

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19820013004 2020-03-21T08:48:43+00:00Z

- --	
gg60- 6c S'

JbIASA —CR-1b8652) A STUDY OF INTERACTIVI	 1482 - 2C878
CONTROL SCHEDULING AVD ECCEC81C ASSESSBIENT
FO@ ROBOTIC SYSILMS Final Report
(University of Southern California) 23 p	 Unclas
HC A11/MF A01	 CSCL 05H G3/54 16815

I

of c0 WNE'4ti

C

4	 Lbw
1 ^	 r

yi 	 r

1ti5TITUTE FOR
I LCHNOFCONOUIL

SNS1 F41S

INSTITUTE FOR
TECHNOECONOMIC SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA
UNIVERSITY PARK., LOS ANGELES, CALIFORNIA 41MM17

w

r

FINAL REPORT
for

CONTRACT #955332

JET PROPULSION LABORATORY

A STUDY OF INTERACTIVE CONTROL SCHEDULING
AND ECONOMIC ASSESSMENT FOR

ROBOTIC SYSTEMS

29 JANUARY 1982

TECHNICAL REPORT

ITEC-10-81

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology sponsored by the National
Aeronautics and Space Administration under Contract NAS7-100.

INSTITUTE FOR TECHNOECONOMIC SYSTEMS
^.	 UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CALIFORNIA 90007

C

1: C

4

A class of interactive control systems is derived in `art I by

9t.--ealizing interactive manipulator control systems. Tasks of inter-

active control systems can be represented as a network of a finite set

of actions which have specific operational characteristics and specific

resource requirements, and which are of limited duration. This has en-

abled the dezumposition of the overall control algorithm into simul-

taneously and asynchronously.

The general objective for development of Part II is to evaluate

the performance benefits of sensor-referenced and computer-aided control

of .:anipulators in a complex environment. This report represents the

first phase of the CURY Arm Control System (CACS) software development,

and gives the basic features of the control algorithms and their soft-

ware implementation.

Part III investigates the problem of finding an optimal solution

for a production scheduling problem that will be be easy to implement in

practical situations. The results show that the optimal solution is

very easy to implement in real life problems as the jobs have to be

arranged according to monotinic increasing processing times.

Part IV is an initial investigation and is the first in a series

leading to a fully-developed model, ROBECON, which may be used for speci-

fying the economic consequences of robot systems acquisitions. The model

will be computer-based and user interactive

a

CONTENTS N

t. I. Asynchronous Interactive Control Systems

II. Computer Modeling and Evaluation of Sensor-Aided Semiautomated
Operations

III. Optimal Production Scheduling for a Linear Flow Shop

IV. ROBECON. A generalized methodology for assessing the

economic consequences of acquiring robots for repeti-

tive operations

t;
s.

i t.

I

IC

IC

C

C

L

N

PART I

August 31, 1981

ASYNCHRONOUS INTERACTIVE CONTROL SYSTEMS

by

N. I. Vuskovic

INSTITUTE FOR TECHNOECONOMIC SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA

LAS ANGELES, CALIFORNIA 90003

t -
	 I

ORIGINAL PAGE IS
OF POOR QUALITYASYNCHRONOUS INTLIACTM CONTROL SYSTEMS

M.I. Vuskovie
Senior Research Associate

Institute for Technoeconomic Systems
Department of Industrial i Systems ELgineering

University of Southern California
Los Angeles, California 90001

ABbTRACT

A class of interactive control systems is derived
by generalizing interactive manipulator control systems
The general structural properties of such systems are
discussed and an appropriate general software imple-
mentation is proposed. This is based on the fact that
tasks of interactive control systems can be repre-
sented as a network of a finite set of actions which
have specific operational characteristics and specific
resource requirements, and which are of limited dura-
tion. This has enabled the decomposition of the over-
all control algorithm into a sec of subalgorittas,
called subcontrc'lrrs, which can operate simultaneously
and asynchronous!;. Coordinate transformations of
sensor feedback data and actuator set-points have
enabled the furthe, 5impllficatlon of the subcontrol-
lers and have reducad their conflicting resource
requirements. ':Le modules of the decomposed control
system are implemen.ed an parallel processes with dis-
joint memory space communicating only by I/0. The
synchronization mechanisms for dynamic resource allo-
cattor: among subcontrollers and other synchronization
mechanisms are also discussed in this paper. Such a
software organization is suitable for the general form
of multiprocessing using computer networks with dis-

tributed storage.

INTRODUCTION

In recent years, the emerging requirements for
interactive computer-aided control of -ystems became
progressively more evident. The more obvious areas
where such requirements appear are space, undersea
exploration, naclear energy-producing facilities, and
the like, where the work space is inaccessible or dan-
gerous for man to operate in, yet where complax tasks
need to be accomplished. Many of these tasks are gen-
erally not susceptible to performance by completely
automated systems at the present state of automated
decision-making technology. It is therefore required
to develop systems that project certain human capabil-
itias, such as sensing and handling, into the work
space, thereby enabling remote operations and process
control.

Rexote operations, frequently also called tole-
operations, benefit tremendously from computer inter-
active control where low-level control and decision-
making functions are done by the computer, while the
higher level decision functions are performed by the
human operator. The efficient allocation of functions
between man and machine in remote operations has been
the central subject of intensive research activities at
various institutions during the past decade. For han-
dling and assembly in space, the development require-
ments and the starF -f advanced technology for the
control of reams manipulators have been outlined in
Ref 1.

With this background in mind, we build on and
extend in this paper some of the developments for syn-
chronous control of manipulators in Refs 2 and J and
construct a more general framework for asynchronous
control of operations and processes requiring the
scheduling of many single-actuator cnntrollers by a
"supervisory" , antrol computer. However. It should
be recognized here that a manipulator system can serve
as a convenient, yet sufficiently complex, frame of
reference for the discussion of more general systems.

Asynchronous control differs from synchronous con-
trol in that initiation of a single-actuator controller
does not depend on cyclic interrupts of equal time
intervals but. rather. on in^arrupts based on overall
process raquirements. This enables tight scheduling
with minimal idle time for each accuat.r.

The implementation of asynchronous control is based
on the decomposition of the overall control activity
Into a number of control subactivities which affect
different actustoro or group s of actuators. In the
Interactive control process, these actuators or groups
of actuators are active only for a limited duration.
The control subactivlties are generally performed simul-
taneously but mutus :ly time-independently, i.e..

asynchronovrly.
In this paper, we first discuss the general physi-

cal structure of the interactive control system. Then,
we study the control functions to derive their decompo-
sition into control subfunctions. And, finally, we
propose a general software implementation of the decom-
posed system. It is shown that .A11 subsystem components

can be made as parallel, asynchronous processes which
are disjoint in the address space and which cmurunir,+te
between each other only b) I/0. This approach builds on
the works of Roars (Raf 4) and Branch-Hansen (Ref 5),

and is oriented toward the use of a general computer
environment, such as multiprocessor networks with dis-
tributed storage. Accepting degradation of reliability
and efficiency, the same approach can be used in multi-
proctssor networks with common storage or is a single-
processor environment.

GENERAL SYSTEM DESCRIPTION

Since our concern here is primarily with the con-
trol computer in Fig 1, we abstract the system as shown
in Fig 2. Only units communicating directly with the
control computer are shown with the corresponding

incoming and outgoing information flows.

Command Device
The command unit receives commands from the human

operator rod translates these into a control computer-

acceptable form. Commands have characteristics of
discrete events and are generally issued through key-
boards, voice, switches, pushbuttons, and the like.
Here, we consider commands In a simplified form as a
vector of Boolean variables c - (cl,c2,-.. , cnc)-

C

ORIGINAL PAGE IS
OF POOR QUAL!T"

V1100 boo 1x"M1	
3 - (81,32- - Sna) of thu no simultaneous signals

'.octmos+	 nan ereon	 sampled within a particular time interval.error

OnaSTOG

I	 -seat n.n	 I'	 w^won	 I

COrM,O	 coN1o01 I	 9n'O I KfWToo I CWIL71AM
nm Comm(coven2	 u..n	 u►en	 1aveOaW

w. l

L _	 _j	 1L _ows.t,pa.i ,edctn _.

Fig. l Functional subsysteaa and information flow for
interactive control of operational processes

DISKA
DEVICEr ^ !­

"^ SENSORS

MUMAN	 WANUaI - COWROL a ACTUATORS
	

fwV _
i1ERAT01	 CO ►.RROIIER	 COMPLafR	 Rotl"f

r
CO+.wuaND	 S

DEVICE

Fig. 2 General configuration of an
Interactive control system

which represents 2nc possible instructions regarding
the process by which tasks are to be executed. In
FiR 2 the symbols which represent inputs and outputs
of the devices have wave sign that indicates "raw"
values of data. This sign will be ignored in this
section.

Display Device
Generally, the display device receives, from the

control computer, all information required by the
human operator to make appropriate decisions for over-
ride control. This may include video data and audio

signals as well as force and position data, all of

which are transformed into a human operator-convenient
farm for display and sensing purposes.

In simpler versions of display units, one has
only a fixed number of discrete messages, such as
warning and alarm signals. These messages can be
represented by the character siring a - 31u2cOU ...
which is generated by the control computer.

4anual Controller
The manual controller consists of one or %ore

humw-factored dev±ces by which the human oreia.or
generates control signal that affect the execution
of the tasks. The human operator acts as a super-.ie.,t
by overriding and/or instructing the control computer
as required. The generated signals are converted into
in appropriate standardized form and sent to the control
computer as a vector 	 - (M1,M2,...,M) of the values
of the no simultaneous signals sampled within a par-
ticular time interval.

Sensors

The sensore represent a set of sensor devices
which measure the effects of the actuators on their
environment and the deviation of a control process from
a prescribed state. The sensor data are the essential
element of all automat',ally supported, i.e., human
operator-independent operations, that appear as a part
of the overall interactive control process. The sensor
signals are converted into a standardized form and are
sent to the control computer in form of a vector

Actuators
The actuators are a collection of M devices each

consisting of actuator units, servo units, and internal
state sensors. The internal state is described by the
vector of physical state variables t - ("l , ,2,...1,h),
Eachactuator executes set-point values or simply set-
points" received from the control computer as a vector
Op - (IpPPOP2,...,gpM). The physical-state variables
aka measured and sent back to the control computer
as n sampled vector O F - (9T.,6F2,...,g). The
actuator can execute any adm;ssible sett-point In a fin-

ite time due to its own internal feedback servo control.

Control Computer
The inputs of the control computer are sensor data

S. manual ccmtrols M. commands c, and feedback state
variables ^y. The output• are messages a: and set-points
9p.

The critical control outputs are the sat-points 9P.
These outputs are generated iteratively by complex algur-
ithms based on continuous and discrete internal variables
and functions. Generally, the output values .1p do not
only depend on the present values of the inputs bantioned
above, but also on their past values, i.e., on the com-
plete history of the control process. To avoid handling
of infinitely many current and past values of the input
variables, a well-known practice is to introduce state
variables and transition functions. These state varia-
bl►s can be grouped into a numeric state vector r - (r1,
r2,....rg). Because the algorithms of the control
computer also deal with logic variables, it is necessary
to introduce a logic state vector t - (11,12,-fl.)

which is a vector of Boolean variables. Generation of
the iterative sequence of the set-points (gp(k)j
(k - 0,1,2.3,...), where k represents the iteration
index, can now be described bv_ a recurrence relation in
the following general form

4	 - M S	 c 2f
9	 !I	

S	 c(k)	 f((k)^	 (k) i	(k)	 9
(k)	

r
(k)	 (k)).

_("ti) - t(M (k)^ S (k) i c(k)
9

(k)

t(k+1)	 h(M(k)^ S (k) c(k) a (k) r (k)	 (k))
--	 -	 c

r(0)	
. z .

-	 -o

t(0)	 . L .	 (1)

Here to and t are initial conditions of the numeric
and logic stwe vector respectively, while f, g, and
h are general vector functions that represent the con-
trol algorithms implemented on the control computer.
The last two functions are often called transition
functions.

The mathematical construct of Eq 1 represents
a sequential machine, the output of which can also be
represented In the operator form

6 p - 6(M, S, c, 6 F , ro , Ia).
	

(2)

where 6 is a vector operator defined by Eq 1. In the
following, the operator 6 will be called "control
algorithm" or simply "controller".

The remainder of the paper will be devoted primarily
to the internal structure and functions of the controller.

rN

;I

IORI GINAL PAC=E IS

f (,'	 DlCOM?OSITI ON OF THE COWMOLLER	 OF POOR QUALITY

The controller is usually implemented as a mono-
lythic software package, i.e.. as a single complax
sequential program. Anithar approach to structuring
the controller is an appropriate decompogition into a
set of subalgorithms or subcontroller• Sl..12.....6n.
This second approach is discussed here. C.ampared to
the monolythlc appr zch, it appears to offer less cosy
plaxity and better portability, flexibility, and main-
tainability. Moreover, this approach offers the
possibility to use more attractive processing altern-
atives, such as multiprocessing, which could be the
only solution when time constraints became critical.

Control Tasks and Actions
To decompose the controller, it is useful to con-

sider the structure of the system tasks that have to
be performed by the actuators. The aztlons of the
actuators have varying degrees of complexity. For
aanipu Ltor systems they have been grouped in Ref 2

and 3 into three categorise: (1) a finite sat of prim-

icive actions (2) composite actions consisting of a
sequence of priaicive actions, and (3) complex actions
which are networks of composite actions that are exe-
cuted sequentially and/or in parallel. An aggregate
of covplex acrl ms makes up a system task. Here we
shall not be concerned with the hierarchy of actions.
The system task will simply be considered a netvcrk
of actions which, in themselves. are defined by specific
control algorithms and which have specific I/O require-
ments.

Initiation and termination of an action during
task execution depends on the state of the system
which is defined by the relative ;.osition of the actu-
ator in its environment and by other events that
describe the degree of task completion. For this
purpose, the event-status vect: • • - (el,e2. ..ens).
has bear introduced. It is a Boolean vector whose
components Indicate occurrences o- absences of the
corresponding events such as "end effector is well-
aligned with the plane", or "the object is grasped",

etc.
The initiation of actions is a chain-reaction-like

process, where one action initia!:es the following action
These action initiations propagate through the action
network until the system task is completed. Transitions
from one action to another action are defined by the set
of Boolean functions TiJ(c,d), i,j - 1,2....,n. ifj,
of the command vector c and the event-status vector e.
These are called transition conditions. If an action,
say i, is in execution, and if the transition condition
Tij becomes true, then the action j will immediacaly
be initiated, the termination of an action is defined
by a similar Boolean function T ii(c.e`,i - 1,2....,n.
If the action i i% in execution and if til bec- mms

false, this actin will be terminated immediately. It
T ij - true implies Tii - false, then the action i will
be terminated simultaneously with t).e initiation of
the action J. Otherwise the two actions will remain
In parallel execution.

Subcootrollers

The subcontrollers are designed so that each one
corresponds to a single action. Therefore, they will
generally be execcted as asynchronous, sequential pro-

grams which can be independently coded, tasted, and
integrated with the system by satisfying certain sub-
controller interface requirement ► to be discussed
later.

where the numeric =4 logic state vectors rj and E
and their respective initial condltiona rand t 0 are
derived by appropriate decomposition of t^e state vectors
r and L. The variables o rj , Mj Ste^, and °s,j are sub-
vectors of 9r, M, S and !F reiye-ti wly.

The subvectors have the same dimosiona as the
corresponding vector in which the components of no
Interest for the action under execution are ignored In
the computations. Two subvectors are eatua]ly disjoint
if they do not have nonignorable components in common.
Therefore, the argu,amts of 6, include only chose con-
ponents required for the computation of the set-points
associated with the actiot J. In other words, for an
action J the subcontroller Aj generally does not used
to compute the set-polLts for all actuatorm and dcaz
not used to use all sensors, the manual cmtrols,
and the actuator feedback.

It should be noted, that some actions are fully
automatic and do not depend on the human operator.
These actions do not call for manual inputs, i.e.,
the subvector Mj is aapty.

As man. Eq 3 does not include a) sments of the
command code vector c an an input argument. As shown
above, this vector is an arguannt of the transition
conditions T ij (c,$) which coordinate the activities
of the subcontroller.

Generally, two different subcontroller n 6 1 anti
6J can use the same components of the input vectors
M and S, and can generate :he set-points of the sage
actuators. If such subcontrollers work simultane-
ously, they interfere with each other. T'.cersfore,
mubcontrollers competing for the same actuators should
be coordinated to that their outputs ^2i and ^p j are
mutually disjoint subvectors. However, this can con-
siderably reduce the number of actions that can be per-
formed simultaneously. In order to solve this problem,
we introduce a coordinate transformation

g - 4 (a).	 (4)

which minimizes the coordinate interactions for the
majority of actions. Note that this transformation
must have an lnverse

e - ^1 (g) •	 (s)

The transformed set-points 23? - (OpJ,QP2,...Qpp) now
represent the new space cnllad "controller space".
The coordinate tranafcrmation (Eq 4) also simplifies
the subcontrollers, because the controller space is more
convenient for constructing the algorithms by which the
actions are implemented than the previously used actuator
space. For example, the controller space le the case of

manipulator control systems, Ref 2, can be the hand
coordinate syctam, while the actuator space is the '•pint
space of the manipulator. The change of only one t wr-
dinste of the hand coordinate system, say the front
distance o` the end-effector from the object being man-
ipulated, can cause simultaneous adjustments of several

joint coordinates. The coordinate transformation
(Eq 4) in the case of nonredundant manipulators is
defined by the manipulator geometry equations.

In order to make further simplifications of the
subcontrollers, a similar transformation for sensors
data is introduced

Y - 4 (S) ,	 (6)

I
i
i

A subcontroller d j associated with an action J.	 where T - (yl,y2.....7W!) is t;ie vector of the trans-
gtnerates the set-points for those actuators which used 	 formed sensor data. Examples are outputs of strain
to be active for the executior -f the action. The corre-	 gauges placed in the wrist of the ranipulator arm,
spooding operator equation cat be represented as folla%,s 	 which are transformed into orthogonal forces and

torques defined in the hand coordinate system. Trans-

formation (Eq 6) does not necessarily need to have an

Inverse, i.e., NT < as. The manual controls M do not
have to be tranmformsd, because the manual controller
cam be designed w that it directly generates signals
that correspond to the controller space. Because of
the iterative nature of the subcontrollers and soar
formal conveniences. the outputs of the subcontrollers

will ba r presented by the incrsments of the set-points
U ())	 4rZ$) - 2p(k- 1). The now operators of the
subcontrollers cim now be written in the form

The operators D are expected to be simpler than
the operators of >=q because of transformations

(Eq A and Eq 6). These transfotisatlons can be cen-
trally executed far all subcontrollers and can be per-
forreed within another functional block to be discussed
later.

As seen, the subvector lj is omitted in Eq 7.
It is not essential to the controllers defined in the
controller space. As will be shown later, 027 is used
within the actuator block (Eqs 13 thry 17). In fact,
the ^jj could be generally retained as an argument of
Aj, because some algorithms of subcontrollers might be
based on the information of the actuator states, but it
will be omitted hare for the sake of the simplicity.

Channels
A triple of input and output subvectors (Mj, Y j

o	
,

U)) is associated with every sucontroller A . in the
following discussions this triple will be ca11ed
1. channel". Two channels (M l ,T I , U I) and (M2112,U2)
are autually noninterfering if:

1) Inputs MI do not affect the outputs P 2 , and
the inputs !12 do not affect the outputs Pa.

2) Changes of the environment due to the execu-
tion of 1 will not cause changes of 17, and
changes due to the execution of U 2 will not
cause changes of 11.

It follows that the necessary condition that two chan-
nels are mutually noninterfering is that the corres-
ponding output vectors U 1 and IL2 are mutually disjoint
subvectors.

If two subcontrollers work on mutually Interfering
channels, they can interfere with each other. Because
they work asynchronously, i.e., time independently, it
is practically impossible to determine and to control
the Interference between the subcontrollers. Their
algorithms must therefore be designed under the assump-
tion that they are completaly independent of each
tither. Consequently, only for subcontrollers working

simultaneously on mutually noninterfering channels can
stability be guaranteed, i.e., the convergence of the
ecrresponding algorithms. Therefore, the system must
provide the channel management that +ill enable the
coordinated allocation and daellocation of mutually
interfering channels to simultaneously active
subcontrollers.

Because some actions can be more urgent than
others, as :z is with actions invokad in emergency
situations, vriorlties should be assigned to the
act:.ons. These priorities will resolve conflicts when
two or more subcontrollers are competing for mutually
interfering channels. The matter of priority assign-
ments will be discussed later.

Having done the decomposition of the controller,
thn functional block diagram of the control computer
can be represented as shown in Fig 3. There are six
functional bloc", five of them having assigned I/O
functions and coordinate transformations and one with

co-ea roc.

I	 i
rw,..	 s+ti. • I wcor 1	 I
sncu	 race	 na^n	 I

	

i	 roc.	 W"W"

	

I	 1

^ K.o

	

1	 1	 I0. .n^.,w I^• .c,,,. an
fO.w•.^ f	 CO.•••e ^ I

	
opus	

I	 rOx n 	 ^

qv[1	 ROC.	 I	 ^.	 I	 er

I	 i	 1

L------------ J

Fig. 3 Distribution of functions of the
control computer

control functions. The control block consists of a
subcontrollers and the necessary interfaces which
enable data comistmication betwen subcootrollsra
Internally and between subcontrollers and peripheral
blocks externally. The interfaces also have the
responsibility of channel management. These func-
tional blocks and interfaces are discussed in the
next two sections.

MAIN STSTEM COMPOKMS

The functional blocks of Fig 3 will be imrple-
aented as parallel and asynchronous processes. In
accordance with the system structure discussed so far,
we define five peripheral processes and n processes

which support subcontrollers ij . The latter are
called action processes. The peripheral processes
support the corresponding peripheral functional blocks
and are called command process, display process, manual
controller, sensor process, and actuator procans. These
processes will now be discussed in greater detail. As

will be seen later, thes e processes are not the only
system components. Thor. are additional components
which appear as a result of the decomposition, and
which support the communication between the processes.
These components will be considered In the next section.

A more detaiied and formal description of the
system is given in the Appendix, using the notation
developed by Di;kstra (Ref 6) and Hoare (Ref 4). The
reader not familiar with this notation can skip the
Appendix without loss of the ideas presented here.

Commmand Process

Assuming, for the sake of simplicity, that the
command device is an array of nc on/off swicches, then
the command process cyclically i>_terrogates these
switches, whose positions sre defined by the raw command
vector c - (c1 ,Z1,...,Znc). It transforms this vector in-
to the co®and vector c and checks if there is any change
In the commands. Checking is done by comparing c with
its value co ld from the previous cycle. If c I cold-
then the new value c will be sent to the action pro-
cesses for further computations.

Display Process
We assume again the simpler case that the dicplay

device is intended for discrete massages such as warn-
ing and alarm signals. In this case, the display pro-
cess receives, from the control block, a usssage code

	

in the form of . Boolean vector a	 (al,a2,...,aca),

whenever it has a now value. It produces, then, the
character string a • C& (3 20 	 and displays it to the
human operator. The c racer string is generated by
the program CO'R'E . which for anch state of a responds
by a fixed, predefined verbal melmage. The details of

0

♦7

0

ORIGINAL PAGE 13
OF POOR QUALITY

i	 the program are not Important for the following disev.s- 	 which was discussed in the previous section. Finally.
sioc and will not be pursued. 	 it defines the toolean vactor ready -(raadyl,read72.

...,ready„), the components of which define the met-

Manual Controller	 ;Points of the actuator process that have been already
This process is performing three operations. !first,	 "ecuted, i.e..

{t cyclically reads the raw value of the manual controls
M_ from the A/D converters which are attached to the cca-^ true 	 if IQ PI

- QVI ! f t01
f	 troller devices. Second, it calibrates raw values in 	 ready, -

accordance with the relation 	 `false otha=vise

H - _*.W (9) ,	 (e)

where the vector function b 4 represents all operations
necessary to transform N into Ptandardlaed signals,
thus providing a good interface between the human oper-
ator and the control corputer (linearization. compen-
sation for unwanted effects due to nonllnaar character-
istics of the controller devices, introduction of
saturation and dead-band, etc.). Third, the process
checks if the new manual controls M_ are different from
those generated in the previous eyels Mt,1, by checking

the inequality

M told `— ^,	 (9)

where tM is a given tolerance vector. If Eq ? does
not hold, the new value M_ will be sent to the action

processes.

Sensor Process
This process cyclically reads raw values of sensor

data S from the A/D converters attached to the sensors,
and then calibrates the data by the relation

5	 ^(S)•	 (10)

The vector function tS operates similar to JM , but can
be core complicated due to the complexity of some sensor
systems. For axample, proximity sensors with fiber
optics must be calibrated for environmental conditions,
such as color and feature of the manipulated objects,
etc. Therefore, the calibration process may need n

dynamic definition of the calibration parameters. The
ftmction 4S may also include a filtering capability to
reduce noise.

After calibration, the process checks if the new
value S is changed with respect to the value Sold from
the previous cycle by the inequality

JS	 S old < c 5 .	 (11)

where cS in a given tolerance vector. If Eq 11 is
true, the process will read new raw sensor data from the

A/D cony.r-ters. Otherwise, it will first perform the
coordinar.• transformation

Y - !S(S), 	 (12)

which hats been discussed In the previous section, and
it will than read nrd rev sensor data. The transformed
sensor data Y is sent to the action processes.

Actuator Process
This process has an input and output part. The

input part cyclically reads raw feedback values of the
actuator state variable@ j. and performs the data
rrlibratlon

_Q (4) .	 (i7)

It then transforms the vector 1 from the actuator to
the controller space by n mapping

gF - I s (IV).	 (14)

or in shorter notation

ramdy	 IO - 0_1 i cQ).
	

(16)

where 4? is the vector o' the actual set-points, and
cQ is a given tolerance vector. The vector ready is
se,ut to the action processes in arch process cycle.

In the output part the actuator process receives
the totes incremmat (if any) of the set-points (this
vector is composed of the partial incremmnts Ugener-
ated by the different subconrrollera working s^tan-
eously) me'. form the now wt-points wing the current
positions 4

p	 0_ ♦ Utot.	 (17)

The set-points in controller spec• are now transformed
into the actuator apace by the inverse mapping

4 - 41 V.	 (le)

and converted into the raw output value

4 ^
1 (or).	 (19)

This is than written on the D/A converters of the
physical actuator.

Execution of the input and output part of the
actuator process is not essentially synchronous and
alternative, but the software implementation sus'
ensure fairness to both pats. Also, to avoid delay
effects is the control loops sensor-controller-
actuator, the cycle period of the actuator process
must be long enough in comparison with the cycle period
of the .sensor process.

Action ProCessem
fie action processes perform the actions. i.e..

they exec-ite the subcontroller n 6 (J - 1,2,...,n) and

provide the necessary administration. They all have
a similar structure. with the exceptlau that they
employ a difforent algcrithms for the subcontrollerr.
:"herefore, the action processes will be rapresented as
an array of processes with the subscripted name AM.
A(2),...,A(n). Every archon process can have a blocked
and an active state. in the blocked state, the pro-
cess is waiting to be activated by some other action
process. In the active state. It cyclically checks
the relevant transition conditions and executes the
su9contrnller, if it has the right frr furtner
existence.

Checking the transition conditions Ior an action
process, sal A(J). means evaluting and checking the
Boolean functions r^ i (c.a) (i - 1,2,...,n, 1 i J).

wwhich were dlscus	 in the previous section. If Dome
of theme 	 turn out to be true, the process
A(J) will notify the system which will then *and !wake
signals to the corresponding scLion processes that
must be activated. if t J (ca) becomes false, the
prose	 as A(J) will lediaielf put itself In the b1tc ked
state. Otherwise. it will execute the subcontrzller.
i.e., it will invoke the procedure with the name SLB-

0LLER j which is specific to the corresponding

ORIGINAL PAGE IS

C
	

OF POOR QUALITY

action. *umeric and logic stet• vectors r and t)
of the subcontroller are local variables 	 the

process A(J).

Coneeraing the action processes and their subcon-
trollers, there are two important issues msntio-ued in
the previous section. These are channel allocation and

controller synchronization.
When two subcontrollers are competing for the acne

channel or for channels that are mutually interfering,
only one mubcontroller can be asaitned to the channel.
The other oust wait until the first terminates and
releases its channel. Immediately after being ac ,.i-
veted, an action process requests from the eystaw the
channel required by its sutbcontroller and than waits.
As soon as the raq^ested channel become srailable, the
action process will be notified and activated. It will
than iteratively execute the subcontroller until the
corresponding action has been completed. When the sub-
controller terminates. the action process notifies the
systan that the channel c&L be released. :he ctuannel
ccn now be used by another waitink action process.

It has been muted that eons actions aa} be more
urg►rt than others. For instances, aergency actions
meat be p,2rformed lar%edlately to prevent system fail-
ure, incorrect performance. or coll_%tou. In this
case, the em*rgsncy action should be able to get rho
channei even if it has betn allocated to another
action process. In order to administer this, the pri-
ority vector L-(P1•P2-••••Pn) is introduced. where the
prloritiam p j (J-1.2,...n) Pre associated iith the
processes A(J). If the pricess A(k) has a higher

priority tl.an A(J) which is in programs. (pk > pj),
then A(k) will be 1-anted isnlia:e access to the
channel while A(J) will be r epo-arily blocked.
Hers, we only consider static priorities. More gen-
eral capacillties of the iyetme would be with dynamic
priorities which can be changed during car'- exmcu•tlon
by the human opt %cor or by aomie algorithm.

The synchrcnization of a a-bcontrollor cow ist n

of the following. The execution of the su.bcontroll*r

_j witnin the action process A(J) Is done In an itats-
tire manner, _.a., the subcortroll.r generates the
sequence of the set-point inereaenza (, (k))

Ha:e, any increment J W cannot
be sent to the actuator process before tFa per loam
increment , (k-n) has been executed. In other words,
when A(" wants to genera ".* one %end ' te, (k), it
must vait until the actuator pru:cass first axecu.tes
j^j(k-1, ant then no t ifies A(); by the signal "Rea" that
it can proceed	 Only, then can A(J) ask for, and
receive, the now values M(a) and Y (k) to compute the
new value tD(k) and than--enc. It to the actuator pro-
cess. Mis synchronization mechanism, And the previ-
ously dlicuseed channel allocation sechanisv , are
external to the action processes. They will be dis-
cussed in she naxt section in more detail.

MERFACES AND SYSTEM INTEGRATION

In the previous section, the main compcnents were
diu.cussed. In order r o proved* a slap)• and zellab_e
.mpla.en.,aticn, the process*• defined hcuid not car
mumicatf directly with -ach c:her, but the; should
communicate through some inter faces. Frr this plr-
pose we introduce two additional software cr+sponentt

whir l- are a status monitor and a channel mr-itor. These
scnito-a can bu built a^ pasO.ve c-sponent- v.th a data
structure 7•d amaocieteb operatic-,- (monitor pro-

cedures) as was P-onca" in t;as previous wank (Ref J)
which use leased on . monitor crrorept by griaeh-Mans*n
(Fef 7) and Hoare (Ref B). The li -tit%tion of thib
approach in tG!t the ^ro.rsefc. accessing ice soni,.or
must share eon Amory spats. However, a more
attractive pussibilley .'a if he processsm are sea:* to
'oo mutually aisloiat in memory space. Than, the system

can be implamsnted on a computer network with distrib-
uted storage. Solutions to this problem have been also
proposed by Hoare (Raf 4) and by Arinchr-Kansan (Re(S`,
where the monitors ate implameated u processes which
communicate with other precesseA by I/0. These ideas
are applied in the following paragraphs.

Statue Monitor
The status monitor supports (a) date cos,nica-

tios betveen all periptioral processes (accept the
actuator prod-&) and the action processes A(1)
(S-1,...,n), (b t evalu.atlrn of the event-statue vector
a and the ssssago-cods vector t., ub-i (e) activation of
thb action processss.

The Rata cossrmicatica iA organizod so tLat the
status srnitor examines other p y ocaAose to determine
if they are randy to receive o. to sent: data, i.t
cneamtd procanr, mauaal controller, and sensor pro-ose
sent' data to the st:atua monitor wherever they are rr.AJy,
and the state► men_i or will recaivi tho.:* ^-.ata and a' ll
cop^ tbee into its Leta/ variablev. When the action
procen :a/ need these data, they "k for them by suing
the appropriate signals to _as status monitor (the
signal "stat-ta' for c and a, and the sip.al "inpu t" :or
M_ and T). The ctat + ns monitor will aP%sd!%tely r e spond
by sandhi& the car-•aponding date to the correect.uding
proems. The action procecse_ scat ask foe the dAta.
. -ause the status r nitor NrV* ear^ than out process,
end it east .espoua to their fregAmt requests --id
zha:afore shou. ' mat be delayed for longer perioln.

When the status monitor :rcalva. senior data Y_ it

will alvay.j invoke the two procedt:ea 7.7E."rTPDA1-E and
?MSACL= L. TLj fitat procedure defines and updates
the now v.:Iue of the event-aca r ur vector a, uatng the
scat recent saraor iats and poss_bl± thsl; -eat
values. Paving T, uW m, the ptocedu-• MESSAGECODF
defines and updates the massage code a. If the-* is a
change of this vsct3r with respect to the old value.

i.e.. 1:	 ♦ ±Dld - status sonitor will send t.̀m new

value a to the display process.
TEA mazhanis► of activating an cctlno ;)rocasm,

say A(k), by a.tot.to: actiou process. say AQ), is per-
formed as follows. If A(J) flnei thv ►t the transition
condition T lk (i, a) is true, it will area. the inrager

k to the status monitor. This integer identifies the
radon procsr% that seat be activated. As soon as
status sex itor receives k, it will rand thu "awake" sig-
nal to the rruciss A(k). This procaas, if in .he blocked
at%te, i- waiting for tf.. "awake" signal fr-a tha ..anus

am-tor and will chs•nge it., state to the active oNi.
T' t "awake" signal .tam :!o offect if r.t.e process A,,-.) is
alr"e y in the active state.

Chp Znel honItc-
The charnel monitor supports throe functions.

(a) deta cieunicarton betveeu actiou processss and
actrator process. (b) channel all* , tlar. and (c/ char-
nal rnch:oniia'ivn

7h* first functio-a is based on the sane otln-
ciples as for the status monitor. -he monitnr r-ceives
f rom tha actor pr -)cess the Boolean vacto • readv And
%ends the vector of set-point rote cents J t c t tc the
actuator process. the vector U to t is discuss* below.

The chanm al allocation, i.e., servicing the
roYuest/ralesse requirements of the action 7-ocesses
Is demo by .wr p:ocedutes: REQUEST a_td Ra'LEA.SF. The
fl •st procedure is Lvo6ed whenever a "request" signal
is sent f-os the action process. Tha 1-wit pirasvcor
of the procedure is an integer J tt it Ida :ifles the
rv)u*aring process. The procedures has access t.. the
him toolean matrix m - l a i d) (11,2,...,11;

which defines the channel rcoulreamts
fir .11 ac , -on p •ocess*e. fir exaaais, ail - true
indicates that the i-th input of the act-ator process
is rsqutr*d L7 the subcoutroller Al. The J-th column

vtt

i
l

OktGINAL Pf,GE IS
OF POOR QUALITY

•	 (nlj,•2	 ,m„j) cf the matrix • defines the
e^leto chalbeI requirement of the nubcontrollor Ai.

The procedure also has access to the priority vector 2.
The matrix • and the vector p are constants lou 1 to
the channel monitor which are defined at the time of
system installation. When a regtwt is made by the
A(J), the procedure EEQ'JLST first checks if the true

pattern of the n̂ j matches the pattern of the channels

already allocated. If rot, the channel will be ice-
distely granted to the A(1) and the signal "allocated”
will be sent to it. If yes, the procedure will put the

p-ocese index j into the vatting queue, which is also a
data structure local to the channel monitor. If the
requesting process has a priority greater than the pro-
castes holding the channel, then the monitor procedure
will parform channel reallocation.

The procedure RELEASE in invoked whenever a
"release" signal is sent to the channel monitor. The
input parameter of this procedure is also the integer J.

vhtch identifiae the procass releasing the channel.
T`^a ;ro:edure examine the waiting queue for a process
waiting for the channel. If such process is found (pri-
orities are taken into account), an "allocated" signal

3111 le sent to it, sad its iden : ificetion index will

be rem Tred from the waiting queue.
The third function of the monitor, tits channel

synchrcaization, is done by the procedure CHECXCWT.4El..
fh u procedure is invoked whenever the channel monitor
receives the vactta ready from the actuator process.
It will then check for ehannols which are still busy,
or rhicl are ready to acc-pt new set-points. The check
is made by comparing the vector reedy with all colu.aa

cf the matrix _n . wi.ich corT8 - good _o the active chwn-
nals. Active channels which meet the true pattern of
the .actor ready -re ready to accept aw , dsta. Those
chAnrneL are define: by the index set JR - (J I n
ready - a. and JtJ A) where J A is he index set of all
active channels. The procedure CHEC[Cl1ANNEL will strut
a "go" signal to all processes A(J), jcJg.

lie now turn bark to the vector G	 . The channel
scnitor plays the roles of a buffer rtM t colleeta *,V er-
s.it portions of U which art sent AN st:OVectcrs kj

f_om the diffsrenl oLrocessns AQ). The collection. of
these portivus _i de.inrd by:

cot " L U) '	 (20)
JtJA

vher • (1' are "clenrvd" .rersto.0 of the subvector,.
daf ii,.d^ by	 ~^

I U ij	 if	 mij v true

ij	 I 0	 if	 nij n !als(..

S y st s- Data Flow 0:agran
Tike system co•ponen-.s rev can be connected incn a

@-stem shown by he data flow ^tmgrem in ; ig 4 The
processes are represented by circle. and ta s 	ripheral
da l.as '.y squared be as. The data and cra signals are
repr ,tsentse b7 ar% w• indicating their sources and
their dest'natious. To indicate tLe difference betve-n
4eta end ,ilgnal ► , the latter are shown ty dasheG arrow-s

Aa seen, the dirgtem In T'g 4 Ms the forty of s
dou:.le scar. 'nth star s h=;. ti&& rgnitor protases in
.be cute:. Cho a-tlon r+kasis constitute the coaron
branches of ohs czars. Th ire3 bnaurhas balon-^ to
peripheral procaa-ies which have ac:ass to tLe external

phys ical devicaa.

ORIGINAL PACE IS
OF POOR QUALITY

•

r
0

C1

—W
i.

W	 '„^, `	 N ^^ Cr N
' Y

.gym- r^-OCtte1 N
N	 }. W M- mat. • -Mill

C.	 CO--* -OCrt.
to.a.d."

w 9--v-MM
Y	 .M.,ry --Mpg%

4M C.. C+..r...orWW

Fig. 4 Data flow diagram of the
incegratod syetem

CONCLUSION

The proposed software structure of the Interactive
:ontrol @yet= is highly modularized and is suitable to
be implemented on a computer network with distributed
storage. The eodularization is done in accordance with
the varied I/C. and control functions of the system.
Because of this, the system can be implemented iradully
and with the possibility of subsequent raiinemert and
improvement. All modules can be designed, coded, and
tested separately and almost independently of each

other. The second characteristic is attractive because
of the time constraints and the system reliability
which become more and more important factors of such
systems. Also, the cr" of computer technology]usti-

fiws such an orientation.

The intention Lare is not to give a definite and
detailed implementation of the software, but to iden-
tify certain structural properties of the interactive
control systems and to given hints for the application
of m),darn concepts of real-time programming proposed by
Dijkscra, Hoare, Drinch-Hansen and others.

Fir the sake of simplicity we Sgtored, in tnis
paper: (1) the parameterization of the commands c and
messages a, (2) the dependency of the nubcontrollers
(Eq 7) and sensor transformations (FAR 12) on the
actuator-state feedback :y, and (3) the dynamic
assignment of channel priorities to the subcontrolere.
These last&&@ will be considered in the further work
.and through practical realizations.

ACXNOHIZ3)CZXL7T'S

The research described In this paper was carriso
out, in part, at the Jet Propulsion Laboratory,
Califortnil institute of Technology, Under NASA Con-
tract 11 A.i7-101). The authors also wish to acknowledge
valusl• ,e dlr.uasions on the subject with Dr. A. K.

na^c^y.

I1) Hbor, L. and Aejczy, A. K.. "Control of Robot
Manipulation for Handling and Assembly in Space."

2nd IFAC/IFIP SV•p031ta on information Control
Problems in Manufacturing Technology. Stuttgart.

annoy. 222-24 Oct 1979.

!21 fiejezy, A. K. ad .,a
v
kvvlc, M. Z., "An interactive

Manipulator Control Syatem. Proceedings of the

N

q

ORoUNAL PAGE IS

OF PCOR QU:.'_RVI .)

2nd International 3	 si.a on Mini- ;-ad Micro- SEMORPROCESS f

computers in Control. Docamber 10-11. 	 1919. I
S'SOld'It realrK tor;

(7)	 Vuavkovic. M. I.	 and Zwackl. R.	 L.. "Structural
Approach to the Design and Implamentat:on of Cow-

Y:	 realvector;

puter Control of Manipulators." Proc^eedir aof •IADC??

the 11th International S	 •its on	 wna
rris.Microc	 uttars,	 Pacific Grove,	 1

oM1n1-
S:-*	

(g1•S

January 7(1 - February 1.	 1980. b:	 boo.le.n;	 b:`(,3 -	 So1dI-t5)'

(6)	 Roars. C. A. R.. %_u %micating Sequential
(b	 • skip	 0— b • Y: -4 S (6);	 SMIY,J

Processes," Cosun 1_.s 1 1on of the ACA. Vol.	 21.
ACTUATORPROC LSS

No.	 8. August	 1978. -

(5J	 Erlach-Hessen,	 !.,	 "Distributed Proreasea:	 A !' P' t	 T (
Concurrent Programming Concept," Comaunicatlot (%T.QP.Utot:	 rsalvr-,to•;
of the ACM. Vol.	 21. No.	 11, November 1978.

QT' ­QPo; QF'-0P'
(6)	 Dijkstra, L. Y., "Guarded Coaanls Nondaterminac-T toady: boolaan;

and Formal Derivation of Programs," Cosmunicsom •l /DC?Bf •
of	 the ACM.	 Vcl.	 18,	 Na.	 S.	 August	 1975.

(7J	 Erinch-Hansen•	 P..	 "Operatin	 S areas Trinci las," 1
Prentice Hall.	 Englewoo	 s, .. Q^i~9(8T)'

r^y.v(IvP - aTI^tQ)^
"Monitors:j8J	 Hoare. C.	 A. R..	 An Operating Sysras

CMIraady
Structuring Concept."	 of	 the ACM._Cc3onnicatlon
Vol. 17. Vo. 10, Octo'ier19^ OLM?Utot

Qp:-Q! ~ Utot;A"LNDIX
S p	 P):

The following statements shculd not be considered d	 :.r- 1 (d)
as a program • but as s pseuducods use° to describe P	 8

algorithms.	 Therefore,	 the mathema • _cal symbols fur DAC!ePJ i

variables and functions are u_.au rather than symbolic
names.	 :he detailed azplaastlon fnr the syntut of the ACTI(K. ROCPSS -
notation is given in Ref 6.	 :r this section the fol-
lowing nonstandard data types are used. 	 "Boolean- blocked.ca ,cr.	 ,jolann;

vector",	 "raalvecto:" arc: "rharscterstring". 	 These blocked:-tru, ca:-talse; cr:-false-

are arrays of corresponding standard data t)rpos, where '[blocked - Sn?avakm(); blccked:-false

the di•sensions correspond to the d1,.-n p ions given 3-blocked

through the paper.	 Varia^les cM,	 c S and °.Q are con- ISMiswaks()	 skip

stant vectors with corresponding dimensions. 0- =a
1-:r	 CM!requesc(); cr:-true

I DP :: DISPIAMOCESS Oc r • CM?allocated();
n MC	 :: MANL'ALCO?TROLLER T"no	 i : -i ° ; ca : -trt•e)

CP	 :: COMMA.1'DPROCESS oca • CM'go(); P,AF0R"ACT10Njj

SP	 ::	 Srr1501LPROr_E55
aAP :: ACTUATORPROCESS °ERFORMALTION

jA(j:1	 .n)	 ::	 ACTIUNPROCESS
nCM :: CHANNEL40NITOR c	 booleanvector;

n5Y ::	 STATL'SMONITORj e'	 booleanrac:or.
b:	 boolean.

DISPLATPROCESS SM!status();	 SM?(c.e);
1:	 integer;	 1:-0;

a: booleanvector; N:characterstring; eli<n •

s (SM'a	 - C-,,Nr	 T,	 CR:T!Q)
) • skip

MANLALCON-11WLLER

•

lb - SMILO-b	 skip)l)
M.M	 M:	 raalvec:or;

old, b:•t)'(c,$)•

^(ADC'.M	 •	 M:-%,g). lb - SM!input();

b:	 boolean;	 b:-(IM -	 M	 I`):
old -tl+

M.Y,	 realvector•	SY.?kA,Y);
SUECONTROLI.ERJ

lb - skip 0- b • SM!M: M
old MI) Ch!U

o, h • blacked:-true; CM!relaase())

LOWL"TNU LESS
rIAKNEL'10N1IOR

c.c0id'r:	
Doolu•+vactor:	 cold',false;

U•Utot:	
realvector;	 1' :0. .	 0,

e (switches?f •
empty: boolean; mprytscru.;

C:"	 (C); (,t	 bock...+:	 b:-(c-c,ld); :eadyt	 booleet..

(b	 skip 0— b • SM!c; c 014:16) e:	 (l..s.l..^)	 b..olvan;
•(():1..olA())'req:estl)

0

C.

G.►

REQUEST(... lf cbamel free then
A(j):Allocated()...)

C(j:l..n)A(j)?release() +

HELUU(... if this cbamal requested by A(m) then
A(a):allocatad()...)

GAP?ready +
CUMCSAM81.(.. . if chamal k not busy tban

A(k):go()...)
d]:i..n)A(j)?U +
is integer; 1:s0;
*(icg +

is-i+l;
I-m(i.j] - skip

on('-J] + Utot(i]:sUtot(il+U(i]]];

empty:'false
Crempty + AM tot ;

U tot '
-0' mpty :strue)

STATUSHMITOR s

e: booleanvector;
e: booleanvector;
a.a

old

: boolesuvector; ao.Xd:sfalse;

k: integer;
X: realvactor
Y: realvector;
*((j:l..n)A(j)?status() + A(."):(c.e)
o(j:l..u)A(j)?input() + A(J):(H$Y)
M?c + skit

CM'vm + skip

OSP?Y + EVP1!TUPDATE; IRSSAM=E;

b: boolun; b: s(a ' aold);
)b + skip
c-b + aold	 a; DPla]

o(j:l..n)A(j,?k • A(k)!awke()]

G

1+

I

!	

^

i

1

i

7

i

E;

	 d,s	^G ^J w_.r3 a .	

I

c

PART II

August 31, 1981

COMPUTER MODELING AND EVALUATION

OF SENSOR-AIDED SE14IAUTOMATED OPERATIONS

BY

M. I. Vuskovic

INSTITUTE FOR TECHNOECONOMIC SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CALIFORNIA 90007

ABSTRACT

The CURV Arm Control System (CACS) is a computer aided control
system for interactive computer-aided control of the six-degree-of-freedom
manipulator of the JPL teleoperator laboratory. The manipulator is
equipped with proximity and force-torque sensors. In order to perform
complex tasks like tracking, capturing and stopping of slowly moving
heavy objects, the human operator commands are supported by automatic
control algorithms based on sensory feedback data. The general objective
of this development project is to evaluate the performance benefits of
sensor-referenced and computer-aided control of manipulators in a complex
environment. This progress report represents the first phase of the
CACS software development, and gives the basic features of the control
algorithms and their software implementation. The control structure
development is based on three concepts: incremental motion synthesis,
basic control routines, and parallelism of algorithms. Incremental
motion synthesis consists of generating a series of motion increments
instead of generating endpoint values. This enables a unified handling
of position and rate control modes of the manipulator, and uses simpler
coordinate transformations'based on linearization. The basic control
routines represent the set of elementary algorithms for generating
different kinds of motion increments shared by all algorithms of higher
levels of the control hierarch. The parallelism of algorithms is a
natural consequence of considering manipulator activities as integral
components of ccmplex manipulator tasks. Because of the relatively
complex control structure and its inherent parallelism, special attention
has been paid to its software implementation. Therefore, modern concepts
of monitors and concurrent processes are applied in this work.

ABBREVIATIONS

CACS -	 CURV Arm Control System

TO -	 Target object

TP -	 Tracking plane

EE -	 End effector

CAL -	 Common Assembler Language

WCS -	 World Coordinate System

JCS -	 Joint Coordinate System

CONTENTS

I.	 FUNCTIONAL DESCRIPTION --------------------------------- --	 1-1

A. INTRODUCTION --	 1-1

B. OBJECTIVES --	 1-1

II.	 FUNCTIONAL REQUIREMENTS --------------------------------- --	 2-1

III.	 OPERATIONAL DESCRIPTION ----------------------------------- 3-1

A. GENERAL SYSTEM DESCRIPTION 3_1
,

1. Manipulator 3-1

2. Operator Control Console 3-3

3. Control Computer 3-6

4. Computer Console ----- 3-6

5. Alarm Display ------------------------- 3-8 i

6. Computer Interface ---------------------------------- 3-8 I

B. CONTROL ALGORITHMS ____
f

3-10

1. Incremental Motion Synthesis ------------------------ 3•-10

2. Application of the Incremental Motion Synthesis
in the CACS ------ -------------------------------- 3-13

3. Basic Control Routines ------------------------------ 3-18

4. Dynamic Response of Manipulator and Delay ------------ 3-26

5. Parallel Processing Concept ------------------------- 3-29

6. Application of the Parallel Processing Concept

, in the CACS 3-33

C. SOFTWARE IMPLEMENTATION ------------------------------ 3-39

1. General Software Architecture -----------------------	 3-39

2. Parameter Editor Subsystem --	 ----------------_--- 3-39

ti

i

t,

CONTENTS (contd)

3.	 Manipulator Testing Subsystem ------------ 	--_--_ 3-43	
4

_---__^_..^_^.^^___-__^.._w..--- -	 }G.	 Monitor Concept	 3 43

5. Basic Prerequisites and Assumptions -------«-------- 3-46
^i

6. Implementation of Monitors and Processes -----------_ 3-48

7. Scheduler --- 3-52

8. Program Documentation	 3-59

IV. CONCLLSIONS AND PLANS ----	 ------	 ------- 4-1	 1

V. REFERENCES	 5-1

APPENDIXES

A. GRAPHICAL REPRESENTATION OF DATA AND
STANDARD OPERATION --- A-1

B. TBD	 B-1

Figures

2-1 Manual /Automatic Tracking /Grasping Operation Sequence ----- 2-2

3-1 Data Flow Diagram of CACS -------------------___----- — 3-3

3-2 Principle of Incremental Motion Synthesis ----------------- 3-11

3-3 Example of Combined Motion ---------	 --------- 3-14

3-4 General Data Flow Diagram of CACS ------------------------- 3-15

3-5 Translatory Motion of the Arm in World Coordinate System -- 3-20

3-6 Rotational Motion of the Hand in World Coordinate System -- 3-21

3-7 Translatory Motion of the Arm in World Coordinate System -- 3-22

3-8 Constrained Translatory Motion of the Arm in Tracking
Plane---------------------tl---------- -------------------- 3-23

3-9 Expansion and Contraction of th ,; .law ------------------------ 3-24

3-10 Asymmatric Expansion and Contracti •n of the Jaw (Fixed
Left Side	 ------ ,_.._p^M_____..,._ :......^.^.---------- _^^_-	 3-27

f

CONTENTS (contd)

G
3-11 Asymmetric Expansion and Contraction of the Jaw (Fixed

jRight Side) --- 3-29

3-12 Dynamic Response of the Manipulator ------------------------ 3-31

3-13 Process Precedence Chart ---------------------------------- 3-33

3-14 General Outline of Temporary Active Processes ------------- 3-36

3-15 Process Precedence Chart of the OPER Subsystem ------------ 3-38

3-16 System Block Diagram of Parameter Editor Subsystem -------- 3-41

3-17 Example of Parameter Display 3-43

'	 3-18 General Outline of Buffer Monitors (in Pascal Language) --- 3-48

3-19
i

General Structure of the Module 	 ------------- 3-52

3-20 Access Graph of Subsystem OPER ---------------------------- 3-54

3-21 Access Right Cross-Reference Table ------------------------ 3-55

3-22 Scheduler - Main Program ------------ 3-56

3-23 Scheduler - Process Multiplexing ---- 3-57

3-24 Process Synchronization Monitor MPRQ ----------------------•- 3-59

3-25 3-62--------------------------
3-26 3-63---

3-27 --- 3=64

A-1 Graphical Representations of Data and Standard Operations-- A-3

Tables

3-1 Functional Switches 3-5

3-2 Pushbuttons ------------ --- -------- 3_7

3-3
r

Alarms 3-9

3-4 Basic Control Routines 3-19

3-5 CACS Processes	 _____ 3-34

3-6 Event Flags --- 3-38

3-7

r

CACS Monitors --- 3-50

6

I!]

1•

i

SECTION I

FUNCTIONAL DESCRIPTION

A. INTRODUCTION

The CURV Arm Control System (CACS) is a computer aided system
which provides interactive human operator and computer control of the
manipulator. The system generally consists of two parts: hardware com-
ponents and software. The hardware components include computer hard-
ware, the JPL/CURV arm equipped with sensor systems and an operator
control console designed as a universal control panel. These compo-
nents are part of the JPL Teleoperator Laboratory and are described in
Refs. 1-3.	 ^'y

The CACS software is a new system compcneat intended to support
a class of real-time manipulator control activitiea such as tracking,
grasping, and stopping of slowly moving objects.

B. OBJECTIVES

The objectives which are pursued in this project are given in the
proposal "Develop Experimental Modeling and Evaluation of Sensor-Aided
Manipulator Control" which was submitted to JPL in November 1978. The
objectives will be briefly reviewed here.

The general objective of the project is to demonstrate and deter-
mine experimentally the impact of sensor and computer aided manipulator
control on overall task performance. The experimental nature of this
general objective implies two major points:

(1) The sensor/computer aids are tools in the hand of a human
operator, and consequently, a major concern is to provide a
proper interface between sensor/computer tools and the
human operator.

(2) The sensor/computer aids are real-time tools, and conse-
quently, their performance properties should match the
versatility of a real-time control environment.

The specific objective is to develop real-time computer control
programs for the JPL/CURV manipulator referenced to proximity and force-
torque sensors.

1-1

i

The specific objective includes also that a well-designed software
basis shall be provided for further research on the following issues:

(1) Development, testing and improvement of new control
strategies and algorithms.

(2) Investigation of the impact of design parameters including
the physical characteristics of proximity and force-torque
sensors and other relevant system components on overall
control capabilities and on overall system performance.

(3) Investigation of the impact of real environment (irregular-
ities of objects, noise, component imperfections, etc.) on
control capabilities.

(4) Study of software approaches to the solution of manipulator
control problems.

This report is the first quarterly progress report in which the
basic concepts of control algorithms and their software implementation
are considered. The programs developed thus far are described in the
program documentation given in Appendix B of this report, which has been
issued as a separate volume.

Before starting the system description, the functional require-
ments of the CACS software will be reviewed. 	

ti

1-2

t

SECTION II

FUNCTIONAL REQUIREMENTS

The class of manipulator tasks, which the CACS software has to
support, can be defined by the following control functions:

(1) Unconstrained control of the arm, hand and jaw in
Cartftsian coordinates (world space).

(2) Constrained control of the manipulator, i.e., moving the
hand with the erd-effector (EE) at a constant distance
above a fixed tracking plane (TP). 	

U

(3) Tracking a target object (TO) which is slowly moving on the
TP with constant speed, with arbitrary orientation and with
straight line trajectory.

(4) Grasping and stopping the TO which is stationary or moving
on the TP.

These functions must be performed interactively from the opera-
tor t s control console (uuiversal control panel) which is specially
designed for this purpose.

To facilitate the interactive manipulator control, the following
automatic operations should be supported by CACS software. These opera-	 i
tions are as follows:

(1) Roll and pitch alignment of the EE to TP.

(2) Tracking (identification) of TO speed.

(3) Yaw alignment of the EE to the TO.

(4) Centering the EE to the TO for best grasping.

(S) Graspirg and stopping of the TO with complian^e to its
motion d roamics.

All manipulator control functions should be capable of being per-
formed independently, or to be imbedded in one continuous sequence of
operations. Such a sequence is shown in Fig. 2-1, where an idealized
ordering of system states and the corresponding transition o-Jerations
are depicted. This sequence pattern exists if all operatioc.^ are
successfully accomplished and all system states are stably attained.
if some algorithm fails or system disturbances occur, the corresponding
transition operation must be repeated, and the sequence pattern becomes
more complicated.

i

2-1

C
ZW
WJ

N

Cn

d
u
a
7

^Q
O

^•1

J.1

F/
d

00
C

tl^l
O.

w

7
60
C
+d
„tR
4

H
u

u

.r

e

%i

1

2-Z

VLAW
^

As seen in Fir. 2-1, all .operations are sequential. This wane
that they are executed one after 4not4er, ')ringing the sy-stem from
state to state. R wever, tame& is a ar!ed for some operations that can
su;)nort the state tcanvition process and maintain the stabilitl of
attained states. These operations arm not mhown in Fig. 2-1, but should
be performed simultaneouRly with the sequen •,is1 operations. Examplts
are:

(1) Maintenarce of constant distance of EE from TP.

(2) Maintananca of constant distance (.f LE from T0.

The first operatton 3;;4rts immediately as EE io roll and pitch
aligned t.) TP, i.u., when the manipulator begive the constrained motiun
over the TP, and terminates when TU is %topped. 'roe secona operation
starts when the specd cf TO is ieantified, and terminates wbsn EE starts
the grasping proce,:ure.

Automatic: operations :alp the operator to carry out manipulator
control .asks. However, air m tions can occur Y%en actomatic operations
require operator's assistanLO. ?or sxampie, the yaw zlignr -Art algorith%
,:an have difficulties caused tj an inconvenient angle of TO trajectory
and/or speed. In thst case, it should 5e allowed for the operator to
control the hand angles directly r:om his control panel. "'hsa% are many
similar examples. Therefore, tc. facilir,ate cox speed up the a,.toma.ic
operations, two new operations are added to the operAcion list given
above:

(1) Oparator's manual rssist%nca.

(2) Operator's emergency stop.

The first operation enables the operator to issue to the manipulator
commands which can be er_ecuttd simultnneously wl,th the ongoing auto-
matic operations, without interrupting them. The second opera ion allows
the operator to put the system in a hold state for x certain time period
to do off-line interventions without aborting the whole contro.1 process.
Both operations are parallel to other operations.

The operations discussed thud far defuse the basic functional
requirements of the CACS software related to the basic interactive con-
trol of the manipulator. However, thkre are also other cap&bilities
whic::i are provided through this project. With reference to thre o;)jec-
tivas given in Section I Introduction, the CACS is considered a research
and development system rather than a final product. This imposes addi-
tional requirements which extand the Control fea;.ures. The most impor-
tant aduitional capabilitiao are the following:

W# Centralized parameter maintenance.

(2) Automated system testing.

1

jj

U

(I

2-3

i
Ii

` l

The first capability provides a fcat, oLsy and reliable setting and
modification of system parameters, while the second provides a fast and
comprehensivh system testing of:Qr hardware/software changes. Both
faatu.a* are implemented as an Sncegral part of tht+ CACS software.

2-4

^— ----. s-----moo•-..-r-,--.^,,.R-^-- - ---^-- --

SICTION III

OPERATIONAL DESCRIPTION

A.	 GENERAL. SYSTEM DESCRIPTION

an overview of the CACS is given in Fig. 3-1. As aesn, the system
+ur-loys the following hardware snits:

(1) Manipulator.

(2) 094xator control console.

(3) Control computer.

(4) Computer console.

i5) Alarm d'.splay.

(5) Computer interface.

A brie` dascAption of :Lase u,Lits is given in the following dix
paragraphs.

1.	 Manipulator

The manipulator comprises the XRV linkage am % ith EE. actuators,
s:rvo-potentiometers and sensor systems. :he latter are force-torque
and proximity sensors supported by corresponding elertrenics. Details
of t;cese cumponents are Sven in Refs. 1 - 3.

The outputs of the manipulator can be dividad into rwo groups of
data: sensur data aad joint position feedback data. The sens or data
are represented by the vectars w - (w 1 ,32 ,... ,74) and i - (11,i2--4)4)
which cor:espund to force-torque ana proximity data respectively. The
wav» sign over the variables denotes their "raw" values which rust be
converted into their corresponding mathematical values by a :al:bration
procedure. Ordering oZ proximity saasor data is as follows:

al - front left

22 - front right

3 3 - lower left

S4 - lover right

0

Q

Ct

^^Y

3-1

5:

u ,a 1XLo
Ziu0

W
V
Z
Q

W IZ
I?^
N<<=

Zz
W < WW a ~W W

Ell
N

N d O ^

}

Qn

tml

at ^
^^J

W W

'J
^5N3
Z < U.
e
uuuQ

ae ^
O af

N

C W
CL ' N

juZa^

Q0
ec
Q

W
N

0

0

1N1

131

GC LU I NYO0

d O }
0u!

ua

N

N O

V
N

N ^ a

L
^m

Y

A
WWW
Z
O
N
O

Z
a

rn

U
w
0
6

L+
co

A
0
w

A

eo

w

_	 -	 f

f
E 	 ^

The joint position feedback vector eF M (AFl,4M -- - -47) represents
the servo-potentiometer readings of joint angles:

61 - arm azimuth
i

62 - arm elevation

63 - arm extension

94 - hand azimuth

65 - hand elevation

86 - hand twist

97 - gripper opening

f

r
2.	 Operator Control Console

The operator control console is an interface between operator and
control computer, which enables the interactive control of the manipula-
tor. The main features of the control console are two joysticks for arm
and hand control, potentiometer for EE control (opening/closing the jaw),
and a group of functional switches and pushbutrons.

The joysticks provide easy position or rate control of three inde-
pendent space coordinates where the magnitude of position/rate is pro-
portional to stick deflection. Details of joysticks, potentiometer for
EE control and other features of the console are described in Refs. 1-3.

Joysticks and potent +.ometer for EE control generate an output
vector u which has two versions:

u - (AX c ' Ay
c
'Az c'

Aac 'ASc''&Yc'Agc) -
for position control

u - (icc ,yc* zc gac J c PYc ggc) - for rate control

where Axc ,Ayc ,Azc, and Dac ,ASc ,dYc are commanded translatic ,uai dis-
placements of the arm and rotational displacements of the hand respec-
tively, both in world courdinate3. Variables ic ,yc ,ic and «c,Sc,Yc
are translational and rotational speeds of the arm and hand in the same
coordinate system. Values Agc and g., represent commanded increments
and commanded speeds o f th,_ jaw opening, respectively.

3-3

4

r1

Functional switches and pushbuttons are new features which are
peculiar to CACS, and which have to be added to the operator console.
During the development phase, these switches will be implemented on the
computer panel. The list of all switches is given in Table 3-1. The
following comments will help the understanding of this table.

If the switch SMC is in the "off" position, the operator has full
manual control of the manipulator. The commanded position/rate values
will result in armihand movement and jaw opening/closing, which is
unconstrained within the :manipulator's motion envelope. Choice cf posi-
tion or rate mode of control is made by switch SRT.

If the switch SMC is in the "on" position, the manual control of
tha manipulator becomes bounded to a fixed plane which has been defined
previously (default value is x-y plane in world coordinate system). In
this case, the control system will ignore the commanded values ozc or
zc , and the resulting motion of the arm will be constrained to the
given plane. For instance, the distance of the arm from a given plane
will automatically be maintained at a constant value. Commanded values
Axc , Ayc or uc, yc will be taken as displacements or speeds in the new
coordinate system defined by the plane.

Switches SAT, SAY, SAC and SAG define the corresponding automatic
operations if the required conditions are met. For example, if the
switch SAT is set, the control system will automatically take the con-
trol over from the operator when the front proximity sensors register
a preselected "proximity distance" from the TO.

By switch SSC the operator can start an automatic search for the
TO by scanning with the EE in the work space. Parameters of this
operation must be inputted previously from the computer console noting
the parameter editing procedure.

Switch SOS enables operator interference during automatic opera-
tions. For example, the operator can adjust the hand angles simultane-
ously with automatic tracking of TO to accelerate this action or, to
support this action completely. Without settling this switch, no joy-
stick commands will be acknowledged during automatic actions.

By switch SIN the operator can reinitialize the system, i.e., to
out the system in the initial state as it was in the beginning of the
manipulator operation sequence. After reinitialization, the system
starts from the beginning.

Setting the switch SES, the operator immediately stops the
movement of Vie arm and outs it in the hold state. The arm can again
be released only by resetting this switch.

3-4

r

i Table 3-1. Functional Switches

bymDOl1C

Name Functional Description

r	 SIN Initialization of the system

Sm Manual constrained control (searching for TO
in tracking plane)

SAT Automatic: tracking

SAY Automatic yaw alignment

SAC automatic centering

SAG Automaticr.as	 and stoppingg	 P^8	 PP n8

SRT Rate control

SSC Automatic searching by scanning

SOS Operator's manual assistance

SES Operator's emergency stop

I

3-5

k
h

The list of ptshbuttons is given in Table 3-2.

By pressing the pushbutton TRE, the operator can release the arm
from the blocked posit2.vu k"hold state"). Namely, during manual control
of the manipulator, the computer control system automatically puts the
arm in the hold state when the proximity sensors detect the proximity 	 i
of the TP or the TO. In this case, an alarm signal will warn the opera-
tor who must command an appropriate motion to the arm to avoid collision
with TP and/or TO. Before issuing corrective commands, the operator
must release the arm by pressing pushbutton TRE.

If the pushbutton TPC is pressed, the computer control system
will immediately memorize the current values of the hand coordinates in
order to define the orientation of the tracking plane for subsequent
constrained control. This action will always be taken when TPC is
pressed. This means that the TP coordinate setting can be done more
than once.

By pressing the pushbutton TCA, the operator can turn off all
alarms displayed at that time.

By pressing pushbutton TPA, the operator invokes a parameter
updating procedure. Namely, all parameters are stored in a particular
redundant storage area which is accessible by the parameter editor s+ib-
system EDIT (see Subsection C paragraph 1) concurrently with manipulator
operation. After updating the parameters by EDIT, the new parameter
values must be passed to the corresponding parameter locations of the
control subsystem (OPER). This is automatically performed by spacial
transfer procedures which are executed immediately after pressing the
TPA pushbutton.

3. Control Computer

The control computer is the heart of the CACS. It consists of
an INTERDATA M70 minicomputer and the CACS software package which runs
under OS/lf MT2 real-time operating system. The CACS software conta{.ns
three subsystems: testing subsystem (TEST), parameter editing sub-
system (EDIT), and manipulator control subsystem (OPER). The former
two subsystems are described in Subsection C paragraph 1 of this report.
The latter subsystem is the main part of the CACS software. All three
subsystems are implemented as different tasks.

4. Computer Console

Communication with the operating system and with the CACS soft-
ware is through the computer console. It is a teletype unit, but can be

3-6

c:^ I

Ir.

_71

i

Table 3-2. Pushbuttons

Symbolic

	

Name	 Functional Description

	

THE	 Release of the arm from the hold state

	

TPC	 Setting the TP coordinates

	

TCA	 Clearing of all alarms

	

TPA	 Parameter transfer to the control subsystem

iN

U

3-7

any other suitable peripheral device. Communication with the TEST and
EDIT subsystems is only possible through the computer console, while
communication with the OPER subsystem is through the operator augmented
control console.

5.	 Alarm Display

The purpose of the alarm display is to warn the operator in case
of system irregularities, system abort, or whenever his assistance is
needed. The alarm display can be implemented as a mosaic field of
labeled lights or as alphanumeric messages on the CRT display. During
the development phase the latter will be used. The complete list of
alarms is given in Table 3-3.

b.	 Computer Interface

Computer interface consists of analog to digital (A/D) and digital
to analog (D/A) converters. The input to the A/D converter is the com-

pound vector (QF, u, w, s"), while the input to the D/A converter is
the joint position vector '6 - (9 1 , A 2 ,..., 67).

r

^t d• .

F

AI

3-8

Table 3-3. Alarms

Symbolic Cause/Action to be Taken
Name by Operator

i	 ALIM Arm/hand on the boundary envelope.

rk	 ATPP EE in the proximity of TP. 	 System is in HOLD
state and operator has to release it by pressing
THE in order to move arm away from TP. 	 (Alarm
ignored if SMC set.)

ATOP EE is proximity of TO.	 System is in HOLD state
and operator has to release it by pressing THE

E
in order to move EE away from TO. 	 (Alarm
ignored if SAT set, or SMC reset.)

AYAW Angle between motion vectors of EE and TO is
greater than 90 degrees.	 Automatic yaw align-	 i
meat not possible.	 Operator assistance is 	 a
needed.1

ATOL TO lost, control is given back to manual con-
strained searching.

ARPL Roll or pitch alignment lost. Operator assistance
required.

ATOG TO too large, cannot be grasped.

ASTP TO grasped, but cannot be stopped by given force-
torque limit.	 .

AGRT Grasping terminated.	 Procedure must be repeated.

ASCT Search by scanning has been terminated.

ASCC Search by scanning has been completed
successfully.

AGOL EE in collision with TP or TO.	 Automatic action
of moving EE one step from TP or TO has been
taken.	 Operator's assistance may be needed.

f

3-9

i

i

C

9

B.	 CONTROL ALGORITHMS

In order to develop the system described in Section III with the
requirements in Section II, a variety of control algorithms has been
and will be developed. The complexity of the system requires a struc-
tural approach to the development of the control algorithms to provide
conditions for an easy functional decomposition of the system and to
assure easy and stable system integration. This is especially important
in a laboratory development environment in which a stepwise development/
refinement is required, as is the case with CACS.

As guidelines for a structural approach to the control algorithms
development, the following three concepts are introduced:

(1) Incremental motion synthesis.

(2) Basic control routines.

(3) Parallel process concept.

All these guidelines and their application will be considered in the
next six subsections.

1.	 Incremental Motion Synthesis

The idea of incremental motion synthesis requires the production
of increments of motion rather than "endpoint" values in each system
iteration cycle. The principle is depicted in Fig. 3-2 (graphical
symbols used in this picture are explained in appendix A). Vectorr Ax
and v represent incremental *_ranslatory displacement and tracslatory
speed which must be performed by the manipulator EE. These quantities
are effected by the control algorithms to percorm the required automatic
operations initiated by manually issued coum&nds. The position Incre-
ment is added to the content of the buffer TRP (trarslatory-position).
The speed vector is converted to a corresponding rate increment Ax r , by
multiplying with the clock interval At, and stored in the buffer TRR
(translation-rate). In each cycle the contentm of both buffers are read
and summed. The resulting increment Ax (k) represents a composed motion
increment which must be transformed inter a :orrespcnding increment
in the joint space coordinate 3ysten Ae(k). This value will be added to
joint position vector e (k-1) which hgs been generated in the previous
iteration cycle. The new vector e (k will be used in the current
iteration cycle. The essential point here is that the position b.,ffer
TRP must be reset after reading, while the content of the r^te buffer
TRR remains unchanged. This will cause arm/hand movement with constant
speed v and.simultaneous arm, /hand displacement Ax. The latter will not

ioccur n the next iteration cycle, if the position buffer is not filled

3-10

Lam^ _

N I
Z,
O'^

"ZO
.1

Q

+

^I

1

o

ZO
S ti Y

^	 W I- LU
`I 0. V

C

cn

y COi	 CJ
030 ^

u
e

Z ^I Z
C

Z

_
a

CI

'.

+	 XY

0

5

u

G ao
ow

y Z lu

w

dg o o
0.W

0-
u x u

OZ

a

O ^• `yV 1 v

:50	 ` N W /X̂ ^	
^^
V

M

U.

^2
Z u. V

^I

z ^
O'^ y

W

ai
Vf d

Qu? vf?>I

3-11
I

^-tee.-..+r .--+..•n.+e^.+-•^.--,-------.- 	 -.	 _._.,,.,

t

777
t

again. In order- to execute Asp'_acement 4x in one iteration cycle, the
magnitude of this vector must be lass than thv fixed value eatermined

^- by the iteration cycle and by the manipulator dynamic performance. Ir
this is satisfied, the p,)sition displacement of the manipulator can be
ciusidered as in instantaneous displacement., If the position increment
doer not satisfy this requirement, the corresponding operation must be
dRlayed. This will bu dirrussed latter.

G

	

	 The inc;rrmertal approach enaoles easy coordinatc transformation.
Usually the eq •sation of joint variatles are given in the following form:

x ^ f (e)	 (l.

,ihers f(0) represents a vector mapp.' ng r.f joint coordinates .'nto the
world (Cartesian) coordinate system. Using the incremental form of
•►ariables, (1) can be written:

x(k) = x(k-1) + &.r (k) = f (g (k-1)+ a9 (k)	 (2)

For sufficiently small increments 68(k), the Taylor expansion of (2)
gives:

ax(k) su H (h) 69(k)	 (3)

or:

a8(k)a H (k)-1 ax(k)	
(4)

where:

H(k1 = H (e (k)) _
ae
of

I - - (k)	 (5) 9=6

represents the Jacobian of the transformation (1).

3-12

i
l

Having :ass in mind, as well as the description gl7en above, the
advantages of t. ► . , ireremeatal notion synthesis principle can be st:m-
marized as follows:

;a)	 It fits the nature of zyclic processes and, therefore,
enables a more convenient implementation than the eadpoint
approach.

(b) I: a-Inwb. ua.ified handling of position and rate control
model.

(c) It eaablep easy synt ►ne-Us of composed mnCions of both
types: -osiO.on-position and position-rate. (Aa example
of a combined moticn of the position-rate type is given in
Fig. 3-3, whore the EE which tracks the target object with
the sLae speed must correct its relative position An.)

(d) It provides easy coordinate transformations.

2.	 Aprli•zation of the Incremental Motion Synthesis in the N.CS

The principle of incremental mot:ou synthesis described in the
pre,?'ous subsection i, applied to the CADS. The main features of the
application are given in Fig. 3-4. This diagrar is derived from a
bssic property of the CURV arm: hand orientation, is independent f:om
arw elevation and extension. This is due to the double parallelogram,
mechanism added Lo the linkage. Therefore, the coordinates of the arm

,And h'.nd can be handled separately, i.e., the position dis7lacement and
speed composition dhoxn in Fig. 3-2 is now directly applied to the
arm position coordinates x = (x,y,z) and to the hand orientation angles
a - 0 4 ,Y). For that reason two new bu'fers are introduced: ROP
;rotation-position) and ROR (rotation-rare). The jaw operas-.on is
considered only as a matter of position control. Therefore ` only one
buffer JAW is introduced for this caordinate.

Fig. 3-4 will now be explained step by step. Raw values read
from A/D buffer are grouped into four vectors which are already
described in Ssction IIIA. All these variables are calibrated separ-
ately. Calibration oZ joint position feedback is done Ly the following
linear equations:

9Fi	 9Fi	 ai - b i ,	 l = 1,2,... 9 7,	 (6)

where a i are scale factors of dimension rad/Volt, and b4 are zero offsets.
These coefficients will be considered as system parameters.

!NI

3-13

vTO

ro

vEE ; VTO

I

I

W-.

f

W? POST i ION DISPLACEMENT CONTROL

VEE VELOCITY VECTOR CONTROL

Fig. y-3. Example of Combined Motion

3-14

"
l l

U.

z
Z	 Z

N	
W ^	 ^	 4
QN	 w Nt	 46	 1

g	
^	 3t

+	 +	 +

^	 a ^

311

N

a

V<

z
Q

m i

U lu

N

U
w
0
a
w
e0

M
Q

a

d

yC
i.7

I
e+1

Oq

t
zi 3^

0 4

V

?^I

N

aL
W
U.

4

U.
®1

J

U

U.
?¢4

Nl

0
1-^

J

?NI

r.
3-15

1

Zr

Zj<z

..
00c

^I

ml

+	 n

^	 d
^I	

mI)

4 ^

^^

x
m I

4

^ m

d Z

a m
O
0uZ=5

Q 4
uj
o°LC =u

m OuG4
G

x
ml
4

4A

o

4A

o^ o z
Z	 ae

Q
ZxO

O

N
ZA0

O
^Q
g

^Oc1 ^Ou ^OOu

au a^

Z	 + +

al z

2
w

y^ W

CL at d 0 oc N0 3
^

oc oc ^
3

^

0

v
a

U
0Uv
N
d
U
w
0

6

ao

A
3
0

W

ccL
Q

s+
d
C
a
C9

t"1

oioM
W

3-16

f

A similar calibration procedure is applied to vector u. Sensor
data are calibrates by special table look-up procedures which will not he
considp.red bare.

Calibrated variables are used by control algorithms to product
displacement increments 114 _ (Ax t, , Ayp ,Az p), Aar _ (Aap ,ASp' Ay) and
Gg, and velocities v = (u,v,w) an w = (&,S,Y), i.e.. the ccrrespond-
ing rate increments Axr = (Axr ,Ayr ,Azr) and Gar - (Aar,Adr ,Ayd- These
values are stored in the buffers TRP through JAW.

Because of the finite dynamic response characteristics of the
manipulator, the rate increments must be limited. Therefore, the fol-
lowing value will he stored in the buffer TRR:

Aa
r	 if	

max tLxr'Ayr'Azr^

A • Aa	 otherwise

< r
max

(7)

(8)

where-:

r max /Imdx{Axr,Ayr,Azr},

and r	 is a given parameter and represents the maximum possible value
MaM

of any- isplacement that can be achieved iu one clock cycle. This is
the condition for the rate buffer input operation, which prevents getting
the manipulator into unpredictable working condi _ions. Similarly, the
rotation. rate increments are also limited. However, they are limited
component by component, because in the case of rotation it is not impo-A-
tant to keep the proportionality of the vector components,

In each iteration cycle all buffers are read, the composed values
Axc andGac are formed and brought to the coordinate transformation
block.

Coordinate transforma tions are given by the following equations:

-eA = T
A l9	 AxA)	 c

(9)
4 =ATH (^) Gac

3-17

r

t

r

t

f"

4

4

f

iEi
1

Ja

N I
and

e7 - kj . dg ,	 (10)

where: eA = (e l ,e 2 ,r3) and eg - (84,85,86) are arm and hand joint vari-
ables, respectively.

Tiansformation matrices TA and TR are inverse Jacobians of joint
to world space transformations given in Ref. 3. These matrices have
the following elements:

_ s
l	 cl	

0
P P

c
1

c
2	 slc2	 s2	

(11)TA =	
r3	 r3	 r3

c
1

s
2	

s
1

s
2
	 -c2

Dc 	 Dc3	 De

TR - I,

where: P - al + r3s2 , r 3 - 2Ds3 + d, s11	 sin e l , c1 cos el,
s2	 sin 8 2, c2 = cos el, s3 - sin (8 3/Z), c3 = cos (9 3 /2), D, d, kj
and al are mechanical parameters of the manipulator, and I is the unit
matrix. The most recent feedback values can be used as the current
values of joint variables e l , e 2 and e3.

The •r'rm and hand coordinates are not completely independent.
It can be seen from the equation for the hand azimuth (Ref. 3):

a = 8 1 +8 4 -2	 (12)

Therefore, the following correction must be done for 68 4 , after the
coordinate transformation has been completed:

	

de4 = 684 - 68 1 .	 (13)

3-18

I^

Finally, the transformed and corrected joint variable increments
are joined into one vector DA(k), where the index k denotes the current
iteration cycle. This vector is added to the joint position vector
9 (k-1) from the last iteration cycle to form the new joint position
vector 9 (k) . This vector A (k) is then converted to "raw" values and is
brought to the D/A buffer DACBUF. The conversion to raw values is an
inverse to the calibration procedure defined by equation (6).

3.	 Basic Control Routines

The algorithms which perform the operations of roll/pitch/yaw
alignments, tracking, centering, grasping and stopping of TO as well as
other interactive operations specified in Section II, are based on a
variety of specific motions of the arm, hand and/or jaw. A look-ahead
study of the whole CACS has shown that all. foreseen operations can
successfully be carried out by a unique and finite set of elementary
manipulator actions. These actions will be implemented as a set of com-
mon routines which can be used by all CAC' a'•.,-rithms. The procedures
related to these actions are listed in :.able 3-4. Their explanations
are given in Figs. 3-5 - 3-9. The following comments will supplement
the explanations.

Rotational motions (changing the yaw, pitch and roll angle) are
effected by three independent routines, YAW, PITCH and ROLL. This is
for the sake of simplicity of algorithm implementation, since different
kinds of angle changes are used in the various algorithms.

Motions referenced to the hand coordinate system (Fig. 3-7)
require additional coordinate transformations. The rotation matrix
which transforms the hand coordinate system into the world coordinate
system can be represented in a block form as follows:

N

T	 i T T
Al I A2 A3

I
(14)

3-19.

r'

f

Table 3-4. Basic Control Routines

NIRoutine
Identifier

Description of the Operation

SHIFT Translatory displacement of the arm one step
in the world coordinate system Ax - (Ax,Dy,Az).

SHIFTC Constrained translatory displacement of the arm
one step in the tracking plane Ax t - (Ax

t'Ayt)'

YAW Rotational displacement of the hand one step in
the world coordinate system Aa (changing the
yaw angle).

PITCH Rotational displacement of the hand one step
in the world coordinate system AB (changing
the pitch angle).

ROLL Rotational displacement of the hand one step
in the world coordinate system Ay (changing
the roll angle).

MOVER	 Translational displacement of the arm one
step in the hand coordinate system 0& (longi-
tudinal motion of the hand).

MOVEE	 Translational displacement of the arm one
step in the hand coordinate system An (lateral
hand motion of the hand).

MOVEZ	 Translational displacement of the arm one step
in the hand coordinate system 0c (vertical
motion of the hand).

EXPND	 Expansion (opening) of the jaw for one incre-
ment Ag.

CONTR	 Contraction (closing) of the jaw for one incre-
ment Ag.

RUN	 Motion of the ara with the constant speed
v - (u,v,w) in world coordinate system.

RUNC	 Motion of the arm with constant speed
vt = (ut , v t) in tracking plaice„

ROT	 Rotational motion of the hand with constant
angular speed w _ (a,S,Y) in the world
coordinate system.

Note: All translational motion of the arm assumes unchanged hand angles,
and all rotational motion of the hand assumes unchanged arm
coordinates.

hI

3-20

L: i	 •^

'f' R3

^I

II	 II	 ^
d
yl

" I I I	 •	 ^	 duco
C
rl
b
3r
O
O
U

LL Z

b
rl
}.^

^ I 3

N

L
W
O

V

O
a^
tE

r-I

C

3	 ^ y
w
E4N ad	 X

W	
Q

O Q^

C7 LAJ ^	 >
M

Z Z o0

I	 >
G i

w

XX

QZ	 al	 4
xu
a^	 >I

r^

CI
i

1,,; I

0

I

f

i

i

}
I

^f^M! f

al

3 I

x
	 z

3-21

^.

C.

t
•	 I

0

404
J L

0
0V

3

c
,a

t^
z7

ez
4

'v
c

4 ^i^^ ^
v

a.i

w
0

c
O
•4

N
^u

4A
W Q 9-4

Z	 ^..^ C

ac
\ xO ZZ = Qi • r. LOV = e+	
\ ~ O	

d
•cl a0

u -+Lu

N \ ^	 ^ N	
v

^

N ^ ^

$.- Q F•

u^ it

	 \\- x

3-22

C

r

a
a,
.1
co

U2

y

C

00u
Va
al

C
M

d
at'
L
w0
c0
u

0L
ri

c
mI

r~

I
e+1

0p

w

r-

Z
O
9
oc

r-

+

w I	 RQ	 W Q	 Q

u

as	
^, '`" a

a	 ^

g

^

G

O	
.+Z	 Z

ZF-	 119	 WO

Zl	 a
g^	 c

tu
A41	

4A

Z	 tjW

Z gi 	 ^Zo	 a.

^u^	 z U U
Z it

J.w

^`
Na

X

3-23

\I

+
H

Z
v =c •'

ii
II

11

JCI ^1
Q

d

a
m
C

u
w
H
C'	 M

1.1d

L
W
O

C
O
M
Y

l
1•+
OL

C
NH
b
41
C
wi

V
co
C
O
U

ao
I
en

00
Mw

0.

ee^

•	 L

a

Z	 >,U
uz

W 	`

1— d

a

N	 7C	 _ — --^

X

H

X

Z

O

v 0

W
4A

:I
Z_

G	 ~ I 41
x U 11

'	 VI I^Ql
M

II

el
-

3-24

.

z IT

GI31

ti

O

tr

O

V-
IQ

z
Q.
x
t^

^IIN +

-t-

C4li

(11

a.

3-25

1

N 9

9

where the submarricas AT (i = 1,2,3) are the following column vectors:

Coss Cosa

A? 	 -siny sins Casa + CURY sina

L COSY sins cut;a + si-ty -sins —

-Cosa eina

AZ =	 tiny sin$ Alma + cosy Cosa 	 (l5)

-cosy sinS sina + siny Cosa

-sine

AT s	 -sing core
--3

cosy Coss

The angles a, S and y are the -;urrent values if the hand angles in the
world cooral.nate system expressed by joint coordinates:

a 9 1 + a - 2

S
=eS - Z

'r = 9 6 	 (16)

The most recent feedback values can be used as actual values of ,joint

E
coordinates.

C

t	 '

C	 3-26

I 	 y

r
r

Constrained translatory motion in the tracking pl-n* also needs
additional coordinate transformations. Here, the trans-7ormation matrix
has the form:

i

At s alt j 12tI	
(17)

with

Alt + Al Wit)

(lg)
A2t :

A2 (-t)

where n , (a t ,d t ,y t) represen,s tracking plann angles, i.e., the hand
angles taken in tae TP-coordinate setup procedure (invoked by pressir.g
pushbutton TPC). As will be shown in Section 1110, elements of	 1:.,
matrix At are calculated during the coordinate retup procedure and
memovized in the special buffer (AT) for subsequent ut4.

Using the Basic Cont-ol Routiaes, an extended see of n--v routines
can be derived for core complex manipulator operations. For example, 	 1
the centering algorithm can be simplified considerably if asymmetric
extension/contraction jaw operations are ircroduced Therefo.e, four 	 r

new routines are sdded to the list in Table 3-4:

EXPNDR - Expansioa of the jaa for f.ste increment Ag to the, right.

	

	 I

I
CONTRR - Ccntractioa of the jaw For one increment Ag frum the

right.

EXPNDL - "xpanbion of the jaw f^r one increment AS to the left.

CONTPL - Cortraction of the jaw one increment Le g from the left.

T:.P first two routines assume opening/closing of the jaw wits
fixed left sid. and right side mowing Ag out/in. The last two routines
ale op,osite to the operations implied by the first two routines. These
routines are shown in Figs. -10 - 3-11.

4.	 Dynamic Response of 'Manipulator and Delay

Incremental manipulator lisplacements, co— Added by CAC? software,
are realized by relatively complex electro-hydraulic servo system.

3-27

0

a
Z

v

d^

+

W

!V
6

1

0.
ac
I-

I

O

0-1

oi
Iv
F4
H

w

.0
41
W,4
v

ti
41
v

w
O

r-0
L
u

Lr0
U

C
O

C
O
.r
a^
C+0
Q

u
.a

L

6

O_

I
cue

e^
..a
ds.

.LJ

X

3-28

	

is

nwxU.i
1

^v

rn

r
00

r

a^
>K

a^e;

d
r
V

w
Q

C
vi
1.1
u

u
(G
G

U

C
Q

C
OM
C

0.
K

u
L

4

I
ne

00
.n
tL

ac

O

QZ
d
x
tmay►

3-29

Because of limited dynamic performances of these servo systems, the
aajustments of joints, i.e., the realization of corresponding displace-
ments to the world coordinate system, requires some finite time. There-
fore, the displacement magnitudes must be in accordance with the manipu-
lator servo time constants and with the iteration frequency of the
computer system. This means that the commanded d-splacements must be
sufficiently small so that they can be realized in one iteration cycle.
Let At be the time interval of one iteration cycle, and Axmax and Aamax
the maximal values of translatory and rotational displacements of the
manipulator which can be realized within the time At. Then all compo-
tents of the vectors ft, - (Axc,Ayc,Azc) and Aac - (Aac ,t0c,Ayc) must
be less than or equal to the values Axmax and Aamax, respectively.
Of course, this is a rough consideration since displacements executed in
a given time interval can differ from case to case, depending on the
currant state of the manipulator and on the attached load. But it is
aczeptable here as an initial step which can be refined later.

As will be seen, in some cases it will be necessary to realize
displacements greater than the limiting values defined above. In such
cases, delay mechanism must be introduced. If, for example, the value
Ax > Axmax has been issued by one algorithm, it must wait for a next
decision until the displacement Ax is completely realized by the mani-
pulator. This situat4.or. is illustrated in Fig. 3-12. As seen, the
displacement will be completed during the third iteration counting from
the moment the command has been issued. It means that the algorithm
must be delayed two iteration cycles. In general, the number of delayed
cycles nD can be determined by the following approximation:

max {Axc,Ayc,Azc}

max

where pal denotes upper integer value of "a", and Axmax is a given
parameter and represents the maximum possible value of any displacement
that can be achieved in ane clock cycle. The same formula is used for
the rotational displacement Aa c - (Aac,ARc,Ayc). This _formula is derived
under the assumption of a linear shape of the dynamic response of the
manipulator. Implementation of the delay mechanism will be explained in
Section IIIC.

C

C

!e.

i

Parallel Processing Concept

As shown in Section II, the entire process of searching, tracking,
ing and stopping of the target object can be broken down into a
:nce of small units of activities or operations. Some of the unit

3-30

t

t

Q

4

k	 ^

S

CLOCK PULSES

,t

Fig. 3-12. Dynamic Response of the Manipulator

3-31
	 i

activities are carried out simultaneously, i.e., they are executed in
parallel and asynchronously. This is the case with the following
activities: operator manual assistance, operator emergency stop,
input-output operation, automatic maintenance of the distance between
EE and TP, and automatic maintenance of the distance between EE and T0.
These activities are performed independently from and simultaneously
with other activities which are being executed sequentially.

The structural approach to the algorithm design and the software
implementation of the CACS requires that all activities be considered
as separate programming modules. Furthermore, the parallelism of the
activities requires the concurrent execution of these programming mod-
ules. An additional benefit of the concurrent programming approach is
that more than one processor can be allocated to the system to increase
execution speed and reliability. This is especially important in the
case of real-time environments expected for future versions of manipu-
lator control systems. Of course, the concurrent programming system
can be realized with only one processor which is multiplexed among con-
current programs. The scheduling of one or more processors for con-
current programs will be achieved through system software not discussed
here. The struct•ire of the control algorithms and their software
implementation considered here are invariant to the number of processors
which can be ignored in further considerations.

The program which is being developed to accomplish the specified
activities will be called process. A process can generally have two
states: active and blocked. Active state means that the process is
in execution. (The active state has two substates: running when the
process is being executed by the processor; and ready when the process
is waiting to be allocated to the processor. But, this is not important
for the following discussions.) In the blocked state the process is
waiting to be resumed, or it is waiting for a specified time interval
by which it has been delayed. Putting the process in active or blocked
state is done by special synchronization signals. By means of these
signals a process can be waiting or delayed, or it can resume another
activity if some specific conditions occur.

For a concurrent programming system it is important to describe
the interprocess relations in terms of synchronization signals. This
can be shown graphically by process precedence charts which are intro-
duced here to simplify the discussion. Cn these charts, Fig. 3-13,
processes are depicted by circles which are connected by arrows represent-
ing synchronization signals (no data flow!). Besides the arrows, the
synchronization conditions are indicated as boolean variables or
expressions. In the case of regular arrows, signals will occur if the
condition indicated is true. In the case of dotted arrows, synchroniza-
tion signals will occur if the condition is not satisfied. Dotted arrows
will be used to emphasize "backward signalling", that is, when the

3-32

L.-

u^

aj

U
du
C
G7.d
d
Vd
w
a
ao
m
41
Q
O
W
a

M
.4

1

In

bC

rl
is+

O
OZ

Z

	

z	
Z	 Z=	 V

3

O	 =	 O

	

W	 W

O	 O	 0	 O
V	 Q	 W N	 p

Fa-
t	 G	 2 u	 N

	

a	 v	 W ^.
= y	 ?	 LL.	 Z H W

	

W	 iJ U.

uj

	WN

	
N	 Q

N N
N H	 LLai	 N	 W 0

^ ►Q-	 ^o	 oo
^ iA	 N	 ^^	 V7 .CL..^ <

^^ n ^, n
u	 u	 u)	 u'

a`	 a

	

a	 °-

	

N	 C7

DW
N

AA

u
Z
O

Z
O
L.
0
W
cc3 c—

N Vf

O,` v

v

4n

3-33

c

t
z	

process loses the active state because the required condition is not
satisfied anymore. In order to preserve system reliability, the follow-

c.
	 ing general rule will be accepted here: A process can be made to wait or

delayed only by itself. Therefore, only process resumption is presented
by arrows.

At the right side in Fig. 3-13 an example of a process precedence
chart is given. It shows the process P 1 being resumed first. If during

E	 its execution condition c l occurs, the process P2 will be resumed and Pl
will be waiting immediately. If this condition is changed to false,
process P 2 will be waiting and P1 resumed again. If P2 is active and
condition c2 occurs, two processes will be resumed at the same time: P3
and P4. These processes are executed concurrently, together with
process P2, until the condition c3 holds. If condition c 3 changes to
false, P3 will be waiting and Pl will be resumed again. P4 , once
resumed, remains active until c4 becomes false.

Besides the synchronization signals, data is another reason for
interprocess communication. Some processes produce data while others
use data. The data used (accessed) by several processes are called
shared data. In order to preserve system reliability and to facilitate
data communication, special attention must be given to this question.
Today's software techniques offer special mechanisms, called monitors,
for handling both, shared data and synchronization signals (Refs. 4-7).
By means of such monitors it is possible to control the access to shared
data and to enforce various access right policies. Monitors and their
implementation, as well as process scheduling, will be discussed in
Section IIIC paragraph 6.

6.	 Application of the Parallel Processing Concept in the CACS

The list of all processes of the manipulator operating subsystem
OPER is given in Table 3-5. It has been made using Fig. 2-1, Section II.
As seen, five new processes AMP, AMO, IOP, OMA and OES have been added.
The first three processes are unconditionally active when the OPER sub-
system is active. Therefore, two groups of processes can be dis-
tinguished: permanent active, and temporary active. A new rule will
be added to the one mentioned in the preceding paragraph: permanent
active processes cannot be waiting or delayed. This rule will be
enforced by the scheduler as will be shown in Section IIIC paragraph 7.

The process synchronization conditions will be handled by two sets
of boolean variables: functional switches and event flags. The former
is already described in Section IIIA paragraph 2, while the latter is
given in Table 3-6. The event flags describe the state of the manipu-
lator. They are updated by an input-output process which is a permanent
active process. More details about event flag generation are given in
the program documentation in Appendix B.

t.,

e

r

f

I
f

a^i

i

3-34

Table 3-5. CACS Processes

of

Identifier Description

IOP* Input-output process

OMA* Operator manual assistance

OES* Operator emergency stop

MUC Unconstrained manual control

ARA Automatic roll alignment

APA Automatic pitch alignment

MCS Constrained manual control (search for TO)

AMP Automatic maintenance of distance from TP

ATS Automatic tracking of TO speed

AMO Automatic maintenance of distance from TO

AYA Automatic yaw alignment

ACO Automatic centering of EE on TO

AGO Automatic grasping

ASO Automatic stopping of TO

*
permanent active processes.

3-35

The general outline of all temporary active processes is given
in Fig. 3-14. As seen, the processes are cyclic. If a process is
active, the switches and activity conditions are checked in every
iteration cycle. These conditions are represented by boolean expressions
of functional switches and event flags, depending on the particular
process. Synchronization signalling is performed by two primitive pro-
cedures: signal and wait. (Signalling procedures put in parentheses are
not applied in all processes.) Completion of the activity to which the
process is dedicated is also determined by event flags. If the activity
is completed, special state variables must be updated. These variables
will be discussed later, together with the algorithms implemented by
the processes.

The interprocess relation is described by the process precedence
chart in Fig. 3-15 which comprises all temporary active processes.
This chart is self explanatory by looking up the condition variables
listed in Tables 3-1 and 3-6. Hyphenated event variables represent a
logical condition or operation. For example, of-t replaces the logical
expression eflt or efrt.

N

3-36	 1

11 1'

r.... .^ a. Ei
1

t
1
I

^,

1
SWITCH NO

!
1

CONDITION

I

I
YES

I
I

NO ACTIVITY (SIGNAL (Pm))
I CONDITION WAIT (P) ^41 i
I

I
YES

CYCLING
ACTIVITY YES1

1 COMPLETED

NO UPDATE
STATE

VARIABLES

(SIGNAL (PI))
PROCESS

1	 WAIT (Pi) ITERATION

SIGNAL (Pk)

1

I

(WAIT (Pi))

i

D
^.	 ICI

4	 Fig. 3-14. General Outline of Temporary active Processes

3-37	 66

a

Î
o

m

a
0
a►

w
0

U

Nu
Cd
W
u
d
w
a
w
w
u
0
wa

4

M

00

upd

dop '0

apd

ItI	 dm

<Say<
dop

.n	 O

O

^dow me	 d

	

<	 ``^	 O

i	 ^	 ♦ 	 ^	 ^0	 1

	

dl'Q
♦ 	 (/I

"-	 W^+ ^ 	 w
^°	 Od%0

ZAZ

M	 0 <

WW (^o H
O T W H
O<V ac

W
F
O
Z

3-38

Table 3-6. Event Flags

Identifier Description

EALM Arm has reached boundary envelope (joint
variables @ 1 ,8 2 and/or 83 in and position).

EHLM Hand has reached boundary envelope (joint vari-
ables 64 ,85 and/or 66 in and position).

FYL:/EFRP Front-'left/right proximity sensor indicates
proximity distance.

EFLT/EFRT Front-left/right proximity sensor indicates
tracking distance.

EFLC/EFRC Front-left/right proximity sensor indicates
collision distance.

ELLF/ELRP Lower-,left/right proximity sensor Indicates
proximity distance

ELLT/URT Lower-left/right proximity sensor indicates
tracking distance.

ELLC/ELRC Lower-left/right proximity sensor indicates
collision distance.

EROL EE is roll aligned to TP.

EPIC EE is pitch aligned to TP.

ESPD Speed of TO is attsined.

EYAW EE is yaw aligned to TO.

ECNT EE is centered opt TO.

EGRA TO is grasped.

ESTP TO is stopped.

EJCT Jaw closed to the tracking aperture.

EJCL Jaw closed.

EJOP Jaw open.

description holds for flag true.

Q

1

C1

1	 1	 `

3-39	 01

i

I

i
C.	 SOL"TWARE IMPLEMENTATION

In previouA subsections the CACS has been described from func-
tional, hardware and algori t hmic points of view. Now, thu software
implementation of the system is discussed. The general software arcili-
tecture, the basic software components and the schaduling of the proc-
esses are considered in the first seven subsections. The processes
themselves are not designed at the time of writing this report and will
not be considered here. The description of the program documentation is
given in paragraph 8 of this section.

1.	 General Software Architecture

As already mentioned in Section III A paragraph 4, the CACS soft-
ware consists of three parts:

(a) Manipvluor control subsystem (OPER).

(b) Parameter editing subsystem (EDIT).

(c) N..anipulator testing subsystem (TEST).

These three subsystems will be implemented as three independent tasks
under the OS/16 MT2 real-time operating systam.

The first subsystem is the main part of the CACS software which
supports interactive control of the manipulator from the operator con-
sole. The preceding sections as well as the major part of this section
are devoted to this subsystem. The later two subsystems are not part of
this report and will only briefly be discussed in the next two
subsections.

C

2.	 Parameter Editor Subsystem

The eJIT subsystem is intended to rupport fast and easy editing
of all CACS parameters and cocstants. This is extremely important in a
laboratory environment and for the purpose of experimentation as empha-
sized in Section 2. The relatively large number of parameters and the
frequent need for their readjustments make this problem nontrivial. The
following needs must be taken care of:

(a) Provide facilities for easy parameter changes before or

G	
during manipulator operation.

(b) Preserve system integrity and reliability.

G	 Both problems can be solved simultaneously by means of a centralized
and redundant parameter file which is maintained independently of the
manipulator control software. This is shown in Fig. 3-16, where four

i
	 routines are outlined.

3-40

O

a+

oe

Ir.a

+1

d
a+

Ir
W

W

d1

..ra

ao

i
00

ti

I
c^'I

W

Q

0

^I

z
0

W

atW

I

a< F^	 lti }

F^ 0
C p^W

Vs
d OgK

I

W

ag§ WHOB
^ v^L

o W

?500W at

a< W
W

50
aV N^Z
UO
v ^.►

OI

3-41

G

The first roatine parameter editing provides an on-line update
and display of the user (source) parameter file. This file contains

C.	 one record for each parameter, where each record contains at least the
followiag data fields:

(a) Parameter identifier (its symbolic name used in OPER
programs).

(b) Index number for casR of parameter arrays (every vector
component represents one parameter entity).

(n) Dasc,iption of the parameter limited to fixed number of
characte-s.

t	 (d) Unit of a4asurament.

(e!	 rarameter values.

(f) Date of the last paramecer update.

The updating procadures should comprise eddition, deletion and
modifica l, ion of en o1re records and of particular record fields. To
facilitate the experiments, two values can be associated with each
parameter: the "actual value" and the "try value". The former
represents the value established in previous experiments. while the
latter rapresents the new value ready for use iu the current experi-
ment. The try value can always be returned to the actual value. if the
user it; not satisfied with its effect on the system, or it can be fixed
as a new actual value if it dives batter results. In the laxt case the
da0e of the last parameter update must also be changed. The user param-
eter file can be displayed by a CRT or by console printouts as shown by
example in Fig. 3-17.

{	 The parameter conversion routine automatically generates the
f parameter table after the editing procedure is complete. This table

contains parameters and their combinations in the "cbject" form used
by the OFER procedures. These values are not necessarily redundant.

C	 ant cannot be accessed Ly the usor. Examples of parameter conversion
G	 are the following expressions:

AR - (H 4- DLOWER M) * SIN(GAMINC)
t

BR - -DBS/2 * (1 - COS(GAMINC))
i

G	 CR - DBS/2 * SIN(GAMINC)

1A - (H + DLOWER(1)) * (1 - COS(GAMINC))

where AR. BR. CR and DR are "obj_ttive" par=meter values used directly
in the roll alignment algorithm, while H and DBS are constructive con-

C	 stanza of the CURV arm. and DLOWER(1) and GAMINC are algorithmic pacam-
cterr, all representing redundant source parameters in user form and
maintained by the user.

f
s

3-42

to

a
a
d

V

w
O
0
.r
a
n
w
A

rt

m,r
w

c

c

r

i

A

?,w

4F F

I

w I

••^^	 cv)g#z 311. 111
1	 .

	

I v^^^^ ^ ^ V	 ; z
O I W V O 00	 f W	 • `	 W S T W H S

I N Y 	^ ^ ^	 ocLZ	 v► (^. HBO
ac I u^NNN	

U u U	 '
u	 v	 . JS J^ X71	 ~

w 'A U. u. O .^
X71	 No	 X000	 0 0 0	 Z2	 O^^o o

4'1N^N N

	

oW«''	
Z Z - _ p	

}QQQDQ

	

VV V	 ^^	 =ZzO~

	

Wz z	 z _	 YY^^Y

	

• 0 0 0	 «	 u V^ u

	

X000	 .
go

	

.....^ h M	 , s N .`9	 a... 	 '
ZI 	 •^NC13^'•^N

	

W I	 ;

	

«<	 Z

	

G
I 7 N^N	 :^ ^' ''	 OXX	 a^Oc^edego oU.

88§8	 O ^	 . Y1V	
ONNReZlQ

	

1	 O O	 00	 00000

IN

v

s

3-43

i
i

730-53

The file creation routine is used only once, immediately after
establishing the EDIT task. This routine is trivial if the sequential
organization of the user parameter file is accepted.

The save routine is a system utility routine which provides
copyi,ug of the user Zile onto the output media as punched cards, paper
tape, or magnetic tape. This enables the keeping and maintaining of
more than one set of paranpters. For example, each set of parameters
can be associated with different seusor calibrations or with different
experimental runs. Before starting the manipulator operations, a par-
ticular set of parameters must be chosen and the corresponding sRve
file must be loaded into the user file. The user file can he a direct
access auxilliary storage (disk !or example) or it can be directly in
the core. The storage required for a user file is about 12 R bytes,
and the storage required for the EDIT code is not expected to be large,
so that both can be core resident during the execution of the EDIT task.
The parameter table, which is an output of the parameter conversion
routine, contains only one set of parameter values requiring about NO
bytes of computer storage. This table must be transferred from EDIT
to OPER task, where it will be placed in a shared data buffer. This
is discussed in paragraph 6.

3. Manipulator Testing Subsystem

The TEST subsystem is intended as a maintenance tool for checking
the OPER subsystem after every hardware change and/or after system
reinstallation caused by changes in the software. It is obvious that
the dynamic environment of the CAC° will require freque:t modifications
of the software to improve the existing prcgrams or to extend the system
by new features and capabilities. This means that the CACS software
must be considered as a "living" part of the system, subject to changes
and continuous growth. To maintain system integrity and efficiency of
maintenance, it is strongly recommended that considerable attention lie
paid to the manipulator testing subsystem. It must be developed as a
sequence of testing procedures which will automatically and systeirt ica]ly
check all modules of the subsystem, their mutual interactions and their
interactions with the I/O devices. The sequential order must be
designed in a way so that all possible errors in the hardware and soft-
ware can be located fast and, eventually, without operator assistance.
The major part of the TEST subsystem cdn probably be synthesized from
testing programs which are an outcome of the overall program developmeut
process. This must be kept in mind when creating the testing programs
which must be flexible and suitable for future retailorii.g.

4. Monitor Concept

The basic software components of the OPER subsystem are processes
ar..: monitors. Processes are already discussed ir, the preceding Section
(paragraphs 5 and 6), and their implementation will be considered in
paragraph 6 of this Section. Monitors are introduced by Brinch Hansen,

3-44

Refs. 6-7, and by Hoare, Ref. 8, as a new concept for a hierarchical
structuring of multiprogramming operating systems. This concept is
adopted to develop the CACS software. Ir will be discussed briefly in
this subsection to complete the discussion of Section III B paragraph S.
A more detailed description of monitors and their implementation is giuen
in Refs. 6, 7, 9, 11 and elsewhere.

Processes communicate with each other by sending or receiving
data. As already mentioned before, these data are called shared data.
To preserve system integrity, the processes should not operate directly
on these data. An example of direct operations on data is common data
structures which enable unrestricted data accessibility by minimal sys-
tem overhead. However, the reliability of complex systems, especially
systems with concurrent programs, is highly sensitive to incorrect data
communication. Therefore, the accessibility of data, i.e., the access
rights of the processes, should be carefully controlled. This can be
done by allowing access to data only by special procedures. Procedures
provide much safer interface mechanisms than common data structures.
This is the basic assumption underlying the modern approach to struc-
tural deoign of concurrent programming, Ref. 11. It will also be
employed in the design of the CACS software.

The shared data and the procedures which can access them, are
grouped within an abstract object called monitor. These objects are
usually high level language constructs designed for concurrent pro-
gramming, Ref. 9-10. Tney also can be used as a powerful concept for
building hierarchically structured systems in sequential languages.
This is the case for the CACS software.

Regardless of the interpretation of monitors, they define the
following four entities:

(a) shared data structure,

(b) monitor procedures,

(c) initial operations,

(d) access rights

The shared data structure includes data transmitted among proc-
esses, as well as other data necessary for the correct functioning of
he monitor in the context of a multiprogramming environment. Monitor
prccedures explicitly define all operations which the processes can
perform on shared data. Initial operations define all operations which
must be executed in time of creation of the monitor. Finally, access
rights define all connections of the monitor to the rest of the system
hierarchy. This is achieved by giving an explicit list of all processes
or other monitors which can enter the monitor.

i

C

nl
Y

r

C

1.

Besides the control of operations on shared data and their
accessibility, another feature concerning the monitors is essential:
mutual exclusion. It must be ensured that only one process can operate

	

G	 on shared data at the same time. This can be accomplished by allowing
that only one procedure within the same monitor can be called by proc-
esses or otter monitors at the same time. If some process is executing
a monitor procedure and another process is trying to call this or
another procedure within the same monitor, the latter must be delayed
until the first process leaves the monitor. Simultaneous monitor calls

	

C,	 are scheduled outside the monitor by special procedures grouped within
one program called kernel. The kernel is a basic part of the system
software which implements exclusive access rights of processes and
scheduling of CPU's and other physical resources among concurrent proc-
esses. For its work, the kernel uses interrupt mechanisms and low
level communication facilities which are implemented in hardware or
lowest level machine software. Therefore, the kernel is highly machine
dependent, i.e., it can be considered as an extension of the machine
which hides its details from the user who builds the concurrent pro-
gramming system. This is an essential point of the monitor concept.

As mentioned before, monitors are not only intended for trans-

	

it	 mission of shared data. They are also used for process synchronization
and for scheduling of physical resources. Although, monitors have a
structure essentially identical for all purposes, two general types of
monitors can be distinguished: buffer monitors and resource monitors.

The buffer monitors are designated for shared data transmission
among concurrent processes. Their data structure includes three parts:
shared data buffer, full-empty indicator, and two single process queues.
Buffers can be designed to handle one (single buffers) or more (multiple
buffers) data portions. Multiple buffers are usually designed as linked
circular lists, which impose three more data items in the monitor data
structure: current buffer length, and two pointers, one for the head
and one for the tail of the list. (In CACS the simpler single buffers
are used.) The sizes of the buffers correspond to the amount of data
to be handled. The data can be arrays, records or sets. (In CACS only
data arrays will be used.)

A full-empty indicator is a boolean variable which tells the
processes whether or not the buffer contains data. If the buffer is
full no data can be transmitted to the buffer, but the data can be
taken from the buffer. If the buffer is empty, data can not be taken
from the buffer but can be transmitted to the buffer. Single process
queues are usually integers which represent process waiting to send
data to the buffer and process waiting to receive data from the buffer.
These integers are basic elements of process synchronization by the
kernel which performs the blocking (delaying) or the activating of the
process.

3-46

A typical single buffer monitor is shown in Fig. 3-18. (In this
section the Pascal language, Ref. 14, is used as a more precise and more
comfortable means for program description than program flowcharts.) As
seen, two monitor procedures are associated with the monitor: SEND for
transmitting data to the buffer and RECEIVE for taking the data from
the buffer. Procedures BLOCK and CONTINUE are kernel procedures which
block and activate the processes in a pairwise manner.

Resource monitors do not have buffers. They use multiprocess
queues to schedule the resource among processes. This kind of monitor
will not be used in CACS in its usual form, and it will not be con-
sidered here.

5.	 Basic Prerequisites and Assumptions

The implementation of monitors and processes depends on com-
puting capabilities assigned to the project. Other limiting factors
are the attitude of the research personnel about the utilization of
capabilities and directives derived from the experience during the
foregoing work. In the case of the present project, the essential pre-
requisites and assumptions can be summarized as follows:

(a) Only one processor is assigned to the CACS project.

(b) The whole OPER subsystem should be implemented as a single
partition user program that is imbedded in the OS/16
Mr2 real-time operating system.

(c) The clocked I/O version for CACS software-to-manipulator
interface is suggested, Ref. 12.

The first prerequisite is due to current limited hardware
resources. However, the eventual possibility of utilizing more than one
processor should not be rejected. Current trends in microprocessor
technology development make this perspective realistic, and specific
suggestions have already been made, Ref. 12. Hence, software design,
compatible with a multiprocessor environment, is advocated.

The second prerequisite is made for two reasons. First, the
characteristics of the Hr2 real-time operating system are not ideally
adjusted for this kind of real-time environment. It is designed to
fit more on-line interactive information systems than systems such as
manipulator control. Second, the top-level operation of MT2 requires
a fair amount of knowledge about its operation. Only with a single
partition user program can the operator be unburdened from many details
required by the operation of the MT2, Ref. 13. It should be mentioned
that no suitable high level languages, especially for concurrent pro-
gramming, are available at the present time for this machine.

C 1

3-47

tr vector : array [l..bufdim] of integer;

var buffid: vector;

var full : boolean;

var sender, receiver: integer;—

Ishared data.}

Buffer full-empty indicator.

I	 process queues. }

Procedure SEND (argvec: vector);

begin

if full then BLOCK(sender) else

begin

I put argvec into buffer

full:=true;

CONTINUE(receiver)

end

end;

procedure RECEIVE (var argvec : vector);

begin

if not full then BLOCK(receiver) else

begin

get content from the buffer into argvec

i
	 full:-false;

CONTINUE(sender)

end

end;
i
t

Fig. 3-18. General Outline of Buffer Monitors
(in Pascal language)

3-48	 I

i

Finally, the clocked I/O is the most suitable vehicle for
communicating between the digital computer as the controller and the
continuous dynamic system as the controlled object.

6.	 Implementation of Monitors and Processes

Taking into account the assumptions made in the precesding
subsection, it is obvious that the problems of mutual exclusion, proc-
essor switching, and scheduling of other physical resources do not
exist any more. Therefore, the implementation of monitors and proc-
esses becomes trivial. The processes can be developed as simple
subroutines and their switching to the processor as simple subroutine
calls. Also, the producer-consumer relations between processes are
not asynchronous due to periodic I/O operations. It means that in
every iteration cycle, all input buffers are first filled by an input
process (DOIO), and then they are read by the internal processes. The
same is true with the output buffers and the other internal buffers
for shared data handling. In addition, most of the internal buffers
are not of the producer-consumer type. As shown in Subsection 4.2,
the condition for putting a new value into the buffer is not its empti-
ness, and the condition for getting the content of the buffer out is
not its fullness. This considerably simplifies the monitor procedures
and their data structures, because the buffer full-empty indicRtor as
well as the receiver and sender queues are not needed anymore. There-
fore, the data structures in the buffer monitors are reduced to the
buffer content itself. Consequently, the kernel is dramatically sim-
plified and reduces to a single monitor of the synchronization type and
to one short program.

Now, the justification of the monitor concept in this project
might be appropriate based on the following reasons:

(a) The complexity of CACS software and its dynamic environment
demand a highly structured organization. Concurrent proc-
esses and the monitor concepts are powerful methods for
such software structuring, even if the processes and monitor
are simulated. The natural parallelism of manipulator con-
trol activities reinforces this reason considerably.

(b) The simplified versions of the monitors used out of a
language context can dramatically reduce the hazard of
destroying the system integrity. The system overhead
(in time and space), which can be considered a procedural
drawback for data communication, is still negligible in
comparison to other computations in the system.

(c) Because the monitor calls and process switchings are
reduced to simple subroutine calls, the kernel run-time
overhead is practically reduced to zero, and therefore,
cannot be used as an argument against the monitor concept.

Q

n

C

0

i
3-44

U

(u)	 If the system is built based on the monitor concept it can
be easily transferred to a multiprocessor environment.
As mentioned earlier, multiprocessor control of a manip-
ulator has a real future.

(e)	 Even in the single processor case more complex scheduling
strategies must be considered if the execution time of CACS
programs exceeds the maximum allowable value of the cycle
time. Preemptive scheduling strategies and processor
switching will not disturb the general system structure if
it is based on the monitor concept. Only the monitor pro-
cedures must be extended by queuing features, and a new
version of the multiprocessor case.

Let us now consider the implementation of the monitors in the
Q:	 OPER subsystem. The list of all OPER monitors is given in Table 3-7.

All monitors listed, except the last three, are of the buffer
type. However, the majority of the input/output buffer operations, as
required by the control algorithms, are not of the simple send/receive
type. TheS are dependent on some specific conditions, or they have
to provide some nontrivial data conversion. For example, calibration
and decalibration (MPXS, MJIN, MJOU), computation of trigonometric
functions (MSCT), computation of matrix coefficients, and coordinate
transformations (MSCH, MAT). These operations could be done outside
of the monitors, but for structural reasons they are kept inside as an
integral part of the data transmission. A detailed specification and
description of the monitor procedures is given in the program documen-
tation (Appendix B).

Monitors WIEL and MHLD are used as locking flags for controlling
some arm manipulations, such as putting it in the hold state or releas-
ing it from the hold state by operator intervention. These monitors
and related locking mechanisms will be explained together with the
processes that use them. Monitor MPRQ is intended for process scheduling
and synchronization. It is discussed in the next subsection.

The implementation of the monitors and processes will be done
in an identical manner in accordance with the features of the INTERDATA
Common Assembler Language (CAL). Thus, every monitor or process will
be coded as separate assembly block called module. The structure of a
module is given in Fig. 3-19. As seen, it contains three parts: list
of entry-point and external symbols, program code (procedures), and
data declarations. Programs within one module can be hierarchically
structured, and they cannot be accessed by procedures defined in other
modules unless they are listed in the entry-point list. The same is
true with data. If their identifiers are not included in the entry-
point list, they remain private variables of the monitor and cannot

3-50

Table 3-7.	 CACS Monitc*s

Identifier Description

MIOB Input-output buffers

MJIN Calibrated joint variables (feedback values)

MJOU Calibrated joint variables (set-point values)

MSCT Trigonometric functions of joint variables
(feedback value)

MEST Event status table

MAST Alarm status table

MSST Switch status table

MTRP Translation-positional increment buffer

MTRR Translation-rate buffer

MROP Rotation-positional increment buffer

MROR Rotation-rate buffer

MJAW Jaw manipulation increment buffer

MSCH Trigcnometric functions of hand angles (world
coordinate system)

MAT Tracking plane rotation matrix

MPXS Calibrated proximity sensors data

MFTS Calibrated force-torque sensors data

MPAR CACS parameters and constants

MHLD Hold lock

MREL Release lock

MPRQ Process queue and delay semaphore

sI

L^ 1

f

Y

3-51

I

F

ENTRY-POINT AND
EXTERNAL SYMBOL LIST

PROCEDURES

DATA DECLARATIONS

Ii

Fig. 3-19. General Structure of the Module

3-52

be accessed from other modules. The monitor procedures called by a
process must be in the external list of the process. The same holds
for nested monitor calls. If the monitor procedure calls a procedure
from another monitor, the later must be in the external list of the
former module. The entry-point and external symbol features (EM-Y and
EXTRN pseudo-instructions) are the only means for access right conaol
in the CACS.

N

It is accepted here that all shared variables are implemented as
private variables of the modules, i.e., they trust not appear in any
entry/external list. Furthermore, all private variables of proceuses
which must be initialized are implemented as global variables declared
as entry-points.

In order to describe the hierarchical structure of the system,
the graphical technique called access graph has been used, Ref. 9. By
access graph the monitors and processes are depicted as circles and the
access right by arrows (the latter should not be interpreted as data
flow!). The access graph of the OPER subsystem is given in Fig. 3-20.
In this figure all internal processes are represented by oae circle to
simplify the diagram.

A more precise definition of the access rights can be done by a
cross-reference table of the form shown in Fig. 3-21. The columns of
this table represent processes and monitors, while the rows represent
the monitor procedures which are called by processes and/or monitors
indicated at the head of the columns. The access right is checked by
"X". For example, "X" in the first column and the second row of the
table means that process Pl has access to procedure S12 of the monitor
Ml. As a consequence, the module representing the process Pl must have
a pseudo-instruction EXTRN S12, while the module representing monitor
Ml must have a pseudo-instruction ENTRY S12•

7.	 Scheduler

Scheduling of I/O o perations and internal processes is provided
by the program called scheduler (SCHED) and by one monitor (MPRQ) called
process queue. Theae twc system components will be discussed in the
present subsection. The scheduler is the main program of the subsystem
OPER, which is a clock interrupt driven cyclic program. The Pascal
program of the scheduler is given in Figs. 3-22 - 3.23.

I/O operations and cycle control is done by subroutine DOIO,
which reads A/D converter rnd switches/pushbuttons and writes D/A con-
verter and alarm display. These operations are r ,7rformed through spec-
ial clock interrupt serti,ice routines. After executing service routines,
the control is given to the first instruction following DOW call.
The rest at the main progra.l is executed within a clock interval. After
executi,)n, the processor is trapped in a "busy wait" loop (1 goto 1),
until the next clocL interrupt.

C.

r,

C,I

U

3-53

C.

Z

C

^.t r

a
m
a
O
ndû
o

^o

w
0

a
>r
t^

d
u
u6

dN
I

t'^1

00

W

t:-

t-^
	

k

s

t
r

C
	

3-5k

r

CALLED
MONITORS

M1

M2

Mm SM X	 X X

Sm2
X X

Sm3 X	 X	 X X

Smk
m

X	 X	 X

Fig. 3-21. Access Right Cross-Reference Table

3-55

%I

r^SCMED;

vor first : boolaan,

sin	 : booleon; 1Initialization switch.

1601	 1;

in

first:Itrue;

DOiO; ; Start clock, perform 1/0 operations on
ADC, DAC,	 andswitches/pushbuttons
olarn display.	 Retum address of Clock
Interrupt Service follows this statement.

INITSW(sin); Get sin from SWTBUF.

if rat sin then first:strue else

bje in

if first than

in

first—false,

INIT; ;Initialize OPER.}

and

MUPLEX; (Multiplex internal processes.1

and

i	 1 Busy wait until clock interrupt.

and;

Fig. 3-22. Scheduler - Main Program

1. 1-
	 3-56

I

1

Procedure MUPLEX;

Mpindex : integer,

procno : integer,

nc	 : integer;

beg
in

pindex:y0

whiie pindex < procno do

in

pindex:npindex + 1;

RESUME(pindex, nc);
a

{Process ID index. 1

Number of processes (parameter). }

Number of skipped clock cycles and
resume indicator. I

JChecc if process is for resumption
(if nca0M

Q

if nc > 0 then

beg in Branch to process with index pindex^end

end

end;

Fig. 3-23. Schedular - Process Multiplexing

3-57 i

ti

t `

i

In every iteration cycle the switch SIN is interrogated. If SIN
is set, the subroutine INIT is called. This subroutine performs ini-
tialization of all pertinent shared variables (for example: process
queue, alarm status table, event status table, etc.). Initializations
are done by executing corresponding monitor procedures. It is obvious
that initialization of the system is possible at any moment without
terminating the program SCHED. This feature is helpful for experimental
work with a manipulator.

Scheduling of internal processes is accomplished by subroutine
MUPLE%, which is shown in Fig. 3-23. This subroutine scans during every
iteration cycle all internal processes represented by their index. (pin-
dex), and it examines if they are for execution or not. This examina-
tion is done by subroutine RESUME which is a monitor procedure of the
synchronization monitor, MPRQ. The scanned internal process will be
resumed, i.e., the corresponding subroutine will be called if the out-
put variable nc of the RESUME is nonnegative. If it is negative, the
next process will be examined. If it is positive, the variable nc
represents the number of skipped iteration cyclee in the case of delay-
ing the process. This number is iruportant information for the process
which must know the exact time passed since the last execution in order
to provide time dependent computations. The variable nc is set to a
negative value if the process is blocked or delayed.

Figure 3-24 shows the monitor MPRQ t-hich is the basic synchroni-
zation component of subsystem OPER. The data structure of the monitor
consists of. rive vectors: pqueue, pqinit, permpr, delays, and^dcount.
:'ector pqueue is a process queue consisting of a bit map pointing to all
processes waiting for execution. The process identification is pro-
,i.ed by a vector index, so that pqueue [pindex] - true, deans that the
process indexed by pindex is ready for executi.on. The vector pqinit iz
an initial value of the pqueue, while the vector permpr is a bit map of
the same size as pqueue and pqinit, defining permanently active proc-
esses. Permanently active processes cannot be delayed. Integer vector
delays contain information about_ delay, i.e., the number of iteration
cycles which have to be skipped by the scheduler. For example, delays
[pindex] - h means that the process pir_dex will not be executed for the
next six iteration cycles. During every iteration, this number is
decremented by one until delays [pindex] becor-es zero. The vector
dcount is of the same size as delays, and it contains information about
the number of iteration cycles being skipped since the last delay opera-
tion. It is used to form the output variable nc of the procedure
RESUME.

Monitor MPRQ contains six procedures: IHITPQ, INITDS, SIGNAL,
WAIT, DELAY and RESUME. The first two procedures are called by sub-
routine INIT, Fig 3-22, in order to initialize the vectors pqueue,
delays, and dcosnt. Procedures SIG:YAL and T? qIT are used oy all internal
processes for synchronization purposes. The first procedure makes the
prc.cess active, while the second one blocks the process. As seen, it is
ensured that permanent active processes cannot be blocked. These
procedures are tools for implementing the process precedence chart
given in Fig. 3-15.

3-58

coast maxpno = 32; ; Maximal number of processes.1

type integv : array [I.. maxpno] of integer;

tie boolve : array[1.. maxpno] of boolean;

var pqueue : bool ve; { Process queue.

var pginit	 : boolve; ;Initial value of procam queue.}

var permpr : boolve; ; Definition of permanent active processes. }

var delays : integv; Delay semaphore.

var dcount : integv;] Delay count.I

PwAKWe INTPQ;] Initialize process queue.

begin

pqueue:=pginit

end;

procedure INITDS; jInitialize delay semaphore.

begin

delays.—O;

dcount:-O

end;

Procedure SIGNAL (pindex : integer); Signal process pindex.1

begin

pqueue [pindex] :true

end;

roP	 cedure WAIT (pindex : integer); l Wait process pindex. }

begin

if not permpr [pindex] then pqueeue [pindex] :-false

end;

Fig. 3-14. Process Synchronization Monitor MPRO

3-59	 C:

F

F

t

proce ire DELAY (pindex, nd : integer);]Delay process pindex nd clack cycles.#

begin

if not permpr[pindex) then

beg iin

if delays [pindex] < nd then delays [pindex] —nd

end

enl

rP oceduro RESUME (pindex : integer; vor nc: integer);

;Examine if process pindex is for resumption.[

beg in

nc.- -1;] Initialization of skipped clock cycle number nc.1
(if nc < 0 process is not for resumption). [

if not pqueue [pindex] then

begin

delays [pindex] := 0;

dcount [pindex] := 0

end else

begin

if delays [pindex] > 0 then

begin

delays [pindex] := delays [pindex] - 1;

dcount [pindex] dcount [pindex] +I

one else

W, n

nc:=dcount [pindex];

dcount [pindex] := 0

end

end

end;

Fig. 3-24. Process Synchronization Monitor MPRQ (Continued)

3-60

The DELAY procedure causes blocking of process for a limited
period of time, defined by the number of iteration cycles to be skipped
by the scheduler. If during the same iteration cycle and within the
same process two delay operations are called, the one with the greater
delay will have priority. The permanently active processes also cannot
be delayed.

The procedure RESUME is called by the scheduler. Its purpose is
to determine the variable nc based on the state of the vector pqueues
and delays. It updates also the vector delays and dcount.

8.	 Program Documentation

The programs under design at the time of writing this report will
be presented in Appendix B. To facilitate the program design phase and
future program maintenance, the program documentation is elaborated
systematically by the use of forms which are specifically developed for
this purpose. There are three types of forms with the following titles:
"Module Definition," "Procedure Definition," and "Data Definition." Ali
of these forms have identical upper right corners and bottom parts. The
upper right corner contains the identifier of the object (module, pro-
cedure, or data entity). The bottom part includes identifiers of sys-
tem, subsystem, designers, date, and page number for the case wizen the
form is continued. This uniquely defines each form regardless of the
time, system or project. For easy look-up, these forms can be sorted
alphabetically by the object identifier, where different object types
aye separated. Examples of compiled forms are given in Figs. 3-25 -
3-27. Entries in the forms are self-explanatory through the corre-
sponding headers, and the following comments will help their
understanding.

The procedure hierarchy of the module is given by the line
indentation, rather than by a hierarchical diagram. Procedures are
represented by their identifiers together with identifiers of their
I/O parameters which are enclosed in parentheses.

The dimensions of data arrays (number of data items in the case
of records) are enclosed in square brackets. The procedure identifiers
which appear in the entry-point list are underlined, while the identi-
fiers of procedures which belong to another module, i.e., which appear
in the external symbol list, are enclosed in the brackets. The same
is true for data identifiers. Explanatory comments are given in nar-
rative form on the right side. Every part of the form has a check-box
which has to be checked by ar. "X" if that part of the form must he con-
tinued. For this purpose, a new form must be attached to the first one
and page numbers must be given.

A procedure definition form is created as EIPO (Hierarchical
Input-Process-Output) form. Column "I/0 Method" defines the way of

3-61

tr
i

C

E

i
r

if

9

t

e

e

i
i

1

IDENTIFIER:

MODULE DEFINITION MJOUT

PURPOWDESCRIPTION:

monitor, supports access to calibrated output joint variables.

PROCEDURE HIERARCHY (ENTRY-POINT SYMBOLS UNDERLINED, EXTERNAL SYMBOLS
ENCLOSED IN BRACKET`):

UPDTEJ

[GETHLD(HLDF [1])] Monitor MHLD
DJARM(VP [3])

[GETTRP(VP [3])] Monitor MTRP
[GETTRR (VR[3])] Monitor MTRR
[GETSCT(SICOTF[121)] Monitor MSCTF

DJHND(VR [3])1
[GETR0P(VP[3])] Monitor MROP
[GETROR'VR [3])] Monitor MROR

DJJAW(VF [1]))
[GETJAW(VJ [1])] Monitor MJAW

CPJRAW(orgument [7])

DATA STRUCTURE (ENTRY-POINT SYMBOLS UNDERLINED, EXTERNAL SYMBOLS
ENCLOSED IN BRACKETS):

HLDF [l] hold flag (HLD)
VP [3] Auxiliary variable
VR [3] Auxiliary variable
VJ [1] Auxiliary variable
SICOTF [12] Trigon. fun. of joint. var.
JOUT[7] Colib. joint vor. (manitor)
[ZOTETA[7]] Zero offsets (parameter)
[SFTETA[7]] Scaling factor (parameter)

SYSTEM: SUBSYSTEM: DESIGNER: DATE: PAGE:	 OF:

CACS OPER M. V. 3/15/79 1	 1

Fig. 3-25

3-62

0

Fig. 3-26

3-63

IDENTIFIER:

PROCEDURE DEFINITION WARM

IDENTIFIER DIM. TYPE DESCRIPTION I/O METHOD

VP 3 H increments of arm-joint variables ad = link + 2
a8A = (o8 1 , 0 8 2. a3)

1. Takes do from buffer TRP by GETTRP.
2. Takes Ax ft on buffer TRR by GETTRR.
3. Comps res A^c - dc^ + &xr . .

y 4.	 Takes sin (8 1F) and am (8 IFJ (I - 1, 2, 3) from buffer SCT by GETSCT.

5. Trandorins coordinates from world to joint space:

8A = TA(8 A) • Vic` when -'A = (8 1 F, 8 21 , 83F)•
v.

SYSTEM: SUBSYSTEM: DESIGNER.: DATE: PAGE:	 OF:

CACS OPER M. V. 3,/15/79 1	 1

I

1

4v

^I

IDENTIFIER:

DATA DEFINITION Jour

COUP. COMPONENT INITIAL MATHEM.
INDEX IDENTIFIER VALUE SYMBCL DESCRIPTION

1 81 Arm azimuth

2 82 Ann elevation

3 93 Arm extension

4 84 Hand azimuth

5 85 Hand elevation

6 86 Hand twist

7 87 Gripper opening

Notices:

(1)	 All values represent calibrated
output values (set-poinh).

(2) Angles scaled rod x 2 15 (Horn
form.)

(3) Accem to JOUT controlled by
monitor MJOUT.

SYSTEM: SUBSYSTEM: DESIGNEP.: DATE: PAGE:	 OF:

CACS OPER M. V. 3/15/79 1	 1

Fig. 3-27

3-64

i_

passing the parameters to/from the procedure. In case of CAL the
following notation will be used for different methods:

(a) ad - link + m Argument passage by argument address
located immediately after calling instruc-
tion (m is relative position from return
address).

(b) ad - Ri	Argument passage by argument address which
is contained in the register Rio

(c)
R
	 Direct argument passage, as a content of

the register Ri.

(d) local	 Argument passage through local variable of
the module.

(e) -	 No arguments are passed to/from the
prccedure.

The description of procedure functions can be done in a narrative
form or by using flowcharts, pseudo-codes or higher level languages
(Pascal, for example).

Data definition forms are intended for simple data structures,
such as arrays or simple records.

t.

a

s:-Y
C

t :;q

i

C.

3-65
	

`l

f

E

1	 SECTION IV

CONCLUSIONS AND PLANS

The functional and operational description of the CACS software
is given in this quarterly progress report. The operational description
comprises the basic description of CACS hardware, the structure of con-
trol algorithms, and the principles of the system software implementation.
In this document the project objectives and framework have been clarified,
the method of approach has been established, and the design of basic
system software components, monitors and basic control routines, have
been completed.

The next phase of development will consist of three activities:

t,
	 software implementation, additional control algorithms development and

real-time experimentation.

The software implementation will be performed in two steps:
implementation of the monitors and implementation of the processes.
Since the monitors are the basic system components, containing procedures

C.	 which are common to all processes, they will be implemented separately,
out of the top-down development line. Therefore, the set of special
off-line testing programs will be elaborated. These programs will be
implemented in a high level language, in this case Fortran V. Their
purpose is to test extensively all monitor procedures, in order to
provide a reliable and secure programming base for further process imple-

t.	 mentation. This approach of program development is usually called
"bottom-up development_."

The implementation of the processes will be carried out by top-
down step-by-step refinements. The development will start with the main
program of OPER subsystem, the scheduler, and will continue with the
development of the processes. First the permanent active processes (IOP,
OES, OMA) will be implemented, and then other internal processes, starting
with MUC and ending with ASO, according to the natural sequence of manip-
ulator operations. The processes will also be implemented by a top-down
technique, as far as it offers practical benefits. As a consequence of
this approach, no special testing programs are needed, except the proce-
dure stubs for simulation of as yet unimplemented- lower level procedures.

4.

l_

The control algorithms will be developed within the frame of the
proposed principles, and the basic control routines and other relevant
monitor procedures designed in this report. It should be noted that
almost all CACS algorithms have been analyzed and evaluated by a look-
ahead design which has preceded this report. The final version of the
algorithms and related parameters will be established by experimental
procedures.

4-1

The real-time' experiments '.gill be tarried wit using the full
eLpacity of the CACS hardware under ree l operational conditions. The
p,irpose of this activity is to check out the system interface and tc
adjust and review algorithmic parameters, calibration constants, and
other pertinent data. ?n addition, the system performance and limits-
t'ons as well as the. impact of the real operational conditions on system
fLnctioning will oe examined systematically in oraer to be able to
impro,e control performance through algorithmic modifications.

The i.sx•. progress report will describe the development activities
outlined above. The first part of the report will be devoted to testing
prc.blams. The second part will consider processes, i.e., the related
algorithms and their software implementation.

4-2

vgL=jjW PAGE 'BLAN K NOT Ffi MLE,

SECTION V

REFLRENCES

	

1.	 Bejczy, A. K., Lavironment-Sensitive Manipulator Control, IEEE
Conference on De^.ision and Control and 13th Symposium on Adaptive
Processes, Phoenix, AZ, Nov. 20-22, 1974.

	

2,	 Bejczy, A. K., Isauos in Advanced Automation for Manipulator Con-
trol, Joint Automatic Control Conference, Purdue University,
W. LafAyette, IN, July 27-30, 1976.

3. Bejczy, A. K., ''E'°fcct of Hand-Based Sensors on Manipulator Con-
trol Performance," Mechanism and Machine Theo" , . vol. 12, pp. 547-
567, 1977.

4. D14kstra, E. W., "Cooperating Sequential Processes," In Program-
ming Languages, 2. Genuys (ed.), Academic Press, New York, NY,
1968.

5. Wirth, N., "On Multiprogramming, Machine Coding and Computer
Organization," Comm. ACM, vol. 12, no. 9, pp. 489-498, Sept.
1969.

	

5.	 Brinch HArsen, P., "Structured Multiprogramming," Comm. ACM,
vol. 15, no. 7, pp. 574-578, July 1972.

	

7.	 Brinch Hansen, P., 'Operating System Principles," Prentice-Hall,
Inc., Englewood Cliffs, NJ, July 1973.

	

R.	 Hoare, C. A. R., "Monitors: an Operating System Structuring
Concept," .;omm, ACM, vol. 17, no. 10, pp. 549-557, Oct. 1974.

9. Brinch Hansen, P., "The Programming Language Concurrent Pascal,"
IEEE. Transactions, vol. SE-1, no. 2, pp. 199-207, June 1975.

10. Wirth, N., "Modula: a Progamming Language for Modular Program-
ming," Software Practice and Experience, vol. 7, no. 2,
March 1977.

11. Brinch Hansen, P., "The Architecture of Concurrent Programs,"
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

12. Zawacki, R. L., "FORTRAN-TO-CURV Arm In'erface I/O Drivers,"
Interoffice memo 343-76-794, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, Dec. 1976.

13. Raibert, M. H., "PrEliminary Proposal for Teleoperator Software
Architecture," Interoffice memo 343-78-101, Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA,
Jan. 1978.

	

34.	 Jensen, K. and Wirth, N., "Pascal, User Manual and Report,"
Springer-Verlag, New York, NY, 1975.

5-2

th

APPENDIX A

GRAPHICAL REPRESENTATION OF DATA AND STANDARD OPERATION

GC, I

C l I

A-1

U

in order to simplify the system description, a graphical
technique is employed in this report. This technique consists of
graphical symbols which express both the data and the operations on
the data.

Two categories of data will be considered here: scalar and
vector data. The former represent single data values with which a
symbolic roars is associated and indicated on the diagram. Vectors
represent one-dimensional data arrays, which are ordered sets of scalar
data under one symbolic name.

Operations on data can also be considered as two general cate-
gories: elemetary algebraic operations and data buffering. Elementary
algebraic operations include summation and multiplication of scalar
and/or vector data, as well as elementary arrangements/rearrangements
of data arrays (join and disjoin operations). For operations which
are more general special symbols are used. This will require additional
explanations.

Data buffering are specific kinds of stortge operations which
play an important role in CACS software. Data buffers are memory
locations with dimensions corresponding to the dimensions of the data
arrays indicated on the diagram. These locations are accessible through
special procedures which ensure mutual exclusiveness and access right
control. The length of all buffers will be the same. This means that
all buffers can accept only one scalar/vector data catity.

w1,

A-2
	 it

x

x
Scalar data

Vedor data

v
—

v n (vI,.vx, ..., vN)

(vi is color dato)

x

v

a

Gemral data pocessing

Output device

Input device

—'^ Input-output device

Fig. A-1. Graphical Representations of Data and Standard Operations

A-3

c

w
•

v

w

v

x

Algebraic summationF +r	 a	 s=x-y

u

R

Vector summation
w=u+v

u = (u i , u2 1 ... , UN)

1=011 v21 .. • vN)

z(ul +vI , u2 ±v2, ..., uN+vN)

Scalar multiplication

=(c•v1Ic•v2,-...c•v.)

Joining the vectors

u = (u l , u21 ..., u^i)

v = (v i , v2, ..., vN)

I = (vi , v21 ..., vN , ui , u21 	 uM)

Disjoining the vectors

u = (u l , u21 ..., uM)
v = (u,, u2, ..., uN)	 M >N

=_ (uN+i' uN+2'	 uM

Note; Numbers besides the datu
symbols define the order of
Joining/disjoining

Fig. A-1 (Continued)

A-4
t

Fig. A-1. (Continued)

A-S
	 OR

^	 I

I

C

(_ y

Shared data buffer
bid (bid is buffer Identifier)

Note:	 The size of buffer comsponds to
the dimension of iniwt/output data.

INPUT BUFFER OPERATION

X
	 Unconditional replacement of buffer

content y by Value x

Conditional replacement of buffer
content y by value x

x	 c (Condition must be defined separately.)
Examples:

1.	 Replace if x is low than y.
2.	 Replace if x is Seas than m.

Otherwise replace y by m.)

^^►^^ Add value x to buffer content y.

E Store x in buffer if it is empty. 	 if itx
is full, the store operation will be
delayed until the buffer becomes empty.

{

.l

i

6

s

OUTPUT BUFFER OPERATION

=D—^	 I
x	 stead buffer without changing Its content.

R	 x	 Read and reset buffer.

E	 i F	 x
Read and empty buffer If it is full.
If it is empty, the read operation
will be delayed until the buffer
becomes full.

It r

Fig. A-1. (Continued)

r_
A-6

PART III

August 31, 1981

OPTIMAL PRODUCTION SCHEDULING

FOR A LINEAR FLOW SHOP

by

Gad Vitner

INSTITUTE FOR TECHNOECONOMIC SYSTEMS

UNIVERSITY OF SOUTHERN CLAILFGRNIA

LOS ANGELES, CALIFORNIA 90007

i

ABSTRACT

This study investigates a flow shop scheduling problem)

which is defined as the linear flow shop problem (LFP).

The time to perform the jobs in the shop is a linear

function of the batch size. The results of the research

show that the shortest processing time (SPT) sequencing is

the optimal solution for the mean lateness, mr-an flow time

and waiting time. A typical scheduling problem that can

fit the definition of the linear flow shop problem is an

assembly line.

The main objective of this research is to find an

optimal solution for a production scheduling problem that

will be easy to implement in practical situations. The

results show that the optimal solution is very easy to

implement in real life problems as the jobs have to be

arranged according to a monotonic increasing processing

times.

The proofs for mean lateness and mean flow time use

the idea of pairwise interchange of adjacent jobs

in the sequence. The method of mathematical induction is

fused to prove that the theorems hold for the case of m jobs

lin the sequence. A numerical example is presented to

1

explain how the theory is implemented. A sensitivity test

is conducted on the numerical results to show how the

shortest processing time sequencing yields the optimal

solutions.

j;

ii

N

I
V

Vii I

3

S

6

6

8

10

17

18

J

TA.BLB OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS

Chapter

e

	

1	 INTRODUCTION TO SEQUENCING AND SCHEDULING

1.1 Definition and Classification of a

Sequencing/Scheduling Problem

1.2 Types of Scheduling Models

1.3 Performance Measurements of a Production

Schedul::
i

1.4 Research Objectives

I

	

2	 FLOW SHOP SCHEDULING - BASIC CONCEPTS
i

2.1 Definitions and Terminology

2.2 Characteristics of a Flow Shop

	

1 3	 REVIEW OF PAST WORK

	

4	 FORMULATION OF THE PROBLEM

4.1 The General Linear Flow Shop Problem

1

r

2i

ii.

iv

.__J

1 1

I

Y - ^

I

I

4.2 Time to Perform All Jobs Through All

Machines

4.3 Machining Time Required to Perform

The Jobs

4.4 Idle Time Involved in Linear Flow Shop

4.5 Makesp an (MS) in Linear Flow Shop

4.6 Bounds for Performance Time in a

Linear Flow Shop

5	 OPTIMA:.ITY IN LINEAR FLOW SHOP SCHEDULING

5.1 , Lateness in a Linear Flow Shop

S.2 Computational Results

S.3 Flow Time in a Linear Flow Shop

5.4 Waiting Time in a Linear Flow Shop

6	 SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

Page

19

20 y

21

28
u^

29

31
	 a

31

58

98
	

Ow

102

104
1-1

108

t

I	
I

LIST OF FIGURES

Page

Figure

2.1 A "Pure" Flow Shop	 7

2.2 A General Flow Shop 7

3.1 Graph of a Two Job Flow Shop Schedule 13

4.1 Idle Time in a Two Machine Linear Flow Shop 23

4.2 Idle Time in a Three Machine Linear Flow Shop 26

S.1 A Pairwise Interchange of Adjacent Jobs 33

S.2 A Two Job Linear Flow Shop 41
f

5.3 A Three Job Linear Flow Shop 44

5.4 A Four Job Linear Flow Shop SO

? 5.5 A Block Diagram that Summarizes the Steps
! of the Proof S7

S.6 Flowchart that Describes the Sensitivity Test 60

S.7 Results of Sensitivity Test for Sequence 1 61

I'	 S.8 Results of Sensitivity Test for Sequence 2 62

S.9 The Optimal Sequence 63

5.10 Results of Sensitivity Test for Sequence 4 63

5.11 Results of Sensitivity Test for Sequence S 64

5.12 Results of Sensitivity Test for Sequence 6 6S

5.13 Results of Sensitivity Test for Sequence 7 66

5.14 Results of Sensitivity Test for Sequence 8 67

S.lS Results of Sensitivity Test for Sequence 9 68

L V1

V

i

f
a

A

Page

f a

S.16 Results of Sensitivity Test for Sequence 10

5.17 Results of Sensitivity Test for Sequence 11

S.18 Results of Sensitivity Test for Sequence 12

S.19 Results of Sensitivity Test for Sequence 13

S.20 Results of Sensitivity Test for Sequence 14

5.21 Results of Sensitivity Test for Sequence 1S

S.22 Results of Sensitivity Test for Sequence 16

S.23 Results of Sensitivity Test for Sequence 17

5.24 Results of Sensitivity Test for Sequence 18

5.2S Results of Sensitivity Test for Sequence 19

5.26 Results of Sensitivity Test for Sequence 20

5.27 Results of Sensitivity Test for Sequence 21

S.28 Results of Sensitivity Test for Sequence 22

5.29 Results of Sensitivity Test for Sequence 23

5.30 Results of Sensitivity Test for Sequence 24

5.31 Two Machine Linear Flow Shop

69

70

71

72

73

74

7S

78

81

82

83

86

89

92

95

99

k

'J

f

LIST OF SYMBOLS

Processing time per part on machine J. p.17

Completion time of job i, p.4

Completion time of the last job in set A, p.34

Due date of job s, p.3

Mean flow time, p.4

Flow time of job i, p.4

The sum of the flow times of all the jobs in set
"A", p.100

The sum of the flow times of all the jobs in set
"B", p.100

Index set of jobs, p.18

Idle time of machine j, immediately before the ith
job starts on machine j, p.22

Idle time of machine j, p.4

Index set of machines, p.18

Lower bound for performance time in a linear flow
shop, p.29

Z	 Mean lateness, p.5

L i	Lateness of job i, p.4

L 4	Total lateness of the jobs inset "A", p.35

LB	Total lateness of the jobs inset "B", p.35

M	 Total machining time over all n machines, p.

MS	 Makespan, p.28

4

b

Ci

CA

di

F

Fi

FA

FB

'I

Iij

ITj

J

L

J

i

Mj Time that machine j is busy, p.20

ni number of parts in job, i, p.17

P max(TA + t1,1 . CA}, p.36

Q max(TA + ti+1 1' CA), p.36

r i ready time, p.3

R max (TA + t i,l + ti+l,l • Ci (S)) ' p•37

S i A slope index for ordering jobs, p.16

SL Scheduling line of a two job flow shop, p.13

t ij Performance time of job i on machine j, p.17

T Total performance time of all m jobs over all n
machines, p.19

TA The point in time at which job i starts in sequence
S and at which job i+l starts in sequence S', p.32

IT Time to perform job i over all n machines. p.ly
a
TRi Tardiness of job i, p.4

q 0 Upper bound for performance time in a linear flow
shop, p.49

iv max(TA + t i+l 1 + ti 1' Ci+1(S'))	 P•37^	 ^	 s

IX max((l+b)tll' t il + t 21) ' P•47

'Y max(X + bt 21 , t i l + t21 + t 31). P•48

l
y Y + max(Y + bt 3l' til + t21 + t 31 + t41), p.54

^2
max((l+b)t,l + bt il' t 21 + til * t 31 3 	P.48

tA

Q

ai

i

CHAPTER 1

INTRODUCTION TO SEQUENCING AND SCHEDULING

1.1 Definition and Classification of a Sequencin g/

Scheduling Problem

A sequencing problem is defined as one that determines

the relative order or sequence in which given jobs or tasks

are to be performed by the available facilities or resources.

A scheduling problem is defined as one that assigns the

actual starting time for each task on various resources.

In general, there are two kinds of scheduling problems.

^he static problem handles a set of tasks that is available

for scheduling before the scheduling process starts. In

this case the set of jobs is fixed and does not change over

time. The dynamic problem deals with a scheduling process

here in addition to a given fixed set of tasks, new jogs

rr've to the system after	 a schedulingi	 ys	 th sch	 grocess starts.p

The dynamic problem presents a real life production process

ere the set of tasks to be considered for scheduling

ontains two subsets of tasks. The first subset includes

asks taht the system has from orders on hand and the secendl

ubsystem includes tasks from orders that will arrive to thel

stem in the future.

1.2 Types of Scheduling Models

To classify the major scheduling models it is necessar;

to characterize the confi.guration of resources and the

behavior of the tasks. Each model can be used in a static

or a dynamic approach

(a) '.ngle Machine: One machine is continuously

available and is never kept idle while work is

waiting

(b) Parallel Machines: Several identical machines

are available for scheduling the tasks. Taskr

are performed starting at tine t=0, consecutively,

so that as soon as a task is completed another

task can put on the machine that is freed.

(c) Flow Shop: Jobs to be scheduled follow a fixed

routing and the routing is the same for all jobs.

(d) Job Shop: Routing for all jobs is fixed but eacl

job may have a different routing.

The solutions to the various modelsare achieved mainly

by two kinds of techniques; optimal techniquesand heuristi,

techniques. The optimal techniques use mathematical

programming such as linear programming, integer programming

dynamic programming and enumeration techniques like branch

and bound. Mathematical approaches become very complex for

practical cases as computational requirements will besever

for large problems. Even for relatively small problems,

2

I
i;

Y

there is no guarantee that the solution can be obtained

quickly. Heuristic techniques usually assign a priority,

or set of priority rules to sequence the jobs that are

ready to be performed. Computational problems are avoided

and the solutions to large problems can be obtained with

limited computational effort. The Problem with heuristic

methods is that they do not guarantee optimality. The goal

in practical problems is to get a "good" (not optimal)

solution by using a simple sequencing rule, in a relatively

short time. In special cases the results of using heuristic

priority rules will result in an optimal or near optimal

solution.

11.3 Performance Measurements of a Production Schedule

i

C

C

Quantitative measures for evaluating schedules are very

important to determine whether a specific schedule is effi-

cient. Performance measurements are functions of variables

that define a scheduling process. The basic variables are:

Ready Time (r i). The point in time at which job i is

available for processing. In a static model where

all the jobs are available for processing at time

zero, ri=0.

Processing Time (t i). The amount of processing

required by job i

Due Date (d i). The point in time at which the proces-

sing of job i is due to be completed.
3

Completion Time (C i). The time at which the processing

of job i is finished.

The major quantitative measures for evaluation are:

Flow Time (Fi), The amount of time job i spends in the

system:	 Fi = C - r

FiaCiifri=0.

Makespan (MS). The amount of time from zero until all

jobs are completed or the completion time of the last

job.

Lateness (Li). The amount of time by which the comple

tion time of job i exceeds its due cute: Li = Ci-di'

Tardiness (TR). The lateness of job i if it fails to

meet its due date, or zero otherwise: TR i = max{O,Li}

Idle Time (IT i). The amount of time that machine j

is not productive.

Schedules are generally evaluated by aggregate

quantities that involve information about all jobs, resulting

in one dimensional performance measures. Suppose that m

jobs are to be scheduled on n machines then aggregate

performance measures are:

t

n1

t
f
t

Mean Flow Time:

Maximum flow time:

a
= 1	 F i

M i
=1

Finax s max {Fi}
1EI

J

Mean Lateness:

Maximum Tardiness:

m

L = 1 L L
m i=1 i

TRiax - max{TRi}
iFI

r

^k

1.4 Research Objectives

This research investigates a linear flow shop model

where the time to perform the jobs on the machines is a

linear function of the batch sizes. The results of the

research show that the shortest processing time (SPT)

(sequencing is the optimal solution for the mean lateness,

mean flow time and waiting time.

The main objective of this investigation is to find

an optimal solution for a production scheduling problem

that will be easy to implement in practical situations.

The results show that the optimal solution is very easy to

implement in real life problem as the jobs have to be

larranged according to a monotonic increasing processing

C
	

times. The results can be implemented in processes as

assembly lines where the jobs are following the same

routing.

C The proof for the minimum mean lateness and the minims

mean flow time is carried out by using mathematical induc-

tion for the case of m jobs in the system. An analysis of

C
	

a numerical example shows how the results are implemented

I
in a specific case. 	

51
a

e
C

IN

t

t

r,

CHAPTER 2

FLOW SHOP SCHEDULING - BASIC CONCEPTS

12.1 Definitions and Terminology

A flow shop scheduling system is defined as a process

where the jobs to be scheduled follow a fixed routing

land the routing is the same for all jobs.

The shop contains n different machines and each job

lconsists of n operations, one for each machine as illu-

strated in Figure 2.1 for a "Pure" n machine flow shop.

The machines in a flow shop are numbered so that the jth

operation of any job precedes its k th aperation, then the

machine required by the j th operation has a lower number

than the machine required by the k th operation. The

machines in a flow shop are numbered 1, 2,...,n and the

operations of job i are numbered (i,l), (i,2),...,(i,n).

It is not required that every job have an operation on each

machine in the shop as in the case of a general flow shop

illustrated in Figure 2.2. Jobs must not enter the shop as

a single machine, or leave from a single machine. In a

general flow shop, each job is treated as if it had exactly

n operations, for in cases where fewer operations exist,

the corresponding processing times are taken to be zero.

kd'

Output	 OutputOutput	 Output

!l

Input

chine

Input

E

Input
(New Jobs)

Machine	 Machine	 Machine	 Machine
1	 2	 n-1	 n

Output
(Completed Jot

Figure 2 . 1. A "Pure" Flow Shop

0I

^r

Figure 2.2. A General Flow Shop

71

The only requirement is that all movements between machines

witain the shop be in uniform direction from machine j to

j+1 and from machine j+1 to machine j+2 etc.

An example of such a shop is an assembly line, where

the workers or work stations represent the machines.

However, a group of machines served by a unidirectional,

noncyclic conveyor would be considered a flow shop.

^2.2 Characteristics of a Flow Shop

A basic flow shop problem is characterized by these

conditions.

(a) A set of m multiple - operation jobs is available for

processing at time zero.

(b) n different machines are continuously available, with-

out consideration of temporary unavailability for

causes such as breakdown or maintenance.

^(c) Each operation can be performed by only one machine

in the shop.

(d) Setup times for the operations are sequence - independen t
i

and are included in processing times.

(e) Job descriptors are known in advance.

(f) Individual operations are not preemptable, once an

operation is started on a machine, it must be complete

before another operation can begin on that machine.

Only a single interval (b,c) is to be assigned to each

8

i

I (g)

operation with (c-b) equal to the processing time of

the operation.

Each machine can handle at most one operation at a

time. Consider the interval (b X, cx), the assignment

of operation x to a particular machine. For every

other assignment (by , cy) to that machine, either

b > c or cx < by.

'wI

a

U-1

C.

0

k	 t

CHAPTER 3

REVIEW OF PAST WORK

The literature on flow shop scheduling contains many

papers that introduce general ideas, algorithms to solve

specific problems and analysis of different performance

measures. This literature survey presents the tyipcal

papers in the area, papers that present general ideas or

general techniques to solve the problem.

The earliest optimal results for the two machine flow

shop problem were obtained by Johnson (1954). The objectiv

of Johnson was to minimize makespan or minimize the maximum

flow time.	 Johnson proved that in an optimal sequence,

job i precedes job j if: MIN{t il ,t j2 } < MIN{ti2,tj1}

where t il is the time to perform job i on machine 1 etc.

Johnson extended this algorithm for the case of three

machines. The problem loses some of the nice `"ructure of

the two machine case. The problem is formulated, however,

and for the special cases where MIN{til} > MAX;t j2) or

MIN{ti3I > MAX{t j2 } the complete solution is found

analogously to the two machine problem.

Many papers have been written about other performance

measurements but. no one has found an optimal algorithm,

I

I

they than enumeration, for the general flow shop problem.

onway, Maxwell and Miller (1967) state in their book,

of Scheduling, "Even for the two machine flow shop

optimization of mean flow time is a very Difficult

roblem... Johnson's procedure is not optimal with respect

this criterion and, in general, it is not even very good"

(P. 89) .

Ignal andScharge (1965) applied a branch and bound

Itechnique to the three machine flow shop problem. They

observe that the three machine maximum flow time problem is

easier for the "branch and Bound" procedure than the two

pnachine flow tims problem, in that a higher proportion of

the job sets were solved with the minimum number of nodes.

Jackson (1956) considers a case in which the m jobs

!have a common machine for their first operation and a common

(machine for their last (third) operation, but in which the
i

,second operation of each job is performed on a different

machine. There are thus m*2 machines, m of them correspon

ding to a second machine in a flow shop which can process

zany jobs simultaneously. The algorithm is similar to

iJohnson's three machine method.

Dudek and Teuton (1964) have proposed an algorithm to

minimize the maximum flow time in a three machine flow shop,

which is also applicable to larger shops if one arbitrarily

limits consideration to permutation schedules. The algo-

rithm suggests a method for selecting the job to be placed

1

N

s

01

11

jfirst in the sequence, the job to be selected from the

iremaining m-1 to be placed second, etc.

Wagner and Story (1963) have used integer programming

to formulate and solve the problem of three machine flow

shop, to minimize maximum flow time.

Gupta and Dudek (1971) examine various optimization

criteria and investigate the interaction of several cost

factors on optimal schedules. Based on the results of a

sensitivity analysis performed to study the interactions of

several cost factors on the optimal schedule, they suggest

the adoption of minimization of total opportunity cost as

the optimization criterion for the flow shop schedules.

Akers (1956) has a graphical solution for a special f

(shop problem. There are only two jobs to be scheduled

through a flow shop of any number of machines. Suppose tha4

the machine are numbered 1,2,...,n in the order in which

they process the jobs, so that the processing times are

given by:

tl,l,tl,29...,tl,n 	 For job 1,

t2,1,t2,29...,t2,n	 For job 2.

These times can be marked off on axes for the two jobs as

shown in Figure 3.1. A schedule can be represented by any

Iline.

12

C

N

C

ti

i

Job 2

t207

t2,6

t2 ,S

t2,3

SL

t2,2

t2z1
LO

tl,l	 t1,2 t1,3 t1,4 tl,s	 t1,7	 Job 1

Figure 3.1. Graph of a Two Job Flow Shop Schedule

01

i

C

n	 n
1. From (0,0) to (Fi tl,j , ^,t2^j);

J u l	 Jul

2. That is composed of horizontal (work on job 1 only),

vertical (work on job 2 only) and 4So (work on both

jobs) line segments;

3. That does not enter the interior of any of the shaded

regions (which would imply one machine working on both

jobs simultaneously).

Line SL in Figure 3.1 is such a "schedule line."

Mathematical approaches such as linear programming,

integer programming, dynamic programming and branch and

bound to the flow shop schedule become very complex for

practical problems. The formulation of specific problems

in mathematica: models is time consuming and need experts

that are not available in every production facility. In

practical prsble ;ss many variables are involved in the model

and computational requirements will be severe. Even for

relatively small problems, there is no guarantee that the

solution can be obtained quickly. In dynamic orgpnizations

where schedules change every day for example, solutions tha t

are the output of a t;ialhematical model cannot be used

efficiently as it takes some times hours to get the results

even if one uzes a fast computer. There are cases where in

the production plant there are not people who can read and

understand the computer output and then implement it in the

14

i

shop. Using heuristic algorithms, computational problems

are avoided. 'these techniques obtain solutions to large

problems with limited computational effort. Experts are

not needed to develop mathematical models and to understand

,the output of the models. Heuristic methods usually assign

a priority, or set of priority rules to sequence the jobs

that are ready to be performed in the shop. Priority rules

as first come first serve, shortest processing time and

minimum slack time are easy to implement in the shop floor

and it is very easy to run a production facility following

these simple priority rules. In many cases priority rules

are used in production plants as a result of experience of

years and they turn to yield good results. The problem

with heuristic methods is that they do not guarantee

optimality. However, the goal in practical problems is to

get a "good" (not optimal) solution by using a simple

sequencing rule, in a relatively short time without the

need of experts. In special cases the results of using

heuristic priority rules will result in an optimal or near

optimal solutions. Heuristic rules of assigning jobs in a

scheduling process can be modified after using it in the

shop and getting some results about the level of efficiency

Palmer (1965) developed a heuristic algorithm for the

Imakespan problem. The algorithm gives priority to jobs

1having the strongest tendency to progress from short times

iS
	

j^

t

t
({
i C

5

Ito long times in the sequence of operations. He proposes I

the calculation of a slope index Si for each job.

Si = (n-1)tin+(n- 3)ti,n-1+(n s)ti,n-2+...-(n-3)ti,2-

(n-1) ti _ 1

where:

n is the number of machines in the shop.

tin is the time to process job i on machine n.

Then a permution schedule is constructed using the job

ordering S1 > S2 > ... > Sm

C

L

S

C
1
f

t

t

a

i
5

i^

C:

CHAPTER 4

FORMULATION OF THE PROBLEM

The machine scheduling problem considered for this

research is for a flow shop facility engaged in the batch

production of parts. Each job consists of a known number

of parts (n). The parts are produced, in order, on a

number of machines (j). The goal is.to sequence all of

the parts production jobs (i) so that the entire production

schedule is completed in the minimum amount of time. The

feature that makes the problem both attractive and practice

is that the processing time on each machine is a linear

function of the number of parts in that job.

A common representation of machine time is by

tij = bjni

where	 tij - the time of job i on machine j,

bj = processing time per part of machine j,

n = the number of parts in job i.

This problem is a typical example of an assembly line

problem where one has to produce different types or models.

In an automobile assembly for example, you will produce nl

cars of Model A, n 2 cars of Model B, etc.

1	 171

I	 1

The value of b is either computed from historical data

or estimated from machine operati::lz characteristics.

Periodically the value of b is updated in order to keep it

as a good representative of the real machine performance.

The conditions that characterize a linear flow shop

problem (LFP) are:

a. A set of m multiple-operation jobs is available for

processing at time zero.

b. Each job requires n operations and each operation

requires a different machine.

c. Set up times for the operations are sequence independent

and are included in processing times.

d. Job descriptors are known in advance.

e. n different machines are continuously available.

f. Individual operations are not preemptable.

4.1 The General Linear Flow Shop Problem

The General UP Problem considers the case of m jobs

processed on n machines where the performance time t ij is
ME

a linear function of the batch sizes

t j	 b j ni ,	 i s I, j e J	 (4.1)

t..

n
	 -	 j s J, i e I	 (4.2)

7

18

r:

i	 I

f

G

Substituting equation (4.2) in equation (4.1) yields

the following linear relations between the time to perform

a batch on a specific machine and the times to perform the

same batch on all other machines.

tij ' b tj-^ = E-bj , j 	 E J, i -c I	 (4.3)
k	 k

14.2 Time to Perform All .lobs Through All Machines

Let T i be the time to perform job i (i E I) over all

n machines that the shop contains.

P-

Ti= 	 E t ij(4.4)
J=1

Substituting equation (4.3) into (4.4) yields:

n

Ti =F -t̂ b jj=
57 X-%

L,b-	 ie I, k E J	 (4.5)
=1 k	 k j =1

Let T be the total performance time of all m jobs over

al.l n machines, then:

m

T	 T.	 (4.b)
i=1 1

m

i=1
Ti

m

T ^T.
i=1 1

 ,
I

-F.—
 L,, b . J , k E J	 (4.7)^i=1 	 j=1

m n

E E t k bi g	 k c J	 (4.8)
i=1 j =1 k	 _

191

i^

r
r

it

Substituting equation (4.2) into (4.5) yi.:lds:

n
Ti = E

n
E bj (4.9)nibj ni

jal Jal

The total performance time T is:

T = ET
1
. _ E rn E b. (4.10)

i	 •'=̂ 1 =i t L 1 =1

m

T = F

n

E nibj (4.11)
i=1 j-1

4.3	 Machining Time Required to Perform the Jobs

Let M 	 be the time that machine j is busy, then:

M

JM• 	 ti.,
^ ^

j	 e (4.12)
i = 1

(Given that:

tijt- k bj ,	 k e J
T;-

The general term for machining time of machine j is:

m	 m
Mj -	 tij = E t - b , k c J	 (4.13)

i t	 2 1 k

b. m
M. = U - E t ik ,	 k c J	 (4.14)

k i=1

i

a

C

20

i

I

i

Let M be the total machining time over all n machines,

then:

M	 M• (4.15)
j=1

M• _
b.

E t. k	 J (4.16)
lk

,	 E
j=1 j=1 "k i=1

M

n

,M•

n	 m b.

_E	 r	 tik , k E J (4.17)
j = 1 j=1	 i=1 k

The term for M can be rewritten.	 Substituting equation

(4.2)	 into	 (4.14) yields:

Mj

m

=	 nibj ,	 j e J (4.18)
i 1

IThen

n	 n	 m

M E M. _ E E nib	 (4.19)
J =1=1 1=1

4.4 Idle Time Involved in Linear Flow Shop
I

Idle time is defined as the time in which machines or

work centers are not producing any parts. In any productio

plant the purpose is to minimize the idle time of machines

in order to increase the total efficiency of the process.

In case this idle time of the machines can be controlled

and it is known in advance when the machines are not lousy,

J

it is possible to take advantage of this fact and do some

preventive maintenance or any other planned maintenance to

keep these machines running. Let's define I ii as the idle

time of machine j, immediately before the i th job starts on
machine j. There is no idle time on the first machine.

4.4.1 Two Machine UP

Figure 4 . 1 illustrates the case of a two machine

linear flow shop. In developing the terms for the idle

time of machines in the shop, the linear relations

constituted by the definition of the UP problem are used.

The idle time immediately before job 1 starts on machine 2

Iis:

	

I12 = t 11	 (4.20)

b
I 22 = max{tll + t21 - b^ tll - I 12 ,0}	 (4.21)

The stun of (4.20) and (4.21) yields:

b
I12 + I22 = max{t ll + t 21	 b2 t ll ,t ll } (4.22)

	

3	
b	

2	 2

I32 = max{,E til K	 til	 EIi2,0}	 (4.23)

	

i = 1	 1 1=1	 i'mil

N

i

The sum of (4.22) and (4.23) yields:

ne 1

.ne 2

Figure 4.1. Idle Time in a Two Machine Linear
Flow Shop

%,	
IR

I + I + I	 max{	
i

Et 	- b2	
t	 l:i

I}
12	 22	 32	

i=1 1 51 i=1it	 2

_ Ei = max(L,t . - b2 Et. , Et. -
i = 1 i2	 i =1 it S i =1 it iul it

b

tll' t11)	 (4.24)

The idle time immediately before the last job starts on

machine 2 is:

M	 b M-1	 m-1

Im2 = max{F, til b 2 ` t il	 E Ii2901	 (4.25)
i=1	 1 i=1	 i=1

The total idle time on machine 2 is:

m	 m	 b m-1-1	 m-1	 b m-2
} Ii2 = max{ Et -77 w til' -E til - b E til'i=1	 i=1	 l i=1	 i=1	 l i=1

	

2	
b

til - F t il' til}	 (4.26)
_

In general

m

I i2 = max Ku	(4.27)
i=1

1<u<m

where
u	

b2
u-1

Ku it til	 i=1 til'

i^

^J

i	

24 J

I

	

4^

^.4.2 Three Machine UP

Figure 4.2 illustrates the use of a three machine

linear flow shop. The idle time immediately before job 1

Istarts on machine 3 is:

	

b 1
1	 ^2''	

,

1 13 i tll + t12 ' Cl + S2
]t

ll 	 tlj	 (4.28)
1	 j 1

	

2	 2	 b
I 23 = max{ Et 	 + EI i2	 I 13 - — tll'0}	 (4.29)

i = 1	 i=1	 1

The sum of (4.28) and (4.29) yields:

	

2	 b3	 2
I	 max

i
+ I	 { ^t +	 -

13	 23	
i=1 2	 iE 112 B-1 til l .0 tij } (4.30)

J

I	 = max{ ^,t. + ^,I. - b3 ^,t. -	 I. ,0} (4.31)33	
i=1 i2	 i=1 i2	 bl i =1 i1	 i=1 i3

The sum of (4.30) and (4.31) yields:

3
I .	 = max{Lt.	 +

i= 1	 13	 i2 ^I.
i2

-
b3
^
 ti l l 2Z-'i 3)i=1 i=1 i=1

+= max{Et 12
. EI

i2 -
b3

^1
Et•

11 l
Et	 +

i2i= 1 i=1

F

2	
b	

22
I i2	 F t il l L t	 (4.32)}	 (4.32)

i=1	 1	 j=1

The idle time immediately before the last job starts on

Imachine 3 is:

J

i

r

1'm

C'

+f

i

Figure 4.2. Idle Time in a Three Machine
Linear Flow Shop

2

O

^m

	 m	 b m-1	 M-1

Im3 max{i nlt12	 E I 12 - S-1 	til - i	 Ii300)(4.33)

The total idle time on machine 3 is:

E,I • max{Ft + L, I -
b3 m^

till F t +
i.•1 i3	 i•1 i2	 i•l i2	 '^ i•1 it i•l 12

I i2 - ^ L• it	 E t 12 ♦ 	 Ii2 - ^tllJul	 1 i = 1	 Jul	 i=1	 1

2

Etlj}Jul

b m	 b m-1	 m	 b m-1

•
max(^

l t il -	 i=1 til ' 	 Ii2'	 isl t il -

m}-'2	 M-1	 2

6- ^' til + E I x2 = "
''6^ E t il - 6— t11 +l i l	 i t	 1 is l	 1

2	 2

EIi2' Et 1j)	 (4,34)
J

In general

m

E I13 • max kv	(4.35)

	

i• 1	 1<v<m

where

"i
v	 v1	 v

kv •	 til	 — E tit + E Ii21 i• 1	 1 i• 1	 isl

27

i"

s

C

l

t

4.4.3 The General Case

The general term for the idle time I ij is:
	 A

b

Iij = max(4-1

i

Et R1

b	 i-1

-	 ^

i

t	 + ^, I j	 -Rl	 R -11 R=1 1 R=1 R=1

i-1

X1 I
R j ,o)	 (4.36)

The total idle time on machine j is:

m	 b	
E t
	^ m-	 m	

bI i j max(;^- `t -	 t +	 I	 ; -1
=1 	 Jul it	 1 Jul it	 =1 i,i-1-

I

M-1	 b m-2
	 m	 b

t il -	 til + ^ Ii^j_1,...^ 4PJu l 	 1 J u l 	 Jul	 1

2	 22

}

	 - l
tll + i=l Ii ' j-l#

=1t1d	 (4.37)
Jul

4.5 Makespan (MS) in Linear Flow Shop

Makespan is defined as machining time of machine n

(Mn) plus the idle time that is generated on machine n

(I in). Using equations (4.14) and (4.37) yields:

MS Mn +F I in = b Et . + max{ bn-1
	 t l -

Jul
	 bl i=1 11
	

^— 1=1 i

M - 1	 m	 m-1	 m-2bn E

t	 E	
bn-1 L
	

bn

^1 Jul il + i=l li,n-1' -Bi Jul til - S i=1 til +

M-1	 b	 2	 b	 1

E Ii*1-1,... ,-1 Etil - ^; tll+iEIi,n-1'
Jul

n-1

E	
(4.38)

jtul tl^.}	 2

a1

l

Q

4	 1

,C

C.
	 ISubstitsiting equation (4.2) into (4.38) yields:

;t

i

M

MS	 bn E	 *
i''

mm

Fa

m-	 r►r►
'

bn	 * E li,nni max (
bn-1 ni '	 ni	 -1iul i6l

b b E n* In-1 Jul	 f
n-

n i-1
i

El l i,n-1 ,...,

2 2 n-1

bn-1 ;n
i - bnnl ♦ iEli,n -1' E tit)	 (4.38)

i

C

a

^4.6 Bounds for Performance Time in a Linear Flow Shop

4.6.1 Lower Bound (L)

The lower bound is equal to the total performance time

of all the m jobs over all n machines, or equal to the total

machining time of all n machines. Using equation s (4.11)

or (4.19) yields:

c
m	 n	 n

(ni L b) - E (b	 ni)	 (4.40)

i-1	 Jul j	 Jul j i-1

4.6.2 Upper Bound (U)

The upper bound is the lower bound plus the idle

time that is generated in the process. Using equations

(4.37) and (4,40) yields:

Z

C

C

i

n	 s	 m	 n	 n	 ,b._1	
,^!J L + L, (^I .. ^ L (n. Fb.^ +^{max(

	

j-2 i=1 i^	 i=1 l j =1	 j=2	 1

m	 m-1	 m	 m-1
b 	 ^`	 b 1

.^ ti' 	 ^L1 t il + ice
1
'! I i, j _. -	 ti1

1	 1 i

b m 1	 m-1	
b^.-
	 2	 b

b , til +	 Ii^j_1, ... ,^ Et il -	 tll +
l i=1	 i=1	 1 a.=1	 1
22

Ei-. 	f E tal l 	 (4.41)
1=l 1 f.: 1 n=1

CHAPTER S

OPTIMALITY IN LINEAR FLOW SHOP SCHEDULING

I	 This chapter describes three performance measurements
iof the linear flow shop scheduiing: (a) Mean lateness,

(b) Mean flow time,

(c) Waiting time.

It is proved that the shortest processing time sequencing

fields the optimal sequence that minimizes the given

performance measurements. A numerical example is given to

jshow how the shortest processing time sequencing yields the

iminimum mean lateness.

i
15.1 Lateness in a Linear Flow Shop

Recall that job lateness is defined as Li = C - di,

or the discrepancy between the due date of a job and its

completion time. The objective of every production plant i

to minimize the lateness in completing the orders because

it is involved with penalty.

rem 1

The mean lateness in a two machine flow shop problem

the job times on the machines are a linear function

N

31

i	 ^f the batch sizes (tij = bj ni , b j > 1) is minimized by

shortest processing time (SPT) sequencing.

Proof

The proof has two steps.

(a) Consider a sequence S that is not a SPT sequence. That;

is, somewhere in S there must exist at least one pair

of adjacent jobs, i and i+l, with 1+1 following i,

such that ti > t i+l . Now construct a new sequence,

S', in which jobs i and i+1 are interchanged in

sequence and all other jobs are not changed. The

situation is depicted in Figure S.1, where T A denotes

the point in time at which job i begins in sequence S

and at which job i+l begins in Sequer_ce S'. A,

denotes the set of jobs that precede jcbs i and i+l

in both schedules and B, denotes the set of jobs that

follow i and i+l in both schedules.

The processing times
t il l ti2 and the due date d i are !

given and completion time C i and the lateness L i of the job

i are computed.

til = processing time of Job i on machine 1, compute

by til bini

t i2 = processing time of job i on machine 2, computed

by t i2 = b 2 n i
di - due date of job i

1	 321

S

t^

t
i

C

MACHINE 1

MACHINE 2

y
c
c

t

S'

C

r—

F

t

r"

1

t

MACHINE 1

MACHINE 2

(b)

Figure S.1 A Pairwise Interchange of
Adjacent Jobs
(a) Sequence S
(b) Sequence S'

i

^ l

a

^

I

i

Ci = completion time of job i

Li = lateness of job i, computed by Li = C - di

CA = completion time of the last job in set A.

The proof is shown for t Li (sum of the lateness over all
^	 i=1

the jobs), as the mean lateness L m	 Li.i-
Using equation (4.1) the processing times til and tit

are computed by:

til = bini
	 (5.1)

t i2 = b 2 n i
	 (5.2) l

S

From equation (5.1)

til
ni = b 1

Substituting equation (5.3) into (S.2) yields:

b2
tit T1-til

Through all the proof steps it is considered that:

b.,
b =

and

tit	 btil

(5.3) 1

(5.4) j

(5.5) 1

i
	

34

r

C,l

The total lateness is:

m

kE L
k = LA + Li + Li*1 + LB	(5.6)

where: LA is the total lateness of the jobs in set A.

Li is the lateness of job i

Li+l is the lateness of job i+l

LB is the total lateness of the jobs in set B.

The completion times of jobs i and i+1 in sequence S

are as follows:

Ci (S) = max{TA + ti,l ,CA } + ti,2 = max{TA + t i,l , CA}

+ bt i ' l	 (5.7)

Ci+l (S) = max{TA + ti,l + ti+1 , Ci (S)}
+ ti+1,2

= max{TA + ti'l + ti+1,l,Ci(S)}+ bti+l,l 	 (5.8)

Using equation (5.6):

m

E Lk (S)= LA + max{T
A + t i,l , CA} + bt i,l - d i +

max(TA + ti ^ l + ti+1,1,Ci(S))+bti+l,l -

di+l + LB (S;	 (5.9)

The completion times of jobs i+l and i in sequence S' are

as follows:

NI

,v

3S J

I
i

Ci+l(S') - max{TA + t i+l$1 , CA} + bti+1,1 (5.10)

Ci (S')	 - max{TA + ti+l,l + ti9l, C i+1	 (S I)) + bti'l

(5.11)

Using equation (S.6):

m

EL k(S') - LA + max{TA + t i+l,l , CA} + bti+l
, l - di+l +)

max{TA + ti+l,l + ti'l ,	 Ci+l (S I)) + bti'l -

di + Lg(S ') (5.12)

Let's define P and Q as:

P - max{TA + ti 1' CA) (S.13)

Q - max {TA + t i +1 1' CA} (S.14)

^s 1

3

a

;I

C: I

t
3

I Then

P > Q	 as	 ti,i > ti+1 1

Substituting equation (5.13) into (5.7) yields:

Ci (S) - P + bti 1
Substituting equation (5.14) into (5.10) yields:

Ci+l (S I) - Q + bt i+l l

(5.14)1

(5.15) 1

c4

C

F

i

t C:

Then

Ci (S) > Ci+l (S) as P > Q and bti l > bti
+l,

1 , b > 1

iLet's define R and V as:

R = max(TA + ti 1 + t i+l 1, C i (S))	 (5.16)

i
V = max{TA + ti+1 1 + t i 1' Ci+1(S"))
	 X5.17)

It is clear that R > V as C i (S) > Ci+l(S')

Substituting equations(5.13) and (5.16) into (5.9) yields:

M

E Lk (S)	 LA + P + bti,i - di + R + bti+l,l - di+l .

+ LB (S)	 (5.18)

Substituting equations (5.14) and (5.17) into (5.12) yiel

m

'E
k L

k (S') = LA + Q + bti+l , l - di+ l + V+ bt i l l - di

+ LB (S')	 (5.19)

The result of comparing equations (5.18) and (5.19) is:

m	 m

E
k-1	 kul

 Lk (S) - E Lk (S') = LA + P + bt i'l - di + R + bti+l,1

- di+l + LB (S) - LA - Q - bti+1,1

+ di+l - V	 bt i ,l + di - LB (S')

= P + R - Q - V + LB (S) - LB (S')

(S.20)

C,

C

(5.21)LB (S I)I

Equation (S. 20) can be divided into two sums as follows:

m	 m
Lk (S) -	 Lk (S') _ (P + R - Q - V) + [LB (S) -

k=1	 =1

The first sum (P+R -Q-V) represents the difference in

lateness between sequence S and S' for the set of jobs

which are in set A and jobs i and i+l. The second sum

[LB (S) - LB (S')] represents the difference in lateness

between sequence S and S' for the jobs that are in set B.

The first sum is independent of the second sum but the

second sum is dependent on the first sum.

Observing the first sum shows that the total lateness

of sequence S is greater or equal to the total lateness of

sequence S as P > Q and R > V, it means that the first

job in Set B in sequence S will start at the same time

or later than the same job in sequence S'. Concludes that

LB (S) > LB (S') a3 the jobs in set B are the same for

sequence S and S' but the startin g point is different.

It is shown that

`
m	 m

L, Lk (S) > 1: Lk (S') as P > Q ► R > V , LB (S) > LB (S')

and P > 0, R>0,Q > 0, V>0.

Cl

t^t

38

I	 _

^J

(b) In part (a) of the proof it is shown that any inter-

change of a pair of adjacent jobs where a shorter job

is following a longer job, can improve the total

lateness or leave it unchanged.

The second part of the proof shows that in the last

interchange of a pair of adjacent jobs (going from a

non-SPT sequence to a SPT sequence) a strict improve-

ment can be made in the total lateness, concluding

that a SPT sequence produces the minimum total late-

ness. Part b of the proof has two phases. The first

phase uses contradiction. Let us define a sequence S

as a finite set of non -negative numbers such as

i,l' L. i+1,1'	 i+2,1'

Sequence S is a non -SPT sequence in such a way that

there is somewhere in the sequence only one pair of

adjacent jobs i and i+l, with i+l following i, such

that ti 'l > t i+1 1 . Assume that sequence S is an

"optimal" sequence. Construct a new sequence S', in

which jobs i and i+l are interchanged in sequence

(so that you get a SPT sequence) and show that a

strict improvement can be made in this "optimal"

sequence. Therefore, the conclusion is (based on part

a of the proof) that it is impossible for a non-SPT

sequence to be optimal.

I

J.

i.

!jY

R

1

F

4

f

e

t

iThe second phase involves a constructive proof that

uses the method of mathematical induction to show that)

a SPT sequence minimizes the mean lateness.

In this part of the proof the jobs which precede the

pair of jobs i and i+l that are being interchanged,

are not considered,as the total lateness of the jobs

in sequence S is the same as the total lateness of

the job in sequence S'. The proof is shown for the

case of two jobs where only jobs i and i+1 are in

the process, for three jobs; i, i+ l, i+ 2 and for four

jobs; i, i+l, i+2, i+3. It is assumed it is true for

m jobs i, i+ l, i+2,...,im-1; then it is proved it is

true for m+1 jobs.

Two Jobs Sequence

The situation is depicted in Figure 5.2 where C l and

C 2 are the completion time of jobs 1 and 2 respectively.

The terms for C 1 and C 2 in sequence S are:

C 2 (S) = t Z1 + t22	 t21 + bt21 = (1+b)t2l 	
(5.22)

C1 (S) = max{C 2 . t 21 + til } + t12 = max{(l+b)tZl,

t21 + t ll) + bt ll	
(5.23)

Using equations (5.22) and (5.23), the lateness is:

L2 (S)_ (1+b)t
21 - d2
	

(5.24)

L1 (S) = max{(1+b)t 21' t21 + t ll } + bt11 - dl
	 (5.25)

40

01

al

a

a

C

C+

i

!f
it

C

i

r

k

f

i

I

r

t2l. t11
s

21	 11	
MACHINE 1

t 22	 t12	 MACHINE 2

C 2 	C1

(a)

St	
t21 ♦tll

I
t111t2l	 MACHINE 1

t12	 t22	 MACHINE 2I	 t
C 1	 C2

(b)

Figure 5.2. A Two Job Linear Flow Shop
(a) Non-SPT Sequence
(b) SPT Sequence

41

t

- - --	 —

Using equations (5.24) and (5.25), the total lateness of

sequence S is:

1. (S)	 (1+b) t	 - d + max((l+b) t	 t	 + t , }
i-1 1	

21	 2	 21	 21	 1•

+ btll - dl 	(5.26)

The completion times in sequence S' are:

Cl(S') ' tll + tl2 - t ll + btll - (1+b)tll	 (5.27)1

C2 (S') - max (Cl, t1I + t 21) + t22 - max((1+b)tll'

	

t ll + t. 21) + bt 21 	(5.28)

jUsing equations (5.27) and (5.28), the lateness is:

Ll (S') - C1 - dl - (1+b)t ll - dl
	 (5.29) I

L2 (S') - C2 - d2 - max((1+b)tll, tll + t21) + bt2l - d2

(5.30)

I

Using equations (S.29) and (5.30), the total lateness

,of sequence S' is:

2

Li (S') - (1+b)2 11 - dl + max((l+b)t ll , t ll + t21)+

bt2l - d 2	(5.31)

i

Ol

r	 ^
i

I

It

	
42

i

I

c_

Comparing equations (5.26) and (5.31) yields:

2	 2

Li ;S j	 Li (S') • (1+b) t21 - d2 + max((1+b) t21 , t21f^l	 i^l

+ tli) + btll - dl - (1+b)t il + dl 	max((l+b)til,

t il + t 21) - bt2l + d2

t21 - t11 + max((l+b)t 21 0 t 21 + t 11) - max((l+b)tll,

t11 + tZ1)

Observing the terms max((l+b)t21, t 21 + tll) and

max((l+b) til, tll + t21) and given that t21 > t11

(by definition) it follows that max((1+b)t21, t 21 + t11)

> max((l +b)t il , til + t `i) as (1+b)t 2, > (1 4 b)til and

(1+b)t 21 > t21 + tll'
b-

1
2	 2

it follows that E L•
1
(S) > _,L.(S')

1= 1 	 isl 1

It is shown that the SPT sequence gives the minimum

mean lateness.

Three Jobs SeSuence

The situation is depicted in Figure S.3. The completi

it 4 Mes of the jobs in sequence S are:

r.

C2(S) 0 t2i + t 22 a t21 + bt21 . (1+b)t21	 (5.32)1

L

9

(S)	 t21 +t 1+t31

t2l	 t lg t 3i	 MACHINE 1

22	 I t121	 t32	
CHINE 2

	

t	 t	 t

	

C2	 Cl
	

C3

(a)

(St)	 tll+t21+t31

^	 1
t	 t	 t	 f21	 MACHINE 1

12	 t22	 t32	 MACHINE 2

t	 t	 t
Cl	C2	 C3

(b)

Figure 5.3. A Three Job Linear Flow Shop
(a) Non-SPT Sequence
(b) SPT Sequence

^ 1

^ad

ar

C- i

Q'

a

I

Cl (S) - max {C2, t 21 + til } + t12	 max{(1+b)t212 t21 +

tll } + bt ll 	(5.33)

C3 (S) - max{C1' t21 + tll + t31 } + t32 - max{max[(1+b)

t 21 , t 21 + tli] + bt11, t21 + tll + t3l } +

bt31	(5.34)

Using equations (5.32), (5.33) and (5.34) the lateness is:

L2 (S) = C 2 -	 d 2 .	 (5.3S)

Li (S) - C1 - dl	(5.36)

L3 (S) = C3 - d 3	(5.37)

Using equations (5.35), (5.36) and (5.37) the total late-

ness of sequence S is:

3

Li (S) - (1+b)t 2l - d2 + max{(1+b)t2l, t21 + t11}+
i-1

btil - di + max{max[(l+b)t211 t 21 + t11]

+ btil, t21 + t11 + t31} + bt31 - d3 	 (5.38)

When observing equation (5.3R):

4S

Imax((1+b)t21, t21 + tll) _ (1+b)t 21 as t21 > t11 and

b > 1	 (5.39)

Substituting equation (5.39) into (S.38) yields:

rr3
L.^ Li (S) _ (1+b)t 21 - d2 + (1+b)t 21 + btll - dl +
i=1

max{(l+b)t21 + btll , t21 + t11 + t31}+

bt31 - d3	(5.40)

The completion times of the jobs in sequence S' are:

	

Cl (S') = til + t12 = t il + btll = (1+b)tll	 (5.41)

C2 (S') - max{C l , tll + t 21 } + t22 = max{(l+b)tll,

til + t
21 } + bt21	 (5.42)

C3 (S') = max{C 2' tll + t
21 + t 31 } + t32 = max{max[(1 +b)

t11' t 11
+t

21] +bt	 t	 +t 	 +11	 21	 31}

+ bt31	 (5.43)

Using equations (5.41) , (5.42) and (5.43) the lateness is:

L l (S') - CI -	 dl	 (5.44')

L 2 (S') - C 2 -	 d 2	 (5.45)

L3 (S') - C3 - d3	 (5.46)

46 1

i

Using equations (5.44), (5.45) and (5.46) the total lateness

of sequence S' is:

3

.LL

i (S') _ (1+b)t ll - dl + max {(1+b)tll,, t11 + t21)+

bt2l - d2 + max{max[(l+b)tll, t11 + t 21] +

bt 21 , tll + t21 + t 31 } + bt 31 - d3	(5.47)

Comparing equations(5.40) and (5.47) yields:

	

3	 3

Li (S) - L Li (S') = (1+b) t 21 - d2 + (1+b) t2l + bt ll -

	

i = 1	 i=1

dl + max{(1+b)t 21 + btll, t2l + t11 + t
31 } +

bt31 - d3 - (1+b)tl.l + dl - max{(1+b)tll' tll

{•t 21 } + bt 2l + d 2 - max{max[(l+b)til l t ll +

t 21] + bt2l' tll + t2l + t 31 } - bt 3l + d3

= t21 + (1+b)t 21 + max{(l+b)t 21 + btll , t 21 +

tll + t 31 } - t11 - max{(l+b)tll' til + t 21 } -

max{maxf(l+b)t ll' t11 + t 21] + bt 2l' t ll +.

t21 + t
31 }	 (5.48)

NI

to

T_. ,, t's define X, Y, Z as follows:

X - max{(l+b)t11, tll + t21}
	

(5.49)

i

Y - max{X + bt21, til + t21 + t 31 }	 (5.50)

Z - max{ (l+b)t21 + btll, t21 + t11 + t31 } (5.51)

Substituting equations(S.49), (5.S0) and (5.51) into (5.48)

yields:

3	 3
L i (S) -	 Li (S f) - t21 + (1+b) t21 + Z - t il - X - Y

i=1	 i=1
(5.52)

IIt is clear that Y > X 	 (5.53)

The relations between Y and Z are:

^y

C^

Y = max{X + bt 21 , t il + t21 + t31}

Z - max{(l+b)t21 + btll, t11 + t 21 + t31}

Then compare X + bt 21 and (1+b)t2i + bt il or after reducing
the terms compare X and t21 + btil. Two cases have to be

checked:

I. X = (1+b) tll

It follows that (1+b)t ll < t21 + bt li as til < t21

II. X = t11 + t21

It follows that t il + t21 < t21 + btil as
til < t 21 , b > 1

It is found that Z > Y	 (5.54)

3	 3
L Li (S') = t21 + (1+b) t 2l - til + Z - X - Y

i=1	 i=1

i

^,1

G

L

C

Using equation (S.54)

Two cases have to be checked for X

I. X = (1+b)t11

3	 3
L i (S) -	 Li (S') = t21 + (1+b) t 21 - tll + Z - Y -

i=1	 i=1

(1 +b)tll
3	 3

It follows that
iLLi

(S) > LLi (S') as t ll < t21

Z > Y

II. X = t ll + t21

3	 3
L i (S) - i=1Li (S ')	 t2l + (1+b) t21 - t ll + Z - Y -

t ll	 t21
3	 3

It follows that
i
J: Li (S) > i^ Li(St) as tll < t21,

Z > Y, b > 1

It is shown that the SPT sequence gives the minimum

mean lateness.

Four Job Sequence

The case is illustrated in Figure 5.4. The completion

times of the jobs in sequence S are:

491

^
.l

U

/

C!

r--	 -	 ----^---'-

^	
.

^

|	 ww ^'	 ~

r

^

/

Y

C 2 (S) = t21 + t22 = t 2l (l+b)	 (S.SS)

Cl (S) = max{C 2 , t 21 + till + t12

= max{(1+b)t21, t 21 + t il l + btll

_ (1+b)t 2i + bt il	as	 t2i > t
ll , b > 1 (S.S6)

C3 (S) = max{Cl , tll + t 21 + t31} + bt31

= max{(l+b)t 21 + btil, til + t21 + t3l)+ bt31

= Z + bt31	(5.57)

C4(S) = max{C3, til + t 21 + t31 + t41 } + b`'41

= max{Z + bt31, til + t 21 + t 31 + t 41) + bt4i (5.58)

Using equations(5.55) through (5.58) the lateness is:

L2 (S) = C 2 -	 d 2	(5.59)

Ll (S) = C i - dl	(5.60)

L3 (S) = C3 - d 3	(5.61)

L4 (S) = C4 - d4	(5.62)

Using equations(5.51) and (5.59) through (5.62), the total

, lateness of sequence S is:

4

E
L i (S) _ (1+b)t 21 + (1+b)t 21

+ btil + Z + bt
3i

+

i=1

max{Z + bt31, tii + t 21 + t31 + t41 } + bt4i -
4

d i	(5.63)
i=1

C

1	 51

k	 {

completion times of the jobs in sequence S' are:

Cl (S') = t il * t12 = tll + btll = (1+b)tll	 (5.64)

C2 (S') = max{Cl' t ll + t21} + t22

= max{(l+b)tll' t il + t21 } + bt 2i	(5.65)

C3 (S') = max{max(C1' t 11 + t 21 1 + bt 2l' tll + t 21 + t31}

+ bt 3l	 (S.67)

C4 (S') - max{max(max(Cl, til + t 21) + bt21' til + t21

+ t31 1 + bt3l' tll + t 21 + t31 + t41) + bt41

(5.68)

r

. sing equations (5.64) through (5.68) the lateness of the

(bobs in sequence S' is:

L i (S') = C l -	 d l	(5.69)

L2 (S') = C 2 - d 2	(5.70)

L3 (S') = C3 -	 d3	(5.71)

L4 (S') = C4 -	 d4	(5.72)

sing equations (5.49) (5.50) and (5.69) through (5.72), the

total lateness of sequence S' is:

r4 Li(S') _ (1+b)t ll + X + bt 2l + Y + bt 3l + max{y+bt31,
i=1	 4

t 11 + t2i + t31 + t
41) + bt41 -
	
d i (5.73)

a1

al

G1

21

GI

a

Comparing equations (5.63) and (5.73) yields:

4	 4

Li(S) - J: Li(S1) _ (1+b)t 21 + (1+b)t 21 + bt ll + Z +

	

i=1	 i=1

bt31 + max{Z + bt31, tll + t21 + t31 + t 41 } + bt 41 -

4

E d i - (1+b)tll - X - bt 21 - Y - bt J1 - max{Y +
jul

4

bt31, tll + t 21 + t31 + t41 } - bt41 + F di

Reducing the terms brings to:

	

4	 4

L i (S) -	 Li(S') _ (2+b)t 21 + Z + max {Z + bt31, tll + I
^

i=1	 i=1	 1

tZ1 + t 31 + t 41) - tll - X - Y - max {Y + bt31,

tll + t 21 + t 31 + t41}

Using equation (5.54) there are two sets of terms to compare'
I

I.	 (2+b)t 21 and tll + X

Check the two cases of X

1. X = (1+b)tll

Compare the terms (2+b)t 21 and t ll + (1+b)tll

It follows that (2+b)t21 > t 11 + (1+b)t ll as

t ll < t21

M

0 1

1

2. X = tll + t21	
N

Compare the terms (2*b)t 21 and tll + t ll + t21
It follows that (2+b)t21 > t 11 + t 11 + t21

The result is that (2+b)t 21 > t11 + X
f

II. Let'sdefine Y l and Z 1 as follows:
Z 1 = Z + max(Z + bt31, tll + t 21 * t31 * t41)
Y 1 = Y + max{Y + bt 31 , t ll * t21 * t31 + t41}

JUsing equation (5.54) it is clear that:

Z l > Yl.
IIt follows again that:

4	 4

L . •
1
(S) > 2: L 1• (S')

It is shown that the SPT sequence brings to minimum the mean

lateness.

The Inductive Ste

After proving the theorem for the cases of two jobs,

three jobs and four jobs, and by using the method of the

mathematical induction; assume it is true for the case of

jobs and prove that it is true for the case of m*1 jobs.

In general: the terms for the completion times of the jobs

are as follows:

C 1 = (1+b)tll

C 2 = max(C1' t ll + t 21 } + bt21

C3 = max(Cl , tl l + t21 + t 31 1 + bt31

m

Cm = max(Cru-1' E til} + btml
i=1

total lateness is:

E

m	 m	
[mom

L• _ E C - Ed•
i=1 1	 i=1

m	
i=1 z

iven that t ll < t21 << tm-1 < t

nd proving for the cases i = 2, 3, 4 that

L i (SPT) <	 Li(non-SPT)

sume that

m	 m

E ►,i (SPT) < E L i (non-SPT)
i=1	 i=1

It is necessary to check the case of m+1 jobs.

For the SPT sequence (t ll < t 21 < t 31 < ...< tm < tm+l)

NI

e

•r

0

SS

I

M+1

Cm+l ' = max{Cm, E t il) + btm+1 1i = 1	 '

Lm+l ' = L; + C' +l - dm+l

i'

1
f

for the non-SPT sequence (t 21 < t 11 < t 31 " ' < t < tm+l)

m+l

Cm+l = max{Cm,	 til) Y btm+1 1
i=1	 '

Lm+1 = Lm + Cm+l - dm+l

Observing the equations far Lm*1 andLm	 m m+1	 j

And adding them to F L-
1
(SPT) and	 L•(non-SPT) respective14

i=1 	 i=1 1
to get the general result that:

i
m+1	 m+1

L•
1
(SPT) < E L•1(non-SPT)

Summary

This proof has shown that in a two machine UP

problem. the optimal solution is to sequence the jobs by the

shortest processing time on the first machine. The proof of

optimality constructs the optimal sequence by mathematical

induction. Figure 5.5 presents a block diagram that

summarizes the steps of the proof.

a,

S6

S

a

A pairwise interchange of any pair of adjacent
jobs i, and i+l where i+l is following i and t >
t +	improves total lateness of the sequence Sr
11 14es it the same

C

I

b

The last pa;rwise interchange of a pair of adjacent
jobs (going from a non-SPT to a SPT sequence) yields
a strict improvement of the total lateness of the
sequence

1

Prove that it is true for the case of two jobs in
the sequence

2

Prove that it is true fL- the case of three jobs in
the sequence

3

Prove that it is true for the case of four jobs in
the sequence

a

By using induction, assume it is true for the case
of m jobs any then prove that it is true for the
case of m+l jobs

SPT sequence yields the minimum mean lateness in LFPJ

Figure 5.5 A Block Diagram that Summarizes
the Steps of the Proof

(I
[c:

57

5.2 Computational Results

A computer program was written to simulate numerical

examples that implement the theorem. The example that is

presented contains four jobs to be performed on a two

machine LFP. The information includes the amount of items

in each job, ni , i - 1, 2, 3, 4 and the machining factors,

b j , j - 1, 2. The specific figures are in Table 5.1

Table 5.1

Data used in numerical example

1 2 3 4

n 2 3 5 7

b 1 2

d 6 9 15 21

The input data contains 4! = 24 permutations or all

ssible sequences, and the output is the total lateness

of each sequence.

Analysis of the results show that.the shortest

processing time sequence, yields the minimum lateness, as

proved by the theorem.

A sensitivity test is conducted for each sequence,

to find out how the total lateness of the sequence is

changed, when a pairwise interchange of two adjacent jobs

N

3

l
i G

is done. The results of the sensitivity test show that

each pairwise interchange of two adjacent jobs where a

longer job preceds a shorter job, decreases the total

(lateness. Figure 5.6 describes a flow diagram that

presents the algorithm that the-sensitivity test follows.

The sensitivity test is constructed as a network, where

each block contains the sequence that is tested. The

figures outside each block present the total lateness of

the given sequence. There are twenty four networks. Each

network shows how the lateness is decreasing after

conducting a pairwise interchange of two adjacent jobs.

The last block of each network presents the SPT sequence

which is shown as was proven, to yield the minimum mean

lateness. Each network is accompanied with a graph that

shows the relations between the lateness and the number of

pairwise interchanges of pairs of adjacent jobs. Each pa

in the network is presented as a different line in the

graph. The curves show decreasing values of the total

lateness for each interchange.

I

59

START

NO	 onotoni

Increasing

Sequence

YES

Interchange

A Pair of

Adjacent Jo

Record the
Total Late-
ness of New
Sequence

FINISH

Figure 5.6 Flowchart that Describes the
Sensitivity Test

60

) N i

r

i
,

k

i

! C-

C

C

4

2 5 7 3	 2 5 3 7	 2 3 5 7

40	 32	 25

(a)

40

N 32
a^

254j
cc
a

CO

0
H

1	 2	 Number of pairwise
interchanges

(b)

Figure 5.7 Results of Sensitivity. Test for
Sequence 1
(a) Network of sequence 1
(b) Total lateness curve for

sequence 1

61

.r.

s

F
x

^G

^6

2,5,3,7	 2,3,5,7

6
	 32	 25

(a)

i

4
N
N

.J
	

3 2
cc

i
	

a 25

0

9

Number of pairwise
Interchanges

(b)

Figure 5.8 Results of Sensitivity Test for
Sequence 2
(a) Network of sequence 2
(b) Total lateness curve for

sequence 2

M
y

29

a 25

0
H

2 3 5 7	 S!T Sequence

25

Figure 5.9 The Optimal Sequence

2 3 7 5 2 3 5 7

29 25

(a)

1
	

Number of pairwise
interchanges

(b)

Figure 5.10 Results of Sensitivity Test for
Sequence 4
(a) Network of sequence 4
(b) Total lateness curve for

sequence 4

63

1	 2	 Number of pairwise
interchanges

G.

46

N
N
d

eb
P4

29

H	 25

2,7.3.5	 2^j 7	 j _,

46	 29	 25

(a)

(b)

Figure 5.11 Results of Sensitivity Test for
Sequence 5
(a) Network of sequence 5
(b) Total lateness curve for

sequence 5

64 1

Figure 5.12 Results of Sensitivity Test for
Sequence 6
(a) Network of sequence 6
(b) Total lateness curve for

sequence 6

65

(b)

'r	 ?

^x
'	 t
M	 f

f

1	 2	 3 Number of pairwise
interchanges

t

r

^ t

i

f

(a)

I

46	 29	 25

50

46
N
N

40

4j
cc
P4

32

o 29
H

25

Y

F
S

d

i
C.

,G

f

I

f

a

Z

9

, 	 3, Z, 5,

37	 31	 25

(a)

H 37
a^

31

a
25

0
H

1	 2	 Number of pairwise
interchanges

(b)

Figure S.13 Results of Sensitivity Test for
Sequence 7
(a) Network of sequence 7
(b) Total lateness curve for

sequence 7

i.

N

305, 	 X3,5,2,7	 3,2.5.7	 27„^

47	 37	 31	 35

(a)

IA

d 47a	 .
37
31

e 25
0
H

1	 2	 3	 Number of pairwise	 i
interchanges

(b)

Figure 5.14 Results of Sensitivity Test for
Sequence 8
(a) Network of sequence 8
(b) Total lateness curve for

sequence 8

67

-	 _^.._. .. __._ ^^..^.__	 _... _..^^.^..^. _mss._--' 	 -	 - __	 r..._.a .^ •_	 __^.^...^ ... _r.r.a._JI3_.___....^. .^_.. .. ^.._...i..

	

3 2 r	 r_ r r_

	

31	 25

(a)

N
N	 ,
d

31
cc
"Z 	 2 5

to4j	 r,*^0
H

	

1	 Number of pairwise
interchanges

(b)

Figure 5.15 Results of Sensitivity Test for
Sequence 9
(a) Network of sequence 9
(b) Total lateness curve for

sequence 9

6

r^

r

t

i

r

r

t

'^	 l

t

G

t

`t

i

i

4

t

C

r

i.

k-

3	 S	 2	 7

29	 25

35

31	 25

(a)

35H
H

31

1	 29	 %%

o
25

1	 2	 Number of pairwise
interchanges

(b)

Figure 5.16 Results of Sensitivity Test for
Sequence 10
(a) Network of sequence 10
(b) Total lateness curve for

sequence 10

69

C
	

3 7 5	 2 3	 7

3.7,2.5	 3 2 7 5	 29	 2S

48	 35	 S

I
	

31	 25

(a)

48

H
N
C

35

t_
31

c 29..^%
H	 ^

25
V.

1	 2	 3	 Number of pairwise
interchanges

C

(b)

C

Figure 5.17 Results of Sensitivity Test for
Sequence 11
(a) Network of sequence 11
(b) Total lateness curve for

C
	

sequence 11

s

3	 S 7 1	 3 S 2 7

47 37 31 25

S4 3 S 7

5	 3 2 7 5
29 25

48 35 3,Z	 5 S

31 2S
(a)

S4

481

`da 37

Ca
0 31 ^`^.	 .

25

1 2	 3	 4 Number of pairwi5e
interchanges

Figure 5.18 Results of Sensitivity Test for
Sequence 12
(a)	 Network of sequence 12
(b)	 Total lateness curve for

sequence 12

N#

l

-1

4

{
47	 32	 25

(a)

G

airwise
:s

f

for

ir

1

72

t

,3	 2 3 S 7

S	 2	 7 3	 40	 32 25

55 5 2 3 7	 2 5 3 7	 2 3 5 7

47	 32 25

(a)

55

47— ' ♦N

r. 40. . ^♦
a^
4J

^

,A 32

25
cis t
0
ty

1	 -	 2	 3	 Number of pairwise
interchanges

(b)

Figure 5 . 20	 Results of Sensitivity Test for
Sequence 14

(a)	 Network of sequence 14
(b)	 Total lateness curve for

sequence 14

7Z

aa

t

i

E

6

s

I

7	 3 2 3 7	 2 3 5 7

5 3 2 	 31	 25

49 	 2,5,3,7	 2,3,5,7

47	 32	 25

(a)

H	 49
N	 N

d	 `

a	 ^
37

cc

E; 	32	 ^♦

'S

1	 2	 3	 Number of pairwise
interchanges

(b)

Figure 5.21 Results of Sensitivity Test for
Sequence 15
(a) Network of sequence 15
(b) Total lateness ^.urve for

sequence 15

74

G

NI

i

i

h

y>

c

^^

^^

i

_,..

k

59

♦
♦

4 9	 ♦^^

47

H

c
a	 ^

ca
	

37	 1

H

32

25

1	 2	 3	 4	 Number of pair-
wise interchanges

(b)

77

E

i

I
i

Figure 5.23 Results of Sensitivity Test for
Sequence 17
(a) Network of sequence 17
(b) Total lateness curve for

sequence 17

C

is

c

w w w

Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln
w N " N w N 0 N N

M M M M M
w w w

N N N N N

n r- n N n
w w w

Ln rl V rl M N M N M N
w M w M w M M M

N N Ln Ln Ln
w w w

M M N N N

l- l-
w w w

N n N n M n O M n
w M w M w tt et

►n t!1 N

Ln

yLnn N Q1
w w Ln

L"

Ln M
w

wi Ln LM

w w
Ln

w	 Ln w

w w

N

M
n

f

r

C:.

t"

11►

NI

C.

C

47	 32	 25

(a)

65

SS

a^

"a 4 7

w

H 40

32

2S

1	 2	 3	 4	 Number of pairwise
interchanges

(b)

Figure 5.24 Results of Sensitivity Test for
Sequence 18
(a) Network of sequence 18
(b) Total lateness curve for

sequence 18

i

81

t

t ^-

'f

C

2 7 3 5	 2 3 7 5	 2 3 5 7

67	 46	 29	 2S

(a)

67

N

N
C

4
t^l

N
OH

29

2S

1	 2	 3	 Number of pairwise
interchanges

(b)

Figure 5.25 Results of Sensitivity T^st for
Sequence 19
(a) Network of sequence 19
(b) Total lateness curve for

sequence 19

82

i U

I

fG

i

S
Figure 5.26 Results of Sensitivity Test for

Sequence 20
(a) Network of sequence 20
(b) Total lateness curve for

•
	 sequence 20

a

s

e

b
M

s3 l

C

n ^
w

N Vf
w Ln 1A Ili

N M N M N
w

N N

w w

w N w 01 01
M N M N

w w

N

LA
w ^

CID
w v Q a

nw w
N

M N
LI O M :^
t: ^O

N
N h.

r1
n

n

84

^G

r

f

is

Q.

c

.

7

67

1
1

1
1

so

H 46

4) 40

a

cc 32
F 29

25

a .04 	 .A. ------.eft

1	 2	 3	 4	 Number of pair-
wise interchanges

(b)

8s

I

t

C.

Figure 5.27 Results of Sensitivity Test for
Sequence 21
(a) Network of sequence 21
(b) Total lateness curve for

sequence 21

-3

C,

K, C

of C.

l G

m G

m c

w c

n C

m i

E 4

w w

w Ln Ln Ln

w
N M N N

N

01 U9 r-I C17 0%
N M NN

M N

vW
M

n
w

N

v7

co M [^
w ^ ^

N
w

Ln

N
01

M ^O

n

87

G-

C

C

G

69
67

1
H 48
d 46

4J
cca	 ^

'j 35
E" 31

29	 ^.^ •^.

25

1	 2	 3	 4 Number of pairwise
interchanges

(b)

88

G

f

IC,

C

C

C
Figure 5.28 Results of Sensitivity Test for

Sequence 22
(a) Network of sequence 22
(b) Total lateness curve for

C
	 sequence 22

89

C_

f

tF[

1

,19

f 1

s

t

lc

fC

i
{
t^

f

Ln LA LA LA %A LM Ln %A Ln Ln

N N N N N N
M M M M M
N N N N N

L Ln LA
an V: r: a+

M N M N M N
04 M N M M

M N M N N

Ln Ln LA
i

N l^ !%% to !*^ to M ^p
M M M 0 qr

IA N N t-

I^
M M M N Cd

v

N 1A Ln Ln

N N M
l^ GO GO • !^

w

M M M n

N LM
w •

LA	 Q Q1
•	 LA w	 t^

w w
M

N

1A {A

M

9-

9

^C

75

69
67	 ^^1

`	 1

54

H	 `	 ^

47

rJ	 ^

°+°	 37
E°, 35 1

w^

29-

25

1	 2	 3	 4	 5	 Number of
pairwise
intechanges

(b)

91

lk I

!I

i

4

i	
I

RI

Figure 5.29 Results of Sensitivity Test for
Sequence 23
(a) Network of sequence 23
(b) Total lateness curve for

s,dquence 23

92 ^

r
I

I

1 6

I

C

LA LA LA LA N LA Ln LA LA LnN N N N NM M M M
N N N N

!^ LA LA
. w ,
M n

^' N N N ° 01 Q1
Ln M Ln M LA M M N M N
w w .
N N N

M Ln Ln
w w , w

l^ M M
w ^ w n w 0 . ^ ^
e r4 a v n er

N
tb

M M Ln
w w
n Ln M
w LA w C
N Ln Ln N ^Ow ,
LA n1

M
w

M
Ln Ln ry

w ^ ^

N
w

Ln

M
N

n
Ln

r-

93 1

INI

111

i

77

71

67
65

55

N s0
N

47
a^
++
to

'-3	 40
r,
cc
61
0

H 32
29

25

1	 2	 3	 4
	

5 Number of
pairwise
interchanges

(b)

Cd

\!

t.
f!
.s

C

G G

F

C.	
Figure 5.30 Results of Sensitivity Test for

Sequence 24
(a) Network of sequence 24
(b) Total lateness curve for

sequence 24

r

tl
n'	 is

(a)

a	 k

961

;I

MAI PARE 10Wfuw
OF POOR QUALITY

^^M

ie

it

'C

C

7 S"^

71	 x^'

67	 e ♦♦x^^`^

ss " 9 ^^,

so

40	 xxs ^^♦

w
37	 K V1^

c	 3S	 '^„'^,^^;^
h	 32	 ray`

29

2S

1	 2	 3	 4	 5	 6 Number of
pairwise
inter-
changes

(b)

97

^	

n

i

1 ,. C

_.I

:c
	 r

S.3 Flow Time in a Linear Flow Shop

In general, flow time is defined as the amount of time i

that a ±ob spends in the shop.

In the case of a two machine UP system shown ip

Figure S.31, the flow times F k , k c I are as follows:

F1 = t11 + t 12	 (S.74)

F2 = max(C1' tll * t 2l) + t22	 (5.75)

F3 = max(C2 • t 11 + t 21 + t 31) + t32	 (5.76)

sing equations (S.74) through (5.76), the flow time of job

i is:

F = max(Ci-1 0	 tkl} + ti2	 (5.77)
1

where

tij is the time to perform job i on machine j

C i is the completion time of job i

Fi is the flow time of job i.

Theorem 2

The mean flow time F in a two machine UP where the

ob times on the richines are a linear function of the

atch sizes (t ii= b j ni t bj > 1), is minimized by shortest

rocessing time (SPT) sequencing.

Pi

t	 t21	 it	 ml	 MACHINE 1

t	 t2	 ti2	 ^
tm2 MACHINE 2

	

1	 t
	C l C2	Ci	 Cm

Figure 5.31 Two Machine Linear Flow Shop

i^

C►

oof

The proof is a mirror image of the proof of Theorem 1,
l

and utilizes an adjacent pairwise interchange argument.

Consider a sequence S that is not a SPT sequence. That

is, somewhere in S there must exist at least one pair of

adjacent jobs, i and i +l with i+l following i, such that

`	 ti >t i+l . Now construct a new sequence S', in whi--h jobs

!z:_	 i and i +l are interchanged in sequence and all other jobs

are not changed. Ths . situation is depicted in Figure 5.1
F

here TA denotes the point in time at which job i begins in

`f.	 sequence S and at which job i+l begins in sequence S'.
4	

'A" denotes the set of jobs that precede job i and i+1 in
f

j	 oth schedules and "B" denotes the set of jobs that follow

(MW	

' and i+1 in both schedules. m

The proof is shown for E F i (sum of the flow time over

all the jobs), as the mean flow time is: 'F m 	 Fi.ial

m
`
L,Fk = FA + F i + F i+l + FB	(5.78)
k=1

here

FA is the sum of the flow times of all the jo gs in

set "A"

F is the flow time of job i

Fj is the flow time of job j

FB is the sum of the flow times of all the jobs in

set "B".

r	 100

y^

C

C

flow times of the jobs in sequence S are:

Fi (S) - max{CA , TA + t i"l } + ti'`	 (5.79)

Fi+l (S) - max { Ci (S), TA + t i'l + t i+1,1 } + ti+1,2

(5.80)
Using equation (5.78), the flow time of sequence S is:

Fk (S) - FA + max{ CA , TA + t i,l } + t i,2 + max{Ci(S),

TA + t i'l + t i+l,l } + ti+1,2 + F 	 (5.81)

flow times of jobs i and i+l in sequence S' are:

r i+1 (S') - max{ CA , TA + t i+l,l } + ti+1,2	 (5.82)

Fi (S')- max {Ci+l (S'), TA + ti+191 +
tipl } + t i92 (5.83)

Psing equation (5.78), the flow time of sequence S' is:

Fk (S') - FA + max{CA , TA + ti+l'1 } + ti+1,2 +

max{Ci+l (S'), TA + t i+l l + t i l}

+ ti,2 + F 	 (5.84)

1*41

101

0

^d

t

C

4
t
^C
r

s

r

1 cvi!

r:
t

i

C

6

P

When observing equations (5.79) through (S.84), one can

notice that the terms are actually equal to terms of

completion times in equations (5.7) through (5.12) that are

developed in Theorem 1.

The proof of the sequence that generates the minimum

can lateness (Theorem 1) is based on the completion times

of the jobs, and the sum of the completion times of all the

jobs in the sequence. Using the same steps of the proof

can show that the mean flow time is also minimized by the

shortest processing time sequencing.

It is proven that the mean flow time is minimized by

the SPT sequence.

15.4 Waiting Time in a Linear Flow Shop

In a flow shop scheduling problem, a waiting time can

be defined for each job in the system. It is the time that

every job must wait until it can be processed. If the jobs

are processed in a numerical order, the waiting time for
i-1

the i th object is 	 tk,l. The idea is similar to the

problem of scheduling for single stage production, since in

flow shop problems there is no idle time on the first

machine.

A performance measurement can be the sum of all
m i-1

waiting times	 : tk 1 . The minimum of this expression
i=1 k=1	 '

occurs at the same time as the minimum of the expression

1021

i

1	

i

m i
occurs, since thetwoexpI'essions differ by the

i L
tk , l

m
constant TAtV

rem 3

The sum of waiting times of all the jobs in a flow

shop problem is minimized by shortest processing time (SPT)

sequencing.

Proof
M 1

In the proof, the term E ^ t k 1 is used because of
i=1 k=1 '

the reason mentioned above, as the term that represents the

sum of waiting times.

M i	 m

E Et k^l = F(n+1-k)tksl

According to Hardy, Littlewood and Polya (1952), this sum is

'least when the series are monotonic in opposite senses.

herefore the sum of all waiting times is minimized, if

he jobs are sequenced according to SPT (tl,l < t2,1

tM' 1.) .

1u.3 1

CHAPTER 6

SUMMARY AND CONCLUSIONS

This study investigates a flow shop scheduling

problem which is defined as the linear flow shop problem

(LFP). The purpose of the research was to find an optimal

solution for real life cases that can be defined as linear

flow shop problems. Three performance objectives were

defined; mean lateness, mean flow time and waiting time.

The results show that the shortest processing time sequen-

cing minimizes the objectives that were defined. Imple-

menting optimal solution for a practical problems is very

easy. The jobs that have to be processed are ordered in the

system by monotonic increasing performance time.

Chapter 1 of this dissertation introduces to the reader

the scheduling and sequencing area. The basic concepts and

basic models of scheduling are defined and the main

performance measurements of a scheduling problem are

formulated.

Chapter 2 defines the basic concepts of flow shop

scheduling. Two variations of flow shop scheduling are

discussed, the pure flow shop and the general flow shop.

The only requirement on the schedule is that all movements

k I

104

IC

IC

l6

IC

`1 C

C

C:

of jobs between machines within the shop be in uniform

direction from machine j to machine j+l etc.

Chapter 3 reviews past research in the flow shop area.

Many studies were conducted, and many articles were

written on flow shop problems. The studies that are

reviewed introduce the basic ideas that were developed in

the machine scheduling area and the special flow shop cases.

A discussion of the differences between optimal and heuris-

tic solutions to the problem is included. Optimal solutions

are efficient in theory but difficult to implement in

practical situations.

The linear flow shop problem is formulated in Chapter

4. It is a model of a practical production facility where

the time to complete a batch on a specific machine and the

times to complete the same batch on all other machines is a

linear function of the batch size. The time to perform all

jobs through all machines and the machining time required

to perform the jobs is developed. The idle time involved

in a linear flow shop problem is discussed in three steps.

First the case of a two machine LFP, second a three machine

LFP and third the consideration of the general m jobs n

machines case. Upper and lower.bounds for performance time

are developed where the optimal solution falls in that

range.

Chapter 5 describes three performance measurements of

the linear flow shop scheduling, mean lateness, mean flow

C,

105

C

time and waiting time. Three theorems regarding the define

performance measurements are stated. The optimal solution

for a two machine case is proven to be a schedule that

follows the shortest processing time ordering. The proofs

for mean lateness and maan flow time use the method of

pairwise interchange of pairs or adjacent jobs in the

sequence. The method of mathematical induction is used to

prove that the theorems hold for the case of m jobs in the

sequence. A numerical example follows the proofs. A

sensitivity test is conducted to show how the shortest

(processing time sequencing yields the optimal solutions.

This study presents optimal solutions for the linear.

flow shop problem. It was fowid in many studies that

optimal solutions are difficult to implement in practical

cases because of the complexity of the formulation and

computational problems. The advantage of the results found

in this dissertation is that it is very easy to construct

the optimal sequence according to the shortest processing

time ordering. The results can be implemented in practicali

production situations that fit the linear flow shop

definition.

This research investigated the linear flow shop where

all variables are deterministic and can be established

according to data available from past years or experience

of production management people. An open subject to be

researched in the future is the case where the machines'

V A

^g

YJ

1061

Cr

i
	

coefficients are random variables and the times to perform

the jobs are the expected performance time. Further

research should be conducted into production models other

than the LFP. For example, a fixed setup time per machine

is often necessary in parts production. Non linear

production times often occur in chemical processes.

Another issue in scheduling is the idle time involved in th

process. One can take the advantage of idle time of

machines to conduct maintenance needed in the shop. In all

kinds of problems created in the scheduling area one should

keep in mind the way of implementing the results of the

research. People in industry want easy and understandable

procedures to make their production lines run smoothly and

G
	

efficiently.

G

C

E
'	 t
S

	 107

Y

A

N1

l)

BIBLIOGRAPHY

Akers, S . B., Jr., "A Graphical Approach to Production
Scheduling Problems," Operations Research, Vol. 4,
No. 2 (April 1956), pp. 24-245.

Conway, R.W., Maxwell, W.L. and Miller, L.W., Theory of
Scheduling, Palo '.Ito: Addison -Wesley, 1907.

Dudek, R.A., and Teuton, O.F., Jr., "Development of M-
stage Decision Rule for Scheduling n Jobs through m
Machines," Operations Research, Vol. 12, No. 3
(May 1964) , pp^71-49T.

Gupta, I.N.D., and Dudek, R.A., "Optimality Criteria for
Flow Shop Schedules," A.I.I.E. Transactions, Vol. 3,
No. 3 (September 1971), pp.	 .

Hardy, G . H., Littlewood, J.E., and Polya, G., Inequalities.
Cambridge: Cambridge University Press, 1952.

Ignall, E., and Schrage, L.E., "Application of the Branch
and Bound Techniques to Some Flow Shop Scheduling
Problems," 22erations Research, Vol. 13, No. 3 (May
1965) , PP • 400 - 41Z—

Jackson, J.R., "An Extension of Johnson ' s Result on Job-Lot
Scheduling," Naval Research Logistics quarterly,
Vol. 3, No. 3	 ep em er	 , pp. ZUI-ZU4.

Johnson, S.M.,"Optimal Two and Three Stage Production
Schedules with Setup Times Included," Naval Research
Logistics Quarterly, Vol. 1, No. 1 (Marc	 .

Palmer, D . S., "Sequencing Jobs Through a Multi-Stage
Process In the Minimum Total Time - A Quick Method
of Obtaining a Near Optimum," 2gerational Research
Quarterly, Vol. 16, No. 1 (Marc	 , pp. 101708.

Smith, W.E., "Various Optimizers for Single State
Production," Naval Research Logistics Quarterly,
Vol. 3, No. 1(March	 , pp. 59-00.

108

Story, A.E., and Wagner,, H.M., "Computational Experience
with Integer Programming for Job Shop Scheduling,"
Muth, J.F. and Thomson, G.L., Eds., Industrial
Scheduling. Englewood Cliffs, N.J.: Pren ce- all,

Chapter 14.

k,

t_

f
i

G

C

109

C.

I
PART IV

August, 1981

ROBECON

A GENERAWED METHODOLOGY FOR ASSESSING

E	 THE ECONOMIC CONSEQUENCES OF

{	 ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

^.	 by

G. A. Fleischer

I t

C.

9

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

UNIVERSITY OF SOUTHERN CLAIFORNIA

LOS ANGELES, CALIFORNIA 90007

s

lr

ROBECON

A GENERALIZFD METHODOLOGY
for

`	
ASSESSING THE ECONOMIC CONSEQUENCES

of
ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

s
I

ABSTRACT

Althnugh problems relating to the engineering design of robots are

awesome, it is the economic aspect which is fundamental to the user's

decision to acquire robots for +repetitive operations. Nevertheless, a

review of the relevant literature suggests that very little exists in

the way of providing guidance to prospective Purchasers of robots as to

the economic consequences of prospective a;:quis'tions. This conclusion

stems from matching critiques of more than 25 pub ► ished references against

a set of explicit criteria for a generalized methodology. Recognizing

C	 the need for an appropriate methodology, an exhaustive set of cost elements

are identified which are to be included in a comprehensive analysis.

(This paper is intended to serve as the first in a series leading to

C	 a fully-develo^.eJ model, ROBECON, which may be used for specifying the

economic consequences of robot systems acquisitions. The model will be

computer based and user interactive.)

C

f
k

4

Y

0

ROBECON

C

A GENERALIZED METHODOLOGY FOR ASSESSING THE ECONOMIC CONSEQUENCES
OF ACQUIRING ROBOTS FOR REPETITIVE OPERATIONS

I. INTRODUCTION

Robots Defined

The Robot Institute of America defines the robot as "a programmable,

multi-function manipulator designed to move material, parts, tools or

specialized devices through variable programmed motions for the performance

of a variety of tasks." A less precise definition has been adopted by a

manufacturer-users group, Computer Aided Manufacturing International (CAM-1):

"a device that performs functicns ordinarily ascribed to human beings, or

operates with what appears to be aimost human intelligence." With either

definition, it is commonly understood that mode rn robots are programmable

manipulators that can perform useful work automatically without human

c	 assistance. (The term robot comes from a Czech word for forced labor; it

was invented for Karel Capek's 1921 melodrama, R.U.R.).

r	 Robot Installations: Substantial and Growing

Beginning with the development in the mid-60's of the microprocessor,

which permitted robots to be made smaller and cheaper, and spurred by

&	 endemic wage inflation, robots have been used with increasing frequency

in the industrialized nations. These are differences of opinion as to the

number of robots currently in place around the world. One estimate is

t	 that there are "about 7,000 working industrial robots world-wide."

(Ferguson, October 12, 1980). Another estimates about 15,000 robots

t

4

in the Western industrialized nations, with 10,000 in Japan and 3,000

in the U.S. at the end of 1979. (TIME, Dec. 8, 1980). Still another

source estimates 40,000-50,000 in worldwide use, with 30,000 of these

.installations in Japan (Allan, 1979).

Expert opinion appears unanimous that the forecasted growth of robot

installations will be spectacular into the foreseeable future. It is esti-

mated that installations will increase at the rate of 30%-40% over the next

decade. (The first and largest of the robot manufacturers in the U.S.,

Unimation Inc. of Danbury, Connecticut, experienced a 30% per annum growth

rate over the past seven years.) Estimates of industry sales potential range

from $2 billion to $4 billion by 1990. (Currently, industry sales in the

U.S. are about $90 million.) A recent forecast by the Society of Manufactur-

ing Engineers and the University of Michigan estimates that by 1987, 15 00 of

all assembly systems in the U.S. will use robot technology.

There are several significant reasons underlying expectations for sub-

stantial growth of robot installations in the foreseeable future. First,

the conditions which led users to adopt robots over the past decade will

persist, principally with respect to higher wage rates. Second, unit costs

can be expected to decrease because robots are becoming smaller and more

flexibie and new manufacturers are entering the industry. Third, applica-

tions will increase as the functional capabilities are expanded, especially

with respect to the ability of robots to see properly the articles which

they are manipulating.

The Problem

The engineering design aspect of robots is awesome, yet it is the economic 	 j

i-	 -2-
i

Y

i

s

r J_

F C..

C

C

aspect which is fundamental to the user's decision to acquire this equipment.

After all, robots generally perform no functions which cannot otherwise be

performed by combinations of human workers, machines and devices. The decision

to acquire robots is influenced, wholly or in part, by the economic consequences

to be expected from that decision. A preliminary review of the literature

suggests that this issue has received little attention relative to the design

and operational characteristics of robots. Certain cost estimates are widely

quoted in the literature*, but these are generally inadequate as a guide to

prospective users who may be contemplating capital Investments of $5,000 to

$150,000 per instal.lation. (Multiple installations, i.e., implementation of

systems using two or more robots, are not uncommon. Capital investments in

the millions of dollars may be required in these instances, of course.)

Large, relatively sophisticated firms will probably have the expertise

"in-house" to conduct appropriate economic analyses. However, as robot

installations become more extensive, it is likely that smaller, less sophis-

ticated firms will be considering the acquisitions cf robots, and they will

need competent guidance as to the economic justification for these decisions.

It is this issue which provides the justification for the research described

in the following sections.

Objective

C.	 There are a variety of ways of describing the process by which prospective

users arrive at the decision to acquire a specific robot or robotic system.

*For example, Unimation Inc. reports that a robot's cost is $4.60 hourly,

G	 and this has remained relatively constant since 1961. This is a rough
estimate, however; it is based on straight line depreciation rather than
cost of capital recovery, and taxes are ignored.

C	 -3-

G

C

t.

For our purposes, here, we may focus on three principal stages. First, the

appropriate decision maker(s) within the firm must focus upon a limited set

of candidates from among the much larger population of robots (and related

auxiliary equipment and software) currently available in the marketplace.

(It is assumed, at this point, that the decision maker has already completed

an analysis of the task(s) and operating environment and is reasonably

convinced that a robot system may represent an optimal solution to the manu-

facturing* problem). At this stage it will be necessary to describe important

technical requirements for the robot(s), including: capacity, drives and

controls, memory, and other features such as tactile, feedback and visual

sensors. These technical requirements must then be matched against :availability.

Sea Exhibit 1, for example. The central feature of this first stage is the

identification of a set of candidate systems with technical characteristics

suitable to the firm's operational requirements. This includes, in addition

to the robots themselves, associated requirements such as changes necessary

to other equipment, tooling, spare parts and test equipment for maintenance,

utilities, back-up equipment to be used if and when the robot is down, safety

equipment, and the like.

The second stage is an economic analysis of the consequences, or impacts,

of the candidate robot systems as identified in the first stage. This is the

focus of the research described here. The objective is the development of an

evaluation methodology which will permit users to forecast, or assess, the

economic consequences of acquiring one or more robots for repetitive operations.

*here, "manufacturing" includes fabrication, assembly, inspection, material
handling and other tasKs associated with the production of manufactured
goods.

ll
t

t
-4-

ORIGINAL PAGE IS
OF POOR QUALITY.

d

3

I)
i

i

M
This table is taken from responses
to our survey on robots and from
other material released to us for
publication.	 Although it repre-
ents abroad sample of the in-
ustry, we regret that there was

'tk+r time nor space to make a
d irectory of all companies in- Vived.

To get more information from
ny of the companies, circle the

a
"^ t

indicated number on the Reader'
Service Card.	 To inquire about "

$

your interest not covered here, ^, e g V

write the editors.
!

Q ; g Td

!! m
I
d a ^ ^ V a pC D

CIRCLE NO. $ eoe $ a ee $ •°•

W
.,
W

.,
W

w.
W W

wr
W W

......
W W W

..
W

..
W

r N OD Iry

Horizontal Arm Movement (ft) r+ t` N "+ ao %d N N %D •^ •!

Vertical Arm Movement (ft) h r ^o M-, vim+ N W I oi l d "i.
Rotation (degrees) $ o C41 N $ 29

V
Maximum Workpiece $.NM. M M ^ N° h$ °, $

PWeight Ob) N

Hydraulic • • • • *. _•A • •
Pneumatic • • • •
Electric • • • •
Air/Oil •

al Mechanical (against stops) 1010 •
Air Logic •
NC/Computer • • • •

O Cams •

09
Relays, Limit Switches • •

Drum • •
Magnetic Tape • • • •
RAM, ROM, PROM • • • •
Core/Plated Wire • lip

Tactile Sensors • • • • • •
Feedback Sensors • • • • 01 1016 • • • •
Self-Diagnostic • • • 1 1 • • 1'

No. of Memory Steps
QQ•
a N N a N a o'
e+1 wr

No. of Articulations D v %n D w

Cycles Per Minute > > > > > o Q N r- C4 >
N

.^
L.
00%
4j r-

W of

d Qĉ
 w

t- g
4j

110
r i
r- d

3 C.v
w

4j r- c
O	 • ••-
O 00
dX >1

4J 4

'^ w
ai N

U G
N	 al

- ^c

CA 4j a
V	 vi al

4
bi	 C

•i ~ 7
N C n{.1	 .r. Cn

10	 lm
L ^ w
b	 M•• {/i^ ^ L

CL C
c

4j ai W

•r •^ c

W 17 34)
w (^

N Y-
4j=
.0M

0Zw
C O

•Vf 4J
V aiC
i O^H

V
i

G
Vf

it

r

I

—5—

Users are assumed to be any business firms (manufacturers, fabricators,

processors, etc.) or governmental agencies who may be considering the purchase

of robots as operational alternatives and for whom the economic consequences

are relevant to the acquisition decision.

The third phase in this process, as illustrated in Exhibit 2, is one in

which economic consequences are considered jointly with other (non-ecoliomic)

consequences so as to arrive at a choice from among alternative systems.

There are a variety of approaches to this "mulfi:ple criteria" problem, some

of which are relatively complex. In any event, this is not an issue which

we will address further at. this time. The research described in this docu-

ment focuses only on Stage 2, the economic analysis.

tasks

The tasks necessary to meet the objective described above are as follows:

(1) Specify the criteria which must, or should, be met by the economic

analysis methodology, including mathematical model(s) and associated

procedures.

(2) Review the literature to determine the extent to which economic

data, models, and analytical procedures are currently available

to prospective users. Relevant references will be critiqued in

view of the criteria identified in (1).

(3) Identify the elements of total system costs, that is, the economic

impacts which, in general. may result over the lifetime of the

robotic system, from installation to ultimate disposal. In certain

government applications, and in the U.S. Department of befense in

par-icular, these are known as life cycle costs (LCC). (See, for

-6-

1

_U _N

N
Y

Z J
O Q
W Q

U V1
•^ O
^U

G N

W d
1 N
C C
002 U

G0
U

N

s

O ^ •r
•r-	 G. i
Ni •r- 4)

•r- 41 i-► +)
U V •r
O C O L
G O U

U
•^ N

U

o aU E
W N

M

O
LA
A	 C
=	 OG.	 M,

4J
b
4J
C
4)
In L
w OiV-1.►d	 t/1

fY vl N
4!

U U U.r- O •.-
N	 4J L 4J

41	
A d

CA	

O
t	 U •^
G-	 N to Rf•r

'C U Cm
4! 47 C

•r D •^

E4 v
N O

Q

N

.0
t
X
W

	

H	 H 4.)
4J A	f0 C	 r

	

r C	 C O	 C 4l
•O 4J

	

On
4-► -bp E^	

O S
	

N

	

U 4- •^ E
	

i t

	

C VI	 4) Q

	

Q Cr	 N U N	 0=

C.

U.S. Department of Defense, 1978; 	 U.S. Department of the

Air Force, 1978;	 Graver and Jenkins-Stark, 1976; and Kolarik, ►

1980 .) Total system costs include subsequent costs as well as

the initial investment.

(4) Develop engineering cost estimates (ECEs) and/or cost estimating	 y

relationships (CERs), as appropriate. These are two principal

approaches to the estimation of future economic consequences

which are likely to result from a current investment decision.

Generally, the CER approach relates system costs to a combination

of measures of the systems (dimensions, performance characteristics,

etc.)*. The cost estimating relationships are obtained through

curve fitting techniques. In the ECE method, total system costs

are broken down into rleatively small components, or elements;

the elements are related by ECEs which reflect the ways in which

the system is developed, operated and maintained. It is expected

that these relationships will be of sufficient generality to permit

their use in a wide variety of analyses.

(5) Develop computer-based models for generating Total System Costs.

Three separate models will be developed, with increasing complexity,

utilizing the ECEs and/or CERs as determined in the preceding task.

The mdoels are characterized as follows:

(a) In the first model we assume that all economic consequences

(the amount and timing of cash flows); as well as the planning

*this method is sometimes called parametric costing.

i

I^

-8-

6

G	 horizon and discount rate, are deterministic. It is also

assumed that the characteristics of the robotic syst-em

i
	 currently under consideration for implementation (the

"challenger") are identical to those of all future challengers.

That is, all future challengers are identical to the current
i

challenger.

^ t	(b) In the second model we relax the assumption concerning the

verisimilitude of current and future challengers. We now

assume that future challengers are not necessarily identical

to the current challenger. Indeed, it is likely that certain

costs will decrease due to economies of scale and the ability

of robot manufacturers to move out on the learning curve, for

example; other cost elements, such as energy and labor, might

!	 be expected to increase over time.

(c) The third model differs from the second in that all economic

C.	 consequences, the planning horizon and the discount rate are

k	 assumed to be stochastic. Unlike the prior models wherein

all inputs were assumed to be known with certainty, we now

treat these impacts as random variables.

(6)	 Test the implementability of each of the models through a series

"of controlled" experiments. These will consist of a set of sample

C	 problems which will be presented to real-world decision makers for

solution using the models. The experiences of these decision

makers will be monitored and evaluated tj determine the extent to

C	 which the models are useful in the capital allocation decision.

-9-

8

I. IG

II. CRITERIA FOR A GENERALIZED METHODOLOGY
	

N
Prior to developing a generalized methodology for assessing the economic

consequences of acquiring robots for repetitive operations, it is necessary

to make explicit the criteria by which the efficacy of the methodology will

be measured. These same criteria can also be used systematically to critique

the existing relevant literature. For our purposes, then, the following

criteria will be established:

(1) Theoretically sound -- We are not interested solely in obtaining

a solution. The solution must be internally consistent with the

decision maker's (user's) objectives as well as the assumptions

underlying the model.

(2) Credible -- The users must have a feeling of confidence that the

methodology will in fact provide solutions that are useful in the

decision making process. The methodology must be believable.

(3) Verifiable -- The user should be able to replicate, or verify,

the results by tracing the chrin of evznts from data input to

ultimate solution. Verifiability is a precondition to credibil;ty.

(4) Comprehensive -- The economic model(s) imbedded in the methodology

should include all the economic impacts which can reasonably be

expected to occur as the result of the decision. (The time interval

over which these impacts will occur is the Manning horizon.) Thus

the methodology should include the economic consequences of the

total system -- equipment acquisition, operation and maintenance,

taxes, ind the 'like -- throughout the entire planning horizon.

This is the Total System Costs concept.

-10-

S

(5) Reasonable data requirements -- Although comprehensibility is a

desirable, if not essential, element of the assessivent method-

ology, it is unrealistic to expect that the analyst will be able

to deal exhaustively with absolutely all economic impacts. To

C	 do so is ne ,;ther possible nor desirable. The data requirements

for the economic models should be limited to only those which

are likely to have a significant affect on the user's capital

allocation decision. The cost of gathering impact drta and

exercising the models should in no case exceed the economic ad-

vantage to be gained from the analysis.

(6) Accuracy -- The level of accuracy should not exceed that which is

necessary to identify significant differences among alternatives.

11)	 Assumptions made explicit -- The assumptions underlying the methodology

and imbedded in the analytical models should be stated clearly.

(8) Important factors stressed -- Not all elements of the analysis 	 p

are of equal importance. Those which have greatest significance

should be highlighted.

(9) Uncertain ty treated explicitly , -- Equipment acquisition decisions

are properly based upon anticipated consequences expected to result

from the various alternative courses of action. These consequenceE

lie in the future, and hence are uncertain. (Some would argue that

the more distant the event, the greater is the uncertainty, but

C	 this is not necessarily so.) The extent to which this uncertainty

affects the decision should be made explicit so that it may be

treated by the decision maker as a separable issue.

C

-11-

It

^G	 f

III.

(10) Incorporates efficiencies over time -- The learning curve

(improvement curve, progress curve, etc.) has been used for more

than forty years to describe the relationship between productivity

(cost/quantity) and time. During the initial stages of production,

in particular, productivity is improving as the people and machines

in the process "learn" to operate more effectively. Economic models

should incorporate this effect.

(11) Reflects real and relative price changes -- Economic impacts

should not be expected to remain constant over time, particularly

over a long planning horizon. In part these differences result

from changes in the relative prices of specific goods and services,

popularly known as inflation. Inasmuch as relative price changes

may to of significance to the capital allocation decision, they 	 I

should be incorporated into the analysis. This is especially

important for those goods and services for which prices change at

substantially different rates.

III. LITERATURE REVIEW

During the summer of 1981 an intensive review of the literature was

conducted to identify the extent to which published material describing the

economics of robotics is available to prospective users. Sources for review

include: newspapers and popular magazine articles, anthologies (especially

W.R. Tanner ' s Industrial Robots), professional conference proceedings,

government repori ;s, and technical pacers of professional societies (especially

the Society of Manufacturing Engineers). Consultants working in this field 	 i

-12-	
!II
I

were also contacted for '-wads. More than 200 individual items were

reviewed; the references appearing in the Bibliography are representative.

Of these, only the dozen listed in Exhibit 3 are directly related to econanic

IC;	 analyses of robot installations.

i(

The Accounting Method

As indicated in Exhibit 3, these references may be characterized by

one or more of several analytical procedures. The accounting method describes

economic consequences (costs and benefits) in accounting terms, that is, the

effect of the installation on the firm's income and expense accounts. Thus

the cost of capital recovery is defined by annual depreciation expense.*

The principal objection to the accounting method is that the opportunity
i

cost is ignored. The opportunity cost, sometimes described as the minimwn

attractive rate of return, is the return which would be expected from alter-

native investment opportunities should the specific project proposal not be

U	 funded. As described in the literature of engineering economy, the concept

of capital recovery (CR) incorporates the opportunity cost as follows-,

i
;C

G

*(Allan, 1979) includes a separate item for "cost of money" in his
numerical example. Thus his approach is a combination of the ac-
counting method and discounted cash flow.

16

IG NJ

C

-13-

t

t

I

IL	 .

1
41
c

ius
N N

x x
v

x x x x x x
r Ar
O U V.

adu^
^^ x x x x x 20C x

a zt

C
.r

wx
x C X ^c x

CI O

a-
%.0

co
ON

01 r
r

• L
P. t

L M " u p1
4J /T, p r t^ r r

go fl. CO v 4l

r

n co Ilf
V & L

rp rr r
go

V 1± • 11 1] w L r

.r ~1f) i0 a r 41 N C N
L r .`^ O1 C C 'r

a a m m m' Cw w i
W
s v̀'i s

r N fh In IG N. OO Q1 r

s

N

N
r
^O
C

_u

u
w

N
O

= N
a
4+
00
r i0
d 4+
^ N

	

C	 1

	

N 0 4	 t{

	

r C	
1

u^

r ^.
.o e
a

M
r
r
t
x
w

L

,

I

c

C

C

r-,-

4

CR = (C-L)(A/P, !, N) r Li

where	 C - initial cost

L a net salvage (residual) value at the end of N periods

i - opportunity cost (discount rate)

N - service life of the investment

and	 (A/f, i, N) - functional form of the algebraic expression

_
i 1+i,N

(i+i) - 1

It may be shown, in general, that capital recovery does not yield the

same results as those derived from the popular depreciation methods. To

illustrate, consider straight line depreciation. The annual depreciation

expense (0) is given by:

D = (Cd - Ld) /NU

where	 Cd = cost basis

Ld = Expected salvage value for depreciation purposes

Nd = depreciable life

To simplify our example, let us suppose that C - C
d O L = Ld and N - Nd'

It may be shown that the percent Error (e) is given by

a	 1 •—t-p I . 1 ,N)+p-
'

whey_ 	 p a L/C

The percent error (o) is shown graphically in Exhibit 4 for N - 5. the

error increases with she discount rate and the ratio of salvage value to

initial cost. When i - 20% and p - 0 (no salvage value), for example,

the error is approximately 40%. When i a 20%,, and p a 0.50, the error is

about 62%. (Note that D - 0 and CR = i for all values of N when p - 1.00.

Thus, in this special case, o - 100% for all values of N.)

iC

	 -15-

1.0

0.8

0.6

a

L 0.4
W

4J
C
N
U
L
N
d

C.2

0

Exhibit 4. Difference between Capital Recovery and
Straight Line Depreciation as a Function
of Discount Rate k

1.0

f	 3

'.1?	 20	 30	 40	 50

Discount Rate 0%)

fc

0.5

a

-16-

The Payback Method

As illustrated in Exhibit 5,ap ytack (or payou t..) is the number of

periods required for cumulative benefit! to exactly equal cumulative costs.

Costs and benefits are usually expressed as cash flows, although discounted

present values of cash flows may also be used. In either case, the payback

method is based on the assumption that the relative merit of a proposed

investment is measured by this statistic. The smaller the payback (period),

the better the proposal.

Despite the apparent fact that the payback method is widely used in

industry, it suffers from serious theoretical deficiencies. The most im-

portant of thase is that the payback methud ignores the conse quences of

the proposed investment after the period in which payback is completed.

This may be shown with reference to Exhibit 6. 	 we have two competing

projects, Alternatives A and 6, with payback for A less than that of B.

` But it is unlikely that A would be preferred to 6 since the latter generatesr

e far greater net cash flows over the remaining periods in the planning horizon.
rr
k	 With ver ,• rare exception, payback should not be used as the sole criterion

to measure economic efficiency.

(is
Discounted Cash Flow (DCF)

There are a number of variations to the discounted cash flow method:

present worth or present value, equivalent uniform annual cost, rate of

return (or return on investment), benefit-cost ratio, and the like. They

have in common recognition of the timing as well as the amounts of cash

flows; money has value over time because of the existence of alternative

investment opportunities. When used properly, the DCF variants lead to

t

G

C
-17-

Project	 Horizon

\1

U C

Cash Flow

or

Discounted
Present Value

of
Cash Flows

Exhibit 5. Payback (Payout) Illustrated

-18-

cC

Net

Cumulative
Cash Flows

0

t-

a

C

Exhibit 6. Payback for Two Competing Investment
Aiternatives

G

-19-

C

`sIr

consistent solutions.

Our literature search revealed seven publications in which the DCF method ►

is applied to robotics investments. These are:

Abraham and Beres, 1979. Returns on investment (ROIs) are summarized

for ten candidate assembly equipments and tooling as well as fifteen

separate combinations. Uncertainties are ignored. There is no description

of the process by which the ROIs are computed.

Behuniak, 1979. This very brier' paper describes economic analyses for

three robotic applications: swaging, die casting and painting. Cash flow

tables are shown for 5-year planning horizons. Three after-tax figures of

merit are shown for each application: (1) payback, (2) return on investment,

and (3) discounted rate of return. The formulae, or procedures, for computing

ROI and DCRR are not included, and the author's results cannot be verified.

Uncertainties are ignored.

Behuniak, 1980. This is similar to the author's earlier paper, except that

no cash flows table is included. Results are reported for a die casting

robot with initial cost of $68,000. Payback = 3.4 years; ROI = 24%.

(For the die casting robot in the author's 1979 paper, payback = 3.6 years

and ROI = 29.2%.)

Bublick, 1979. This paper described an economic analysis for robots used

in spray coating and finishing. Cost details are provided for both the

manual and robot alternatives. The procedure for determining payback

(1.17 years in this case) is detailed. A cash flow table is provided for

a 7-year planning horizon, including an adjustment for inflation or 6% per

annum. The author claims that ROI = 121% for this application, although

the formula for determining ROI is not given. Uncertainties are ignored.

E

-20-

Hanify and Belcher. This is perhaps the most interesting of the papers

G	
reviewed. Dennis Hanify is affiliated with the ITT Research Institute;

J.V. Belcher is with the Universal Oil Products Company. The paper

describes the Industrial Robot Analysis (IRA) program initiated at the

ITTRI Robot Technology Center and currently available to clients interested

in the technical and economic effects of robot systems. An example problem

is included -- a "real world" example -- but cost figures are fictitious

since the original data are proprietary. Major costs, their timing and

"probable variations" are given for this example problem. Calculations

are performed using a general purpose computer program, Economic Systems

Analysis (ESA), to compute the prospective rate of return, before or after

income taxes. Uncertainty is addressed by evaluating the effects of using

the optimistic or pessimistic cost estimates. The procedure used to determine

rate of return is not detailed in the paper: no equations, no flow diagram,

no computer program. It is not possible, therefore, to critique the method-

ology further.

Stout, 1973. Assumed costs and benefits for a "typical" project are plotted

as a function of time and the ROI calculated. ROI is defined (properly).

Tanner, 1978. Tle author asserts that "simple 'rules of thumb' and a stream-

lined cost analysis method can be applied to determine the potential economic

return of a contemplated robot installation." A cost analysis form is included

with numerical examples illustrating the calculation of:

(1)	 Payback =	
Total Expenditures

Total Annual Net Future Savings

C	 and (2)	 ROI is that valuE of r such that:

Current Value	 =	 Total Annual Net Future Savings
of Savings

(1 + r)n

S

1
i

t^

C

r

i

C

C	
-21-

C

i

The calculation in (2) is described as "ROI for the Depreciated (sic) Cash

Flow Method". An alternative calculation for ROI is given by

(3)	 ROI =	
Profit After Taxes
Investment Base

The author's procedure asswnes that cash flows remain constant over the

planning horizon. Thus there is no cash flow table for other than the

"typical" year. Uncertainties are ignored.

IV. LIFE CYCLE (TOTAL SYSTEM) COSTS

As a general principle, the economic consequences of proposed investment

in a robotics system should include all significant costs that are likely to

result from the investment. ("Benefits" are reductions in costs that may be

obtained when comparing any pair of alternatives, and hence are implicit in

this principle.) Economic consequences, or impacts, should be measured over

the total life cycle of the proposed system.* Impacts should be estimated

for each of the candidate systems as well as the existing process.

For our purposes, economic consequences may be grouped into three

broad categories, as follows:

1.	 Plant and Equipment

1.1	 The robot(s), including sensors and interlocks

1.1.1 Initial cost

1.1.2 Service life (not a cost)

1.1.3 Residual value (net salvage value) at the end of the

service life.

*In the literature of economic analysis, life cycle is frequently referred
to as the planning horizon. Strictly speaking, however, the planning
horizon may be longer than the system life cycle, especially if signifi-
cant economic consequences persist beyond the end of the life of the

t=	 system
-22-

G

it-
1.2 Associated tooling

1.3 Spare parts

1.4 Property taxes

1,5 Insurance (property only

} 1.6 Energy requirements i

{ 1.7 Tax consequences

1.7.1	 Investment credit f

1.7.2 Tax savings due to depreciation

1.7.3 Gain	 (loss) on disposal

1.8 Space requirements

1.9 Installation (including rearrangement of existing facilities)

1.10 Safety equipment (protective clothing, etc.)

1.11 Programming

r 	 .

! ^^

1.12 Modification of existing equipment to ensure compatability with

robot(s).

r
2.	 Operation and Maintenance

2.1 Operating labor

2.1.1 Salaries/wages

2.1.2 Fringe benefits (costs to employer)

2.2 Maintenance labor (for periodic maintenance)

G 2.2.1 Salaries/wages

2.2.2 Fringe benefits (costs to employer)

t 2.3 Direct cost of injuries and illness (hospitalization, medical

C care, etc.)

2.4 Absenteeism (cost of lost productivity)

G -23-

M.

2.4.1 illness

2.4.2 feigned illness

2.4.3 injury

2.5	 Training

2.6	 Supervision

2.7	 Insurance (personnel only)

2.8 Overtime (not included in 2.1 and 2.2 above)

2.8.1 Operating labor

2.8.2 Maintenance labor

2.9 Labor turnover

2.9.1 Termination

2.9.2 Recruitment

2.9.3 Training

2.10 Retooling and set-up costs for batch processing

2.11 Maintenance tools and supplies

2.13 Documentation (operation and maintenance)

2.13 Costs of interrupted production not included in 2.10, especially

down time.

3.	 Product

3.1	 Required changes in product Usign

3.2 Raw material requirements

3.3	 In-process inventory

3.4 Effects of production rate on:

3.4.1 other plant activities

S	 3.4.2 shipping schedules

i -	 -24-

i

i
i
i

^s

1

1

3.5 Defective (sub-standard) product

+	 ' C 	351. .	 Scrap rate (not a cost)

3.5.2 Net cost of handiing and reworking defective product

3.5.3 Costs due to undetected defective product released to

t'
customer (e.g., loss of good will, responding to customers'

complaints, replacing returned products)

In addition to the above, certain assumptions are re quired to complete

discounted cash flow economic analyses. These include:

	

4.1	 Income tax rates

4.1.1 Federal

4.1.2 State

4.1.3 Local

	

4.2	 Engineering (and consulting) costs not included above

4.3 Cost of capital (to be used as the discount rate)

All cost estimates should be expressed in terms of probability

distributions when available and where appropriate. In the absence of the
i

full distributions, however, only the principal statistics (me-an, median,

range and/or standard deviation) may be estimated. Point estimates or

certainty equivalents should be used only when probabilistic estimates are
C.

unavailable.

C:

G

	C	
-25-

G

BIBLIOGRAPHY

C	 1.	 Abraham, Richard G. and James F. Beres. "Cost-Effective Programmable
Assembly Systems." In Industrial Robots, Vol. 2, pp. 213-235. Edited
by William R. Tanner.eaarr orn,, society of Manufacturing Engineers.
1979.

l^	 2.	 Allan, Roger. "Busy Robots Spur Productivity." IEEE Spectrum, September
1979, pp. 31-36.	 —^

3. Behuniake John A. Economic Analysis of R000t An lications. Technical
Report MS 79-777. Dearborn, 	 : .xc e y of anu actur ng Engineers.
(1979).

4. Planning and Im lementation of R000t
ro ec s.Technical Pape S'^0-67r.---Dearborn,	 Society o anu-
actur ng Engineers. (1980).

5. Bublick, Timothy. "The Justification of an Industrial Robot." In
Indu-; I rial Robots, Vol. 1, pp. 39-45. Edited by William R. Tanner,
Dearborn, ­Society of Manufacturing Engineers, 1979.

6. Clapp, Neale W. Three Laws for Robotocists- An A Droach to Overcomin g
i	 Worker and ManagementResistance o Indu 	 eT^ts. ec n ca a er

M	 --Mr7f--M. Dearborn,	 oc ety off Manufaictur n, ngineers. '1979 .

7. . Management Resistance to Industr i al Robots.
Technical Paper	 0-690 -. wear oruT n, Rf. ` o'ietyo anu a_ct-urTn9
Engineers. (1980).

8. Enge'iberger, Joseph F., "Robots Make Economic and Social Sense",
C.	 Atlanta Economic: Review, July-August 1977. Reprinted in Industrial

cbo s,Vol.Edited by William R. Tanner. Dearborn,	 oc3ety
R-Rinufacturing Engineers, 1979.

9. Ernst, Bruce D. "Economic Justification for Industrial Robots."
A report prepared for the Corporate Users Group of the Robot Institute
of America, One SME Drive, Dearborn, Mi. (undated)

10. Estes, Vernon E. "Industrial Robots -- A User's Viewpoint", Proceedings
of the AIIE 1979 Fall Industrial Engineering Conference, No. 1979.

11. Ferguson, Fred, "Industrial Robots Do A Man's Job -- and Don't Get Bored",
t:	 Los Angeles Times, October 12, 1980.

12. Graver, C.A. And J.F. Jenkins-Stark. Life C cle Cost Model for Comparin j
AGT and Conventional Transit Alternatives.	 - -	 - ,Washington, D.C. Urban Mass ransporta on Administration, February 1976.

S	 13. Groover, Mikeli 	 "Industrial Robots: A Primer on the Present
Technology." Industrial Engineering, Vol. 12, No. 11, November 1980,

pp • 54-61.

9

9

-26-

C.

14. Hannify, Dennis W. and Jay V. Belcher. Industrial Robot Analysis -
Working Place Studies. (Reference incomplete)

15. Heginbotham, Wilfred B. Can Robots Beat Inflation. Technical Paper
MS77-156. Dearborn, MI: Society of anu ac ur ng Engineers.(1977.)

16. Kolarik, W.J., "Life Cycle Costing and Associated Models", Proceedings
of the AIIE 1980 Spring Annual Conference, May 1980.

17. Kuzmierski. Ted, "Robot* Applications in Aerospace Batch Manufacturing",
Industrial Robots, Vol. 2, pp. 169-182. Edited by William R. Tanner.
ear orZ, MI: Society of Manufacturing Engineers. (1979).

18. Maer, Gennaro	 Analysis of First UTD Installation Failures.
Technical Pap ,ar MS77 - 635. Dearborn, MI: Society of Manufacturing
Engineers. (1977).

19. Marks, K.E., H.G. Massey and B.D. Bradley, An Appraisal of Models Used
in Life C cle Cost Estimation for USAF Aircraft Systems, The Ran d
Corporation, Santa Monica, a orn a, October 	eport R-2287-AF).

20. Muller, R.K. Managing Costs through A Learnina Curve to an Ultimatp
Target, Techn ca apex . M78 - .a0ou". Dearborn, M1: Society oTYanu-
actuurring Engineers. (1978).

21. NASA Study Group on Machine Intelligence and Robotics, Machine
Intelligence and Robotics: Report of the NASA Study Group,,Executive
Summary, Jet Propulsion Latoratory Report No.	 , Pasadena, California,
September 1979,

22. Nof, S.Y., J.L. Knight, Jr., and Gavriel Salvendy. " Effective
Utilization of Industrial Robots - A Job and Skills Analysis Approach".
AIIE Transactions, Vol. 12, No. 3. September 1980, pp. 216-225.

23. Ottinger, Lester V. "Robots for Manufacturing and Assembly."
Proceedings of the 1981 AIIE/MHI Seminar. Norcross, GA: American
Institute of Industrial Engineers. (1981).

24. "Paying the Price for Innovation." The Economist, June 7, 1980, pp. 78-79.

25. Pollard, Brian W. RAM* for Robots (*Rel iabi li _t^. Pvailabilit
Maintainabi lity). Technical Paper	 - 692. Dearbrorn, MF Society
of anu ac uring Engineers. (1980

26. Redman, C-ristopher, Otto Friedrich, Arne Hopkins, et al., "The Robot
Revolution", Time, December S. 1980, Vol. 116, No. 23.

27. Ctout, Thomas M., "Economic Justification of Computer Control Systems",

fr
	 Automatica, Vol. 9, 1973, pp. 9-19.

i

t
►

C.

	 -27-

L

-Vwwwww"wvw^w

Y

28. Tanner, William R. "Sella " the Robot -- Justification for Robot
Installations. TecRical Paper S73 - 702. Dearborn, :o3 city
of anu ac ur ng Engineers. (1978) .

29. "Teaching Robots Now to See". The Economist. July 12, 1980, p. 83.

30 0 Tipnis, Y.A. and Steven A. Vogel, "Economic Models for Process Planning".
(Reference incomplete),

31. "Trends in Robots". In Industrial Robots, Vol. 1, pp. 81-86. Edited
by William R. Tanner. Dearb orn, 	 ociety of Manufacturing Engineers.

(1979) .

32. U.S. Department of Defense. Life Cycle Costing Guide for System
Acquisitions. Interim Report LCC-3. Washington, 	 . , January 1973.

33. , Department of the Air Force. Life C cle Cost Management
r ram.	 egulation 800- 11. Washington, D. C., February ZZ, 1978.

34. Van Cleave. David a	 „n.,.. -- 0 _`	 e 'Sicy'",'Iron Age,
Nov. za, 1977. Reprinted in Industrial Robots, Vol. 2. Edited by
William R. Tanner, Dearborn,	 oc e y o anufacturing Engineers. 0 979).

35. Weekley, Thomas L. A View of the United Automobile
Aqgg r̂icu^^l^̂tural _IW leme-nt Workers of	 r ca	 to
Robots. TechnicalTechnal Paper R97 -776. Dearborn, .

aRn—Facturi ng Engineers. (1979) .

36. Weisel, Walter K., "Comparative Costs of Automation in Die Castimi
Using Robots", 8th International Die Casting Exposition and Congress,

^.	 Cobo Hall, Detroit, Michigan, March 17-20, 1975. Reprinted in
Industrial Robots, Vol. 2. Edited by William R. Tanner, Dearborn, MI:
Soci ety o anu acturing Engineers. 0979).

N

C

C

-28-

	1982013004.pdf
	0020A02.JPG
	0020A03.TIF
	0020A04.TIF
	0020A05.TIF
	0020A06.TIF
	0020A07.JPG
	0020A08.JPG
	0020A09.JPG
	0020A10.JPG
	0020A11.JPG
	0020A12.JPG
	0020A13.JPG
	0020A14.JPG
	0020B01.TIF
	0020B02.TIF
	0020B03.TIF
	0020B04.TIF
	0020B05.TIF
	0020B06.TIF
	0020B07.TIF
	0020B08.TIF
	0020B09.TIF
	0020B10.TIF
	0020B11.TIF
	0020B12.TIF
	0020B13.TIF
	0020B14.TIF
	0020C01.TIF
	0020C02.TIF
	0020C03.TIF
	0020C04.TIF
	0020C05.TIF
	0020C06.TIF
	0020C07.TIF
	0020C08.TIF
	0020C09.TIF
	0020C10.TIF
	0020C11.TIF
	0020C12.TIF
	0020C13.TIF
	0020C14.TIF
	0020D01.TIF
	0020D02.TIF
	0020D03.TIF
	0020D04.TIF
	0020D05.TIF
	0020D06.TIF
	0020D07.TIF
	0020D08.TIF
	0020D09.TIF
	0020D10.TIF
	0020D11.TIF
	0020D12.TIF
	0020D13.TIF
	0020D14.TIF
	0020E01.TIF
	0020E02.TIF
	0020E03.TIF
	0020E04.TIF
	0020E05.TIF
	0020E06.TIF
	0020E07.TIF
	0020E08.TIF
	0020E09.TIF
	0020E10.TIF
	0020E11.TIF
	0020E12.TIF
	0020E13.TIF
	0020E14.TIF
	0020F01.TIF
	0020F02.TIF
	0020F03.TIF
	0020F04.TIF
	0020F05.TIF
	0020F06.TIF
	0020F07.TIF
	0020F08.TIF
	0020F09.TIF
	0020F10.TIF
	0020F11.TIF
	0020F12.TIF
	0020F13.TIF
	0020F14.TIF
	0020G01.TIF
	0020G02.TIF
	0020G03.TIF
	0020G04.TIF
	0020G05.TIF
	0020G06.TIF
	0020G07.TIF
	0020G08.TIF
	0020G09.TIF
	0020G10.TIF
	0020G11.TIF
	0020G12.TIF
	0020G13.TIF
	0020G14.TIF
	0021A02.TIF
	0021A03.TIF
	0021A04.TIF
	0021A05.TIF
	0021A06.TIF
	0021A07.TIF
	0021A08.TIF
	0021A09.TIF
	0021A10.TIF
	0021A11.TIF
	0021A12.TIF
	0021A13.TIF
	0021A14.TIF
	0021B01.TIF
	0021B02.TIF
	0021B03.TIF
	0021B04.TIF
	0021B05.TIF
	0021B06.TIF
	0021B07.TIF
	0021B08.TIF
	0021B09.TIF
	0021B10.TIF
	0021B11.TIF
	0021B12.TIF
	0021B13.TIF
	0021B14.TIF
	0021C01.TIF
	0021C02.TIF
	0021C03.TIF
	0021C04.TIF
	0021C05.TIF
	0021C06.TIF
	0021C07.TIF
	0021C08.TIF
	0021C09.TIF
	0021C10.TIF
	0021C11.TIF
	0021C12.TIF
	0021C13.TIF
	0021C14.TIF
	0021D01.TIF
	0021D02.TIF
	0021D03.TIF
	0021D04.TIF
	0021D05.TIF
	0021D06.TIF
	0021D07.TIF
	0021D08.TIF
	0021D09.TIF
	0021D10.TIF
	0021D11.TIF
	0021D12.TIF
	0021D13.TIF
	0021D14.TIF
	0021E01.TIF
	0021E02.TIF
	0021E03.TIF
	0021E04.TIF
	0021E05.TIF
	0021E06.TIF
	0021E07.TIF
	0021E08.TIF
	0021E09.TIF
	0021E10.TIF
	0021E11.TIF
	0021E12.TIF
	0021E13.TIF
	0021E14.TIF
	0021F01.TIF
	0021F02.TIF
	0021F03.TIF
	0021F04.TIF
	0021F05.TIF
	0021F06.TIF
	0021F07.TIF
	0021F08.TIF
	0021F09.TIF
	0021F10.TIF
	0021F11.TIF
	0021F12.TIF
	0021F13.TIF
	0021F14.TIF
	0021G01.TIF
	0021G02.TIF
	0021G03.TIF
	0021G04.TIF
	0021G05.TIF
	0021G06.TIF
	0021G07.TIF
	0021G08.TIF
	0021G09.TIF
	0021G10.TIF
	0021G11.TIF
	0021G12.TIF
	0021G13.TIF
	0021G14.TIF
	0022A02.TIF
	0022A03.TIF
	0022A04.TIF
	0022A05.TIF
	0022A06.TIF
	0022A07.TIF
	0022A08.TIF
	0022A09.TIF
	0022A10.TIF
	0022A11.TIF
	0022A12.TIF
	0022A13.TIF
	0022A14.TIF
	0022B01.TIF
	0022B02.TIF
	0022B03.TIF
	0022B04.TIF
	0022B05.TIF
	0022B06.TIF
	0022B07.TIF
	0022B08.TIF
	0022B09.TIF
	0022B10.TIF
	0022B11.TIF
	0022B12.TIF
	0022B13.TIF
	0022B14.TIF
	0022C01.TIF
	0022C02.TIF
	0022C03.TIF
	0022C04.TIF
	0022C05.TIF
	0022C06.TIF
	0022C07.TIF
	0022C08.TIF
	0022C09.TIF
	0022C10.TIF
	0022C11.TIF
	0022C12.TIF
	0022C13.TIF
	0022C14.TIF
	0022D01.TIF
	0022D02.TIF
	0022D03.TIF
	0022D04.TIF
	0022D05.TIF
	0022D06.TIF
	0022D07.TIF
	0022D08.TIF
	0022D09.TIF
	0022D10.TIF
	0022D11.TIF
	0022D12.TIF
	0022D13.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

