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THE GEMPAK BARNES OBJECTIVE ANALYSIS SCHEME

f
S, E. Koch, M. des Jardins, and P. J. Kocin

ABSTRACT

GEMPAK is an interactive computer software system developed at the Severe Storms Branch

of NASA's Goddard Laboratory for Atnaspheric Sciences for the purpose of assimilating, analyzing,

and displaying various conventional and satellite meteorological data types. The Barne n. (1973) ob-

jective map analysis scheme possesses certain characteristics that allowed it to be adapted to meet

the analysis needs of GEMPAK. Those characteristics and the specific adaptation of the scheme to

GEMPAK are described he re. A step-by-step guide for using the GEMPAK Barnes scheme on an

interactive computer (in "real-time") to analyze various types of meteorological datasets is also

presented.

The GEMPAK Barnes scheme is unique in the way in which it achieves a balance of objectivity,

versatility,,, and practicality. Demonstration of these dualities is accomplished by applying the

scheme to both a high gi.ality, uniformly distributed radiosonde data set, and to a non-uniformly

distributed data eet of undetermined quality composed of satellite-derived cloud motion vectors.
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THE GEMPAK BARNES OBJECTIVE ANALYSIS SCHEME

.	 1. AN OBJECTIVE ANALYSIS SCkIEME FOR GEMPAK

One of the basic program objectives of the Severe Storms Branch (Code 914) of the Goddard

Laboratory for Atmospheric Sciences (GLAS) is "to study the, subsynoptie to mesoscale processes

which create the favorable environment for the development and evolution of severe convective

storms by using the recently acquired SESAME data sets, TIROS-N (and VAS) temperatar p and

moisture soundings and satellite derived cloud tracked winds" (p, 44 of Simpson et al., 1980), In

order to assess the impact that merging of the various data sources has upon the dynamic computa-

tiorc, and subsequent interpretation of storm-environment processes, the GEMPAK (GEneral

Il-leteorological data assimilation, analysis, and display software PACKage) was created. This system

is designed to (1) convert the various types of data to a standard file structure, (2) vertically and

horizontally interpolate the standardized data to uniformly spaced grid points, (3) perform data

assimilations to initialize numerical models, (4) compute diagnostic quantities, and (5) display the

products onto various maps, The GEMPAK has been developed on the AOIPS (Atmospheric and

Oceanographic Information Processing System) at NASA/Goddard. The adaptation of the Barnes

(1973) objective analysis scheme to GEMPAK for the purpose of performing the interpolation func-

tion (step 2) is discussed in this report.

The term "objective analysis" refers to a process by which data observed at irregularly spaced

points in space (and/or time) are numerically processed to retrieve the two- or three-dimensional

r	 structure in the spatial distribution of soar ? . `eorological field parameter. Usually, the observed

Parameter values are computed at a regularly spaced array of grid points in order to provide the

basis for mapping isopleths of the parameter distribution, and to allow quantitative diagnostic and/or

predictive calculations to be made.

The process of objective analysis results in smoothing of both high-frequency, short-wavelength

features commonly referred to as "noise" and of gross data errors in the data distribution. It is
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necessary to suppress "noise" and reduce error amplitudes significantly, particularly before compu-

tation of meaningful estimates of such derivative quantities as divergence and vorticity from the

grid point values.

The degree of smoothing is governed by the selected weights applied to the data. The Barnes

scheme uses a Gaussian weighted-averaging method to assign a non-zero weight to each observation

according to its distance S from a mesh point relative to the number and distance of all other obser-

vations within some "cutoff radius" Rc , beyond which all weights are assigned a value of exactly

zero, Given the Gaussian nature to the scheme, an "influence radius" R can be defined as that S

where the weight falls to a value of exp (-1) = 0.37 (as discussed in section 2). However, the weight

function is not tied to the chosen value of Rc , and in fact all the data points in a given dataset can

be incorporated in determining each grid point value if desired, by simply setting R e = - (nornially,

for reasons of computational economics, R. is set to a finite value with no loss in analysis accuracy

as long as R. is significantly larger than R, as discussed in section 3e)

It is of some interest to provide some comparisons between the Barnes (1973) and Cressman

(1959) objective analysis schemes, as they both are weig'lited-averaging techniques in common usage,

Perhaps the most important difference is that the Cressman weight function is detennined by the

choice of R, since the weights do not asymptotically approach zero -ith increasing S as they do in

the Barnes technique, but instead abruptly become zero at S = R(= I2,). This nature of the Cress-

man scheme can present serious difficulties when the data distribution is nonuniform.

All weighted-averaging, "successive correction" (see below) objective analysis methods like

., those  developed by Barnes and Cressman are designed to work best on two-dimensional data fields

of rather uniform data distribution. Those fields that have very irregular data densitici over the

domain can present a problem known as "ballooning," characterized by large amplitude and phase

distortions in the neighborhood of any grid point whose value is determined primarily by the value

of only one inaccurate datum. In general, this problem can be reduced by requiring that at least

several observations be used in the calculation of each grid point value. In the Barnes technique,
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this is accomplished by extending the distance Re (with no resulting effect upon the weight function).

In sonic applications of the Cressman technique, the current scan R is locally increased to insure that

a sufficient number of data influence each grits point value (Inman, 1970); however, "noise" intro-

'	 duced by such a locally varying weight function must be suppressed with additional numerical filters,

thus producing an unknown final response and rcquhing additional computer time, Tile other cor-

rectional method used in the Cressman technique is to increase R sufficiently on the first pass throug li-

out the entire domain, yet such a procedure means more passes are required to 4 chieve the desire(.]

final response.

The Cressman and Barnes techniques both employ the method of successive corrections whereby

an adjustment is made to the first pass analysis by decreasing R in the second pass through the data

to restore the amplitude of large wavenumber components suppressed in the first interpolation-
y

filtering pass. In the Cressman case, neither the number of additional passes nor the value of the

second pass R are governed explicitly by the data distribution, thus neither is the filter response, i

An, advantage of the Barnes technique is that (in the 1973 version) only two passes are required to

achieve the desired pattern recogniticq whereas typically (but rather arbitrarily) four to six scans

are employed with the Cressman technique.

Classical sampling theory (Peterson and Middleton, 1963) dictates that a wave whose Horizontal

wavelength does not exceed at least twice the average observation spacing (20n) cannot be resolved

since .five data points are required to deso ibe a wave and its derivatives. Random errors in the ob-

servations generate fictitious 2An waves (Barnes, 1964); therefore, it is desirable to filter these from

the analysis as much as possible. The Barnes (1973) technique has the highly desirable property that

the weight function constants can be chosen upon the basis of the data distribution prior to the 	 t

analysis so that pattern scales resolvable by the data will be revealed to a known response amplitude.

1 Stephens and Stitt (1970) show that an optimum choice for R on the first pass can be made in terms of On
for a uniform data distribution. However, the optimum R is not well di;"atied theoretically on the second pass, so
the fmal filter response is rather arbitrary.

t
r
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To surmnarire, the Barnes (1X173) technique is selected because of the following advantages

(listed by him).

1. The scheme is a computationally simple, Gaussian weighted-averaging technique which

assigns a weight solely as a known function of distance between datum and grid point.

2. Since the weighting function decreases to zero asymptotically, the influence of data may

be extended any distance to insure that a sufficient number of observations inffuenee each

grid point value without having any effect upon either the weight function or the response

characteristics.

3. The low-pass filter response characteristics can be determined prior to the analysis so that

pattern scales resolvable by the data distribution will be revealed.

4. Only two passes through the data are required to achieve the desired scale resolution	 ^

because of tfie rapidity with which convergence is reached (see appendix). 1 ven when a

large influence radius (weight factor k In the next section) i^- ohosen to reduce noise due to

variations in observation density, convergence is attainably (because of the numerical

convergence paranicter y discussed below),

5. Small scale "noise" is sufficiently filtered from the analysis after only two passes.

The reader interested only in applying the GEMPAK Barnes scheme to a particular problem

can slip the next section without l oss of Continuity.

2. CHARACTERISTICS Or THE 13ARNES OBJECTIVE ANALYSIS SCHEME

Barnes (1964) has developed an objective analysis scheme that utilizes a Gaussian weight

function in the spatial domain based on the supposition that two-dimensional data distributions can

be represented by Courier integrals. Let r m represent the distance between the (i,j) grid point and

an observed datum f(x m ,ym ). Further, let is be the weight parameter that determines the shake of

the filter response function, Then, the weight function w m is expressed as;

4



(2)IC1 = ytG0 ,

. *-4 ^V

wtaa - exp(-rn2/tc).	 (11

Vora given choice or K, an "influence radius ,, inay be thought of as that ra►a where %) b- e-1,

It is shown later that x can be chosen to reveal those scales resolvable with the particular data

distribution.

Barnes (1973) has modified the earlier method in order to decrease the amount of computer

(line necessary to achieve "desired response" ,it small wavelengths. This modilJeation consists o '

applying only a single correction pass through (iteration upon) the Initial interpolated tteld (,,, 0j),

rather than making several iterations as before, To accomplish( thus, parameter it is decreased from

Its first pass value (tcp ) to its correction pass value of

by using a "numerical convergence parameter" y(O< ,y<1) that forces a high degree of convergence

(agreement) between the observation field f(x,y) and the correction (second) Mass interpolated field

g l (x,y). Of course, it is not always desirable to Have the interpolation field fit the data exactly; by

manipulating the value of y, the analyst obtains the desired response following the second data pass.

Tire first pass yields an interpolated field given by;

	

go = f(x,y) Ue ,	 (3)

where the spectral response function

	

Do = exp [rko or) 	 (4)

derived by Barnes (1960 is of the form of a low-Bass filter that attenuates signals at small horizontal

wavelength X. Figure 1 shows that use of smaller values of the dimensionless weight parameter K*

results in greater filter response during the first Mass, particularly for the short waves.
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1	 f_go
(9)

The "correction. (second) pass" grid point field Si (1j) is the result of adding to the first pass

field the smoothed residual difference between the observed data values and the first pass estimated

values "at" the data locations go (x,y), or

gt (1,J) = be (i,J) + I f(x,Y) — go (X, 01 D 1 ,	 (5)

where (after Barnes, 1973),

Di = exp I- ICI (nr/%)`l
exp 1-770 (7r/X)2 	 (6)

= DU

is the response function corresponding to the we ight function

wm	 exp(—rn 'I-YKO ) .	 (7)

A simple bilinear interpolation between the values of go (1j) at the :four surrounding grid points can

be Used to obtain an csthmatc lUl' g O (X,y) at each dataa loeation.. 'bile actual correction 'pass value

"at" each grid po int is cotllpUted as the su m of the weighted averages from the two passes witll M

observations according to (after (5)):

Will f(x lh ,Yn l )	 Will tf(xtlr ,ylld — g o(x lll lylidl

g 1( i ,J) — 
m=1	 ^ to =1

M	 M['.^
E will	 L wt13 

r

M=1	 m=1

Since it follows from (5) that (omitting arguments for convenience)

(8)
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thu function (6) might be referred to as "a difference field response function." The true- correction

pass response function (i.e., that one which correspond=. tO the first pass response function given by

(3)) is.

gl
D * ' f	 (10"0

which upon substitution from (5) gives

D1 = D0 + —DO )Da,	 0 O

and upon further substitution from (6) we have (Barnes, 1973)

D1 = Do (I+D t̂-Do),	 01)o

Function D1 is the proper measure of the degree of analysis convergence, or in -)tlier words,

how closely the interpolated values agree with the observed ones after a second pass through the

data. Making a second pass will increase the degree o,f convergence iven 0 < y < 1, and particularly

so when y < 0..5 (Figure 2). Notice that the greatest increase in response A irs at the shorter

wavelengths (small D o for a given choice of tc ol according to Figure 1).

A mathematical analysis of the effect of making additional passes (N>2 iterations) through the

data appears in Cie -,appendix. It is proven there that Ito real benefit can be gained in making more

than one correction pass because of the rapidity with which convergence is approached when 7 is

chosen small enough (Figure 2). It is also proven that the 1973 version of the Barnes objective

analysis technique is absolutely convergent (although the 1964 version has been shown by Barnes

(1964) to be convP:6Lnt also, several more passes are required to reach the same degree of conver-

gence as with the 1973 version). This fact enables the analyst to control the amount of small-scale

detail to be revealed in the analyzed data fields.

8
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These properties of the Barnes analysis scheme, (a) weight selection based wholly upon the data

spacing, (b) filtering of the 2An wave from the analysis, (v) adequacy of only two data passes to aclueve

desired fit to the data, and (d) insurance that a sufficient number of observations influence each grid

point value, are all incorporated into the GEMPAK Barnes analysis scheme described in the next

section, Other factors, such as objective determination of grid size and accounting for variable

observaliou density, are unique features of the GEWPAK version of the Barnes scheme.

3. THE BARNES SCHEME TAILORED TO GEMPAK NEEDS

Certain factors were considered in accommodating the Barnes (l"3,73) objective analysis scheme

to the specific needs of GEMPAK.

1. An agreeable balance between user manipulability and the obJectivity inherent to the

Barnes scheme must be found.

2. Differences in the nature of the various conventional and satellite data must be taken ;nto

account. In particular, satellite-derived cloud motion wind data tend to occur in clumps

separated by varying distances because of the problem in finding a sufficient number of

suitable, unobscured cloud targets for tracking purposes (Negri and Vonder Ilaar (1980),

Pest en (1980), Maddox and Vonder Haar (1979)). Missing swaths of data are common with

satellite-retrieved temperature and moisture soundings (Hillger and Vonder Haar, 1981), On

the other ]land, the Barnes scheme assumes uniform distribution of data.

3. Tile maximum allowable detail in the interpolated fields is to be governed by the data

spacing.

4. Tlie results of the mathematical analysis of the Barnes convergence properties (appendix)

are to be incorporated by limiting Cite number of passes through the data.

5. Bounds to the grid box size should be wholly determined by the data spacing, since the

magnitude of derivative fields like divergence and vorticity is highly sensitive to grid size.

l
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6. Measures of analysis duality should he made available to the GEMPAK user to allow

objective determination of the effect of user manipulation of the analysis filter control

parameters upon the resulting objective analysis.

7. Finally, it is essential that the GEMPAK Barnes scheme be easily and quickly usable by one

who does not possess a thorough understanding of the mathematics describing the Barnes

scheme filter response, convergence properties, eta;. appearing in this report, but who can

judge the quality of the resulting objective analysis in terms of its physical content, con-

sistency with other meteorological fields, and temporal continuity. The uniqueness of the

GEMPAK version of the Barnes scheme rests in the manner in which these seven considera-

tions are incorporated into an easy-to-use objective analysis package. The unique features

are discussed below,

a. Domain Definitions

Unique data and mesh domain definitions were devised in order to permit easy manipulation

of data file structures and to obtain a uniformly reliable analysis throughout the entire grid area

displayed (Figure 3). One of these domains is termed the data file, which consists of the entire data

set to be considered for the Barnes objective analysis, e.g., cloud motions in the lower troposphere

determined over a subsynoptic region for a specified time interval.

That subset of the data file in which grid point values are computed from the data by the

GEMPAK Barnes scheme is termed the data area. Those observations which lie outside of the data

area do not influence any grid point value. One conceivable data area is that in which the distribu-

tion of the data is more uniform than that within the data file. Another choice for a data area

might be one which contains a sufficient number of observations from one data type needed to

make a comparison with the objective analysis of data by some other type. For example, if there is

a wish to study the impact of satellite cloud winds upon an analysis of conventional rawinsonde

winds, then the data area should be chosen large enough to include rawinsonde data locations outside

of the area of satellite data

1l
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The grid display area is that portion of the entire gridded domain (i.e,, data area) which is dis-

played as "the objective analysis" to the analyst, The grid display area should lie entirely within the

data area to avoid attempted interpretation of the analysis near the data-sparse boundaries of the

data area (the dashed region in Fig. 3). In this region, the data are simply extrapolated by the

Barnes (or similar) scheme because there are not enough data nearby to give reliable grid poin t esti-

mates, A good approach to tape is to have at least one or two observations lie within the data area

existing beyond each side of the grid display area,

b. Non-Uniform Data Distributions

The problem of handling non-uniform distributions within the data area is presently dealt with

in the following manner. Within any data area input to the computer, the distance between each

observation and the nearest observation to it is determined, regardless of how uniformly distributed

the observations are. The average of these distances over the entire data area is termed the

"computed data spacing" Ane . Its value determines the maxiinum datail pennitted in the objective

analysis, However, a smoother analysis can be obtained by manually inputing any An > An e , as

should be done, for example, when examining the synoptic-scale impact of non-uniformly distributed,

satellite-derived mesoscale wind, temperature, or moisture data upon a synoptic field obtained from

conventional data, An appropriate choice in this case is the An computed from the data area com-

prised only of the conventional data. In other words, the purpose of the analysis should govern the

choice for An, under the constraint that An> An..

c. Control of Detail in a Two-Pass Barnes Analysis

Once the data spacing has been defined, the analyst "fine tunes" the degree of analysis detail

(or convergence of the interpolated field towards the observed field) by choosing a value for the

numerical convergence parameter 2 (y). In the GEMPAK version of the Barnes scheme, the Inaximum

A slight degree of analysis control is also made possible by manipulation of the mesh size, However, the mesh size,
which is allowed to vary within the limits discussed in Section 3d, should not be manipulated for the purpose of
achieving a desired degree of analysis convergence, but rather for reasons discussed later,
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detail Is obtainable, with y = 0.2, whereas the least detail results with y =1.0, for a gh en ► 1alue of Art.

The analyst must decide for himself how closely the final analysis should be made to fit the data.

If one desires to see the greatest resolvable detail in the field, it is justifiable to use a small y value

when errors in the data are only a small fraction of the signal present over the field and the observa-

tions are not substantially contaminated by subgrid-scalc atmospheric processes.

A limit of two passes through the data is imposed in the GEMPAK Barnes scheme (see appendix).

Under this constraint, and the further constraint that 0.2 < y < 1.0, the range of analysis responses

permitted can be found (Figure 4). The first pass values D O W are arrived at by inserting the value

Do (2An) = 0.0064 for integral values of (A/2An) in (A18); the second pass values D* (A) are then

calculated from (11), The value of 0.0064 for D o (2 A n) gives a second pass response of D * = c-1

at the 2 A n wavelength when y = 0.2. Since the maximum response and hest fidelity characteristics

of the Barnes low-pass filter are arrived at by choosing this y value, use of D Q (2An) = 0.0064 lets us

obtain a baseline value by which responses at multiples of the 2An wave can be calculated. It is important

to realize that under these conditions, the weight parameter ►c o is fixed by the data spacing, since

when X = 2 An is inserted into (4) with Do (2 An) = 0, 0064,

2Q
Kp = —	 In Dp(2An)

n

(12)
2An 2

= 5.052
( 7

In other words, the weight parameter ►c o is fixed b.► , the data sharing to give maximum response

of e_
f at the 2An scale (y = 0.2). The user of the GE IPA  Barnes scheme has the option of either

accel)ting this default anal,vsis or of making a smoother, less detailed one 1^ ► ' inputiug a larger y ralue

(0.2 S y <- 1.0). Increasing y affects only the second interpolation field, which is the one displayed,

such that the amplitude of the shorter wavelength features is reduced.
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Figure 4. Permissible second (correction) pass filter responses as functions of multiples of the 2An

wavelength in the GEMPAK Barnes scheme.



d, Objective Determination of Grid Sire

An abundant literature exists illustrating bounds on the ratio between the grid box size Ax and

the data spacing An, such that A pt/An lies in the range of about 0.3 to 0.5 (Barnes 1964, 1973;

Doswell, 1977; Maddox, 1980; and others), The apparent reason for the upper limit is that since

five grid points are required to represew a wave, and the minimum resolvable wave is of 2An scale,

then Ax must he no larger than one-Ball' of An (as shown in Vigure 5). As for the lower Limit, since

calculations of derivative quantities like divergence and vorticity are highly sensitive to grid Wngili,

then if such derivative fields are to represent resolvable features, one must not use a grid length that

is much smaller than the data spacing,

Accordingly, the GEMPAK Barnes scheme imposes the constraint that

1/3 < Ax/An < 1/2.	 (13)

The number of grid points (KX by KY) are then determined by

KX(KY) = 1 +(x(y) data area dimension)/Ax. 	 (14)

Even though the GEMPAK Barnes scheme places stringent limits on the mesh size, it remains

versatile enough that it can accommodate round-off of the computed mesh size to convenient whole

numbers (such as 1.0° latitude, or 10.0 kin, etc.). This versatility may be necessary when making

comparisons of objectively analyzed data to numerical model output, for instance,

c. Quality Control Indicators

Serious "ballooning" problems can occur when an insufficiently small number of data

determine the 'value at a grid point (as discussed in section 1). In order to avoid such problems, a

warning flag appears to the user of the GEMPAK Barnes scheme whenever less than 3 data values

determine any grid point value. Such a problem is particularly likely to occur when the grid display

area is chosen so large that it extends into data-void regions, It is desirable to caution the analyst

that a better choice for the grid display area should have been made.
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DATA POINTS

GRID POINTS + + + + +

a,X
Figure 5, Determining the proper relationship between grid size

and data spacing from elementary considerations.
I

The warning flag appears slightly more often than it would otherwise because of the inclusion

of a delimiter on the computation of extremely small weights at very large distances between a grid

point and a datum. Its insertion into the program increases the efficiency of its operation without

noticeable loss of any accuracy. Presently, this cutoff distance has the value R C = K o X20, which is

4.5 times as large as the "radius of influence" R at which the weight w M = e' 1 (see (1)). At distances

r> Rc , the weights are assigned zero values, whereas in actuality it can be shown that the weight

value at R C is about 1.5 X 10-8 when Ax = An/2.

Another measure of analysis duality is the computed rnis difference between the interpolated

and observed fields. This number is displayed to the analyst after boklu the first and sceonc) passes

through the data to enable one to see the amount of rms reduction between passes and how much

greater this reduction is with the use of a smaller y value. This number caul then be compared to

the known observational errors.

Finally, computer limitations (section 4) dictate that KX and KY be no larger than 40,

Problems arise when an analysis is attempted of clumps of closely spaced data separated by large

distances from other clumps over a sizable data file. If one wishes to make a detailed analysis using

An = An., then several separate analyses over subsets of the data file must be nude.

17



Despite the last limitation, the GVMI'AK Barnes scheme remains a versatile and easy-to-use

objective analysis package. By incorporating a weight selection procedure based purely upoll the

data spacing, filtering the 2 An wave from the analysis, and determining the grid size front the data

spacing, the scheme is objective in nature.. Yet, by permitting user input of arbitrarily larger data

spacing than actually exists, user manipulation of the various spatial domains, and user selection of

the -y and Ox values within bounds, the scheme retains its necessary flexibility. In the following

section, it is shown how use or an Interactive:, menu-tyre fornult and various cursor/display controls

oil computer CRT enhances the ease with which the GLsMPAK Barnes scheme cut be used.

4, OPERATION Or THE GEMPAK BARNES SCHEME ON AN INTERACTIVE COMPUTER.

A CRT computer graphics terminal on AOIPS is utilized to permit the user to step through a

series of menus (questions) in order to select appropriate files and parameters for the GEMPAK

Barnes objective analysis. For each analysis the riser must select 1) the vertical level for the analysis,
i

2) the data sets to be included in the analysis, 3) t he data and grid display areas, 4) values for the

observation spacing An, grid spacing Ax, and y, and 5) the meteorological parameters to be

analyzed. When appropriate, the values chosen most recently will be displayed as the default values.

Unless default values from a previous analysis are available the following defaults are used and

may be chosen by entering 0 on the terminal.

(1) The default vertical level is the earth's surface.

(2) The default data sot is the sounding data set used most recently in GEMPAK.

(3) The data and grid display areas both correspond to the data file area. Areas are defined by

the lower left and upper right coordinates. Since it is necessary to align the areas to lie on

grid points, t1w. lower lift Corner will be hXed and the• clpper riglil confer 111oved 111) ;111(1

right until it coincides with a grid point. AN is set to AN e ; OX = AN/2.
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(4) DCIitUlt WdUeS arc AN = ANc (value computed w ► tl)in default data area), AX - ANc/a,

and ,y = 0.30.

(5) The meteorological parameters are not defaulted; they must be selected by the user.

When a user works in latitude/longitude coordinates, lie has the capability to display the data

and grid display areas on the CRT. Then, by manipulation of a joystick on the console, these

analysis boxes can be easily reshaped and moved until, by visual inspection, the desired result is

obtained. After selecting which files and parameters to use, both the victual data and the oblieetive

analysis are displayed. If the analysis is unsatisfactory to the user, lie may then alter the inpu.

parameters to the scheme by stepping through the menus once more, and subsequently see another

analysis. Of course, instead a different parameter may be analyzed at this point. 	 I

Following are the menus in the order in which they appear to the user anti a description of the

required responses.

Enter Vertical Level (Default = Surface).

A single vertical'.evel to be analyzed, in the units of the vertical coordinate system of the sounding

dataset name (see below), must be entered (with a decimal point included). A (CR) (carriage return)

or 0.0 will result hi default to the surface level.

If the surface level is selected, the data set file labels will be checked to ensure that surface

data is available in each dataset. If it is not, an error message is printed and the user may select

another level.

Sounding Data Set Number I

Enter Sounding Dataset Name (Default Disk = 	 )

(0 1	 ) or (No lh-f;tull ):

4

4
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Up to j urr sounding datasets3 can be entered by name. The default disk and user's Ulf' (User

icleati flea t on Code) will be added to the name if not specified; also ".SNIP" will be appended to

the name if a rile type is not entered, When a default file name appears, the file may be selected by

entering a "0".

An incorrect file selection will result in an error message and the file prompt will be redisplayed.

'I lie file labels will be checked to ensure that they have a common vertical coordinate system.

A (CR) will end the file selection process,

Average minimum station spacing	 0 = old values

default = compute:

This prompt is displayed only if default parameters from a previous objective analysis are available.

Entering a "0" will restore the previous parameters, including the average minimum station spacing,

AN., previously computed from the present data,/tle,

Enter 2 bit planes for data and grid display areas

Default = no display:

This prompt appears only If the user has allocated a CRT display terminal and has previously plotted

sounding data.4

1 A t;1 VAK sounding dataset is a eollection of soundings formatter: through one of the options in the
Sounding input program.

4 Each display terminal is presently a Hazeltine terminal which has one memory or 512 X 512 X 8 bits,
addressable as 8 bit (graphic) planes,
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The two bit planes (1-8) must be entered separated by a comma, The first bit plane will be

used to show the data area; the second will display the grid analysis arca. The same bit plane may

be entered for both displays. Note that any previous displays on those bit planes will be erased.

The menu shown in Figure 6 lists information about the data and grid analysis areas aswell as

the current values of AN, AX, and 7. For reference, the latitude/longitude coordinates of the

lower left and nipper right corners of the data file area, and the number of stations reporting data

at the vertical level selected, are displayed at the top. Additlonally, the numhe- of stations within

the data area are displayed to the right of the station spacing.

In 1,, the selected value of AN is shown. Also listed are the last computed station spacing and

the random station spacing. The average minimum station spacing, AN c , within a data area is

computed only it a "—i ' is entered in response to this menu, Tile uniform station spacing is the

average station spacing within the data area assuming that the stations are evenly distributed, This

r►umber should be used only for -reference. If this number is different by a faetor of -2 or more firm ►

the computed n ►intmum station spat-tng, then the data set Is not reallt , uniform In nature.

2. and 3. show the lower left and upper right corners of the data area, in degrees latitude, longitude.

4, is the grid spacing, AX, Note that the grid spacing and the station (observation) spacing are

both in degrees latitude. The grid spacing is initially set equal to one-half of the station spacing.

5. displays the number of grid points covering the data area in both. X and Y directions.

6, shows the grid display coordinates in units of grid points, i.e., the subset, of the data area

juid wl ► ich will Ncollic the grid display ►► re ►► , The latil(ldv, loligitudk. Conlers of' thV itri(i disp i .1y alva,

which cannot be altered directly, are shown under the coordinates.
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** *BARNES ANALYSIS MENU***

(28.8	 -106.0 41.4 -86.6)	 34 STATIONS

1. STATION SPACING 1.93	 32 STATIONS

LAST COMPUTED SPACING 1,93

UNIFORM STATION SPACING 2.51

--1 TO COMPUTE STATION SPACING

2. DATA AREA (LOWER LEFT) 28.82 -106,37

3. (UPPER RIGHT) 41.36 -86.11

4. GRID SPACING 0.965

5. # GRID POINTS (KX, KY) 21 14

6. GRID DISPLAY COORDINATES 1,21 1,14

(LOWER LEFT) 28:82 -106.37

(UPPER RIGHT) 41.36 -86.11

Figure 6. Example of GEMPAK Barnes "menu" of input parameters.

i
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Enter number and new values

0 = initialize	 P = PRINT	 D = Data Box

Default = accept:

This prompt appears following the menu shown in Figure 6. The user may enter a menu selection

number (1-6) followed by a comma and new parameter value(s) separated by commas, The values

entered are checked for obvious errors, changes are made to the required parameters and the menu

is redisplayed. A station spacing AN > ON, can be entered at this step to account for non-uniform

data distributions. Entering a new value for one parameter can affect values for the other parameters

(e.g., new station spacing alters data area slightly).

A response of "0" will reset the menu to the values initially displayed. "P" will print the menu

on the line printer. "D" will display a yellow box on the display screen. The box may be moved

and shaped to redefine the data area using the "MOVE" and "SHAPE" buttons on the terminal

console. The "DEFINE" button is used to accept position of the box. The user may enter ":XF"

to turn the box off.

ENTER GAMMA BETWEEN 0.2 and 1.0

DEFAULT GAMMA = 0.3:

Any value for y within the limits 0.2 <y < 1.0 is acceptable. If any other value is entered, the

menu is displayed again, A (CR) will default to 7 = 0.3.

Enter list of parameters to be analyzed (< = N):
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Up to N parameters (e.g., temperature, wind speed, etc,) may be sciocted by number from the list.

N is limited by computer considerations. Since the most time-consuming part of the objective

analysis is the exponential computation, large grids or data areas containing a large number of

stations will limit the number of parameters that can be analyzed at one time. The number of

exponentials computed is approximately 2 X M X KX X KY, where M is the number of stations.

Since this number is not a function of the number of parameters being analyzed, it is desirable to

compute as many parameters as possible during a single analysis,

PASS 1 PARAMETER 2 RMS = 2.38 #STATIONS ^ 32

PASS 2 PARAMETER 2 RMS = 0.74 #STATIONS = 32

This message prints the RMS after each pass. No user response is required. The reduction in RMS

error between the two passes is greater when a small y value is used. The RMS at the second pass

can be compared to known observational uncertiunties to help the user make a judgment of analysis

quality.

Following each pass, parameter values are computed at each station using bilinear interpolation

with the four surrounding grid points. The RMS is computed using the differences between the interpo-

lated statism value and the actual station value (see (8) in Section 2). The parameter number refers

to the GEMPAK number for the parameter being analyzed. The number of stations actually used

in the analysis is also shown.

THERE ARE	 —POINTS IN THE GRID DISPLAY AREA WITH

INSUFFICIENT DATA.

A LISTING WILL BE SENT DIRECTLY TO THE LINE PRINTER UNLESS

AN "N" IS ENTERED:
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The prompt is displayed only if fewer than three data values have influenced any grid point, as

mentioned in Section 3e,

ENTER GRIDDED DATASET NAME (DEFAULT DISK = )

(0 =	 ) OR (NO DEFAULT)

This gridded dataset, a file which stores up to 20 grid analysis arrays, and has the form "NAME GRD,"

must be entered. Again, the default disk and the users UIC will be added if not specified here; "GRD"

will be appended if a file type is not entered. When a default file name is given, the file may be

selected by entering a 4t0".

OUTPUT TEMP IN GRID NUMBER 10

ENTER NAME FOR GRID:

This prompt asks the user to specify a nan a for grid 10; in this case, the gridded data resulting from

.) objective analysis of temperature (TEMP) is stored in grid 10. A 12-character name may be en-

tered to identify the grid in the file. The grid number is the location of the grid in the file. The

grid is accessible for purposes of algebraic manipulation (e.g., pressure tendency calculations made

by subtracting two gridded pressure datasets) and contouring.

5. METEOROLOGICAL APPLICATIONS OF THE GEMPAK BARNES SCHEME

In this section, station and grid spacings (An and Ax), data and grid display areas, and the

numerical convergence parameter (y) are each varied to examine the resulting effect upon the

objective analysis of subsynoptic-scale wind data. Each of the resulting GEMPAK Barnes analyses,

except for the last one to be discussed, will be of a uniformly distributed wind data set obtained from

rawinsonde data collected during the SESAME (Severe Environmental Storms and Mesoscale Experi-

ment). The last analysis will be that of non-uniformly distributed wind data composed of both the rawin

sonde observations and satellite-derived cloud motion estimates. The purpose of the latter analysis is to
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show how A n can be chosen larger than the computed value 4 n C so as to obtain an analysis more

representative of the scale resolvable by the uniformly distributed, conventional data set.

The data file used for all but the last analysis is derived from the SESAME regional-scale

network, a uniformly distributed array of rawinsonde observations including 23 National Weather

Service stations and 19 supplemental sites over the south central United Stales	 7). In

particular, ,in analysis of wind speed at the 310 K isentropic surface at 2100 (;MT on April 10, 1979

is made from data existing at 32 of the 42 possible stations. These 32 stations constitute the data

file, wlniclm form the base for the objective analysis. The latitude and longitude bounds of the data

file are:

Latitude Bounds
	

Longitude Bounds

upper: 41.36
	

western: —106.37
	

0 5)

a. Map Generation

lower 28.82 eastern:	 —86.11

The first procedure in generating a Barnes analysis is to display a map of the observations

within the data area (the only real requirement is for the analyst to display just ,I 	 but the

inclusion of the observations could minimize errors related to the placement of data and display

areas). A map containing the SESAME wind speed observations (Figure 8) is generated and displayed

by GEMPAK's sounding plotting program. For this example, the coordinate bounds of the map were

chosen as follows:

Latitude Bounds	 Longitude Bounds

upper: 43.4	 western: —108.4	 (16?

lower: 25.4	 eastern: —83.4

These coordinate choices produce a map covering 25 0 of longitude and 18 0 of latitude, which includes

all the observations within the data file plus an additional surrounding data-free area of about 3 0 .

r
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Figure 8. Map g
enerated by GEMPAK sounding plot program when SESAME data file consisting of

wind speeds (shown in units of m s' 1) at the 0 =31 OK level at 2100 GMT on April 10, 1979
is chosen.
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As long as no further changes are made to the map's coordinates within the sounding plot program,

the latitude/longitude coordinates of the map area will be retained throughout the use of the Barnes

program, so that the data and display areas can be accurately placed over the map.

b. Station/Grid Spacings and Data/Grid Display Areas

Once the map has been generated, the G>MPAK Barnes menus are utilized. Following the

procedure outlined in Section 4, the user first specifies his desire to analyze the wind speed at verd-

cal level = 310 (in this case, 310°1C). He is afterwards faced with the task of generating suitable data

and grid display areas.

The interactive CRT terminal allows the analyst to create and alter two "boxes" on the CRT

display screen, one box enclosing the data area, and the other enclosing the grid display area. During 	 r

the initial internal computation of A x and A Il, only orie box will appear Since the prograill will

assign the same coordinates to both the data and grid display area. Unless old values for An are

available, the average minimum station spacing within the data file will be computed, which in the

present case (Figure 8) is An c 1.93°. Under the constraint (13), the grid spacing is initially set to

its maximum allowable value of Ox = Anc /2 = 0.965 Upon input of the data file bounds (15),

the values of KX and KY are computed internally from (14), and hence the Barnes Analysis Menu

will appear on the CRT diFg7lay screen with the parameter values (shown earlier) in Figure 6.

The calculated value of On c may be modified now to meet the Deeds of the analyst. It is essen-

tial to realize the importance that such a modification has upon the analysis (see Section 3c), within

the "mit that any input On must be no smaller than Anc. For discussion puI •poscs, the value is ill-

creased slightly to An = 2.00° in order to allow an internally calculated grid spacing of Ax = 1.00
0 .

In general, the value of On should not be arbitrarily increased beyond a few percent of its calculated

value unless a non-uniform data area is to be analyzed, for otherwise details resolvable by the data

will be lost.

,t
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`1"ire change of An from 1,93° to 2.00° results in a slight enlargement of the lox representing

the data area, While holding the lower left corner of the original coordinates (15) fixed and

accounting for the grid spacing Ax of 1.0 degree, the GEMPAK Barnes program computed new co-

ordinates for the clata area:

Latitude Bounds	 Longitude Bounds

	

upper; 41.82	 left: —106,37	 (17)

	

lower; 28.82	 right: —85.37

i
i

Note that the coordinates of the upper right corner of the data area have changed to allow the box {

to increase in size while including all observations from the data area, The degree differences

between the latitude bounds and the longitude bounds are now multiples of the grid spacing Ax of

1.0 degree.

Following the choice of Ax, the data area is chosen by either typing in the coordinates or by

using a joystick-controlled function that shapes a rectangular box around the data area. !t is easier

to position a box manually than to determine the coordinates of the lower left or upper rigli t edges

of the data area. In either case, once the data area has been entered, the program may alter the co-

ordinates and the box slightly to accommodate the grid spacing. The resulting data area box is the

larger of the two boxes in Figure 9.

The grid display area should be entered as a subset of the data area. A good approach to take

(see Section 3a) is to allow at least one or two observations to lie beyond each side of the grid

display area. Since the slight increase of An from 1.93° to 2.00° results in an increase of the grid

array from 21 X 14 (Figure 6) to 22 X 14 when A x = 1.00° (see (17)), a grid display area

imbedded two grid points (or 2°) within each side of the data area requires the following sequence
x

cal' valUi-s to he inhul it) Hell) #0 cif' the 13;11-ne 's mend:

3	 20	 3	 12,
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•	 Figure 9. Data and grid display areas selected for analysis of SESAME data set (see Figure 8). The

boxes were obtained both by typing in the coordinates and by using joystick-controlled

functions on the AOIPS computer console. Note size of grid mesh in lower left corner.
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and ivsul I% in 
in 

18 X 10 array of grid points within a grid slisplar urvei with the following

coordinates:

,Latitude Bounds
	

Longitude Bounds

upper: 39.82
	

west: --104.37

lower. 30.82
	

cast: —87.37

The grid display area is shown enclosed by the smaller of the two boxes in 'Figure 9.

A comparison of two objective analyses of the SESAME data set generated by (1) having a grid

display area smaller than the data area (Figure l Oa) and by (2) having the two areas represented by

one box (Figure I Ob) demonstrates the rationale behind choosing the ,former option. A less reliable

analysis results when the data and grid display areas coincide (figure 1Ob), especially near the cast

and south sides of the box. Notice that the observations at Nashville, Tennessee and throughout 	 F

southern Texas are not incorporated into that analysis, resulting in loss of valuable information on

the strong wind speed gradients actually there. On the other hand, the analysis displayed in Figure

10a, which was generated from values interpolated to grid points enclosed by the outer box (tic data

area) but displayed only within the inner box (the grid display area) is more reliable because observa-

tions exist in the region between the grid display area and the data area. Therefore, each grid point

within the grid display area has been influenced by values at station locations which totally ,surrounul

it,

c. Numerical Convergence Parameter

In the case of the two analyses just described, the numerical convergence parameter y was

assigned a value of 0.3. The GEMPAK Barnes program allows y to range in value between 0.2 and

1.0. Analyses of the SESAME wind speed data set with four different values of -y (0.2, 0.3, 0,5, and

1.0) are displayed in Figure 11 to illustrate the impact of y variations upon analysis detail (recall

Section 3c). The analysis produced with y = 0,2 exhibits significant detail at the 2AAn e scale, As
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Figure 10. Comparison of two analyses of SESAME data set by GEMPAK Barnes scheme (isotachs

in m s l ), with following values for the input parameters; On =2.0°, Ax = 1.0°, and

y = L, . t . Top figure shows analysis generated by having grid display area nested 2°

within the data area. The two areas are coincident in the bottom figure.
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Figure 11. Changes in the objective analysis of the SESAME wind speed data set

(see Figure 10) brought about by variations in the value input for y.
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discussed in Section B of the Appendix, this detail is likely to be the undesirable result of aliasing and

of random errors In the data, Larger values of y lower the response to that scale (as given by (1 1 ) and

Figure 2) and accordingly dampen the analysis d.tall.

The analyst must judge which value of y produces the best analysis for his purposes, Although

ll ► ere is no inlention in this report to Cover all aspects ol , the general 1; ►ctors involved in obiective

analysis duality, a few points should be kep t in mind, First, the nns difference between the inter-

polated and observed fields should be much less than the estimated rms error in the observations;

this guideline should help serve as an upper limit on the choice of y, Second, the meteorological

features appearing in the analyses should exhibit acceptable temporal and spatial Conthildl y, The

lower limit on y is determined by the continuity considerations, which is best made by examining

derivative fields like divergence and vorticity. Third, the analyst should examine the interpolated

fields resulting from the largest y value first, and then reduce y In steps until an unacceptably srnall

signal-to-noise ratio becomes evident.

Application of the rms quality criterion to the objectively analyzed wind speed fields in Figure

I1 is illustrated first. An observational rms error of 3 to 6 ins 1 can be expected for winds between

the 700 and 400 mb pressure surfaces, through which the 310 K isentrope passes in this case (Fuel-

berg, 1974), The computed rms differences between observed and objectively analyzed Gelds ex-

ceeded 1.5 m s-1 for y values equal to or greater than 0.5. Thus, the y = 0.2 or y = 0.3 analysis

would be selected upon this basis,

The other measures of analysis duality can be derived from the calculated velocity divergence

fields at 3-hourly intervals from 1500 GMT to 2100 GMT on this date. The fields shown in

Figures 12, 13, and 14 are generated from the objectively analyzed a and v wind component fields

using yvalues of 0.2, 0,3, and 1.0, respectively. Examination of these fields for spatial and

temporal continuity is made, bearing in mind that, although the archived. SESAME data have been

,
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checked for gross errors, stricter quality control measures were not applied to the data set to

account for any possible bias errors.

Each set of analyses exhibits at least some continuity, with the degree of continuity decreasing

as ,y is reduced. Features in the y = 1,0 analysis are easy to follow, but lack detail, which is consistent

with its large rms error value. Many more features appear in the y = 0,2 analysis, but the fact that

their amplitudes and propagation velocities fluctuate greatly indicates an unacceptably low signal-to-

noise ratio in the analysis. This observation is clearly evident in the case of the isolated convergence

maxima (-3 X 10-5 s 1 ) over eastern Oklahoma and western Missouri at 1800 GMT (Figure 12b).

Such small-scale features are evidently not resolvable with this particular data set.

In contrast, the alphabetically labelled features in they 0.3 analysis can all be traced with

acceptable temporal continuity over at least two time periods. Furthermore, these fca;tures move at

velocities (20-30 m s' 1 ) characteristic of the observed wind speeds (see Figure 8) and in a northeasterly

direction consistent with the prevailing advecting flow. Other unlabelled centers either dissipate

between periods (as with the divergence maximum over southwestern Arkansas at 1500 GMT) or move

out of the gridded display area too quickly to be followed (as with the divergence maximum over the

Texas Panhandle at 1500 GMT). Thus, they = 0.3 analysis provides the best results in terms of rms

error and temporal/spatial continuity criteria.

d. Effect of Grid Size on the Objective Analysis

Recalling that for a given data spacing On, the GEMPAK Barnes program constrains Ax to

range between On/3 and An/2, then for the SESAME wind example whereby On = 2.0°, Ox must

lie between 0.65° and 1.0°. The latter case appeared in Figure 10a, and for comparison the case

Ax = 0.65° appears in Figure 15. The differences between the two analyses are insignificant. This

comparison emphasizes the I'act that varialions of the grid size within the allowable lirIrils has a

negligible effect upon detail in the objective analysis, and that it should not be varied with that

purpose in mind. Rather, it should be varied for such purposes as to ease the discussion (as here,

is
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On was increased from 1.930 to 2.000 to make Ax = 1.00° a convenient round number), or to make a

one-to-one comparison between objectively analyzed data and numerical model data,

c. Objective Analysis of Non-Uniformly Distributed Data

A comparison is made between an objective analysis of SESAME rawinsonde reported winds at

825 mb at 1800 GUT on April 10, 1979 (Figure 16a) and an objective analysis of those same winds

when combined with non-uniformly distributed satellite data (Figure 16b). These analyses are being

used in an on-going investigation at NASA/GLAS to determine to what extent at signment of the cloud

motion vectors to an incorrect height will degrade a conventional analysis of winds at the SESAME

regional scale (Peslen, et al., 1982). With this purpose in mind, the grid display area is adjusted to

just barely cover the area of satellite data. Likewise, for this purpose, the value of On input to the

computer is that of the uniformly distributed, conventional rawinsonde data of the SESAME

regional scale (On = 20), rather than the computed minimum observation spacing A n c , which has

a very small value because of the small distances between adjacent satellite observations. Moreover,

use of Onc would have been impossible on the AOIPS computer (see Section 3e), because Ox would

also have been too small and hence KX (KY) too large.

Clearly, the satellite data do exert an impact upon the conventional wind analysis on the scale

resolvable by the SESAME regional rawinsonde network .. The question remains, however, whether
Y

the satellite data can provide useful meteorological information on scales smaller than is resolvable

by these rawinsondes. At least part of the difference between Figures 16a and 16b can be ex-

plained by a systematic mis-assignment of all the cloud vectors to one isobaric level, when in

actuality the clouds exist at different heights above the local terrain (Peslen, et al., 1982). The

problem of mis-assignment of heights .is most crucial in a vertically sheared environment. The

following questions need to be unravelled: (1) what coordinate system to assign cloud vectors to

with minimum error; (2) what the smallest scale is at which satellite wind data provides reliable in-

formation; and (3) what observation spacing On is the proper one to employ with such non-uniformly

C
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distributed data, Further refinement of such anOyses as that in Figure 16b can only be made follow-

ing the unraveling of these questions,

6. SUMMARY

The specific adaptation of the Barnes (1973) objective analysis scheme to GEMPAK on the

AOIPS computer at NASA/Goddard has been described in this report. The Barnes scheme was

selected because it is computationally efficient, has filter response characteristics that are known

functions only of the data, and adequately recovers details on the second pass through the data

even when a large influence radius is used to insure that sufficient data influence is exerted at all grid

points. A mathematical analysis proves that the scheme is absolutely convergent, and that only two

passes through the data are needed to enable the analyst to control resolvable small-scale details in

the interpolated fields. 	 1

The GEMPAK version of the Barnes scheme is unique in that it makes possible a sound

objective analysis of any two-dimensional scalar data field by incorporating several objective con-

straints upon the analysis over which the user-analyst has no control, while still providing some user

input via an interactive computer video terminal, Thus, the GEMPAK Barnes scheme is altogetlier

versatile, objective, and practical (Figure 17).

By permitting user selection and alteration of the following input parameters, the scheme re-

tains its necessary versatility:

(1) Data area as subset of a data file.

(2) Gridded display area as subset of the data area.

(3) Data spacing On.

(4) Grid spacing A x.

t
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VERSATILITY
THROUGH HUMAN SELECTION
OF INPUT PARAMETER
VALUES

OBJECTIVITY
THROUGH CONSTRAINTS
PLACED UPON THE ANALYSIS

L DATA FILE, DATA AREA, GRIDDED DISPLAY AREA

DATA SPACING (AN)

GRID SPACING (AXD

AMOUNT of ANALYSIS DETAIL (Y

INPUT AN> pNcONLY

3"	 .̂ 2 1
WEIGHTS  FUNCTION ONLY OF N

NUMBE s OF DATA PASSES FIXED AT 2

MINIMIZATION OF NECESSARY HUMAN MANIPULATION

PRACTICALITY	
VISUALIZATION OF DATA DOMAINS AND OBJECTIVE ANALYSIS

THROUGH LIMITED USE OF
COMPUTER CURSOR/DISPLAY	 R^,ALJIME EVALUATION OF EFFECT OF INPU T PARAMETER VARIATIONS
OPTIONS

SAME ANALYSIS APPLICABLE TO MANY PARAMETER FIELDS

.figure 17. A summary description of the unique features of the GE vtPAK Barnes scheme

(5) The numerical convergence parameter y, within the limits 0.2 <'y < 1.0 imposed

(determines the degree to which the interpolated field converges to the observed data

field, i.e., the amount of analysis detail).

By retaining the following objective features, which are unique features of the GEMPAK Barnes

program, a reliable objective analysis can be made without unnecessary subjective human intervention.

(1) The detail in the analysis is constrained by the data distribution as the only permitted On

(lilt can Ile inserted is one I;Irter Man An e (computed 0linifnLill) spacing between (1at,i

points, averaged over the data area).
f:

(2) Bounds are placed upon Ax by the data spacing, namely An/3 < Ax < On/2, to insure

proper representation of resolvable features.

(3) The weights of the Barnes low-pass filter are determined solely by the data spacing, and

are calculated internally with no usei control once d n has been Input, The most detailed

(i	 44
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analysis permitted is that one resulting from input of An = An c and y u 0,2, in which

case the 2 Anc wave is assigned a more 1 /e response amplitude,

(4) No user control of the number of passes through the data is permitted, as this number is

fixed at two based upon a mathematical analysis of the convergence properties of the

Barnes scheme (presented in the Appendix).

Use of an interactive, menu-type format and various cursor/display controls on a computer

video screen makes the GEMPAK Barnes scheme an easy and practical operation. The user , rips

through a series of menus (questions) displayed on the screen to help in the selection of input

parameters, quickly sees the data and grid display areas and the contoured, interpolated fields pre-

sented on a map, and can then alter the values of the parameters to test the effects upon the fields.

In addition, several quality control indicators are presented to him (,such as rms difference between
	 a

the interpolated and observed fields), Practicality is augmented by being able to use the same calcu-

lated weights for many parameter fields. Thus, a person with only a superficial knowledge of the

Barnes scheme can quickly obtain sound objective analyses that faithfully represent the data.

Two cases were presented to illustrate the versatility, objectivity, and practicality of the GP,M-

PAK Barnes scheme. The first, that of a uniformly distributed rawinsonde data sot, is one in which

An was assigned its calculated value An c, so that the 2 Anc wave was essentially filtered from the

gridded fields. It was demonstrated that when 0.2 is selected for they value, the maximum detail

for a given data spacing is realized in the gridded fields. Such a small y value is justifiable only when

the data are not substantially contaminated by errors and subgr drscale atmospheric processes (which

may unrealistically alias energy to larger wavelengths). In the case presented, the data were rather

good and y = 0.3 was chosen as the best analysis. The effects of varying the other input parameters

upon the gridded analysis were also shown.

In the other case, inclusion of satellite-derived cloud motion vectors with the rawinsonde data

resulted in a non-uniform data set. Use of An c would be inappropriate here, because it has yet to
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be determined what the smallest scale is at which such satellite data provide reliable information. It

is for such a reason as this that the user is allowed to intervene (by inputting a larger An than the

calculated one'i, with the result that a less detailed analysis is made.

The practicality of the GEMPAIC Barnes scheme is demonstrated by the fact that each of the

analyzed maps in the cases just presented were produced in hard copy form at intervals of 3 .4 min-

utes once the set of input parameters had been decided upon. For an experienced AOIPS computer

user, it takes one 1-2 hour session to generate the map display and go through the variations leading

to the final decision of which parameter values to use in future map analysis generation with the given

dazaset.

'7 , FUTURE PLANS

Several modifications to the GEMPAK Barnes scheme are both anticipated and possible with

x e. ent AQIPS computer resources, Upstream -downstream enhancement of the weighting parameter

k,,.p would be preferable in jet-like regirnes where isolines of the analyzed scalar tend to align with the

wind direction (Endlich and Mancuso, 1968), Use of the following modification

K o = K 0 (i + A cost ^)
	

(19)

has been suggested by Barnes ( 1973), where (3 • V/ V* 0 is the angle between the wind vector V and

th-,, vector that points between grid point and observation, and 'V*is a scaled wind speed with value

"it from 1 to about 3. In the case of hurricane observations, a modification of K'0  account for its

circular flow (as attempted by Bergman and Carlson (1975)) is desirable, perhaps based upon the

Rankine vortex model.

One highly desirable addition to the present package is a comprehensive, automated, :interactive

data editing/duality control routine that would allow the analyst the power to selectively alter or

onilt troublesome observations. Displays of data time series, time tendencies, map plots, hydrostatic

and superadiabatac checks, etc, are envisioned for this addition.
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Additional work is needed to more objectively determine what data spacing to use with not)-

uniformly distributed data sets, It is likely that the optimum An will be a function of the mpre-

sentativeness, or error magnitude, characteristic of the particular data type as well as the nature or

degree of non-uniformity of the data distribution. Map displays of both the influence radius and the

difference between observed and Interpolated values at actual station locations would help one see

the spatial variation in accuracy of the analysis due to non-utdiformity of the data distribution,

Access to a larger computer can make possible several other extensions to the core GI?MPAK

Barnes scheme: (1) use of time series data can enhance detail in the analysis by adding more data

iii space through a time-to-space conversion process (Barnes, 1973); (Z) a three-dimensional Barnes

analysis scheme would better serve the needs of dual Doppler radar meteorologists than a two-

dimensional one; 5 (3) finally, it is envisioned that two-dimensional gridded fields produced by the

GEMPAK Barnes scheme can be used as initial fields for three-dimensional mesoseale analysis

schemes that require "data at grid points," such as variational schemes that incorporate various physi-

cal constraints into the analysis,
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APPENDIX

The mathematical-numerical analysis presented here shows the Barnes (1973) scheme is abso-

lutely convergent, but that no significant improvement in filter response fidelity (steepness of

response curve) is obtained by making more than two passes through the data when 'y is chosen

sufficiently small. It is concluded that only one correction pass is sufficient to achieve acceptable

analysis convergence at resolvable wavelengihs,,

A. Convergence Proof

Convergence in an absolute sense occurs when the difference between the observed and analyzed

data fields vanishes as the number of passes through the data approaches infinity, or stated mathe-

matically

lim If(xay) - gN(x>y) j 0 1	(A1)
N->o	 r

where gN ( x,y) is the interpolated field obtained after N iterations (N+1 passes). It was shown in

the main text that a single application of the reduced weight parameter icy (2) upon the weight function

wm (1) results in the true response function D*(11) and the "difference field response function"

D I (6) at the second ("correction") pass. Weight functions at additional passes using successively

decreasing values of rc N , assuming that y is kept constant through all passes, are defined by:

KN = y"N-1 = 7Nko
	 (A2)

Application of these additional filter functions ,vsui^ . ;,_ "difference response functions" at each

pass given by

DN = D('YN) .	 (A3)

When the value chosen for y is less than unity, the response is further accentuated at each additional

pass, particularly at short wavelengths where the initial response D o is small.

It follows from (5) that the third pass (N=2) interpolated field is:

s0



g2 ^ S1 + (f - g l) D21	 (A4)

or upon substitution of the expression for g l from (5):

92 = go+(f - go) ( D 1 +D2 0 - 1) 1 )1.	 (AS)

Following this procedure one step further, one can easily show that on the fourth pass:

93 = 92+(f - 92)D3

i	 = go+( f - go) [D1 +D2 (1-D 1 )+D3 (1-D2)0-D 1 )]•	 (A6)

Accordingly, the general form of the equation describing the Nth pass interpolated field is:

(	 N	 i
9N = go +(f-go ) { D i + ^; [D i IT (1- Dj-1)]	 (A7)

`	 i=2	 j-2	 }
4.

To obtain the condition for convergence, this equation is isubstituted into (Al), resulting in:

N	 i

N

m
 
 (f - go) 1- 1 D 1 + E [Di 

r2 
(1- Dj- )]1 = 0.	 (A8)

>o	 t	 i=2	 j

Finally, because (f - go) is a fixed constant, ^;onvergence is attained when

^N = 1 - D i ,	 (A9)

where D 1 is given by (6) and

N	 i

^N = E [Di II (1 - Dj-l)] .	 2<N<-	 (A10)
i=2	 j=2

Before proceeding with the analysis of the convergence criterion, it -s important to understand the

relationship between it and the actual response function at the Nth iterative pass D N , defined by

f^110c 6'16' ^

^r

R
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Use of (A7) in (Al l) results in the simple relationship;

DN = Do + (1 - Da) (D I + ON) .	 2 <N<  oo ,	 (A 12)

Thus, convergence defined in the equivalent sense to (Al), namely

1im gN = f,	 (A13)
N-oo

demands that DN, as defined by (Al2), approach unity in light of criterion (A9).

The nature of the convergence properties of the Barnes (1973) objective analysis scheme can be

understood from an analysis of (A9), (Al 0), and (Al2). It can be shown analytically that (A1.0) is

convergent power series, and numerically that it converges to the value given in (A9). Applying

the ratio test for convergence to (A10), we have

N+1
DN+1 IT (1- Dj -1)

DN 2	 -- 
_ N+1 0 - D N) = L.	 (A 14)

DN 11 (1-Di-1)
j=2

The series (AIO) is absolutely convergently only if L<l. Substitution of (A3) into (A14) results in;

L - Do ,yN+l - 7N j (1- DoN) .	 (A15)

Recalling that D o is constant for any given choice of weight factor ►cp and has a value 0 <Do < 1,

then L must be a constant, as required for convergence. In the limiting case as N-+ —, both'YN+1->0

and 7N-+O for the range 0<-t<  l , so that L-}0. Thus, there is absolute convergence in the limiting

sense as N->-.

The results of calculating DN(Do ,7,N) on a programmable desk computer (Figure Al) indicate

that it converges rapidly to unity, as required. Barnes (1973) noted that the fastest restoration of

small wavelength amplitude suppressed in the first pass filtering-interpolation (D o) is obtained with
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the smallest values of y (Figure 2). For a choice of 7=0.20, the value of DN approaches 1.0 to

within ten dcimal places by the N = 6th iteration, whereas the same degree of convergence is

reached by N=9 when y=0.45 (Do = 0.0064). Convergence is obtained relatively quickly even for

y = 0.8 and is attainable in a finite time as long as y<l. Thus, the Barnes (1973) objective analysis

scheme converges to the value specified in (A9) when 0<y<1. It is noted that this scheme forces

the interpolated field to converge much more rapidly to the observed field than does the Barnes

(1964) scheme, as can be easily soon by comparing (A] 2) to oq cation (20) of that pager.

B. Fffect of Multiple Pass es Upon Filter Fidelity

Having thus verified that convergence is attainable, the question of whether making more than

two passes through the data can effect a significant enhancement of the small, but resolvable, waves

must be answered. For most purposes, it is desirable to suppress the response to a wave whose scale

does not exceed twice the average minimum data spacing (X<2An). Considering the Gaussian nature

to the response function at the first pass given by (4) and illustrated at additional passes by Figures

2 and Al, then the final response at this minimum resolvable scale should be limited by

DN(X=2An)<e 1. Under this constraint, high frequency "noise" generated by random errors and

energy aliased from shorter wavelengths to larger wavelengVas will be effectively filtered from the

analysis. The aliased energy can. result from both the data discretization process and the sampling

of the atmosphere when it exhibits such subgrid-scale events as thunderstorms.

Thus, the question can be rephrased as, for a given fixed weight parameter ico , whether the

steepness of the filter response curve at wavelengths larger than 2An can be appreciably increased

(filter fidelity enhanced) by making more than two passes under the constraint that the final

response at A=2An does not exceed a 1 . A comparison was made between the response curves

generated by a two pass, small y filter and those generated by multiple pass, larger y filters, since

the best filter fidelity is obtained when y is smallest (Figure 2).

The results of tic comparison (Figure A2) were obtained by employing the following procodure.

First, the 2An wavelength was defined in terms of known quantities. Since the weight parameter
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the Nth iterative pass DN , given by (A 12), with the ni merical convergence parameter y
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where X = 20n is defined by (A16) with Do (X = 2An) =0.0064, and D o (a 02An) is

calculated from (A18).
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ten must be Bold constant for the purpose of the comparison, and under this condition a singular

relationship exists between any wavelength X and the first pass response at that wavelength D,(^),

then a useful definition according to (4) would be:

	

2An - n^ °tso ^ In Do (2An)	 (A 16)

The actual value of KO need not be known to use this definition for 2An, since when a o is constant

X

	

In Do(2An)

2An	 In Do (X)(A17)

Thus, the effectiveness of making additional passes at larger y is examined as a function of multiples

of the 2An wavelength. Each curve in Figure A2 is the result of the search for that value of y which

gives DN(X=2An)=e` I (N>I), and then finding DN at other wavelengths by the following formula

derived from (A16),

	

DO(X) = [Da(2An)1 (2An/a)2	 (A18)

for integral values of (X/2An), inserting the result in (Al2) for the chosen y value, and plotting DN

against multiples of the 2An wave according to (A17). The selected value of DO (2An)=0.0064 used

in (A18) is that one which gives a second pass response of D*(2An)=0.37 = e—i when y = 0.2 (see

.igure A l). The value of y =0.2 is chosen to represent the two pass, small y case.

The results in Figure A2 show that when N = 1, 2, and 3 iterations through the data are made,

.he responses are 0.84, 0.92, and 0.96, respectively, at twice the minimum resolvable scale. Differ-

ences between these responses are no more than 12% and decrease at larger wavelengths. These

differences are further attenuated when an even smaller y value case is chosen as the basis for com-

parison with multiple pass filters. Thus, one correction pass using a small y value provides for a

highly acceptable degree of filter fidelity. Therefore, if one wishes to make the final objective

analysis fit the data as exactly as possible, the same result can be obtained by making a greater

number of interpolation passes (which is computationally wasteful and can cause greater "ballooning"

effects in data-sparse areas), or by using a small y value to reduce the correction pass influence radius.
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