@ https://ntrs.nasa.gov/search.jsp?R=19820013004 2020-03-21T08:48:43+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

qA50 ~ b4&

(NASA-CR~-168652) A STUDY QF INTERACTIVE NB82-20878
CONTROL SCHEDULING AMD BCOEKOMIC ASSESSMENT

FOR BOBOTIC SYSTEMS Final Report

(University of Southera Califormia) 23 p Unclas
HC A11/MF A01 CSCL 05H G3/54 16815

INSTITUTE FOR
TECHNOECONOMIC
SYSTEMS

INSTITUTE FOR
TECHNOECONOMIC SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA 1
' UNIVERSITY PARK, LOS ANGELES, CALIFORNIA 90007 |

FINAL REPORT
for
CONTRACT #955332
JET PROPULSION LABORATORY

A STUDY OF INTERACTIVE CONTROL SCHEDULING
AND ECONOMIC ASSESSMENT FOR
ROBOTIC SYSTEMS

29 JANUARY 1982

TECHNICAL REPORT
ITEC-10-81

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology sponsored by the National
Aeronautics and Space Administration under Contract NAS7-100.

INSTITUTE FOR TECHNOECONOMIC SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 90007

T ' RPN bevr—yrrewriir< vor pepuaiaiy x-S R

PRy ST Spape s
P et s aar el a sl h ok

ABSTRACT

A class of interactive control systems is derived in Mart I by
ge-.alizing interactive manipulator contrbl systems. Tasks of inter-
active control systems can be represented as a network of a finite set
of actions which have specific operational characteristics and specific
resource requirements, and which are of limited duration. This has en-
abled the decumposition of the overall control algorithm into simul-
tanéously and asynchronously.

The general objective for development of Part fI is to evaluate
the performance benefits of sensor-referenced and computer-aided control
of nanipulators in a complex environment. This report represents the
first phase of the CURV Arm Control System (CACS) software development,
and gives the basic features of the control algorithms and their soft-
ware implementation.

Part III investigates the problem of finding an optimal solution
for a production scheduling preblem that will be be easy to implement in
practical situations. The results show that the optimal solution is
very easy to implement in real life problems as the jobs have to be
arranged according to menotinic increasing processing times.

Part IV is an initial investigation and is the first in a series

leading to a fully-developed model, ROBECON, which may be used for speci-

fying the economic conseqhences of robot systems acquisitions. The model

will be computer-based and user interactive

o — ————

T

e * ST T

II.

III.

Iv.

CONTENTS

Asynchronous Interactive Control Systems

Computer Modeling and Evaluation of Sensor-Aided Semiautomated
Operations :

Optimal Production Scheduling for a Linear Flow Shop
ROBECON. A géneralized methodology for assessing the

economic consequences of acquiring rcbots for repeti-

tive operations

1

PART I

August 31, 1981
ASYNCHRONQUS INTERACTIVE CONTROL SYSTEMS

by

M. I. Vuskovic

INSTITUTE FOR TECHNOECONOMIC SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 920007

ABSTRACT

A class of interactive control systems is derived
by generalizing interactive manipulator control systems.
The general structural properties of such systems are
discussed and an appropriate general software imple-
mentation is proposed. This is based on the fact that
tasks of iuteractive control systems can be repre-
sented as a network of a fiuite set of actions which
have specific operational characteristics and wpecific
resource requirements, and which are of limited dura-
tion. This has enabled the decomposition of the over-
all control algorithm into a set of subalgoritims,
called subcontrcllers, which can operate simultanecusly
and asynchronously. Coordinate transformations of
sensor feedback data and sctuator set-points have
enabled the further simplification of the subcontrol-
lers and have reducad their conflicting resource
requirements. The modules of the decomposed control
system are implemen.ed as parallel procasses with dis-
joint memory space communicating only by I/0. The
synchronizstion mechanisms for dynamic resource allo-
cation among subcontrollers and other synchronization
mechanisms are also discussed in this paper. Such a
software organization is suitable for the general form
of multiprocessing using computer networks with dis-
tributed storage.

INTRODUCTION

In recent years, the emerging requirements for
interactive computer-aided control of rystems became
progressively more evident. The more obvious areas
vhere such requirements appear are space, undersea
exploration, nuclear emergy-producing facilities, and
the like, where the work space is inaccessible or dan-
gerous for man to operate in, yet where complex tasks
need to be accomplished. Many of these tasks are gen-
erally not susceptible to performance by completely
automated systems at the present state of automated
decision-making technology. It is therefore required
to develop systems that project certain human capabil-
ities, such as sensing and handling, into the work
space, thereby enabling remote operations and process
control.

Rexote operations, frequently also called tele-
operations, benefit tremendously from computer inter-
active control vhere low-level control and decision-
making functions are done by the computer, while the
higher level decision functions are performed by the
human operator. The efficient allocation of functions
between man and machine in remote operations has been
the central subject of intensive research activities at
various institutions during the past decade. For han~-
dling and assembly in space, the development require-
ments and the state »f advanced technology for the
control of remote menipulators have been outlined in
Ref 1.

ORIGINAL PAGE IS

M.I. Vudkovié
Senior Resesrch Associate
Institute for Technoeconomic Systems
Department of Industrial & Systems Engineering
University of Southern California
Los Angeles, California 90007

With this background in mind, we build on and
extend in this paper some of the developments for syn-
chronous control of manipulators in Refs 2 and 3 and
construct a more general framework for asynchromous
control of operations and processes requiring the
scheduling of many single-actuator controllers by a
"supervisory" .ontrol computer. However, it should
be recognized here that a manipulator system can serve
as a convenient, yet sufficiently complex, frame of
reference for the discussion of mora general systems.

Asynchronous control differs from synchronous con-
trol in that initiation of a single-actuator controller
does not depend on cyclic interrupts of equal time
intervals but, rather, on interrupts based on overall
process requirements. This enables tight scheduling
with minimal idle time for each actuatcr.

The implementation of asynchronous control is based
on the decomposition of the overall contrel activity
into a number of control subactivities which affect
different actuators or groups of actuators. In the
interactive control process, these actuators or groups
of actuators are active only for a limited duration.
The control subactivities are generally performed simul-
taneously but mutually time-independently, i.e.,
asynckronously.

In this paper, we first discuss the general physi-
cal structure of the interactive control system. Then,
we study the control functions to derive their decompo-
sition into control subfunctions. And, finally, wve
propose a general software implementation of the decom—
posed system. It is shown that all subsystem components
can be made as parallel, asynchromous processes which
are disjoint in the address space and which communicace
between each other only by I/0. This approach builds on
the works of Hoare (Ref 4) and Brinch-Hansen (Ref 5),
and is oriented toward the use of a general computer
environment, such as multiprocessor networks with dis-
tributed storage. Actepting degradation of reliability
and efficiency, the same approach can be used in multi-
processor networks with common storage or in a single-
processor environment.

GENERAL SYSTEM DESCRIPTION

Since our concern here is primarily with the con-
trol computer in Fig 1, we abstract the system as shown
in Fig 2. Only units communicating directly with the
control computer are shown with the corresponding
incoming and outgoing information flows.

Command Device

The command unit receives commands from the human
operator znd translates these into a control computer-
acceptable form. Commands have characteristics of
discrete events and are generally issued through key-
boards, voice, switches, pushbuttons, and the like.
Here, we consider commands in a simplified form as a
vector of Boolean variables ¢ = (€1,€2,++:4Cpc)s

|| EC—— ,

&l - EEa AL o e - -

ORIGINAL PAGE IS
OF POOR QUALITY

e ey S e
e
L[wewacoman | |
| gl §
I —_— e d e
[B] % e ey
b - S

Fig. | Punctional subsystems and informatiom flow for
interactive control of operational processes

o ﬂml‘ltlv .‘q J—L SENSORS = ==y

HUMAN wanuat |2 [conmor
PERAT conmoLLer [~ comeuTER ACTuATORS

H 2
Laaas] COMMAND £

Fig. 2 General configuration of an
interactive control system

which represents possible instructions regarding
the process by wvhich tasks are to be executed. In
Fig 2 the symbols which represent inputs and outputs
of the devices have wave sign that indicates "raw"
values of data. This sign will be ignored in this
section.

Display Device

Generally, the display device receives, from the
control computer, all information required by the
human operator to make appropriate decisions for over-
ride control. This may include video data and audio
signals as vell as force and position data, all of

which are transformed into a human operator-convenient
form for display and sensing purposes.

In simpler versions of display units, one has
only a fixed number of discrete messages, such as
warning and alarm signals. These messages can be
represented by the character string a = sja2a3a4 ...
vhich is generated by the control computer.

Manual Controller

The manual controller consists of one or more
human-factored devices by which the human operaior
generates control signals that affect the execution
of the tasks. The human operator acts as a super.is.y
by overriding and/or instructing the control computer
as required. The generated signzls are converted into
an appropriate standardized form and sent to the control
computer as a vector M = (Hl.lz. venp) of the values
of the nm simultaneous signals sampled wvithin a par-
ticular time interval.

Seusors

The sensors represent a set of sensor devices
which measure -the effects of the actuators on their
environment and the deviation of a control process from
a prescribed state. The sensor data are the essential
element of all automatically supported, {.e., human
operator-independent operations, that appear as a part
of the overall interactive control process. The sensor
siznals are converted into a standardized form and are
sent to the control computer in form of a vector

5 = (51.824:4448ng) of th) ns simultanecus signals
sampled within a particular time interval.

The actuators are a collection of N devices each
consisting of actuator units, servo units, and internal
state sensors. The internal state is described by the
vector of physical state variables § = (i,+v,')
Each actuator executes set-point values or simply "set-
points" received from the control computer as a vector
o;. - (on.m.---.on) The physical-state variables
a back to the cu:rol eo-uur

uluqlod voetor_'- sesesBpy
actuator can execute any .m.’&. mt-pout u a fin-
ite time due to its own internal feedback servo control.

er

The inputs of the control computer are sensor data
S, manual controls M, commands ¢, and feedback state
variables 8y. The outputs are messages g and set-points
8p.

The critical control outputs are the set-points _’,,.
These outputs are generated iteratively by complex algor-
ithms based on continuous and discrete internal variables
and functions. Generally, the output values §p do not
only depend on the present values of the inputs mentioned
above, but also on their past values, i.e., on the com~
plete history of the control process. To avoid handling
of infinitely many current and past values of the input
variables, a well-known practice is to introduce state
variables and transition functions. These state varia-
bles can be grouped into a numeric state vector r = (rp,
T24.++,FR). Because the algorithms of the control
computer also deal with logic variables, it is necessary
to introduce a logic state vector L = (£;,27,...,11)
vhich is a vector of Boolean variables. Generation of
the iterative sequence of the set-points {8p(k)}

(k = 0,1,2,3,...), vhere k represents the iteration
index, can now be described by a recurrence relation in
the following general form

z'(h) - (! k) s(k). _’.'(k). L(k)- i(”)'

£(!:-h':.) - (!() (l) S.(k)- !,(k). !.“)» i(k))-

L(Hl) - !(!(k) 2(). -(k)' e"(in)' E(k)- i(k))-

k=0,1,2,3,...4

r(0) ap .,

- —o

o

L !o (1)
Here r, and ¢ are initial conditions of the m-trtc

and logic stafe vector respectively, while £, g, and
h are general vector functions that represent the con-
trol algorithms implemented on the control computer.
The last two functions are often called transition
functions.

The mathematical comstruct of Eq 1 represents
a sequentisl machine, the output of which can also be
represented in the operator form

Bp= S, 5, g4 85 £ 0 L)) (2)

where § is a vector operator defined by Eq 1. In the
following, the operator § will be called "control
algorithm" or simply “controller”.

The remainder of the paper will be devoted primarily
to the internal structure and functionc of tae controller.

T T el (o S e o ro e T ER—

ORIGINAL PAGE IS

DECOMPOSITION OF THE CONTROLLER OF POOR QUALITY

_of corplex actions makes up a system task.

The controller is usually implemsnted as a mono-
lythic software package, i.s., as a single complox
sequential program. Andther approach to structuring
the controller is an appropriate decompogition into a
set of subalgorithms or subcontrollers §7.82,....8n.
This second approach is discussed here. Compared to
the monolythic appr. ach, it appears to offer less com-
plexity and better portability, flexibility, and main-
tainability. Moreover, this approach offers the
possibility to use more attractive processing altern-
atives, such as multiprocassing, vhich could be the
only solution vhen time comstraints becows critical.

To dacompose the controller, it is useful to con-
sider the structure of the system tasks that have to
be performed by the actuators. The aztiomns of the
actuators have varying degrees of complexity. For
manipulator systems they have been grouped in Ref 2
and 3 into chree categories: (1) a finite set of prim-
itive actions (2) composite actions comsisting of a
sequence of primicive actions, and (3) complex actioms
vhich are networks of composite actions that are exe-
cuted sequentially and/or in parallel. An aggregate
Here ve
shall not be concerned with the hierarchy of actioms.
The system task will simply be considered a netwerk
of actions which, in themselves, are defined by specific
control algorithms and which have specific 1/0 require-
ments.

Initiation and termination of an action during
task execution depends on the state of the system
wvhich is defined by the relative position of the actu-
ator in its anviromment and by other events that
describe the degree of task completion. For this
purpose, the event-status vect: ' e = (e],e2,...8ne),
has beer introduced. It is a Boolean vector vhose
components indicate occurrences o~ absences of the
corresponding events such as "end effector is well-
aligned with the plane”, or "the object is grasped”,
etc.

The initiation of actions is a chain-reaction-like
process, vhere one action initiares the following actiom.
These action initiations propagate through the action
network until the system task is completed. Transitions
from one action to another action are defined by the set
of Boolean functions T4 (c,&)s 1,5 = 1,2,...,n, i#],
of the command vector ¢ and the event-status vector e.
These are called transition conditions. If an actiom,
say i, is in execution, and if the transition condition
74§ becomes true, then the action j will immediately
be initiated. The termination of an action is defined
by a similar Boolean functiom ty4(c,e),i = 1,2,...,n.
If the action 4 is in uxecution and {f t4y becomes
false, this actiun will be terminated immediately. It
T{j = true implies tyy = false, then the action { will
be terminated simultaneously with the initiation of
the action j. Otherwise the two actions will remain
in parallel execution.

Subcoatrollers

The subcontrollers are designed so that each one
corresponds to a single action, Therefore, they will
generally be executed as asynchronous, sequential pro-
grams vhich can be independently coded, tasted, and
integrated with the system by satisfying certain sub-
controller interface requirements to be discussed
later.

A subcontroiler §, associated with an actiom j,
generates the set-points for those sctuators which used
to be active for the executior ~f the action. The corre-
sponding operator equation cas be represented as follows

|
|

fey " 40y &y Sy e Ly, »
vhere the numevric and logic state vectors and
and their respective initial conditioms g,, Lyo are
uu-‘nd by appropriate decomposition of {‘L stats vectors
E . The variables » v , and ares sub-
mur% of 8p, M, § and g’ra-aﬂnly ol

The subvectors have the same dimsnsions as the
correspunding vector in which the componentn of no
interest for the action unde
the computations. Two subvectors are mutually disjoint
if they do not have nonignorable components in common.

associated with the actioe j. In other words, for an
action j the subcontroller y

to compute the sat-poiuts £
not nesd to use all ssnsors, the manual coutrol
and the actuator feedback.

c
above, this vector is am argument of the transition
conditions t44(r,¢) which coordinate the activities
of the subcontroller.

Generslly, two different subcontrollers §; and

%jcnmm.-muo!ﬂnhwtmton
M and S, and can generate Che set-poincts of the same
actuators. If such subcontrollers wvork simultane-
ously, they interfere with each otler. Tuarefore,
mubcontrollers competing for the same actuators should
be coordinated so that their outputs Spy and fpy are
sutually disjoint subvectors. EKEowever, this can con-
siderably reduce the number of actions that can be per-
formed simultaneously. In order to solve this problem,
we introduce a coordinate transformation

Q= 2,0 (%)

vhich minimizes the coordinate interactions for the
majority of actions. Note that this transformation
must have an inverse

8- 0t @- (5

The transformed set-points Qp = (Qp).,Qp2....Qpy) mow
represent the new space cnlled "comtroller space”.
The coordinate transfcrmation (Eq 4) also simplifies
the subcontrollers, becouse the controller space is more
convenient for comstructing the algorithms by which the
actions are implemented than the previocusly used actuator
space. For example, the controller space in the case of
sanipulator control systems, Ref 2, can be the hand
coordinate syctem, while the actuator space is the ‘7int
space of the manipulator. The change of only one (uor-
dinate of the hand coordinste system, say the front
distance of the end-effector from the object being man-
ipulated, can cause simultaneous adjustments of several
joint coordinates. The coordinate transformation
(Eq 4) in the case of nonredundant manipulators is
defined by the manipulator gecmetry equatioms.

In order to make further simplifications of the
subcontrollers, a similar transformation for sensors
data is introduced

Xe8®, (6)

vhere Y = (Y),Y2,...,Yyy) is the vector of the trans-
formad sensor data. Examples are outputs of strain
gauges placed in the wrist of the ranipulator arm,
vhich are transformad into orthogonal forces and

h—l

!

the iterative nature of the subcont
formal conveniences, the outputs of the subcontrollers

b ted the increments of the set-points
E}l% - 9,!!; - gp(k~1), The new operators of the
subcontrollers can now be writtem in the form

-

5= a0 L nyoe &yo)e o

The operators are expected to be simpler than
the operators of Eq 3 because of transformations
(Eq 4 and Eq 6). These transformations can be cen-
trally executed for all subcontrollers and can be per-
forned within another functional block to be discussed
later.

As seen, the subvector 8y is omitted in Eq 7.
It is not essential to the controllers defined in the
controller space. As will be shown later, 8p is used
within the actuator block (Eqs 13 thru 17). In fact,
the 8py could be generally retained as an argument of
24, soma algorithms of subcontrollers might be
based on the information of the actuator states, but it
will be omitted here for the saks of the simplicity.

A triple of input and output subvectors @yl;o
Uj) is associated with every subcontroller 4,. “in"the
following discussions this triple will be ed
“channel”. Two channels (M;,Y,,0;) and (4,,Y,.U;)
are mut e if:

1) Inputs M; do not affect the outputs U, and
the inputs Mz do not affect the outputs U;.

2) Changes of the environment due to the execu-
tion of Uy will not cause changes of Y7, and
changes due to the execution of U; will not
cause changes of Y;.

It follows that the necessary condition that two chan-
nels are mutually noninterfering is that the corres-
ponding output vectors U; and Uz are mutually disjoint
subvectors.

If two subcontrollers work on mutually interfering
channels, they can interfere with each other. Because
they vork asynchronously, i.e., time independently, it
is practically impossible to determine and to control
the interference between the subcontrollers. Their
algorithms wmust therefore be designed under the assump-
tion that they are completely independent of each
other, Consequently, only for subcontrollers working
simultaneously on mutually noninterfering channsls can
stability be guaranteed, i.e., the convergence of the
corresponding algorithms. Therefore, the system must
provide the channel management that will enable the
coordinated allocation and deallocation of mutually
interfering channels to simultaneously active
subcontrollers.

Because some actions can be more urgent than
others, as .t is with actions invoked in emergency
situations, priorities should be assigned to the
actions. These priorities will resolve conflicts when
two or more subcontrollers are competing for mutually
interfering channels. The matter of priority assign-
ments will be discussed later.

Having done the decomposition of the controller,
the functional block diagram of the control computer
can be represented as shown in Fig 3. There are six
functional blocks, five of them having assigned 1/0
functions and ccordinate transformations and one with

S

acrnton |14
woce 1

' ol § Ve |
L L |

-, -

=R F

| :
S{= =
: |
=1

Fig. 3 Discribution of fumctioms of the
control computer

control functions. The control block consists of n
subcontrollers and the necessary interfaces which
enable data commumication between subcomntrollers
internally and between subcontrollers and peripheral
blocks externally. The interfaces also have the
responsibility of channel management. These func~
tional blocks and interfaces are discussed in the
next two sections.

MAIN SYSTEM COMPONENTS

The functional blocks of Fig 3 will be imple-
mented a3 parallel and asynchronous processes. In
accordance with the system structure discussed so far,
we define five peripheral processes and n processes
wvhich support subcontrollers A4. The latter are
called action processes. The peripheral processes
support the corresponding peripheral functioral blocks
and are called command process, display process, manual
controller, sensor procese, and actuator process. These
processes will now be discussed in greater detail. As
will be seen later, thes‘ processes are not the only
system components. Ther< are additional components
wvhich appear as a result of the decomposition, and
vhich support the communication between the processes.
These components will be considered in the next section.

A more detaiied and formal description of the
system is given in the Appendix, using the notation
developed by Dijkstra (Ref 6) and Hoare (Ref 4). The
reader not familiar wich this notation can skip the
Appendix without loss of the ideas presented here.

Assuming, for the sake of simplicity, that the
command device is an array of nc on/off swicches, then
the command process cyclically iiterrogates these
svitches, vhose positions are defined by the raw command
vector € = (&,,8),...,Epc) It transforms this vector in-
to the command vector ¢ and checks if there is any change
in the commands. Checking iz done by comparing ¢ with
its value c, , from the previous cyclr. 1If ¢ ¥ ¢, 4.
then the new value ¢ will be sent to the action pro-
cesses for further computations.

Display Process
E assume again the simpler case that the dicplay

device is intended for discrete messages such as varn-
ing and alarm signals. In this case, the display pro-
cess receives, from the control block, a vessage code

in the form of < Boolean vector a = (8).,82,...+8n,),
vhenever it has « new value. It produces, then, the
character string o = ayay040,..., and displays it to the
human operator. The characier string is generated by
the program CONTEXT, which for ench state of a responds
by a fixed, predefined verbal metsage. The details of

ORIGINAL PACE IS
OF POCR QUALITY

the program are not important for the following discue~
iot and will not be pursued.

:

t cyclically reads the rav valua of the manual controls
H from the A/D converters vhich are attached to the cca-
troller devices. Second, it calibrates rav values in
accordance vith the relation

M-y @®, (8)

vhere the vector func ¥y represents all cperations
necessary to transform M into rtandardized signals,
thus providing a good interface between the human oper-
ator and the control cowputer (linearization, compen-
sation for unwanted effects dus to nonlinear character-
istics of the controller devices, introduction of
saturation and dead-band, etc.). Third, the process
checks if the new manual zontrols M are different from
those generzted in the previous zycle M, 4 by checking
the inequality

8- M,al <85)

vhere is a given tolerance vector. If Eq 9 does
Mﬂ. the nev value M will be sent to the actiom
processes.

s
This process cyclically reads raw values of sensor
data § from the A/D converters attached to the semsors,
and then calibrates the data by the relation

s=5®- 10)

The vector function yg operates similar to Yy, but can
be sore complicated due to the complexity of some sensor
systems. For example, proximity sensors with fiber
optics must be calibrated for emvironmental conditions,
such as color and rexture of the manipulated objects,
etc. Therefore, the calibration process may need a
dynamic definition of the calibration parameters. The
function yg may also include a filtering capability to
reduce noise.

Aftar calibration, the process checks if the new
value § is changed with respect to the value 5,14 from
the previous cycle by the inequality

15 = 5510l < &5 o
vhere tg is a given tolerance vector. If Eq 1l is
true, the process will read new raw sensor data from the

A/D convierters. Otherwise, it will first perform the
coordinare transformation

1= 50, (12)

vhich hss been discussed in the previous section, and
it will cthen read new raw sensor data. The transformed
sensor data Y is sent to the action processes.

Actua es

This process has an input and output part. The
input part cyclically reads rav feedback values of the
actuator state variables §; and performs the data
eslibration ’

[30(5,). (13)
It then transforms the vector 8y from the actuator to
the controller space by a mapping

Oy = 8408+ (14)

is performing three operatioms., Pirst,

'Mm‘whmm-uuu. Pinally,

it defines the Eoolean vactor veady = (ready),readyy,

+evsfandyy), the components of which define the set-

points of the actuator process that have been already
executed, i.e.,

’"" 1 1Qp, - Q! 5 5y,
| talse otherwise
191,2,... 0, as)

Eeady,

or in shorter notatiom

m-(lg,-gl,ls_;o). 1e)

vhere Qp is the vector of the actual set-points, and
is a given rolerance vector. The vector ready is
t to the action processes in cach process cycle.

In the output part the actuator process receives
totai incremsnt (if any) of the set-points (this
tor is composed of the partial increments gener-
ated by the different subcontrollers working s tan-
eocusly) and forms the new set-points using the current

positions 9'

Qp “ Qp * Leoer an

The set-points in controller spacs: are now transformed
into the actuator space by the invarse mapping

-1
8 = 8y Q). (18)

ard converted iato the raw output value

iz s

=1 ,
!, -y (u,). (19)
This is then writtem on the D/A converters of the
physical actuator.

Execution of the input and output part of the
actuator process is not essentially synchronous and
alternative, but the software implementation mus”
ensure fairness to both parts. Also, to avoid dalay
effects in the control loops sensor-comtroller-
actuator, the cycle period of the actuator process
must be long enocugh in comparison with the cycle period
of the sensor process.

The action processes perform the actions, i.e.,
they execute the subcontrollers 44 (j = 1,2,...,n) and
provide the necessary administration. They all have
a similar structure, with the exceptiomn that they
employ a difforent algorithms for the subcontrollers.
“herefore, the aczion processes will be rapresented as
an array of processes with the subscripted names A(l),
A(2),...,A(n). Every arcion process can hsve a blocked
and an active state. [n the blocked state, the pro-
cess is waiting to de activated by some other action
process. In the active state, it cyclically checks
the relevant transition conditions and executec the
subcontroller, if it has the right for further
existence.

Checking the transition conditions tor an sction
process, say A(j), means evaluting and checking the
Boolean functions ty4(c.e) (1 = 1,2,...,n, 1 4)),
vhich vere uuuui in the previous section. If some
of these expressions turm out to be trua, the process
A(J) will notify the system which will then send (wake
signals to the corresponding acuiion processes thac
must be activated. If 711:%.2) beccmes false, che
process A(3) will immediately put itself in the blocked
state. Othervise, it will execute the subcontrzller,
i.e., it will invoke the procedure with ths nase SUB-
m, wvhich 1is specific to the corresponding

ORIGINAL PAGE IS
OF POOR QUALITY

B e e e T p——

sction. Mumeric and logic state vectors and L4
of the subcontroller are local variables of the

process A()).

Conceraing the action processes and their subcon-
trollers, there are two important issues mentioned in
the previous section. These are channel allocation and
controller synchronization.

When two subcontrollers are competing for the same
channel or for chammels that are msutually interfering,
only one subcontroller csn be assigned to the chamnel.
The other must wait until the firstc terminates and
releases its channel. Immediately after being scyi-
vated, an action process requests from the system the
channel requirad by its subcontroller and then waits.
As soon as the raquested channel becomes available, the
action process vill be notified and activated. It will
then iteratively execute the subcontroller umcil the
corresponding action has been completed. When the sub-
controller terminates, the action provess notifies the
system that the channel cga be relessed. The channel
ccn now be used by another waitin, action process.

It has been nuted that some actions asy be more

urgerit than others. For instances, mergency actions
must be parformed imrediately to prevent system fail-
ure, incurrect performance, or collisfiom. In this
case, the emergsency action should be able to get tha
channel evan if it has becn allocated to another
aczion process. In order to administer this, the pri-
ority vector p=(p],p2...++Pn) is introduced, vhare the
prioritius p4 (§=1,2,...n) sre associated sith the
processas A(j). If the process A(k) has a higher
priority tlan A()) which is in progress, (py > py),
then A(k) will be granted immediate access to the
channel while A(j) will be rempo~arily blocked.
Here, ve only consider static priorities. More gen-
eral capacilities of Lhe Jystem would be with dynamic
priorities vhich can be changed during tar“ execrtion
by the humun opr «ior or by some algorithm.

The synchrc .dzation of a sudcontroller consists
of the following. Tha executiom of the subcontroller
<3 witnin the action process A(j) is done in an itera-
ti/e mavier, _.e.. the subcontrollur ates the
sequence of che set-point incremenzs {Uj(k)}
(k=0,:,2,3,...). ‘e, any increment J4(k‘ camnot
be sent to the actuator process before the previous
increment U (ki) has been .xecuted. In other words,
vhen A(!\ vants to genera-e an¢ send (he Uj(k), 1t
must vait until the actuator prucess first executes
Uj(k=1, anc then norifies A(j, by the signal "go" thac
it can proceed. Only then can A(j) ask for, and
receive, rhe new values M(x) and Y(k) to compute the
nev value Uj(k) and then zend it to the actuator pro-
cess. This synchronization mechanism, J4nd the previ-
ously discussed channel allocation mechanisws, are
external to the action processes. They will be dig-
cussed in (he next section in more detail.

INTERFACES AND SYSTEM INTEGRATION

In the previous section, the main compcnents vere
discussed. In order ro provide a simple and reliab_e
smplemeniaticn, the processes defined ihcuid not cow-
municaty directly with ~ach cther, but they rhould
communicate through some inter‘aces. Fir this pir-
pose ve introduce two additiorsl softvare crmponents
vhir® are a stavus sonitor and a channel mr-itor. These
mcnitors can be built a» passive c-mponenti vith a data
structure 4 associszted operatic-is (monitor pro-
cedures) as was pronceed in the previous vork (Ref 3)
vhich vas based or . monitor concupt by Brinch-Hansen
(Pef 7) and Hoare (Ref 8). The limitstion of this
approach is tlhrt the processry accessing (he moni’or
sust share commun Jemory space. However, a more
attractive possibilicy ‘s 4if che procesrss are mace tn
be mutually éisjoiat in aemory wpace. Then, thy systen

can be implemented on & computer network with distrib-
uted storage. Solutions to this problem have been
proposed by Hoare (Ref 4) and by Brinch-Hansen (Ref $
vhere the monitors aie implemented as processes vhich
comsunicate with other precessea by 1/0. These ideas
are applied in the following paragraphs.

The status monitor supports (a) dati communica-
tion betveen all periphersl processes (except the
actustor procr-a) and the actiom processes A(j)
(§*1,...,0), (®) evaluaticn of the event-status vector
& and the messago-code vastor ¢, and (c) activation of
the actlon procassas.

The Aata comwrmicatica 14 organizod so tuat the
status monitor examines other proceJsses to determine
if they ave ready to receive o. to send data. 1./
commmid procesr, msuual controller, and sensor protese
daca to the sticus monitor whevever they are raaly,
the status mon'(or wili receiva thele (ata sud w1l
ther into ics lccal varfables. When the action
es es need these data, they «sk for chem by sending
appropriate signals to :ha status monitcr (nhe
signal "status ' for ¢ and e, and the sigsl ".npur" Jor
M and Y). The status monitor will _wwedistely respond
by sendiug the cor-esponding dats to tbe torrcepcading
pracess. The action procecsa. musi ask for the data,
sacause the status waitor serve mox~ than ond process,
end it must 1espouc to their frequent requests ~d
shet afore shou. .ot be delayed for longer periods.

When the status monitor :iceives sendor data Y it
will alvay., iavoke Lhe two procedvies SVENTTPDATE and
MESSAGECODE. Th. first procedure defives and updates
the new v.due of the event-starur vector e, using che
mcst recent scasor 4ata and possibly thaiy ~ast
values. Faving Y, ~, wnd 2, the procedu.+ MESSAGECODF
defines and updates the nessage code a. If the“e is &
change of this vector wirh respect to the old value,
i.e., 4 7 » 2,14+ status monitor will send the nev
value a to the nnhy process.

Th: mechanis* of activating an cctina Orocess,
say A(k), by acotae. actiou process, say A(j), is per-
formed as follows. If A(J) fincy that the transition
condation T4y (g, #) is true, it will sea the integer
k to the stitus monitor. This integer idenrifies the
sction procary that mst be activated. As soon &8
statna mo itor recsives k, it will send the "awake" sig-
nal to the ,rochss A{k). This process, if in ’he blocked
state, i~ wvaiting for thu "swake" signal fr-a tha _.atus
mon.tor and will chenge its state to the active oru.

T v "swake" rignal uas ~o¢ effect if rle process A.%) is
already in the active stave.

$ELY

-

The chavnel monitor suplorts three functions:

(a) dexa communicarion between action processys and
asctuator yrocess, (b) channel allo” tlon, and (¢ chan-
nel synchronizacivn.

The first function is based on the same prin-
ciples as for the status monitor. The monitor raceives
from the actfor. pricess the Soclean vector ready and
sends the vector of set-point incrmments Uge; t¢ the
actuator process. The vector Upoe is discusse’ below.

The chanvel allocation, i.e., servicing tne
reyuest /release requirements of the action »“ocesses
is done by .wr procedures: REQUEST aad RILEASF. The
firat procedure is invoked vhenever a “request” signal
is sent fvom the action prorsss. The (arit piraseter
of the procedure is «n integer j thit ide :ifles the
ryjuasring process. The procedures has sccess tu the
Nxn Boolean matrix m = [lu] (4e1,2,... .04
3*1,2,...,n) vhich defines the channel rcouiremsnts
fee wll ac” _on pocesser. For exaajle, m{y = true
indicates that the i-th input of the act._ator procass
is raquired by the subcoutroller 4j. The j~th column

OfGINAL P/ GE IS
OF POOR QUALITY

- (N peesy) cf the matrix defines the
’Lu&’&l r:q.‘u—c of the o!ﬂuunuu ay.
The procedure also has access to the priority vector p.
The matrix m and the vector p are comstants local to
the channal monitor which are defined at the time of
system installation. When a request is made by the
A()), the procedure REQUEST first checks if the true
pattern of the my matches the partern of the channels
already allocated. If not, the channel vill be imme-
diately granted to the A(j) and the signal "allocated"
will ba sent to it. If yes, the procedure will put the
procese index j into the waiting queus, vhich is also a
data structure local to the chamnel momitor. 1f the
requasting process has a priority greater than the pro-
cesses holding the chennel, then the monitor procedure
vill perform channel reallocation.

The procedure RELEASE i{s invoked whenever a
“release” signal is sent to the channel monitor. The
input parameter of this procedure is also the integer j,
vhich i{dentifiss the process reuleasing the channal.

The jrovedurs exsmine the vaiting queus for a process
wvajting for the channel. If such process is found (pri-
orities are takun into account), an "allocated" signal
vill Le sent to it, and its identificrtion index will
be renoved from the waiting queue.

The third function of the monitor, the channel
synchrcaization, is done by the procedure CHECKCHANNEL.
(fhis procedure is invoked vhenever the chanmnel momitor
receives the vectus %th SCTUALOT process.

It will then check for which are still busvy,
or «hich are r~ady to accapt new set-points. The check
is made by comparing the vector ready with all colums
cf the matrix m, wi.ich corren to the active chan-
nels. Active channels which meet the true pattern of
the ector readv ~re riady to accept aer data. These
channels are definel by the index set Jg = {§|myA
ready = my and jeJ,) vhere J, is che tn‘uuto—iul
active c ls. The procedrre CHECKCHANNEL will send
s "go" signal to all processes A(1), jelp.

We now turn bark to the vector U + The channel
munitor plays the rolc of a butfer rng‘couocu Ciffer-
eJt portions of which are senr as subvectcrs Uy
f.om the different 'rocessns A(j). The cellectiorn of
these portivns i3 deiined by:

glot - 2 E i (20)
jtJA
vher~ U' are "clesred" versious of the subvector: 7 ,
defined by]
‘ uu if lu - true
v} - (21)
1 ‘ 0 if l” = falsc.

Systs= Data Flow Diagras
The system components row can be connected intn a

s~stem shown by .he data flow clagram in "ig 4. The
processes are represnted by circles and tne roripheral
devises Uy squared bc es. The data and ¢l signals are
reprisente’ by arioes indicating their sources and
their dest’nations. To indicate the Jifference betwern
data end oignals, tha lalter are ghown ty dashed arrows.

Al seen, the diagiam in F'g & has the form of 1
doulle star. Yoth stars havy {he ™nitor processes in
vhe cenzzr. The s tlon rr i essis constitute the comron
branches of the swars. 1h (res branches belon~ to
peripheral procecies vhich have access to the external
physical devicis.

ORIGINAL PAGE IS
OF POOR QUALITY

SESUASE

!
it

Fig. &4 Data flov diagram of the
integrated system

The proposed software atructure of the interactive
tontrol system is highly modularized and is suitable to
be implemented on & computer network with distributed
storage. The modularization is done in accovdance with
the varied 1/0 and control functions of the system.
Because of this, the system can be implemented jradually
and vith the possibility of subsequent refinemecnt and
improvement. All modules can be designed, codnd, and
tested separately and almost independently of each
other. The second characteristic is attractive because
of the time constraints and the system reliabilicy
which become more and more important factors of such
systems. Also, the trend of computer technology justi-
fius such an orientation.

The intention lLare is not to give a definite and
detailed implementation of the software, but to iden-
tify certain structural properties of the interactive
control systems and to given hints for the application
of wodern concepts of real-time programming propcsed by
Dijkstra, Hoare, Brinch-Hansen and others.

For the sake of simplicity we ignored, in tnis
paper: (1) the parameterization of the commands c and
mescages 3, (2) the dependency of the subcontrollers
(Eq 7) and sensor transformations (Eq 12) on the
actuator-state feedback &y, and (3) the dynamic
assigment of channel priorities to the subcontrolers.
These isaves will be considered in the further work
and through practical realizations.

ACXNOWLEDGEMENTS

The research described in this paper was carried
out, in par:t, at the Jet Propulsion Laboratory,
Califormi, institute of Technology, Under NASA Coa-
tract "A37-100. The authors aisc wish to acknowledge
valuab,a diy-ussions on the subject with Dr. A. K.
eicay.

RafEPENCES

[1] Heer, E. ard Bejczy, A. K., "Coutrol of Robot
Manipulation for Handling and Assembly in Space,”
2nd IFAC/IFIP Sympoaium on Informatiom Comtrol
Problems in Manufacturing Techmology, Stuttgarc,
Jermany, 22-24 Oct 1979.

(2] Bejczy, A. K. and oikovié, M. 1., "An Interactive
Manipvlator Control Syates,”™ Proceedings of the

ars trod, r . .

[3] Vudkovié, M. I. and Zawacki, R. L., "Structural
Wuthm-dh_mm.lh-

puter Control of ll-tnhun. M-H of

(4] Hoare, C. A. R., "Cu™nmicating Sequantial

Processes,” ‘z2tion of the ACH, Vol. 21,
No. 8, August .

[5] Brinch-Hansen, P., "Distributed Proresses: A
of e 4. Vor. T1s Ho. 11 Neverber YL
of the AOM, Vol. 21, Ne. 11, r o

[6] Dijkstra, E. V., "Guarded Commanls Nondeterminacy
and Formal Derivation of Programs,” W
of the ACM, Vel. 18, No. 8, August 1975.

[7] Brinch-Hansen, P., m_ ntu’ Sysrems Principles,”
Prentice Hall, Engl 8, dJd., .

{8) Hoare, C. A. R., "Monitors: An Operatiag System
Structuring Comcept,” ngni.esgz_ﬂ_gb-_ﬂ-
Vol. 17, Neo. 10, Octohes .

APPENDIX

The following statements shculd not be considered
a= a program, but as ¢ pseudocode uses to describe
algorithms. Therefore, the mathemar_cal symbols four
variables and functions are useu rather than symbolic
names. The detailed explanation for the syntix of the
notation is given in Ref 4. Ir this section the fol-
lowing nonstandard data types are used: "Boolean-
vector”, "realvector" and "charscterstring”. These
are arrays of corresponding standard data types, vhare
the dinensions correspond to the dimsurions given
through the paper. Variadles cy, tg and %Q are com~
stant vectors with corresponding dimensions.

[DP :: DISPLAYPROCESS

#MC :: MANUALCONTROLLER

u CP :: COMMANDPROCESS

u SP :: SENSORPROCESS

AP :: ACTUATORPROCESS
wa(i:l . .n) :: ACTIONPROCESS
nCM :: CRANNELMONITOR

uS¥ :: STATUSMONITOR)

DISPLAYPROCESS =

a:booleanvector; uicharscterstring;
*(SM?7a - CONTEXT; CRT!a]
MANUALCONTROLLER =
"'"ou_'_"’ rulvcc:o:;
AADCTM - H:WH:H);
b: boolean; bi=(|M - "old(:-‘h);

- - - '™]
(b = wkipO=b SMINM; "old =-H]]

COMMANDPROCESS

r..cou.?: booleanvector; couz-uln;
*(switches??¢ =~
c:-v:(t); i boclewa; b:-(c-c‘“);

[b = skip O b = SMic; col‘:-c]]

ORIGINAL PAGE IS
OF PCOR QUALITY
SENSORPROCESS =

l.lou.l: realvector;

Y! realvector;

*(ADC?S -
Siwv (3);
b: boolean; bie(3 = ‘,ull"“
[b » skip @b » 7:-0,(!); sMIY;)

l,.l,..,."x realvectas;
Q'.Q,.ngt realve-tor;

QpiQpgi Opi=dyi

taady: boolean;

-u.ncﬂ’, -
.,X".(tr)‘
readyr~(|Q, - Qpl2ey)
CM!ready

OMMWeoe «
Q':Q, + u!ot;
0,265l (%)
o’:-w;l(e_);

w:xi,)

ACTIUN. ROCESS =

blocked ,ca,cr. . Jolean;
blocked :=tru.; ca:=talse; criefalse:
*[blocked =~ Sh7avake(); blecked:=false
T blocked ~
[SM7awake() = skip
o—~ca *
[=2r = CM!request(); crietrue
ocr = (M?allocated();
Tiwg- Liel,; caietrve]
oca = CMIgo(); PrAFORMACTION))

PERFORMACTION =

¢ booleanvector;
¢! booleanveccor,
b: boolean;
SM!status(); SM?(c.e);
i: integer; 1:=0;
*(i<n -
Liwis];
[2 = 3 = skip
0L ¢ § = bie ‘11(“'.);

[b -~ SMUD=b = skip)l]
ﬂn(c.o);

[b = SMIdnput();
M.Y: realvector; SK7(M,.Y);:
sumnnou.nj.
!V

O7h + blocked:i=true; Mirelease())

CHANNELIIONITOR =

U,U__ ¢ roalvector; ! _:=0;
tot :0

empty: boolean; empty:=i{ruy;
ceady: booleswn|

o: {l..n,l..4) buolcan;
s[(J:l..0)A()) Treqrest() =

o OV RSIRENES MEA i mrorecan . v b et et e e

REQUEST(...3f channel free then
A(3)!allocated()...)
o(j:1l..0)A(])relesse() ~

RELEASE(...1f this channel requested by A(m) then

A(m)lallocated()...)
CAP ’ready +
CHECKCHANNEL(...if channel k not busy then

A(k)igo().es)
o(j:l..0)A(3)?0 »
1: integer; 1i:=Q;
*{i<N »

1:widl;
(~m({1,3] = skip
oa(i.5] + Ugor(i):mloe(1143(1])]];

empty:=false
empty ~ Al'lumt; Utotzto; empty:=true)

STATUSMONITOR =

c: boolesnvector;
e: booleanvector;
8.8, 44¢ boolesuvector; ‘o.\d"“‘l”;

k: integer;
M: realvector
Y: realvector;
®((3:1..0)A(]) 2acatus() « A(2)!(c,e)
o(j:1..a)A(3) dnput() - A(J)I(M,Y)
OCP?%c¢ -+ skip
oNc™ -+ skip
QSP?Y + EVENTUPDATE; MESSAGECODE;
b: boolean; biw(a * a . .);
old
' {b » skip
ob - 814 ™8 DP!a]
o(3:1..0)A(J 2k » A(k)!awake()]

PART II
August 31, 1981

COMPUTER MOCELING AND EVALUATION
OF SENSOR-ALDED SEMIAUTOMATED OPERATIONS

BY

M. I. Vuskovic

INSTITUTE FOR TECHNOECONOMIC SYSTEMS
UNIVERSITY OF SQUTHERN CALIFORNIA ‘
LOS ANGELES, CALIFORKIA 90007 k

PPN |¢|‘ oo . o . .
P I N T R A T T T VA T T W T T T LT

T T e e e T T e T e T T R T

ABSTRACT ,

The CURV Arm Control System (CACS) is a computer aided control
system for interactive computer-aided control of the six-degree-of-freedom \\
manipulator of the JPL teleoperator laboratory. The manipulator is
equipped with proximity and force-torque sensors. In order to perform
complex tasks like tracking, capturing and stopping of slowly moving
heavy objects, the human operator commands are supported by automatic
control algorithms based on sensory feedback data. The general objective
of this development project is to evaluate the performance benefits of .
sensor-referenced and computer~aided control of manipulators in a complex ’
environment. This progress report represents the first phase of the ‘ ’
CACS software development, and gives the basic features of the control
algorithms and their software implementation. The control structure
development is based on three concepts: incremental motion synthesis,
basic control routines, and parallelism of algorithms. Incremental
motion synthesis consists of generating a series of motion increments
instead of generating endpoint values. This enables a unified handling
of position and rate control modes of the manipulator, and uses simpler
coordinate transformations based on linearization. The basic control
routines represent the set of elementary algorithms for generating
differeat kinds of motion increments shared by all algorithms of higher
levels of the control hierarch. The parallelism of algorithms is a
natural consequence of considering manipulator activities as integral
components of complex manipulator tasks. Because of the relatively
complex control structure and its inherent parallelism, special attention
has been paid to its software implementation. Therefore, modern concepts
of monitors and concurrent processes are applied in this work.

DS A o i Al ki et oSl A A L - o A At as A At antal e il el

ABBREVIATIONS

CACS CURV Arm Control System \ ;

TO - Target object

TP = Tracking plane 4
EE - End effector ;
)

CAL - Common Assembler Language

WCS - World Coordinate System

JCS -~ Joint Coordinate System

CONTENTS
{ I. FUNCTIONAL DESCRIPTION 1-1
A, INTRODUCTION 1-1
B. OBJECTIVES 1-1
II. FUNCTIONAL REQUIREMENTS 2-1
III. OPERATIONAL DESCRIPTION 3-1
A. GENERAL SYSTEM DESCRIPTION 3-1
1. Manipulator - 3-1
2. Operator Control Console 3-3
3. Control Computer 3-6
4, Computer Console 3-6
5. Alarm Display 3-8
6. Computer Interface 3-8
B. CONTROL ALGORITHMS 3-10
‘ 1. Incremental Motion Synthesis 3-10
2. Application of the Incremental Motion Synthesis
in the CACS 3-13
3. Basic Control Routines 3-18
4, Dynamic Response of Manipulator and Delay =—=—=———==- 3-26
5. Parallel Processing Concept 3-29
6. Application of the Parallel Processing Concept
(in the CACS 3-33
c. SOFTWARE IMPLEMENTATION 3-39
1. General Software Architecture 3-39
2. Parameter Editor Subsystem 3=39

[o L I S SR S S R S WY P PP o vy - ‘j b, ahia ks

vt n o e e g s <

e e

s o i hanndaats cohl o

Y S i e

Iv.

V.

APPENDIXES

A.

B.

3.

4.

5.

CONCLUSIONS AND PLANS

REFERENCES

CONTENTS (contd)

Manipulator Testing Subsystem

Monitor Concept

Basic Prerequisites and Assumptions

Implementation of Monitors and Processes ==——=—=——ecw=-

Scheduler ===

Program Documentation

GRAPHICAL REPRESENTATION OF DATA AND

STANDARD OPERATION

TBD

Figgres

2-1
3-i

3-2

3-10

Manual/Automatic Tracking/Grasping Operation Sequence ~===-

Data Flow Diagram of CACS
Principle of Incremental Motion Synthesis
Example of Combined Motion

General Data Flow Diagram of CACS

Translatory Motion of the Arm in World Coordinate System --

Rotational Motion of the Hand in World Coordinate System -

Translatory Motion of the Arm in World Cocrdinate System -~

Constrained Translatory Motion of the Arm in Tracking

Plane

Expansion and Contraction of ta« Jaw

Asymmetric Expansion and Contrzcti-:n of the Jaw (Fixed
Left Side) = :

3-43
3-43
3-46
3-48
3-52

3-59

4-1

5-1

A-1

B-1

3-23

3-24

3=27

)

[

¢ 3-11

3~-12

| e 3-13
i | 3-14
| 3-15
| 3-16
? 3-17
' 3-18
- 3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26

3-27

Tables

)

i

CONTENTS (contd)

Asymmetric Expansion and Contraction of the Jaw (Fixed
Right Side)

Dynamic Response of the Manipulator

Process Precedence Chart

General Qutline of Temporary Active Processes

Process Precedence Chart of the OPER Subsystem ====weeccmaa

System Block Diagram of Parameter Editor Subsystem ========

Example of Parameter Display

General Outline of Buffer Monitors (in Pascal Language) ---

General Structure of the Module

Access Graph of Subsystem OPER

Access Right Cross-Reference Table

Scheduler - Main Program

Scheduler - Process Multiplexing

Process Synchronization Monitor MPRQ

Graphical Representations of Data and Standard Operations--

Functional Switches

Pushbuttons

Alarms

Basic Control Routines

CACS Processes

Event Flags

CACS Monitors

Lu—a...‘_...‘.,.._.__‘.‘_ Y A A R R S R v PR SR v VT ‘ML“‘A e oo Tegpd

ey

3-29
3-31
3-33
3-36
3-38
3-41
3-43
3-48
3-52
3-54
3-55
3-56
3-57

- 3-59

3-62
3-63

3-64

yow

SECTION I

FUNCTIONAL DESCRIPTION

A. INTRODUCTION

The CURV Arm Control System (CACS) is a computer aided system
which provides interactive human operator and computer control of the
manipulator. The system generally consists of two parts: hardware com-
ponents and software. The hardware components include computer hard-
ware, the JPL/CURV arm equipped with sensor systems and an operator
control console designed as a universal control panel. These compo-
nents are part of the JPL Teleoperator Laboratory and are described in
Refs. 1-3.

The CACS software is a new system compcneat intended to support
a class of real-time manipulator control activitics such as tracking,
grasping, and stopping of slowly moving objects.

B. OBJECTIVES

The objectives which are pursued in this project are given in the
proposal '"Develop Experimental Modeling and Evaluation of Sensor-Aided
Manipulator Control" which was submitted to JPL in November 1978. The
objectives will be briefly reviewed here.

The general objective of the project is to demonstrate and deter-
mine experimentally the impact of sensor and computer aided manipulater
control on overall task performance. The experimental nature of this
general objective implies two major points:

(1) The sensor/computer aids are tools in the hand of a human
operator, and consequently, a major concern is to provide a
proper interface between sensor/computer tools and the
human operator.

(2) The sensor/computer aids are real-time tools, and conse-
quently, their performance properties should match the
versatility of a real-time control environment.

The specific objective 1s to develop real-time computer control

programs for the JPL/CURV manipulator referenced to proximity and force-
torque sensors.

1-1

- e —————
O Sy - mj oot i, 2 et sl in . s e Stincienh O B ki

-

)

.
et a8

The specific objective includes also that a well-designed software
basis shall be provided for further research on the following issues:

(1) Development, testing and improvement of new control
strategies and algorithms.

(2) Investigation of the impact of design parameters including
the physical characteristics of proximity and force-torque
sensors and other relevant system components on overall
control capabilities and on overall system performance.

(3) Investigation of the impact of real environment (irregular-
ities of objects, noise, component imperfections, etc.) on
control capabilities.

(4) Study of software approachec tu the solution of manipulator
control problems.

This report is the first quarterly progress report in which the
basic concepts of control algorithms and their software implementation
are considered. The programs developed thus far are described in the
program documentation given in Appendix B of this report, which has been
issued as a separate volume.

Before starting the system description, the functional require-
ments of the CACS software will be reviewed.

- < e s - e ———————— L T mweeceegmee—eet T TSI S———_———"—m——y -

b anad

SECTION I1I

FUNCTIONAL REQUIREMENTS Y\ 1
.

The class of manipulator tasks, which the CACS software has to
support, can be defined by the following control functions:

(1) Unconstrained control of the arm, hand and jaw in Y {
Cartnsian coordinates (world space). i

(2) Constrained control of the manipulator, i.e., moving the
hend with the erd-effector (EE) at a constant distance
above a fixed tracking plane (TP). 0

(3) Tracking a target object (TU) which is slovly moving on the
TP with constant speed, with arbitrary orientation and with
straight line trajectory. 1

(4) Grasping and stopping the TO which 1s stationary or moving
on the TP.

ol .

These functions must be performed irteractively from the opera- f
tor's control console (uuiversal control panel) which is specially
designed for this purpose.

To facilitate the interactive manipulator control, the following
. automitic operations should be supported by CACS software. These opera-
.tions are as fcoliows:

(1) Roll and pitch alignment of the EE to TP.

(2) Tracking (identification) of TQ speed.

(3) Yaw alignment of the EE to the TO.

(4) Centering the EE to the TO for best grasping.

(5) Grasping and stopping of the TO with complian~e to its
motion dymamics.

All manipulator control functions should be capable of being per=~
formed independently, or to be imbedded in one continuous sequence of
operations. Such a sequence is shown in Fig. 2-1, where an idealized
orcering of system states and the corresponding transition overations
are depicted. This sequence pattern exists if all operatiou. are
successfully accomplished and all system states are stably attained.
1f some algorithm fails or system disturbances occur, the corresponding
transition operation must be repeated, and the sequence pattern becomes
more complicated.

P Y T 5. on e

Y

o bt st A W

aJuanbag suoyieaadg Buydsvay/BupniIrsl OFIewoIny/IENUBH " |-Z -8913
Q344O1S
ol
ol 40 O1NC) 01 NO 33 40
ONIdOLS @V ey GEINI) ONI¥IINID
ANLYWOINY NIVWOINY
a33ds Ol QINIVLLY INGWNOITY GINOINY
ouz.<=< 40 ONDIDVIL ow._m MVA MVA
ALYWOINY IIVYVHOLNY 33
O1 ¥O4 HO¥V3S
10YINOD IVANYW
QINIVIISNOD
a3INONY INIWNOITY QINSITV INIYINOITY ¢/ anwvn
HOAId HOLId jQ_ 104 NIV
13 N IYWOINY NIVWOLINY ONINDOVSL
1O4INOD |
IWONYW
QINIVEISNOINN

uviswatsas © ()
Notwv¥do 1 []

aN3o N

a

As sesn in Fig. 2-1, all uperations are sequentiai. This moans
that they are executed one after anotuer, “ringing the system from)
state to state. !However, taece 1is a uered for some operations that csan L
surnort the state tcansition procass and maintain the stability of
atcained ctates. These oparations are not shown in Fig. 2-1, but shculd

be gerformed simultaneoumly with the sequen+tial opecations. Examples
are:

7

P

: (1) Maintenance of constant distan~e of EE from TP. o
(2) Maintanance of constant diatance cf EZ from TO.

The Zirst operaifon 3:arts immediately as EE 10 roll and pitch
aligned t> TP, 1i.u., when “he manipulator begipre the constraized motiun

over the TP, aud terminates when TU is stcpped. The secona coperation a
starts waen the specd cf TO is icentified, and termnutes wben EE starts 1
the grasping proceuurc.

Automatin operations elp “he opera.or to cerry oul manipulator
conirol .asks. However, si:iations can ocour vhen actomatic opcrations . !
require operator's assistence. Jor sxanpie, the yew 1lignnent algoritha O ‘
can have difficulties raused Ly an inconvenient angyle of TO tzajectory
and/or speed. In thet case, it should e allowed for the oparscor to
control the hand angles directly 1 om his rontrol paael. Ths'z are many { ‘
similar examples. Therefore, tu facilivate ur speed up the o tomazic

operations, two new operations are added to the operacion list given
above:

(1) Operator's manual c¢ssistance.
(2) Operatoc's emergency stop.

The first operation enables the operator to issue to the manipulator v
commands which can be erecuted simultaneously with the ongoing auto-

matic operations, without interrupting them. The s=cond operaiion allows

the operator to put the system in A hold state for a certain time period

to do off-line intervertions without aborting the whole coniro. procers.

r Both operations are parallel to other operatioas.

The operations discussed thus far define the basic functioral
requirements of the CACS software related to the basic interactive :xon-
trol of the manipulator. However, thnre are also other capebilities
whici: are provided through this project. With reference to tha ovjec~
tives given in S:ction I Introductfon, the CACS is considured a resaarch
and development sysmtem rathar than a final product. This imposes addi- o
tional requiremsnts which extond the <oantrol fea.ures. The moat impor- !
tant aduitional caepabilitiec are the followirng:

(1} Centrailzed parameter maintenance.

(2) Automated system testing.

2-3

The first capability provides a fcost, eusy and relisble setting and

modification of system parsmetess, while the second provides a fast and A
comprehensive system testing af:cer hardware/software changes. Both

featu.as are iaplemented as an {ncegral part of the CACS software.

—

SFCTION III
OPERATIONAL DESCRIPTION

. A. GENERAL SYSTCM DESCRIPTION

An overview of the CACS is given in Fig. 3-1. As seen, ths syatem
er;-loys the folloving hardware units:

(1) Manipulater.
(2) Operator control console.
(3) Control computer.

(4) Computer console.

\S) Alama ¢'splay.
(5) Computer interface.

A brief dasc.iption of tliase vidits is giver in the following J4ix
paragraphs.

1. Mapipuldtor

The manipulator comprises the _URV linkage aru with EE, actuatorg,
sarvo-potentioneters ard sensor systems. _he latter are force-toryue
and proximity sensors supported by corresponding electrcnics. Details
of thkese cumponents are gfven in Refs. 1-3.

The outputs of the manipulator can be divided into two groups of
data: sensor data sad jcint position fesdback data. The sens~r data
ars represented by the vectors ¥ = (ﬁl.iz....,ﬁs) and § = (T),87,...,84)
which cor-espund to force~torque ana proximity data respectively. The
wavr sign over the variables denotes their "ravw'" values which rust be
converted into their correspcnding mathematical values by a ~alibration
procedure. 0Ordering ol proximity sensor data is as follows:

8; = front left

sy = frout right

8y - lover left

s, = lower right

SOVD 3o weaderq moij eieq ‘y1-¢ '81a
4§ Novedaas NOILISOd INIOT
— |
(S M) V1VG ¥OSN3S
ﬂ W GENS U Tal oW o J
A ' 1 |
SYOSNIS GNV
S¥OIVNLIV) v/a K —— <—1 an A”._H swousaor |
YOLVINGINYW 3 A |
9 (YMLIIOS i I
SOVD) i
WILNSWOD !
TOUINOD
Avasia |~ | A ! SNOLIMGHSNd !
wiviy ~ " SIHOLIMS “
r' - P wE T O L
ONIISIL WILSAS 9 3105NOD
IDNVNILIYW JAVYMLAOS 4OLV¥I4O

ONILUQ3 ¥3 1IWVIVd
INIWIOT5A3Q WSLSAS

|

210SNOD
IUNIWOD

P T e e T

The joint position feedback vector EF = (§p1,5p2,...,€p7) represents
the servo-potentiometer readings of joint angles:

8 = arm azimuth

8, = arm elevation
83 - arm extension
8, - ‘hand azimuth
85 - hand elevation
8 - hand twist

7 = gripper opening

2. Operator Control Console

The operator control console is an interface between operator and
control computer, which eunables the interactive control of the manipula-
tor. The main features of the control console are two joysticks for arm
and hand control, potentiometer for EE control (opening/closing the jaw),
and a group of functional switches and pushbuttons.

- The joysticks provide easy position or rate control of three inde-
pendent space coordinates where the magnitude of position/rate is pro-
portional to stick deflection. Details of joysticks, potentiometer for
EE control and other features of the console are described in Refs. 1-3.

Joysticks and potentiometer for EE concrol generate an output
vector u which has two versions:

le

= (AxC,Ayc,Azc,Aac,ABc,Ayc.Agc) - for position control
U = (Xos¥erZaslesResYes8e) - for rate control

where Ax.,8y.,42,, and bag,4Bc,48Y, are commandad translaticnai dis-
placements of the arm and rotational displacements of the hand respec-
tively, both in worid courdinates. Variables X.,y.,Z. and a.,Bq,Y¢

are translational and rotational speeds of the arm and hand in the same
coordinate system. Values Ag. and g, represent comuanded increments
and commanded speeds ~f the jaw opening, respectively.

T LI I

Y) . -

S ..t Ty

A

i
|
i

e Al i i ol s PR TY N APTORR VR S
- 3 N -

Functional switches and pushbuttons are new features which are
peculiar to CACS, and which have to be added to the operator cousole.
During the development phase, these switches will be implemented on the
computer panel. The list of all switches is given in Table 3-1. The
following comments will help the understanding of this table.

If the switch SMC is in the "off" position, the operator has full
manual control of the manipulator. The commanded position/rate values
will result in arm/hand movement and jaw opening/closing, which is
unconstrained within the aanipulator's motion envelope. Choice cf posi-
tion or rate mode of control is made by switch SRT.

If the switch SMC is in tne "on" position, the manual control of
the manipulator becomes bounded to a fixed plane which has been deiined
previously (default value is x-y plane in world coordinate system). In
this case, the control system will ignore the commanded values Az, or
2qs and the resulting motion of the arm will be constrained to the
given plane. For instance, the distance of the arm from a given plane
will zutomatically be maintained at a constant value. Commanded values
Ax., 0yc Or Xc, Yo will be taken as displacements or speeds in the new
coordinate system defined by the plane.

Switches SAT, SAY, SAC and SAG define the corresponding automatic
operations 1f the required conditions are met. For example, if the
switch SAT is set, the control system will automatically take the con-
trol over from the operator when the front proximity sensors register
a preselected "proximity distance" from the TO.

By switch SSC the operator can start an automatic search for the
TO by scanning with the EE in the work space. Parameters of this
operation must te inputted previously from the computer console moting
the parameter editing procedure.

Switch SOS enables operator interference during automatic opera-
tions. For example, the operator can adjust the hand angles simultane-
ously with automatic tracking of TO to accelerate this action ov, to
support this action completely. Without setting this switch, no joy-
stick commands will e acknowledged during automatic actions.

By switch SIN the operator can reinitialize the system, i.e., to
put the system in the initial state as it was in the beginning of the
manipulator operation sequence. After reinitialization, the system
staris from the bpeginning.

Setting the switch SES, the cperator immediately stops the

movewent of the arm and oputs it in the hold state. The arm can again
be released only by resetting this switch.

3-4

- ;
s A el irr o st b it di kel PP W P SRR ST . .
it eilemaitas . . oy M ot o [P S Sy N e Fae - &

Table 3-1. Functional Switches

' Symbolic
| Name Functional Description
% SIN Initialization of the system
% :SMC Manual constrained control (searching for TOQ
* in tracking plane)
SAT Automatic tracking
g ' SAY Automatic yaw aligament
SAC automatic centering
] SAG Automatic grasping and stopping
(SRT Rate control
ssC Automatic searching by scanning
S0S Operator's manual assistance
SES Operator's emergency stop

)4

. o
; ‘. *u ’ = - B
el g L AM’-&-AM_—.J S e Il S b et A o i . WL iR

The list of pishbuttons is given in Table 3-2.

By pressing the pushhuttoan TRE, the operator can release the arm
from the blocked positiuu ("hold state"). Namely, during manual control
of the manipulator, the computer control system automatically puts the
arm in the hold state when the proximity sensors detect the proximity
of the TP or the TO. In this case, an alarm signal will warn the opera-
tor who muet command an appropriate motion to the arm to avoid collision
with TP and/or TO. Before issuing corrective commands, the operator
must release the arm by pressing pushbutton TRE.

If the pushbutton TPC is pressed, the computer control system
will immediately memorize the current values of the hand coordinates in
order to define the orientation of the tracking plane for subsequent
constrained control. This action will always be taken when TPC is
pressed. This means that the TP coordinate setting can be done more
than once.

By pressing the pushbutton TCA, the operator can turn off all
alarms displayed at that time.

By pressing pushbutton TPA, the operator invokes a parameter
updating procedure. Namely, all parameters are stored in a particular
redundant storage area which is accessible by the parameter editor sub-
system EDIT (see Subsection C paragraph 1) concurrently with manipulator
operation. After updating the parameters by EDIT, the new parameter
values must be passed to the corresponding parameter locations of the
control subsystem (OPER). This is automatically performed by special
transfer procedures which are executed immediately after pressing the
TPA pushbutton.

3. Control Computer

The control computer is the heart of the CACS. It consists of
an INTERDATA M70 minicomputer and the CACS software package which runs
under 0S/1€ MT2 real-time operating system. The CACS software contains
three subsyscems: testing subsystem (TEST), narameter editing sub-
system (EDIT), and manipulator control subsystem (OPER). The former
two subsystems are described in Subsection C paragraph 1 of this report.
The latter subsystem is the main nart of the CACS software. All three
subsystems are implemented as different tasks.

4. Computer Console

Communication with the operating system and with the CACS soft-
ware is through the computer comsole. It is a teletype unit, but can be

3-6

Table 3-2. Pushbuttons

Sy;::iic Functional Description
TRE Release of the arm from the hold state
TPC Setting the TP coordinates
TCA Clearing of all alarms
TPA Parameter transfer to the control subsystem

T T s ar i o e P SR ol kel

L3

[

r—-—-v.- —— - ” ol ha Wv——-———w———-———————w

E any other suitable peripheral device. Communication with the TEST and

EDIT subsystems is only possible through the computer console, while 4
cormunication with the OPER subsystem is through the operator augmented ‘
control console.

S. Alarm Display

The purpose of the alarm display is to warn the operator in case
of system irregularities, system abort, or whenever his assistance is
needed. The alarm display can be implemented as a mosaic field of
labeled lights or as alphanumeric messages on the CRT display. During
the development phase the latter will be used. The complete list of
alarms is given in Table 3-3.

6. Computer Interface

Computer interface consists of analog to digital (A/D) and digital

to analog (D/A) converters. The input to the A/D converter is the com=-

, pound vector (QF, i, w, §), while the input to the D/A converter is .
i the joint position vector § = (8;, 8,,..., 67) !

et

"

Table 3-3., Alarms

Symbolic
Name

Cause/Action to be Taken
by Operator

ALIM

v
i+ o e

ATOP

AYAW

ATOL

ARPL

ATOG

ASTP

AGRT

ASCT

ASCC

ACOL

Arm/hand on the boundary envelope.

EE in the proximity of TP. System is in HOLD
state and operator has to release it by pressing

TRE in order to move arm away from TP. (Alarm
ignored if SMC set.)

EE 1ia proximity of TO. System is in HOLD state
and operator has to release it by pressing TRE
in order to move EE away from TO. (Alarm
ignored if SAT set, or SMC reset.)

Angle between motion vectors of EE and TO 1is
greater than 90 degrees. Automatic yaw align-
ment not possible. Operator assistance is
needed.

TO lost, control is given back to manual con-
strained searching.

Roll or pitch alignment lost. Operator assistance
required.

TO too large, cannot be grasped.

TO grasped, but cannot be stopped by given force-
torque limit.

Grasping terminated. Procedure must be repeated.
Search by scanning has been terminated.

Search by scanning has been completed
successfully.

EE in collision with TP or TO. Automatic action
of moving EE one step from TP or TO has been
taken. Operator's assistance may be needed.

L

—~a

B. CONTROL ALGORITHMS

In order to develop the system described in Sectiou III with the
requirements in Section II, a variety of control algorithms has been
and will be developed. The complexity of the system requires a struc-
tural approach to the development of the control algorithms to provide
conditions for an easy functional decomposition of the system and to
assure easy and stable system integration. This is especially important
in a laboratory development enviroument in which a stepwise development/
refinement is required, as is the case with CACS.

As guidelines for a structural approach to the control algorithms
development, the following three concepts are introduced:

(1) Incremental motion synthesis.
(2) Basic control routines.
(3) Parallel process concept.

All these guidelines and their application will be considered in the
next six subsections.

1. Incremental Motion Synthesis

The idea of incremental motion synthesis requires the production
of increments of motion rather than "endpoint" values in each system
iteration cycle. The principle 18 depicted in Fig. 3-2 (graphical
symbols used in this picture are explained in appendix A). Vectors ix
and v represent incremental transiatory displacement and trarslatory
speed which must be performed by the manipulator EE. These quuantities
are effected by the control aigorithms to peviorm the required automatic
operations initiated by manually issued commands. The pcsition incre-
ment is added to the content of the buffer TRP (trarslatory-position).
The speed vecror is converted to a ccrresponding rate incvement 4x., by
multiplying with the clock interval At, and stored in the buffer TRR
(tranglation-rate). In each cycle the contents of both buffers are read
and summed. The resulting increment 4x represents a composed motion
increment which must be transformed intd a correspcnding incremant
in the joint space coordinate 3ysten Ag(k). This value will be added tou
joint position vector § k-1) yhich h§s been generatzd in the previous
iteration cycle. The new vector a(k will be uged in the current
iteration cycle. The essential point here is that the position buffer
TRP must be reset after readiag, while the content of the r-te buffer
TRR remains unchanged. This will cause arm/hand movement with constant
speed v and. simultaneous arm’/hand displacement Ax. The latter will not
occur in the next iteration cycle, if the position buffer is not filled

A 8 e b Sk RAR W Meamat i s

[e S
PV W R -

iy

(sor NI)
NOILI504q

:-ew

ST83YIudS UOFION Twiudwaidu] jo afdyourag “7-¢ ‘13

(€'z2'1=1)

U S 1

8 \"4
NOIINSWINOD (SOM Nt)
31vy a3xds
pra oz
(3OVds IN'Or — Wl s— .w\q_/v\/ =
h: 3DVdS aNOM) (0Xv ¥343n9 ;
O LYWHOJIENVEL -
VNI SHO0D 1UV¥-NOIVISNVYL
—— I3
A
(SOM NI)
INIWID/4SID
NOIMISOd
< —
NOHNGIZLHNOD 3 + Xv
NOIL1SOd NOIIISOd

NOIVISNWIL

3-11

. e diae . o o batihAieaninhAEu e S B —e " . Y - St o "Wﬁ

s A— - , . . . ~ e e

again. In orde- to axecute _isplacement Ax in one iteration cycle, the

magnitude of this vector must be less than the fixed value determined

by the iteration cyc.e and by the manipulator dynamic performance. Ir ‘Nn
this is satisfied, the pusition displacement of the menipulactor can be

co>usidered as an instantaneous displacemenr.. If the position increment

doer not satisfy thiz requirement, the corresponding operaticn muet be

delayed. This will be discussed latter.

Py v -y

The incremental approach enaoles eagy coordinatc transformation. .
Usually the eqiation of joint variatles are given in the following form: i

x = £(9) a, :
| |
vhera f(8) represents a vector mapping ~f joint coordinates 7nto the :
world (Cartesian) coordinate system. Using the incremental ferm of
variables, (1) can be written:
.’ﬁ(k) '.’S(k 1) - A-.’(k) - £(g(k l)+ Ag(k)) (2) ‘
Jor suafficiently small incremeants Ag(k), the Taylor expansion of (2) @
gives: t
[}
)
ax(K) & g(B) 49 (k) (3)
or:
888 o =1 px(k) (4)
where:
k) k)| . of
B = 5(e®) = 55 4ug® (5)

represents the Jaccbian of the transformation (1).

3-12

e P UGN y N P

= py—— g T " indR

i~ = — — !
‘ i - . . PR a g ' l ‘

%

4

-
e s e o+ ot~ s

Having t(ais in mind, a3 well as the description given above, the

; advantages of t.. ircremeatal muticu synthesis pricciple can be sum- N\!
marized as follow::

{a) It fits the nature of 2yclic processes and, therefore,
enul-ies a more convenient implementation than the eadpoint E
approach. 1

a (b) I alows ucified handling of position and cate control E
i modec. i

{c) It epables easy syntie-ls of composed mrCions of both |
types: -osit‘on-posicion and position-rate. (in exsmple N
of a combinad mnticn of the position-rate type is given in '

; Filg. -3, where the EE which tracks the target object with
? the s.ae speed must zorraect its relative position 4n.) }
|

S e e e

(d) It provides easy coordinate transformations.

. e v——

: o
E 2. Aprlication of the Incremental Motion Synthesis in the CACS !

The principle of incremental mot.iou synthesis described in che
previoug subsection i3 applied to the CACS. The majn features of the ¢
application are given in Fig. 3~4. This diagrar is derived Zrom a L ’
basic prorerty of the CURV arm: hand orientatior is independant from S |
aru elevation snd extension. This is due to the double parallelogram]
mechanism added to the linkage. Therefore, the coordinates of the arm
“nd h-nd can be handied reparately, i.e., tne position disvyiaccment and
apeaed composition showm in Fig. 3-2 1is now directly applied to the
arm position coordinates x = (x,y,z) and .o the hand orientaiicn angles
a = (a,8,y). For that reasou two new bulfers are introduced: ROP
“rotation-pngition) and ROR (rotation-rate). The jaw opera:ion is
conaidered only as a matter of position control. Therefore, only one
buffer JAW is introduced for this coordinate.

Fig. 3=4 will now be explained step by step. Raw vaiues read
ﬁ from A/D buffer are grouped into four vectors which are already
described in S2ction IIIA. All these variables are calibrated s~apar-
ately. Calibration oi joint position feedback is done Ly thz followirg
linear equaticas:

8., =8

Fi Fi ¢ ai - bi’ l - 152’00¢'7' (6)

where aq are scale factors of dimension rad/Volt, and bs are zero offsets.
These coefficients will be considered as system parameters.

3-13

—- -- P SN chb o R

pubupty searere | sl binit it R
D o e o

EE Yee * Vo

AN POSITION DISPLACEMENT CONTROL
Yeg VELOCITY VECTOR CONTROL

Fig. 5-3. Example of Combined Motion

3-14

L ad

SOVO jo weaBeyq mol4 ei®qQ [®I2U) ‘H-¢ By

Cor D
+ L

NOILISCd - MV

V- “1cy O v

K“ zozsa_#‘u;ﬁu
s 3

.4 .
4oy SWHL09TY k~— Nouveeiyd
AR “O¥!NOD [N - -
NOILISOd - *10¥ ov M MY
i kZ—1 Nouvsnvo ¥
3ive - “shvz 2 X7] A n L
~
dul i K—1 zo:s.-_iu_Aw'
+ % ‘ 3

. iz
NOHISOd ~ “SNV¥L 2

¥34:n8 434
wIvvy NOLIMAH3NdHOLIVS

NEOAv

¥344N6 a/V

3-15

- ’
e EEL L _am o P _ PRIy P . i L

¥34sn8 v/a

agﬂm‘ NC ISYAANOD]

(penuriuo)d) sOV) jo weaBerq mold vieg [easusy -Hh-¢ -I14
31vNIGYO0D
Mvr 40 Mvr
“WHO4SNVY1 60
NOILISOd - MVF
RINWIZY 31vy - 104
Lyg ANVH 40
‘NOILDINOD
-

0v SI1YNIGYOQD

Il_eq-v.equveq AII. aNVH 40

H- "WHO4SNVIL

) A4
AN
NOILISOd - “10¥
24vd - *SNV¥1
xv Wil
_ +
? B SIIYNIGIOOD |
(-9 wiv 40 A.l|°
4 Yav ‘WIOISNWIL |~ 25

NOILISOd - “SNvil

)
—
!
o)

T s e e e £ M B i

JE————— T - R

_ k.
PPN I st e e - o R e— < L .- N i
t

A similar calibratjon procedure is applied to vector u. Sensor

data are calibratea by special table look-up procedures which will not %e ,
considered here. il

2B Sk e ima

Calibrated variables are used by coatzol algorithms to preduc: !-
displacement incremeunts Agp - (AxH,Ayp,Az), bap = (Aa ,ABP,Ay b and o
n

Lg, and velocities v = (u,v,w) and w = (&BB,?), i.e.. the ccrrespond-

|
ing rate increments Ax, = (Ax.,4y,,82¢) and Aa, = (da,,88;,4y,). These ’
values are stored in the buffers TRP through JAW. «;?

Because of the finjte dynamic response characteristics of the :
manipulator, the rate increments must be limited. Therefore, the fol-~ [
lowing value will bhe stored in the buffer TRR:

-~
A8
L mmelaVh .

g 4f max {Axr,Ayr,Azr} < T

e W v— —T i, T
e

max g
(7
A b otherwise
- :
O
where: %
¥
A= rmax/{max{Axr,Ayr,Azr}, (8) ?
— . coy
and r___ is a given parameter and represents the maximum possible value K

of an?aéisplacement that can be achieved iu one clock cycle. This is
the condition for the rate buffer input operation, which prevents getting
the manipulator inco unpredictable working condi:ions. Similarly, the
rotatior. rate increwmeats are also limited. However, they are limited
! component by component, because in the case of rotation it is not impou- -
‘ tant to keep the proportionclity of the vector components.

D e T S Ot T T vy . SO

In each iteration cycle all buffers are read, the composed values : 4

0x. and Aga, are formed and brought to the coordinate transformation -
block.

Coordinate transformations are given by the following equations:

~——

88, = T, &) A%,
%) |
b8y = Ty(8) ¢ ba_

NI SIS § 2 S A Wi

T R

3-17)

BoEEa L s

v
~
R

s [-

. D S " ._J._lww hr‘ Al il -

P

£ AT IR PR NS VIO, w03 8

B s MR T

-~
9

. m—————e e

JpES— oy Wr T v T TR - TS e T ST T TR T T I ST Ty TR T R T T TR R T - S

.t e aom e e e e

97 = kj * 4g , (10)

where: ._A = (87,87,r3) and 8y = (84,05,0¢) are arm and hand joint vari-
ables, respectively.

Transformation matrices Ty and Ty are inverse Jacobians of joint
to world space transformations given in Ref. 3. These matrices have
the following elements:

B - C]
1 1
2 5 0
c,C s,C 8
T, = 12 Lz 24, (11)
T3 3 T3
clsz 3182 -C
| Dc3 Dc Dc3 _
T, = I

where: P = a; + r3sy, rj = 20s3 +d, sy = sin 85, ¢y = cos 83,

sy = sin 65, c2 = cos 8, s3 = sin (63/%), cy = cos 843/2), D, d, k
a2nd a; are mechanical parameters of the manipulator, and I is the unit
matrix. The most recent feedback values can be used as the current
values of joint variables 6,,6, and 83.

The ~rm and hand coordinates are not completely independent.
It can be seen from the equation for the hand azimuth (Ref. 3):

= .
a el + 64 7 - (12)

Therefore, the following correction must be done for Aea, after the
coordinate transformation has been completed:

= ! -
48, = 48, Ael . (13)

3-18

ML amasimy: & s U

-,,-—' —a

e e e o

Finally, the transformed and corrected joint variable increments
are joined into one vector Ag(k), where the index k denotes the current
iteration cvcle. This vector is added to the joint position vector ‘Nk
g(k'l) from the last iteration cycle to form the new joint position
vector g(k). This vector g(k) is then converted to "raw'" values and is
brought to the D/A buffer DACBUF. The conversion to raw values is an
inverse to the calibration procedure defined by equation (6).

3. Basic Control Routines

The algorithms which perform the operations of roll/pitch/yaw
alignments, tracking, centering, grasping and stopping of TO as well as
other interactive operations specified in Section II, are based on a
variety of specific motions of the arm, hand and/or jaw. A look-ahead
study of the whole CACS has shown that all foreseen operations can
successfully be carried out by a unique and finite set of elementary
manipulator actions. These actions will be implemented as a set of com-
mon routines which can be used by all CAC” a.,orithms. The procedures
related to these actions are listed in %7abie 3~4, Their explanations
are given in Figs. 3=5 - 3-9. The following comments will supplement
the explanationms. :

Rotational motions (changing the yaw, pitch and roll angle) are
effected by three independent routines, YAW, PITCH and ROLL. This is
for the sake of simplicity of algorithm implementation, since different
kinds of angle changes are used in the varicus algorithms. |

Motions referenced to the hand coordinate system (Fig. 3-7)
require. additional coordinate transformations. The rotation matrix

which transforms the hand coordinate system into the world coordinate
system can be represented in a block form as follows:

T! 1 | T
[Al: 4, i é.3] (14)

3-19.

r...*_..--v...w-—.—-—."w—vv- R T e e T e

Table 3-4. Basic Control Routines

Routine
Identifier

Description of the Operation

SHI:T

SHIFTC

YAW

PITCH

ROLL

MOVEK

MOVEE

MOVEZ

EXPND

CONTR

RUN

RUNC

ROT

Translatory displacement of the arm one step
in the world coordinate system Ax = (4x,Ay,Az).

Constrained tranélatory displacement of the arm
one step in the tracking plane Agt = (Axt,Ayt).

Rotational displacement of the hand one step in
the world coordinate system Aa (changing the
yaw angle).

Rotational displacement of the hand one step
in the world coordinate system A8 (changing
the pitch angle).

Rotational displacement of the hand one step
in the world coordinate system Ay (changing
the roll angle).

Translational displacement of the arm one
step in the hand coordinate system Af{ (longi-
tudinal motion of the hand).

Translational displacement of the arm one
step in the hand coordinate system An (lateral
hand motion of the hand).

Translational displacement of the arm one step
in the hand coordinate system A; (vertical
motion of the hand).

Expansion (opening) of the jaw for one incre=-
ment Ag.

Contraction (closing) of the jaw for one incre-
ment Ag.

Motion of the ara with the constant speed
v = (u,v,w) in world coordinate system.

Motion of the arm with constant speed
v = (ut, vt) in tracking plane.

Rotational motion of ghg hand with constant
angular speed w = (a,B,Y) in the world
coordinate system.

Note: All translational motion of the arm assumes unchanged hand angles,

and all rotational motion of the hand assumes unchanged arm

coordinates.

3-20

- L Bt T T

s e = o g e 4 T T A VASTMB O < 4 4 T M

D hadtndie el

ST TR T T AT TG T e TR A T TR,

L SS—

e —— o e ————— .

(14IHS)

.. — — NERRERR
- % 3 D 2 L &) o
wa3sAS 231BUTPI0OO) PIIOM UT wWay 3yl Jo uojIol Lixozersuel] °¢-¢ 314
(A ’r)=R
thg ! =¥
~ (zv AV 'xv) = XV
-
’ A A u%q
< P
xXv A —
(NNY) Z 1
mzg L «”
A'XV
A3IONYHONN
SITONY ANVH
ar << | <<
v xXv
+ Xv = dxv t
z

&

T

W33843 33IBUTPI0O) praoM UF PUBH 343 JO uoYjoN TeUOTIEIOY -9-¢ ‘814

~
10y) —— t A“l
oy » o
(10¥) :
| AV t .IIMM
(10Y)
[4
S Smmmened
gv l Q v
(HO114)
oy
(MVA)
(= L -

(.)

=0

Qi

¥
P

A*~Q~Wv
AFQ.Qqsguna

(ZaNV 4 " 01 11IVIVY .2 puo 4 * %)

A u— \

.3\

4
(AN MVA -
zuE\r NG,

A }
\ oY \«\\ \\ \:z_o._
\A\U N~ a3Ixtd)
L

JIONVHONN z ﬁ
SIVNIQYO0D wiiv 2z

3-22

Mpme———— A

P

s o e

R s

o TR AR TR

¢

zo_”ou_n
IvII
jvby- wxd
Iv
(Zanow)
Noitow
— 4 172 ETCs]
by oy = wXv
uy
33n0w)
EEE—— NOI1OW
- 4 WNIGNUIONOT
v

QIONVHONN
STIONV ONVH

3-23

IVYNIG¥OOD

Jueld U:.ﬂﬁuﬂh.—w Ul @1y 3Y3l Jo uorjon .AHOHQHOGQH.H paureaisuo) -g-¢ .NH&

>

A=A

(D141HS)

v 7 = &xv

o)ty = %5
(oyly =y
XI41VW NOILYWIOASNVYL - Fﬂ .”ﬂ =

A~> -:v - -N ~A~x< s¢!<v l~x<

INV
ONDIDVYL

3-24

Aef 3yl Jo uOTIdBIIUO) pue uojsuedry

(4INOD)

ST W TR T T

(aNdX3)

.
!

"6-t 814

3-25

¥ VRN RS KA ﬁw(./.!.

where the submarrices A‘{ (1 =1,2,3) are the following column vectors:

™ cosf cosa]
éf = =giny 8inB ccsa + cusy sina
|_cosy sinB coca + siny sina
-co8f sina “]
é; - oiny 3in8 sina + cosy cosa (13)
-cosyws}ps_3;nq_fh§;n!*cosu
-sing N
T
53 - -siny corf
L.cosy cosf

The areles a, B and y are the ~urreni valusc Of the hand angles in the
world coordinate system expressed by joint coordinates:

a=6 +6, -

NTE)

g = 8_ =~

V=0, - (16)

The most recent feedback values can be used as actual values of joint
coordinates.

S PP Uy | oy b andd -
L g

T o o R R R

AN RN - - e e < oA s S =

LI R YL v e o

Constrained translatory motiun in the tracking pl-ne also needs
additioral coordinate transformations. Here, the tvang ormation matrix
has the form:

T ! T
o i 1)
with

At 4 @)

(18)

A

L Y

where n_ = (ag,8¢,Ye) represenc.s tracking plane angles, i.e., the hana
angles'gaken in tae TP-coordinate setup procedure (invcked by pressirg
pushbutton TPC), As will be shown in Section 1IIU, elements of

matrix A. are calculated during the coordin-te r :tup procedure and
nemovized in the special buffer (AT) ror subsequent urae.

Using the Basic Cont»ol Routiunes, an extended se: of n-~y routines
can be derived for vore compiex manipulator operations. For example,
the centering algorithm can be simplified considerably if asymmectric
extension/contraction jaw operations are ircroduced Therefo e, four
new routines are added to the list in Tabie 3-4:

EXPNDR -~ Expansioa of the jaw for riie increment Ag to the right.

CONTRR =~ (cntraction of the jav for one increment Ag froam the
right.

EXPNDL - Txpansion of the jaw for one increment Ag (o the left,

CONTPL - Cortraction of the jaw one increment 4g from the left.

T.ue first two routines assume opening/closing of the jaw with
fixed left sid. and right sidz mowing Ag out/in. The last two routines
ave op,osite to the operations (mplied by the first two woutines. These
rouncines are shown in Figs., =10 - 3-l11,

4, Dynamic Response of Manipulator and Delay

Incremental manjipulator iisplacements, comranded by CACI software,
are reuslized by relatively complex electro~hydraulic servo systems.

3-27

(2P¥S 13397 paxid) aer a3yl jo uor3IdeI3U0) pue uoysuedxz Ojilawmisy ‘Qj-¢ 814

|
_ A
dil JIIAOW _
+ 4
: 3
)
— ™
+ ooy By
“
i } “
| (YIINOD/¥aNGX3I) +) -._ I

(3P¥S 4By paxyy) mer 343 ju uoyidRiUO) pue uojsuedxy Srajowmdsy

J3A0OW

t-/1+

(WINODaNdX)

liI-¢€ 814

3-29

D U & T

S

. a o

| e e TR N N RPMIC S Y PG . rememas.

&

Because of limited dynamic performances nf these servo systems, the
aajustments of joints, i.e., the realization of corresponding displace-
ments in the world coordinate system, requires some finite time. There-~
fore, the displacement magnitudes must be in accordance with the manipu-
lator servo time constants and with the iteration frequency of the
computer system. This means that the ccmmanded displacements must be
sufficiently small so that they can be realized in one iteration cycile.
Let At be the time interval of one iteration cycle, and Axpax and Aapax
the maximal values of translator, and rotational displacements of tae
manipulator which can be realized within the time At. Then all compo-
rents of the vectors Ax. = (4xq,4yc,A2;) and Aa, = (4ag,0Bq,AYc) must

be less than or equal to the values Axpax and Aopgy, respectively.

0f course, this is a rough consideration since displacements executed in
a given time interval can differ from case to case, depending on the
currant state of the manipulator and on the attached load. But it is
acceptable here as an initial step which can be refined later.

As will be seen, in some cases it will be uecessary to realize
displacements greater than the limiting values defined above. In such
cases, delay mechanism must be introduced. If, for sxample, the value
Ax > Axp,y has been issued by one algorithm, it must wait for a next
decision until the displacement Ax is completely realized by the mani-
pulator. This situation is illustrated in Fig. 3-12. As seen, the
displacement willi be completed Auring the third iteration counting from
the moment the command has been issued, It means that the algorithm
must be delayed two iteration cycles. In general, the number of delayed
cycles np can be determined by the following approximation:

-1 ’ (19)

-
=y

max

max {4x ,Ay ,Az }
- ¢’ e’ e
Ip

where [al denvtes upper integer value of "a", and Axp,, is a given
parameter and represents the maximum possible value of any displacement .
that can be achieved in one clock cycle. The same formuia is used for
the rotational displacement Aa. = (bac,AB80,8Yc). This formula is derived
under the assumption of a linear shape of the dynawic response of the
manipulator. Implementation of the delay mechanism will be explained in
Section ITIC.

5. Parallel Processing Concept
As shown in Section II, the entive process of searching, tracking,

grasping and stopping of the target object c¢an be broken down into a
sequence of small units of activities or operations. Some of tne unit

3-30

e ————a— :;’

FARrTR T TR A TR e T T
T Wy o TEEEE, R e

)

ﬂ-iﬂ-------ﬂ-------

77032

A AA /:L\ i

CLOCK PULSES

Fig. 3-12. Dynamic Response of the Manipulator

3-31

e m—— — —— RSty =r < Sy yhigr R e eimx . f oA A

t

t

activities are carried out simultaneously, i.e., they are executed in
parallel and asynchronously. This is the case with the following
activities: operator manual assistance, operator emergency stop,
input-output operation, automatic maintenance of the distance between
EE and TP, and automatic maintenance of the distance between EE and TO.
These activities are performed independently from and simultaneously
with other activities which are being executed sequentially.

The structural approach to the algorithm design and the software
implementation of the CACS requires that all activities be considered
as separate programming modules. Furthermore, the parallelism of the
activities requires the concurrent execution of these prograrming mod-
ules. An additional benefit of the concurrent programming approach is
that more than one processor can be allccated to the system to increase
execution speed and reliability. This is especislly important in the
case of real-time environments expected for future versions of manipu-
lator control systems. Of course, the concurrent programming system
can be realized with only one processor which is multiplexed among con-
current programs. The scheduling of one or more processors for con-
current programs will be achieved through system software not discussed
here. The structure of the control algorithms and their software
implementation considered here are invariant to the number of processors
which can be ignored in further considerations.

The program which is being developad to accomplish the specified
activities will be called process. A process can generally have two
states: active and blocked. Active state means that the process is
in execution. (The active state has two substates: running when the
process is being executed by the processor; and ready when the process
is waiting to be allocated to the processor. But, this is ant important
for the following discussions.) In the blocked state the process is
waiting to be resumed, or it is waiting for a specified time interval
by which it has been delayed. Putting the process in active or blocked
state is done by special synchronization signals. By means of these
signals a process can be waiting or delayed, or it can resume another
activity if some specific conditions occur.

For a concurrent programming system it is important to describe
the Znterprocess relations in terms of synchronization signals. This
can be shown graphically by process precedence charts which are intro-
duced here to sirplify the discussion. OCn these charts, Fig. 3-13,
processes are depicted by circles which are connected by arrows represent~
ing synchronization signals (no data flow!). Besides the arrows, the
synchronization conditions are indicated as boolean variables or
expressions. In the case of regular arrows, signals will occur if the
condition indicated is true. In the case of dotted arrows, synchroniza-
tion signals will occur if the condition is not satisfied. Dotted arrows
will be used to emphasize "backward signalling', that is, when tne

3-32

JORSEpS

o —— — e \ll‘l‘l‘!.vt' .“
3 : -~ 3 = } 2 " & u“
| B
i \
m
1
_ .
i
] 31ey) 32UapadI1d 883014 ‘EI-t ‘814 “ u,
i
3
f *(3n4). SI 2) ce
G313S1LVS S1 > NOILIANOD 31 ONILIVM 51 'd h (s
! “(Qa14511vS QW
ON $i 2 35NYD38 SNLVIS JAILDY $3SO1 “d) mv llolva o
v “ONILIVM S 14 NOIIIGaY NI (g SV 3Wvs |
"(357v4 §1 9) Q2HSILYS WO m_v — 6
ON S1 > NOILIGNOD 3HL 31 ' sawns3y 'd : > € a
(48]

*ONIIVM St 'y NOILIGaY NI (L SV IWVS m_n_ 3 e @

_ “(anyL S| °) QNISILVS ﬁ._/ 'e
_, ~ $12 NOMIGNOD 3K1 41 'd SIWNSH 'a -/ > (

AP ATO E P 30— e e+ ¢ oo o

o

" sa——-—

e i e i i aaade it b L o i S

process loses the active state because the required condition is not
satisfied anymore. In order to preserve system reliability, the follow-
ing general rule will be accepted here: A process can be made to wait or

delayed only by itself. Therefore, only process resumption is presented
by arrows.

At the right side in Fig. 3-13 an example of a process precedence
chart 1s given. It shows the process P; being resumed first. If during
its execution condition ¢; occurs, the process Py will be resumed and P
will be waiting immediately. If this condition is changed to false,
process Py will be waiting and P} resumed again. If P, is active and
condition c2 occurs, two processes will be resumed at the same time: Pj3
and P4. These processes are executed concurrently, together with
process P2, until the condition c3 holds. If condition cj changes to
false, P3 will be waiting and P; will be resumed again. P,, once
resumed, remains active until c, becomes false.

Besides the synchronization signals, data is another reason for
interprocess communication. Some processes produce data while others
use data. The data used (accessed) by several processes are called
shared data. In order to preserve system reliability and to facilitate
data communication, special attention must be given to this question.
Today's software techniques offer special mechanisms, called monitors,
for handling both, shared data and synchronization signals (Refs. 4-7).
By means of such monitors it is possible to control the access to shared
data and to enforce various access right policies. Monitors and their
implementation, as well as process scheduling, will be discussed in
Section IIIC paragraph 6.

6. Application of the Parallel Processing Concept in the CACS

The 1list of all processes of the manipulator operating subsystem
OPER is given in Table 3-5. It has been made usiag Fig. 2-1, Section II.
As seen, five new processes AMP, AMO, IOP, OMA and OES have been added.
The first three processes are unconditionally active when the OPER sub-
system is active. Therefore, two groups of processes can be dis-
tinguished: permanent active, and temporary active. A new rule will
be added to the one mentioned in the preceding paragraph: permanent
active processes cannot be waiting cr delayed. This rule will be

enforced by the scheduler as will be shown in Section IIIC paragraph 7.

The process synchronization conditions will be handled by two sets
of boolean variables: functional switches and event flags. The former
is already described in Section IIIA paragraph 2, while the latter is
given in Table 3-6. The event flags describe the state of the manipu-
lator. They are updated by an input-output process which is a permanent
active process. More details about event flag generation are given in
the program documentation in Appendix 3.

3-34

[

S e —————— s 4

R 8 o 408 W ¢ e - L e S o o b

Table 3-5. CACS Processes

Identifier

Description

10P*

OMA*
r OES*
MuC

ARA

APA

MCS

ATS

AMO

AYA

ACO

AGO

ASO

Input-output process

Operator manual assistance

Operatoé emergency stop

Unconstrained manual control

Automatic roll alignment

Automatic pitch alignment

Constrained manual control (search for TO)
Automatic maintenance of distance from TP
Automatic tracking of TO speed

Automatic maintenance of distance from TO
Automatic yaw alignment

Automatic centering of EE on TO

Automatic grasping

Automatic stopping of TO

*

permanent active processes.

Al Tl e e Wi sae oo o
E——— -

S T——— T ————————— 7T LA e S i) g ey T T m———‘m—j
- ; 4

The general outline of all temporary active processes is given
in Fig. 3-14. As seen, the processes are cyclic. If a process is 3‘5
active, the switches and activity conditions are checked in every
iteration cycle. These conditions are represented by boolean expressions
of functional switches and event flags, depending on the particular
process. Synchronization signalling is performed by two primitive pro-
cedures: signal and wait. (Signalling procedures put in parentheses are
not applied in all processes.) Completion of the activity to which the
process is dedicated is also determined by event flags. If the activity ;
is completed, special state variables must be updated. These variables !
will be discussed later, together with the algorithms implemented by
the processes.

"

The interprocess relation is described by the process precedence
chart in Fig. 3-15 which comprises all temporary active processes.
This chart is self explanatory by looking up the condition variables
listed in Tables 3-1 and 3-6. Hyphenated event variables represent a
logical condition or operation. For example, ef-t replaces the logical
expression eflt or efrt.

3-36

CONDITION

ACTIVITY

CONDITION

ACTIVITY
COMPLETED

EXECUTE
PROCESS
ITERATION

'
i
A
h lr----m--------
|
y |
|
A i
: !
|
|
, |
] |
|
|
|
k I
E |
| I
: |
] < =CYCLING
|
|
‘ |
h {
| | !
| | (SIGNAL (P,))
- : WAIT (P,)
| | !
o |
- |
- |
5 :
- '
g |
i |

- ——

|
g
i

Jar—

Fig- 3-140

3-37

General Outline of Temporary Active Processes

S '\
¢
[
(SIGNAL (P_))
WAIT (P.) X
G
UPDATE
STATE
VARIABLES -
SIGNAL (P)
(WAIT (7))
!
|
i

| |
W M
w__
®21848qnS Y30 Y3 JO JaeYy) 2JUapaIAIg §82001d °C[-€ °‘Bya L
<
———) *A13AILD3dSIY M
‘9 GNV | $31aV1 33§ :
STTOVIIVA INIAI ANV
SIHDLIMS 40 SNOILINISIQ ¥O4 (310N
p
o
™
_m iy
.. /
[}
| hi
W \
_ \ 1
W
|
- #
| .
| |
| |
| o
" ayde 4" *
| |
m < 3 - , < T &
LT e . T e : B

Table 3-6. Event Flags

*
Identifier Description
EALM Arm has reached boundary envelope (joint
variables 61,62 and/or 93 in end position).
EHILM Hand has reached boundary envelope (joint vari~
ables 64.05 and/or 66 in end position).
EFL?/EFRP Front-left/right proximity sensor indicates
proximity distance.
EFLT/EFRT Front-left/right proximicy sensor indicates
tracking distance.
EFLC/EFRC Front-left/right proximiiy sensor indicates
collision distance.
ELLF/ELRP Lower-left/right proximity seasor (ndicates
proximity distance-
ELLT/ELRT Lower-left/right proximity sensor indicates
tracking distance.
ELLC/ELRC Lower-left/right proximity sensor indicates
collision distance.
EROL EE is roll aligned to TP.
EPIC EE is pitch aligned tuv TP.
ESPD Speed of TO is attesined.
EYAW EE 1s yaw aligned to TO.
ECNT EE is centered ou TO.
EGRA TO is grasped.
ESTP TO is stopped.
EJCT Jaw closed to the tracking aperture. , 3
EJCL Jaw closed. !
i
EJOP Jaw open.

*
description holds for flag true.

AR A
|

b

o . e ———— T, SO T BT T T A ey T TR TR TR

e ——— ——— P

C. SOCTWARE IMPLEMENTATION

In previour scbsections the CACS has been described from func-
tional, hardware and algorichmic points of view. Now, the software
implementation of the system is discussed. The genaral software arciui-
tecture, the basic software components and the schaduling of the proc-
esses are considered in the first seven subsections. The procasses
themselves are not designed at the time of writing this report and will
not be considered here. The description of the prograw documentation is
giveu in parzgraph 8 of this section.

1. Ganeral Software Architecture

As already mentioned in Section Ill A parag:aph 4, the CACS soft-
ware consists of three parts:

(a) Manipuviator coafrrol aubsystem (OPER).
(b) Paramater editing subsystem (EDIT).
(¢) Manipulator testing subsystem (TEST).

These three suhsystems will be implemented as three independent tasks
under the 0S/16 MT2 real-time operating systam.

The first gsubsystem is the main part of the CACS software which
suppcrts interactive control of the manipulator from the operator con-
sole. The preceding sictions as well as the major part of this section
are devnted to this subsystem. The later two subsystems are not vart of
this report and will only briefly be discussed in the next two
subsections.

2. Parameter Editor Subsystem

The ZVIT subsystem is intended to rupport fast and easy editing
of all CACS parametars and constants. This is extremely important in a
laboratory environment and for the purpose of experimentation as empha-
sized in Secticn 2. The relatively large number of parameters and the
frequent need for their readjustments make this problem nontrivial. The
following needs must be taken care of:

fa) Provide facilities for easy parameter changes before or
during manipulator operation.

(b) Preserve system integrity and reliability.
Both problems can be solved simultaneously by means of a centralized

and redundant parameter file which is maintained independently of the

manipulator control software. This is shown in Fig. 3-16, where four
routines are outlined.

3-40

i, e

P o S

S

&
)
Q
c
o
o
o

®aIrdsqng IcITPA 13jowesey Jo weabeyq ¥oo1g woisks -9y-¢ ‘i w
|

]
ﬁ NONVTHD _
N4 _
Jtevl , JI0SNO2
WLIWVIV INIWID
. ekt
! , INd4 3
< INILNOY INILNOY ;
| NOIS¥IANOD @w00s) |1 onivaz "
4]
m 3dv1 QIHONNJ
|
i

. avo/4vwna

G

- A ——— o A 5 A O S P O

e ——— ———

The first routine parameter aditing provides an on-line upndate
and display of the user (source) parametsr file. This file contains
one record for each parameter, where each raecord contains at least the
followiag data fields:

(a) Parameter identifier (its symbolic nome used in OPER
programs).

(b) Index number for casa of parameter arrays (every vector
component represents one parametar entity).

(7 Dasc-iption of the pacametar limited to fixed number of
characte=s.

(d) Unit of muasurewment.
(e} Tlarameter valuu.
(f) Date of the last paramecer update.

Tre updating procedures should comprise edditinn, deletion and
modifica~ion of en*ire racords and of particular record fields. To
facilitate the experiments, two values can be associated with each
parameter: the "actual value" and the "try velue', The former
represents the value established in previous experiments, while the
latter rapreosents the new value ready for use iu the current experi-
ment. The try value can alwzys be returned to the actual value if the
user 1s not satisfied with its effect on the system, or it can be fixed
as a new actual value if it gives better results. In the last case the
dare of the last parameter update must also be changed. The user paranm-
ater tile can be displayed by a CRT or by consule printouts as shown by
example in Fig. 3-17.

The parameter counversion routine automatically generates the
parametsr tahble Jfter the editing procedure is compleie. This table
contains parameters and their combinations in the 'cbject" form used
by the OPER procedures. These values are not necessarily redundant,
and cannot be accessed Ly the user. Examples of parameter conversion
are the following expressions:

AR = (H + DLOWER(!)) * SIN(GAMINC)

BR = -DBS/2 * (1 - COS(GAMINC))
CR = DBS/2 * SIN(GAMINC)
TR = (H + DLOWER(l)) * (1 - COS{GAMINC))

where AR, BR, CR and DR are "obj.:tive" parzmeter values used directly
in the roll alignment algorithm, while 4 aund DBS are constructive con-
stants of the CURV arm, and DLOWER(1} and GAMINC are algorithmic pacam-
etere, all representing redundant source parameters in user form and
maistained by the user.

3=42

e o

DT T Aman

e

rari- &4/60/¢
8c91- &/00/¢
© e
ri &/s1/e
INIVA iivag
A¥l

oot &L/90/%
S 84,90/¢

% ek
Set 64/90/¢
o€ &L/0/¢
oSt &/0/¢
186 6L/e0/¢
1Ze9 64/65/¢
roc8- &L/80/¢

ww

oot ww

S ww

oS wWw

09 wwy

(~4] WN

ot t

ost t

L1oN/

18& ld/awy Mg

170A/

€9 d/ave-dze

o/

¥$8- 14/QvY “NZE

rari- 14/QvVe-aze

yee9t- 1d/avs - Nze

0 d/ave aze

oz IISITUW

r i
I01VA 1NN

WLy

Aey1dsyg -~23l2meaed jo ayjdwexy

L1-€ 313

‘NS ¥3IMOT 30 1510 ALIMIXO¥J
"N3S IN¥J 4O °1S10 NO!SITIOD
(~/O1) $4 30 “1510 ONIIDWVIL
(HOIH) $4 40 “15i0 ONIIDVYEL
‘N3S IN¥4 JO 1510 ALIMIXO¥4

Y2NENOHISOd-1VISNVYL “XYW
IN3WIISNI ONINIIO MVF "XYW

1OV3 VIVIS NOVISITYD 1MIOr
10V4 VIVIS NOUYESITYD INIOF
1% VIVOS NOUYESITYD INIOF

135240 O¥3Z NOILLYNINYD INIOS
135440 O¥3Z NOILY¥ITYD INIOT
135340 O¥3Z NOILYVNITYD INIOF
JI0AD AD01D 40 IVANILINI IWiL
$3S53004d ¥340 40 WITWNN

NOIL4INDS3IQ ¥31IWVYVY

Y3ANI

|{,'{\\ll/\/
(HOMH) $1 40 1510 ONDIDVYL

4 33IM0Q <0
t 3M01Q ¥20
4 INO¥49 £20
£ 1NO¥3Q 20
4 INO¥4Q {zn
t INO¥iqg oo
! dILSXW 2t0
t N3JOXW sto
e V13i4S Lo
4 v13t4s oto
t v13L4$ 600
£ v1310Z 00
4 v1310Z %)
| v13102Z €00
! TAYINI 00
t ONDOOW t00
431d1LN30) ‘CN

™d

3~43

o 730-53 |-

The file creation routine is used only once, immediately after
establishing the EDIT task. This routine is trivial {if the sequential
organization of the user paramecer file is accepted. {

The save routine is a system utility routine which provides
copyiug of the user iile onto the output media as punched cards, paper :
tape, or magnetic tape. This enables the keeping and waintaining of : ‘
more than one set of parameters. For example, each set of parameters
can be associated with different seusor calibrations or with different
experimental runs. Bafore starting the maninulator operations, a par-
ticular set of parameters must be chosen and the corresponding save
file must be loaded into the user file. 71he user file can be a direct
access auxilliary storage (disk for example) or it can be directly in
the core. The storage required fcr a user file is aboirt 12 K bytes,
and the storage required for the EDIT code is not cxpected to be large,
so that bocth can be core resident during the execution of the EDIT task.
The parameter table, which is an output of the parameter conversion oy
routine, contains only one set of parameter values requiring about 3C0
bytes of computer etorage. This table must be transferred from EDIT
to OPER task, where it will be placed in a shared data buffer. This
is discussed in paragraph 6.

3. Manipulator Testing Subsystem

The TEST subsystem is intended as a maintenance tool for checking 4
the OPER subsystem after every hardware change and/or after system :
reinstallation caused by changes in the software. It is obvious that .
the dynamic envirunment of the CACS will require frequert modificatioms -
of the software to improve the existing prcgrams or to extend the system P
by new features and capabilities. This means that the CACS software ;
must be considered a3 a "living' part of the system, subject to changes 7
and continuous growth. To meintain system integrity and efficiency of
maintenance, it is strcngly recommended that considerable attention ue
paid to the manipulator testing subsystem. It must be developed as a
sequence of testing procedures which will autematicaily and systemstically
check all modules of the subsystem, their mutual interactions and their
) interactions with the I/0 devices. The sequencial order must be
designed in a way so that all pcssible errurs in the hardware and scft-
ware can be located fast and, eventually, without operator assistance.

The major part of the TEST subsystem cdn probably be synthesized from
testing programs which are an outcome of the overall program developmeut
process. This must be kept in mind when creacing the testing programs
which must be flexible and suitable for future retailoriig.

4. Monitor Concept

The basic software components of the OPER subsystem are processes
and monitors. Processes arz already Jdiscussed in the preceding Section
(paragraphs 5 and 6), and their implementation will be consideired in
paragraph 6 of this Section. Monitors are introduced by Brinch Hansen,

) . J=44

SOt 41 I

. — g g = = T T T

AR RPN WP R gt - o [

Refs. 6-7, and by Hoare, Ref. 8, as a new concept for a hierarchical
structuring of wmultiprogramming operating systems. This concept is
adopted to develop the CACS software. It will be discussed briefly in
this subsection to complete the discussion of Section III B paragraph 5.
A more detailed description of monitors and their implementation is given
in Refs. 6, 7, 9, 1l and elsewhere.

Processes communicate with each other by sending or receiving
data. As already mentioned before, these data are called shared data.
To preserve system integrity, the processes should not operate directly
on these data. An example of direct operations on data is common data
structures which enable unrestricted data accessibility by minimal sys-
tem overhead. However, the reliability of complex systems, especially
systems with concurrent programs, is highly sensitive to incorrect data
communication. Therefore, the accessibility of data, i.e., the access
rights of the processes, should be carefully controlled. This can be
done by allowing access to data only by special procedures. Procedures
provide much safer interface mechanisms than common data structures.
This is the basic assumption underlying the mederm approaca to struc-
tural design of concurrent programming, Ref. ll. It will also be
employed in the design of the CACS software.

The shared data and the procedures which can access them, are
grouped within an abstract object called monitor. These objects are
usually high level language constructs designed for concurrent pro-
gramming, Ref. 9-10. Tney also can be used as a powerful concept for
building hierarchically structured systems in sequential languages.
This is the case for the CACS software.

Regardless of the interpretation of monitors, they define the
following four entities:

(a) shared data structure,
(b) monitor procedures,
(c) initial operatioms,
(d) access rights

The shared data structure includes data transmitted among proc-
esses, as well as other data necessary for the correct functioning of
“he monitor in the context of a multiprogramming environment. Monitor
prccedures explicitly define all operations which the processes can
perform on shared data. Initial operations define all operations which
must be executed in time of creation of the monitor. Finally, access
rights define all connections of the monitor to the rest of the system
hierarchy. This is achieved by giving an explicit list of all processes
or other monitors which can enter the monitor.

R

] .

2

8

G

Besides the control of operations on shared data and their
accessibility, another feature concerning the monitors is essential:
mutual exclusion. It must be ensured that only one process can operate

on shared data at the same time. This can be accomplished by allowing
that only one procedure within the same monitor can be called by proc-
esses or other monitors at the same time. If some process is executing
a monitor procedure and another process is trying to call this or
another procedure within the same monitor, the latter must be delayed
until the first process leaves the monitor. Simultaneous monitor calls
are scheduled outside the monitor by special procedures grouped within
one program called kermel. The kernel is a basic part of the system

. software which implements exclusive access rights of processes and

scheduling of CPU's and other physical resources among concurrent proc-
esses. For its work, the kernel uses interrupt mechanisms and low
level communication facilities which are implemented in hardware or
lowest level machine software. Therefore, the kernel is highly machine
dependent, i.e., it can be considered as an extension of the machine
which hides its details from the user who builds the concurrent pro-
gramming system. This is an essential point of the monitor concept.

As mentioned before, monitors are not only intended for trans-
mission of shared data. They are also used for process synchronization
and for scheduling of physical resources. Although, monitors have a
structure essentially identical for all purposes, two general types of
monitors can be distinguished: buffer monitors and resource monitors.

The buffer monitors are designated for shared data transmission
among concurrent processes. Their data structure includes three parts:
shared data buffer, full-empty indicator, and two single process queues.
Buffers can be designed to handle one (single buffers) or more (multiple
buffers) data portions. Multiple buffers are usually designed as linked
circular lists, which impose three more data items in the monitor data
structure: current buffer length, and two pointers, one for the head
and one for the tail of the list. (In CACS the simpler single buffers
are used.) The sizes of the buffers correspond to the amount of data
to be handled. The data can be arrays, records or sets. (In CACS only
data arrays will be used.)

A full-empty indicator is a boolean variable which tells the
processes whether or not the buffer contains data. If the buffer is
full no data can be transmitted to the buffer, but the data can be
taken from the buffer. If the buffer is empty, data can not be taken
from the buffer but can be transmitted to the buffer. Single process
queues are usually integers which represent process waiting to send
data to the buffer and process waiting to receive data from the buffer.
These integers are basic elements of process synchronization by the
kernel which performs the blocking (delaying) or the activating of the
process.

3-46

- e T E T

NSRRI - e . 1

A typical siagle buffer monitor is shown in Fig. 3-18. (In this
section the Pascal language, Ref. 14, is used as a more precise and more
comfortable means for program description than program flowcharts.) As
seen, two monitor procedures are associated with the monitor: SEND for
transmitting data to the buffer and RECEIVE for taking the data from
the buffer. Procedures BLOCK and CCNTINUE are kernel procedures which
block and activate the processes in a pairwise manner.

Resource monitors do not have buffers. They use multiprocess
queues to schedule the resource among processes. This kind of monitor
will not be used in CACS in its usual form, and it will not be con-
sidered here.

5. Basic Prerequisites and Assumptions

The implementation of monitors and processes depends on com=-
puting capabilities assigned to the project. Other limiting factors
are the attitude of the research personnel about the utilization of
capabilities and directives derived from the experience during the
foregoing work. In the case of the present project, the essential pre-
requisites and assumptions can be summarized as follows:

(a) Only one processor is assigned to the CACS project.

(b) The whole OPER subsystem should be implemented as a single
partition user program that is imbedded in the 0S/16
MI'2 real-time operating system.

(¢) The clocked I/0 version for CACS software-to-manipulator
interface is suggested, Ref. 12.

The first prerequisite is due to current limited hardware
resources. However, the eventual possibility of utilizing more than one
processor should not be rejected. Current trends in microprocessor
tachnology development make this perspective realistic, and specific
suggestions have already been made, Ref. 12. Hence, software desigu,
compatible with a multiprocessor environment, is advocated.

The second prerequisite is made for two reasons. First, the
characteristics of the MI2 real-time operating system are not ideally
adiusted for this kind of real-time environment. It is designed to
fit more on-line interactive information systems than systems such as
manipulator control. Second, the top-level operation of MI2 requires
a fair amount of knowledge about its operation. Only with a single
partition user program can the operator be unburdened from many details
required by the operation of the MI2, Ref. 13. It should be mentioned
that no suitable high level languages, especially for concurrent pro-
gramming, are available at the present time for this machine.

3-47

i

(w3

£

type vector : array (1. .bufdim] of integer; N
var buffid: vector; {shared data.] |
var full : boolean; {Buffer full-empty indicator. |

Z';'; sender, receiver: integer; { process quaves. |

procedure SEND (argvec: vector);
begin
if full then BLOCK(sender) else
begin
{ put argvec into buffer | :
full:=tre; B
CONTINUE(receiver) ’
end

- -

end;

rocedure RECEIVE(var argvec : vector);
begin
if not full then BLOCK(receiver) else
begin
{ get content from the buffer into argvec|
full :=false;
CONTiNUE(sender)

end

end;

Fig. 3-18. General Qutline of Buffer Monitors
(in Pascal language)

| !

Finally, the clocked I/0 is the most suitable vehicle for
communicating between the digital computer as the controller and the
continuous dynamic system as the controlled object.

6. Implementation of Monitors and Prucesses

Taking into account the assumptions made in the preceeding
subsection, it is obvious that the problems of mutual exclusion, proc-
essor switching, and scheduling of other physical resources do not
exist any more. Therefore, the implementation of monitors and proc-
esses becomes trivial. The processes can be developed as simple
subroutines and their switching to the processor as simple subroutine
calls. Also, the producer-consumer relations between processes are
not asynchronous due to periodic I/0 operations. It means that in
every iteration cycle, all input buffers are first filled by an input
process (DOIO), and then they are read by the internal processes. The
same is true with the output buffers and the other internal buffers
for shared data handling. In addition, most of the internal buffers
are not of the producer-consumer type. As shown in Subsection 4.2,
the condition for putting a new value into the buffer is not its empti-
ness, and the condition for getting the content of the buffer out is
not its fullness. This considerably simplifies the monitor procedures
and their data structures, because the buffer full-empty indicator as
well as the receiver and sender queues are not needed anymore. There-
fore, the data structures in the buffer monitors are reduced to the
buffer content itself. Consequently, the kernel is dramatically sim-
plified and reduces to a single monitor of the synchronization type and
to one short program.

Now, the justification of the monitor concept in this project
might be appropriate based on the following reasons:

(a) The complexity of CACS software and its dynamic environment
demand a highly structured organization. Concurrent proc-
esses and the monitor concepts are powerful methods for
such software structuring, even if the processes and monitor
are simulated. The natural parallelism of manipulator con-
trol activities reinforces this reason considerably.

(b) The simplified versions of the monitors used out of a
language context can dramatically reduce the hazard of
destroying the system integrity. The system overhead
(in time and space), which can be considered a procedural
drawback for data communication, is still negligible in
comparison to other computations in the system.

(¢) Because the monitor calls and process switchings are
reduced to simple subroutine calls, the kernel run-time
overhead is practically reduced to zero, and therefore,
cannot be used as an argument against the monitor concept.

3-49

Q

£

G

€

T e

1 ————— 1 v o s 7t i

(a) If the system is built based on the monitor concept it can
be easily transferred to a multiprocessor environment.
As mentioned earlier, multiprocessor control of a manip~-
ulator has a real future. Nh i

(e) Even in the single processor case more complex scheduling
strategies must be considered if the execution time of CACS
programs exceeds the maximum allowable value of the cycle
time. Preemptive scheduling strategies and processor
switching will not disturb the general system structure if
it is based on the monitor concept. Only the monitor pro=
cedures must be extended by queuing features, and a new
version of the multiprocessor case.

Let us now consider the implementation of the monitors in the
OPER subsystem. The list of all OPER monitors is given in Table 3-7.

All monitors listed, except the last three, are of the buffer
type. However, the majority of the input/cutput buffer operations, as
required by the control algorithms, are not of the simple send/receive
type. They are dependent on some specific conditions, or they have
to provide some nontrivial data conversion. For example, calibration
and decalibration (MPXS, MJIN, MJOU), computation of trigonometric
functions (MSCT), computation of matrix coefficients, and coordinate
transformations (MSCH, MAT). These operations could be done outside
of the monitors, but for structural reasons they are kept inside as an A
integral part of the data transmission. A detailed specification and)]
description of the monitor procedures is given in the program documen- !
tation (Appendix B). 3

Monitors MIEL and MHLD are used as locking flags for controlling
some arm manipulations, such as putting it in the hold state or releas-
ing it from the hold state by operator intervention. These monitors
and related locking mechanisms will be explained together with the
processes that use them. Monitor MPRQ is intended for process scheduling
and synchronization. It is discussed in the next subsection.

The implementation of the monitors and processes will be done
in an identical manner in accordance with the features of the INTERDATA
Common Assembler Language (CAL). Thus, every monitor or process will
be coded as separate assembly block called module. The structure of a
module is given in Fig. 3-19. As seen, it contains three parts: list
of entry-point and external symbols, program code (procedures), and
data declarations. Programs within one module can be hierarchically
structured, and they cannot be accessed by procedures defined in other
modules unless they are listed in the entry-point list. The same is
true with data. If their identifiers are not included in the entry-
point list, they remain private variables of the monitor and cannot

3=50

- e o TS ey " T 1T T T

Table 3-7. CACS Monitcers

Identifier Description s‘b
MIOB Input-output buffers _
MJIN Calibrated joint variables (feedback values)
MJOU Calibrated joint variables (set-point values) a‘i v
MSCT Trigonometric functions of joint variables } j
(feedback value)
MEST Event status table
MAST Alarm status table -
MSST Switch status table }
MTRP Translation-positional increment buffer |
MIRR Translation-rate buffer
MROP Rotation-positional increment buffer
MROR Rotation-rate buffer
MJAW Jaw manipulation increment buffer
MSCH Trigcnometric functions of hand angles (world
coordinate system)
MAT Tracking plane rotation matrix o
MPXS Calibrated proximity sensors data
MFTS Calibrated force-torque sensors data
MPAR CACS parameters and constants
MHLD Hold lock
MREL Release lock 1
MPRQ Process queue and delay semaphore 4

e e

3-51

et 4

ENTRY-POINT AND
EXTERNAL SYMBOL LIST

PROCEDURES

DATA DECLARATIONS

Fig. 3-19.

General Structure of the Module

3-52

.-

be accessed from other modules. The monitor procedures called by a
process must be in the external list of the process. The same holds
for nested monitor calls. If the monitor procedure calls a procedure
from another monitor, the later wust be in the external 1ist of the
former module. The entry-point and external symbol features (ENTRY and
EXTRN pseudo-instructions) are the only means for access rignt con.rol
in the CACS.

It is accepted here that all shared variables are i‘mplemented as
private variables ¢f the modules, i.e., they wust not appear in any
entry/external 1ist. Furthermore, all private variables of processes
which must be initialized are implemented as global variables declared
as entry-points.

In order to describe the hierarchical structure ¢f the system,
the graphical technique called access graph has been used, Ref. 9. By
access graph the monitors and processes are depicted as circles and the
access right by arrows (the latter should not be interpreted as data
flow!). The access graph of the OPER subsystem is given in Fig. 3-20.
In this figure all internal processes are represented by oae circle to
simplify the diagram.

A more precise definition of the access rights can be done by a
cross~reference tablz of the form shown in Fig. 3-21. The columns of
this table represent processes and monitors, while the rows represent
the monitor procedures which are called by processes and/or monitors
indicated at the head of the columns. The access right is checked by
"X", For example, "X" in the first column and the second row of the
table means that process P1 has access to procedure S)2 of the monitor
M1. As a consequence, the module representing the process P} must have
a pseudo-instruction EXTRN Sj2, while the module representing monitor
M) must have a pseudo-instruction ENTRY §]12.

7. Scheduler

Scheduling of I/0 operations and internal processes is provided
by the program called scheduler (SCHED) and by one monitor (MPRQ) called
process queue. These twc system components will be discussed in the
present subsection. The scheduler is the main program of the subsystem
Or'ER, which 1is a clock interrupt driven cyclic orogram. The Pascal
program of the scheduler is given in Figs. 3-22 - 3..23.

I1/0 operations and cycle control is done by subroutine DOIO,
which reads A/U converter znd switches/pushbuttons and writes D/A con-
verter and alarm display. These operations are p<rformed tlrough spec~-
ial clock interiupt service routines. After executing service routines,
the control is given to the first inscruction following DOIO call.

The rest ot the main progray is executed within a clock iaterval. After
executinn, the processor is trapped in a "busy wait" loop (1 goto 1),
until the next cloclk interrupt.

3-53

I R L e A

el Ao e 4 it iibde it d

Y340 wa1sLsqng jo ydeiy ssadoy

‘-u“““—vAA“n“““-' DudW

$3SS3D004d ‘

TYNY¥3IINI
o - - L = -

‘0z-t 2814

3-54

S R N R T R T R IO N WO up——

PROEDR
CALLED PROCESSES MOINITORS
CALLED MONITOR
MONITORS | PROCEDURES | P, P Py P, My Mg Mg .0 M My

Fig. 3-21,

Access Right Cross-Reference Table

3=535

program SCHED;

vor first : booleon,
sin : booleon;

fobol 1

begin
first:=strue;
00IC;

INITSW(sin};
if not sin then first:=true i:_o'

begin
if fir then
begin
first:=false;
INIT;
ond

MUPLEX;
and

{initiali zation switch. }

}Stort clock, perform 1/O operations on
ADC, DAC, switches/ ttons ond
alarm disploy. Return address of Clock
Interrupt Service follows this statement. |

{Get sin from SWTBUF. }

{initialize OPER.}

{Multiplex internal processes. }

{ Busy wait until clock interrupt.}

Fig. 3-22. Scheduler - Main Program

procedure MUPLEX;

vor pindex : integer, {Process ID index.} v
procno : integer, {Number of processes (parameter).} ‘
ne : integer; {Number of skipped clock cycles and

resume indicator. |

ey

bagin

pindex:>0
whiie pindex < procno do

bogin

pindex:=pindex + 1;

RESUME(pindex, nc); | {Check if procass is for resumgtion
(if nc 20).}

Lfnc?.o then

begin |Branch to process with index pindex | end

and

ond;

Fig. 3-23. Scheduler ~ Process Multiplexing

- i

U ———— .
p e
_ o 4 s e sttt An Al i, B M e
R ' » N

e —

et e A e v

B

O e e =

T —— o

4 e =

In every iteration cycle the switch SIN is interrogated. If SIN
is set, the subroutine INIT is called. This subroutine performs ini-
tialization of all pertinent shared variables (for example: process
queue, alarm status tabl2, event status table, etc.). Initializatioms
are done by axecuting corresponding monitor procedures. It is obvious
that initialization of the system is possible at any moment without
terminating the program SCHED. This feature is helpful for experimental
work with a manipulator.

Scheduling of internal processes is accomplishad by subroutine
MUPLEX, which is shown in Fig. 3-23. This subroutine scans duvring every
iteration cycle all internal processes represented by their index (pin-

“dex), and it examines if they are for execution or not. This examina-

tion is done by subroutine RESUME which is a monitor procedure of the
synchronization monitor, MPRQ. The scanned internal process will be
resumed, i.e., the corresponding subroutine will be called if the out-
put variable nc of the RESUME is nonnegative. If it is negative, the
next process will be examined. If it is positive, the variable nc
represcnts the number of skipped iteration cyclec in the case of delay-
ing the process. This number is iwmportant information for the process
which must know the exact time passed siace the last execution in order
to provide time dependent computations. The variable nc is set to a
negative value if the process is blocked or delayed.

Figure 3-24 shows the monitor MPRQ vhich is the basic synchroni-
zation component of subsystem OPER. The data structure of the monitor
consists of five vectors: pqueue, pqinit, permpr, delays, and dcount.
~Jector pqueue is a process queue consisting of a bit map pointing to all
processes waiting for execution. The process identification is pro-

i .ed by a vector index, so that pqueue [pindex] = true, means that the
process indexed by pindex is ready for execution. The vector pqinit igc
an initial value of the pqueue, while the vector permpr is a bit map of

‘the same size as pqueue and pqinit, defining permanently active proc-

esse3. Permanently active processes cannot be d=layed. Integer vector
delays contain information about delay, i.e., the number of iteration
cycies which have to be skipped by the scheduler. For example, delays
[pindex] = 6 means that the process pindex will not be executed for the
next six iteration cycles. During every iteration, this number 1is
decremented by one until delays [pindex] becormes zero. The vector
dcount is of the same size as delays, and it contains information about
the number of iteration cycles being skipped since the last delay opera-
tion. It is used to form the output variable nc of the procedure
RESUME.

Monitor MPRQ contains six pirocedures: INITPQ, INITDS, SIGNAL,
WAIT, DELAY and RESUME. The first two procedures are called by sub-
routine INIT, Fig 3-22, in order to iniiialize the vectors pqueue,
delays, and dcount. (Qrocedures SIGNAL and WAIT are used oy all internal
processes for synchronization purposes. The first procedure makes the
prucess active, while the second ome blocks the process. As seen, it is
ensured that permanent active processes cannot be blocked. These
prccedures are tools for implementing the process precedence chart
given in Fig. 3-15.

3-58

sy

o

»
U TR R

const maxpno = 32; ! Maximal number of processes.|

type integv : array [1.. maxpno] of intager;

type boolve : array [1.. maxpne] of boolean;

var pqueue : bool ve; { Process queve. }

ver pqinit : boolve; }Initial value of process queve.}

var permpr : boolve; { Definition of permanent active processes. }
var delays : integy; {Delay semaphore. }

-' var deount : integv; { Delay count.}

procedure INTPQ; { Initialize process queue. {
begin
pqueve:=pqinit

end;

procedure INITDS; {Initialize delay semaphore. |
begin

delays:=0;

decount:=0

end;

procedure SIGNAL (pindex : integer); !Signal process pindex.}
begin
pqueve [pindex] :=true

end;

procedure WAIT (pindex : integer); {Wait process pindex.}
begin
if not permpr [pindex] then pqueue [pindex] :=false

: end;

Fig. 3-24. Process Synchronization Monitor MPRQ

3-59

et f—"

0

,
R R Ry ey Yl

procedure DELAY (pindex, nd : integer); {Delay process pindex nd clock cycles.}
begin_

if not permpr { pindex] then

begin

if delays [pindex] < nd then delays (pindex] :=nd

procedure RESUME (pindex : integer; var nc: integer);
|Examine if process pindex is for resumption.}

ne:= -1; { Initialization of skipped clock cycle number nc.}
{(if nc < 0 process is not for resumption). }

if not pqueue [pindex] then
begin

delayspindex] := 0;
dcount [pindex] == 0
ond e
begin
if delays [pindex] >0 then
begin
delays [pindex] := delays (pindex] - 1;
deount [pindex] := dcount [pindex] +1

" end else

bagin

nc: =dcount [pindex];

deount [pindex]:=0

end

end

end;

Fig. 3-24. Process Synchronization Monitor MPRQ (Continued)

3-60 ; 4

T R T T e B ——-—n—-—m
r-— R R it i b e e ~ i et S

1 P LY B AR WP, W M T ATty - SRy A WAL e

TN g T e

q
‘,
3
"

The DELAY procedure causes blocking of process fcr a limited
period of time, defined by the number of iteration cycles to be skipped
by the scheduler. If during the same iteration cycle and within the
same process two delay operations are called, the one with the greater

delay will have priority. The permanently active processes also cannot
be delayed.

The procedure RESUME is called by the scheduler. Its purpose is
to determine the variable nc based on the state of the vector pqueues
and delays. It updates also the vector delays and dcount.

8. Program Documentation

The programs under design at the time of writing this report will
be presented in Appendix B. To facilitate the program design phase and
future program maintenance, the program documentation is elaborated
systematically by the use of forms which are specifically developed for
this purpose. There are three types of forms with the following titles:
'"Module Definition," "Procedure Definition," and 'Data Definition." Ali
of these forms have identical upper right corners and bottom parts. The
upper right corner contains the identifier of the object (module, pro-
cedure, or data entity). The bottom part includes identifiers of sys-
tem, subsystem, designers, date, and page number for the case when the
form is continued. This uniquely defines each form regardless of the
time, system or project. For easy look-up, these forms can be sorted
alphabetically by the object identifier, where different object types
ave separated. Examples of compiled forms are given in Figs. 3-25 -

3-27. Entries in the forms are self-explanatory through the corre-

sponding headers, and the following comments will help their
understanding.

The procedure hierarchy of the module is given by the line
indentation, rather than by a hierarchical diagram. Procedures are
represented by their identifiers together with identifiers of their
I/0 parameters which are enclosed in parentheses.

The dimensions of data arrays (number of data items in the case
of records) are enclosed in square brackets. The procedure identifiers
which appear in the entry-point list are underlined, while the identi-
fiers of procedures which belong to another module, i.e., which appear
in the external symbol list, are enclosed in the brackets. The same
is true for data identifiers. Explanatory comments are given in nar-
rative form on the right side. Every part of the form has a check-box
which has to be checked by arn "X" if that part of the form must he con-
tinued. For this purpose, a new form must be attached to the first one
and page numbers must be given.

A procedure definition form is created as BEIPO (Hierarchical
Input-Process-Output) form. Column "I/0 Method" defines the way of

3-61

e e . " PGRr- SNp NORIYORY | Py - T PPN TV e . T

[

L]

§

o
N

=]

Lt vk v - Ny

v

o

PR W e ST

C

L e X Y. ras

MODULE DEFINITION

IDENTIFIER:
MJOUT

PURPOSE/DESCRIPTION:

monitor, supports access to sclibrated output joint variables.

=

PROCEDURE HIERARCHY (ENTRY-POINT SYMBOLS UNDERLINED, EXTERNAL SYMBOLS

ENCLOSED IN BRACKETS): '
UPDTEJ
[GETHLD(HLDF [1])] Monitor MHLD
DJARM(VP(3])
(cerrreeve (3])] Monitor MTRP
(GETTRR (VR[3])] Monitor MTRR
[GETSCT(SICOTF(12])) Monitor MSCTF
DJHND(VR (3])
(cerrop(vp(3])] Moniter MROP
[GETROR{VR[3])) Monitor MROR
DJJAW(VF(1]))
(cetaaw(vi(1)] Monitor MJAW
CPJRAW(orgument [7])
DATA STRUCTURE (ENTRY-POINT SYMBOLS UNDERLINED, EXTERNAL SYMBOLS
ENCLOSED IN BRACKETS):
HLOF (1] Hold flag (HLD)
vp(3) Auxiliary variable
WR (3] Auxiliary voriable
vi(1] Auxiliary varicble
SICOTF [12] Trigon. fun. of joint. var,
Jour(7] Calib. joint var. (monitor)
[zoTveTA(7]] Zero offsets (parameter)
(sFrera(7]] Scaling factor (parameter)

i adiie. PO S R

FS_YST EM: SUBSYSTEM: DESIGNER: DATE: PAGE: OF:
CACS OPER M.V, 3/15/79 1 1
Fig. 3-25
3-62

© B w2 P S g

T

e ot S v e e Tt
e T ey vomat dam s

g T T ———— T n e

- ¢

IOENTIFIER:
PROCEDURE DEFINITION DIARM
IDENTIFIER | DIM. | TYPE DESCRIPTION 1/0 METHOD
\'Ld 3 H increments of arm-joint variables ad = link + 2
AQA =(A0,, Aﬂz, &q)
:
3
1. Takes Ax_ from buifer TRP by GETTRP,
2. Tokes Ax_from buffer TRR by GETTRR.
3. GompumAgc=m_:P +ax .
» 4, Takes sin (0":) and cos (GIF; (1=1, 2, 3) from buffer SCT by GETSCT.
§ 5, Transforms coordinates from world to joint space:
-
2 80, =T,(8,) axg, where 8, =(8 85c, O
'S
SYSTEM: SUBSYSTEM: DESIGNER: DATE: PAGE: OF:
CACS OPER M, V, 3/15/79 1 1
3-63

- T e e e —— SR ———T— Tl ¢ ,)) N -

b Rt el DA e il

|IDENTIFIER:
DATA DEFINITION Jout X

COMP. | COMPONENT INITIAL | MATHEM.
INDEX | IDENTIFIER VALUE | SYMBCL DESCRIPTION

1 8, Armm azimuth

2 8 2 Arm elevation

3 85 Arm sxtension 1

4 0 4 Hond azimuth .

4

-] 05 Hond elevation

é 05 Hand twist

7 07 Gripper opening

Notices:

(1) All values represent calibrated
output values (set-paints),

(2) Angles scaled rad x 2'9 (Horn

m.)
(3) Acces to JOUT controlled by
monitor MJOUT.
SYSTEM: SUBSYSTEM: DESIGNER: DATE: PAGE: OF:
CACS OPER M.V, 3/15/79 1 1

Figo 3-27

3-64

.

EARM GtEl i R e O

NRNA

'
.l‘
&
'A
“

passing the parameters to/from the procedure. In case of CAL the
following notation will be used for different methods:

(a) ad = link + m

(b) ad =R

1
(e) Ry
(d) local
(e) -

The description of procedure functions can be done in a narrative

Argument passage by argument address
located immediately after calling instruc-
tion (m is relative position from return
address).

Argument passage by argument address which
is contained in the register Ri‘

Direct argument passage, as a content of
the register Ri‘

Argument passage through local variable of
the module.

No arguments are passed to/from the
prccedure.

form or by using flowcharts, pseudo-codes or higher level languages

(Pascal, for example).

Data definition forms are intended for simple data structures,
such as arrays or simple records.

3-65

{

JURIU S —.

SECTION IV

CONCLUSIONS AND PLANS

The functional and operational description of the CACS software
is given in this quarterly progress report. The operational description
comprises the basic description of CACS hardware, the structure of con-
trol algorithms, and the principies of the system software implementation.
In this document the project objectives and framework have been clarified,
the method of approach has been established, and the design of basic
system software components, monitors and basic control routines, have
been completed.

The next phase of development will consist of three activities:
software implementation, additional control algorithms development and
real-time experimentation.

The software implementation will be performed in two steps:
implementation of the monitors and implementation of the processes.
Since the monitors are the basic system components, containing procedures
which are common to all processes, they will be implemented separately,
out of the top-down development line. Therefore, the set of special
off-line testing programs will be elaboraced. These programs will be
implemented in a high level language, in this case Fortran V. Their
purpose is to test extensively all monitor procedures, in order to
provide a reliable and secure programming base for further process imple-
mentation. This approach of program development is usually called
"bottom-up development.'

The implementation of the prncesses will be carried out by top-
down step-by-step refinements. The development will start with the main
program of OPER subsystem, the scheduler, and will continue with the
development of the processes. First the permanent active processes (IOP,
OES, OMA) will be implemented, and then other internal processes, starting
with MUC and ending with ASO, according to the natural sequence of manip-
ulator operations. The processes will also be implemented by a top-down
technique, as far as it offers practical benefits. As a consequence of
this approach, no special testing programs are needed, except the proce-
dure stubs for simulation of as yet unimplemented lower l~vel procedures.

The control algorithms will be developed within the frame of the
proposed principles, and the basic control routines and other relevant
monitor procedures designed in this report. It should be noted that
almost all CACS algorithms have been analyzed and evaluated by a look-
ahead design which has preceded this report. The final version of the

algorithms and related parameters will be established by experimental
procedures.

e e —— -

RN SR | .

o I - —————— TNV TR O TEIIE N <s e

The real-time experiments will be ~arried o1t using the full
cepacity of the CACS hardware under res! oparatinnal conditions. The
purpose of this activiry {s to check out the system interface and tc
adjust and review algorithmic parameters, calibvation constants, and
other pertinent data. 7Tn addition, the system performance and limita-
tlons as well as the impact of the r=2sl operational ccnditions on system
functioning will oe exarined systamatically in oraer tc be able to
improve cortrol performance through algorithmic modifications.

The nex% progress repcrt will describe the development activities
outlined above. The first part of the report will be devoted to testing
preblems. The second part will consider processes, i.e., the related
algorithms and their softwa.e implementaticn.

4=2

camatemtma e

...

o

,
e me bieaa e e

— T Y T T R T Ty T W PRy e

- VRECEDING PAGE SLANK NOT FILMED

SECTION V

REFLRENCES

1. Bejczy, A. K., Lavironment-Sensitive Manipulator Control, IEEE
Conferenc2 on La~ision and Control and 13th Symposium on Adaptive
Prccesseg, Phoenix, AZ, Nov. 20-22, 1974.

2, Bejczy, A. K., Issues in Advancad Automation for Manipulator Con-
trol, Joint Automatic Control Conference, Purdue University, 1
W. Lafayette, IN, July 27-30, 1976.

3. Bejczy, A. K., "E5fcct of Hanl-Based Sensors on Manipulator Con-
trol Performance,' Mechanism and Machine Theorv, vol. 12, pp. 547-
567, 1977,

4. Diikstra, E. W., "Cooperating Sequential Processes,'" In Program-
rzing Languages, 2. Genuys (ed.), Academic Press, New York, NY,
1968.

S. Wirth, N., "On Multiprogramming, Machine Coding and Computer
Organization,' Comm. ACM, vol. 12, no. 9, pp. 489-498, Sept.
1969.

5. Brinch Harsen, P., "Structured Multiprogramming,’ Comm. ACM,
vol. 15, no. 7, pp. 574-578, July 1972.

7. Brinch Hansjen, P., "Operating System Principles," Prentice-Hall,
Inc., Englewood Cliifs, NJ, July 1973.

R, Hoare, C. A. R., "Monitors: an Operating System Structuring
Concept,' _omm, ACM, vol. 17, no. 10, pp. 549-557, Oct. 1974.

9. Brinch Hansen, P., "The Programming Language Concurrent Pascal,"
IEEE Transactions, vcl. SE-1, no. 2, pp. 199-207, June 1975.

10. Wirth, N., "Modula: a Progamming Language for Modular Program-
ming,'" Software Practice and Experience, vol. 7, no. 2,
March 1977.

11. Brinch Hansen, P., "The Architecturs »f Concurrent Programs,”
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

12. Zawacki, R. L., "FORTRAN-TO-CURV Arm Inierface I/0 Drivers,"
Interoffice memo 343-76-794, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, Dec. 1976.

13. Raibert, M. H., "Preliminary Proposal for Teleoperator Software
Architecture,”" Interoffice memo 343-78-101, Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA,
Jan. 1978,

14, Jensen, K. and Wirth, N., "Pascal, User Manual and Report,"
Springer-Verlag, New York, NY, 1975.

APPENDIX A
GRAPHICAL REPRESENTATION OF DATA AND STANDARD OPERATION

o !
¢
)

i

:

; A-1

i 4]

In order to simplify the system description, a graphical
technique is employed in this report. This technique consists of
graphical symbols which express both the data and the operations on
the data.

Two categorieas of data will be considered here: scalar and

vector data., The former represent single data valuas with which a

symbolic nume is associated and indicated on the diagram. Vectors
represent one-dimeasional data arrays, which are ordered sets of scalar
data under one symbolic name.

Operations on data can also be considered as two general cate-
gories: elemetary algebraic operations and data buffering. Elementary
algebraic operations include summation and multiplication of scalar
and/or vector data, as well as elementary arrangements/rearrangements
of data arrays (join and disjoin operations). For operations which
are more general special symbols are used. This will require additicnal
explanations.

Data buffering are specific kinds of stor.ge operations which
play an important role in CACS software. Data duffers are memory
locations with dimensions corresponding to the dimensions of the data
arrays indicated on the diagram. TIhese locations are accessible through
special procedures which ensure mutual exclusiveness and access right
control. The length of all buffers will be the same. This means that
all buffers can accept only one scalar/vector data catity.

A=2

4 P ~ine e

T kil ¢ 4 g - TR TT——

Y —Y W e—T——— e T

i el v

*]
Scolar dota
, —
i
’
v
- Vactor data
>,y X gV eees W)
’ E 3
(v, is calar data;

L
7\,

General data processing

=:‘ Output device

|

input davice

p—— sm— Input-output device

——

S

Fig. A-l. Graphical Representations of Data and Standard Operaticas

A-3

FUTT TSNS R ST TR R TR RSMETRER R T T TR EEEE E

Algebraic summation

2=x-y

Vector summation
wE=u+y

2'(“]: Ugr seey UN)
V= (Vg Vor eees vN)

W= oy # vy gt Ve e U PV

v wa

Scalar multiplication

!=(C‘ VII c* V2, ~e0gp C° VN)

Joining the vectors

=("‘|' Ugs eees uM)

1< lc

=(V1, V2' seey VN)

!v_=(v‘, V2l I YYY] VN, ul' "2' 'YLy} UM)

Disjoining the vectors

(13

"'(“]r Ugs seer UM)

v=(u‘, uz,...,uN) M >N

) -w-S(UN+l, UN+2' I XY] UM)

Note: Numbers besidss the datu
symbols define the order of
joining/disjoining

Fig. A-1 (Continued)

c- A

Shared data buffer

|
i

S

(bid is buffer identifier) ‘ }
- : |

Jl

Note: The size of buffer
the dimension of input/output dato
INPUT BUFFER OPERATION
=
3

"__.@ Unconditional nplcccncnt of buffer *
content y by value x

! : : Conditional roplcccmom of buffer C
.& content y by value x

" ¢ (Condition must be defined separately.) i
:
|

1. Reploce if x is less than y,
2. Replace if x is .-nthmm. .
Otherwise replace y by m,) L

x + ¥
i ——© Add value x to buffer content y, ; %

x 13 Store x in buffer if it is empty, If it
_..G is full, the store operation will be
delayed until the buffer becomes empty. . fo ‘ j
(y
Fig. A-1. (Continued)

A=5

FW‘— Cadioand sl o nilil ah of hd
. pempm———_ L T . e et e . b
L
B
&
]
-
i
!
.
. ('
' OUTPUT BUFFER OPERATION
CD____"_. Reod buffer without changing ifs content.
i QR__L‘, Reod and reset buffer.
[Read and empty buffer if it is full,
) F x If it is empty, the read operation
@_____, will be delayed until the buffer
becomes full,
0 C
C
Fig. A-1l. (Continued)
I
A=6
C

PSS SRy e

P I

ST T ERAR T A -

PART III
August 31, 1981
OPTIMAL PRCDUCTION SCHEDULING
FOR A LINEAR FLOW SHOP

by

Gad Vitner

INSTITUTE FOR TECHNOECONOMIC SYSTEMS
UNIVERSITY OF SOUTHERN CLAIFCRNIA
LOS ANGELES, CALIFORNIA 90007

T T TR -y o T S T T TR

ABSTRACT

This study investigates a flow shop scheduling problem
which is defined as the linear flow shop problem (LFP).
The time to perform the jobs in the shop is a linear
function of the batch size. The results of the research
show that the shortest processing time (SPT) sequencing is
the optimal solution for the mean lateness, m>an flow time
and waiting time. A typical scheduling problem that can
fit the definition of the linear flow shop problem is an
assembly line.

The main objective of this research is to find an
optimal solution for a production scheduling problem that
will be easy to implement in practical situations. The
results show that the optimal sclution is very easy to
implement in real life problems as the jobs have to be
arranged according to a monotonic increasing processing
times.,

The proofs for méan lateness and mean flow time use
the idea of pairwise interchange of adjacent jobs
in the sequence. The method of mathematical induction is
used to prove that the theorems hold for the case of m jobs

in the sequence. A numerical example is presented to

‘mai RS PPy S U
. ian e s et Lo e Al Lt ke Py

i e o il

o e ————————

T RPTRLTRe S R St

T wr O e

is conducted on the numerical results to show how the
shortest processing time sequencing yields the optimal

solutions.

explain how the theory is implemented. A sensitivity test

i1

>

TABLE OF CONTENTS

Page
ABSTRACT 1
TABLE OF CONTENTS it
LIST OF FIGURES ' v
LIST OF SYMBOLS vii
ﬂChapter
1 INTRODUCTION TO SEQUENCING AND SCHEDULING 1

1.1 Definition and Classification of a
Sequencing/Scheduling Problem 1
1.2 Types of Scheduling Models 2

1.3 Performance Measurements of a Production

| | Schedulc 3
!

| E 1.4 Research Objectives S
| !

| 2 FLOW SHOP SCHEDULING - BASIC CONCEPTS 6
i

. 2.1 Definitions and Terminology 6

? 2.2 Characteristics of a Flow Shop 8

| 3 REVIEN OF PAST WORK 10

4 FORMULATION OF THE PROBLEM 17

4.1 The General Linear Flow Shop Problem 18

i

4.2 Time to Perform All Jobs Through All
Machines

4.3 Machining Time Required to Perform
The Jobs

4.4 1Idle Time Involved in Linear Flow Shop

4,5 Makespan (MS) in Linear Flow Shop

4.6 Bounds for Performance Time in a

Linear Flow Shop

5 OPTIMALITY IN LINEAR FLOW SHOP SCHEDULING
S.1- Lateness in a Linear Flow Shop
5.2 Computational Results
5.3 Flow Time in a Linear Flow Shop

5.4 Waiting Time in a Linear Flow Shop
6 SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

Page

19

20
21
28
W

29

31
31
58
98 4

]

102

108

iv

104 _ l

>

Figure

2.1
2.2
3.1
4.1
4.2
5.1
5.2
5.3
5.4
5.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

LIST OF FIGURES

A "Pure" Flow Shop

A General Flow Shop

Graph of a Two Job Flow Shop Schedule

Idle Time in a Two Machine Linear Flow Shop

Idle Time in a Three Machine Linear Flow Shop

A Pairwise Interchange of Adjacent Jobs

A Two Job Linear Flow Shop

A Three Job Linear Flow Shop

A Four Job Linear Flow Shop

A Block Diagram that Summarizes the Steps

of the

Proof

Flowchart that Describes the Sensitivity Test

Results of Sensitivity Test for Sequence

Results of Sensitivity Test for

The Opt
Results
Results
Results
Results
Results

Results

imal Sequence

of Sensitivity Test
of Sensitivity Test
of Sensitivity Test
of Sensitivity Test
of Sensitivity Test

of Sensitivity Test

for
for
for
for
for

for

Sequence

Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1
2

Ww 0 N Y

Page

13
23
26
33
41
44
50

57
60
61
62
63
63
64
65
66
67
68

Page
5.16 Results of Sensitivity Test for Sequence 10 69
5.17 Results of Sensitivity Test for Sequence 11 70
$.18 Results of Sensitivity Test for Sequence 12 71
5.19 Results of Sensitivity Test for Sequence 13 72
5.20 Results of Sensitivity Test for Sequence 14 73
5.21 Results of Sensitivity Test for Sequence 15 74
5.22 Results of Sensitivity Test for Sequence 16 75
5.23 Results of Sensitivity Test for Sequence 17 78
5.24 Results of Sensitivity Test for Sequence 18 81
5.25 Results of Sensitivity Test for Sequence 19 82
5.26 Results of Sensitivity Test for Sequence 20 83
S.27 Results of Sensitivity Test for Sequence 21 86
5.28 Results of Sensitivity Test for Sequence 22 89
5.29 Results of Sensitivity Test for Sequence 23 92
5.30 Results of Sensitivity Test for Sequence 24 95
5.31 Two Machine Linear Flow Shop 99

< T B e — o PO - o ~

LIST OF SYMBOLS

b. Processing time per part on machine j, p.17

Ci Completion time of job i, p.4
{Ca Completion time of the last job in set A, p.34
dy Due date of job *, p.3
Mean flow time, p.4 -
i Flow time of job i, p.4
FA xhe sum of the flow times of all the jobs in set
"A", p.100
;FB zgs's;Tlgg the flow times of all the jobs in set 5
?I Index set of jobs, p.18
'1;; Idle time of machine j, immediately before the i'"
job starts on machine j, p.22
ITj Idle time of machine j, p.4 |
J Index set of machines, p.18 '
L Lower bound for performance time in a linear flow
shop, p.29
L Mean lateness, p.S
Ly Lateness of job i, p.4 {
Ly Total lateness of the jobs inset "A", p.35
Ly Total lateness of the jobs in set "B", p.35 i
M Total machining time over all n machines, p.21 r g
MS Makespan, p.28 ;
{

l, vii

ST T s T e

Time that machine j is busy, p.20

number of parts in job, i, p.17

max{TA + ti#l,l’ CA}' p. 36

ready time, p.3

max{T, + ti,l + ti+1,1' Ci(S)}. p.37

A slope index for ordering jobs, p.16
Scheduling line of a two job flow shop, p.13
Performance time of job i on machine j, p.17

Total performance time of all m jobs over all n
machines, p.19

The point in time at which job i starts in sequence
S and at which job i+l starts in sequence S', p.32

Time to perform job i over all n machines, p.19%
Tardiness of job i, p.4

Upper bound for performance time in a linear flow
shop, p.49

max{T, + ti*l.l + ti,l’ Ci*l(s')}’ pP.37
mar{(1+b)t11, t * t21}. p.47

maX{x + bt21. tll + tZI + tsl}. p048
max{(hb)t21 + btu, tyy * ty; ¢ ‘31}' p. 48

Z + MX{Z + btsl. tll + ‘:.21 * t: * t41}. po 54

vifii

CHAPTER 1
INTRODUCTION TO SEQUENCING AND SCHEDULING

1.1 Definition and Classification of a Sequencing/

Scheduling Problem

A sequencing problem is defined as one that determines
the relative order or sequence in which given jobs or tasks
Fre to be performed by the available facilities or resources.

A scheduling problem is defined as one that assigns the

ctual starting time for each task on various resources.

! In general, there are two kinds of scheduling problems. \

s

hhe static problem handles a set of tasks that is available
b

ifor scheduling before the scheduling process starts. In

o

this case the set of jobs is fixed and does not change over
ime. The dynamic problem deals with a scheduling process
there in addition to a given fixed set of tasks, new jols

rrive to the system after the scheduling process starts.

The dynamic problem presents a real life production process
|

where the set of tasks to be considered for scheduling
contains two subsets of tasks. The first subset includes

tasks taht the system has from orders on hiand and the secernd

ﬁuhsysten includes tasks from orders that will arrive to the

ystem in the future.

| 1

1.2 Types of Scheduling Models

To classify the major scheduling models it is necessar*
to characterize the configuration of resources and the
behavior of the tasks. Each model can be used in a static
or a dynamic approach

(a) Z.ngle Machine: One machine is continuously

available and is never kept idle while work is
waiting

(b) Parallel Machines: Several identical machines

are available for scheduling the tasks. Tasks
are performed starting at tire t=0, consecutively,
so that as soon as a task is completed another
task can put on the machine that is freed.

(c) Flow Shop: Jobs to be scheduled follow a fixed

routing and the routing is the same for all jobs.

(d) Job Shop: Routing for all jobs is rixed but each

job may have a different routing.

The solutions to the various modelsare achieved mainly
by two kinds of techniques; optimal techniques and heuristic
techniques. The optimal techniques use mathematical
programming such as linear programming, integer programming,
dynamic programming.and enumeration techniques like branch
and bound. Mathematical approaches become very complex for
practical cases as computational requirements will be severe

for large problems. Even for relatively small problenms,

3
i
b

C

g

‘fshort time. In special cases the results of using heuristic

there is no guarantee that the solution can be obtained
quickly. Heuristic techniques usually assign a priority,
or set of priority rules to sequence the jobs that are
teady to be performed. Computational problems are avoided
and the solutions to large problems can be obtained with
limited computational effort. The problem with heuristic
methods is that they do not guarantee optimality. The goal
in practical problems is to get a '"good" (not optimal)

solution by using a simple sequencinyg rule, in a relatively

priority rules will result in an optimal or near optimal

solution.

1.3 Performance Measurements of a Production Schedule

Quantitative measures for evaluating schedules are very,
important to determine whether a specific schedule is effi-
cient. Performance measurements are functions of variables
that define a scheduling process. The basic variables are:

Ready Time (ri). The point in time at which job i is

available for processing. In a static model where
all the jobs are available for processing at time
zero, ri=0.

Processing Time (ti). The amount of processing

required by job i

Due Date (di)‘ The point in time at which the proces-

sing of job i is due to be completed.

Completion Time (Ci). The time at which the processiné
of job i is finished. |
The major quantitative measures for evaluation are:
Flow Time (Fi)' The amount of time job i spends in the
system: Fi = Ci - Ty

F; =C; if r, = 0.

Makespan (MS). The amount of time from zero until all
jobs are completed or the completion time of the last
job.

Lateness (Li)' The amount of time by which the compiej
tion time of job i exceeds its due date: L, = ci'di‘

Tardiness (TR). The lateness of job i if it fails to
meef its due date, or zeroc otherwise: TRi = max{O,LQ

Idle Time (ITj). The amount of time that machine j

is not productive.

Schedules are generally evaluated By aggregate
quantities that involve information about all jobs, resulting
in one dimensional performance measures. Suppose that m
jobs are to be scheduled on n machines then aggregate

performance measures are:

n
Mean Flow Time: F = 1 Z F.
m i
i=1
Maximgm flow time: Fmax = ?2¥ {Fi}

b ot A
L I G T A o T T T PRy ey R Y

Mean Lateness: L= % E L.
i=1 *

Maximum Tardiness: TR = max{TR. }
RaxX iel

1.4 Research Objectives

This research investigates a linear flow shop model
where the time to perform the jobs on the machines is a
linear function of the batch sizes. The results of the
research show that the shortest processing time (SPT)
sequencing is the optimal solution for the mean lateness,
mean flow time and waiting time.

The main objective of this investigation is to find
an optimal solution for a production scheduling problem
that will be easy to implement in practical situations.
The results show that the optimal solution is very easy to
implement in real life problem as the jobs have to be
arranged according to a monotonic increasing processing
times. The results can be implemented in processes as
assembly lines where the jobs are following the same
routing.

The proof for the minimum mean lateness and the minimum
mean flow time is carried out by using mathematical induc-
tion for the case of m jobs in the system. An analysis of

a numerical example shows how the results are implemented

in a specific case.

o L P ¥ S PO T IOy YRR S P IOEA S a

CHAPTER 2
FLOW SHOP SCHEDULING - BASIC CONCEPTS

2.1 Definitions and Terminologz

A flow shop scheduling system is defined as a process
where the jobs to be scheduled follow a fixed routing
and the routing is the same for all jobs.

The shop contains n different machines and each job
consists of n operations, one for ¢ach machine as illu-
strated in Figure 2.1 for a "Pure' n machine flow shop.

The machines in a flow shop are numbered so that the jth

operation of any job precedes its kth

h

operation, then the
machine required by the jt operation has a lower number
than the machine required by the kth operation. The
machines in a flow shop are numbered 1, 2,...,n and the
operations of job i are numbered (i,1), (i,2),...,(i,n).

It is not required that every job havean operation on each
machine in the shop as in the case of a general flow shop
illustrated in Figure 2.2. Jobs must not enter the shop on
a single machine, or leave from a single machine. 1In a
general flow shop, each job is treated as if it had exactly

n operations, for in cases where fewer operations exist,

the corresponding processing times are taken to be zero.

e T v WA bt B e h

Mt -haba N

S ——

Input
(New Jobs)
Machine Machine . Machine JJMachine
1 2 T -1 n
e ee— l
Output
(Completed Jobs)
Figure 2.1. A "Pure" Flow Shop
Input Input Input Input
Machine Machine k{i‘“YS_Machine Machine
1 2 n-1 n
Output Output Output Output

Figure 2.2.

A General Flow Shop

O

L

:
k
;
[

T e i, o s

e i L

The only requirement is that all movements between machines
witain the shop be in uniform direction from machine j to
j+1 and from machine j+1 to machine j+2 etc.

An example of such a shop is an assembly line, where
the workers or work stations represent the machines.
However, a group of machines served by a unidirectional,

noncyclic conveyor would be considered a flow shop.

2.2 Characteristics of a Flow Shop

A basic flow shop problem is characterized by these
conditions.

(a) A set of m multiple-operation jobs is available for
processing at time zero.

(b) n different machines are continuously available, with-
out consideration of temporary unavailability for
causes such as breakdown or maintenance.

(c) Each operation can be performed by only one machine
in the shop.

(d) Setup times for the operations are sequence-independent
and are included in processing times.

(e) Job descriptors are known inadvance.

(f) Individual operations are not preemptable, once an
operation is started on a machine, it must be'completed
before another operation can begin on that machine.

Only a single interval (b,c) is to be assigned to each

. I Y Y

————

(8)

operation with (c-b) equal to the processing time of
the operation.

Each machine can handle at most one operation at a
time. Consider the interval (bx’ cx), the assignment
of cperation x to a particular machine. For every
other assignment (by, cy) to that machine, either

bx 2 ¢, 0T ¢y < by‘

{

-t

N -
-

TS e e R e e e T

CHAPTER 3
REVIEW OF PAST WORK

The literature on flow shop scheduling contains many
papers that introduce general ideas, algorithms to solve
specific problems and analysis of different performance
measures. This literature survey presents the tyipcal
papers in the area, papers that present general ideas or
general techniques to solve the problem.

The earliest optimal results for the two machine flow
shop problem were obtained by Johnson (1954). The objective
of Johnson was to minimize makespan or minimize the maximum
flow time. Johnson proved that in an optimal sequence,
job i precedes job j if: MIN{til,tjz} < MIN{tiz,tjl}
where ti1 is the time to perform job i on machine 1 etc.
Johnson extended this algorithm for the case of three
machines. The prouvlem loses some of the nice s“ructure of
the two machine case. The problem is formulated, however,
and for the special cases where MIN{t.,} > MAX{tjz} or
MIN{t.s} > MAX{th} the complete solution is found
analogously to the two machine problem.

Many papers have been written about other performance

measurements but no one has found an optimal algorithm,

10

g ———

T

tther than enumeration, for the general flow shop problen.
onway,.Maxwell and Miller (1967) state in their book,
Theory of Scheduling, "Even for the two machine flow shop
the optimization of mean flow time is a very lifficult
broblem... Johnson's procedure is not optimal with respect
to this criterion and, in general, it is not even very good"
(p. 89).

Ignal andScharge (1965) applied a branch and bound
technique to the three machine flow shop problem. They

observe that the three machine maximum flow time problem is

leasier for the "branch and Bound" procedure than the two
Pachine flow time problem, in that a higher proportion of
the job sets were solved with the minimum number cf nodes.

| - Jackson (1956) considers a case in which the m jobs
éhave a commcn machine for their first operation and a common
imachine for their last (third) operation, but in which the
ésecond operation of each job is performed on a different

imachine. There are thus m+2 machines, m of them correspon

ding to a second machine in a flow shop which can process

sany jobs simultaneously. The algorithm is similar to

iJohnson's three machine method.

Dudek and Teuton (1964) have proposed an algorithm to
minimize the maximum flow time in a three machine flow shop,
which is also applicable to larger shops if one arbitrarily
limits consideration to permutation schedules. The algo-
rithm suggests a method for selecting the job to be placed
11

e T TURw TR

first in the sequence, the job to be selected from the
remaining m-1 to be placed second, etc.

Wagner and Story (1963) have used integer programming
to formulate and solve the problem of three machine flow
shop, to minimize maximum flow time.

Gupta and Dudek (1971) examine various optimization
criteria and investigate the interaction of several cost
factors on optimal schedules. Based on the results of a
sensitivity analysis performed to study the interactions of
several cost factors on the optimal schedule, they suggest
the adoption of minimization of total opportunity cost as
the optimization criterion for the flow shop schedules.

Akers (1956) has a graphical solution for a special flmf
shop problem. There are only two jobs to be scheduled
through a flow shop of any number of machines. Suppose that
the machine are numbered 1,2,...,n in the order in which
they process the jobs, so that the processing times are

given by:

tl,l"l,l"“'tl,n For job 1,

tz’l,tz’Z’.oa’tz’n For jOb 20

These times can be marked off on axes for the two jobs as
shown in Figure 3.1. A schedule can be represented by any

line.

12

S WS A SRR P T PP S 3

- —— o . e p———

.

Job 2 -

4

t B

2,7 ?

1

l:___) hd

2,61 ‘
t2,5 %

t2,3; |

Gt

SL 4

t2,2 |

t2.1 o j

t1.1 t1,2 t1,.': t1,4 t1,5 tl’y Job 1 1

i

|

Figure 3.1. Graph of a Two Job Flow Shop Schedule i

4‘

1

13 "

| R s 5

n
1. From (0,0) to (Zt1 i)
j.l ’ j.l \
2. That is composed of horizontal (work on job 1 omly), . '
vertical (work on job 2 only) and 45° (work on both

jobs) line segments;

3. That does not enter the interior of any of the shaded
regions (which would imply one machine working on both

jobs simultaneously).

Line SL in Figure 3.1 is such a "schedule line."
Mathematical approaches such as linear programming,
integer programming, dynamic programming and branch and

bound to the flow shop schedule become very complex for

practical problems. The formulation of specific problems
in mathematica. models is time consuming and need experts
that are not available in every production facility. 1In
practical prcblems many variables are involved in the model
and computational requirements will be severe. Even for
relatively small problems, there is no guarantee that the
solution can be obtained quickly. 1In dynamic orgemizations

where schedules change every day for example, solutionsthaq

are the output of a :wathematical model cannot be used
efficiently as it takes some times hours to get the resultsﬁ
even if one uces a {ast computer. There are cases where in
the production plant there are not people who can read and

understand the computer output and then implement it in the
14

T A e

shop. Using heuristic algorithms, computational problems
are avoided. These techniques obtain solutions to large
problems with limited computational effort., Experts are
not needed to develop mathematical models and to understand
the output of the models. Heuristic methods usually assign
a priority, or set of priority rules to sequence the jobs
that are ready to be performed in the shop. Priority rules
as first come first serve, shortest processing time and
minimum slack time are easy to inplement in the shop floor .
and it is very easy to run a production facility following
these simple priority rules. In many cases priority rules
are used in production plants as a result of experience of
years and they turn to yield good results. The problem
with heuristic methods is that they do not guarantee
optimality. However, the goal in practical precblems is to
get a *'good" (not optimal) solution by using a simple
sequencing rule, in a relatively short time without the
need of experts. In special cases the results of using
heuristic priority rules willi result in an optimal or near
optimal solutions., Heuristic rules of assigning jobs in a
scheduling process can be modified after using it in the
shop and getting some results about the level of efficiency
Palmer (1965) developed a heuristic algorithm for the
makespan problem. The algorithm gives priority tco jobs

having the strongest tendency to progress from short times

>
n

= T - s e — T TEIT T it

B e

to long times in the sequence of operations. He proposes

the calculation of a slope index Si for each job.

Si = (n-l)tin*(n-S)ti’n_1+(n-s)ti,n_2+...-(n-3)ti’2-
(n-13t;

where:
n is the number of machines in the shop.

ti n is the time to process job i on machine n.
»

Then a permution schedule is constructed using the job {

ordering S§; > §; > ... > §

P
o
" ema iyt

A 5 A ¢ i ¢ e e e s

"N

e, e st v d, TR N, WL R

o mm———

16

L T A v o oy vy o n .

e AR ARE (FBeY O

I‘\I
!

CHAPTER 4
FORMULATION OF THE PROBLEM

The machine scheduling problem considered for this
research is for a flow shop facility engaged in the batch
production of parts. Each job consists of a known number
of parts (n). The parts are produced, in order, on a
number of machines (j). The goal is to sequence all of
the parts production jobs (i) so that the entire production
schedule is completed in the minimum amount of time. The
feature that makes the problem both attractive and practica{
is that the precessing time on each machine is a linear
function of the number of parts in that job.

A common representation of machine time is by

where tij = the time of job i on machine j,
bj = processing time per Part of machine j,

n, = the number of parts in job i.

This problem is a typical example of an assembly line
problem where one has to produce different types or models.
In an automobile assembly for example, You will produce n;

cars of Model A, n, cars of Model B, etc.

i

I .

or estimated from machine operati;g characteristics. \ 3

The value of b:i is either computed from historical data

- |Periodically the value of bi is updated in order to keep it

as a good representative of the real machine performance.
The conditions that characterize a linear flow shop 3

S problem (LFP) are: ’

{ a. A set of m multiple-operation jobs is available for

L processing at time zero.

b. Each job requires n operations and each operation
requires a different machine.

c. Setup times for the operations are sequence independent
and are included in processing times.

d. Job descriptors are known in advance.

ey
.,

e. n different machines are continuously available. U

f. Individual operations are not preemptable.

€

4.1 The General Linear Flow Shop Problem

The General LFP Problem considers the case of m jobs

processed on n machines where the performance time tij is !
! o

a linear function of the batch sizes |

tl] = bjn1’ iel, jed (4.1)
ti'
| n, =-§jl, jed,iel (4.2)

18

V
t
1
!
i
.

Substituting equation (4.2) in equation (4.1) yields
the following linear relations between the time to perform
a batch on a specific machine and the times to perform the

same batch on all other machines.
tij = bj-sk— = 'B;bj, joked, iel (4.3)

4.2 Time to Perform All Jobs Through All Machines

Let Ti be the time toc perform job i (i € I) over ali
n machines that the shop contains.
' n
T, = jza:ltij (4.4)

Substituting equation {4.3) into (4.4) yields:

n n
t. t:) <=
_ ik, _ "ik ;
AT TR g felked (9

Let T be the total performance time of all m jobs over

all n machines, then:

T= ZTi (4.6)
i=1
m m t'k n 1
= 1
iz=:1Ti lzgl[vk- J_za:lbjj , kel (4.7)

T=ZT.=ZZfbi—1£b., ked (4.8)

19

P Y PPUDTIPRY TR I PSP RS

o e e

e

e e

-
. P——

PRI, P NN

7Y Mg " e Wb ety = -

e by W ARR I TR T W

Substituting equation (4.2) into (4.5) yic.lds:

n
:’z“:lnlbJ = ny jglbj
The total performance time T is:
n
T = :E:T }E:[§. :E: b.]
i=1 i=1L1 i=1 J
T = 2: 2; n.b
i=1 j=1

4.3 Machining Time Required to Perform the Jobs

Let Mj be the time that machine j is busy, then:
5&
= t.. i J
MJ & by je

Given that:

The general term for machining time of machine j is:

m mtk
= 1
MJ‘J;I lz.:l-‘ﬁ:bJ’ eJ

b, w
Mj=5i2t.k, keld

i=1 1

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Let M be the total machining time over all n machines,

f‘ then:

M = 2“: M, | (4.15)

j=1)
r ‘ n n b. m
; 3;1 M; = 32-:1[5‘1& 1-21 tik] , keld (4.16)
n n m b.
, M= EE;M . ;;; Eg;si ti o ked (4.17)

The term for M can be rewritten. Substituting equation

;g (4.2) into (4.14) yields:

|

r

- n |

- M, = 2 n.b., jed (4.18)
) i=1 1)

S

T

: .

S Then

E n n m

(4.19)
j=1 3 j=1 i=1

4.4 1Idle Time Involved in Linear Flow Shop

Idle time is defined as the time in which machines or
work centers are ndt producing any parts. In any production
plant the purpose is te minimize the idle time of machines
in order to increase the total efficiency of the process.

In case this idle time of the machines can be controlled

i and it is known in advance when the machines are not busy,

b 21

USRS SLS

it is possible to take advantage of this fact and do some
preventive maintenance or any other planned maintenance to
keep these machines running. Let's define Iij as the idle
time of machine j, immediately before the ith job starts on

machine j. There is no idle time on the first machine.

4.4.1 Two Machine LFP

Figure 4.1 illustrates the case of a two machine
linear flow shop. In developing the terms for the idle
time of machines in the shop, the linear relations
constituted by the definition of the LFP problem are used.
The.idle time immediately before job 1 starts on machine 2

is:

1 (4.20)

12 ° ta

b
2
IZZ = maX{tll + t21 - Fl tll - 112,0} (4.21)

The sum of (4.20) and (4.21) yields:

b
, 2

3 2 : 2
b
= - 2 -
132 max{Ztil F{ Ztil 2112’0} (4-23)

i=1 i=1 jel

The sum of (4.22) and (4.23) yields:

. ’
e A W SR i AN I 0 e b A AU Al AR AR o i . R e AR £ AR < 0 b

7 s

0

-~

(- y

T tz1 s - thl Machine 1

[22 tm2

1 1 t Machine 2

m2

Figure 4.1. Idle Time in a Two Machine Linear
Flow Shop

|
l
|
|
rk

R et i e b

D st S S T s TR R T T T Lk

Iiz * 12 * 152 = ’“"‘{2‘11 r Ztu’ 2112}

i=l i=]1 i=1
2
b
2
= }:I = max{z:t Zt. , Zt -
i=] 12 i=1 1 E; i=1 i1 izl
b
2

The idle time immediately before the last job starts on

machine 2 is:

m b m-
1, = max{dyty, - £ E Z 1,,,0) (4.25)

1 i=]1 i=1

The total idle time on machine 2 is:

m m-2
b
E-=max{2t Zt Zt - Zt-.
j=1 12 1=1 11 B— i=1 i=1 b {51 il
LI) Etll ‘B- 11, tll} (4026)
In general
m
gg; Iiz = max Ku (4.27)
l<u<m
where
2
K = t- - t »
T S TUE v R

24

e

4,4,2 Three Machine LFP

Figure 4.2 illustrates the use of a three machine
linear flow shop. The idle time immediately before job 1 “\1

starts on machine 3 is:

b i
= = z - » !
Iig = ty; + ty, [1 + Bz]tu jz.:l t) (4.28) B
= max{ Zt EI - - b3 t,,,0} (4.29)
’ .
i=1 12 " i b, 11 ;
|
The sum of (4.28) and (4.29) yields: | 1
S, e >
I,. + I, = max{ 2 t. I t);1 (4.30) ;
13 * 123 &tz T 4 'r 41 j-1 Y
I, = max{Zt 21 - 21; 21 0} (4.31)
33 =1 12 =1 1.1 il =1 i3 ‘

The sum of (4.30) and (4.31) yields:

3 2
12'1 1,5 = max{Zt 2t ZI 5% Ztn, 14

o
~N
P I U T o & T Sy

1*1 1-1 i=] 1=]
z: S TD U » |
= max{ /2 t. I., - t. t.., + ;
= 12 i=1 i2 1.1 il? i=1 i2 |
1
i=1 i2 t 3-1 |

The idle time immediately before the last job starts on

machine 3 is:

. e m

11 t21 tm;
[T12 T2 fn-1.2] tnz
Iz 132
v B e B i
L3 I33

Figure 4.2, 1Idle Time in a Three Machine
Linear Flow Shop

26

is1 4

n-1 n-1
1, -max{;tiz 21 . i;lt 12-:11”'0}(4'33) \
The total idle time on machine 3 is:

m b ?zf m-1 :
12.:113 = max{Zt ZI - ’F: til' 2 ‘12 + ’

| ie1 i=1 =1 1-1
' pORTIRELE SHUNID >IN SIS,
§ 3
{ I - t. gesoy t + I - t
| i=1 LT TS U R v B M v R T PRt
; 2 |
: t
| ;jz-:l 1y
: 2
= max{ t - t., + 1.,, t.q -
5 1;1 i1 Ff {m 11 {1 by il
-2 m-1 2 ‘
b. b b
3) 2 2 3 |
t +* I peae t - t +
b, &1 1T & taeoB) &5 T Bt l’
S, 2 |
1 t,.} (4.34) |
i=1 127 j51713 i
In general
m ;
, Y 1,5 = max k, (4.35)
i=] l1<v<m
jwhere
3
= t - t + I
ST e gt E At gl

27

T TTRTT e TR

- -

i
*
J
$
B
v

4.4.3 The General Case
The general term for the idle time Iij is:

i-1 i
= max{-%— Et - 51 5 tll + Ellj-l -
i-1
I!.j'O) (4.36)

The total idle time on machine j is:

m]
b{
Lio= max{-é—- Z} t., *+ FI —r—'l
?: i 1-1 11 © {3171,3-1 7%
9> 42
se ey
1-1 i1 76 & ¢ 1-1 t1,9-10 1

2 -
Zt + I ,t }
et Fijl t1s

4.5 Makespan (MS) in Linear Flow Shop

(4.37)

Makespan is defined as machining time of machine n
(M,) plus the idle time that is generated on machine n
(Iin)' Using equations (4.14) and (4.37) yields:

MS = M, + Ellm thl + max{-s-—- Zt -

5, {4 i=l

n n-1 n
» t - t +
b, {a1 {z1 1.n-1 51 je1 11 % /3 il
m-1 2
n

12,:1 Ii,n»l"“’ ét 371 t11"’i,2111,n-1’
n-1) (4.38)
pe1 1% | 28

Substituting equation (4.2) into (4.38) yields:

m-
MS = b 2n + max(b - b n .
Ty 1-1 ™t 1-1 '1,n-1
Y ob S, .3
b n; - b n, ¢ EE: I oo
n-l i.l i n i.l i -l i.n'l' ’
2
b Eni - bong ¢ 1;111 . 2 t, (4.39)

=1

4,6 Bounds for Parformance Time ina Linear Flow Shop

4.6.1 Lower Bound (L)

The lower bound is equal to the total performance time
of all the m jobs over all n machines, ¢r equal to the total
machining time of all n machines. Using equations (4.11)

or (4.19) yields:
m Tr.x‘ n
L= 2 (n; Zgby) = z:(bj tni) (4.40)

4.6.2 Upper Bound (U)

The upper bound is the lower bound plus the idle
time that is generated in the process. Using equations

(4.37) and (4.40) yieids:

29

- . —————— o ——
e e

n n m n n g
| =1+ Z(ZI--) = Z(ni .E:ij) *E{max[-ﬁl-
, . 2

j=2 i=1 17 im1 &

m p. m-1 n L omel
] -1
i i;lti}_ - Ei' 1% ti1* jglli’j"“ -%—1— 1;1 ti) -
| b ¥ 3:1 bj-1 zz: b,
:. . si- i=1 til i i=] Ii:j‘l,“.’—%l_ i*ltil - Ei' tll +
. . 5
izs:lli»? i 2;1 t1eld - (4.41)

30 ;

: i

11

!

C

]

}

PRI Svwe. v~y SN AT W

o had v T P <

CHAPTER 5
OPTIMALITY IN LINEAR FLOW SHOP SCHEDULING

This chapter describes three performance measurements

of the linear flow shop scheduilng: (a) Mean lateness,

(b) Mean flow time,

(c) Waiting time. 1
i It is proved that the shortest processing time sequencing

L yields the optimal sequence that minimizes the given

performance measurements. A numerical example is given to

{show how the shortest processing time sequencing yields the

minimum mean lateness.

Recall that job lateness is defined as L, = Ci - di’

or the discrepancy between the due date of a job and its

{ : : 5.1 Laterness in a Linear Flow Shop -
i

completion time. The objective of every production plant is
to minimize the lateness in completing the orders because

- it is involved with penalty.

Theorem 1

L anlDONIRGL, - aabesmn o aiaa e

f The mean lateness in a two machine flow shop problem

PO

where the job times on the machines are a linear function }

31

inwm'-’-rvaw.'r;wrvmn.mﬁw,,”....‘.‘m Do e

s S e L —

e ——————— TN SRV G, T

f the batch sizes (tij = bjni’ bj > 1) 1is minimized by

shortest processing time (SPT) sequencing.

Proof
The proof has two steps.

(a) Consider a sequence S that is not a SPT sequence. That
is, somewhere in S there must exist at least one pair
of adjacent jobs, 1 and i+l, with 1+1 following i,
such that t, > ti+1‘ Now construct a new sequence,
S', in which jobs 1 and i+l are interchanged in
sequence and all other jobs are not changed. The
situation is depicted in Figure 5.1, where 'I‘A denotes
the point in time at which job i begins in sequence S
and at which job i+l begins in Sequence S'. A,
denotes the set of jobs that precede jecbs i and i+l

in both schedules and B, denotes the set of jobs that

follow 1 and i+l in both schedules.

The processing times ti1otz and the due dzte di are

given and completion time Ci and the lateness Li of the job

i are computed.

til = processing time of job i on machine 1, computeg

by ti; = byny
processing time of job i on machine 2, computed

ti2
by tj; = bony

di = due date of job 1

32

a4

O

N

T I g Y VD T

r-v~~v- -
u
¥

]

{

i

!
:
i
}

i

!

f

!

L

1

1

o

1

!

H

P C

{

§

§

l

e

1

!

|

(

S
Jobs in "A"] i,1 }i*L1]Jobs in H MACHINE 1
Ty
.2 101 d | MACHINE 2
B CA IIdle time on machine 2
(a)
1
Sl
!
Jobs in "A" |i+1]] 1,1 |Jobs in B| MACHINE 1 |
TA ‘
A |
fi+1,2 i,2 MACHINE 2
Ca A r
Idle times on machine 2
(b)
Figure 5.1 A Pairwise Interchange of
Adjacent Jobs
(a) Sequence S
(b) Sequence S' ;
3 ‘

o e i - s

.

R o A

—_— - = RTINS IR SRR

1

b §

The proof is shown for

are computed by:

1=]

Li (sum of the lateness over all

the jobs), as the mean lateness L =

C. = completion time of job i

L. = lateness of job i, computed by Li = C

1
- L’o
m i

i~ 9

C, = completion time of the last job in set A.

Using equation (4.1) the processing times t;; and t;,

t.1 = blni (5.1)
From equation (5.1)
ti1
ni = .BT (5-3)
Substituting equation (5.3) into (5.2) yields:
b,
Through all the proof steps it is considered that:
b
b =
2
and
t., = bt.1 (5.5)
34

"

e T b ol

The total lateness is:

f&
L =L, + L. +
k=1 k A i

where: LA is the total lateness of

Ly is the lateness of job i

Lie1

LB is the total lateness of

is the lateness of job

The completion times of jobs i

are as follows:

{
L, *ls (5.6)

the jobs in set A.
i+l

the jobs in set B.

and i+l in sequence S

Ci(S) = max{TA + ti,l’cA} + ti,Z = max{TA + ti,l’ CA}

+ bty

Ci+1(S) = max{TA + 1’.1’1 *tig Ci
= max‘[TA + ti,l + ti"'l,l’cl(S)}* bt

Using equation (5.6):

m
Eg;Lk(S) =Ly *+ max{Tp + t; 1, Cp) + bty ;- d;

ds g *+ Lp(S

i+l

(5.7)

(53} + 41,2
je1,7 (5.8)
(5.9)

The completion times of jobs i+l and i in sequence S' are

as follows:

35

e e e g Lol

Ceaga

Ci*l(s') = maX{TA + ti*l’l’ CA} + bti+1'1 (5.10) L)*k

Ci(S') = max{TA + ti+1,1 + ti,l’ Ci“_1 (")} + bi:i’1

' (5.11) 3
E Using equation (5.6):

!A

§ m

'E EL(S')=L + max{T, + t C.} + bt - d . a3
17K A A7 Yis1,10 ta i+1,1 - %41

maX{TA + ti+1,1 + ti’l’ Ci+1(5')} + bti’l -

d; + Lg(S") (5.12) 2

Let'sdefine P and Q as:

et v T e o
o ey

;3 b4
P = max{'l‘A + ti,l"CA} (5.13)
Q= max{'l‘A + ti*l,l’ CA} (5.14) c
Then
P2Q a8 0>t

Substituting equation (5.13) into (5.7) yields: ?
Ci(S) = P + bti,l (5.14)

Substituting equation (5.14) into (5.10) yields:

P s

|
Ci+1(S') = Q + bti*l,l (5015) (li

_l

by e al, o & 4

-4
3.

36

Then
Ci(S) > Ci+1(s) as P > Q and bti,l > bti+1,1. b>1
Let's define R and V as:
i R = max{'rA + ti,l + ti+1,1' Ci(S)} (5.16)
2 V = max{TA + ti+1,1 + ti,l’ Ci+1(9)} (5.17)
b
It is clear that R > V as Ci(S) > Ci+1(S')
Substituting equations(5.13) and (5.16) into (5.9) yields:
iC m
|
+ Ly(S) (5.18)
E(
!
: Substituting equations (5.14) and (5.17) into (5.12) yields:
m
+ LB(s-j (5.19)
The result of comparing equations (5.18) and (5.19) is:
; m m
{
b EgiLk(SJ - EE;LR(S') =L, + P+ bti’1 -d; + R+ btiﬂ’1
' "dipq * Lp(8) - Ly - Q- bty
C .P"R'Q'V*LB(S)'LB(S')
(5.20)
\
Cz

Equation (5.20) can be divided into two sums as follows:

n m
L, (S) - L,(S') = (P + R - -V Lp(S) -
kZ_:lk() 1(2:31,(() (Q - V) + [Ly(S)

Ly (5")] (5.21)

The first sum (P+R-Q-V) represents the difference in
lateness between sequence S and S' for the set of jobs
which are in set A and jobs i and i+l. The second sum
[LB(S) - LB(S')] represents the difference in lateness
between sequence § and S' for the jobs that are in set B.
The first sum is independent of the second sum but the
second sum is dependent on the first sum.

Observing the first sum shows that the total lateness
of sequence S is greater or equal to the total lateness of
sequence S as P > Q and R > V, it means that the first
job in Set B in sequence S will start at the same time
or later than the same job in sequence S'. Concludes that
LB(S) > LB(S') a3 the jobs in set B are the same for
sequence S and S' but the starting point is different.

It is shown that

m m
L, (S) > L, (S' P>qQ, R>V, Lp(S) > La(S')
kZ.:lk(_,k};,lk()as >Q, R >V, Lg(s) > Ly

and P >0, R>0,Q2>0, V>0,

38

O

e .l

(b)

In part (a) of the proof it is shown that any inter-
change of a pair of adjacent jobs where a shorter job
is following a longer job, can improve the total
lateness or leave it unchanged.

The second part of the proof shows that in the last
interchange of a pair of adjacent jobs (going from a
non-SPT sequence to a SPT sequence) a strict improve-
ment can be made in the total lateness, concluding
that a SPT sequence produces the minimum total late-
ness. Part b of the proof has two phases. The first
phase uses contradiction. Let us define a sequence S
as a finite set of non-negative numbers such as

1,10 Tie1,10 tie2 1

Sequence S is a non-SPT sequence in such a way that
there is somewhere in the sequencé only one pair of
adjacent jobs i and i+l, with i+l following i, such
that ti,l > ti+1,1‘ Assume that sequence S is an
"optimal" sequence. Construct a new sequence S', in
which jobs i and i+l are interchanged in sequence

(so that you get a SPT sequence) and show that a
strict improvement can be made in this "optimal"
sequence. Therefore, the conclusion is (based on part
a of the proof) that it is impossible for a non-SPT

sequence to be optimal.

B e T T et

ey e e b e

. ——— b ey A S 1 TN 3

v

The second phase involves aconstructive proof that
uses the method of mathematical induction to show that
a SPT sequence minimizes the mean lateness.

In this part of the proof the jobs which precede the
pair of jobs i and i+l that are being interchanged,
are not considered, as the total lateness of the jobs
in sequence S is the same as the total lateness of
the job in sequence S'. The proof is shown for the
case of two jobs where only jobs i and i+l are in

the process, for three jobs; i, i+l, i+2 and for four
jobs; i, i+l, i+2, i+3., It is assumed it is true for
m jobs i, i+l, i+2,...,im_1; then it is proved it is

true for m+l jobs.

Two Jobs Sequence

The situation is depicted in Figure 5.2 where C1 and
C2 are the completion time of jobs 1 and 2 respectively.

The terms for C1 and C2 in sequence S are:
CZ(S) =ty *tyy =ty ¢+ bt21 = (1+b)t21 (5.22)

Cl(S) = maX{CZ, tzl + tll} + tlz = max{(l*b)tZI,

Using equations (5.22) and (5.23), the lateness is:

LZ(S) = (l*b)tzl - dz' (5.24)
L1 (S) = max{(1+b)ty;, ty; * t;,} + bty - 4 (5.25)
40

5]

¢

{
'
[
!

l |
!)
ta*ty |
S
21 '
MACHINE 1
|
. T T
; 22 1 MACHINE 2
{
C; ¢
C
(a) ‘
S "21*t11 l
i |
¢ t
11 2l MACHINE 1 :
i
tlz t
L ol MACHINE 2
¢ C;
(b)
i
:
‘ Figure 5.2. A Two Job Linear Flow Shop
(a) Non-SPT Sequence
(b) SPT Sequence
1
41

i) 13
" _ e e SO PP oo A L bt oo i el e . A oan - el e ik sttt

e e e R —

ishin aa B L SV

:
1
4

Using equations (5.24) and (5.25), the total lateness of

sequence S is:

Eé: 11(SJ - (1+b)t21 -dy + max((l*b)tZI, tay ¢ tl’}
=] 4

The completion times in sequence S' are:
CI(S') =ty *tip =ty ¢ btll = (1#b)t11 (5.27)

tip * tZI} + bty (5.28)

Using equations (5.27) and (5.28), the lateness is:
L,(8') = C,p -d; = (1+b)ty, - dy (5.29)

Lz(S') = C2 - dz - mRX{(l’b)tllg tll + t21} * thI - dz
(5.30)

Using equations (5.29) and (5.30), the total lateness

of sequence S' is:

2
i};i Li(S') = (1+b)t;; - d; + max{(1+b)t;y, t;; + tp)e
btzl - dz (SoSl)
42

Comparing equations (5.26) and (5.31) yields

j=1 i=1
ti1 * ty1) - bty + dy

t)y * tz!}

2 2
it follows that zLi(S) > zL.(S')
j=1 i=1 1

mean lateness.

Three Jobs Seyuence

The situation is depicted in Figure 5.3.

times ¢f the jobs in sejquence S are:

.
.

+ ty;) ¢ btyy - dy - (1+b)tgy ¢+ d; - max{(1+b)ty,,

= t21 - tll + mu((l’b)tZI, tzl + tll} - maX{(l"b}tllp

Observing the terms max{(l*b)tu. ty) ¢+ tn} and

(by definition) it follows that max{(1+b)t,;, t,; + tn}
> max{ (l*b)tu, ty; * tZI} as (1+b)t21 > (léb)tn and

It is shown that the SPT sequence gives the minimum

The completioy

C2(8) = t33 * g7 = tg1 * BTy = (1+b)ty

2 2
2::.1(5) - 21-1(5') = (1+b)t,, - d, + max{(1+b)t,;, t,yy h Y

g
max { (1+b)tn, ty ¢ t21} and given that t)1 > 1 ‘

(5.32)

43

— e e U il st

(s)

(s")

tr1*t11%t3y
fta1 Jtiy t3 | MACHINE 1
[T t17 t32
f 1 ; f MACHINE 2
c;, ¢ 3
(a)
t11*t1%t3
\
t1yf o1 | t3g MACHINE 1
t12 T t22 ; t32 MACHINE 2
A
¢ ¢, C3
(b)

Figure 5.3. A Three Job Linear Flow Shop
(a) Non-SPT Sequence
(b) SPT Sequence

44

o

»——

Cl(S) = max{CZ, t,; + tll} tt,= max{(1+b)t21, ty, +
tll} + btll (5.33)

CS(S) = max{Cl, tyy *typ ¢t t31} +ttgy = max{max[(1+b)
tarr tar * typ] * by, tyy ¢ty ty) e
bt31 (5.34)

Using equations (5.32), (5.33) and (5.34) the lateness is:

L,(5) = C; - d, (5.35)
L,(S) = € - 4 (5.36)

Using equations (5.35), (5.36) and (5.37) the total late-

ness of sequence S is:
3
i=1

bt11 - d1 + max{max[(1+b)t21, thy * t11]

When observing equation (5.3R8):

e At o e .
P R T U T T e T I I Py T - Boeahins. g T AP NP P o ha

S we

e ik e .t Nataa

ek

-

P T R T gy

max{(l+b)t21, ty)) ¢ tll} = (1+b)t21 as ty, >ty and
b>1 (5.39)

Substituting equation (5.39) into (5.38) yields:

3
2: L;(8) = (1+b)tyy - d, + (14b)tyy + bty - d) +
i=]1
max{(1+b)t21 + btyy, tyy ¢ tiy * t31}+

The completion times of the jobs in sequence S' are:

C(8') = tyg + ty; =ty + bty = (1+b)ty, (5.41)

CZ(S') max{Cl, tp * tzl} +tty, = max{(1+b)t11,

C3(S') max{Cz, tyg ¢t t21'+ tsl} ttg, = max{max[(1+b)
ty1s Ty * typl * bty tyg + tyy 4+ tg,d
+ bty (5.43)

Using equations(5.41), (5.42) and (5.43) the lateness is:

Ly(8') =C; - & (5.44)
L,(8') =C, - d, (5.45)
Ly(S') = C5 - dg (5.46)

46

Using equations (5.44), (5.45) and (5.46) the total latenesJ

of sequence S' is:
3
Eg;Li(S') = (1+b)t11 - d1 + max{(l*b)tll, tll + tZI}*
bt21 - dy + max{max[(1+b)t11, ty; tZI] +

Comparing equations(5.40) and (5.47) yields:

3 3
;EiLi(s) - ;E;Li(s') = (*b)ty; - dy + (I+b)ty; + bty -
1= 1=

d1 + max{(1+b)t21 + btll, ty)y * t11 + t31} +

bty - dg - (1+b)ty, + d; - max{(1+b)ty,, ty;

+t21} + bt21 + d2 - max{max[(1+b)t ty, *+

11 11

tyl + btyy, tyg + by +tg) - bty 4 dg

=ty *+ (1+b)t21 + max{(1+b)t21 + btll’ tyy *+

; tig * tsl} -ty - max{(1+b)t11, tip * t21} -
max{max((1+b)t11, t11 + tzl] + bt21, tyy v

Let'sdefine X, Y, Z as follows:

X = max{(1+b)tyy, ty; * t,q} (5.49)

47

l= max{(1+b)t21 * btll’ thy *typ ¢t t31} (5.51)

Substituting equations(5.49), (5.50) and (5.51) into (5.48)
yields:

3 3
Z,Li(S) = ZLi(S') = tzl + (1"'b)t21 + Z - tll - x - Y
i=] i=1
(5.52)
It is clear that Y > X (5.53)

The relations between Y and Z are:
Y = max{X + thI’ ti; *ttyy t t31}

Z = max{(1+b)t,, + btyq, tiy *ty t t31}

Then compare X + bt21 and (1+b)t21 + bt11 or after reducing
the terms compare X and tyy * btll. Two cases have to be

checked:

I. X = (1+b)t11
It follows that (1+b)t11 <ty ¢+ btll as t;q < ty

It follows that t,; + t;; < t,; + bty; as
It is found that Z > Y (5.54)

3 3
iz:lLi(S)_ - iZg:lLi(s') =ty *+ (I+b)t,; -ty + 2 - X-Y

48

PG

H
:
R

R . Lt T

.. o Y—— Ty R

Using equation (5.54)
Two cases have to be checked for X

I. X = (1*b)t11

3 3
LL(5) - Li(S1) =ty + (14B)Ey -

j=1 1 i=1
(1+b)t11
3 3
It follows that ELi(S) > ZLi(S') as
i=1 i=1
Z2>Y
II. X = tip *ty

3 3
2L (S) - i.zll‘i(s') =ty + (1+b)ty, -

i=1
tiy " ta
3 3
It follows that ZLi(S) > ZLi(S') as
isl i=1

Z>Y,b>1

It is shown that the SPT sequence gives

mean lateness.

Four Job Sequence

The case is illustrated in Figure 5.4.

times of the jobs in sequence S are:

d

11

(a4

11

[ad

11

the

The

<t

21’

minimum

completion

49

yr, 1 PRI S PPN SOOI - T

Ve e

“\

P T

: s
| F21*t11*t31% s
|
t
taafnl ts1] tan | MACHINE 1
|
t22 o] t32 Y42 MACHINE 2
t ! ﬁ‘ 1
x C; ¢ Cy Cy
; (a)
gt f11%t21% 31
y
3
f21] 31 ta MACHINE 1
M[T ‘ ti; teo MACHINE 2
T 4 4
o c, Cq C,
(b)
g Figure 5.4. A Four Job Linear Flow Shop
' (a) Non-SPT Sequence
(b) SPT Sequence
y
1
4
1

)

e e e

€, (5)

€, (5)

C5(s)

€4 (S)

max{Cz, ty, * t11} +t,
max{(1+b)t21, tyy ¢ tll} + bt11
(1+b)t21 + bt11 as tyy > t1s b >1 (5.56)

max{Cl, tig *t tsl} + bt31
max{(1+b)t21 + btll, Tty *ty t31}* bt31
Z + bt31 (5.57)

max{Z + btsl' tip * bty vty ¢t t41} + bt41 (5.58)

Using equations(5.55) through (5.58) the lateness is:

L,(S) =C, - d, (5.59)
L,(S) = ¢, - dy (5.60)
L4(S) =C, - d, (5.62)

Using equations(5.51) and (5.59) through (5.62), the total

lateness of sequence S is:

4

i=1

:E: Li(S) = (1+b)t21 + (1+b)t21 + bt11 + 72 + bt31 +

max{Z + bty), 13 * Ta * Tyt tyl + bty -
4

2 4 (5.63)
i=1

51

e s —a— } o i

e - giwr -

1
|
. |
The completion times of the jobs in sequence S' are: 3
’}
? Cl(S') =ttty =ty bt,; = (1+b)t11 (5.64)
i C,(S') = max{Cl, tp * tZl} +ty, o
= max{(1+b)t11, ti * t21} + bt21 (5.65)
+ bty (5.67) e
4 1
C4(S') = max{max[max(cl, ti1 ¢ tZI) + bt21, ti; * Ty
5 *tzpl bty Ty oty *typ totyy) bty o
(5.68) i
:
% Using equations (5.64) through (5.68) the lateness of the 2 }
; jobs in sequence S' is: !
i
! Ly(s") =Cy - d4 (5.69)
L,(5') =C; - d, (5.70) ¢
Ly(5') = C5 - ds (5.71)
{,-\
Using equations (5.49) (5.50) and (5.69) through (5.72), the
total lateness of sequence S' is:
4
E Li(S') = (1+b)t11 + X + bt21 + Y + bt:,,1 + max{y+bt31,
is] 4
52

I T T

T

komparing equations (5.63) and (5.73) yields:

4 4
DL(S) - 2L (S') = (14b)ty; + (1+b)tyy + btyy + 2 +
i=1 * iel

4

i:.ldi - (1+b)t11 - x - bt21 - Y - btsl - maX{Y +

4
btgg, typ + ty; + tg) * tyy) - by, + ;;;di

Reducing the terms brings to:

4 4
}:L4 (s) - ZLi(S') = (2+b)1:21 + Z + max{Z + bt_u, tp ¢
i=1 * i=1

tip + ty] *tyy + tyy!)

Using equation (5.54) there are two sets of terms to compare

I. (Z*b)t21 and tip * X
Check the two cases of X
1. X = (1+b)t11
Compare the terms (2+b)t21 and ty * (1+b)t11
It follows that (2+b)t21 >ty ¢ (1+b)t11 as

t11 <t

53

i o s i e — ————— -

P I e T W Ty L P W ey v Y ath

L e emem s v

2. X =ty * ty
Compare the terms (2+b)t21 and ti; * 1ttty
It follows that (2+b)t21 >ty * b1t tyy
The result is that (2+b)t21 >ty ¢+ X

II. Let'sdefine Yl and 2, as follows:
2) =2 + max{Z + btgy, t;] + ty; + tgg *+ t,u,}
Y, =Y + max{Y + btgy, ty; + ty) ¢ t3) + ty,}

Using equation (5.54) it is clear that:

It follows again that:

4 4
2L (5) > i.Z_lLi(s')

i=]
It is shown that the SPT sequence brings to minimum the mean

lateness.

he Inductive Step

After proving the theorem for the cases of two jobs,

three jobs and four jobs, and by using the method of the

Eathematical induction; assume it is true for the case of

jobs and prove that it is true for the case of m+l jobs.

54

)

In general: the terms €for the completion times of the jobs

are as follows:

(@]
[
"

(1+b) e,
C, = max{Cl, tip ¢ tZl} + bt21
Cy = max{Cy, t] * t5; * t3;} + bty

: m
Cp = max{ C _,, E;;til} + bt

The total lateness is:

SIS D

i=l i=1 j=1 !

And proving for the cases i = 2, 3, 4 that

ZLi(SPT) < Z L. (non-SPT)
i i !

Assume that

m m
E:pi(SPT) < E:Li(non-SPT)
i=] i=]

It is necessary to check the case of m+l jobs.

For the SPT sequence (t11 <ty < tgp <llns th < tm+1)

55

8 DU et S i b e <

o ——

- m+l
Cm¢1' = max{Cm, ;;; t 1} + btm+1,1
Lpe1' = Lp * Cpa1 - 9pa1

for the non-SPT sequence (t21 < tll < gy oee. <t < tm+l)

m+]

= max{Cm, Eg; til) « bt

C

m+1 m+l,1

|[Observing the equatlons forlﬂ +1 and L +1 |
And adding them to 2:1. (SPT) and 2,!. (non-SPT) respect1ve1#

to get the general result that:

m+l m+1
2 L. (SPT) < 2 L (non-SPT)
i=1

Summary

This proof has shown that in a two machine LFP

problem, the optimal solution is to sequence the jobs by the
shortest processing time on the first machine. The proof of
optimality constructs the optimal sequence by mathematical

induction. Figure 5.5 presents a block diagram that

summarizes the steps of the proof.

56

a

A gairwise interchange of any pair of adjacent
jobs i, and i+l where i+l is following i and t, >
t;,)s improves total lateness of the sequence Or
1éaees it the same

1

b

The last pairwise interchange of a pair of adjacent
jobs (going from a non-SPT to a SPT sequence) yields
a strict improvement of the total lateness of the
sequence

1

Prove that it is true for the case of two jobs in
the sequence

2

Prove that it is true fcr the case of three jobs in
the sequence

3

Prove that it is true for the case of four jobs in
the sequence

4

By using induction, assume it is true for the case
of m jobs and then prove that it is true for the
case of m+l jobs

SPT sequence yields the minimum mean lateness in LFP

Figure 5.5 A Block Diagram that Summarizes
the Steps of the Proof

57

i e [, Rl 2 w—

S.2 Computational Results

A computer program was written to simulate numerical
jexamples that implement the theorem. The example that is
presented contains four jobs to be performed on a two
jmachine LFP. The information includes the amount of items
in each job, n;, i=1, 2, 3, 4 and the machining factors,
bj’ j =1, 2. The specific figures are in Table §.1

Table 5.1

Data used in numerical example

The input data contains 4! = 24 permutations or 2ll
possible sequences, and the output is the total lateness
lof each sequence.

Analysis of the results show that the shortest
rocessing time sequence, yields the minimum lateness, as
troved by the theorem.

A sensitivity test is conducted for each sequence,
tc find out how the total lateness of the sequence is

changed, when a pairwise interchange of two adjacent jobs

38

. v
e e e R

is done. The results of the sensitivity test show that

each pairwise interchange of two adjacent jobs where a

longer job preceds a shorter job, decreases the total
lateness. Figure 5.6 describes a flow diagram that
presents the algorithm that the -sensitivity test follows.

The sensitivity test is constructed as a network, where

each block contains the sequence that is tested. The
figures outside each block present the total lateness of
the given sequence. There are twenty four networks. Each
network shows how the lateness is decreasing after
conducting a pairwise interchange of two adjacent jobs.
The last block of each network presents the SPT sequence
which is shown as was proven, to yield the minimum mean
lateness. Each network is accompanied with a graph that
shows the relations between the lateness and the number of

pairwise interchanges of pairs of adjacent jobs. Each path

in the network is presented as a different line in the
graph. The curves show decreasing values of the total

lateness for each interchange.

59

NO onotoni
Increasing
Sequence

YES

Interchange
A Pair of
Adjacent Job

Record the

Total Late-
ness of New
Sequence

(FINISH)

Figure 5.6 Flowchart that Describes the
Sensitivity Test

(M
{
i
by .
i
a t
* \’
|
i
4!.
¢ 1

60

573 {2537 23571
40 32 25
(a)
40 f
" !
w 32 1 |
)
= :
8 25 T |
«
- §
—
(5]
ey
[»)
o
1 2 Number of pairwise
interchanges
(b)

Figure 5.7 Results of Sensitivity Test for
Sequence 1
(a) Network of sequence 1
(b) Total lateness curve for
sequence 1

61

e
p
i
{ C
3
]
? "
i €
1
: 2,5,3,7 2,3,5,7
§
32 25
i @
f
; (a)
& J
3
o
s [7,]
‘ o
] :
= 32 \
«
é) -3 25
(]
4 <
=
o]
] =
3
< N
] 1 Number of pairwise
3 Interchanges
b
L ¢ (b)
i
{
“ Figure 5.8 Results of Sensitivity Test for
Sequence 2
(a) Network »f sequence 2
(b) Total lateness curve for
g sequence 2
«
62

e AT G AT T I VA A - .. - R e e ver A ———— b - - oo .

| 2,3,5,7 | SPT Sequence

25

Figure 5.9 The Optimal Sequence

L2,3,7,5 —2,3,5,7 |

29 25

(a)
/]
0
=
o 29
£ T~
- 25.
L]
<
-
(=]
= ¢

1 Number of pairwise
interchanges
(b)

Figure 5.10 Results of Sensitivity Test for
' Sequence 4
(a) Network of sequence 4
(b) Total lateness curve for
sequence 4

63

;. L e n e e et e e AR an’ o a8 A By Aramd i wm P 4 sl o Pal)

27305 L 2.3.7 PR

46 29 25
(a)
[l
46
{ 0 |
H 7] 5
t) &
H : x‘
g !
- ;
-]
-~
. Fg; 29 4 :'.
u ,
e 254
| ¢
VG - —
i 1 2 Number of pairwise
5 interchanges
(b)

Figure 5.11 Results of Sensitivity Test for
Sequence 5
(a) Network of sequence 5
(b) Total lateness curve for
sequence 5

64

T T Y DU S I py Sy ST G i SUr DU P G PPN TN W e SN R T ek

t

o TR T

e

e va——— .~ e

O L L

S T TR R R

Total Lateness

027,53 1

50

2,5,7,3 2,5,3,7 2.3,5,7
40 32 25
46 29 25
(a)

Figure 5.12

Number of pairwise
interchanges

(b)

Results of Sensitivity Test for

Sequence 6

(a) Network of sequence €

(b) Total lateness curve for
sequence 6

65

37 31 25
‘ (a)
| 1
A“'
t :
{ a 37 | |
’ : \
i o 314
-
fa & 25} |
? —
E «
$)
o
f =
» — —
! 1 2 Number of pairwise
r interchanges
8 (b)
}
i
i ; g Figure 5.13 Results of Sensitivity Test for
g | Sequence 7
- (a) Network of sequence 7
- (b) Total lateness curve for
| i sequence 7
| gt
& 66
¥
- |
| i
: € '

mrm—— o m =

———— g - -

O350 H3.2.57 H2.3.5.7 1

47 37 31 35
(a)
/
"
» 471
S
- 37¢%
= 314
T 25+
S
o
=
+ » . —t
1 2 3 Number of pairwise
interchanges
(b)

Figure §5.14

Results of Sensitivity Test for

Sequence 8

(a) Network of sequence 8

(b) Total lateness curve for
sequence 8

67

-

e e

31 25

(a)

31 \ |
251 ;

Total Lateness

S

1 Number of pairwise
interchanges

(b)

Figure 5.15 Results of Sensitivity Test for
Sequence 9
(a) Network of sequence 9
(b) Totai lateness curve for
sequence 9

o8

Y — e S e
¢
B
3
!
71
L (a)
!
e o
l o
; =
H [+
: Lo
) L]
-
%n. ~
i -
i Q
; =
K —
; 1 2 Number of pairwise
f interchanges
((b) :
3 Figure 5.16 Results of Sensitivity Test for
j Sequence 10
j (a) Network of sequence 10
: (b) Total lateness curve for
i sequence 10
j’ <
t
i !
- 69 |
!
{

C

o~
€

U 2 s = A< e e i

&

g TG

48

(7]
(7,

N W
O -

Total Lateness

(a)

_

Figure 5.17

2 3 Number of pairwise

interchanges

(b)

Results of Sensitivity Test for

Sequence 11

(a) Network of sequence 11

(b) Total lateness curve for
sequence 11

20

25

31

. 5,7,5 }{ 2,3,5,7]

31 25
(a)
U]
2]
]
=
V]
-
©
]
-t
«
»
o
=
g
Number of pairwise
interchanges
(»)

Figure 5.18 Results of Sensitivity Test for
Sequence 12
{(a) Network of sequence 12
(b) Total lateness curve for
sequence 12 71
q

e —— P P Y | P T I T T

9 &y ’7 » s3o N ,5,
47 32 25
(a)

Total Lateness

.

1 2 Number of pairwise
interchanges

(b)

Figure 5.19 Results of Sensitivity Test for
Sequence 13
(a) Network of sequence i3l
(b) Total lateness curve for
sequence 13

"y

Total Lateness

(a)

§
'
{
y
3
;
i.
|
1 2 3 Number of pairwise P
interchanges :

Figure 5.20 Results of Sensitivity Test for
Sequence 14

(b)

(a) 'Network of sequence 14 f
(b) Total lateness curve for |
sequence 14 1
|
7 I i
LA '
. T ey P T T 4 M‘ﬂ:‘ﬂ’;:“:‘:‘p;.‘“‘a‘ h f o ki ik ek it e ”m --t._’: . LJ

o LT T o R = . - 5

(a)

Total Lateness

1 2 3 Number of pairwise
interchanges

(b)

Figure 5.21 Results of Sensitivity Test for
Sequence 15
(a) Network of sequence 15
(b) Total lateness ~urve for
sequence 15

74

Figure 5.22 Results of Sensitivity Test for
Sequence 16
(a) Network of sequence 16
{(b) Total lateness curve for
sequence 16

o

ot e TG € AT IS T s s e
3

aan - A

75

e ra o kel A of oy oy o el 2l L e et maasisfa o et B e e - s IR PP Ay - e

B

R AR

(e)
2€ Ly

humqm-N I \.aM.Nnm

6V

76

S W S D S S T S T S I T T e

L

N VT

3

I T

Total Lateness

321

25,

(b)

4

Number of pair-
wise interchanges

77

T T T T I S R T S R PR PH ey Wy e YT R P S + S B

= -

e e e -

€

e —— v s e o . " mm

Figure 5.23 Results of Sensitivity Test for
Sequence 17)
(a) Network of sequence 17
(b) Total lateness curve for
sequence 17

78

e ettt it g, setnn, L

prpar . At a k.

e e L]

(e)

§Z 4 LY
| t°s‘¢z K4 ¢'¢s'z FH c'e'z’s
§Z 4 ot

st { s {sise

S? (4% Ly

L'€'Ss‘? L€°2°s

6v
52 15> LS LTES
Le‘s‘sz M sz M c2s‘s
¢
52 195 LS LY

Cs s e M e s s FHcz's's FH{z7e's's

6S

L9

AAER

e

[

o T T T A

Lo Uial 20 oL L - g L
L8
w0
0
o
&
Qo
-
L]
—
()
0
LS
=]
[
S
1 3 Number of
- pairwise
T interchanges
y (b)
80|
{
e I P S o - - U vy, T . TV

L e Pt SO

(a)
)
65
"
c @ 554
: L4
° [
-
«
= 47|
L)
-]
=
e 40 |
32 -
i
' 25;}
U 1 /3 3 4 Number of pairwise
‘ interchanges
(b)
. s
C
Figure 5.24 Results of Sensitivity Test for
. Sequence 18
(a) Network of sequence 18
(b) Total lateness curve for
g sequence 18
81

B
z
b G
|
!
iy 72,35 2.7,3.5 23,745 2:3:5,7]
67 46 29 28

t

13

i "
. n
:
N)
f -
: °
; -
) -
i o
‘ -
i (=]
. b=
1

.

(a)

Number of pairwise
interchanges

(d)

Sequence 19

Figure 5.25 Results of Sensitivity Tast for

(a) Network of sequence 19
(b) Total lateness curve for
sequence 19

82

Figure 5.26 Results of Sensitivity Test for
Sequence 20
(a) Network of sequence 20

(b) Total lateness curve for
sequence 20

83

T TSR ———————r Y g g e Pt S —_———

84

~
«©
-

' C . .<v‘ ,.Iw . ») C

- I e e . ——— i
‘w Rl - o S o [IPeeY —

W S o . e s

wise interchanges
85

—
Number of pair-

4

(b)

P9 an -

/
o oy * * + e} +
-~ o o o N A n
&~ O = - M~ N

ssaudie] [eilol

LR o .
-

1

C 3

Figure 5.27 Results of Sensitivity Test for :2
Sequence 21]

(a) Network of sequence 21 ‘i

(b) Total lateness curve for :

sequence 21 %

4

L o e e A B I P I §

S¢ 1¢

WAGEFR o WA

O~ o O W
66 44 33

ssauaje] [elo}]

N
o3

[Ve}
o3

Number of pairwise
interchanges

4

(b)

o ——— T T g T A T T e T

Figure 5.28 Results of Sensitivity Test for

Sequence 22

(a)
(b)

Network of sequence 22
Total lateness curve for
sequence 22

89

P v ST | Sy

I R T o

gy

Il e it

o @ TR TR T T R T TN R T ey v

(e)
Y4 62 9t L9
s st H s s e s'e e sfsf2°e
Y 1€
s§ gy
Sz 62 A o AT
1°S's'2Z AL
$2 1€
_ L' S ¢ 2 I L°S°t°¢ S§ 8y
. 3P § L S [4 L § [¢
57 62 A = A

| c°ss*zhH s‘ts‘ez

LY 4 Te

_hmnNI LS ¢

90

€
C

E;
:
)
|
|

|
[’}
n
Q
]
O
-
[~]
-
i
]
(=]
o
ot

+ 4 4 + + -

1 2 3 4) Number of
pairwise
intechanges

(b)

AR A et

Figure 5.29 Results of Sensitivity Test for
Sequence 23
(a) Network of sequence 23
(b) Total lateness curve for
sequence 23

92

PIRE O S, P

—

S T TR Dhaandi - B i ot D ot 2 -~ 1‘\ U & HURFTEETLTETReTTT T T T TR T T T TN R

93

(e) ;
S2 62 Y L9 b

FrSsSeH{s sz Hs's'2'e H{s's'z°¢

Sz 62 9%
L°S°¢‘?

e o et e e -
Py

S ——
i
M
<
-
[
{
" !
. (-3
. (2]
: Q J
,~ g A
; “w s “
! oouv M
“ h v o
b0 |
. o N 0 m
H w.lt E
) a n 1
i Z Q.- 4,
:
4 M
- m
~~
3 0 A
b) e m
1
m, - 3 M
m |
i,
|
i [N1 (¥2]
M ma
ssauaje] [ejo] m
1
!

A A g . e

Figure 5.30 Results of Sensitivity Test for

Sequence 24

(a) Network of sequence 24

(b) Total lateness curve for
sequence 24

28

T

: ORIGINAL PAGE IS ’
OF POOR QUALITY | 1

a
|

(7] |
o |
Q
=
Q
-
-]
-
-t 1
a a
&
© '
¢
: 4
; |
? :
b = |
! :
\ ;
}
. |
i
Y 4 4 e —d 4 & - ’

C 1 2 3 4 S 6 Number of | l
pairwise ~

inter-

changes

(b)
E 97

e _preen e e L 4 oy Y P . I P R

$S.3 Flow Time in a Linear Flow Shop

In general, flow time is defined as the amount of time
that a iob spends in the shop.
In the case of a two machine LFP system shown ip

Figure 5.31, the flow times Fk, k€l are as follows:

F, = t) * ty ‘ (5.74)
Fy = max{C,, tn +ty, 0 tg} ¢+ ts, (5.76)

Fsing equations (5.74) through (5.76), the flow time of job
i is:

F; = max{C,_,, kz.:ltkl} st (5.77)

Lhere

tij is the time to perform job i cn machine j
¢y is the completion time of job i
Fy is the flow time of job i.

(Theorem 2
“he mean flow time F in a two machine LFP where the

job times on the richines are a linear function of the

atch sizes (tij = bjni' bj > 1), is minimized by shortest
rocessing time (SPT) sequencing.
98

!

T . T ,
L tu 21 il ml MACHINE 1

t t t; t ! .

1212z 12 ZJ MACHINE 2]

o

Cl CZ C1 Cm 3

Figure 5.31 Two Machine Linear Flow Shop

'
I3

8

—
|Proof

P - mm— s e

The proof is a mirror image of the proof of Theorem 1,
and utilizes an adjacent pairwise interchange argument.

Consider a sequence S that is not a SPT sequence. That
is, somewhere in S there must exist at least one pair of
adjacent jobs, i and i+l with i+l following i, such that

t; >ty Now construct a new sequence S', in which jobs

i+l®
i and i+l are interchanged in sequence and ail other jobs
lare not changed. Ths‘situétion is depicted in FIgure 5.1
where T, denotes the point in time at which job i begins in
sequence S and at which job i+l begins in sequence S'.

"A" denotes the set of jobs that precede job i and i+l in
both schedules and "B'" denotes the set of jobs that follow

i and i+1 in both schedules. n

The proof is shown for 2 F (sum of the f1ow time over

i=1
pll the jobs), as the mean flow time is: F =.- 2:12
m =1
‘E:F + F, + Fi+1 + Fp (5.78)

\=l

F, is the sum of the flow times of all the jobs in
set "A"

F. is the flow time of job i

F. is the flow time of job j

Fg is the sum of the flow times of all tlie jobs in

set "B",

100

B S U W o e

<‘w -“l_ﬂﬁ*i_.;me

. i

The flow times of the jobs in sequence S are:

Fi(S) = maX{cA, TA + ti,l} + ti,Z (5.79)

Fi41(8) = max{C;(S), Ty + t5 1 *+ ti,y 1} * 542
(5.80)

bsing equation (5.78), the flow time of sequence S is:

Fk(S) = FA + max{CA, TA + ti,l} + ti,z + max{Ci(S).
Ty *+ ti,l + ti+1,1} + ti+1,2 + Fy (5.81)

The flow times of jobs i and i+l in sequence S' are:

F1+1(S') = maX{CA, TA + ti‘l"l,l} + ti"'l,z (5082)

Fi(S')- max{ciu(S'), Ty * ti+1,1 + ti,l} + ti,Z (5.83)

Using equation (5.78), the flow time of sequence S' is:

CFy(8') = Fy v max{Cy, Ty + 5y 1P+t 0"
J
max{Cis) (870 Ta * tig1 * 4,00
sty 5+ Fy (5.84)

101

.
» A i T AMMER L e el s ks
N et e B e a s e aan ohy Mmie me B e nmekes Jad Lo BT o e e a ae -

ae iy

lﬁhen observing equations (5.79) through (5.84), one can .
notice that the terms are actually equal to terms of
completion times in equations (5.7) through (5.12) that are
|developed in Theorem 1.

The proof of the sequence that generates the minimum

*mean lateness (Theorem 1) is based on the completion times

of the jobs, and the sum of the completion times of all the

jobs in the sequence. Using the same steps of the proof
can show that the mean flow time is also minimized by the
shortest processing time sequencing.

It is proven that the mean flow time is minimized by

the SPT sequence.

5.4 VWaiting Time in a Linear Flow_ Shop

In a flow shop scheduling problem; a waiting time can
lbe defined for each jeb in the system. It is the time that
levery job must wait until it can be processed. If the jobs
vhre processed in a numerical order, the waiting time for
the ith object is :ii tk,l’ The idea is similar to the

Problem of scneduling for single stage production, since in

flow shop problems there is no idle time on the first
Fachine.

A performance measurement can be the sum of all
Faiting times 5& Ei% tk,l' The minimum of this expression

i=1 k=1
Lccurs at the same time as the minimum of the expression

102

.
™ e : L
L - L e L e o P PR ol . PUSDPSURPIEIG WESCH, PP . P R O s

m i
t occurs, since the two expressions differ by the
i1 K Kl

m
constant ;[it..
i=11

Theorem 3

The sum of waiting times of all the jobs in a flow

shop problem is minimized by shortest processing time (SPT)

sequencing.
Proof
m i
In the proof, the term Y, 2 ty 1 is used because of
i=1 k=1 ™

the reason mentioned above, as the term that represents the

sum of waiting times.

m i m
;g; Egitk’l . Eg;(n+1-k)tk’1

According to Hardy, Littlewood and Polya (1952), this sum is
least when the series are monotonic in opposite senses.
Therefore the sum of all waiting times is minimized, if

the jobs are sequenced according to SPT (t <t <.
1,1 2,1

< Em,l)’

103

CHAPTER 6
SUMMARY AND CONCLUSIONS

This study investigates a flow shop scheduling
problem which is defined as the linear flow shop problem
(LFP). The purpose of the research was to find an optimal
solution for real life cases that can be defined as linear
flow shop problems. Three performance objectives were
defined; mean lateness, mean flow time and waiting time.
The results show that the shortest processing time sequen-
cing minimizes the objectives that were defined. Imple-
menting optimal solution for a practical problems is very
easy. The jobs that have to be processed are ordered in the
system by monotonic increasing performance time.

Chapter 1 of this dissertation introduces to the reader
the scheduling and sequencing area. The basic concepts and
basic models of scheduling are defined and the main
performance measurements of a scheduling problem are
formulated.'

Chzpter 2 defines the basic concepts of flow shop
scheduling. Two variations of flow shop scheduling are
discussed, the pure flow shop and the general flow shop.

The only requirement on the schedule is that all movements

104

o

i

t4, It is a model of a practical production facility where

of jobs batween machines within the shop be in uniform
direction from machine j to machine j+l1 etc.

Chapter 3 reviews past research in the flow shop area.
Many studies were conducted, and many articles were
written on flow shop problems. The studies that are
reviewed introduce the basic ideas that were developed in
the machine scheduling area and the special flow shop cases.
A discussion of the differences between optimal and heuris-
tic solutions to the problem is included. Optimal solutiong
are efficient in theory but difficult to implement in
practical situations.

The linear flow shop problem is formulated in Chapter

the time to complete a batch on a specific machine and the
times to complete the same batch on all other machines is a
linear function of the batch size. The time to perform all
jobs through all machines and the machining time required
to perform the jobs is developed. The idle time involved
in a linear flow shop problem is discussed in three steps.
First the case of a two machine LFP, second a three machine
LFP and third the consideration of the general m jobs n
machines case. Upper and lower bounds for performance time
are developed where the optimal solution falls in that
range.

Chapter 5 describes three performance measurements of

the linear flow shop scheduling, mean lateness, mean flow
105

R bt Rl

L———‘MA L S N P T —— =T g T T T L el el T

time and waiting time. Three theorems regarding the defined
performance measurements are stated. The optimal solution
for a two machine case is proven to be a schedule that
follows the shortest processing time ordering. The proofs
for mean lateness and mcan flow time use the method of
pairwise interchange of pairs or adjacent jobs in the
sequence. The method of mathematical induction is used to
prove that the theorems hold for the case of m jobs in the
sequence. A numerical example follows the proofs. A
sensitivity test is conducted to show how the shortest
processing time sequencing yields the optimal solutions.

This study presents optimal solutions for the linear
flow shop problem. It was found in many studies that
optimal solutions are difficult to implement in practical
cases because of the complexity of the formulation and
computational problems. The advantage of the results found
in this dissertation is that it is very easy to construct
the optimal sequence according to the shortest processing
time ordering. The results can be implemented in practical
production situations that fit the linear flow shop
definition.

This research investigated the linear flow shop where
all variables are deterministic and can be established
according to data available from past years or experience
of production management people. An open subject to be
researched in the future is the case where the machines'

106

o e £ P T g ETeTTy T

G LU s sty s = apmnrsw

4G

the jobs are the expected performance time. Further

is often necessary in parts production. Non linear

production times often occur in chemical processes.

process. One can take the advantage of idle time cf

machines to conduct maintenance nesded in the shop. 1In

keep in mind the way of implementing the results of the

|efficiently.

coefficients are random variables and the times to perform
research should be conducted into production models other
than the LFP. For example, a fixed setup time per machine

Another issue in scheduling is the idle time involved in the

kinds of problems created in the scheduling area one should

research. People in industry want easy and understandable

procedures to make their production lines run smocothly and

all

107

-

BIBLIOGRAPHY

Akers, S.B., Jr., "A Graphical Approach to Production
Scheduling Problems,'" Operations Research, Vol. 4,
No. 2 (April 1956), pp. - .

Conway, R.W., Maxwell, W.L. and Miller, L.W., Theory of
Scheduling, Palo Alto: Addison-Wesley, 19567.

Dudek, R.A., and Teuton, O0.F., Jr., "Development of M-
stage Decision Rule for Scheduling n Jobs through m
Machines," erations Research, Vol. 12, No. 3
(May 1964), pp. -497.

Gupta, I.N.D., and Dudek, R.A., "Optimality Criteria for
Flow Shop Schedules,'" A.1.1.E. Transactions, Vol. 3,
No. 3 (September 1971), pp. - .

Hardy, G.H., Littlewood, J.E., and Polya, G., Inequalities.
- Cambridge: Cambridge University Press, 1952.

Ignall, E., and Schrage, L.E., "Application of the Branch
and Bound Techniques to Some Flow Shop Scheduling
Problems,'" Operations Research, Vol. 13, No. 3 (May
1965), pp. 400-412.

Jackson, J.R., "An Extension of Johnson's Result on Job-Lot
Scheduling," Naval Research Logistics ?uarterlx,
Vol. 3, No. 3 (September » PP. - .

Johnson, S.M., "Optimal Two and Three Stage Production

Schedules with Setup Times Included,'" Naval Research
Logistics Quarterly, Vol. 1, No. 1 (March 1954).

Palmer, D.S., '"Sequencing Jobs Through a Multi-Stage
Process In the Minimum Total Time - A Quick Method

of Obtaining a Near Optimum," erational Research
Quarterly, Vol. 16, No. 1 (MarcE 198%), pp. 101-108.
Smith, W.E., "Various Optimizers for Single State

Production," Naval Research Logistics Quarterly,
VO].. 3, No. 1 rc » ppo 59'660

108

|

; Story, A.E., and Wagner, H.M., "Computational Experience

a with Integer Progrming for Job Shop Scheduling,"

f Muth, J.F. and Thompson, G.L., Eds., Industrial

a Scheduling. Englewood Cliffs, N.J.: Prentice-Hall,)

s 1553, Chapter 14.

|

!

" \

Y

}

i

|

!

t

lc

| |

{ i
, §C :
| 109

- _ .- - N T Y S T TV R . . X S

PART 1V
August, 1981

ROBECON
A GENERALIZED METHODOLOGY FOR ASSESSING
THE ECONOMIC CONSEQUENCES OF
ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

by

G, A. Fleischer

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
UNIVERSITY OF SOUTHERN CLAIFORNIA
LOS ANGELES, CALIFORNIA 9G007

ROBECON
A GENERALIZ;D METHODOLOGY
or
ASSESSING THE ECONOMIC CONSEQUENCES

of
ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

ABSTRACT

Althaugh problems relating to the engineering design of robots are
awesome, it is the economic aspect which is fundamental to the user's
decision to acquire robots for repetitive operations. Nevertheless, a
review of the relevant literature suggests that very little exists in
the way of providing guidance to prospactive purchasers of rolots as to
the economic coiisequences of prospective acquisitions. This conclusion
stems from matching critiques of more than 25 put.ished references against
a set of explicit criteria for a gencralized methodclogy. Recognizing
the need for an appropriate methodology, an exhaustive set of cost elements
are identified which are to be included in a comprehencive analysis.

(This paper is intended to serve as the first in a series leading to
a fully-develo,¢d model, ROBECON, which may be used for specifying the
economic. consequences of robot systems acquisitions. The model will be

computer based and user interactive.)

T . e

ROBECON

A GENERALIZED METHODOLOGY FOR ASSESSING THE ECONGMiC CONSEQUENCES
OF ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

I. INTRODUCTION
Rotots Defined

The Robot Institute of America defines the robot as "a programmable,
muliti-function manipulator designed to move material, parts, tools or

specialized devices through variable programmed motions for the parformance

cf a variety of tasks." A less precise definition has been adopted by a
manufacturer-users group, Computer Aided Manufacturing International (CAM-1):
"a device that performs functicns ordinarily ascribed to human beings, or

¢ operates with what appears to be aimost human intelligence." With either
definition, it is commonly understood that modern robots are programnable
manipulators that can perform useful work automatically without human

. o 2 s s s o are o an

a

assistance. (The term robot comes from a Czech word for forced labor; it

-was invented for Karel Capek's 1921 melodrama, R.U.R.).

S

Robot Installations: Substantial and Growing

Beginning with the development in the mid-60's of the microprocessor,

which permitted robots to be made smaller and cheaper, and spurred by

endemic wage inflation, robots have been uced with increasing frequency
in the industrialized nations. The.e are differences of opinion as to the

number of robots currently in place around the world. One estimate is

A RTINS B) L W PN AT | T | ey

¢ that there are “about 7,000 working industrial robots world-wide."
(Ferguson, October 12, 1980). Another estimates about 15,000 robots

-l-

in the Western industrialized nations, with 10,000 in Japan and 3,000

in the U.S. at the end of 1979. (TIME, Dec. 8, 1980). Still another i

source estimates 4C,000-50,000 in worldwide use, with 30,000 of these % ’

installations in Japan (Allan, 1979). g
Expert opinion appears unanimous that the forecasted growth of robot

installations will be spectacular into the foreseeable future. It is esti- i

mated that installations will increase at the rate of 30%-40% over the next

decade. (The first and largest of the robot manufacturers in the U.S., ‘ 3
Unimation Inc. of Danbury, Connecticut, experienced a 30% per annum growth 1
rate over the past seven years.) Estimates of industry salcs potential range A
from $2 billion to $4 billion by 1990. (Currently, industry sales in the ‘ ii
U.S. are about $90 million.) A recent forecast by the Society of Manufactur-
ing Engineers and the University of Michigan estimates that by 1987, 15% ot | ;
all assembly systems in the U.S. will use robot technology.]

There are several significant reasons underlying expectations for sub- | 1
stantial growth of robot installations in the foreseeable future. First,]
the conditions which led users to adopt robots over the past decade will ”
persist, principally with respect to higher wage rates. Second, unit costs _4

~<can be expected to decrease because robots are becoming smaller and more
flexibie and new manufacturers are entering the industry. Third, applica-
tions will increase as the functional capabilities are expanded, especially 4
with respect to the ability of robots to see properly the articles which i

they are manipulating.

The Problem

Th2 engineering design aspect of robots is awesome, yet it is the economic o

B T R Y U T P! B WL W 2 e L e e Nemcdadd s Gt O . K _AA...-.AA‘

| T I ¢ YR SV C VT

P I T T P I T I N W P Y P S I S T T Y TR T e g [AT LT TR - S P ST

aspect which is fundamental to the user's decision to acquire this equipment.
After all, robots generally perform no functions which cannot otherwise be

performed by combinations of human workers, machines and devices. The decision

to acquire robots is influenced, wholly or in part, by the economic consequences

to be expected from that decision. A preliminary review of the literature
suggests that this issue has received little attention relative to the design
and operational characteristics of robots. Certain cost estimates are widely
quoted in the literature*, but these are generally inadequate as a guide to
prospective users who may be contemplating capital ‘nvestments of $5,000 to
$150,000 per installation. (Multiple installations, i.e., implementation of
systems using two or more robots, are not uncommon. Capital investments in
the millions of dollars may be required in these instances, of course.)
Large, relatively sophisticated firms will probably have the expertise
"in-house" to conduct appropriate economic analyses. However, as robot
installations become more extensive, it is likely that smaller, less sophis-
ticated firms will be considering the acquisitions cf robots, and they will
need competent guidance as to the economic justification for these decisions.
It is this issue which provides the justification for the research described

in the following sections.

Objective
There are a variety of ways of describing the process by which prospective

users arrive at the decisior. to acauire a specific robot or robotic system.

*For example, Unimation Inc. repoits that a robot's cost is $4.60 hourly,
and this has remained relatively constant since 1961. This is a rough
estimate, however; it is based on straight line depreciation rather than
cost of capital recovery, and taxes are ignored.

-3-

o e s e e e e . B e e R

L an

e e e

R

Py S

PP R P S

S T

S T TR R TR TR A T TR o IR

G

For our purposes, here, we may focus on three principal stages. First, the

appropriate decision maker(s) within the firm must focus upon a limited set

|

|
of candidates from among the much larger population of robots (and related ;
auxiliary equipment and software) currently available in the marketplace. {
(It is assumed, at this point, that the decision maker has already completed 1
an analysis of the task(s) and operating environment and is reasonably ‘
convinced that a robot system may represent an optimal solution to the manu- .
facturing* problem). At this stage it will be necessary to describe important B
technical requirements for the robot(s), including: capacity, drives and : i
controls, memory, and other features such as tactile, feedback and visual .
sensors. These technical requirements must then be matched against zvailability. fq
Sec Exhibit 1, for example. The central feature of this first stage is the é ‘
identification of a set of candidate systems with technicail characteristics E |
suitable to the firm's operational requirements. This includes, in addition ?4
to the robots themselves, associated requirements such as changes necessary

to other equipment, tooling, spare parts and test equipment for maintenance,

utilities, back-up equipment to be used if and when the robot is down, safety

i equipment, and the like. 3
The second stage is an economic analysis of the consequences, or impacts, z
of the candidate robot systems as identified in the first stage. This is the

focus of the research described here. The objective is the development of an

g evaluation methodology which will permit users to forecast, or assess, the ;]
L

economic consequences of acquiring one or more robots for repetitive oparations.

*Here, "manufacturing” ircludes fabrication, assembly, inspection, material
handling and other tasks associated with the production of manufactured
goods.

ORIGINAL PAGE 1S
OF POOR QUALITY.

A\

This table is taken from responses
to our survey on robots and from
ther material released to us for
blication. Although it repre-
ents a broad sample of the in-
ustry, we regret that there was
ither time nor space to make a
irectory of all companies in-
lved.

To get more information from
ny of the companies, circle the
indicated number on the Reader
Service Card. To inquire about
your interest not covered here,
write the editors.

, Inc

100/190 | 3.3 | 4.8 || E110 | Prab Conveyors, Inc

Imc,

of Condec Corp

on Eagine Co

ASEA Inc

Industrial Auvtomates, Inc

E107 | Modular Machine Co

2

2
6

AMF Electrical Products
Development Div
Robomatien Corp

Auto-Place Inc
U

E103 | Binks Mig Co

CIRCLE NO.

E104 | Cincinnati Milacron
251210[5.4| 6.7 [| E105 | DeVilbiss Co

E106
E108 | Gvert

E100
E101
E102
El11

1.5 || E109 | PickOmatic S

5
7
2
8
1

4501220 7.5(13.5 | E112
» Vol. 1, William T. Tanner, Editor.

Reprinted from Tooling and Production, August 1977.

Horizontal Arm Movement (ft)

6
.5

[Vertical Arm Movement (ft)

APACITY
4

Rotation (degrees)

re
L.

1321340 | 7

30| 200

30| 85| 65| 3
175(240 {13

10| 120

501290 | 2
1001360 | 6
30{180
25122511

Maximum Workpiece
Weight (Ib)

Hydraulic

Pneumatic

Electric

Air/0il L
Mechanical (against stops)
Air Logic ®
NC/Computer ol ol @
Cams °

Relays, Limit Switches) °
Rotating Drum ® ®
Magnetic Tape ojlele
RAM, ROM, PROM o |® el 0
Core/Plated Wire

e [2000] 270 | 5

®
®
)
®
®
°
)
L1
1@

Characteristics of Selected Robots

.l ni! .l!_.!

Exhibit 1.

» article appearing in Industrial Rcbots

Society of Manufacturing Engineers, 1979,

MEMORY _ |[DRIVES & CONTROLS

L

—Variable U—Unlimited

Tactile Sensors
i Feedback Sensors
E __Self-Diagnostic

M)
24|00 (@@
2]|e /@
1024|0 |0 |jo i @

990|e e
256
U

No. of Memory Steps

6
5
6
6
6
U
4
5
U

v
v
v
17
0
200
7
12
vi 6
"Trends in Robots"

:F , ‘ E No. of Articulations

64/ 7] 3000/e |0 e

1
- Cycles Per Minute

Source:

B S TN B S e g e

o p————p————y T

Users are assumed to be any business firms (manufacturers, fabricators,
processors, etc.) or governmental agencies who may be considering the purchase
of robots as operational alternatives and for whom the economic consequences
are relevant to the acquisition decision.

The third phase in this process, as illustrated in Exhibit 2, is one in
which economic consequences are considered jointly with other (non-ecoriomic)
consequences sO as to arrive at a choice from among alternative systems.

There are a variety of approaches to this "muitiple criteria" problem, some
of which are relatively complex. In any event, this is not an issue which
we will address further at this time. The research described in this docu-

ment focuses only on Stage 2, the economic¢ analysis.

Tasks

The tasks necessary to meet the objective described above are as follows:

(1) Specify the criteria which must, or should, be met by the economic
analysis methodology, including mathematical model(s) and associated
procedures.

(2) Review the literature to determine the extent to which economic

date, models, arnd analytical procedures are currently available
to prospective users. Relevant references will be critiqued in
view of the criteria identified in (1).

(3) Identify the elements of total system costs, that is, the economic

impacts which, in general. may result over the lifetime of the
robotic system, from installation to ultimate disposal. In certain
government applications, and in the U.S. Department of Lefense in

particular, these are known as life cycle costs (LCC). (See, for

P k. e mratnd L om m da elt Ealll ah inmes v s

i

wa3IsAS 213090y e Buidinboy
40J $S32044 UOLSLI3Q 3u} 40
Uo3RIuaSaUday d1jewdydS pattiduts ¥z 3Lqiyx3

€ dseyq 2 aseyq

[seouanbasuo)
—X JLWOU0IJ-UON £

N

L aseyd

SjuauwaJ L nbay
leuoijeusadg

{

———

UGF3II919S

Bl4a3 14) SISATYNY

aLd1yLnw JIWONOI3
J43pun

uoLstaag

s3oedu}
JLwouod]

Swa3SAS

93epipue)
30

uoi1309|3s

sjuaudnb3
alqe| Leay

Sty o

‘0
er

R b S ASD e, A 5

-7-

o a e a e

L e o

U.S. Department of Defense, 1978; U.S. Department of the
Air Force, 1978; Graver and Jenkins-Stark, 1976; and Kolarik,
1980 .) Total system costs include subsequent costs as well as
the initial investment.
(4) Develop engineering cost estimates (ECEs) and/or cost estimating

relationships (CERs), as appropriate. These are two principal

approaches to the estimation of future economic consequences

which are 1ikely to result from a current investment decision.
Generally, the CER approach relates system costs to a combination
of measures of the systems (dimensions, performance characteristics,
etc.)*. The cost estimating relationships are obtained through
curve fitting techniques. In the ECE method, total system costs
are broken down into rleatively small components, or elements;

the elements are related by ECEs which reflect the ways in which
the system is developed, operated and maintained. It is expected
that these relationships will be of sufficient generality to permit
their use in a wide variety of analyses.

(5) Develop computer-based models for generating Totai System Costs.

Three separate models will be developed, with increasing complexity,
utilizing the ECEs and/or CERs as determined in the preceding task.
The mdoels are characterized as follows:

(a) In the first model we assume that all economic consequences

(the amount and timing of cash flows); a3 well as the planning

*This method is sometimes called parametric costing.

|

L e o e e il e h o b ke it o b s an e Ak SR ik o B it e i nmim o

~yr

C

TR -,

(6)

horizon and discount rate, are deterministic. It is also

assumed that the characteristics of the robotic system
currently under consideration for implementation (the
“challenger") are identical to those of all future challengers.
That is, all future challengers are identical to the current

challenger.
(b) In the second model we relax the assumption concerning the

verisimilitude of current and future challengers. We now

assume that future chailengers are not necessarily identical

to the current challenger. Indeed, it is likely that certain

costs will decrease due to economies of scale and the ability
of robot manufacturers to move out on the learning curve, for
example; other cost elements, such as energy and labor, might
be expected to increase over time.

(c) The third model differs from the second in that all economic

consequences, the planning horizon and the discount rate are
assumed to be stochastic. Unlike the prior mcdels wherein
all inputs were assumed to be known with certainty, we now
treat these impacts as random variables.

Test the implementability of each of the models through a series

"of controlled" experiments. These will consist of a cet of sample
problems which will be presented to real-world decision makers for
solution using the models. The experiences of thesc decision
mai.ers will be monitored and evaluated to determine the extent to

which the models arz useful in the capital allocation decision.

(1)

(2)

(3)

(4)

II. CRITERIA FOR A GENERALIZED METHODOLOGY

Prior to developing a generalized methodology for assessing the economic
consequences of acquiring robots for repetitive operations, it is necessary
to make explicit the criteria by which the efficacy of the methodology will
be measured. These same criteria can also be used systematically to critique
the existing relevant literature. For our purposes, then, the following

criteria will be established:

Theoretically sound -- We are not interested solely in obtaining

a solution. The solution must be internally consistent with the
decision maker's (user's) objectives as well as the assumptions

underlying the model.

Credible -- The users must have a feeling of confidence that the

methodology will in fact provide solutions that are useful in the

decision making process. The niethodology must be believable.

Verifiable -- The user should be ahle to replicate, or verify,

the results by tracing the chein of events from data input to
ultimate solution. Veririability is a preconditicn to credibility.

Comprehensive -- The economic model(s) imbedded in the methodology

should include all the economic impacls which can reasonably be

expected to nccur as the result of the decision. (The time interval

over which these impacts will occur is the planning horizon.) Thus

the methodology should include tke economic consequences of the
total system -- equipment acquisition, operation and maintenunce,
taxes, and the 1ike -- throughout the entire planning horizon.

This is the Total System Costs concept.

-10-

Je.

B 1m0 iy B ™ e, o §
d

R A e oy

(8)

(6)

(7)

(8)

(9)

Reasonable data requirements -- Although comprehansibility is a

desirable, if not essential, element of the assessment method-
ology, it is unrealistic to expect that the analyst will be able
to deal exhaustively with absolutely all economic impacts. To
do so is neither possible nor desirable. The data requirements
for the economic models should pe limited to only those which
are likely to have a significant affect on the user's capital
allocation decision. The cost of gathering impact dota and
exercising the models should in no case exceed the economic ad-
vantage to be gained from the analysis.

Accuracy -- The level of accuracy should not exceed that which is
necessary to identify significant differences among alternatives.

Assumptions made explicit -- The assumptions underlying the methodology

and imbedded in the analytical models should be stated clearly.

Important factors stressed -- Not all elements of the analysis

are of equal importance. Those which have greatest significance
should be highlighted.

Uncertainty treated explicitly -- Equipment acquisition decisions

are properly based upon anticipated consequences expected to result
from the various alternative courses of action. These consequences
lie in the future, and hence are uncertain. (Some would argue that
the more distant the event, the greater is the uncertainty, but
this is not necessarily so.) The extent to which this uncertainty
affects the decision should be made explicit so that it may be

treated by the decision maker as a separable issue.

-1-

sl -~

g e

(10) Incorporates efficiencies over time -- The learning curve

(improvement curve, progress curve, etc.) has been used for more
than forty years to describe the relationship between productivity
(cost/quantity) and time. Ouring the initial stages of production,
in particular, productivity is improving as the people and machines E
in the process "learn" to operate more effactively. Economic models

should incorporate this effect.

(11) Reflects real and relative price changes -- Economic impacts

should not be expected to remain constant over time, particularly
over a long planning horizon. In part these differences result
from changes in the relative prices of specific goods and services, , ‘
popularly known as inflation. Inasmuch as relative price changes
may Le of significance to the capital ailocation decision, they L
should be incorporated into the analysis. This is eipecially
important for those goods and services for which prices change at

substantially different rates.

IIT. LITERATURE REVIEW
During the summer of 198% an intensive review of the literature was
conducted to identify the extent to which published material describing the
economics of robotics is available to prospective users. 3ources for review
included newspapers and popular magazine articles, anthologies (espec:ally

W.R. Tanrer's Indusirial Robots), professional conference proceedings,

government reporis, and technical p3ners of professional societies {especially

the Society of Manufacturing Engineers). Consultants working in this field

;
-12- i‘

. y) _ .) g
o e e ——— I S———— T T ey g T g Ty 3 it

were also contacted for ‘zads. More than 200 individual {tems were
reviewed; the references appearing in the Bibliography are representative.
Of these, only the dozen listed in Exhibit 3 are directly related to economic

analyses of robot installations.

The Accounting Method

As fndicated in Exhibit 3, these references may be characterized by

one or more of several analytical procedures. The accounting method describes

economic consequences (costs and benefits) in accounting terms, that is, the
eftect of the installation on the firm's income and expense accounts. Thus
the cost of capital recovery is defined by annual depreciation expense.*

The principal objection to the accounting method is that the opportunity
cost is ignored. The opportunity cost, sometimes described as the minimun
attractive rate of return, is the return which would be expected from alter-
rative investment opportunities should the specific project proposal rot be
funded. As described in the literature of engineering economy, the concept

of capital recovery (CR) {ncorporates the opportunity cost as follows:

*(A1lan, 1979) includes a separate item for “cost of mcaey" in his
numerical example. Thus his approach is a combination of the ac-
cnunting method and discounted cash flow.

-13-

ga ok

. — e

M

(x)

MoL 4
yse)
pajunoasyq

suojje|ejsu] Joqoy 30
sisA|2uy D1wWOu0d3 03 pIje|ay SuopIed§|qng

X X X X

POYIoW
yoeqhed

l'P‘

(x)

POYIaN
6uiiunodoy

ERRINILLE

Si6L ‘Lasian

861 ‘43uue)

gL6l ‘In0lS

LL6] ‘weyloquibay

(¢) 6461 *4aya|3g pue AjLuey
(¢) 086l “3sua3

6461 °43b643G|abu3

661 ‘A2119ng

0861 ‘yeiunysg

661 ‘yeiumyag

b6l ‘uelly

8L61 ‘.243g pue weyeuaqy

KA
Y
0l

.
—

PP R PP T

Py ¥

o

o T e T
i - .
;
|
i [A
)
CR = (C-L)(A/P, %, N) ~ Li
&.
r where C = initfal cost
| L = net salvage (residual) value a* the end of N periods
| g i = opportunity cost (discourt rate)
(.
_ N = service 1ife of the investment
? and (A/P, 1, N) = functional form of the algebraic expression
: . e
\ ()
It may be shown, in general, that capital recovery does not yield the
same results as those derived from the popular depreciation methods. 7o
} ‘ illustrate, consider straight line depreciation. The annual depreciation
S expense (D) is given by:
D= (C4 - Ld)/Nu
‘“ where C4 = cost basis
Ld = axpected salvage value for depreciation purposes
| Nd = depreciable life
;1' To simplify our example, let us suppose that C = Cas L= Ld and N = Nd.
s ; It may be shown that the percent error (o) 1s given by
‘] _—
] 4 =1 A T, B
HC
i where p =1L/C
The percent error (a) is shown graphically in Exhibit 4 for N = 5. The
c error increases with the discount rate and the ratio of salvage value to
initial cost. When {1 = 20% and p = 0 (no salvage value), for example,
the error is approximately 40%. When i = 20%, and p = 0,50, the error is
": about 62%. (Note that D = 0 and CR = 1 for all values of X when p = 1.00.
ﬁ Thus, in this special case, & = 100% for all values of N.)
-15-
| [4

s . AT

v,

oy —— — ol Raade et ol it 2 3 I d e) s w———’

. T S A ATt ——— N OB T St A S S ——— W«' L
| 1
Exhibit 4. Difference between Capital Recovery and
Straight Line Depreciation as a Function
of Discount Rate N
!
i
1
Lo
; !
1.0 p=1.0 i 1
L
2.8 i
’
5
0.6 %
=
5 i
e 0.4 4
S .
w i
+ |
c .‘
3] .
|8
S~)
S Assumes N = § ;
c.2
;
-
0

0 20 30 40 50

Discount Rate (i%)

D U - — - - - ovn e —
- o S PV B Sy Ve Senr e Ll PR T7 TS > S e, et

The Payback Method

As illustrated in Exhibit 5, paytack (or payou*.) is the number of
periods required for cumulative benerits to exactly equal cumulative costs.
Costs and benefits are usually expressed as cash flows, although discounted
g present values of cash flows may also be used. In either case, the payback
| method is based on the assumption that the relative merit of a proposed
investment is measured by this statistic. The smaller the payback (pericd),
the better the proposal.

Despite the apparent fact that the payback method is widely used in
industry, it suffers from serious theoretical deficiencies. The most im-
portant of thase is that the payback methud ignores the conseauences of

the proposed investment after the period in which payback is completed.

This may be shown with reference to Exhibit 6. 2re we have two competing

B L PR

projects, Alternatives A and B, with payback for A less than that of B.

B e T

But it is unlikely that A would be preferred to B since the latter generates

far greater net cash flows over the remaining periods in the planning horizon.

=

With ver rare exception, payback should not be used as the sole criterion

to measure economic efficiency.

{.

Discounted Cash Flow (DCF)

There are a nurmber of variations to the discounted cash fiow method:

I TN TR AL ¢ AT TTPYIAP 1O Sri « R A

present worth or present value, equivalent uniform annual cost, rate of

return (or return on investment), benefit-cost ratio, and the like. They

have in common recognition of the timing as well as the amounts of cash

b
;;t, flows; money has value over time because of the existence of alternative
; investment opportunities. When used properly, the DCF variants lead to
4
-17-
€

—— - PP P——

Cumulative
Cash Flow Berefits

or

Discounted
Present Value
{ of

, Cash Flows

|
Cumulative : '
Costs | ! 5
\ | | -
i I L
| . i
1 .
— " 3
tart ﬂ3éyback" Planning i
Project Horizon

e aae o o

Exhibit 5. Payback (Payout) Illustrated

|
|
|
|

|

(+)

Net
Cumulative
Cash Flows

Alternative A

Alternatjve B
S

Planning Horizon

(-)

Exhibit 6.

Time

Payback for Two Competing Investment
Alternatives

-19-

consistent solutions.

Our literature search revealed seven publications in which the DCF methoa ‘N\‘

is applied to robotics investments. These are:

? Abraham and Beres, 1979. Returns on investment (ROIs) are summarized

for ten candidate assembly equipments and tooiing as well as fifteen i
E separate combinations. Uncertainties are ignored. There is no description
| of the process by which the ROIs are computed.

[N Behuniak, 1979. This very brief paper describes economic analyses for

three robotic applications: swaging, die casting and painting. Cash flow
tables are shown for 5-year planning horizons. Three after-tax figures of
merit are shown for each application: (1) payback, (2) return on investment,
and (3) discounted rate of return. The formulae, or procedures, for computing
ROI and DCRR are not included, and the author's results cannot be verified.
Uncertainties are ignored.

Behuniak, 1980. This is similar to the author's earlier paper, except that

no cash flows table is included. Results are reported for a die casting
robot with initial cost of $68,000. Payback = 3.4 years; ROl = 24%.

(For the die casting robot in the author's 1979 paper, payback = 3.6 years
and ROI = 29.2%.)

Bublick, 1979. This paper described an economic analysis for robots used

in spray coating and finishing. Cost details are provided for both the
manual and robot alternatives. The procedure for determining payback
(1.17 years in this case) is detailed. A cash flow table 1s provided for
a 7-year planning horizon, including an adjustment for inflation or 6% per
annum. The author claims that ROI = 121% for this appiication, although

the formula for determining ROI is not given. Uncertainties are ignored.

-20-

L

B

Ry AT L B 0kt YLt S P BT o WA & A ke e s

I R R ot R X1 NN B s A - g Ve o

< By

e ——— T

e e -y

Hanify and Belcher. This is perhaps the most interesting of the papers

reviewed. Dennis Hanify is affiliated with the ITT Research Institute;

J.V. Belcher is with the Universal 0il Products Company. The paper
describes the Industrial Robot Analysis (IRA) program initiated at the
ITTRI Robot Technology Center and currently available to clients interested
in the technical and economic effects of robot systems. An exampie problem
is included -- a "real world" example -- but cost figures are fictitious
since the original data are proprietary. Major costs, their timing and
“probable variations" are given for this example problem. Calculations
are performed using a general purpose computer program, Economic Systems
Analysis (ESA), to compute the prospective rate of return, before or after
income taxes. Uncertainty is addressed by evaluating the effects of using
the optimistic or pessimistic cost estimates. The procedure used to determine
rate of return is not detailed in the paper: no equations, no flow diagram,
no computer program. It is not possible, therefore, to critique the method-
ology further.
Stout, 1973. Assumed costs and benefits for a "typical" project are plotted
as a function of time and the ROI calculated. ROl is defined (properly).

Tanner, 1978. The author asserts that "simple ‘rules of thumb' and a stream-

lined cost analysis method can be applied to determine the potential economic

return of a contemplated robot installation."

with numerical examples illustrating the calculation of:

Total Expenditures

(1) Payback = —raTAnnuaT Net Future Savings

and (2) ROI is that value of r such that:

{ggrg:cgng:]ue} = i Total Annual Net Future S8vings
‘ (1+r)"

A cost analysis form is included

T U VUP U, P

o

The calculation in (2) is described as "ROI for the Depreciated (sic) Cash

Flow Method". An alternative calculation for ROI is given by

_ Profit After Taxes
(3) ROI = Tnvestment Base

The author's procedure assumes that cash flows remain constant over the

planning horizon. Thus there is no cash flow table for other than the

“typical" year. Uncertainties are ignored.

IV. LIFE CYCLE (TOTAL SYSTEM) COSTS

As a general principle, the economic consequences of proposed investment

in a robotics system should include all significant costs that are likely to

result from the investment. ("Benefits" are reductions in costs that may be

obtained when comparing any pair of alternatives, and hence are implicit in

this principle.) Economic consequences, or impacts, should be measured over

the total life cycle of the proposed system.* Impacts should be estimated

for each of the candidate systems as well as the existing process.

For our purposes, economic consequences may be grouped into three

broad categories, as follows:

1.

Plant and Equipment

1.1 The robot(s), including sensors and interlocks
1.1.1 Initial cost
1.1.2 Service life (not a cost)
1.1.3 Residual value (net salvage value) at the end of the

service life.

*In the literature of economic analysis, life cycle is freguently referred
to as the planning horizon. Strictly speaking, however, the planning
horizon may be longer than the system life cycle, especially if signifi-
cant economic consequences persist beyond the end of the 1ife of the
system 2

e — e
A e, e —wguy” § WP IE

e e etaagu

. - ——
MIEE T . aphn vae e e et Ot ARGV 40 | S L 8 e e e e - - N . © @ e i

C 1.2 Associated tooljng j
1.3 Spare parts
1.4 Property taxes *
(1.5 Insurance (property only) 4
1.6 Energy requirements ;
1.7 Tax consequences %
. 1.7.1 Investment credit ii
1.7.2 Tax savings due to depreciation

1.7.3 Gain (loss) on disposal
1.8 Space requirements
1.9 Installation (including rearrangement of existing facilities) ?ﬁ
1.10 Safety equipment (protective clothing, etc.)
o 1.11 Programming
1.12 Modification of existing equipment to ensure compatability with

robot(s).

2. Operation and Maintenance

2.1 Operating labor ,!
€ 2.1.1 Salaries/wages
2.1.2 Fringe benefits (costs to employer)
2.2 Maintenance labor (for periodic maintenance)

C 2.2.1 Salaries/wages

B e e]

2.2.2 Fringe benefits (costs to employer)
2.3 Direct cost of injuries and illness (hospitalization, medical
XA care, etc.)

E 2.4 Absenteeism (cost of lost productivity)

N
i

RS =S LRSI
-~
« ¥

2.4.1 1llness
2.4.2 feigned illness b
2.4.3 injury
2.5 Training |
2.6 Supervision | {
2.7 Insurance (personnel only)
2.8 Overtime (not included in 2.1 and 2.2 above)

2.8.1 Operating labor

2.8.2 Maintenance labor | 1
2.9 Labor turnover

2.9.1 Termination

2.9.2 Recruitment !
2.9.3 Training ? \
2.10 Retooling and set-up costs for batch processing 1

2.11 Maintenance tools and supplies
2.13 Documentation (operation and maintenance)
2.13 Costs of interrupted production not included in 2.10, especially

down time.

e aa . e

Product
3.1 Required changes in product cesign
3.2 Raw material requirements
3.3 In-process inventory J
3.4 Effects of production rate on:

3.4.1 other plant activities

3.4.2 shipping schedules L

-24-

T T—— s = D bt et o e
e —— R - ot ‘1

PPy a— o . e . © v v s s s ¢ pe—

E 3.5 Defective (sub-standard) product
A 3.5.1 Scrap rate (not a cost)
E 3.5.2 Net cost of handiing and reworking defective product
| 3.5.3 Costs due to undetected defective product released to
E“ customer (e.g., loss of good will, responding to customers' i
? complaints, replacing returned products) |
E In addition to the above, certain assumptions are required to complete
Z\ discounted cash flow economic analyses. These include: |
: 4.1 Income tax rates ‘
g 4.1.1 Federal 1
‘ 4.1.2 State
{ i 4.1.3 Local g
| 4.2 Engineering (and consulting) costs not included above {
(4.3 Cost of capital (to be used as the discount rate) g
? A1l cost estimates should be expressed in terms of probability ! i
§ distributions when available and where appropriate. In the absence of the ?
% ‘ full distributicers, however, only the principal statistics (mean, medianf j
range and/or standard deviation) may be estimated. Point estimates or
E certainty equivalents should be used only whern probabilistic estimates are
,(' uravailable.
i
; C 1
” }
L C
¢ ‘
] ;ﬁ -25.

B IBLIOGRAPHY

1. Abraham, Richard G. and James F. Beres. "Cost-Effective Programmable
Assembly Systems." In Industrial Robots, Vol. 2, pp. 213-235. Edjted
?g7gilliam R. Tanner. Uearborn, MI: Society of Manufacturing Engineers.

2. Allan, Roger. "Busy Robo“s Spur Productivity." IEEE Spect-um, September {
1979, pp. 31-36.

3. Behuniak, John A. Economic Analysis of Robot Anplications. Technical
Report MS 79-777. Dearborn, MI: Cociety of Manugactur1ng kngineers.

(1979).

4. . Planning and Implementation of Rooot
ProJects.” Technical Paper MS 80-635T. Dearborn, EI: Snctety of Manu- ;‘
a
i
"

cturing Engineers. (1980).

5. Bublick, Timothy. "The Justification of an Industrial Robot.” In
Indus.ria] Robots, Vol. 1, pp. 39-45. Edited by William R. Tanner,
Dearborn, MI: Society of Manufacturing Engineers, 1979.

§. Clapp, Neale W. Three Laws for Robotocists: An Approach to Overcomin
Worker and Management Resistance to Industr al Robots. Tlechnical Fager

M5 79-775. Dearborn, MI: Society ofﬁﬂfnufacturin. Engineers. (1979).

Technical Paper M5 80-690. Dearoorn, MI: Society of Manufacturing
Engincers. (19%0).

|
8. Engeiberger, Joseph F., "Robots Make Economic and Social Sanse",
Atlanta Econom1» Review, July-August 1977. Reprinted in Industrial
Rcoots, Vol. *Ed{ted by William R. Tanner. Dearborn, W1: JSociety
of ﬂanufacturing Engineers, 1979.

7. . Management Resistance to Industrial Robots. i

9. Ernst, Bruce D. "Economic Justification for Industrial Robots.'
A report prepared for the Corporate Users Group of the Robot Institute]
of America, One SME Drive, Dearborn, MI. (undated) i

10. Estes, Yernon E. "Industrial Robots -- A User's Viewpoint", Proceedings
of the AIIE 1979 Fall Industrial Engineering Conference, No. 1379

11. Fferguson, Fred, "Industrial Robots Do A Man's Job -- and Don't Get Bored",
Los Angeles Times, October 12, 1980. ‘

12. Graver, C.A. and J.F. Jenkins-Stark. Life Cycle Cost Model for Comparin
AGT and Conventional Transit Alternatives. UﬁTF-CI 06-0090-76-71,

Washington, 0.C. Urban Mass Transportation Administration, February 1976.

13. Groover, Mikeli I". "Industrial Robots: A Primer on the Present
Technolo?y.“ Incustrial Engineering, Vol. 12, Mo. 11, November 1980,
pp. 54-61.

-26-

14,

15.

]6.

17.

18.

19.

20.

21,

23.

24.
25.

26.

27.

Hannify, Cennis W. and Jay V. Belcher. Industrial Robot Analysis -
Working Place Studies. (Reference incomplete]

Heginbotham, Wilfred B. Can Robots Beat Inflation. Technical Pager
MS77-756. Dearborn, MI: ~Soclety of Manufacturing Engineers.(1977.)

Kolarik, W.J., "Life Cycle Costing and Associated Models", Proceedings
of the AIIE 1980 Spring Annual Conference, May 1980.

Kuzmierski, Ted, "Rcbot Appifications in Aerospace Batch Manufacturing”,
Industrial Robots, Vol. 2, pp. 169-182. Edited by William R. Tanner.
Dearborn, MI: Society of Manufacturing Engineers. (1979).

Maer, Gennaro . Analysis of First UTD Installation Faflures.
Technical Papar MS77 - 635. Dearborn, MI: Scciety of Manufacturing
Engineers. (1977).

Marks, K.E., H.G. Massey and B.D. Bradley, An 52gra1sal of Models Used

in Life Cycle Cost Estimation for USAF Aircraft Systems, The Rand
Corporation, Santa Monica, Californ{a, October 1378, (Report R-2287-AF).

Muller, R.K. Managing Costs through A Learnina Curve to an Ultimate
Target. Technical Paper MMID - Zﬁg. Ueerourn, Mi: society of Manu-
acturi

ng Engineers. (1978).

NASA Study Group on Machine Intelligence and Robotics, Machine

Intelligence and Robotics: Report of the NASA Study Group, Executive
Summary, Jet Propulsion Laboratory Report No. 730-51, Pasadena, California,
September 1979,

Nof, S.Y., J.L. Knight, Jr., and Gavriel Salvendy. "Effective
Utilization of Industrial Robots - A Job and Skills Analysis Approach".
AlIE Transactions, Vol. 12, No. 3, September 1980, pp. 216-225.

Ottinger, Lester V. "Robots for Manufacturing and Assembly."
Proceedings of the 1981 AIIE/MHI Seminar. Norcross, GA: American
institute of Industrial Engineers. (1981).

“Paying the Price for Innovation." The Economist, June 7, 1980, pp. 78-79.

Pollard, Brian W. RAM* for Robots E*Reliabi11t Avatlabilit
Maintainability). Technical Paper - 692. 6'éaF’oom° . Society

of Manufacturing Engineers. (1980

Redman, Crristopher, Otto Friedrich, Arne Hopkins, et al., “The Robvot
Revoluticn", Time, December &, 1980, Vol. 116, No. 23.

Stout, Thomas M., "Economic Justification of Computer Control Systems",
Automatica, Vol. 9, 1973, »p. 9-19.

27~

E

’
i

[
28.
C
1 29,
3
“ . 0,
3i.
V (. 32
33.
b
A 34,
i
35.
{
= 36.
B
a ¢
| ¢
i
t
C
' C
)
(4

Tanner, William R. “Selling" the Robot -- Justification for Robot
Installations. Technical aaper‘H§7!’4i7621 Dearborn, MI: Soclety
of ManuTacturing Engineers. (1978).

"Teaching Robots How to See". The Economist. July 12, 1980, p. 83.

Tipnis, V.A. and Steven A. Vogel, “Economic Models for Process Planning".
(Reference incomplete) .

“Trends in Robots". In Industrial Robots, Vol. 1, pp. 81-86. Edited

(?5733111am R. Tanner. Oearborn, MI: Society of Manufacturing Engineers.

U.S. Department of Defense. Life Cycle Costing Guide for System
Acquisitions. Interim Report LTC-3. Washington, D.C., January 1973.

» Department of the Air Force. Life Cvcle Cost Management
Frggram. AF Regulation 800-11, Washington, 0.T., February 2¢, 1§7§.

Van Cleave. David & _ "fnme Bac. €oco foiAssaidiy TN the SKy*~, Tron Age,

ov, 28, 1977. Reprinted in Industrial Robots, Vol. 2. Edited

William R. Tanner, Dearborn, NI Society of Manufacturing Engineers.(1979).

Weekley, Thomas L. A View of the United Automobile, Aerospace and
egriculturaI Implement Workers o; éﬁ§rgca EQEE! atang on !ngustr]al

obots. iechnical Paper - . Dearborn, MI: Society o
Manufacturing Engineers. (1979).

Weisel, Walter K., "Comparative Costs of Automation in Die Castina
Using Robots", 8th International Die Casting Exposition and Congress,
Cobo Hall, Detroit, Michigan, March 17-20, 1975. Reprinted in
Industrial Robots, Vol. 2. Edited by William R. Tanner, Dearborn, MI:
SocTety of Manufacturing Engineers, (1979).

-28-

	1982013004.pdf
	0020A02.JPG
	0020A03.TIF
	0020A04.TIF
	0020A05.TIF
	0020A06.TIF
	0020A07.JPG
	0020A08.JPG
	0020A09.JPG
	0020A10.JPG
	0020A11.JPG
	0020A12.JPG
	0020A13.JPG
	0020A14.JPG
	0020B01.TIF
	0020B02.TIF
	0020B03.TIF
	0020B04.TIF
	0020B05.TIF
	0020B06.TIF
	0020B07.TIF
	0020B08.TIF
	0020B09.TIF
	0020B10.TIF
	0020B11.TIF
	0020B12.TIF
	0020B13.TIF
	0020B14.TIF
	0020C01.TIF
	0020C02.TIF
	0020C03.TIF
	0020C04.TIF
	0020C05.TIF
	0020C06.TIF
	0020C07.TIF
	0020C08.TIF
	0020C09.TIF
	0020C10.TIF
	0020C11.TIF
	0020C12.TIF
	0020C13.TIF
	0020C14.TIF
	0020D01.TIF
	0020D02.TIF
	0020D03.TIF
	0020D04.TIF
	0020D05.TIF
	0020D06.TIF
	0020D07.TIF
	0020D08.TIF
	0020D09.TIF
	0020D10.TIF
	0020D11.TIF
	0020D12.TIF
	0020D13.TIF
	0020D14.TIF
	0020E01.TIF
	0020E02.TIF
	0020E03.TIF
	0020E04.TIF
	0020E05.TIF
	0020E06.TIF
	0020E07.TIF
	0020E08.TIF
	0020E09.TIF
	0020E10.TIF
	0020E11.TIF
	0020E12.TIF
	0020E13.TIF
	0020E14.TIF
	0020F01.TIF
	0020F02.TIF
	0020F03.TIF
	0020F04.TIF
	0020F05.TIF
	0020F06.TIF
	0020F07.TIF
	0020F08.TIF
	0020F09.TIF
	0020F10.TIF
	0020F11.TIF
	0020F12.TIF
	0020F13.TIF
	0020F14.TIF
	0020G01.TIF
	0020G02.TIF
	0020G03.TIF
	0020G04.TIF
	0020G05.TIF
	0020G06.TIF
	0020G07.TIF
	0020G08.TIF
	0020G09.TIF
	0020G10.TIF
	0020G11.TIF
	0020G12.TIF
	0020G13.TIF
	0020G14.TIF
	0021A02.TIF
	0021A03.TIF
	0021A04.TIF
	0021A05.TIF
	0021A06.TIF
	0021A07.TIF
	0021A08.TIF
	0021A09.TIF
	0021A10.TIF
	0021A11.TIF
	0021A12.TIF
	0021A13.TIF
	0021A14.TIF
	0021B01.TIF
	0021B02.TIF
	0021B03.TIF
	0021B04.TIF
	0021B05.TIF
	0021B06.TIF
	0021B07.TIF
	0021B08.TIF
	0021B09.TIF
	0021B10.TIF
	0021B11.TIF
	0021B12.TIF
	0021B13.TIF
	0021B14.TIF
	0021C01.TIF
	0021C02.TIF
	0021C03.TIF
	0021C04.TIF
	0021C05.TIF
	0021C06.TIF
	0021C07.TIF
	0021C08.TIF
	0021C09.TIF
	0021C10.TIF
	0021C11.TIF
	0021C12.TIF
	0021C13.TIF
	0021C14.TIF
	0021D01.TIF
	0021D02.TIF
	0021D03.TIF
	0021D04.TIF
	0021D05.TIF
	0021D06.TIF
	0021D07.TIF
	0021D08.TIF
	0021D09.TIF
	0021D10.TIF
	0021D11.TIF
	0021D12.TIF
	0021D13.TIF
	0021D14.TIF
	0021E01.TIF
	0021E02.TIF
	0021E03.TIF
	0021E04.TIF
	0021E05.TIF
	0021E06.TIF
	0021E07.TIF
	0021E08.TIF
	0021E09.TIF
	0021E10.TIF
	0021E11.TIF
	0021E12.TIF
	0021E13.TIF
	0021E14.TIF
	0021F01.TIF
	0021F02.TIF
	0021F03.TIF
	0021F04.TIF
	0021F05.TIF
	0021F06.TIF
	0021F07.TIF
	0021F08.TIF
	0021F09.TIF
	0021F10.TIF
	0021F11.TIF
	0021F12.TIF
	0021F13.TIF
	0021F14.TIF
	0021G01.TIF
	0021G02.TIF
	0021G03.TIF
	0021G04.TIF
	0021G05.TIF
	0021G06.TIF
	0021G07.TIF
	0021G08.TIF
	0021G09.TIF
	0021G10.TIF
	0021G11.TIF
	0021G12.TIF
	0021G13.TIF
	0021G14.TIF
	0022A02.TIF
	0022A03.TIF
	0022A04.TIF
	0022A05.TIF
	0022A06.TIF
	0022A07.TIF
	0022A08.TIF
	0022A09.TIF
	0022A10.TIF
	0022A11.TIF
	0022A12.TIF
	0022A13.TIF
	0022A14.TIF
	0022B01.TIF
	0022B02.TIF
	0022B03.TIF
	0022B04.TIF
	0022B05.TIF
	0022B06.TIF
	0022B07.TIF
	0022B08.TIF
	0022B09.TIF
	0022B10.TIF
	0022B11.TIF
	0022B12.TIF
	0022B13.TIF
	0022B14.TIF
	0022C01.TIF
	0022C02.TIF
	0022C03.TIF
	0022C04.TIF
	0022C05.TIF
	0022C06.TIF
	0022C07.TIF
	0022C08.TIF
	0022C09.TIF
	0022C10.TIF
	0022C11.TIF
	0022C12.TIF
	0022C13.TIF
	0022C14.TIF
	0022D01.TIF
	0022D02.TIF
	0022D03.TIF
	0022D04.TIF
	0022D05.TIF
	0022D06.TIF
	0022D07.TIF
	0022D08.TIF
	0022D09.TIF
	0022D10.TIF
	0022D11.TIF
	0022D12.TIF
	0022D13.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

