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INTRODUCTION 

Theories useful for developing mathematical models or for 

designing control systems are, for the most part, pertinent to 

well-defined systems, i.e., those for which a valid model 

structure is available and for which parameter values can be 

accurately specified. As Young (1978) has pointed out, 

strategies for building models of well-defined systems are 

rarely (or never) suitable for application to poorly-defined 

systems in which uncertainties in measurements, model structure 

and parameter estimates are likely to exert a dominant influence. 

Similar constraints apply to the application of control theory 

to poorly-defined systems. Conventional methodologies cannot 

be readily used to solve a variety of important problems that 

fall into the category of "poorly-defined systems." 

Problems in the ecological sciences are often poorly­

defined (in the sense of our use of the term). This fact may 

be attributed to a variety of reasons. Biological processes 

and complex chemical reactions that take place in these 

systems are not well understood, at least in quantitative 

terms. Data are limited in quantity and quality and non­

stationarity is the rule rather than the exception. Never­

theless, the ultimate goal of many efforts relating to modelling 

ecological systems is to develop a firm basic understanding 

of processes and an ability to control these systems. 

Sensitivity analysis is a term descriptive of a range of 

methods that can be used to address the general problem of 

modelling and control of ecological systems. 
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We report here a brief literature review of the use of 

sensitivity analyses in modelling ecological systems and on 

recent work of the authors in collaboration with R. C. Spear 

on the development of a generalized sensitivity analysis 

procedure. 

PREVIOUS WORK ON SENSITIVITY ANALYSIS 

2 

In the analysis of ecological systems, including closed 

or partly closed micro ecosystems, there is no alternative to 

utilizing some type of simulation model as the mathematical 

format into which assumptions regarding causal relations and 

parameter values are summarized. By simulation model we mean 

one whose structure and parameters are explicitly related to 

physical, chemical or biological processes. Data in the 

literature on algal growth rates as a function of nutrient 

level, for example, are often given in terms of Michaelis 

constants, a fact which points out that simulation models are 

constrained to be written in the language of the various 

disciplines which have studied the component processes of the 

system. This constraint immediately leads to the result that 

most simulation models will be complex with many parameters, 

state variables and nonlinear relations. Under the best of 

circumstances such models have many degrees of freedom and, 

with judicious fiddling, can be made to produce virtually 

any desired behavior, often with both plausible structure 

and parameter values. Because of this problem, simulation 

modelling has limited importance in cases where understanding 
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of functional relationships ~s fragmentary and where extensive 

data sets that quantify the system behavior are lacking. 

In spite of the problems cited above the potential utility 

of information yielded by simulation models in planning 

experiments has been recognized. For example, with reference 

to ecological models, Jeffers (1972) states that 

"much time can be saved in the early stages 
of hypothesis 'formulation by the exploration 
of these hypotheses through mathematical 
models. Similarly mathematical models can 
be used readily to investigate phenomena from 
the viewpoint of existing theories, by the 
integration of disparate theories into a 
single working hypothesis, for example. Such 
models may quickly reveal inadequacies in 
the current theory and indicate gaps where 
new theory is required." 

Similarly, Mar (1974) in his review of multidisciplinary· 

modelling studies pointed out that 

"The strategy to construct models .without 
data and then employ sensitivity analysis 
to identify critical components where 
research and new data would enhance model 
performance is not commonly practiced." 

Stenseth (1977), while roundly criticizing simulation modelling, 

admits that a simple model, when used to explore or to 

generate hypotheses, can be a valuable research tool. 

The use of parameter sensitivity in models of ecological 

systems has typically been for the purpose of analyzing 

system responses (e.g., Waide and Webster 1976; Wolaver 1980). 

These efforts are oriented, for the most part, toward linear 

systems models and thus to broad generalities in ecology and 

not to specific problems. These particular applications are 
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thus not strictly pertinent to analysis of regenerative life 

support systems. 

Several workers (e.g., Adams 1972; Maddock 1973; McCuen 

1976; Meyer 1972) have suggested that parameter sensitivity 

analysis can be used to guide future data collection efforts 

and/or to order research priorities. Such techniques might 

4 

be useful in conducting research on poorly-defined systems. 

Traditional parameter sensitivity analysis, however, pertains 

to a particular point in the parameter space (the vector space 

spanned by all possible combinations of parameter values). 

This requires that point estimates of all parameters be 

available which in turn, for complex ecological models, implies 

that sufficient input-output data for strenuous model cali­

bration exist, and this is an unrealistic assumption for eco­

system simulation. 

'This problem of an inherent inability to specify the 

"nominal" values of parameters has significant implications 

in terms of control of ecological systems in general and of 

regenerative life support systems in particular. For example, 

O'Neill et al. (1980) deduce from a sensitivity analysis of 

a nonlinear ecological model that small parameter errors yield 

significant errors in trajectories of state variables. Similar 

conclusions can be drawn from other work (e.g., Beck et al. 

1979; Fedra et al. 1980; Halfon 1979). This indicates that 

control schemes for poorly-defined systems must be robust 

in the sense of not depending upon precise and accurate 

estimates of parameter values. We will develop below a robust 

technique referred to as a generalized sensitivity analysis 
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for overcoming the problem cited above but first we present a 

formal treatment of a class of modelling problem. 

Mulholland and Sims (1976) have proposed a means of 

solving large-scale dynamical optimization problems. Their 

technique, as applied to the problem of regenerative life 

support system (RLSS) control, can be formalized as follows: 

Let 

x = f (x(t), ~(t), !(t» 

be a model representation of a RLSS with state vector x 

simulating real system components X, V the set of controlled 

parameters, and P the set of uncontrolled parameters and 

environmental variables. Because it may be difficult to 

formulate control laws based upon this large-scale system, 

(1) 

a new vector, y, of smaller dimension than x is defined. This 

reduced dimension vector serves as an indicator of the overall 

system performance, and can be related to x through some 

vector-valued function 

y = p(x). 

For example, Yl,and Y2 may be the concentrations of oxygen 

and carbon dioxide in the RLSS. 

Next an equation is chosen to insure the good perfor-

mance of y, 

y = g(y,ll) 

where II is an auxiliary control vector. For example ~ may 

involve the use of auxiliary oxygen tanks and carbon dioxide 

(2) 

(3) 

scrubbers subject to the failure of biological control at the 

V level. The function ~ might be selected such that 
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{ 

< 0 if [0
2

] > 30% 

Yl > 0 if [0
2

] < 20% 

. 
Y2 < 0 if [C02 ] > 3%. 

Differentiating equation (2) with respect to time, yields 

y = (dp (x) /dx) . (dx/dt) = (dp (x) /dx) • f (x, V, P) • 

From equations (2) and (3) 

y = g{p{x), ~). 

The control law, Vet) = h{x,P,~) can therefore be calculated 

from the equality 

g(p(x),~) = (dp/dx) . f(x,V,P). (4) 

The implementation of the above outlined control scheme 

requires the development of a model to simulate the RLSS 

behavior. Construction of such a model traditionally proceeds 

in three steps. 

First a scenario must be selected, that is, it must be 

decided what aspect of the system is to be modelled {e.g. 

energy flux, carbon flux, phosphorous flux, etc.}. This 

decision ~ill depend on the control goals and the practicality 

of measurement. 

Second, a model structure must be sel~cted. This includes 

both a decision on the number of state variables and the form 

of interactions between variables. Unfortunately, no reliable 

means of objectively selecting a model structure exists and 

the modeller must therefore rely on experience and trial and 

error {J¢rgensen 1979}. Often models of subsystems are 

developed and calibrated, but these calibrations are not 

always valid when the submodels are linked in a conglomerate 

{J¢rgensen 1979}. 
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A second approach is to start with a simple system and 

increase complexity until reliable simulation is achieved. 

J¢rgensen and Meyer (1977 and 1979) suggest that a new 

component should be added to a system only if it contributes 

significantly to the ecological buffering capacity (8), where 

8 is defined as the change in system loading divided by the 

change in the state variable being added. Williams (1971) 

found that the reliability of his simulations of a cedar bog 

l~ke increased as he added more components and incorporated 

nonlinear interactions. 

Perhaps the most fervent argument in systems ecology is 

that between the proponents of linear models and nonlinear 

models. In this context, a linear model is any set of first 

order differential equations 

dx/dt = A x(t) + Z(t) (5) 

where the elements in the coefficient matrix A are independent 

of the state vector x. (They may, however, be time dependent.) 

The most attractive feature of linear models is that their 

behavior is well understood and techniques to analyze them 

already exist (Waide and Webster 1976). 'Patten (1975) has 

hypothesized that macro scale ecological interactions are 

intrinsically linear. However, it is generally conceded 

that ecosystems, at least on the fine scale, show nonlinear 

behavior. Nonlinear models can be linearized for a small-

envelope about the equilibrium state (X ) by using a truncated 
-0 

Taylor series expansion of the form: 

x ~ f (X ) + E- ( ( 0 f /0 x. I x. ). (X 1" - X;o» ( 6 ) 
-0 . - 1 10 .... 

1 

where X = f(X) is the nonlinear model. Bledsoe (1976) is 
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strongly critical of the Taylor series approximation and 

linear ecosystem modelling in general claiming it to be a 

borrowed technique which "imposes the mathematics on the 

biology rather than letting the ecosystem itself dictate the 

way in which the model is to function." Nonetheless, much 

of the work in systems ecology is based on linear models 

(e.g., May 1972, 1973, 1975; Wolaver 1980; Lewis 1977) • 
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Ulanowicz et ale (1978) attempted constructing an empirical 

model based on a fit to a quadradic polynomial. They then conducted 

stability and sensitivity analyses. Their attempts are no 

more reflective of the system biology than the models 

criticized by Bledsoe (1976). Tiwari et ale (1978) on the 

other hand, have based their model almost exclusively on the 

underlying biology, using Michaelis-Menten, and QlO terms, 

donor, recipient and third party controls, and stochastically 

varying parameters,forcing functions and initial conditions. 

The result is a very complex model which may be difficult 

to incorporate in the control scheme described above. 

The third step in developing a model is calibration. As 

indicated above, this is a problem of considerable difficulty 

for ecological systems. Often only qualitative data are 

available and even small measurement errors in the quantitative 

data can lead to wide discrepencies in the model. Several 

techniques have been proposed to overcome this problem. 

For some simple models or submodels, parameters can be 

estimated from a least squares fit to the real system. How­

ever, as mentioned above, such calibrations may not be valid 
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when submodels are incorporated into the conglomerate." In 

addition, there may not be a unique solution to such a fit 

9 

or, especially for more complex systems (many degrees of 

freedom), the curve fitting may not reflect biological reality. 

In light of the discussion above we contend that simulation 

models for RLSS control can be useful only in a probabilistic 

context. That is, given the model and the inherent uncertainties 

in structure and parameter values the only meaningful analysis 

must focus on the probabilities of various behaviors. Most 

importantly, it must focus on the probable structures and 

parametric relations which appear consistent with that behavior 

which is associated with the desired characteristics of the 

system under consideration. One method for applying simulation 

models in a probabilistic context is to use Monte-Carlo 

techniques. (For example, see Tiwari and Hobbie (1976a,b) 

and Tiwari et ale (1978) for an application of Monte-Carlo 

simulation in ecological modelling.) The methodology developed 

below adjoins the notion of qualitative or semi-quantitative 

descriptors of the behavior of the system to Monte-Carlo 

simulation to obtain a usable technique for the analysis and 

control of poorly-defined ecological systems such as those of an RLSS. 

A GENERALIZED SENSITIVITY ANALYSIS 

a. Class of Mathematical Models. For clarity of exposition 

we restrict our attention to a specific class of models and 

introduce nomenclature which will be required subsequently. 

Assume the processes are to be modelled by a set of first 
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order ordinary differential equations. (Different mathematical 

structures can be dealt with in an analogous way). Let these 

equations be given in the form: 

dx(t) 
~ = x(t) = f[x(t), i, ~(t)] 

where x(t) is the state vector and ~(t) a set of time variable 

functions which include input or forcing functions. The vector 

i is a set of constant parameters described more fully below. 

Thus for i, ~(t) and ~(o) specified, ~(t) is the solution of 

the system of equations and is a deterministic or a stochastic 

function of time as determined by the nature of ~(t). For 

simplicity of exposition, ~(t) will be treated hereafter as a 

deterministic function of t. Under this assumption, there are 

two types of uncertainty with which we will deal: uncertainty 

in the model structure, i.e. in the functions, f, and un­

certainty in the parameter values i. Different model structures 

would pertain to competing hypotheses on system functioning 

(e.g., phosphorus limitation vs nitrogen limitation in a 

eutrophication problem); we use the term scenario to indicate 

a particular structure. 

For a given scenario each element of the vector ~ is 

defined as a random variable the distribution of which is a 

measure of our uncertainty in the 'real' but unknown value 

of the parameter. These parameter distributions are formed 

from data available from the literature and from experience 

with similar structures. For example, the literature suggests 

that the maximum growth rate of ChloreZla vuZgaris is almost 
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-1 certainly between 1.5 and 2.5 days at water temperatures 

near 2SoC. Interpreting these limits as the range of a 

rectangularly distributed random variable, and forming similar 

a priori estimates for the other elements of ~, results in the 

definition of an ensemble of models for a given scenario. 

Some of these models will, we hope, mimic the real system with 

respect to the behavior of interest. 

b. The Problem-Defining Behavior. Turning now to the question 

of behavior, recall that for a given scenario every sample 

value of i, drawn from the a priori distribution, results in 

a unique state trajectory, x(t). Following the usual practice, 

we assume that there are a set of observed variables yet) , 

calculable from the state vector which are important to the 

problem at hand. So, for each randomly chosen parameter I*, 

there corresponds a unique observation vector y*(t). Since 

the elements of yet) are observed (that is, we assume that 

they are measured in the real system) it is sensible to define 

behavior in terms of y(t). For example, suppose y. is the - ~ 

concentration of phytoplankton in a body of water and the 

problem in question concerns unwanted algal blooms due to 

nutrient enrichment. Then there is some value of Yi above 

which a bloom is defined to have occurred and the behavior 

is defined by this critical value. 

In general a number of behavior categories can be used. 

Without loss of generality, however, we can consider the case 

for which behavior is defined in a binary sense, that is, it 

either occurs or does not occur for a given scenario and set 



of parameters f. It follows that a rule must be specified 

for determining the occurrence or non-occurrence of the 

behavior on the basis of the pattern of ~(t). It is also 

possible that the behavior might depend on the vector ~(t). 
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For example, suppose one element of z(t) were water temperature. 

We might be interested only in extreme values of ~(t) when 

adjusted or controlled for temperature variations. In any 

event, the detailed definition of behavior is problem-

dependent and, for present purposes, it is sufficient to keep 

in mind that a set of numerical values of f leads to a unique 

time function yet) which, in turn, determines the occurrence 

or non-occurrence of the behavior conditioned, perhaps, by ~(t). 

c. The Analysis Procedure. We have now presented the class 

of models to be studied, defined the scenario concept and 

described how we propose to deal with parametric uncertainty. 

For a given scenario, behavior and set of parameter distri­

butions i, it is possible to explore the properties of the 

ensemble via computer simulation studies. In particular, a 

random choice of the parameter vector f from the predefined 

distributions leads to a state trajectory ~(t), an observation 

vector Z(t) and, via the behavior-defining algorithm to a 

determination of the occurrence or non-occurrence of the 

behavior. A repetition of this process for many sets of 

randomly chosen parameters results in a set of sample para­

meter vectors with which the behavior was observed and a set 

for which the behavior was not observed. The "key idea is then 

to attempt to identify the subset of physically, chemically 

or biologically meaningful parameters which appear to account 



for the occurrence or non-occurrence of the behavior. More 

traditional sensitivity analyses of large ecological models 

inevitably show that a surprisingly large fraction of the 
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total number of parameters is simply unimportant to the critical 

model behavior. We maintain that this unimportant subset or 

conversely the critical subset, may be tentatively specified 

rather early in any study. 

Ranking the elements of ~ in order of importance in the 

behavioral context is accomplished through an analysis of 

the Monte-Carlo results. The essential concept can be best 

illustrated by considering a single element, ~k' of the vector 

~ and its a priori distribution as shown in Figure 1. Recall 

that the procedure is to draw a random sample from this 

parent distribution (a similar procedure is followed for all 

other elements of ~), run the simulation with this value and 

record the observed behavior and the total vector ~ therewith 

associated. A repetition of this procedure results in two 

sets of values of ~k' one associated with the occurrence of 

the behavior B, and the other with not the behavior, B. That 

is, we have split the distribution f(~k} into two parts as 

indicated in the figure. This particular example would 

suggest that ~k was important to the behavior since f(~k} 

is clearly divided by the behavioral classification. Alternatively, 

if the sample values under Band B appeared both to be from 

the original distribution f(~k} then we would conclude that 

~k was not important. 
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d. Sensitivity Ranking of Parameters. For the case where. 

!(t) is a deterministic function of time, the parameter space 

is clearly divided by the behavioral mapping; that is, there 

is no ambiguity regarding whether a given parameter vector 

results in B or B. Our analysis then focuses on the description 

of the region of parameter space associated with the behavior 

and our aim is to delineate what parameters or combinations of 

parameters are most important in distinguishing between Band 

B. The hypersurface dividing the parent space cannot usually 

be determined analytically for environmental systems because 

of model complexity and a statistical analysis of the Monte­

Carlo results must be used to make inferences regarding 

sensitivity rankings. In general, all of the moments of the 

distribution under the behavioral classification are necessary 

to describe completely the shape of the two subspaces, but, 

as with similar types of problems in the field of pattern 

recognition, examination of the first two moments should be 

sufficient in practical application. 

We will restrict the discussion to the case for which 

the parameter vector mean is zero and the parameter covariance 

matrix is the identity matrix. (A suitable transformation 

can always be found to convert the general problem to this 

case.) The problem of identifying how the behavior mapping 

separates the parent parameter space can then be approached 

by examining induced mean shifts and induced covariance 

structure. 
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For example, considering only shifts in the mean and 

variance of the individual parameters, we can base a sensitivity 

ranking on a direct measure of the separation of the cumulative 

distribution functions, F(~kIB) and F(~kIB). In particular, 

we utilize the statistic 

d = sup I S (x) - S (x) 
m,n x n m 

where Sn and Sm are the sample distribution functions correspond­

ing to F(~kIB) and F(~kIB) for n behaviors and m non-behaviors. 

The statistic d is that used in the Kolmogorov - Smirnow m,n 

two sample test and both its asymptotic and small sample 

distribution are known for any continuous cumulative distribution 

function F(~k). Since Sn and Sm are estimates of F(~kIB) and 

F(~kIB) we see that d is the maximum vertical distance m,n 

between these two curves and the statistic is, therefore, 

sensitive not only to differences in central tendency but to 

any difference in the distribution functions. Thus, large 

values of d indicate that the parameter is important for . m,n 

simulatinq the behavior and, at least in cases where induced 

covariance is small, the converse is true for small values 

of that statistic. 

In general, however, ranking on the basis of the separation 

in the distribution functions along the original axes of the 

parameter space (the individual parameter values) is not 

sufficient. It is possible, for example, that the first and 

second moments for a single parameter might exhibit no 

separation and yet this parameter could be crucial to a success-

ful simulation by virtue of a strong correlation with other 

parameters under the behavior (see Fig. 2). The induced 
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covariance structure must therefore be included in a general 

sensitivity ranking. {This point is discussed fully by 

Hornberger and Spear 1980b}. 
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e. Extension to Control System Design. There is an obvious 

appeal to the notion of extending the sensitivity concept to 

the problem of controlling systems that are parametrically 

ill-defined. The most straight-forward extension to the 

control problem is to consider the design of a controller that 

will deliver a high probability of adequate performance under 

the uncertainty in knowledge of the process parameters mani­

fested by these a priori distributions. Here the binary 

classification notion of the sensitivity approach is retained 

in the form of adequate or inadequate system performance. 

Moreover, since this performance is to be based on the simu­

lation results it can be defined in very practical terms and 

requires only an algorithmic definition rather than an 

analytically tractable formulation. 

The simplest approach to controller design would appear 

to involve the specification of one or more candidate controller 

structures together with a set of control parameters for each 

structure. Each parameter set would then be assigned a 

distribution of allowable values and the problem is to select 

from within this set of allowable values the one specific set 

of control parameter values that maximize the probability 

of adequate performance P{B}. Then, the controller structure 

with the highest P{B} is the best of the candidates with the 

particular value of P{B) allowing the designer to decide if 

the risk can be accepted and the design implemented or greater 
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knowledge of the process will be needed. 

The procedure has been successfully applied to two 

problems in the control of poorly-defined ecological systems 

during the past two months by the authors in collaboration 

with Professor Robert C. Spear of the University of California. 

One of these problems deals with control of water quality in 

a river and the other with control of a biological waste 

treatment plant. Details of.this work will be included in 

the later reports on this contract. 
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