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Abstract

A set of aeroelastic equations describing the
motion of an arbitrarily mistuned cascade with
flexible, pretwisted, nonuniform blades is devel-
oped using an extended Hamilton's principle. The
derivation of the equations has its basis in the
geometric nonlinear theory of elasticity in which
the elongations and shears are negligible compared
to unity. A general expression for foreshortening
of a blade is derived and is explicitly used in the
formulation. The blade aerodynamic loading in the
subsonic and supersonic flow regimes is obtained
from two-dimensional, unsteady, cascade theories.
The aerodynamic, inertial and structural coupling
between the bending (in two planes) and torsional
motions of the blade is included. The equations
are used to investigate the aeroelastic stability
and to quantify the effect of frequency mistuning
on flutter in turbofans. Results indicate that a
moderate amount of intentional mistuning has enough
potential to alleviate flutter problems in un-
shrouded, high-aspect-ratio turbofans.

Nomenclature

A cross sectional area of the
blade

Ao reference value of A

(AL, [A,] aerodynamic matrices

Aj torsional mode shape

a elastic axis location

a, speed of sound

B1,8y blade sectional constants

b, bp semichord and reference
semichord

© blade chord

E Young's modulus of elasticity

EELIE, ) matrices

e mass and elastic axis offset

(also base for natural
logarithm)
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area centroid and elastic axis

offset

unit vectors along x,y,z axes

unit vectors along X3:¥3,23
axes

shear modulus of elasticity

nondimensional amplitudes of
generalized coordinates
associated with the bending
modes wi of the sth

blade measured out of and in

the plane of rotation

nondimensional amplitudes of
generalized coordinates
associated with the bending
modes wi in the rth mode
of a tuned cascade

bending moment of inertia
about the major (parallel
to the x-axis) and minor
axis through centroid

reference bending moment of
inertia

unity matrix

V-1

torsional stiffness constant

reference value for J

reduced frequency, wob/Veff =
wobMesry

polar mass radius of gyration

about elastic axis

2 2 2
k- =k +Kk
( m m m2)

reference polar radius of
gyration of cross sectional
mass about elastic axis
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(M1, M)

mass radii of gyration about
x and z axes

polar radii of gyration of
cross-sectional area about
elastic axis

blade length

1ift per unit span, positive
up (negative z direction)

aerodynamic coefficients, in
the rth mode of cascade

nondimensional 1ift coeffi-
cients due to bending and
torsional motions in the rth
cascade mode

nondimensional moment coeffi-
cients due to bending and
torsional motion in the rth
cascade mode

axial Mach number, Va/ao

aerodynamic moment per unit
span about the elastic axis,
positive nose up

relative Mach number,

y Vza + nzrz/ao

effective relative Mach
number, Veff/a0

number of generalized coordi-
nates with the bending
motions out of and in the
plane of rotation and with
the torsional motion

inertial coefficients of the
sth blade

inertial matrices

mass per unit length

reference mass per unit length

number of blades in cascade

an arbitrary point on the
elastic axis before and
after deformation

stiffness matrix, Eq. (16)

quantity defined by Eq. (4)

matrix, Eq. (16)

hub radius

blade tip radius

integer (0,1,2,...N-1) speci-
fying mode of a tuned cas-
cade; also blade coordinate
along elastic axis before
deformation
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Xﬂ,YQ,Zn

xyz

X3Y¥323
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Y, (N

e 3

reference radius of gyration

running blade coordinate along
elastic axis before and
after deformation

position vector of an arbi-
trary point on the blade
before and after deforma-
tion, Eqs. (A6) and (A7)

position vector of a point on
elastic axis before and
after deformation, Eqs. (A6)
and (A7)

stiffness coefficients of the
sth blade

stiffness matrices

integer specifying blade,
s = 0,1,2, N-1; also blade
spacing

kinetic energy

blade tension, TC = Tc/monzL

transformation matrix

2

time, initial time, final time

strain energy

radial foreshortening

deformations of elastic axis
in Xg, Yn and Z,
directions

axial velocity

effective relative velocity,

'/ ? 2 2
Va Hqsy
. cos[90 ~ & - tan'1 (Va/nr)]

axial extension of elastic
axis

work done by aerodynamic
loading

beam functions

model function matrices

hub-fixed axis system, rotates
about the Zg-axis with an
angular velocity @

blade fixed axis system at
arbitrary point on elastic
axis

blade fixed axis system in the
deformed configuration ob-
tained by rotating xyz

column matrices

column matrices




a angle of twisting deformation,
positive when leading edge
is upward

amplitudes of generalized
coordinates associated with

torsional modes Ai of the
sth blade

i amplitudes of generalized
coordinates associated with
torsional modes Ai in the
rth mode of tuned cascade

B interblade phase angle in the
rth mode of tuned cascade,
2nr/N

Y nondimensional eigenvalue,
(w/wo)2

Ty Tyx> Yyz engineering strain components

s( ) variation of ( )

Eyy’eyx‘eyz tensor strain components

P ) damping ratios of sth blade

n,T, Ny blade running coordinate mea-
sured from hub; ¥ = n/L;
blade elastic axis position;
Ny = (a + 1)/f2 ,

Yo reference mass ratio, mo/wpabR

u real part of eigenvalue

(3 pretwist angle

°2°°m fluid and blade material
density

7 nondimensional time, two

v imaginary part of eigenvalue

Q rotational speed

W,y frequency and reference
frequency

© angular velocity vector ex-
pressed in xyz system

nyz’mx3y3z3 curvature vectors

(") derivative 3( )/at or
a( )/er

( )' derivative a( )/sr or
a( )/an

1. Introduction

A research program in propulsion system aero-
elasticity is being conducted at the NASA Lewis
Research Center. As a part of this general pro-
gram, an effort was made by the authors in Refs. 1
and 2, to improve the physical understanding of
turbofan engine aeroelastic characteristics includ-
ing blade mistuning (nonidentical blade properties)
effects. Other published work on mistuning was
cited in Refs. 1 and 2.

The mathematical formulation considered in
Ref, 1 is a 'typical section' model with two
degrees of freedom, a bending and a pitching about
the elastic axis. This model was found to be
sufficient to elicit physical understanding of mis-
tuning effects and to conduct parametric studies.
Furthermore, this model was utilized in Ref. 3 to
show that mistuning has enough potential to sig-
nificantly raise the flutter speed of an advanced
fan. This potential may have a very practical
significance in eliminating the commonly used mid-
span shrouds in advanced turbofan designs. The
main purpose of the midspan shrouds is to increase
the blade natural frequencies and thus to avoid
aeroelastic instabilities. However, the shrouds
have an adverse effect on aerodynamic performance.

While the typical section model served the
intended purposes, it is expected to be inadequate
to obtain accurate flutter boundaries of modern
technology turbofans or advanced turboprop blades
which have a considerable amount of pretwist. As a
consequence of pretwist, bending out of the plane
of rotation couples elastically with bending in the
plane of rotation. Consequently, a more realistic
structural model of a blade is required.

The purposes of the research summarized in
this paper are: (1) to develop a more refined and
realistic structural model of a blade than the
typical section model and to combine this model
with the available unsteady cascade aerodynamic
models; and (2) to study the effects of mistuning
and other cascade parameters on flutter character-
istics of an advanced technology fan stage. To the
best of authors' knowledge, the mentioned effects
utilizing the purposed model have not been studied
in the published literature.

There exist several levels of approximations
in structural theory used in rotary wing aero-
elasticity to represent a structural model of a
blade. The theory of pretwisted blades presented
in Ref. 4 may be viewed as the first level of
approximation. The structural theories presented
in Refs. 5-9 may be viewed as ones with the second
level of approximation. Since the corresponding
unsteady cascade aerodynamic theory consistent with
the second level structural theories is not avail-
able, the theory of Ref. 4 is used as a first step.

The governing equations of motion of a
rotating, pretwisted blade are derived by using an
extended Hamilton's principle. The derivation is
characterized by the use of an axial (along the
beam axis) displacement which includes second-
degree nonl&near terms defining the axial fore-
shortening*¥ of the tension axis due to bending,
torsion, and the noncoincidence of the elastic axis
and tension axis. The development of a more gen-
eral expression for foreshortening than that used
in Ref. 10 and the explicit use of this general
expression in the axial displacement field are
believed to be new. The explicit consideration of
foreshortening in deriving the equations is appeal-
ing in that it parallels the corresponding develop-
ment of equations for a nonrotating blade where
retention of second-degree terms in the kinetic
and potential energy expressions leads to linear
equations (See Ref. 10). A more detailed discus-
sion on the role of the general expression for
foreshortening in deriving the second-degree non-
linear equations of motion and in accounting for
the geometric stiffness effects in beam analyses




using finite-element methods will be presented in a
future publication. The disk is assumed to be
rigid. The unsteady, two-dimensional, cascade,
aerodyffmic loads are calculated by Smith's

theory** in subsonig flow and Adamczyk and
Goldstein's theory1 in supersonic flow with a
subsonic leading edge. The governing equations of
motion of a mistuned cascade are formulated by
assuming that the general motion of a blade is a
linear combination of its motions in all possible
modes of a tuned cascade. The space variable in
the coupled integro-partial differential equations
of motion is eliminated by using a modified
Galerkin's method. The resulting equations are
cast as a standard complex eigenvalue problem from
which the aeroelastic stability is determined.

A digital computer program is developed to
form and solve the complex eigenvalue problem.
This program is written in a modular form such that
it can be applied to advanced turboprops, heli-
copter rotors in hover, and wind turbine rotors by
incorporating the appropriate aerodynamic modules.
Due to length constraints of the paper, limited
results are presented only for an advanced turbofan
blade. However, additional parametric results will
be presented in a future publication.

II. Theory

The components of a bladed disk system have
complex geometries. The analysis of this system is
further complicated by blade mistuning. To inves-
tigate the aeroelastic stability of a cascade with
mistuning, a mathematical model will be developed
in this section.

A. Coordinate Systems

Several coordinate systems will be employed in
the derivation of equations of motion; those which
are common to both the structural and aerodynamic
aspects of the derivation for the sth blade are
shown in Figs. 1 and 2. The axis system XgYoZg
shown in the figures rotates with a constant angu-
lar velocity @ about the Xg-axis. The Yg-axis
coincides with the undeformed elastic axis of the
blade. The blade principal axes, x and z, of the
cross section at an arbitrary point on the elastic
axis are inclined to the Xg and Zg axes by an
angle & as shown in Fig. 2. The blade elastic
deformations, u, v, w, and o« translate and rotate
the xyz system to the x3y3z3 system as shown
in Fig. 1.

B. Tuned Cascade Model

If the blades are tuned, the N-bladed cascade
has N interblade phase angle modes with a con-
stant phase angle B8, between adjacent blades.
This iTterbIade phase angle is restricted by
Lane'sl3 assumption to the N discrete values
g = 2nr/N were r =0,1,2,...,N-1. In each of
tﬁese modes all blades have the same amplitude.
For a tuned cascade, the modes with different
interblade phase angles are uncoupled. The blade
deflections are expressed in a traveling wave form
in terms of a set of generalized coordinates which
are associated with the nonrotating uncoupled beam
modes in pure bending and torsion. The number of
modes retained in the plane of rotation, in the
plane perpendicular to the plane of rotation, and
in torsion are Mp, Mg, and M, respectively.

The blade deflections expressed in traveling wave
form are
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An interblade phase angle B8, in the range
0-180 represents a forward traveling wave - a wave
traveling in the direction of rotation.

In Eq. (2) the standard nonrotating ortho-

normal modes for a beam with fixed-free boundary
conditions are given by

Wj(;) = COSh(Pj;) - cos(pjﬁ)

(cos p. + cosh p.) . . ) »
~ T&Tm by ¥ s pj) [s1n(pjn) - 51"(Pjn)] (3)

AJ.(F) = VZ sin[(2j - 1) n/2 7]
where the value of Pj is obtained from
. b = 4
cos py cosh p; + 1 =0 (4)

In the case of a tuned cascade it is adequate
to analyze the motion of a cascade in each of the
interblade phase angle modes separately. Hence,
the total number of degrees of freedom of a tuned
cascade is (Mp + Mg * My) for each value of Bgy.

C. Mistuned Cascade Model

In the case of an arbitrarily mistuned cas-
cade, the blades can have different amplitudes, and
the phase angle between adjacent blades can vary.
However, the general motion of a blade in a mis-
tuned cascade can be expressed as a linear combina-
tion of the motions in all possible interblade
phase angle modes of the corresponding tuned cas-
cade. Consequently, the blade deflections can be
written as
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For a case with N mistuned blades, Eq. (5)
can be generalized as
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The total number of degrees of freedom for
this general case is N times (Mp + Mg * Mzl

D. Aerodynamic Model

The unsteady, two-dimensional, cascade, aero-
dynamic loads were calculated by using Smith's
theory in 5f?sonic flow, and Adamczyk and
Goldstein's*¢ theory in supersonic flow with a
subsonic leading edge. In these theories, the air-
foil thickness, camber and steady state angle of
attack are neglected, and the flow is assumed to be
isentropic and irrotational. At any radial station
the relative Mach number is a function of the
inflow conditions and the rotor speed. Most cur-
rent fan designs have supersonic flow at the tip
and subsonic flow at the root. As a result, some
region of the blade span encounters transonic
flow. Since the above unsteady theories are not
valid in the transonic region, the subsonic the-
ory with Meff = 0.9 for stations in the range
0.9 < Mors < 1 and the supersonic theory with
Mase = 1.1 for stations in the range 1.0 < Mggs < 1.1
were used. The motion-dependent aerodynamic 1ift
and moment were expressed in Ref. 1 in terms of

nondimensional coefficients. The expressions for
1ift and moment per unit span as a function of the
same coefficients can be written as
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The coefficients lpnps Yhars =ses lggr are
calculated for specified values of Maff, ﬁ, S[Chy
g, and a. In the aerodynamic theories used
herein, the steady state angle of attack is neg-
lected. In applying these theories to the present
case, the blade steady state angle of attack is
also set to zero and the effective relative veloc-
ity is assumed to be the component of the blade
relative velocity along the blade chord as indi-
cated in Fig. 2.

E. Structural Model

The structural model of each blade consists of
a straight, slender, twisted, nonuniform elastic
beam with a symmetric cross section. The elastic
axis, the inertia axis, and the tension axis are
taken to be noncoincident. The effect of warping
is not explicitly considered. However, a partial
effect of warping enters into the equations of
motion as it does in Ref. 4. The blade is assumed
to be rigid in the direction along the elastic
axis. Consequently, the axial equation of motion
is eliminated. The structural model has its basis




in the geometric nonlinear theory of elasticity in
which elongations and shears are negligible com-

pared to unity and the squares of the derivatives

of the extensional deformation of the elastic axis
are negligible compared to the squares of the bend-
ing slopes. This level of the geometric nonlinear
theory of elasticity is required to derive a set of
linear coupled bending-torsion equations of motion.

F. Equations of Motion

The equations of motion will be derived by
using the extended Hamilton's principle in the form

Y
/ (8T, - 6U + 6W)dt = 0 (9)
t

0

The expressions for strain energy, kinetic
energy, and virtual work of aerodynamic forces can
be written as
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The expressions for the strain components,
position vector, foreshortening, and transformation
matrix are developed in Appendix A. Substituting
Eqs. (A9b), (A9c), and (Al4) into Eq. (10), Eq.
(13) into Eq. (11), Egs. (8a) and (8b) into Eq.
(12), the resulting equations into Eq. (9), taking
the indicated variations, integrating over the
cross section of the blade wherever necessary,
integrating by parts over time, neglecting Coriolis
and rotary inertia terms, and retaining only first-
degree terms in u, w, and o yields
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The sectional properties in these equations are
defined in Appendix B.

By substituting Eqs. (8a) and (8b) into Egs.
(14a), (14b), and (l4c), nondimensionalizing the
resulting equations, applying Galerkin's method,
and extending the resultant equations to all the
blades by using Eq. (6), the equations of motion of
an arbitrarily mistuned cascade can be simplified as

(PItYy = v[QI(V) (15)
where
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As indicated in Eq. (B2), structural damping
is added by multiplying the direct stiffness
coefficients by (1 + 2ithg1), (1 + 2igps2)s «--
(1. + Zicasz) X

III. Results and Discussion

A. Solution

The aeroelastic stability boundaries are ob-
tained by solving the standard complex eigenvalue
problem represented by Eq. (15). The relation
between the frequency w and y is

B O O (17)
“9

Flutter occurs when uw > 0.

B. Computer Program and Verification

A computer program (ASTROMIC) was written to
assemble and solve the generalized eigenvalue prob-
lem given in Eq. (15). The program can be used to
predict the in vacuum natural frequencies of a
nonuniform rotating beam by setting the aerodynamic
matrix [A] to zero. In this case the problem is
reduced to a standard eigensolution. For the
flutter problem, the aerodynamic matrix is a func-
tion of the eigenvalues. Hence, an iterative solu-
tion is required. The iterative technique used
herein to calculate flutter boundaries (once the
problem is completely described) is briefly summa-
rized as follows:

1. Select an axial Mach number.

2. Select a rotation speed and assemble the
stiffness and mass matrices.

3. Calculate the variation of the reduced
frequency based on an assumed reference
frequency wgy and relative Mach number
with span and construct the aerodynamic
matrix. The initial value for the refer-
ence frequency is the same as the natural
frequency of the mode of interest.

4. Solve the eigenvalue problem.

5. For the mode of interest check whether the
imaginary part of the eigenvalue is within
an acceptable tolerance of the reference
frequency. If not, go back to step (3)
with a new reference frequency.

6. For the mode of interest, check whether the
real part of the eigenvalue is within an
acceptable tolerance of unity. If not,
modify the rotational speed and repeat the
process from step (2). If positive, reduce
speed; if negative, increase speed.

7. To find the flutter boundary for another
value of the axial Mach number go back to
step (1).

It should be noted that the above method
utilizes a rotor speed iteration within the axial
Mach number iteration loop. It would appear that
it would be more efficient to place the Mach number
iteration within the rotor speed iteration loop,
since the mass and stiffness matrices have to be
updated each time the rotor speed is changed.
However, it was found that the time required to
assemble these matrices is small relative to the
time required to assemble the aerodynamic matrix
and to extract the eigenvalues and eigenvectors.
In addition, the flutter boundary was more
"distinct" using the method described above.

The correctness of the program was checked by
constructing a hypothetical blade model with con-
stant structural and aerodynamic properties along
the span. The blade frequencies obtained by using
the program were checked against known solutions.
The eigensolutions with aerodynamics included were
checked against the results obtained by using the
typical section model program (MISER) developed in
Refs. 1 and 2.

For a cascade with nonuniform blades, there
are no published theoretical results on flutter.
However the results from ASTROMIC are compared with
those from MISER by choosing the properties for a
typical section at different spanwise stations.
These results will be discussed later.

C. Aeroelastic Stability of an Advanced Fan

An advanced unshrouded fan stage (aspect
ratio = 3.3), representative of a next generation
fan, was chosen for analysis. A similar stage was
analyzed in Ref. 3 by using the typical section
model. The results in Ref. 3 indicated that the
fan design without shrouds did not meet the flutter
requirements, but that it may be feasible to use
mistuning as a passive flutter control. The moti-
vation for choosing this fan stage for analysis
herein is to further investigate the use of mis-
tuning as a passive flutter control.

The properties of the fan blade are listed in
Table I and the reference properties are listed in
Table II. The design point is at a rotor speed of
4267 rev/min. and an axial Mach number of 0.55.

At these conditions the tip relative Mach number
is 1.45.

The analyses are performed using two modes
each in the plane of rotation, in the plane per-
pendicular to the plane of rotation, and in tor-
sion. Since there are 28 blades in this stage and
hence 28 interblade phase angle modes, the total
number of degrees of freedom for an arbitrarily
mistuned cascade is 168. However, for alternate




mistuning, in which every other blade is identical,
certain symmetry properties are exploited in the
analysis. Because of symmetry, the B8, mode
couples with the (8, *+ =) mode only. The analy-
sis for this case consists of 14 separate eigen-
solutions of 12 degrees of freedom each rather than
one eigensolution of 168 degrees of freedom for an
arbitrarily mistuned cascade.

The blade was analyzed for vibration to gen-
erate a Campbell diagram which is shown in Fig. 3.
Only the first and second bending frequencies and
the first torsion frequency are shown. Since the
mass ratio for this blade is high, the aerodynamic
forces result in flutter frequencies which are not
significantly different from those in a vacuum.

In Refs. 1-3, a typical section model, which
was originally used for fixed wing flutter analy-
sis, was adapted for rotating blades. In the case
of a fixed wing, the relative velocity of each
strip along the span is constant; the structural
properties of the typical section are obtained by
their respective values at the 3/4 blade span
station. In the case of a rotating blade, the
relative velocity of each strip along the blade
varies. Then, a question arises as to which span-
wise station should be used as a reference to cal-
culate the structural and aerodynamic properties of
the typical section. To answer this question, the
eigenvalues of the tuned cascade at the design
condition from both the present beam and typical
section analyses using various spanwise locations
as reference are compared in Fig. 4. As expected,
the cascade is unstable over a range of interblade
phase angles corresponding to forward traveling
waves. It should be noted that, whereas there are
168 eigenvalues, only the predominantly torsional
eigenvalues are shown. The other modes were found
to be stable at the design condition. Also, it can
be seen that the typical section model correspond-
ing to approximately the 7/10 span reference sta-
tion gives the best correlation for the unstable
modes with the nonuniform blade model. This
finding is in close agreement with the 3/4 span
reference station usually used for fixed wing aero-
elastic calculations. This observation is very
useful in performing preliminary aeroelastic
analyses.

Previous publicationsl'3 using the typical
section model have shown that torsional frequency
mistuning could have a significant stabilizing
effect on the cascade. The effect of mistuning is
further investigated herein with the nonuniform
blade model. The method used to vary the frequency
from blade-to-blade was simply to vary the tor-
sional stiffness, J. For alternate mistuning, the
torsional stiffness of the odd numbered blades was
increased by 10 percent over that of a tuned blade
at each spanwise location. Likewise, the torsional
stiffnesses of the even numbered blades was de-
creased by 10 percent from that of a tuned blade.
The result was a total torsional frequency varia-
tion of approximately 7 percent. The eigenvalues
for this mistuned rotor at the design conditions
are shown in Fig. 5, along with the corresponding
tuned values. These predominately torsional eigen-
values have split into high and low frequency
families corresponding to modes with major partici-
pation of the odd and even blades, respectively.

As can be seen, this type of mistuning has stabi-
lized the cascade to such an extent that it is
stable at the design point.

By using the iterative procedure defined above
the flutter boundaries for both the tuned and mis-
tuned cascades were calculated. The results are
shown in Fig. 6. For the tuned cascade it is seen
that the design point lies well inside in the un-
stable region. As expected, the axial Mach number
at flutter monotonically decreases with increasing
rotor speed. For the tuned cascade it should also
be noted that along the flutter boundary the tip
relative Mach number is approximately 1.15.
Consequently, a region near the blade tip may
experience nonlinearities associated with transonic
flow which are not accounted for by the unsteady
aerodynamic theories used herein. The relative tip
Mach number at the design conditions is 1.45.

The inclusion of an alternate frequency mis-
tuning of approximately 7 percent has significantly
increased the cascade stability by moving the
flutter boundary to the right. Furthermore, the
design point is stable for this level of mistuning.
The mode defining the boundary has maximum partici-
pation of the even-numbered (or low frequency)
blades. The tip relative Mach number along the
boundary of the mistuned cascade is 1.53. Con-
sequently, the transonic region is considerably
inboard of the tip and the transonic effects should
be minimal.

Figure 6 also illustrates the effect of struc-
tural damping on flutter of a tuned cascade. A
structural damping ratio of 0.002 is included in
each of the torsional modes. As can be seen, the
damping has a significantly stabilizing effect on
flutter speed of a tuned cascade.

IV. Conclusions

The major conclusions from this investigation
are summarized as follows:

1. A general expression for foreshortening of
a blade was derived and was explicitly used in
deriving the first-degree linear equations of
motion of a rotating blade.

2. An aeroelastic model and an associated
computer program for a mistuned cascade with non-
uniform blades were developed.

3. For the blade analyzed herein a typical
section model corresponding to the 7/10 span refer-
ence station gives the best correlation with the
nonuniform blade model.

4. An advanced, unshrouded, high-aspect ratio
fan was modelled and analyzed with and without mis-
tuning. The results show that a moderate amount of
mistuning has enough potential to alleviate flutter
problems in unshrouded turbofans.

Appendix A

Strain Displacement Relations

A schematic representation of the deformed and
undeformed elastic axis is shown in Fig. 1. Since
the pretwist angle & varies with r, with ini-
tial curvature of the elastic axis is

© =ezg' (A1)

= e y

“xyz * Sy

o.la
- (v




The elastic deformations translate and rotate
the triad xyz to x3y3z3. Let the expressions
for the curvature vector of the deformed elastic
axis and for the transformation matrix between the

x3y3z3. and xyz systems be
w, =w, €6, tu, e, *to € (A2)
Yalafs Wy Y3y Ry %
ex3 e,
e = [T e A3
ey, (TS e, (A3)
ez3 e,

Following the procedure presented in Ref. 8, one
can develop the second-degree expressions for the
curvature components and for the transformation
matrix in terms of wu, v, w, and a as

w, = (u" + aw") sin g + (w" - au") cos &

*3
= -a' +E'(].—

+ (u' sing + w' cos &) (u' cos & - w' sin g)

u'2 w'2
2 e

gy = vtz wlewd
- z[(u" + aw") sin & + (w" - au") cos ]
- x [(u" + aw") cos € - (w" - au") sin &]
2 2
+ 22X (0% - 2ag") (A9a)

S =0 ['(’I -Fwewd

U 'sin & £ w'icos &) * (utcos & — wisin 5)]

(A9b)
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AEl = % [_“l 5 %L (u?

+{yt sine W' S cos ) <! (u" cosie = w" sin E)]

(A9c)

Invoking the small strain assumption, the
engineering strains are related to the components
of the strain tensor according to:

= _f[uym " W " 3 - . - . -
mz3 = —(u" + aw") cos £ + (w au") sin & (A4) Yyy eyy, ny chx, Tyz chz (A10)
r 2 Pee® : il
1 -5 (u' cosg - w' sing)” - %— 'y' cos & - w' sin€ ! -a
1 1
_________________ 1-—-5_-—-—-1——_—‘-—_--__°_—-_
(1] = -(u' cos &€ - w' sing) fgou !ii "a(u' cos g - w' sin g) (A5)
B - a(u' sing + w' cos &) : 2 2 ' - (u' sint +w' cos &)
Ny Sty ST o e SSRGS M L e
( ) : + S 2
a - (u’' cos & - w' sing u’ sin g * wh cos'& a ' oed
[+ (u' sin€ + w' cos E) : Jl-7 =7 (u' sin g *+w' cos )"

From Fig. 1, the position vector of an arbi-
trary point on the blade before deformation is

- = . s =
ro = Ry(r) * xe, + ze, (A6)
and that of the same point after deformation is
r) =Ry(r) *xe, +ze (A7)
3 3
Then, the Green's strain tensor based on a
Lagrangian description is given by
dx
07y + dFy - dry + o7, = 2[ox or dz]le; 14 ar § (A8)
dz

Substituting Egs. (A6) and (A7) into Eq. (A8)
and retaining terms up to second-degree in u, v,
w, and a, one obtains the following expressions
for the required components of strain:

It should be pointed out that in arriving at
the expressions given in Eq. (A9) several higher-
order terms have been discarded based either on
considerations related to small deformations or an
approximations due to slenderness of the blade.

It is convenient to eliminate the axial equa-
tion of motion. This is done by explicitly con-
sidering the foreshortening due to bending and
torsion. The expression for foreshortening for
the present case is derived by making use of the
equilibrium condition that the integral of the
longitudinal stress over the cross section must be
equal to the total tension. Thus,

T, =E
¢ //yyydxdz
A
= EA[&' 3 % (u'2 + w'2) = eA[(u" + aw") cos &

: 74 u'z
= (W" = (!U“) sin E] + kA (_2__ QIEI) (All)



from which

V= v - U (A12)
where
e
Ve = EA
r
Up = '{%-(u'z + w‘2) -~ & [(u" + aw") cos &
R

2 0'2
- (wW" - au") sing] + kA (T - u'C') dr (A13)

An alternate expression for T. results from
the kinetic energy and is given in Appendix B.
Substituting Eqs. (Al2) and (A13) into Eq. (A9a)
and invoking the assumption that the blade is rigid
(EA » ») along its elastic axis, one obtains

Ty = -z[(u" + aw") sin & + (w" - au") cos €]

- (x - eA)[(u“ + aw") cos £ - (w" - au") sin &]

+ % (22 + x2 - ki) (u'2 - 2a't")

The other components of strain given by Egs.
(A9b) and (A9c) remain unchanged.

(A14)

Appendix B

Sectional Properties and
Definition of Matrices

RT 5
TC = m r dr

Note the expression for J
circular section.

2
Bl=[/(x2+22—k§) dx dz
B, =ﬂ(x L (;<2+ 22 - ki)dx dz

J=//(x2+zz)dxdz
A=//dXdZ
AeA=//xdxdz ;

Aki:/](x2+22) dx dz
m=/./‘omdxd2

(B1)

is valid only for a
For a noncircular section a

warping correction must be included.
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TABLE I. - BLADE SECTIONAL PROPERTIES

£l

0.0199 | 0.1017 | 0.2372 | 0.4083 | 0.5917 | 0.7628 | 0.8983 | 0.9801
ETXX 0.9719 | 0.9665 | 0.7827 | 0.6072 | 0.3067 | 0.1633| 0.1149 | 0.0839
ETZZ 112.4 | 124.841 152.4.0% 139.44| '122.7 | 1193 | “127:7 |" 124.1
GJ 0.0719 | 0.9665 | 0.7827 | 0.6072 | 0.3067 | 0.1633| 0.1149 | 0.0839
EA 0.9974 | 1.0225| 0.9711 | 0.9358 | 0.7641 | 0.6482 | 0.6038 | 0.5541
Eﬁl 0.4436 | 0.5338| 0.5675] 0.7275 | 0.6901 | 0.7694 | 0.9458 | 0.9734
E§2 0 0 0 0 0 0 0 0
€ 0 0 0 0 0 0 0 0
(7Y 0 0 0 0 0 0 0 0
3 0.5859 | 0.6095| 0.6265| 0.6722 | 0.6972| 0.7461| 0.7995 | 0.8226
km1 0.0940 | 0.0925| 0.0854 | 0.0767 | 0.0603 | 0.0478| 0.0415 | 0.0370
Eﬁ 1.0103 | 1.0516 | 1.0816| 1.1616 | 1.2060 | 1.2913| 1.3840 | 1.4242

2

m 0.9974 | 1.0225] 0.9711 | 0.9358 | 0.7641 | 0.6482| 0.6038 | 0.5541
b 1.010 | 1.051 | 1.082 | 1.161 |1.206 | 1.291 | 1.384 | 1.425

TABLE II. - REFERENCE QUANTITIES

N =28
br = 0.0946 m
Ry = 0.3876 m
RT = 1.021 m

E = 1.23x10%! n/m@

G = 4.744x1010 N/m2

Iyxo = 9.19x10-8 mé

Jo = 3.676x10~7 md

0

om = 4374 kg/m3
0a = 1 kg/m3

ap = 340.3 m/sec
Ao = 0.0034 m2
r, = 0.5774

My = Mg = M, = 2

wo = varies, rad/sec

£ = tan—1 [1.552(% + &H)]
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Figure 1. - Blade coordinate systems before
and after deformation.
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Figure 2. - Coordinate systems of blade cross section.
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Figure 3. - Campbell diagram of the fan blade.
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