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ABSTRACT

We investigate the stability of electrostatic Naves to

thermodynamic and electric potential gradients. The major virtue

of this analysis, other than its overall generality, is that

thermodynamic gradients drive instabilities even when the internal

electric field vanishes. This result does not emerge from previous

analyses because skewing of the distribution function was not

included in the dielectric.	 ,
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The role of low-frequency electrostatic instabilities in inhibiting

transport, within laser produced plasmas has been the focus of substantial

theoretical interest in the last few years. For example, ion acoustic and

electrostatic ion cyclotion instabilities are known to be driven by non-thermal

features of the electron distribution function associated with electric currents

and /or heat fluxes, 1-5 and can severely inhibit transport within a plasma. The

importance of transport inhib;Ition in 2strophysical plasmas is also being

recognized - a number of articles addressing current end newt flux limitations

by electrostatic instabilities during solar flares having also appeared in t>Im

astrophysical literaturo.6-10

Since transport inhibition in both laboratory and natural plasma systems

appears to be of universal importance, a general linear analysis msr;4M• close

attention. Despite numerous articles on this subject only inst0flities

directly dirven by inducorl electric fields have been considered. For ex8ople,

Kindel and Kenner have investigated the ion acoustic and electrostatic ion

cyclotron instabilities driven by resistive electric fields, Eresistive " 1JII'
in pl,ssmas for which the net current is non-zero. Another example is the no-

called "heat .lmt" instabilities which ire driven solely by a combination of

thermoelectric fields, Lthermo ' 0.71 r , and electron pressure electrice

fields, Rp P = 
V

Il pe , in plasmas for which the net current is zero.11-13

me

Under the zero current condition it is noted in these articles that the

internal electric field, E
II I
 adjusts such that EI)	 Ethermo - Ecpp-i,

resulting in a non-thermal feature in the electron distribution function. This

feature has been referred to as a "return current. i5 There is, of course,

'	 an additional non-thermal skewing of the siactron distribution function directly

related to the temperature and pressure &radients. However, unlike the

E II - field induced "return current", the skewing of the distribution function

by temperature and pressure gradients was not included in the plasma dielectric.
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Therefore, any resulting plasma instabilities are driven solely by internal

electric fields--regardless of the source of these fields (eg. temperature

and pressure gradients, induction fields, etc.). Strictly speaking then, "heat

flux" instabilities, as addressed in the literature, rxe not categorically

different from "current driven" instabilities since the driving agent in both

cases is an internal electric field.

In this note we include, in the plasma dielectric, the skewing of the

electron distribution function by temperature and pressure gradient8 and

investigate the resulting modifications to the stability threshold. It

should be stressed inat retention of the nonthermal skewing allows.us to

study a class of instabilities that are categorically different from those

driven by internal electric fields, viz., temperature and pressure gradient

instabilities, whte.,h can occur even if the internal electttc field is zero.	 i

Our analysis will also velax the zero current constraint which a-priori

defines the magnitude of the internal electric field,5 li , In.general, the

internal electric field does not adjust such that J 11 '.0. This is especially

true -Niring non-steady electrodynamic conditions when currents can be created

by induction. A determination of the self-consistent internal electric field

is highly model dependent, depending on a variety of sources of emf (eg.

temperature and pressure gradients, suprathermal particle beams, induction

fields, etc.) and thus cannot Le reasonably addressed in this note. There-

fore, in our analysis, the internal electric field will be explicitly treated

as an undetermined parameter, along with the temperature and pressure gradients,

in order to isolate the different sources of instability. The primary goal

of this analysis is to determine, as a function of the electron-ion temperature

ratio, the threshold electric field,temperaturc gradient, and pressure gradient
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above which ion-acoustic and/or electrostatic ion cyclotron waves are

destabilized. The major virtue of this analysis, other than its overall

generality, is the realization that under certain conditions, electron tem-

perature and/or pressure gradients can drive plasma instabilit {es even when

the internal electric i,.'Aeld vanishes. This important result does not emerge

from previous analyses because the evaluated plasma dielectric did not

include the gradient-induced skewing of the electron distribution function.

The steady state electron distribution function, fe(v, tE, ex, ep), is

modeled by a Maxwellian plus small non-thermal components associated with the

presence of an internal electric field, cg - EII/ED, a temperature gradient,

CT a t: , and a pressure gradient, e p - 
A	

meED' '

3
fe(v, CE , tT, ep) - (rrvte2 )_7 exp I-Ve()2(l + E ev %(v) cos A)^	 (1)

corresponding to the first two terms of a Legendre expansion in pitch angle, A.

'v .B
In equation (1), ve	 (2Te/%)k , v2 ' vll 2 + v12, v'll " W '

 at E, Tel, peg

ED is the Dreicer field ED - 41T ne e3 AnA/Te and where:

%(v) - m aw(e)2m+1 	
(2)

is the analytic form in the weak anisotropy limit which follows from an

expansion of the distribution function in Sonine polynomials (cf., Braginskii14).

The coefficients a= are obtained by a least squares fit to the results of

Cohen et a115 and Spitzer and Harm 16 and are tabulated in Table I. Figure 1

illustrates the structure of fe for the two cases which isolate the non-thermal

features associated with electric fields (ie, CE - 0.15, CT - ep - 0) and

temperature gradients (ie, ET - 0.15, CE - ep - 0). Note that for each case
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there is a region in velocity space for which dfe/bv > 0, a necessary con-

dition for instability. This occurs for the higher velocity electrons.

Furthermore, note that the current, JII , and heat flux, Q I) , are not

necessarily zero. This follows from the first and third velocity moments

of equation (1) which result in Onsager's relations, viz.,

1 II	 nave (5.28 eE + !x.28 9  + 3.70 CT) 	 (3)

Q II	 - 7 na me ve3 (5.60 cE + 5.60 c  + 6.77 CT) •	 (4)

Although the model electron distribution function used in this note does not

include: (1) Feedback from potentially- excited plasma turbulence and

(2) a runaway region in velocity space (i.e., for Vve > e 4), it is a

reasonable choice for marginally stable systems provided ` el << If

The dispersion function for electrostatic waves in a « 1 magnetoplasma
	 .

is:

D(w, k) = 1 + E	 Xa	 (5)
v=e,i

where the electron and ion susceptibilities are given by:

Xe(w,k) = k2— 12 1 + geZge) - E eat sO Amrar ge
De

m z (^e) + B. ge2m+1^1^ (6)

, J
and	 j

2^
Xi(w,) = 2 Pi	 E	 e-µi Im(µi) [1 + gi Z (gi - mgc i )]	 (7)

i

with ADe2 =	 , wp12 = 4..^ , ^a w , gci = knv
4TtmeMe	 k 

II Vol II i
a

Ili	 (klvi/f2i)2, t2i = 
eB , 

and where In is the modified Bessel function, while
mi c	 i

Z(g) is the plasma dispersion function. In deriving these susceptibilities

er
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equation (1) has been used for the electron distribution function and
fi . (nv12)-3/2 exp( -v2 /v,i2) for the ions. The electron susceptibility

coefficients, Amur and 311%, in equation (6) depend upon the electron distri-

bution through the aft in equation (2)(c.f. Morrison and Ionson17) and are

tabulated in Table T.

Following the usual procedure of .letting w -+w + it with r -, 0 0 the

dispersion function given by equations (5)-(7) results in the following zero

growth rate condition:

`	 3 /2
e a sar Root ^e 1 + /^'^ T.,a 	 m Pm(µi)e?cpC i-m;c,) 2

 + go 	 (a)
Ti

This condition, which follows from Im(D(w,t) .0 0, correspond.& to the zero

growth rate relation between -the magnitude of the electron distribution

function ' s nonthermal .features., characterized by Q - E so Aoa, and marginally
of

unstable waves of frequency w and wavenumber 1. In deriving equation (8) we

have used Se << 1 thereby allowing us to define a generalized instability

parameter, c -a convenient measure of the electron ' s tendency to drive eloetric

field and pressure and temperature gradient instabilities. The absolute

marginal stability condition is found by minimizing equation (8) for t with

respect to µa and ge for fixed mi/me and Te/Ti. The resulting absolute

marginal stability condition is given by:

To 3 /2
1 2D	 Ti	 5 ` ;	

13/%
	 1.1.1 1

To-	 4I' -'2	 D
T / 	 rl	 T ° 3 1 3C mi. e	 ^ i

for .01< Te s8
e: I	 Ti

Le

Ti a'e In 2 mi l ;XGe)]3 /2

T	 ^ /e mi 	 cqe 

1 _ 23 Ti
2 Te

for Te > 8
Ti

(9)

(10)
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3/2	 _
where D, • Ti ms ,tn 2(_) 

(T	
I'i	 , rn "' a W1 In`µi*)

To 1IIi	
f 

1	 iL

c* is the minimum value of c above which the'plasma is unstable to the electro-

static waves and	 µi*,-. 1.2 has been used1 7 .	 Note that equation (9) for

t* corresponds to an electrostatic ion cyclotron instability (which has the

lower threshold for the temperature ratios shown) whereas equation (10)

corresponds to an ion acoustic instability. These results are illustrated in

Figure 2.

The major emphasis in this Note has been to determine the form of a

general instability parameter, c* 2.6 (cE+tp) + 0.20 , cT as a function cf

Te where cE s Ei 	 sT - 	 , and cp `	 Pe . These results reduce to those of

	

E	 eED	 Me D
Ti	 D	 f

Kindel and Kennel (2) for CT cp s 0. However, since Porslund1l and Singer l2 did

not include gradient induced "skewing" of the electron distribution function in

the dielectric, their results are somewhat different than ours. Specifically,

for the zero net current condition, i.e.,, ejs # cp 	.71 CT, they find that

cF.S. ` - 1.85 CT 'while we find that a more accurate result is e* ` - 1.65 4T.

More importantly, however, our results indicate the possibility of

instability even when the internal electric field is zero (i.e. instability

can occur when CE ' cp ` 0 at e* - 0.20 CT). This interesti.g
I

result only emerges when one includes the gradient induced skewing of the

electrons in the dielectric and thus did not appear in previous analyses of

this problem.
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TABLE I. Electron distribution function and electron susceptibility coefficients

(c.f., equations (1), (2), and (8))

m emBwamP 	- amt AmEmAmp AMT HrA`amP BmT

0 0 0 2.6 0.20 •0.48 1.0

1 -7.84 4.75 -2.6 -0.20 -7.6 4.5

2 2.37 -3.62 8.4 -6.0 2.3 -3.5

3 -0.516 0.626 -2.5 3.8 -0.52 0.62

4 5.72x10-2 -7.67x10 -2 0.52 -0.66 5.6x10-2 -8.8x10-2

5 -3.17x10-3 3.42x10"3 -6.OXIO-2 7.8x 0"2 -3.2x10-3 3.440-3

6 7.04x10-5 -3.14x10-5 3.2x10"3 -3.4x10-3 7.240-5 -3.1x10-5

7 - -7.240-5 3.1x10-5 -
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FIGURE CAPTIONS

Figure 1. Electron distribution function profiles as ,a function of the

velocity component parallel to the magnetic field for several

values of the perpendicular component. The upper curve assumes

only an electric field is present, the lower that only a tempera-

ture gradient exists.

Figure 2. Instability threshold, 
4V 

as a function of electron to ion

temrarature ratio.
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