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A set of aeroelastic equations describing the

motion of an arbitrarily mistuned cascade with
flexible, pretwisted, nonuniform blades is devel-
oped using an extended Hamilton's principle. The
derivation of the equations has its basis in the
geometric nonlinear theory of elasticity in which
the elongations and shears are negligible compared
to unity. A general expression for foreshortening

of a blade is derived and is explicitly used in the
formulation. The blade aerodynamic loading in the
subsonic and supersonic flow regimes is obtained
from two—dimensional, unsteady, cascade theories.
The aerodynamic, inertial and structural coupling

between the bending (in two planes) and torsional
motions of the blade is included. The equations
are used to investigate the aeroelastic stability
and to quantify the effect of frequency mistuning
on flutter in turbofans. Results indicate that a
moderate amount of intentional mistuning has enough

potential to alleviate flutter problems in en-
shrouded, high—aspect—ratio turbofans.

Nnm	 I.+. .-o

A cross sectional	 area of the

blade

A0 reference value of	 A

[A],[A r ] aerodynamic matrices

Aj torsional mode shape

a elastic	 axis	 location

a 0 speed of sound

B 1 ,B2 blade sectional	 constants

b,bR semichord and reference

semichord

C blade chord

E Young's modulus of elasticity

[E],[ E s,r] matrices

e mass	 and elastic	 axis offset

(also base for natural

logarithm)

e 
	 area centroid and elastic axis

offset

e x ,e yl ez	 unit vectors along x,y,z axes

ex3' e 
Y3' 

e z 3
	

unit vectors along x3,y3'z3

axes

shear modulus of elasticity

nondimensional amplitudes of

generalized coordinates

associated with the bending

modes W 	 of the sth

blade measured out of and in

the plane of rotation

nondimensional amplitudes of

generalized coordinates

associated with the bending

modes W 	 in the rth mode

of a tuned cascade

bending moment of inertia

about the major (parallel

to the x—axis) and minor

axis through centroid

reference bending moment of

inertia

unity matrix

V117

torsional stiffness constant

reference value for J

reduced frequency, w0b/Veff

w0b/Meffa0

polar mass radius of gyration

a

bout elastic axis

\k2	 k2 + k2
m	 m1	 m2/

reference polar radius of

gyration of cross sectional

mass about elastic axis

G

gsi'hsi

gari'hari

Ixx'Izz

Ixxo
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k k mass radii	 of gyration about r 
reference radius of gyration

m l ' m2 0

x	 and	 z axes
roil running blade coordinate along

k A polar radii	 of gyration of elastic axis before and

cross-sectional	 area about after deformation

elastic	 axis ro,rl position vector of an	 arbi-

L blade	 length trary point on the blade

L a lift	 per	 unit	 span,	 positive before and after deforma-

up	 (negative	 z	 direction) tion,	 Eqs.	 (A6)	 and	 (A7)

L hhrij " " 'Laarij
aerodynamic coefficients,	 in

Ro,Rl position vector of	 a point on
the rth mode of cascade

elastic	 axis before and

1hhr'lhar
nondimensional	 lift coeffi-

after deformation,	 Eqs.	 (A6)
cients due to bending and

and	 (A7)
torsional	 motions	 in the rth

Shhsij'" " Saasij
stiffness coefficients of the 

cascade mode
sth blade

11 nondimensional	 moment coeffi-
ahr' aar [S],[Ss] stiffness matrices

cients due to bending and
s integer specifying	 blade,

torsional	 motion	 in the rth
s	 = 0,1,2,	 N-1;	 also	 blade

cascade mode
spacing

Max axial Mach number,	 Va/ao
T
k

kinetic energy
M
a

aerodynamic moment per unit
Tc,Tc

2 2
blade tension,	

T 
	 = T c /mo L

span	 about	 the elastic	 axis,
[T] transformation matrix

positive	 nose up
t,t0,t1 time,	 initial	 time,	 final	 time

M r relative Mach number,
U strain energy

V a + n r /a o OF radial	 foreshortening

Meff
effective relative Mach

u,v,w deformations of elastic	 axis

number,	 Veff/ao
in	 X.,	 Y R	and	 Zo

directions
Mg ,Mh ,M C, number of generalized coordi-

V a axial	 velocity

nates with the bending
Veff

effective relative velocity,
motions out of	 and	 in the

plane of rotation and with Va + a r2

the torsional	 motion -1
•	 cos [90 - E - tan	 (V a /or )

M hhsij' " ''Maasij
inertial	 coefficients of the

V axial	 extension	 of	 elastic 
sth blade

e

[M],[M s ] inertial	 matrices
axis

W work done by aerodynamic
m mass per unit	 length

m 
reference mass per unit	 length

loading

N Wi	 (i	 =	 1,2,...) beam functions
number of blades in cascade

P'P' an arbitrary point on the [W]'[W] model	 function matrices

elastic axis before and
Xo,Yn,Zn hub-fixed axis system,	 rotates

after deformation
about the Z.-axis with an

[P] stiffness	 matrix,	 Eq.	 (16)
angular velocity	 a

p 
quantity defined	 by	 Eq.	 (4)

xyz blade fixed axis system at

[Q] matrix,	 Eq.	 (16) arbitrary point on elastic

R hub	 radius axis

R blade tip	 radius x3y3z3 blade fixed axis system in the

r integer	 (0,1,2....N-1)	 speci- deformed configuration ob-

fying mode of a tuned cas- tained by rotating	 xyz

cade;	 also blade coordinate
{Xs),{X) column matrices

along	 elastic	 axis	 before
{Yr),{Y) column matrices

deformation
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a angle of	 twisting deformation,

positive when	 leading edge

is upward

asi	 (i
	 =	 1,2,...) amplitudes	 of	 generalized

coordinates associated with

torsional	 modes	 A i	of the

sth blade

sari
amplitudes	 of	 generalized

coordinates associated with

torsional	 modes	 A i	in the

rth mode of tuned cascade

B r
interblade phase angle 	 in the

rth mode of tuned cascade,

2,rr/N

Y nondimensional	 eigenvalue,

(w/wo)2

Yyy ,Yyx ,Y yz engineering	 strain components

a(	 ) variation of	 (	 )

e yy ,e yx .e yz tensor strain components

^hsl' " ''asl damping ratios of sth blade

n, TT, n a blade running coordinate mea-

sured from hub;	 n = n/L;

blade	 elastic	 axis	 position;

n a =	 (a +	 1)12

v o reference mass	 ratio,	 mo/nPabR

u real	 part	 of eigenvalue

pretwist	 angle

o a ,o m fluid	 and	 blade material

density

T nondimensional	 time,	 two

v imaginary part of eigenvalue

n rotational	 speed

w,wo frequency and reference

frequency

W angular velocity vector ex-

pressed in	 xyz	 system

wx	 z'wx	 zy
curvature vectors

3y33

C) derivative	 a(	 )/at	 or

a(	 ) /aT

(	 ) derivative	 a(	 )/ar	 or

a(	 )/an

T	 Tntrnd,,r+inn

A research program in propulsion system aero-

elasticity is being conducted at the NASA Lewis

Research Center. As a part of this general pro-
gram, an effort was made by the authors in Refs. 1
and 2, to improve the physical understanding of

turbofan engine aeroelastic characteristics includ-
ing blade mistuning (nonidentical blade properties)

effects. Other published work on mistuning was
cited in Refs. 1 and 2.

The mathematical formulation considered in

Ref. 1 is a 'typical section' model with two
degrees of freedom, a bending and a pitching about
the elastic axis. This model was found to be
sufficient to elicit physical understanding of mis-
tuning effects and to conduct parametric studies.
Furthermore, this model was utilized in Ref. 3 to
show that mistuning has enough potential to sig-

nificantly raise the flutter speed of an advanced
fan, this potential may have a very practical

significance in eliminating the commonly used mid-
span shrouds in advanced turbofan designs. The
main purpose of the midspan shrouds is to increase
the blade natural frequencies and thus to avoid

aeroelastic instabilities. However, the shrouds
have an adverse effect on aerodynamic performance.

While the typical section model served the

intended purposes, it is expected to be inadequate
to obtain accurate flutter boundaries of modern
technology turbofans or advanced turboprop blades
which have a considerable amount of pretwist. As a

consequence of pretwist, bending out of the plane
of rotation couples elastically with bending in the
plane of rotation. Consequently, a more realistic

structural model of a blade is required.

The purposes of the research summarized in

this paper are:	 (1) to develop a more refined and
realistic structural model of a blade than the
typical section model and to combine this model
with the available unsteady cascade aerodynamic
models; and (2) to study the effects of mistuning

and other cascade parameters on flutter character-
istics of an advanced technology fan stage. To the
best of authors' knowledge, the mentioned effects
utilizing the purposed model have not been studied
in the published literature.

There exist several levels of approximations

in structural theory used in rotary wing aero-
elasticity to represent a structural model of a
blade. The theory of pretwisted blades presented
in Ref. 4 may be viewed as the first level of

approximation. The structural theories presented
in Refs. 5-9 may be viewed as ones with the second

level of approximation. Since the corresponding
unsteady cascade aerodynamic theory consistent with

the second level structural theories is not avail-
able, the theory of Ref. 4 is used as a first step.

The governing equations of motion of a

rotating, pretwisted blade are derived by using an
extended Hamilton's principle. The derivation is
characterized by the use of an axial (along the

beam axis) displacement which includes second-
degree non inear terms defining the axial fore-
shortening lo of the tension axis due to bending,
torsion, and the noncoincidence of the elastic axis

and tension axis. The development of a more gen-
eral expression for foreshortening than that used
in Ref. 10 and the explicit use of this general
expression in the axial displacement field are
believed to be new. The explicit consideration of
foreshortening in deriving the equations is appeal-
ing in that it parallels the corresponding develop-
ment of equations for a nonrotating blade where

retention of second-degree terms in the kinetic
and potential energy expressions leads to linear

equations (See Ref. 10). A more detailed discus-
sion on the role of the general expression for
foreshortening in deriving the second-degree non-
linear equations of motion and in accounting for
the geometric stiffness effects in beam analyses
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using finite-element methods will be presented in a

future publication. The disk is assumed to be

rigid. The unsteady, two-dimensional, cascade,
aerodynamic loads are calculated by Smith's

theory 	 subsoni44 flow and Adamczyk and

Goldstein's theory 11 in supersonic flow with a
subsonic leading edge. The governing equations of
motion of a mistuned cascade are formulated by
assuming that the general motion of a blade is a
linear combination of its motions in all possible
modes of a tuned cascade. The space variable in

the coupled integro-partial differential equations
of motion is eliminated by using a modified

Galerkin's method. The resulting equations are
cast as a standard complex eigenvalue problem from
which the aeroelastic stability is determined.

A digital computer program is developed to

form and solve the complex eigenvalue problem.
This program is written in a modular form such that

it can be applied to advanced turboprops, heli-
copter rotors in hover, and wind turbine rotors by

incorporating the appropriate aerodynamic modules.
Due to length constraints of the paper, limited
results are presented only for an advanced turbofan
blade. However, additional parametric results will
be presented in a future publication.

II. Theory

The components of a bladed disk system have

complex geometries. The analysis of this system is
further complicated by blade mistuning. To inves-
tigate the aeroelastic stability of a cascade with
mistuning, a mathematical model will be developed
in this section.

A. Coordinate Systems

Several coordinate systems will be employed in

the derivation of equations of motion; . those which
are common to both the structural and aerodynamic
aspects of the derivation for the sth blade are
shown in Figs. 1 and 2. The axis system XnYnZQ
shown in the figures rotates with a constant angu-

lar velocity a about the Xn-axis. The Y2-axis
coincides with the undeformed elastic axis of the
blade. The blade principal axes, x and z, of the

cross section at an arbitrary point on the elastic
axis are inclined to the Xn and Zn axes by an
angle ^ as shown in Fig. 2. The blade elastic

deformations, u, v, w, and a translate and rotate

the xyz system to the x3y3z3 system as shown
in Fig. 1.

B. Tuned Cascade Model

If the blades are tuned, the N-bladed cascade

has N interblade phase angle modes with a con-
stant phase angle Or between adjacent blades.
Thisinterblade phase angle is restricted by
Lane 's 13 assumption to the N discrete values
Or = 2,rr/N were r = 0,1,2,...,N-1. 	 In each of

these modes all blades have the same amplitude.

For a tuned cascade, the modes with different
interblade phase angles are uncoupled. The blade
deflections are expressed in a traveling wave form
in terms of a set of generalized coordinates which
are associated with the nonrotating uncoupled beam
modes in pure bending and torsion. The number of
modes retained in the plane of rotation, in the
plane perpendicular to the plane of rotation, and

in torsion are M h , M g , and Ma respectively.
The blade deflections expressed in traveling wave
form are

w/ bR
	 i 

w	
i w t

u/b R	= [W]{X s I e Wo	 = [E s r ][W](Y
r ) 

e m0

a

(1)

where

W I W 2 ...0 0

[ W ] =	 0 0	 ... W 1 W2 ...

0	 0	 ... 0	 0	 ... A l , A2 ...

T
{Xs} 	 (h

sl h s2 " ' g sl g s2 " ' a sl a s2 " 'I

T
(Y r} 	 (h

arl h art "' g arl g ar2 — a arl 0 ar2 "')

[ E s r] - 
e i6 r s [1]	

(2)

An interblade phase angle Or in the range

0-180 ` represents a forward traveling wave - a wave
traveling in the direction of rotation.

In Eq. (2) the standard nonrotating ortho-

normal modes for a beam with fixed-free boundary
conditions are given by

W j (n) = cosh(p j n) - cos(pjn)

(cos p j + cosh pj)

sin p j + sinh pj	
[sin(p j n) - sin(p j n)]	 (3)

A j (n) = %1-2- sin[(2j - 1) 7/2 n]

where the value of pj is obtained from

cos pj cash pj + 1 = 0
	

(4)

In the case of a tuned cascade it is adequate

to analyze the motion of a cascade in each of the
interblade phase angle modes separately. Hence,
the total number of degrees of freedom of a tuned

cascade is (Mh + Mg * Ma ) for each value of 9r.

C. Mistuned Cascade Model

In the case of an arbitrarily mistuned cas-

cade, the blades can have different amplitudes, and
the phase angle between adjacent blades can vary.
However, the general motion of a blade in a mis-

tuned cascade can be expressed as a linear combina-
tion of the motions in all possible interblade
phase angle modes of the corresponding tuned cas-
cade. Consequently, the blade deflections can be
written as

4



w/bR 	 i w

Wu/b R	= [W]{X s } e	

d

a

N-1

Y, [E
s r][W]{Y r ) e Wd	 (5)

r=0

For a case with N mistuned blades, Eq. (5)

can be generalized as

i W t	 i	 14
[W]{X} e	 d	 = [ E ][ W ]( Y ) e	 o	 (6)

where

[W]
[W]

[W]

[W]

{X
0 

}	 {Y0 }

{X 1 }	 {Y1}

{X} = ^	 >	 {Y} =

{XN-11^	
l {YN-1}

[E O 0] [E
O 1 1 ...

[E] _	 [T1,03 [E
I 1 ] ...	 (7)

[EN-1,N-1]

The total number of degrees of freedom for

this general case is N times (Mh + M g 
+ Mc').

D. Aerod y namic Model

The unsteady, two-dimensional, cascade, aero-

dynamic loads were calculated by using Smith's
theory in s bsonic flow, and Adamczyk and
Goldstein's^2 theory in supersonic flow with a
subsonic leading edge. 	 In these theories, the air-
foil thickness, camber and steady state angle of
attack are neglected, and the flow is assumed to be
isentropic and irrotational. At any radial station

the relative Mach number is a function of the
inflow conditions and the rotor speed. Most cur-
rent fan designs have supersonic flow at the tip
and subsonic flow at the root. As a result, some

region of the blade span encounters transonic
flow. Since the above unsteady theories are not
valid in the transonic region, the subsonic the-
ory with Mefff = 0.9 for stations in the range
0.9 < MO ff < 1 and the supersonic theory with

Meff = 1.1 for stations in the range 1.0 < Meff < 1.1
were used. The motion-dependent aerodynamic lift
and moment were expressed in Ref. 1 in terms of

nondimensional coefficients. The expressions for
lift and moment per unit span as a function of the

same coefficients can. be written as

N-1

L	
32	 (b )2

	

a = -npab3	
I hhr b 

r=0

M 
	 Mg

cos C	 Wj(n)harj + sin	 Wj(n)9arj

j=1	 j=1

L)3

 Ma	

_	 i(w T + Srs/

	

+ l har (b 	 Aj(n)aarj e
	 (8a)

R

j=1

N-1

	

43	 (b 13

	

M a 
= ,rpabR.	

Lahr bR

r=0

M 
	 Mg

	

cos f 

X, 

Wi (n)h arj + sin E	 Wj(n)9arj

j=1	 j=1

4 Ma

	

_	 m T + B
r S)

+ l aar (b
R 
)	 Aj(n)aarj e	 o	 (8b)

j=1

	

The coefficients l hhr , lhar,	 la r are
calculated for specified values of Meff , ^, s/c,
^, and a. In the aerodynamic theories used

herein, the steady state angle of attack is neg-

lected. In applying these theories to the present

case, the blade steady state angle of attack is
also set to zero and the effective relative veloc-

ity is assumed to be the component of the blade
relative velocity along the blade chord as indi-
cated in Fig. 2.

E. Structural Model

The structural model of each blade consists of

a straight, slender, twisted, nonuniform elastic
beam with a symmetric cross section. The elastic
axis, the inertia axis, and the tension axis are
taken to be noncoincident. The effect of warping
is not explicitly considered. However, a partial

effect of warping enters into the equations of
motion as it does in Ref. 4. The blade is assumed

to be rigid in the direction along the elastic
axis. Consequently, the axial equation of motion
is eliminated. The structural model has its basis
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/• t 1
J	 (dTk - 6U + 6W)dt = 0	 (9)
t0

[(E I z z cos 24 + EIxx sin 2E)u"

(14a)

in the geometric nonlinear theory of elasticity in

which elongations and shears are negligible com-
pared to unity and the squares of the derivatives

of the extensional deformation of the elastic axis
are negligible compared to the squares of the bend-
ing slopes. This level of the geometric nonlinear
theory of elasticity is required to derive a set of

linear coupled bending-torsion equations of motion.

F. Eouations of Motion

The equations of motion will be derived by

using the extended Hamilton's principle in the form

[(EI 
zz 

sin 2C + EIxx cos t) w"

- (EIzz - EI xx )u" sin f cos	 - EB 2^'a' sin E

- Tc eAa cos E

J

 - (Tcw') + mw + mea cos C

2
- n [(mrea cos	 + mw + mea cos ^] _ -L a cos c

The expressions for strain energy, kinetic
energy, and virtual work of aerodynamic forces can
be written as

U	
RTff [EYyy + G f 

Yy z + f 2 x)]dr dx dz

R 	 A	 \

(10)

ff
l
	drl drl

Tk = ^	 m dt dt dr dx dz
	 (11)

fR A

R 
aW	 (-La sin ^ du - L a cos & 5w + M a aa)dr

RH

(12)

- (EI zZ - EI xx )w" sin ^ cos E - EB2t'a' cos C

- T c e A a sin ^J

	

- (Tc u') + mu + mea sin f

- 0 2 (mrea sin 4) = -L a sin ^	 (141b)

JGJa' + EB1^12a' + Tck2Aa'

+ EB 2{'(u" cos E - w" sin 01 - T c e Aw" cos E

- T c eAu" sin	 + mlkma + eu sin G + ew cos CI

+ msi 2 re(w' cos C + u' sin ^) - rM2

where

dr l 	arl
dt = at + w x rl

W = Q(e x cos ^ + e  sin ^)

r  = (r - U F )ey + (u cos	 - w sin ^)ex

x

+ (u sin	 + w cos O e z + [T] T r
z

^k 2 - Jk 2	a	 acos 2t + we cos 4J = M	 (14c)

L\ 2 

The sectional properties in these equations are

defined in Appendix B.

By substituting Eqs. (8a) and (8b) into Eqs.

(14a), (14b), and (14c), nondimensionalizing the
resulting equations, applying Galerkin's method,
and extending the resultant equations to all the

blades by using Eq. (6), the equations of motion of
an arbitrarily mistuned cascade can be simplified as

[Pj{Y1 = Y [Qj {Y1	 (15)

(13)	
where

The expressions for the strain components,

position vector, foreshortening, and transformation
matrix are developed in Appendix A. Substituting

Eqs. (A9b), (A9c), and (A14) into Eq. (10), Eq.
(13) into Eq. (11), Eqs. (8a) and (8b) into Eq.
(12), the resulting equations into Eq. (9), taking
the indicated variations, integrating over the

cross section of the blade wherever necessary,
integrating by parts over time, neglecting Coriolis
and rotary inertia terms, and retaining only first-
degree terms in u, w, and a yields

[Q] = [E] 1 [ M ][E] + [A]

[ P ] = [E] 1[S][E]

Y = (W/Wo)2

6



[MO ]
5.	 For the mode of	 interest check whether the

imaginary part of the eigenvalue 	 is within

[M1]
tabltolerance of the reference

anacceI ffrequency. 	 go back to step	 (3)
[M] = with a new reference frequency.

6.	 For the mode of	 interest,	 check whether the
real	 part	 of	 the eigenvalue	 is within an

[M acceptableacceptable tolerance of unity.	 If	 not,
modify the rotational	 speed and repeat the
process from step	 (2).	 If positive,	 reduce

[AO ] speed;	 if	 negative,	 increase	 speed.
7.	 To find the flutter boundary for another

[A1 ] value of the	 axial	 Mach number go back to
step	 (1).

It	 should be noted that the above method

[AN-1 ]
utilizes	 a	 rotor	 speed	 iteration within the	 axial
Mach number	 iteration	 loop.	 It would appear that
it would be more efficient to place the Mach number

[S O ]

iteration within	 the rotor	 speed	 iteration	 loop,

since the mass and stiffness matrices have to be

[S 1 ]

updated each time the rotor speed is changed.

However,	 it was found that the time required to

[S]	 _ (16)	 assemble these matrices	 is	 small	 relative to the

time required to assemble the aerodynamic matrix
and to extract	 the eigenvalues and eigenvectors.

[SN	
13 In	 addition,	 the flutter boundary was more

"distinct"	 using the method described 	 above.

As indicated in Eq. (B2), structural damping

is added by multiplying the direct stiffness
coefficients by (1 + 2i; hsl) , ( 1 + 2i;hs2),
(1 + 2is as2 ) •••

III. Results and Discussion

A. Solution

The aeroelastic stability boundaries are ob-

tained by solving the standard complex eigenvalue

problem represented by Eq. (15). The relation
between the frequency w and y is

i w = i	 iv	 (17)
wo

Flutter occurs when u > 0.

B. Computer Program and Verification

A computer program (ASTROMIC) was written to

assemble and solve the generalized eigenvalue prob-
lem given in Eq. (15). The program can be used to
predict the in vacuum natural frequencies of a

nonuniform rotating beam by setting the aerodynamic
matrix [A] to zero. In this case the problem is

reduced to a standard eigensolution. For the
flutter problem, the aerodynamic matrix is a func-

tion of the eigenvalues. Hence, an iterative solu-
tion is required. The iterative technique used

herein to calculate flutter boundaries (once the
problem is completely described) is briefly summa-
rized as follows:

Select an axial Mach number.

Select a rotation speed and assemble the
stiffness and mass matrices.
Calculate the variation of the reduced
frequency based on an assumed reference
frequency wo and relative Mach number

with span and construct the aerodynamic

matrix. The initial value for the refer-
ence frequency is the same as the natural
frequency of the mode of interest.

Solve the eigenvalue problem.

The correctness of the program was checkea by

constructing a hypothetical blade model with con-
stant structural and aerodynamic properties along
the span. The blade frequencies obtained by using
the program were checked against known solutions.
The eigensolutions with aerodynamics included were
checked against the results obtained by using the
typical section model program (MISER) developed in
Refs. 1 and 2.

For a cascade with nonuniform blades, there

are no published theoretical results on flutter.
However the results from ASTROMIC are compared with
those from MISER by choosing the properties for a
typical section at different spanwise stations.

These results will be discussed later.

C. Aeroelastic Stability of an Advanced Fan

An advanced unshrouded fan stage (aspect
ratio = 3.3), representative of a next generation
fan, was chosen for analysis. A similar stage was
analyzed in Ref. 3 by using the typical section
model. The results in Ref. 3 indicated that the
fan design without shrouds did not meet the flutter

requirements, but that it may be feasible to use
mistuning as a p assive flutter control. The moti-
vation for choosing this fan stage for analysis
herein is to further investigate the use of mis-
tuning as a passive flutter control.

The properties of the fan blade are listed in

Table I and the reference properties are listed in
Table II. The design point is at a rotor speed of
4267 rev/min. and an axial Mach number of 0.55.
At these conditions the tip relative Mach number
is 1.45.

The analyses are performed using two modes

each in the plane of rotation, in the plane per-

pendicular to the plane of rotation, and in tor-

sion. Since there are 28 blades in this stage and
hence 28 interblade phase angle modes, the total
number of degrees of freedom for an arbitrarily
mistuned cascade is 168. However, for alternate



mistuning, in which every other blade is identical,

certain symmetry properties are exploited in the
analysis. Because of symmetry, the 0. mode
couples with the (Sr + n) mode only. The analy-

sis for this case consists of 14 separate eigen-

solutions of 12 degrees of freedom each rather thar
one eigensolution of 168 degrees of freedom for an

arbitrarily mistuned cascade.

The blade was analyzed for vibration to gen-
erate a Campbell diagram which is shown in Fig. 3.

Only the first and second bending frequencies and
the first torsion frequency are shown. Since the
mass ratio for this blade is high, the aerodynamic
forces result in flutter frequencies which are not
significantly different from those in a vacuum.

In Refs. 1-3, a typical section model, which

was originally used for fixed wing flutter analy-
sis, was adapted for rotating blades.	 In the case

of a fixed wing, the relative velocity of each
strip along the span is constant; the structural
properties of the typical section are obtained by
their respective values at the 3/4 blade span
station.	 In the case of a rotating blade, the
relative velocity of each strip along the blade

varies. Then, a question arises as to which span-
wise station should be used as a reference to cal-

culate the structural and aerodynamic properties of
the typical section. To answer this question, the

eigenvalues of the tuned cascade at the design
condition from both the present beam and typical
section analyses using various spanwise locations
as reference are compared in Fig. 4. As expected,
the cascade is unstable over a range of interblade
phase angles corresponding to forward traveling

waves. It should be noted that, whereas there are
168 eigenvalues, only the predominantly torsional

eigenvalues are shown. The other modes were found
to be stable at the design condition. Also, it can

be seen that the typical section model correspond-
ing to approximately the 7/10 span reference sta-
tion gives the best correlation for the unstable
modes with the nonuniform blade model. This
finding is in close agreement with the 3/4 span
reference station usually used for fixed wing aero-

elastic calculations. This observation is very
useful in performing preliminary aeroelastic
analyses.

Previous publications 1 - 3 using the typical

section model have shown that torsional frequency
mistuning could have a significant stabilizing

effect on the cascade. The effect of mistuning is
further investigated herein with the nonuniform

blade model. The method used to vary the frequency
from blade-to-blade was simply to vary the tor-
sional stiffness, J. For alternate mistuning, the
torsional stiffness of the odd numbered blades was
increased by 10 percent over that of a tuned blade
at each spanwise location. Likewise, the torsional
stiffnesses of the even numbered blades was de-
creased by 10 percent from that of a tuned blade.
The result was a total torsional frequency varia-
tion of approximately 7 percent. The eigenvalues
for this mistuned rotor at the design conditions
are shown in Fig. 5, along with the corresponding
tuned values. These predominately torsional eigen-
values have split into high and low frequency
families corresponding to modes with major partici-
pation of the odd and even blades, respectively.
As can be seen, this type of mistuning has stabi-
lized the cascade to such an extent that it is
stable at the design point.

By using the iterative procedure defined above

the flutter boundaries for both the tuned and mis-
tuned cascades were calculated. The results are
shown in Fig. 6. For,the tuned cascade it is seen

that the design point lies well inside in the un-

stable region. As expected, the axial Mach number
at flutter monotonically decreases with increasing
rotor speed. For the tuned cascade it should also
be noted that along the flutter boundary the tip
relative Mach number is approximately 1.15.
Consequently, a region near the blade tip may
experience nonlinearities associated with transonic
flow which are not accounted for by the unsteady
aerodynamic theories used herein. The relative tip
Mach number at the design conditions is 1.45.

The inclusion of an alternate frequency mis-

tuning of approximately 7 percent has significantly
increased the cascade stability by moving the
flutter boundary to the right. Furthermore, the
design point is stable for this level of mistuning.
The mode defining the boundary has maximum partici-
pation of the even-numbered (or low frequency)
blades. The tip relative Mach number along the

boundary of the mistuned cascade is 1.53. Con-
sequently, the transonic region is considerably

inboard of the tip and the transonic effects should
be minimal.

Figure 6 also illustrates the effect of struc-

tural damping on flutter of a tuned cascade. A
structural damping ratio of 0.002 is included in
each of the torsional modes. As can be seen, the
damping has a significantly stabilizing effect on

flutter speed of a tuned cascade.

IV. Conclusions

The major conclusions from this investigation

are summarized as follows:

1. A general expression for foreshortening of
a blade was derived and was explicitly used in

deriving the first-degree linear equations of
motion of a rotating blade.

2. An aeroelastic model and an associated

computer program for a mistuned cascade with non-
uniform blades were developed.

3. For the blade analyzed herein a typical

section model corresponding to the 7110 span refer-
ence station gives the best correlation with the
nonuniform blade model.

4. An advanced, unshrouded, high-aspect ratio
fan was modelled and analyzed with and without mis-
tuning. The results show that a moderate amount of
mistuning has enough potential to alleviate flutter

problems in unshrouded turbofans.

Appendix A

Strain Displacement Relations

A schematic representation of the deformed and

undeformed elastic axis is shown in Fig. 1. 	 Since

the pretwist angle f varies with r, with ini-
tial curvature of the elastic axis is

d^
wxyz = ey Ur = ey ,' (Al)



The elastic deformations translate and rotate 	 , + 1	 2 + ,2)

the triad xyz to x3y3z3. Let the expressions 	 E	 (uyy	 v	 2	
w

for the curvature vector of the deformed elastic
axis and for the transformation matrix between the 	 — z[(u" + aw") sin	 + (w" — au") cos C]
x3y3z3. and xyz systems be

W	 =	 e	 + W e	 +	 e	 (A2)	
- x [(u" + aw") cos	 - (w" - au") sin ^]

x 3y3 z 3	x3 x3	y3 y3	z3 z3

2 + 2
+ ? —r x (a' 2 — 2a V )	 (A9a)

e x 
3
	 ex

ey	= [T]	 ey	(A3)	 Eyx = 2 -a' -	 (u'2 + w'2)

3

ez3	
ez	

+ (u' sin	 + w' cos	 (u' cos	 - w' sin ^)

Following the procedure presented in Ref. 8, one 	 (A9b)
can develop the second-degree expressions for the

curvature components and for the transformation 	 x	 (u,2 + w,2)
matrix in terms of u, v, w, and a as	 Eyz = - 2 [-a - 2

W  = (u" + aw") sin ^ + (w" - au") cos E
3

(	
u'2	 w'2

3 	
T_	 )

,
+ (u' sin t + w' cos t)	 (u' cos	 - w' sin ^)

mz 3 = -(u" + aw") cos C + (w" - au") sin C	 (A4)

+ (u' sin ^ + w' cos	 (u' cos	 w' sin ^)

(A9c)

Invoking the small strain assumption, the

engineering strains are related to the components
of the strain tensor according to:

Yyy = Eyy ; Yyx = 2Eyx ; Yyz = 2 Eyz	 (A10)

2
1 - 2 (u' cos	 - w' sin	 2 - 

2	
u' cos	 - w' sin	 -a

- - - - - - - - - - - - - - - - -	 - - - - - - - - - -	 - - - - - - - - - - - - - - - - -

[T] _	 -(u' cos E - w' sin ^)
	 1 - u' 2 - w' 2	a(u' cos ^ - w' sin c)	

(A5)
- a(u' sin g + w' cos ^)	 2	 2	 - (u' sin g + w' cos ^)

- - - - - - - - - - - - - - - - - ' - - - - - - - - - - -' - - - - - - - - - - - - - - - - -

a - (u' cos	 - w' sin ^)	 u' sin	 + w' cos c ,	 a	
u

1 (	
sin 

c 
+ w' cos 

0 2

	

• (u' sin E + w' cos f) 	 1 - 2 - 2 

From Fig. 1, the position vector of an arbi-
trary point on the blade before deformation is

r  = R0 (r) + Xex + ze z 	 (A6)

and that of the same point after deformation is

r 1 =	 (r 1)+ xex + ze z	(A7)

3	 3

Then, the Green's strain tensor based on a
Lagrangian description is given by

dx

dr 1 	dr 1 - dro • dr o = 2[dx dr dzj[Ei^] or	 (A8)

 dz

Substituting Eqs. (Ab) and (A7) into Eq. (A8)

and retaining terms up to second-degree in u, v,
w, and a, one obtains the following expressions
for the required components of strain:

It should be pointed out that in arriving at

the expressions given in Eq. (A9) several higher-
order terms have been discarded based either on
considerations related to small deformations or an

approximations due to slenderness of the blade.

It is convenient to eliminate the axial equa-

tion of motion. This is done by explicitly con-
sidering the foreshortening due to bending and
torsion. The expression for foreshortening for
the present case is derived by making use of the
equilibrium condition that the integral of the
longitudinal stress over the cross section must be
equal to the total tension. Thus,

T  E ff  yyy dx dz

A

= EAIv + 2 (u' 2 + w ' 2 ) - eA[(u" + caw") cos

(_2

2
(w" - au") sin ^1 + kA a 	 -a'^')	 (All)
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from which

V' = v  - OF	(Al2)

where

Tc

ve=EA

OF
 =f

r

j 2 (u 2 + w' 2 ) - eA [(u"
 + aw") cos

H	 l

(	 2

- (w" - au") sin ^] + kA 1 a2 - a'^'^ d 	 (A13)

An alternate expression for T c results from

the kinetic energy and is given in Appendix B.

Substituting Eqs. (Al2) and , (A13) into Eq. (Aga)
and invoking the assumption that the blade is rigid
(EA + -) along its elastic axis, one obtains

Yyy = -z[(u" + aw") sin 4 + (w" - au") cos ^]

- (x - eA )[(u" + aw") cos ^ - (w" - au") sin ^]

+ 1/z2 + x 2 - kA) (a' 2 - 2a'^')	 (A14)

The \other components of strain given by Eqs.
(A9b) and (A9c) remain unchanged.

Appendix B

Sectional Properties and

Definition of Matrices

Tc
 fRT

ma 2 r Or

r

I xx = !f z 2 dx dz

I zZ 
=ffx

2 dx dz - e 2A

B1 =ff Cx2 + z
2 - k 2 I	 dx dz

B2 =	 / J	 (x - e A ) ^.c 2 + z 2 - k 22 ) dx dz

J=ff (x 2 + z2) dx
dz

A = `f dx dz

AeA =ffx dx dz

AkA2 = ff (x 2 + z 2 ) dx dz

m =
J
f pm dx dz

me 
= ffpm 

x dx dz

mkm 

= 3 f 

pm z2 dx dz
1

mkm = //pmx2 dx dz
2

k 2 = k 2 + k2
m	

ml	
m2

Note the expression for J is valid only for a

circular section. For a noncircular section a
warping correction must be included.

(B1)
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Nondimensional Quantities

_ r - RH
TI
	 L	 = L

b=b/bR
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9 s = 9s/bR
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TABLE I. - BLADE SECTIONAL PROPERTIES

F

0.0199 0.1017 0.2372 0.4083 0.5917 0.7628 0.8983 0.9801

EI 0.9719 0.9665 0.7827 0.6072 0.3067 0.1633 0.1149 0.0839
_xx
EI Zz 112.4 124.8 152.4 139.4 122.7 119.3 127.7 124.1

GJ 0.0719 0.9665 0.7827 0.6072 0.3067 0.1633 0.1149 0.0839

EA 0.9974 1.0225 0.9711 0.9358 0.7641 0.6482 0.6038 0.5541

EB 1 0.4436 0.5338 0.5675 0.7275 0.6901 0.7694 0.9458 0.9734

EB2 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0

TA
0 0 0 0 0 0 0 0

k A 0.5859 0.6095 0.6265 0.6722 0.6972 0.7461 0.7995 0.8226

k m 1 0.0940 0.0925 0.0854 0.0767 0.0603 0.0478 0.0415 0.0370

k m 1.0103 1.0516 1.0816 1.1616 1.2060 1.2913 1.3840 1.4242
2

m 0.9974 1.0225 0.9711 0.9358 0.7641 0.6482 0.6038 0.5541

b 1.010 1.051 1.082 1.161 1.206 1.291 1.384 1.425

TABLE II. - REFERENCE QUANTITIES

N = 28 om = 4374 kg/m3

bR = 0.0946 m Oa = 1 kg/m3

R H = 0.3876 m ao = 340.3 m/sec

R T =	 1.021 m Ao = 0.0034 m2

E = 1.23x10 11	N/m2 r = 0.5774a
0

G = 4.74410 10 N /m2 mo = varies,	 rad/sec

l xxo = 9.19x10- 8 m4	Mh = M9 = Ma = 2

Jo = 3.676x10 -7 m 4	= tan-1 [1.552(n + eH)]
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1.	 Report No. 2. Government Accession No. 3.	 Recipient's Catalog No,
NASA TM-82813

4.	 Title and Subtitle 5.	 Report Date

COUPLED BENDING-BENDING-TORSION FLUTTER OF A
6.	 Performing Organization CodeMISTUNED CASCADE WITH NONUNIFORM BLADES

505-33-52
7.	 Author(s) 8. Performing Organization Report No.

Krishna Rao V. Kaza, The University of Toledo, Toledo, Ohio 43606
and Lewis Research Center and Robert E. Kielb, Lewis Research Center

E-1156
10. Work Unit No.

9. Performing Organization Name and Address

National Aeronautics and Space Administration 11. Contract or Grant No.
Lewis Research Center NSG-3139
Cleveland, Ohio	 44135 13. Type of Report and Period Covered

Technical Memorandum12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D. C.	 20546

15, Supplementary Notes

Prepared for the Twenty-third Structures, Structural Dynamics, and Materials Conference

cosponsored by the AIAA, ASME, ASCE, and AHS, New Orleans, Louisiana, May 10-12, 1982.

16.	 Abstract

A set of aeroelastic equations describing the motion of an arbitrarily mistuned cascade with
flexible, pretwisted, nonuniform blades is developed using an extended Hamilton's principle.
The derivation of the equations has its basis in the geometric nonlinear theory of elasticity in
which the elongations and shears are negligible compared to unity.	 A general expression for

foreshortening of a blade is derived and is explicitly used in the formulation.	 The blade aero-
dynamic loading in the subsonic and supersonic flow regimes is obtained from two-dimensional,
unsteady, cascade theories.	 The aerodynamic, inertial and structural coupling between the
bending (in two planes) and torsional motions of the blade is included.	 The equations are used
to investigate the aeroelastic stability and to quantify the effect of frequency mistuning on flutter
in turbofans.	 Results indicate that a moderate amount of intentional mistuning has enough
potential to alleviate flutter problems in unshrouded, high-aspect-ratio turbofans.

17.	 Key Words (Suggested by Author(s)) 18.	 Distribution Statement

Aeroelasticity Unclassified - unlimited
Cascade flutter STAR Category 39

Mistuning

19.	 Security Classif. (of this report) 20.	 Security Classif. (of this page) 21.	 No. of Pages 22.	 Price'

Unclassified Unclassified

For sale by the National Technical Information Service, Springfield, Virginia 22161



National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business

Penalty for Private Use, $300

SPECIAL FOURTH CLASS MAIL 	 Postage and Fees Paid
BOOK	 National Aeronautics and

Space Administration
NASA-451

Us MAa

NASA POSTMASTER	 1r
Postal Man a

ual) (Section I
ReturnPostal Man l) Do Nut Return


