational . . ~ ". Forecasts 

Figure  5.14 w a s  u s e d   t o   o b t a i n   t a r g e t  water equ iva len t s   du r ing   t he  1977 
snowmelt runoff  season.  Because  1977 w a s  the  lowest  runoff  year  of  record,  
t h e  lowermost  curve i n   F i g u r e  5.14 w a s  used.  Target Water Equivalents  
(TWE) were der ived   for   each   subuni t   based  on mapped snowcover estimates 
made on May 5,  1977. On t h i s   d a t e ,  snowcover ex ten t  w a s  20.4  percent,  
which  corresponds  to  a r e s i d u a l  water equiva len t  of approximately 2 i n .   ( 5  
cm) (Figure  5 .14) .  A s  seen  in   Table   5 .4 ,   which i s  the  computer  output 
summary, minor  but  important  adjustments were necessary   s ince   the   s imula ted  
water equiva len t  w a s  j u s t  2.9 i n   ( 7 . 3  cm) on April  30,  1977. 

Simulated  res idual   s t reamflow  subsequent   to  May 10, 1977 w a s  2.5 i n  (5 cm) 
(7.42-4.93).  Recorded  streamflow  through  September 30 w a s  2.7. i n  (6.8 cm). 
To ta l   runof f   fo r   t he  1977 water year  w a s  5.8 i n  (14.7 cm) as compared t o  a 
s imulated 7.4 i n  (18.8 cm) based on the   o r ig ina l   a s sumpt ions  of  snowpack 
water equivalent   (Table   5 .4) .  However, subsequent   cor rec t ions   us ing   the  
Target  Water E q u i v a l e n t   c a p a b i l i t i e s   i n   t h e  model s ign i f i can t ly   r educed  
e r r o r s   i n   t h e   r e s i d u a l   f l o w  estimates. 
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Figure  5.12  Colorado ASVT Short-Term Forecas t ing  Model Configuration. 
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Figure  5.13  Conejos River Simulated Peak Water Equivalent vs. Upper 
San  Juan Snow Course (SNOTEL). 
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Figure 5.14 Pre l iminary   Rela t ionship  Showing Residual  Water 
Equivalent  as a func t ion  of  percent snowcover  on 
the  Conejos  River. The  lowermost  curve w a s  der ived 
f rom  the  1978 snowmelt runoff  season. 
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Figure 5.15 Pre l iminary   re la t ionship   showing  res idua l  water 
equiva len t  as a function  of  percent  snowcover  on 
Culebra  Creek  near Chama. 
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Figure 5.16 Preliminary  relationship  showing  residual  water 
equivalent  as a  function of percent  snowcover 
on South  Fork at South Fork. 
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Figure 5.17 Prelimiary relationship showing  residual  water equivalent 
as  a  function of percent snowcover on  Arkansas River at Salida. 
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TABLE 5.4 
Conejos  River,  Rio  Grande  Drainaae  Basin 

Composite o f  20 Substa t ions  
(Data i n   i n c h e s )  

Date 

10/10/76 
10/20/76 
10/30/76 
11/10/76 
11  /20/76 
11  130176 
12110176 
12/20/76 
12130176 
1/10/77 
1  /20/77 
1 1 30177 
2/10/77 

QI 
Ln 

2/20/77 
3110177 
3120177 
3130177 
4110177 
4120177 
4130177 
5110177 
5/20/77 

Cur ren t  
Snowpack  Recharge 

W. E. Req. 

0.00 -2.05 
0.00 -2.26 

.26 -2.32 

. 1 1  -2.28 
,20 -2.29 
.83 -2.32 
.83 -2.31 
.82 -2.31 
.82 -2.36 

3.24 -2.36 
3.15 -2.31 
3.45 -2.34 
3.67 -2.37 
3.58 -2.37 
5.99 -2.28 
6.55 -2.24 
6.71 -2.19 
5.93 -1.55 
4.05 - .88 
2.86 - .64 

.89 - .59 

.65 - * 57 

P r e c i p  

.19 
0.00 

.29 
0.00 

.12 

.65 

.06 

.06 
0.00 
2.48 
0.00 

.32 

.23 
0.00 
3.00 

.82 

.41 

.87 
1.14 

.43 
0.00 
1.27 

5j30177  .42  -1.02 0.00 
6110177  .32  -1.57  .45 
6)20)77 
6130177 
7110177 
7120177 
7130177 
8110177 
8120177 
8130177 
9110177 
9120177 
9130177 

.32 

.36 

.ll 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

-2.37 0.00 
-2.37  -66 
-2.43  .38 
-2.67  .25 
-1.63  2.95 
-1.92  .66 
-1.33  1.80 
-2.07  .36 
-2.25  .33 
-1.56  1.97 
-2.00  .17 

"" I n t e r v a l   T o t a l s  - - - - - - 
Evapotrans  Generated 

I n p u t  From  Runoff 

.18 ,2071 C E 0.00 
0.03 .2145 E 0.00 

.c I .0840 C E 0.00 . 'I 5 . lo43  E  0.00 

.02 ,0396 C E 0.00 
0.09 .0583 C E 0.00 

.05 .0449 C E 0.00 . ( ~ 6  .0690 C E 0.00 
0.00 .04a6 E 0.00 
0.00 .0674 C E 0.00 

.09 .0327 E 0.00 
0.00 ,0457 C E 0.00 
0.00 .0478 C E 0.00 

.09 

.33 

.12 

.07 
1.27 
2.70 
1.46 
1.90 
1 . 4 2  

- 2 1  
.55 

0.00 
.57 
.64 
.36 

2.95 
.66 

1.80 
.36 
.33 

1.93 
. i 7  

-0517  E ,03 
.2774 CSE * 23 
,161  3 CSE .06 
,1966 CSE 0.00 
.4199 CSE .58 
.4777 CSE 1  .a7 
.4514 CSE .93 
.69a1 SE 1.22 
.a484 CSE .65 
.6549 SE .02 

1.0024 C E - 1 0  
.8067 E 0. 00 
.6049 C E 0.00 
,7010 E 0.00 
.5922 E 0.00 

1.1434 E .77 
,9560 E 0.00 

1.0119 E .09 
.5027 E 0.00 
,7306 C E * 54 
,6146 E 0.00 

.ga l7  E .32 

" " " _ "  Year t o  Date - - - - - - - - - - - 
Gen Change i n  

Prec ip  Input   Evapotrans  Runof f   Rechrg Rq 

.19 -18  .2071 0.00 
-19 

-.01 
.18  .4216 0.00 -.23 

.48  .19  .5056 0.00 -.28 
.48  .33  .6099 0.00 
60 

-.24 
.36  .6495 0.00 -.25 

1.25  .36  .7078 0.00 -.28 
1.31  .41  .7528 0.00 -.28 
1 .X .47  .8218 0.00 -.28 
1.36 * 47 .8704 0.00 -.33 
3  *R4  .47  .9378 0.00 -.33 
3.84  .56  .9704 0.00 -.27 
4.16  .56  1.0161 0.00 
4.39 

-.30 
.56  1.0639 0.00 -.34 

4.39  .64  1.1155  .03  -.34 
7.40  .97  1.3929  .26 
8.22 

-.25 
1.10  1.5543 * 32 

8.63  1.16  1.7508 
-. 21 

.32 
9.50  2.43  2.1707  .91  .48 

-.16 

10.63  5.13  2.6484  2.78  1.15 
11.06  6.59  3.0998  3.71  1.39 
11.06  8.48  3.7979  4.93  1.44 
12.33  9.90  4.6463 5.58 1.46 
12.33  10.11  5.3012  5.59  1.02 
12.78  10.66  6.3036 5.69  .47 
12.78  10.66  7.1102  5.69 
13.44  11.23 

-.34 
7.7151  5.69 

13.82  11.86 
-. 33 

8.4162  5.69  -.40 
14.07  12.22  9.0084  5.69 
17.02  15.18 

-.63 
10.1518  6.46  .41 

17.68  15.84  11  . lo78  6.46 .ll 
19.48  17.63  11.9895  6.79  .70 
19.84  17.99  13.0014  6.88  -.04 
20.17  18.32  13.5041  6.88  -.21 
22.13  20.25  14.2347  7.42  .48 
22.30  20.42  14.8493  7.42  .03 

Normal s imu la t i on   on l y ;  1 i n  = 2.54 cm 



TABLE 5.5 

Conejos  River,  Rio  Grande  Drainage  Basin 
Composite o f  20 Substations 

(Data in inches) 
Current 

Date Snowpack  Recharge  Evapotrans  Generated  Gen  Change in 
- " " " _  Interval  Totals - - - - - - - - - - - - - - - Year t o  Date - - - - - - - - - - - 

W.E. Req.  Prec i p  Input  From  Runoff  Precip  Input  Evapotrans  Runoff  Rechrg Rg 

10/10/77 0.00 -1.22 1 .24  1.24 .3009 C  E .12 1.24  1.24 I 3009 
10/20/77 0.00 0.00 ,3679 E 

.12 .82 
-1 -58 0.00 0.00 1.24  1.24 .6689 .12 .45 

10130177 
11/10/77 

0.00 
0.00 

.58 

.85 

.79  
1.41 
1.54 
2.58 
3.43 
3.76 

-1.90 0.00 
-1 * 91 .13 

0.00 
.12 

.3120 E 0.00 
-1454 C  E 0.00 

1.24 
1.36 
1.99 
2.54 
2.56 
3.32 
3.45 
4.54 
5.44 
5.79 
6.21 
7.13 

10.28 
11.03 

1.24 
1.35 
1.35 
1.65 
1.73 
1.82 
1.82 
1.82 
1.82 
1.82 
1.85 
1.85 
2.16 
2.16 

1.1263 
.9809 

1.2161 
1 .2898 
1 .3949 
1.4950 
1.5510 
1,6324 
1.6912 
1 ,7427 
1  ,8248 
1.9014 
2.2365 
2.3902 
2.6522 
3.1892 
3.6836 
4.0622 
4.7203 
5.4408 
6.1421 
7.2020 
8.0129 
8.4448 
9.0516 
9.6131 

10.0580 
10.2697 
10.4081 
10.5225 
10.5796 
10.6718 
11.2992 

.12 

.12 

.12 

.14 

.12 

.04 11/20177 
11 130177 
12110177 
12120177 
12130177 
1110178 
1120178 

Q\ 1130178 
2110178 
2/20/78 
3110178 
3120178 
31  301 78 
41 1 O/ 78 
4120178 
4130178 

0 

-1 .99 
-1 .76 
-1.81 
-1.82 
-1.87 
-1 .89 
-1 -91 
-1 .94 
-1.96 
-1.96 
-1 .85 
-1 .88 
-1.85 
-1.29 
- .05 
- .28 - .78 - .23 
- .51 
-1.41 
-2.23 
-2.30 
-2.78 
-2.54 
-2.06 
-3.00 
-3.05 
-3.12 
-3.15 
-2.35 
-1.72 

1 in = 2.54 cm 

.63 

.54 

.03 

.75 

.13 
1.10 

.89 

.35 

.42 

.93 
3.15 

.75 

.48 
2.37 
0.00 

.04 
5.29 
0.00 

.10 
0.00 
0.00 

.47 

.02 

.80 

.12 

.08 

.08 

.05 

.03 
1.39 
1.80 

0.00 .0898 C  E 0.00 
,0737 C  E .oo 
.lo51 C E -04 
.lo01 C  E .03 
,0560 C  E 0.00 
.0814 C  E 0.00 
.0587 C E 0.00 
.Os1 5 CSE 0.00 
.0821 CSE 0.00 

.29 

.09 

.09 
0.00 

.12 

.16 
-19 
.19 
.19 
.19 
.19 
.19 
.19 
.33 
.33 
.58 

2.00 
5.53 
6.09 
7.60 

.27 

.22 

.21 

.17 

.14 
.12 
.09 
.08 
.07 
.18 
.16 
.18 
.74 

1.99 
1.75 
1.25 
1.80 
1.52 

.62 - .19 - .27 
- .74 - .51 - .83 
- .96 
-1.02 
-1 .09 
-1.11 - . 3 2  

.32  

0.00 
0.00 
0.00 

.03 4.11 
4.97 0.00 

.31 
0.00 

.32 

.0766 CSE 0.00 

.3352 CSE .14 7.54 
8.15 
8.10 
7.95 
2.69 
2.01 

.1536 CSE 

.2621 CSE 

.5370 CSE 

.4944 SE 
,3786 CSE 
.6580 CSE 
.7205 SE 
.7013 SE 

1.0599 E 
.8109 E 
.4319 C  E 
,6068 E 
.5614 E 
.4449 E 
.2117 E 
.1383 E 
.1144 E 
.0572 E 
.0922 C E 
.6274 C  E 

0.00 
.25 

1.42 
3,53 

.57 
1.51 
2.06 
1.58 

0.00 
.26 

0.00 
0.00 
0.00 
0,oo 
0.00 
0.00 
0.00 
0.00 

.oo 

.73 

11.51 
13.88 

2.48 
4.50 2.02 

4.99 
1.70 
2.01 
3.10 
1.93 

.42  
0.00 

.32 

.13 

.80 

.12 

.08 

.08 

13.88 
13.92 
19.21 
19.21 
19.31 
19.31 
19.31 
19.78 
19.80 

9.49 
11.19 
13.20 
16.30 
18.24 
18.66 
18.66 
18.98 
19.11 
19.91 
20.03 
20.11 
20.19 
20.24 
20.27 
21.13 
23.01 

5.64 
2.32 9.66 

11.23 
11.49 

513oj7u 
6110178 
6120178 
61301 78 
7110178 
7120178 
7130178 
8110178 
8120178 
8130178 
9110178 

.42 
0.00 
0.00 

. l l  
0.00 

11.49 
11.49 
11 -49 
11.49 
11.49 
11.49 
11.49 
11.49 
11 -49 
11.50 
12.23 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

.48 

.30 

20.60 
20.72 
20.80 
20.88 
20.93 
20.96 
22.35 
24.14 

.05 

.03 

.86 
1.88 

9120178 
9/ 301  78 

Normal  Simulation Only, 



- 1978.Ope.rational Forecasts 
Figure  5.18 shows s imulated area water equiva len t   for   the   Conejos  River f o r  
the  1978 water year .   Target  water equ iva len t s  are designated on t h i s   f i g u r e  
t o  show where r e v i s i o n s  were made i n   r e s p o n s e   t o   L a n d s a t  snowcover,  and as a 
r e s u l t  of t h e   l a r g e   e a r l y  May s t o r m .   I n i t i a l l y ,  TWE were de r ived   fo r   t he  
Conejos  River  based  on  Figure  5.5  and mapped snowcover estimates made on 
A p r i l  21,  1978. However, the  year   1978 w a s  unusua l   i n   t ha t   peak  area water 
equiva len t  on the  Conejos w a s  s u b s t a n t i a l l y  less than   ind ica ted  by Figure 
5.13.  Thus, i n i t i a l  TWE were rev ised  downward to   approximate ly  10 i n .  
(25.4 cm) ( a s  opposed t o  14 i n  (35.6 cm) based  on  the amount of snow accumu- 
l a t i o n  a t  the  Upper San Juan SNOTEL s i t e ) .  

I 1 1 I I 
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r12- 

TWE - 205 

rn 

I 
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W 
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4/ I 4/10 4/20 4/30 5/10 5 /20 

Figure  5.18  Simulated Water Equivalent   for   the  Conejos   River  
f o r   t h e  1978 Snowmelt  Runoff Season. TWE are t a r g e t  
water equ iva len t   ad jus tmen t s   i n   r e sponse   t o  SNOTEL 

and  Landsat  data. 

On A p r i l  2 1 ,  snowcover ex ten t  w a s  75 percent  which  corresponded  to less than 
4 i n  (10 cm) of area water e q u i v a l e n t   f o r  1978  (Flgure  5.14).  A s  s e e n   i n  
F igu re   5 .18 ,   r e l a t ive ly  minor   bu t   s ign i f i can t   i nc reases   i n  snowpack were made 
through  use of t he  TWE. Soon a f t e r   t h e   f i r s t   a d j u s t m e n t ,  SNOTEL ind ica t ed  
t h a t  Upper San  Juan snow course  gained  5 .3   in   (13.5 cm) of water equiva len t  
between  April 30 and May 10. Also,  data  from  Landsat on May 8 showed t h a t  
snowcover on the  Conejos River w a s  100 pe rcen t .   I n   r e sponse   t o   t h i s   i n fo rma-  
t i o n ,  TWE were ad jus t ed  upward. 

Tota l   runoff   for   the   1978 water year  w a s  1 2  i n  (30.5 cm) as compared t o  a 
s imulated  12.2  in   (31 cm) based   fo r   t he  most p a r t  on t h e   o r i g i n a l  estimates 
of  snowpack water equiva len t .   Subsequent   cor rec t ions   us ing   the  TWE capa- 
b i l i t i e s   i n   t h e  model   increased   the   in i t ia l   res idua l   s t reamflow estimates 
perhaps 1 i n  (2.5 cm) . The i n c r e a s e   i n  snowpack  on the  Conejos  as t h e  
r e s u l t  of t h e  May upslope  storm w a s  s a t i s f a c t o r i l y   s i m u l a t e d  by t h e  model 
w i thou t   app rec i ab le   co r rec t ions   u s ing  TWE. Table  5.5 is  the  computer 
ou tput  summary. 
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Results 

S a t e l l i t e  snowcover da ta   used   in   combina t ion   wi th  SNOTEL and  the  Subalpine 
Water Balance  model  have  been  used to   deve lop   an   ex t remely   f lex ib le   sys tem 
f o r  making cont inuous  short- term  s t reamflow  forecasts   in   the  Rio  Grande  and 
Arkansas   bas ins .   Cal ibra t ion  of t h e  model t o  5 index  watersheds of varying 
s i z e s  (189 - 3,155 km2) i n d i c a t e   t h a t  it is  a r e l i a b l e   t o o l .   O p e r a t i o n a l  
s t u d i e s  of the  Conejos River wa te r shed   i n  1977  and  1978  have shown t h a t   t h e  
forecast ing  system  responds w e l l  to  unforeseen  weather  changes  during a 
given snowmelt season   which   can   s ign i f icant ly  a l te r  the   t iming  and  volume 
of runoff .  

Success in using  the  system  depends  ent i re ly  on t h e   r e l i a b i l i t y  of cu r ren t  
c l ima t i c   i n fo rma t ion   ava i l ab le  as input .  More years   o f  sa te l l i te  imagery 
with  rout ine  coverage of t h e   f u l l   r a n g e  of hydro logic   condi t ions   and   carefu l  
upgrading  of  the  hydrometeorological benchmark s ta t ion   ne twork  are needed. 
Continued  use of t he  ASVT computerized  system w i l l  p rov ide   gu ide l ines   fo r  
improving  these real-time da ta   ga the r ing   sys t ems   i n   t he   fu tu re .  
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SECTION 6: SUMMARY AND CONCLUSIONS 

The  Colorado  ASVT  project  focused  on  examining  methodologies  incorporating 
satellite  derived  basin  snowcover  into  operational  programs  for  forecasting 
snowmelt  runoff.  Six  years  of  Landsat  imagery  for  the  period  1973-1978 
were  available  during  the  course  of  the  project.  Six  watersheds  ranging  in 
size  from 107 m2 (227  km2)  to  1,450 mi2 (3,756  km2)  in  the  Rio  Grande  and 
Arkansas  River  basins  of  south  central  Colorado were studied. 

A number  of  snow  mapping  techniques  were  explored,  including  digital  as 
well  as  photointerpretive  methods  to  determine  which  one  provided  the 
greatest  accuracy  and  most  consistent  results.  The  zoom  transfer  scope  was 
found  to  be  the  most  reliable,  accurate,  and  cost-effective  of  the  methods 
explored.  With  it,  watersheds  as  small  as 100 mi2 (259  km2)  can  be  suc- 
cessfully  mapped.  Best  results  were  obtained  when  mapping  was  performed  at 
a  scale  of  1:250,000  using  MSS  band 5 and  185 nun positive  transparencies. 
A set  of  snow  mapping  criteria  were  developed  and  Instituted  to  standardize 
snowcover  interpretation.  As  much as  50 percent  of  the  images  in  the 
March-June  period  were  wholly  or  partially  obscured. A baseline  index 
method of snowcover  estimations  was  developed  to  ameliorate  this  problem. 
Basin  snowcover  depletion  curves  were  constructed  for  each of the  study 
watersheds  for  each  of  the  years  for  which  data  was  available.  The  snow- 
cover  depletion  curves  served  as  the  foundation  for  all  forecast  analyses 
which  included  snowcover  as  a  predictor  variable. 

Three  primary  schemes  for  forecasting  runoff  utilizing  snowcover  were 
investigated  and  evaluated.  A  semi-logarithmic  graphical  procecure  which 
relates  the  displacement  in  time  between  snowcover  depletion  curves  and 
annual  runoff  was  successfully  developed  for  two  out  of  three  study  water- 
sheds.  The  technique  is  principally  suitable  for  use  in  regions  where 
limited  or  no  corroborative  hydrometeorologic  data  is  available  upon  which 
to  base  more  sophisticated  forecast  analyses. 

A statistical  treatment of snowcover  derived  from  Landsat  revealed a high 
correlation  between  basin  snowcover  and  April-September  seasonal  volume 
streamflow.  Comparisons  of  interbasin  snowcover  values  were  also  found  to 
be correlated  highly  enough  to  be  useful  for  making  estimates  in  the  event 
cloud  cover  or  missing  imagery  prevents  actual  measurements  on  a  specific 
drainage.  The  nature  of  snowmelt  generated  peak  streamflows  has  been  shown 
to  be  related  to  basin  snowcover. A moderate  to  good  relationship  is 
apparent  between  snowcover  and  daily  peak  flow  volume.  Prediction  of  the 
timing  of  the  snowmelt  peak  from  snowcover  depletion  curves is less  precise 
but  still  of  value.  A  combined  snow  course  index/snowcover  variable  was 
shown  to  be  exceptionally well correlated  to  seasonal  volume  flow  for  the 
short  period  of  the  study.  A  reduction  of 10 percent  in  the  average  fore- 
cast  error  over  present  techniques  on  the  May 1 forecast  is  estimated  if 
the  snow  index/snowcover  method  could  be  employed  operationally.  Unfortu- 
nately,  the  lag  in  delivery  of  Landsat  imagery  has  been on the  order  of 10 
days  for  Quick-Look  products  and 30 days  for  standard  imagery.  More  prompt 
receipt  of  imagery  is  needed  before  Landsat  derived  snowcover will appre- 
ciably  benefit  forecast  procedures.  Snowcover  is  of  negligible  value  in 
the  period  January  through  early  April  for  most  of  the  basins  in  the  Colorado 

69 



study.  During  this  period  the  watersheds in the  study  area  are  normally 80 
to 100 percent  snowcovered.  Maximum  snowpack is generally  observed  near 
the  first  of  April. 

The  Subalpine  Water  Balance  Model  which  is  a  conceptual  hydrologic  simula- 
tion  model  was  modified  to  accept  snowcover  as  a  forecast  parameter. 
Satellite  snowcover  estimates  along  with SNOTEL data  serve  to  guide  the 
model  in  building  and  melting  out  a  simulated  snowpack.  Calibration  of  the 
model  to  five  study  watersheds  ranging in  size  from  73  mi2 (189 km2)  to 
1218  mi2 (3155 km2) was completed.  Model  runs  during  the 1978  season 
proved  its  reliability as  a forecast  tool in predicting  the  consequences  of 
abnormal  weather  conditions  during  the  melt  sequence. It is  especially 
well  suited  for  short-term  forecasts. 

A  cost  analysis of employing  Landsat  snowcover  in  forecasting  has  resulted 
in  an  estimate  of  $300/year/basin.  This  figure  is  based  upon  the  experience 
developed  in  the  four-year  study  and  should  be  considered  only  a  "ballpark" 
estimate. 

Use of SQOW areal  extent  measurements  in  snowmelt  runoff  prediction  shows 
promise,  but  with  the  short  period  which  the  study  encompassed,  it  is 
difficult  to  assess  its  long  range  impact.  However,  a  number  of  conclu- 
sions  can  be  drawn  concerning  the  use  of  snowcover  in  forecasting  in  the 
Rio  Grande  and  Arkansas  basins. 

Currently  available  Landsat  imagery  is  of  sufficient  quality  and  resolution 
for  accurate  snow  mapping  by  photointerpretive  means.  Delay  in  imagery 
delivery,  occurrence of cloud  cover,  and  a  nine-day  interval  between 
satellite  coverage  diminish  to  a  significant  extent  the  amount  of  reliance 
one  can  place  in  using  snowcover  as  a  forecast  parameter. 

A  significant  drawback  to  using  snowcovered  area  exclusively  to  make  stream- 
flow  predictions  is  the  lack  of  applicability  prior  to  commencement  of  the 
main  snowpack  recession  which  normally  occurs  after  May 1. Water  manage- 
ment  decisions  frequently  need  to  be  made  in  late  March  and  April  necessi- 
tating  streamflow  forecasts  before  snowpack  depletion  gets  well  underway. 
For  this  reason,  present  forecast  methods  utilizing  snow  course  and  preci- 
pitation  data  will  continue  to  be  used.  Use  of  snowcovered  area  in  hydro- 
logic  models  and  statistical  prediction  techniques  during  late  spring will 
be  valuable  as  an  independent  method  of  checking  the  standard  forecasts  now 
being  produced. 

As  successive  years  of  satellite  imagery  are  accumulated  covering  a  wider 
range  of  hydrologic  and  climatic  conditions,  forecasts  can  be  expected  to 
improve  through  the  use of snow  mapping.  Satellite  snow  mapping  together 
with  improvements  in  remote  hydrometeorological  data  collection  systems, 
will  enable  more  frequent  and  accurate  forecasts  because  of  increased 
knowledge  of  what  is  happening  in  the  major  water  producing  zone  above 
valley  floors. 
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APPENDIX I 

AREA-ELEVATION CURVES FOR  COLORADO RSVT STUDY WATERSHEDS 
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APPENDIX I 1  

LANDSAT  DERIVED  BASIN SNOWCOVER ESTIMATES FOR 
COLORADO ASVT WATERSHEDS 



APPENDIX I I 

LANDSAT DERIVED SNOWCOVER  AS A PERCENT OF BASIN AREA FOR 
ARKANSAS RIVER NEAR WELLSVILLE 

April 11,  1973 
May 18,  1973 
June  5,  1973 
June 22, 1973 
January 24,  1974 
February 11 , 1974 
March 1 , 1974 
March 79,  1974 
May 12 ,  1974 
May 30,  1974 

February  6,  1975 
March 5,  1975 
April 19, 1975 
April 28, 1975 
May 16,  1975 
June 3, 1975 
June  30,  1975 

Percent o f  
Snowcover 

80.2 
43.0 
25.0 
15.6 
95.3 
90.7 
86.3 
80.6 
26.0 
15.2 

94.5 
87.4 
78.8 
75.1 
53.1 
29.5 

7.3 

April 4,  1976 
May 1 , 1976 
June  6, 1976 

March 30,  1977 
April 17, 1977 
April 23,  1977 
May 11 , 1977 

April 12,  1978 
April 21 , 1978 
May 9,  1978 
May 19,  1978 
June  24,  1978 

Percent o f  
Snowcover 

69.8 
30.9 
8.2 

57.2 
41.4 
27.0 
11.1 

68.6 
63.7 
71.3 
23.9 

4.9 

11-1 



APPENDIX I1 

LANDSAT DERIVED SNOWCOVER AS A PERCENT OF BASIN AREA FOR 
R I O  GRANDE NEAR DEL  NORTE 

A p r i l  29, 1973 
May 18,  1973 
June 5, 1973 
June 22, 1973 

March 19, 1974 
A p r i l  7, 1974 
May 12, 1974 
May .30, 1974 

A p r i l  19, 1975 
A p r i l  28, 1975 
May 8, 1975 
June 4, 1975 
June 13, 1975 

Percent o f  
Snowcover 

91.8 
64.3 
24.4 
11 .o 
92.8 
73.4 
27.5 

7.0 

98.5 
91.7 
84.5 
25.4 
14.7 

March 26, 1976 
A p r i l  23, 1976 
May  2, 1976 
May 29, 1976 

March  12,  1977 
March 30, 1977 
A p r i l  17,  1977 
A p r i l  24, 1977 
May 12,  1977 
May 30, 1977 

March  17,  1978 
March 26, 1978 
A p r i l  4, 1978 
A p r i l  22, 1978 
May 10, 1978 
May 19,  1978 
June  6,  1978 
June 24, 1978 

Percent o f  
Snowcover 

97.1 
78.0 
65.8 
24.9 

66.5 
46.3 
25.7 
20.8 

5.7 
3.2 

88.8 
81.5 
73.2 
59.5 
82.0 
45.0 
15.8 
6.2 
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APPENDIX I 1  

LANDSAT  DERIVED  SNOWCOVER  AS A PERCENT OF BASIN AREA FOR 
SOUTH FORK AT SOUTH FORK 

Percent o f  
Snowcover 

Percent o f  
Snowcover 

April 29,  1973 
May 18,  1973 
June  5,  1973 
June 22, 1973 
July 28, 1973 

April  7,  1974 
May 12,  1974 
May 30,  1974 

April 19,  1975 
April 28, 1975 
June  3,  1975 
June  12, 1975 
June  30,  1975 
July  19,  1975 
July 26,  1975 

99.0 April 22,  1976  89.9 
61.7 May 1 , 1976  71.8 
27.2 May 29,  1976  29.4 
10.2  June  15, 1976  4.0 

1 .o June 24,  1976  1.1 

86.2 
28.5 

5.8 

100.0 
97.2 
29.9 
15.0 
4.4 
1 .o 
0.0 

March 12, 1977 
March 30,  1977 
April 17, 1977 
April 23,  1977 
May 5, 1977 
May 11 , 1977 

March 25,  1978 
April 4 ,  1978 
April 13,  1978 
April 21 , 1978 
May 9 ,  1978 
May 18, 1978 
June  14,  1978 

100.0 
73.7 
34.4 
29.1 
9.9 
3.5 

92.6 
78.2 
64.0 
49.7 
98.6 
44.5 

8.1 
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APPENDIX I 1  

LANDSAT DERIVED SNOWCOVER AS A PERCENT  OF BASIN AREA FOR 
ALAMOSA CREEK ABOVE TERRACE RESERVOIR 

June 22, 1973 

May 12, 1974 
May 30, 1974 

A p r i l  19,  1975 
A p r i l  28, 1975 
May  7, 1975 
June 3, 1975 
June  12,  1975 
June 30, 1975 

May 1 , 1976 
May 10,  1976 
June  15,  1975 
June 24, 1976 

Percent o f  
Snowcover 

44.3 

50.6 
18.6 

100.0 
98.5 
97.2 
63.3 
48.3 
16.1 

92.1 
87.5 
17.0 
9.2 

March  30,  1977 
A p r i l  17,  1977 
A p r i l  23, 1977 
May  5, 1977 
May 11 , 1977 
May 23, 1977 
May 29, 1977 
June  16,  1977 

A p r i l  3, 1978 
A p r i l  21 , 1978 
May  9, 1978 
May 18,  1978 
June  14,  1978 

Percent o f  
Snowcover 

92.3 
71.6 
59.7 
24.0 
11.9 
19.0 
6.0 
2.2 

93.6 
75.9 

100.0 
66.4 
18.1 
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APPENDIX 11 

LANDSAT  DERIVED  SNOWCOVER  AS A PERCENT OF BASIN  AREA  FOR 
CONEJOS RIVER NEAR MOGOTE 

April 11, 1973 
April 29, 1973 
June 22, 1973 

March 1 , 1974 
March 19, 1974 
April 6, 1974 
May 12, 1974 
May 30, 1974 
August 10, 1974 

April 10, 1975 
April 19,  1975 
April 28, 1975 
May 7, 1975 
June 3, 1975 
June 12,  1975 
June 30, 1975 
August 5, 1975 

Percent  of 
Snowcover 

100.0 
93.8 
21.4 

100.0 
98.1 
90.0 
42.5 
16.0 
0.0 

100.0 
98.2 
93.9 
87.1 
47.1 
31.4 
16.7 
0.0 

Percent of 
Snowcover 

February 19, 1976 
March 26,  1976 
April 4, 1976 
April 22, 1976 
May 1 , 1976 
May 28, 1976 
June 15, 1976 
June 24, 1976 

March 12,  1977 
March 30, 1977 
April 17,  1977 
April 23, 1977 
May 5, 1977 
May 11 , 1977 
May 29, 1977 

March 25, 1978 
April 3, 1978 
April 12,  1978 
April 21 , 1978 
Play 8, 1978 
May 18,  1978 
June 14,  1978 

Aircraft  Observation 

April 3, 1978 
April 13,  1978 

100.0 
97.8 
93.8 
86.7 
71.5 
29.8 
11.6 
4.3 

98.6 
80.0 
52.9 
42.3 
20.4 
14.4 

8.3 

94.8 
89.0 
84.0 
75.0 

100.0 
52.0 
19.0 

87.1 
81 .O 



APPENDIX I I 

LANDSAT DERIVED SNOWCOVER AS A PERCENT OF BASIN AREA FOR 
CULEBRA CREEK AT SAN LUIS 

Percent o f  
Snowcover 

Percent o f  
Snowcover 

AprSl 10, 1973 
May 16, 1973 
dune 3, 1973 
June 21 , 1973 

A p r i l  5, 1974 
May 11 , 1974 
Flay 29, 1974 

March 31 , 1975 
A p r i l  19, 1975 
A p r i l  28, 1975 
May 6, 1975 
May 24, 1975 
June 3, 1975 
June 29, 1975 

84.6  March  25,  1976  94.3 
41.1 A p r i l  13,  1976 73.2 
23.9 A p r i l  21 , 1976  63.7 

9.9 May 18,  1976  35.0 
May 27, 1976 25.9 
June 5, 1976 17.9 

100.0 
26.7 
10.8 

96.0 
71.1 
62.9 
55.0 
34.2 
23.3 

3.7 

March  30,  1977 
A p r i l  22,  1977 
May 5, 1977 
Flay 22, 1977 
May 28, 1977 

March  25,  1978 
A p r i l  11,  1978 
A p r i l  21 , 1978 
May 9 , 1978 
May 18, 1978 
Flay 27, 1978 
June  13,  1978 

67.9 
43.9 
28.6 
25.6 

8.0 

77.1 
69.0 
58.2 
79.8 
29.9 
19.8 
9.9 
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APPENDIX I11 

APRIL-SEPTEMBER MONTHLY STREAMFLOW FOR 1973-1978 AT 
COLORADO ASVT STUDY  WATERSHEDS 



APPENDIX I I I 

April-September  Flonthly  Streamflow  for  1973-1978 a t  
Colorado ASVT Study  Watersheds 

Watershed 

Rio  Grande nea r  
Del Norte 1/ 

Arkansas River nea r  
W e l l s v i l l e  ?/ 

Water 
Year 

1973 

1974 

1975 

1976 

1977 

1978 

1973 

1974 

1975 

1976 

1977 

1978 

Streamflow- 

Apri  1 

29.1 
(35.9)  

23.4 
(28.9) 

27.7 
(34.2)  

39.2 
(48.4)  

28.9 
(35 .6)  

22.9 
(28 .2)  

14 .8  
(18 .2)  

9 .8  
(12 .1)  

23.0 
(28 .4)  

11.1 
(13.7)  

3 .0  
(3 .7)  

(10.1)  
8 .2  

223.9 
(276.2 

106.8 
(131.7 

159.7 
(197.0 

163.5 
(201.7 

43.9 
(54.2 

84 .7  
(104.5 

43.9 
(54.2 

68.4 
(84.4 

32.7 
(40 .3  

42.9 
(52.9 

8 .4  
(10.4 

27.6 
(34.0 

1000   ac re - f t   (me te r3  x 106) I June I J u l y  1 Aug I Sept  I 4;$4;- 
300.6 

(51 . l )  (212.9)  
41.4 172.6 

(20 .5)   (40 .0)  
16 .6   32 .4  

(64.5)   (218.6)  
52.3 177.2 

(220.7)   (384.2)  
178.9  311.5 

(28.7)   (67.2)  
23.3  54.5 

(160.4)   (370.8)  
130.0 

1963-1  977 

131 - 3  

(34 .3)   (95 .6)  
27.8  77.5 

(124.1)   (162.0)  
100.6 

109.1 

( 4 . 1 )  ( 2 4 . 4 )  
3 .3   19 .8  

(55.3)   (109.8)  
44.8  89.0 

. 6 )   ( 1 3 4 . 6 ) ( 1 2 1  
98.6 

(78 .7)   (196 .2)  
63.8  159.1 

1963-1  977 

42 .3  
(52.2)  

19.4 
(23.9)  

44.1 
(54.4)  

34.2 
(42.2)  

18.2 
(22 .4)  

14.4 
(17.8)  

26.0 

(918.4)   (27.9)  
744.5  22.6 

(293.7)  (13 .3)  
238.2  10.8 

(927.6)  (32.1)  
751.9 

(428.1)   (13.6)  
347.0  11.0 

(192.1)   (19.4)  
155 .7   15 .7  

(606.4)  (31 . O )  
491.5 25.1 

Average  461.8 1~ (569 .6)  

32.0 
(39 .5)  

18.7 
(23 .1)  

30.0 
(37 .0)  

31.3 
(38 .6)  

3 .6  
( 4 . 4 )  

23.0 
(28 .4)  

20.7 

(380.9)  (19 .0)  
308.8 1 5 . 4  

(267 .1)   (17 .6)  
216 .5   14 .3  

(423.5)   (25.5)  
343 .3  

(361 .5)   (14 .1)  
293.1 11 .4  

(53 .2 )   (6 .2 )  
43.1  5.0 

(299 .4)   (29 .1)  
242.7 23.6 

Average 285.5 I (352.2)  
~ 
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APPENDIX I11 

c Watershed 

April-September  Monthly  Streamflow  for  1973-1978 a t  
Colorado ASVT Study  Watersheds 

South  Fork Rio Grande 
a t  South  Fork 

Alamosa River  above 
Ter race   Reservoi r  

;::err bl May 1 June I J u l y  1 Aug 1 Sept  

Streamfl ow-1 000 a c r e - f t   ( m e t e r 3  x 106)  

1973 

1974 

1975 

1976 

1977 

1978 

1973 

1974 

1975 

1976 

1977 

1978 

8 .6  
(10 .6 )  

8.1 
(10.0)  

( 9 . 5 )  
7.7 

13.3 
(16.4)  

6 . 5  
( 8 . 0 )  

8 . 2  
(10 .1 )  

2 .8  
( 3 . 4 )  

( 5 . 1 )  

( 3 . 6 )  

( 6 . 5 )  

( 3 . 9 )  

(4 .3 )  

4.1 

2.9 

5 .3  

3.2 

3.5 

61.1 
(75.4) 

(45.3)  
36.7 

49.3 
(60.8)  

54.4 
(67 .1 )  

13.0 
(16 .0 )  

24.9 
(30.7)  

27.0 
(33.3) 

20.1 
(24 .8 )  

24.3 
(30 .0 )  

26.8 
(33 .0 )  

7.6 
( 9 . 4 )  

13.4 
(16.5) 

80.1 
(98 .8 )  

15.6 
(19.2)  

80.2 
(98 .9 )  

51 .O 
(62 .9 )  

6 .7  
(8 .3)  

41.4 
(51.1 ) 

25.6 
(31 .6 )  

4.7 
(5 .8 )  

(44.4)  
36 .0  

10.7 
:13.2)  

4 . 3  
( 5 . 3 )  

7 .2  
( 8 . 9 )  

43.3 
(53.5)  

8 .6  
( 1 0 . 6 )  

41.5 
(51 .2 )  

28.1 
( 3 4 . 7 )  

( 4 . 9 )  
4 .0  

23.5 
(29 .0 )  

1963-1  977  Average 

1 8 . 3  
(22 .6 )  

2.8 
( 3 . 4 )  

20.2 
(24.9)  

6.9 
( 8 . 5 )  

(3 .0 )  

( 5 . 4 )  

2 .4  

4 . 4  

1963-1  977  Average 

4 . 2  
(5.2:  

2 . 5  
(3 .1  

3 .8  
( 4 . 7 )  

( 8 . 8 )  

(4 .2 )  

(2 .8 )  

7.1 

3 .4  

2.3 

I 
Total  
April - 
Sept  

186.8 
(230.5) 

72 .8  
(89.8)  

185.1 
(228.3) 

142.1 
(175.3) 

39.3 
(48.5) 

88 .6  
(106.8) 

119.4 
(147.3)  

98.2 
(121.1)  

39.1 
(48.2)  

95.1 
(117.3)  

71.5 
(88.1 ) 

23.8 
(29.4)  

46.7 
(57.6) 

63.6 
(78 .4 )  
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April-September  Monthly  Streamflow  for  1973-1978 a t  
Colorado ASVT Study  Watersheds 

Watershed 

Conejos  River  near 
Mogote 31 

Culebra  Creek a t  
San Luis ?/ 

Water 
Year 

1973 

1974 

1975 

1976 

1977 

1978 

1973 

1974 

1975 

1976 

1977 

1978 

Streamflow-1000  acre-f t   (meter3 x 1 

Apri l  1 May I June I J u l y  I Aug 

9.6 
(11.8)  

11.2 
(13.8) 

9 .8  
(12.1)  

16.7 
(20 .6)  

8 . 7  
(10.7) 

13.0 
(16 .0)  

2 . 4  
( 3 . 0 )  

(0.0) 

1 . 5  
( 1 . 8 )  

0.0 
(0.0) 

( 1 . 1 )  

(0 .7)  

0.0 

0.9  

0.6 

76.1 
(93.9)  

56.6 
(69 .8)  

65.3 
(80.5)  

66.5 
(82 .0)  

20.0 
(24 .7)  

42.7 
(52 .7)  

0.0 
(0.0) 

( 0 . 7 )  

( 2 . 7 )  

0 .6  

2 .2  

2.2 
( 2 . 7 )  

0 . 8  
(1  . O )  

( 5 . 8 )  
4 .7  

123.6 
(152.4)  

32.4 
(40.0)  

118.8 
(146.5)  

68.4 
(84.4)  

11 .6  
(14 .3)  

8 3 . 3  
(102.7)  

66.1 
(81 .5)  

10.2 
(12 .6)  

62.3 
(76 .8)  

15 .4  
( 1 9 . 0 )  

( 5 . 3 )  
4 . 3  

18.1 
( 2 2 . 3 )  

13.5 
(16 .6)  

10 .6  
(13.1)  

11 .3  
(13 .9)  

6 .2  
( 7 . 6 )  

6 .9  
( 8 . 5 )  

3 .9  
( 4 . 8 )  

30.3 
(37 .4)  

(1 - 2 )  

( 7 . 2 )  

( 4 . 2 )  

( 2 . 3 )  

1 .o 

5 . 8  

3.4 

1 . 9  

10 .5  
(13 .0)  

1963-1  977  Average 

1963-1  977  Average 

0 

6 . 3  
( 7 . 8  

2.7 
( 3 . 3  

6 . 2  
( 7 . 6  

4.1 
( 5 . 0  

6.0 
( 7 . 4  

2.0 
( 2 . 5  

Total  
Apr i  1 - 
Sep t  

- l /  Flow ad jus t ed   fo r   change   i n   s to rage  i n  Rio  Grande,  Continental ,   and  Santa 
Maria   Reservoir .  

- 2/ Flow a d j u s t e d   f o r   t r a n s m o u n t a i n   d i v e r s i o n s  i n  Twin Lakes,  Boustead,  Ivanhoe, 
Homestake tunnels, Columbine,  Ewing, IJurtz di tches   and  change i n  s t o r a g e  
i n  Twin  Lakes,   Turquoise Lake  and Clear   Creek  Reservoir .  

- 3/ Flow ad jus t ed   fo r   change  i n  s t o r a g e  i n  P l a to ro   Rese rvo i r .  

- 4/ Flow ad jus t ed   fo r   change  i n  s torage   in   Sanchez   Reservoi r .  

295.2 
(364.0)  

123.7 
(152.6)  

273.7 
(337.4)  

177.3 
(218 .6)  

57.5 
( 7 0 . 9 )  

163.0 
(201 . O )  

182.9 
(225 .6)  

38.5 
( 4 7 . 6 )  

5 .3  
( 6 . 5 )  

16.9 
( 2 0 . 7 )  

8 . 7  
( 1 0 . 7 )  

7.4 
(9 .1  1 

( 2 4 . 1 )  
1 9 . 5  

15 .3  
(18 .9)  
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