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SUMMARY 

The VANS successive approximation numerical method has been extended 

to the computation of 3-D, viscous, transonic flows in turbomachines. The 

principal development reported herein is the generation of a cross-sectional 

computer code, which conserves mass flux at each point of the cross-sectional 

surface of computation. 

In the VANS numerical method, the cross-sectional computation follows a 

blade-to-blade calculation. The VANS blade-to-blade code was developed 

earlier. 

Numerical calculations were made for an axial annular turbine cascade 

and a transonic, centrifugal impeller with splitter vanes. The subsonic 

turbine cascade computation was generated in blade-to-blade surfaces to 

evaluate the accuracy of the blade-to-blade mode of marching. Calculated 

blade pressures at the hub, mid, and tip radii of the cascade agreed with 

corresponding measurements. The transonic impeller computation was conducted 

to test the newly developed locally mass flux conservative cross-sectional 

computer code. Both blade-to-blade and cross-sectional modes of calculation 

were implemented for this problem. A triple point shock structure was 

computed in the inducer region of the impeller. In addition, time averaged 

shroud static pressures generally agreed with measured shroud pressures. 

The principal conclusions drawn from this research effort are two-fold: 

1. The blade-to-blade computation produces a useful engineering flow 

field in regions of subsonic relative flow. 

2. Cross-sectional computation, with a locally mass flux conservative 

continuity equation, is required to compute the shock waves in regions of 

supersonic relative flow. 



1.0 1NTFf)DUCTION 

The results reported herein are part of a continuing joint U.S.Army 

Propulsion Laboratory-NASA Lewis Research Center program concerned with 

numerical simulation of three-dimensional, viscous flow fields in turbomachines. 

Under Contracts NAS3-108016 and NAS3-20032 a blade-to-blade computer 

code, called "VANS/BB", and a cross-sectional computer code, called "VANS/CS", 

were developed. Starting from a quasi-three-dimensional flow field, such 

as that generated by the MEPIDL code (Pef.l), the VANS/BB and VANS/CS computer 

programs are applied respectively, to compute the 3-D. viscous flow in a 

turbomachine. 

The research repoxted in this submittal addresses advanced VANS/BB and 

VANS/CS code developments and applications of these codes to a subsonic 

axial annular turbine cascade and a transonic centrifugal impeller with 

splitter vanes. 

The principal code developments concern the employment of a continuous 

two-dimensinal interpolation scheme with VANS codes, a wedge force balance 

computational algorithm for the VANS codes and modification to the cross- 

sectional (VANS/CS) computer program. VANS/CS was modified to solve an exact 

continuity equation in each cross-sectional surface. Thus, the mass flux is 

conserved both locally and throughout the cross-section. In addition, the 

streamwise pressure gradient, which is the driving force for the cross-section 

computation, was modified to suit both supersonic and subsonic regions of the 

flow field. These modifications and their applications are the principal 

subjects discussed. Appendix A addresses the interpolation scheme, while 

Appendix B describes the wedge force balance algorithm. The mass flux conserva- 

tive VANS/CS code is described in the main text of the report. 



The report covers the following five topics: 

1. Background. 

2. Formulation of locally mass flux conservative numerical method. 

3. Subsonic axial turbine cascade computations. 

4. Transonic centrifugal impeller computations. 

5. Conclusions and recommendations. 

Dr. Theodore Katsanis helped develope the VANS blade-to-blade computer 

code, generated the zeroth approximate field for the axial cascade, and ran a 

portion of the axial cascade problem reported herein. Mr. Theodore McKain of 

the Detroit Diesel Allison Division of General Motors generated the zeroth ap- 

proximate field for the impeller computation and provided helpful suggestions 

during the course of this work. Mr. Dennis C. Chapman of the Detroit Diesel 

Allison Division of General Motors provided many helpful discussions and sug- 

gestions in the process of solving for the impeller plow field. Messrs. Cur- 

tis C. Walker and John Acurio of the Army Propulsion Laboratory provided many 

helpful suggestions and discussions for both the axial turbine cascade and 

centrifugal impeller-problems presented herein. 



2.0 SYMBOLS 

C 
P 

cv 

E 

H 

hX 

h 
Y 

hZ 

i - 

K 

k - 

x 
S 

M 

m 

n 

P 

R 
0 

r,R 

S 
X 

S 
Y 

T. 
lj 

t 

U 

Heat Capacity at Constant Pressure 

Heat Capacity at Constant Volume 

Specific Internal Energy 

Thermodynamic Heat Function or Enthalpy 

Metric of Transformation 

Metric of Transformation 

Metric of Transformation 

Unit Vector of Curvilinear Coordinate x 

Unit Vector of Rotating Cartesian Coordinate of Xl 

Unit Vector of Rotating Cartesian Coordinate of X2 

Unit Vector of Rotating Cartesian Coordinate of X 3 

Unit Vector of Curvilinear Coordinate y 

Index Specifying Streamlike-lines on blade-to-blade Surface 

Index Specifying Potential-like lines on blade-to-blade Surface 

Unit Vector of Curvilinear Coordinate z 

Von Karman's Constant 

Momentum 

Mass 

Time Index for Finite Difference equation 

Pressure 

Maximum Radius of the Impeller (at the exit) 

Radial Coordinate,which together withx 3form a Cylindrical 
Coordinate System 

Grid Velocity Component along x Direction 

Grid Velocity Component along y Direction 

Total Laminar Stress Tensor 

Time or Time-like-variable 

Particle Velocity Component along x Direction 
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U Particle Velocity Vector - 

% 
Speed of March along z Direction 

V Particle Velocity Component along y Direction 

V Critical Velocity Ratio 
Vcr 

W Particle Velocity Component along z Direction 

whw-u Velocity along z on a Galilean Frame which moves with a Constant 
L Speed Us along z with respect to the laboratory frame 

Curvilinear Coordinate along Azimuthal Direction 

Coordinate Axes of Rotating Cartesian Coordinate which Rotate about 
Axial Axis X 3 with Speed c3 

Coordinate Axes of Rotating Cartesian Coordinate which Rotate about 
Axial Axis X3 with Speed cQ 

Axial Coordinate 

Curvilinear Coordinate along Streamwise Direction (from inlet to 
discharge) 

Curvilinear Coordinate in Marching Direction 

Symbols in Greek Letters 

Heat Capacity Ratio Cp/Cv 

Boundary Layer Thickness 

Incompressible Displacement Thickness 

Eddy Viscosity 

Molecular Viscosity Coefficient 

Kinematic Viscosity Coefficient 

Rotation Velocity of Impeller 

Total Stress Tensor 

Reynolds Stress Tensor 

Pressure Blade Surface Meridional Angle 

Local Flow Angle Between Pressure Blade Surface and Meridional Plane 

Density 

Characteristic Time 

4 



CA Shearing Stress at Wall 

h Viscosity Coefficient for the Deviatoril Strain h =-$L4 

0 Azimuthal Coordinate Angle, together with r and X 3 form cylindrical 
coordinate sys tern 

(I;, fJJ Curvilinear coordinates 
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3.0 BACICGRODND 

The VANS numerical method is based on the combination of two different 

sets of principles developed for solving the parabolized steadyNavier- 

Stokes equations for three-dimensional viscous flow. These principles have 

evolved from two independent studies of the parabolized NavierStokes 

equations. The first set of principles were developed for parabolized 

Navier-Stokes computations for supersonic flow by Lubard and Helliwell 

(Refs. 2 and 3) and Schiff and Steger (Ref. 4). The second set of principles 

evolved from parabolized Navies-Stokes computations for subsonic duct flows by 

Patankas and Spalding(Ref. 5), Briley and McDonald (Ref. 6), and Moore and 

Moore (Refs. 7 and 8). 

For supersonic flow about a body-at-angle-of-attack (Ref. 3), it is 

assumed that in the viscous terms of the equations of motion,streamwise 

derivatives 8 4, 
are smaller than derivatives away from the body 

d % 1 and 

derivatives around the The resulting system of equations is called 

the parabolized NavierStokes equations (PNS) for supersonic flow. Supersonic 

PNS approximations can be achieved for body conforming coordinate systems (&,$2,x,). 

The equations are solved by marching in the 
61 direction with elliptic effects 

accounted for in the12 andG3 coordinates. 

An integral part of the supersonic PNS method is the evaluation of the 

pressure termdP 
e- 

in the streamwise momentum equation. For supersonic 

regions of the s low field, the tenndP can be backward differenced. Based 

G 
on streamwise pressure gradient differencing,the computation of shock-wave 

patterns have been an integral part of this method. However, where the local 

Mach number is near or less than unity, there is a possibility for departure 

solutions. Suppression of departure solutions requires proper numerical treatment 

Ofd,F 

OF1 

in subsonic regions. Thus, supersonic PNS methods are applicable to 

supersonic flows and may be extended to small local regions of subsonic flow. 
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For subsonic duct flows the Navier-Stokes equations are solved by iteration 

between a marching integration of the conservation relations through the flow 

field,and the solution of an elliptic pressure correlation equation (Refs. 8 

and 9). This method is referred to as the subsonic PNS technique. The 

solution proceeds from an initial approximation to the pressure Pa(.&l,g2,F3). 

The momentum equations are updated in the streamwise direction 61 throughout 

a given cross-sectional surface to determine the velocity components u lPU2 3 #U 

using the estimated pressure distribution Pa(gl;F2,x3). The equation of state 

is employed with either the rothalpy relation for rotating systems, or uniform 

stagnation temperature for stationary systems,to compute the specific internal 

energy and density. A three-dimensional elliptic pressure-correction equation 

is then solved, to obtain an improved estimate of the pressure distribution. 

The pressure-correction equation depends on the error in cross-sectional mass 

flow rate, which is evaluated for each iteration. The iteration proceeds 

until a mass flow rate with desired accuracy is obtained. The method of 

Reference 7 is limited to subsonic flow mainly because density variations are 

neglected in the formulation of the pressure-correction equations. This results 

in convergence problems for the iteration process at &ch numbers near and 

above unity. However, it is believed that even if the iteration method were 

made convergent at supersonic speeds, correct shock structure prediction would 

be beyond this scheme, due to the approximate nature of the continuity equation 

being solved. 

For mixed supersonic-subsonic flows , which occur in many impellers, one 

must either extend the 'supersonic PNS method into the subsonic domain, or 

revise the subsonic PNS analysis to include supersonic flow. It is doubtful 

that the subsonic PNS analysis can be extended to supersonic flows; hence, the 

supersonic PNS approach was adopted here. 

7 



The original VANS* successive approximation method has been described 

in detail previously and the integral equations solved cited (Refs. 9,lO,and 11). 

In the next four paragraphs the original method is briefly reveiwed. 

For illustrative purposes we start with a schematic of a radial impeller 

for a centrifugal compressor shown in Fig. 1. The machine is rotating clock- 

wise about the system's axis. Let us consider the darkened blading passage. 

The blade surface labelled "pressure surface" is like the windward side of 

an airfoil, while the blade surface, labelled "section surface" is like the 

leeward side of an airfoil. 

In the blade-to-blade mode of marching, the computation takes place on 

a blade-to-blade surface which is normal to the meridional planes of the machine, 

extends from inducer to the discharge, and moves from the hub to the shroud. 

The darkened surface of Fig. 1 is the hub blade-to-blade surface. The blade- 

to-blade method of marching is illustrated in the blade passage schematic 

shown in Fig. 2. The X1,X2, and X3 ' coordinates of Fig. 2 represent a left 

handed, rotating, Cartesian coordinate system and coordinates (x,y,z) represent 

a left-handed, rotating, orthogonal, curvilinear coordinate system. The 

z-direction is the marching direction with the calculation taking place in the 

(x,y) blade-to-blade surfaces. The (x,y) blade-to-blade surfaces move from the 

hub to the shroud of the impeller. As the surface moves from hub to shroud, 

elliptic terms of the finite difference equations are evaluated from the zeroth 

approximation: i.e., the solution of Katsanis and McNally (l), while parabolic 

terms are evaluated directly from data within the blade-to-blade surface. 

Elliptic terms have to do with hub to shroud derivatives, with respect to z, 

and all other terms are considered parabolic terms. 

*The letters VANS stand for Vectorized &symmetric Navier Stokes codes. - - 
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In the cross-sectional mode of marching we move down the channel, from 

the inducer to discharge, in cross-sectional surfaces normal to the hub and 

shroud of the system. A schematic of the blade passage with the cross- 

sectional surface indicated is presented in Fig. 3. The z-direction is now 

normal to the (x,y) cross-sectional surface of Fig. 3. The (x,y) cross- 

sectional surfaces move from the inducer to the discharge of the impeller. 

The elliptic and parabolic terms in the cross-sectional rode of marching 

are the reverse of what they were previously in the blade-to-blade mode. Now 

streamwise derivatives become elliptic terms, since z moves in the streamwise 

direction, and hub-shroud derivatives are parabolic terms. This permutation 

of elliptic and parabolic terms, resulting from alternating the direction of 

marching, produces rapid adjustment of the field in a few passes through the 

system. 

The blade-to blade march accounts for blade separations and upstream 

influence effects, while the cross-sectional march accounts for shroud scrubbing, 

blade leakage, hub effects and channel corner vortices. The cross-sectional 

mode of computation integrates the blade fluid mechanics with the effects of 

the shroud,hub and leakage. 

Integral equations for conservation of mass, x-momentum, y-momentum 

z-momentum and the internal energy relation are presented in Appendix A. 

These relations are applicable to blade-to-blade surfaces and cross-sectional 

surfaces. A permutation of the (x,y,z) curvilinear coordinates is all that is 

required to go from one surface to another. Derivations of these relations 

are presented in Ref. (9) and Ref. (10). 

To illustrate the elliptic source terms and parabolic terms of the 

equations of motion, the equation for mass conservation on a zone of the 



____.,. - ..- -..--. _ . __ , . . .-.- -... . ._ . . . . __- . . . . . .._. . . --.. 

blade-to-blade surface (Fig. 2) is presented below. 

(uz-w)9, . ndc =A d 

uZ f 
( (UZ-;)hxhydA 

dtA (1) 

where: 
9 = uhyhzL + vhxhzi (2) 

s= SxhyhzL + syhxhzi 

Eq. 1 represents the conservation of mass theorem in terms of area integrals 

for a zone in the (x,y) plane and line integrals evaluated on a curve C 

representing the zone perimeter in the (x,y) plane. Curvilinear effects are 

accounted for by the metrics h ,h ,hZ and their derivatives.* The term on the 
x Y 

right-hand-side of Eq. 1 is an elliptic source term and must be evaluated from 

flow field properties of the zeroth approximation. The second term on the left- 

hand-side of Eq. 1 is a parabolic term which is evaluated directly. The third 

term on the left-hand-side of Eq. 1 is associated with grid motion and the 

elliptic source term on the right-hand-side of Eq.1. However, it is evaluated 

directly to maintain the self-consistency properties of the numerical method. 

The VANS numerical method described above is applicable to both subsonic 

and supersonic flows. For subsonic flows the method produces quantitabely relevant 

flow field data (Ref. 1). However, it has been found that for the supersonic 

case, VANS calculated shock-waves are smeared out and generally weaker than they 

should be. This has been traced to the approximate continuity equation solved 

in the algorithm. Continuity Eq.1 has a source term on the righ-hand-side, 

which causes the shock-wave problems. 

*The variables of Eq. 1 are defined in Section 2.0. 
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In order to correct the continuity equation deficiency, a modified VANS 

cross-sectional code was generated. The modified code, designated "VANS/CSS/MC", 

numerically solves the exact continuity equation for steady, three-dimensional 

flow. The revised mass conservative VANS numerical method is the subject of 

Section 4.0. 

11 



4.0 FORMULATION OF LOCALLY MASS FLUX CONSERVATIVE NUMERICAL METHOD 

The locally mass flux conservative method herein is based on a combination 

of the principles upon which the supersonic and subsonic PNS techniques are 

based. In particular, the cross-sectional finite difference equations are 

formulated along the lines of the supersonic PNS method, and the blade-to- 

blade mode of computation is employed to determine the streamwise pressure 

gradient in regions of subsonic flow. The revised method is similar to that 

described in Section 3.0. It is composed of the blade-to-blade mode of 

marching, followed by the cross-sectional mode of marching. 

4.1 Blade-to-Blade Mode of Computation 

Integral equations of the blade-to-blade mode of computation are 

presented in Appendix C. These relations apply to a zone of the blade-to-blade 

surface of Fig. 2 and are the same as presented previously (Ref. 10). In fact, 

the blade-to-blade mode of computation is identical to that developed previously. 

This field is computed in two steps. 

1. The computation is conducted at the hub blade-to-blade surface 

until the pressure field has stabilized there. 

2. The blade-to-blade surface is then moved from hub to shroud 

using the unsteady analogy; i.e., the time variable in the Equations of 

Motion of Appendix A is related to the curvilinear distance variable z 

according to Eq.(4). 

The procedure for explicitly solving equations Cl to C6 of Appendix C 

is as follows: 

1. The approximate Continuity Equation(C1) is solved for the density 

field throughout the blade-to-blade surface. 

2. The Internal Energy relation (C2) and the Equation of State (C3) 

are solved simultaneously for the specific internal energy, pressure and stress 

tensor. 

12 



3. The xI yI and z momentum equations (C4,C5, C6) are solved, 

respectively, for (Mx, M , Mz) and (u,v,w). 
Y 

This mode of computation is 

weakly coupled to the pressure gradient in the hub-shroud direction, i.e.,dP. 
o't 

This is precisely what is required, since the hub-shroud pressure gradient 

is not well known from the quasi-3-D zeroth approximate field. This technique 

produces a satisfactory flow field in the blade-to-blade surface itself for 

subsonic flow. However,poor predictions of the hub-shroud component of velocity (w) 

result. This is because the hub-shroud component of velocity depends strongly 

on the pressure gradient in this direction, which is not well defined in the 

zeroth approximate quasi-3-D solution. 

4.2 Cross-Sectional Mode of Computation 

Integral equations for the revised cross-sectional mode of 

computation are presented in Appendix D. These relations are applicable to 

a zone of the cross-sectional shown in Fig.3.It is seen from the Appendices that 

the Continuity Eq. D2 differs from Continuity Eq. Cl. Eq. Cl contains a 

source term on the right hand side,while Eq. D2 is exact. In fact, the 

Internal Energy relation D5, Momentum equations Dl, D7, and D3 are all missing 

a source term in comparison to their respective equations C, C, and C. 

Furthermore, the dependent variables updated in Appendix D contain the stream- 

wise component of velocity w. 

The procedure for explicitly solving the equations of Appendix D is 

similar to that of supersonic PNS computation (Ref. 2). Computation is 

conducted by marching in the z direction in five steps. 

1. The z direction momentum flux is computed from Eq. Dl. This 

flux parameter, (Pw) z momentum' is strongly dependent on the stress gradient, 

A*= 1 d 
z dF 

of Eq. Dl. 

-13 



For supersonic flow regions this term is evaluated from the blade-to-blade 

pressure gradient of Section 4.1, corrected by its zeroth approximate pressure 

gradient, while for subsonic flow regions it is evaluated from the blade-to- 

blade pressure gradient of Section 4.1 directly. In addition, the pressure 

gradient is corrected in a manner similar to the Patankar and Spalding method 

(Ref. 5), to insure that mass flux is conserved from cross-section to cross- 

section. 

2. Continuity Eq. D2 is then solved for the mass flux (rw) continuity. 

3. Eqs. D3 and D4 are solved for the z component of velocity and 

density, respectively. 

4. The Internal Energy relation D5 and Eq. of state D6 are solved for 

the specific internal energy, pressure and stress tensor. 

5. The (x,y) momentum equations,D'7 and D8, are solved for u and v, 

respectively. 

This method strongly couples the streamwise pressure gradient to 

compptation of the flow field and considers both supersonic and subsonic regions 

of the flow. In addition, the mass flux is exactly conserved in the flow 

passage. The mass flux conservation property is illustrated in Appendix E. 

14 



5.0 CALCULATION OF THE FLOW FIELD IN AN AXIAL ANNULAR TURBINE CASCADE 

The VANS blade-to-blade code,i.e., VANS/BB, computed the flow field on a 

blade-to-blade surface which moved from the hub to the tip of the system. 

Calculations were conducted on the U.S. Army CDC 7600 computer in Huntsville, 

Alabama. To move the blade-to-blade surface from the hub to the tip of 

the cascade required 2.68 hours on the CDC 7600. In this period of computational 

time approximately unit characteristic time* passed. 

This section is comprised of the following six topics: 

1. 

2. 

3. 

4. 

5. 

6. 

Cascade geometry and input conditions. 

Finite difference meshes, boundary conditions, and initial 

conditions. 

Flow stabilization at hub. 

General flow field structure. 

Critical velocity ratio contours. 

Comparisons of calculated and measured surface pressures. 

5.1 Cascade Geometry and Input Conditions 

The turbine cascade geometry is comprised of an annular ring of 

36 vanes having a hub radius of 8.5 inches and a shroud radius of 10 inches. 

A schematic cross-sectinal view of the axial annular cascade experimental 

setup is shown in Fig. 4. The blade geometry and coordinates are shown in 

Fig. 5. The solidity at the mean radius, defined as the ratio of the axial 

chord to the pitch of the blades, is .93. This is similar to an axial fan. 

*Unit characteristic time is defined as the time it takes a particle to 
travel from the leading to trailing edges of blade. 

15 



Flow conditions for the cascade are as follows: 

1. v 
i-t 

= .231 
Vcf i 

2. v 

(-I 

= .778 
Vcr e 

3. lil = .31132 slug/set 

i 

\ where V 
Vcr'i 

represents the ratio of velocity to critical velocity upstream 

of the blades, 
i 
V I 
-i represents the ratio of velocity to critical velocity 
Vcr/ e 

far downstream of the blades at the mean radius, and & represents the mass 

flux passing through cascade. 

The principal objective of this calculation is to apply the existing 

blade-to-blade, computer code., i.e., VANS/BB, to the axial cascade problem. 

Application of the VANS/BB program to the cascade and comparison of calculations 

with experimental data (Ref.12) will demonstrate the validity of the unsteady 

analogy for subsonic flows. 

5.2 Finite Difference Meshes, Boundary Conditions and Initial Conditions 

Figs. 6 to 11 present finite difference meshes at the hub radius, 

mean radius and tip radius, respectively. Figs- 6 and 7 correspond to the hub, 

Figs. 8 and 9 correspond to the mean radius, and Figs. 10 and 11 correspond to 

the tip. All the meshes are comprised of 42 streamline-like-lines and 63 

potential-like-lines. Spacing is fine near the blade surfaces and coarse in 

the center of the channel. Figs. 7, 9, and 11 present blow-ups of the mesh at 

the blade trailing edge. The blunt blade trailing edge is clearly seen at 

the pressure surface in these figures. 

As the blade-to-blade surface moves from the hub to the tip of the 

system, the domain of computation increases. This is clearly seen in Figs. 6, 

8, and 10. The increased domain of computation is caused by the increasing 

radius of the system. Thus, the flow in the axial annular turbine cascade system 

is clearly three-dimensional. 

16 



The hub blade-to-blade surface finite difference mesh for the 

axial annular cascade problem is shown in Fig. 6. This mesh is comprised 

of 42 streamline-like-lines and 63 potential-like-lines, i.e., 2646 mesh 

points. The streamline-like-line spacing is fine in the vicinity of the 

blade surfaces and coarse in the center of the passage. In addition, it 

is seen from Fig. 6 that the upstream boundary of the domain of computation 

is approximately 90% of an axial chord upstream of the blade leading edge. 

Figure 7 shows a blow-up of the finite difference mesh at the blade trailing 

edge. The blunt trailing edge is clearly shown in the figure. 

Boundary conditions for this problem are as follows: 

1. At the upstream boundary the MERIDL particle velocities 

are prescribed. 

2. Along the lateral boundaries of the system, both upstream 

of and downstream of the blading, periodic boundary conditions are envoked. 

3. Along the blade surfaces themselves, no slip flow is enforced. 

4. At the downstream boundary of the region of calculation the 

MERIDL computed static pressure multiplied by the factor 1.1 is enforced. 

The MEFZDL quasi-3-D flow field (Ref.1) serves as the zeroth 

approximate solution and initial condition for the computation. Blade-to- 

blade computation does not consider hub or shroud effects. The MERIDL quasi 3-D 

field at the hub becomes the initial condition for the hub stabilization 

computation. 

5.3 Flow Stabilization at Hub 

The axial annular cascade problem stabilization process is very complex. 

Calculation starts with the hub MERIDL blade-to-blade field as the initial 

condition and develops from there. The blade-to-blade surface was moved at low 

speed, i.e., Uz = 5 fps, to stabilize the hub flow field. 

The upstream boundary location of the axial annular cascade, which 

was 90% of an axial chord upstream of the blade leading edge, produced a 
17 



stagnation pressure rise of 7.8 percent at the upstream boundary. However, 

the upstream critical velocity ratio was V 
1 i 

= .225, which was ,006 units 
Vi 

less than the input critical velocity ratioyr Therefore, the effects of this 

upstream boundary location were to primarily increase the incoming pressure 

level of the system, with little change to the basic system fluid mechanics. 

Hence, if the back pressure is increased, the calculations and measurements 

can be compared on a non-dimensional basis. The poor MERIDL zeroth 

approximate field is the principal reason for this interaction at the 

upstream boundary. 

The flow field calculation at the hub took place in two stages. 

First, the MERIDL pressure was imposed at the downstream boundary and the 

flow field was run to stabilization. As described above, this produced 

a stagnation pressure rise at the downstream boundary. Since the MERIDL 

pressure P3M was imposed downstream, the ratio of MERIDL pressure to upstream 

stagnation pressure was (P3M/Pto)M = ,594. This value was too low. The 

hub after-mixed-static-to-total pressure ratio should be (P3M/Pto)lYul = ,65 
. 

Therefore, the MERIDL pressure was multiplied by 1.10 to produce the proper 

downstream static-to-total pressure ratio. Based on the revised back pressure, 

the second stage of the computation was conducted. The second stage computation 

continued until the pressure field did not change on the blade surfaces. 

Figs. 12 and 13 show hub pressure surface and suction surface pressure 

distributions, respectively. The three distributions correspond to three 

characteristic time I=* in the computation. Unit characteristic time corresponds 

to the time it takes a particle to travel an axial chord. It is seen from 

Figs. 12 and 13 that the pressure variations at characteristic times r= 2.667 
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and T= 2.717 are almost identical. Two hundred cycles of computation exist 

between charaFteristic times 7 = 2.717 and r= 2.667. Therefore, the hub 

flow field was stabilized at characteristic time 7 = 2.717. 

5.4 General Flow Field Structure 

The general flow field structure for this turbine cascade is 

depicted in velocity vector plots at the hub, mean and tip of the system. 

Figs. 14, 16, and 18 show the velocity fields on blade-to-blade surfaces 

at the hub, mean and tip of the cascade, respectively. Figs. 15, 17, and 

19 show blow-ups in the discharge region at the hub, mean and tip, respectively. 

The blunt leading edge stagnation point flow is clearly seen at 

the hub, mean and tip in Figs. 14, 16, and 18, respectively. At the 

leading edge of the pressure surface, the flow actually becomes negative at 

the hub (Fig, 14). This negative pressure surface leading edge flow becomes 

more pronounced at the tip (Fig. 18). At the hub and tip of the system, a 

horseshoe vortex forms at the pressure surface leading edge (Ref. 13). Since 

the effects of the hub and tip walls are not included in the blade-to-blade 

solutions, no horseshoe vortex can be calculated. However, it is interesting 

to note that some negative flow is computed in this region, even in the blade- 

to-blade computation. 

A strong boundary layer flow is seen along the suction surface and 

pressure surface at the hub, mean and tip (Figs. 14, 16, 18). These boundary 

layers separate at the blunt trailing edge of the blade. The trailing edge 

separated region is clearly seen on the pressure surface in the velocity vector 

blow-up of Fig. 15, 17, and 19 at the hub, mean and tip of the system, 

respectively. Aft of the blade trailing edge a strong viscous near-wake is seen 

emanating downstream (Figs. 15, 17, 19). 
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5.5 Critical-Velocity Ratio Contours~ 

Contours of the ratio of the velocity to the critical velocity 

are presented in Figs. 20 to 25. Figs. 20, 22, and 24 present contour 

plots over the entire domain of computation at the hub, mean, and tip radii, 

respectively. Critical velocity ratio blow-ups at the discharge are shown 

in Figs. 21, 23, and 25. 

At the hub (Fig. 201, the flow expands from V ~1 .20 to V CCI 
Vcr Vcr 

However, near the suction surface islands of contour level V P .90 are 
Vcr 

present. Thus, the flow is not uniformly expanded to a critical velocity 

ratio near .80. Boundary layers are indicated on both the pressure and 

suction surfaces. The suction surface boundary layer is thicker than the 

pressure surface boundary layer. 

A strong near-wake flow is indicated at the hub in the critical 

velocity ratio blow-up of Fig. 21. The strong shear layer flow persists 

aft of the suction and pressure surfaces. Due to the separation at the 

trailing edge of the pressure surface, the shear layer aft of the pressure 

surface is thicker than the shear layer aft of the suction surface. Thus, 

a strong shear layer flow persists at an axial station of 19.05 percent of 

axial chord aft of the blade trailing edge. 

Fig. 22 presents a critical velocity ratio contour plot at the 

.80. 

an 

mean radius of the system. The flow now expands from V N .20 to V TV .70. 
Vcr Vcr 

Furthermore, there are large islands of V N .80 in a sea of contour 
Vcr 

level V N .70. As was discussed in Section 5.1, the measured critical 
Vcr 

velocity ratio far downstream of the blades at the mean radius was V = ,778. 
Vcr 

This value is consistent with the contour plot of Fig. 17. 
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Strong boundary layer flows are indicated along the blade surfaces 

(Fig. 221, as well as strong shear flows in the near-wake of the system (Fig. 23). 

The shear layer flow aft of the suction surface is thicker than the corres- 

ponding shear layer flow aft of the pressure surface trailing edge. 

Comparison of the contour plots at the hub and mean radii indicate 

that the flow is decelerating as the radius increases. This is. consistent 

with the static pressure measurements of Goldman and McLallin (Ref. 12). 

The after-mixed ratio of static pressure-to-upstream stagnation pressure 

varies from .65 at the hub to .725 at the shroud (Ref. 12). 

At the tip radius the cascade flow accelerates from V % .20 to 
Vcr 

V 
Vcr 

w .70 (Fig. 24). The tip radius expansion produces a nearby uniform 

flow at the critical velocity ratio V Q .70. There are no islands present 
Vcr 

in the discharge region at the tip radius (Fig.24). 

Comparison of Figs. 20,22, and 24 clearly shows the effects of 

increasing the backpressure with increasing radius. The peak speed at the 

hubis V % .90, the peak speed at the mean is V 
Vcr 

s .80, and the peak 
Vcr 

speed at the shroud is V %I .70. 
Vcr 

Strong boundary layer and wake flows are shown at the tip radius in 

Figs. 24 and 25, respectively. The separated pressure surface trailing edge 

flow produces a strong shear layer flow throughout the near-wake region (Fig.25). 

5.6 Comparisons of Calculated and Measured Static Pressures 

Figs. 26 to 28 compare calculated and measured surface pressures 

at the hub radius, mean radius, and tip radius, respectively, The solid 

line indicates the viscous VANS blade-to-blade calculation, the 

dashed line indicates the inviscid TSONIC blade-to-blade calculation 

(Ref. 14) and data points are the measured pressures of Goldman and McLallin 

(Ref. 12). The area between the solid curves of these figures represents 

the blade loading as predicted by VANS. 
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At the hub of the system (Fig. 26) the VANS prediction produces 

a good correspondence with data on the suction and pressure surfaces of the 

blade. The TSONIC prediction matches the pressure surface data quite well, 

except near the trailing edge where the inviscid pressure ratio returns to 

unity. On the suction surface, the TSONIC prediction is high at X3 "-'.OS and 

at the trailing edge. 

At the mean radius of the system (Fig. 27) the viscous VANS prediction 

and the inviscid TSONIC prediction are in excellent correspondence with data. 

However, since the TSONIC prediction is based on inviscid theory, it returns 

to a stagnation condition at the blade trailing edge. Thus, there is some 

trailing edge discrepancy in the TSONIC prediction. 

Fig. 28 compares the surface pressures at the tip radius. The 

viscous VANS prediction is in excellent agreement with these data of Goldman 

and McLallin. The inviscid TSONIC prediction is in good agreement with pressure 

data except at X3 s -06, where it is low, and at the trailing edge. 

On balance both the VANS and TSONIC predictions are generally in 

accord with the measurements. Since TSONIC assumes inviscid flow, it cannot 

compute the separation and wake flow at the blade trailing edge. 

The results of Section 5.6 clearly indicate that the VANS blade-to- 

blade prediction is in accord with the measurements of Goldman and McLallin (Ref.12). 

Thus, the unsteady analogy produces a satisfactory pressure field for the subsonic 

turbine cascade. However, the effects of the hub and tip end-walls are not 

yet included in the VANS prediction. To properly include end-wall effects 

a meridional mode of machining; i.e. VANS/MD, must be implemented, followed by 

the cross-sectional marching mode; i.e. VANS/CSM. This procedure would result 

in the computation of the horseshoe vortex as well as the remaining end-wall 

effects. 
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6.0 CALCULATION OF THE FLOW FIELD IN A TRANSONIC CENTRIFUGAL IMPELLER 

The VANS computer codes have been applied to solve for the three- 

dimensional viscous flow field in the blading passage of a Detroit Diesel 

Allison* centrifugal impeller design (Ref. 15). The computation included 

transonic relative flow with shocks, shroud leakage effects, .and inducer 

bleed slot effects. It is the objective of the section to describe the VANS 

blade-to-blade and cross-sectional computations. 

This report covers three principal topics: 

1. Schematic of impeller geometry and input conditions. 

2. Calculated blade-to-blade field. 

3. Calculated cross-sectional field. 

6.1 ImpelJer Geometry and Input Conditions 

The hub and shroud lines for the system are schematically indicated 

in Fig. 29. VANS evaluates the blade-to-blade and cross-sectional flow fields in 

the curvilinear coordinate system (x,y,z). For the blade-to-blade calculation 

streamline-like-lines represent traces of blade-to-blade surfaces and define 

curves of constant z-coordinate. Potential-like-lines, orthogonal to the 

streamline-like-lines, define curves of constant y-coordinate. The parameter 

x represents the angular coordinate. For the cross-sectional calculation the 

z and y coordinates permutate. 

Input conditions for the geometry of Fig.29 are as follows: 
. 

laboratory stagnation pressure PAti = 2116.22 psfa 

laboratory stagnation temperature Tlti = 518.7OR 

inducer tip critical velocity ration 1.22 

*This work funded by Detroit Diesel Allison Division of General Motors under 
Purchase Order No. HO 1321. 
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6.2 The Blade-to-Blade Flow Field 

Computation of the intermediate blade-to-blade flow field required 

six hours on the C@ER 176 computer.* The principal fluid mechanical effects 

calculated concern a leading edge suction surface separation at the hub and a 

trailing edge suction surface separation at the shroud. 

A velocity vector plot of the flow field in the neighborhood of the 

leading edge of the suction surface is shown in Fig.30. The blade-to-blade 

surface meridinal trace is located approximately 12 percent of the distance 

between hub and shroud. A vortex is clearly indicated at the leading edge 

of the suction surface. This vortex occupies about 15 percent of the blade 

passage at the leading edge. It is believed that its cause is a Gdegrees 

angle-of-attack with respect to the camber line leading edge. As the blade-to- 

blade surface moved towards the shroud, the angle-of-attack decreased to 2 

degrees. This resulted in attached flow at the suction surface leading edge 

near the shroud. 

A velocity vector plot of the discharge flow field in the neighborhood 

of the suction surface is shown in Fig.31. The blade-to-blade surface 

meridinal trace is located near the shroud in this case. A long narrow 

separated region exists along the suction surface. This region occupies about 

10 percent of the passage between the splitter pressure surface and suction 

surface. The separation point occurs near an inflection point in the suction 

surface shape. 

The blade-to-blade flow field, which contains leading and trailing 

edge suction surface separations, serves as the previous approximation to the 

cross-sectional mode of computation. Cross-sectional calculations are discussed 

*CRAY-1 computation presently requires two hours, while future calculations 
should require 2/3 of an hour. 
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in the next section. 

6.3 The Cross-Sectional Flow Field 

Computation of the cross-sectional flow field required 4.9 hours* 

on the CDC7600 computer. Numerical results are specified in terms of 

velocity vector plots, critical velocity ratio contours and static pressure 

contours. These plots are made on various cross-sectional surfaces of 

computation. 

Fig. 29 shows a schematic meridional view of the impeller including 

cross-sectional traces which have been analyzed. Each cross-sectional surface 

analyzed is labeled with the parameter'z'defined as follows: 

x= hub meridional distance from blade leading edge 
hub meridional dis+ance between leading and trailing edge of blade 

A parameter ?= .105 means the cross-sectional surface is located 10.5 percent 

of the way to the discharge; negative rvalues imply hub distances upstream of 

the blades. It is noted that the cross-sectional traces of Fig. 29 represent 

computational cross-sections which are not normal to the blading. Thus, these 

surfaces depict the angular component of velocity and portions of the radial 

and axial components. Secondary flows are difficult to visualize in these 

computational surfaces. 

The cross-sectional flow field is first described generally in terms 

of velocity vector plots, then critical velocity ratio and pressure contour plots 

are presented. The inducer shock structure is then discussed. Finally, shroud 

pressure comparisons are made to evaluate calculational accuracy. 

6.3.1 General Flow Field Structure 

Velocity vector plots are shown in the inducer region in 

Figs. 32 to 39. In each figure the suction surface is labeled, the pressure 

surface is labeled, the hub and shroud lines are indicated, and the direction 

*CF?AY-1 computation presently requires 1.6 hours,while future calculations should 
require half an hour. 
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of rotation is specified. The ordinate m represents distance along the cross- 

sectional traces of Fig. 29, while the abcissa 8 represents an arc length. 

Fig. 32 shows a velocity vector plot upstream of the blading 

(Z- = - .2183). The cross-sectional flow is basically undisturbed with the 

angular component increasing with radius. 

In Fig. 33 (z = .1053 of Fig. 29) the cross-section is completely 

within the blading. The flow separates at the suction surface near the hub, 

with a vortex normal to the plane of the paper. The low energy air in the vertical 

region is acted upon by the outward centrifugal force, producing an outward 

radial-like flow. This is clearly indicated in Fig. 33. 

Leakage flow at the suction surface tip and an oblique shock-wave 

emanating from the pressure surface are also indicated in Fig. 33. The oblique 

shock-wave impacts the shroud at about 25 percent of the total shroud distance 

between blades. 

The downward radial-like flow and fairly large angular components 

of velocity shown in the neighborhood of the suction surface (Fig. 33) are 

caused by the shape of the cross-sectional surface upon which the velocity 

vector plot is made. Since this surface is not normal to the blades, a portion 

of the streamwise velocity will show up. This will distort the secondary flow 

picture somewhat. To remedy the situation, data on the cross-sections of 

Fig. 29 should be interpolated onto a set of true cross-sectional surfaces. 

There was no time or funds to accomplish this under the present program. 

The flow field just upstream of the bleed slot is shown in 

Fig. 34 (2 = .1362). This field contains three fluid mechanical elements. 

1. A strong outward radial flow along the suction surface, 

caused by the centrifugal force in the suction surface boundary layer and 

separated region. 
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leakage. 

2. Inward flow at the suction surface tip, due to the 

3. An oblique shock-wave, whose trace impacts the shroud 

at approximately 40 percent of the blade-to-blade distance along the shroud. 

At 'i'= .1522 (Fig. 35), the cross-sectional flow field is 

shown just downstream of the bleed slot leading edge (see Fig. 29). Outward 

radial-like-flow-exists along the suction surface in the center of the cross- 

section. This is a continuation of what was described previously in Figs. 33 

and 34. Since the interior pressure increases as one moves from the suction 

to the pressure surface, bleed slot flux will enter the system near the suction 

surface and exit the system near the pressure surface. This is clearly 

indicated in Fig. 35. In addition, the bleed slot flow has affected the 

oblique shock trace, which was indicated in Figs. 33 and 34. This trace is no 

longer clearly defined. 

The velocity field shown in Fig. 36 (r= .1645) occurs when 

the cross-section is in the center of the bleed slot. Strong outward radial- 

like flow is indicated along the suction surface in the center of the cross- 

section, and a strong inward radial flow occurs at the bleed slot near the 

suction surface. Furthermore, the oblique shock wave trace of Figs. 33 and 34 

is not well defined in Figure 36. 

Fig. 37 (?= .185) represents the flow field just aft of the 

bleed slot trailing edge. A large cross-sectional vortex is indicated at the 

shroudsuction surface junction. This vortex is caused by the interaction of 

the strong inward radial flow from the bleed slot and the outward radial flow 

along the suction surface. The streamwise flow is also negative in the vertical 

region; hence, a true three-dimensional separation has occurred. 
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Figs. 38 and 39 present velocity vector plots of the cross- 

sectional flow field at z parameters of -440 and .959, respectively. 

Atr= ,440 (Fig. 38) the velocity field is shown on a 

cross-section in the radial portion of the impeller. Comparison of Figs. 37 

and 38, clearly indicates that the splitter vane greatly reduces the 

secondary flow distrotion in the Cross section. The radial cross-section 

of Fig. 38 represents a true cross-sectional surface with respect to the 

blades; hence, the secondary flows of the system are clearly seen. The 

centrifugal forces near the pressure and suction surfaces produce an outward 

secondary flow in the low energy boundary layers on these walls. 

In the backswept portion of the impeller, the cross-sections 

exhibit rake. Rake is clearly seen in Fig. 39. 

The introduction of rake clearly increases the secondary 

flow distortions in the system. Fig. 39 shows higher distortion levels 

than Fig. 38. Furthermore, at: = .959 the flow at the junction of the 

suction surface and shroud is separated. 

The velocity vector plots of Pigs. 32 to 39 have provided a 

qualitative picture of the inducer fluid mechanics. Principal elements of 

the fluid mechanics are fivefold: 

1. The leading edge suction surface flow separated near 

the hub and the centrifugal force produced a radial outward flow in this 

region. 

2. An oblique shock-wave emanated from the pressure 

surface. 

3. The bleed slot produced a strong radial inward flow 

near the suction surface. 

4. The interaction of the outward radial flow on the 

section surface and the inward bleed slot flow, produced a three-dimensional 
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vortex at the junction of the shroud and suction surface. 

5. The trailing edge suction surface flow is separated. 

6.3.2 Critical Velocity Ratio Contours 

Figs. 40 to 44 show contour plots of the critical velocity 

ratio on the cross-sections labeled %= .105, ,136, .185, ,440 and .954, 

respectively. These contour maps show the pressure surface on the left and 

suction surface on the right. This is opposite to the orientation of the 

velocity vector plots shown previously. Different plotting codes were employed 

to generate the contour maps. 

At2 = .105 (Fig. 40), the cross-section surface is just 

inside the blading. Boundary layers are seen on the hub, pressure surface and 

shroud. The suction surface separation is indicated near the hub by the 

thickening of the boundary layer there. A peak critical velocity ratio contour 

of W/WcrMl.4 is indicated in Fig. 40. Coalescence of the contour levels 

W/Wcrfil.4 and W/Wcr%l.3 defines the oblique shock trace; although, the 

definition is not sharp. 

On the cross-section just upstream of the bleed slot 

(Fig. 41, ?= .136), the region of contour level W/WcrrJ1.4 is smaller than 

the corresponding region of Fig. 40. The oblique shock-wave trace is nkoving 

towards the suction surface. In addition, boundary layers are indicated on 

the hub, shroud, and pressure surface. The thick layer along the suction 

surface represents the separated region near the hub and the effects of leakage 

inflow near the shroud. 

In Fig. 42 (g= .185), the critical velocity ratio contours 

are shown on a cross-section just aft of the bleed slot trailing edge. This 

contour map corresponds to the velocity vector plot of Fig. 37, which showed a 

vertical flow at the shroud-suction surface junction. The region of contour 

level W/Wcrm1.4 is now smaller than those of Figs. 40 and 41. 
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In what corresponds to the vertical region shown in the 

velocity vector plot of Fig. 37, the critical velocity ratio rapidly changes 

from W/Wcr dl.4 to approximately W/Wcrr.40. That is, a normal shock trace 

exists between the regions of W/Wcr/vl.4 and W/Wcr*.40. Through the normalshock 

the critical velocity ratio goes from W/Wcrwl.4 to WcrN.90. As the parameter 

m increases the sonic line departs from the normal shock front. At the shroud 

the shock front is oblique. The oblique shock transition produces a critical 

velocity ratio change from W/Wcr?L.4 to W/WcrMl.lO. The normal shock, oblique 

shock and sonic line are labeled in the figure. 

In summary, the critical velocity ratio contour plot of 

Fig. 42 depicts the interaction of a normal shock and an oblique shock. This 

interaction, which produces a slip stream, is commonly referred to as the 

"triple point." In gection 6.3.5 the triple point is further discussed. 

Figs. 43 and 44 present relative-to-critical ratio contours 

on cross-sections whose z parameters are.440 and .954, respectively. 

The velocity field in the radial portion of the system 

is indicated in Fig. 43. Fig. 43 $ = .440) shows boundary layers on the 

hub, shroud, main blade and splitter vane. Loading of the blade is clearly 

indicated in the lefthand passage (between the main blade pressure surface and 

splitter suction surface): the shroud critical velocity ratios near the 

pressure surface are lower than those near the splitter suction surface. A 

peak critical velocity ratio contour level of W 
wcr 

/V .80 exists in Fig. 43. 

Furthermore, the left and right hand passages have similar flws near the hub, 

but differ near the shroud. It is believed that the effects of the bleed slot 

injection are still present in the right hand passage. 

The velocity field in the backswept region of the impeller, 

which also indicates rake, is shown in Fig. 44. Flow field deceleration is 

indicated in a comparison ofFigs. 43 and 44. In the left hand passage of Fig. 44, 
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the average critical velocity ratio is W /J .40, while W r~ .80 exists in the 
Wcr Wcr 

corresponding passage of Fig. 43. Furthermore, the left hand passage of Fig. 44 

shows little loading near the hub and higher loading near the shroud. This 

result is in accord with the critical velocity ratio plot of Fig. 42 in the radial 

portion of the impeller. Finally, the right hand passage of Fig. 44 has greater 

distortion than the respective left hand passage. 

6.3.3 Pressure Patio Contours 

Contours of the ratio of static pressure P to laboratory 

stagnation pressure Pt 1 are shown in Figs. 45, 46, 47, and 48. 
i 

Fig. 45 shows the pressure field on a cross-section just 

inside the blading (2 = ,105). The trace of the oblique-shock emanating from 

the pressure surface is clearly indicated. This front corresponds to the front 

shown in the velocity vector plot of Fig. 34. The oblique shock impacts the 

shroud at approximately 25 percent of the distance between pressure and suction 

surface. The pressure ratio corresponding to the peak critical velocity ratio 

region W/WcrrJ1.4 of Fig. 40 is P/p 1 
r.40. Fig. 45 also shows that the blade 

ti 

loading is farily high; P/p 1 
el.10 near the pressure surface and P/p 1 N.40 

ti ti 
near the suction surface. 

At ;= .136 (Fig. 46) the oblique shock trace has moved 

closer to the suction surface than in Fig. 45. The trace impacts the shroud 

at the 40 percent blade-to-blade distance. Fig. 46 also shows high blade loading, 

p'2 ti 
Nl.10 near the pressure surface and P/s N .40 near the suction surface. 

ti 
Figs. 47 and 48 show contour plots of the ratio of static 

pressure P to the laboratory total pressure Sti. An examination of these figures 

shows that the static pressure of the system gradually rises from about P -1.6 

P 'ti' 

at G.440 to <l-*3.2 at: = .954. In the radial portion of the system 

(Fig. 471 the cross sections are strongly loaded near the shroud. Thiswas also 

indicated in the critical velocity ratio plots of Figure 43. 
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Finally, pressure contour plots in the right-hand- 

passage of Fig. 48 clearly indicate higher distortion than the corresponding 

contour plots in the left-hand-passage. 

6.3.4 Inducer Flow Field Shock Structure 

Based on the pressure and critical velocity ratio contour 

plots of Sections 6.3.2 and 6.3.3 the inducer shock structure was mapped on 

the shroud blade-to-blade surface. This section presents the mapped shock 

field and discusses the validity of this field in the inducer region. 

Fig. 49 shows the flow field structure in the impeller 

inducer region at the shroud. The abscissa represents meridional distance 

m = 
I 

hydy, while the ordinate represents the arc length $=;hxdx. The solid 

lines indicate the shock structure, while the dashed lines indicate traces 

of streamlines. 

The shock structure is composed of three elements. An 

oblique shock emanating from the pressure surface of the system, a normal 

shock at the leading edge of the bleed slot, and a reflected oblique shock. 

The mass injection causes the normal shock to form and propagate toward the 

suction surface. At the intersection of the oblique shock (emanating from 

the pressure surface) and the normal shock (at the bleed slot leading edge) a 

reflected oblique shock is seen propagating towards the pressure surface. 

This is the formation of the triple point. A slip stream, dividing supersonic 

and subsonic flow, is also seen emanating from the triple point. Schlieren 

photographs of a started cascade (Fig. 50) indicate a similar triple point 

interaction (Ref. 16). 

In order to evaluate the accuracy of the shock structure 

of Fig. 49, three items are discussed in the remainder of this section. They 

are as follows: 

1. Kantrowitz-Donaldson starting criterion for cascades. 

2. Theoretical calculation of the critical velocity 
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ratio just upstream of the geometric throat. 

3. Strength of oblique shock emanating from 

pressure surface. 

The Kantrowitz-Donaldson criterion (Ref. 16) for a cascade 

is given by the inequality below: 

(7) 

where: ( ) 1 = property just upstream of the throat of Fig. 49 

Q = pitch of blading 

S* = throat area 

qti = flow angle upstream of the cascade with respect to m axis of Fig.49 

P oth'Pol = pressure recovery across a normal shock at the throat of Fig.49 

Inequality 7 represents a necessary condition for an inlet to be started, 

Data for use in Inequality 7 are as follows: 

%dl = 7o" 

1 ) G = .5378 

(gw ) 
geometric 
= 1.22 

W 

( ir, = 1.40 
r-1 cr 

t “-1 4 co@& isentropic 
= (11, jw = .94509 

A 

P 0th 1 = .91319 

P 01 

Based on the above: 

= .5378 = 1.5725 
.3420 

Therefore, according to Inequality 7 the impeller inducer flow is started. 
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Based on the free-stream critical velocity ratio; i.e., 

---4= 1-22r 
and the free-streamline trace, the critical velocity ratio 

W cr 
(W 1 was estimated just upstream of the geometric throat. Fig. 49 shows 
Wcr 1 

the free-streamline traced through the leading edges of the pressure and 

suction surfaces. The free-stream to throat area ratio becomes 

Ati = ,857. 
Ath 

Isentropic expansion from free-stream to the throat produces a critical velocity 

ratio 

( w ) = 1.41 
w 1 cr 

and a static to laboratory total pressure ratio 

( p -1 = ,457 
Ptl 1 

i 

These values are in accord with the corresponding parameters of (Xl = 1.40 
W 

and (PI 
'* cr 

= .40 computed by VANS and discussed in Sections 6.3.2 and 6.3.3. 
Pt 1 1 

Therefore, based on the Kantrowitz-Donaldson criterion and 

the above theoretical analysis the calculated flow field must be correct just 

upstream of the throat of the system. 

To establish the strength of the oblique shock emanating 

from the pressure surface leading edge, it is assumed that two-dimensional 

oblique shock theory holds on the shroud blade-to-blade surface. The effective 

wedge angle made by the pressure surface leading edge with respect to the incoming 

flow isJ= 11.5O. Wave angle comparisons are made between strong shock theory, 

weak shock theory and VANS predictions in the forthcoming paragraph. 

Based on d= 11.5O and an incoming critical velocity ratio 

(L-1 ) = 1.41, the strong and weak shock wave angles @w are determined. These 
W cr 

angles are compared with the VANS calculated angle in Table 1. 



TABLE 1 

Comparison of Wave Angles from 
Theory and Calculation 

Computational 
Mode / (&, 1 1 d& / :::edggle 

Strong Shock 
Theory 

Weak Shock 
Theory 

VANS Calcula- 
tion 

1.41 

1.41 

11.5 

I 
11.5 

75.9 

57.0 

65.0 

It is seen from Table 1 that the VANS calculated wave angle 

lies between strong shock and weak shock theory. Thus, the calculated shock 

strength may be correct at the pressure surface leading edge. 

6.3.5 Shroud Pressure Comparisons 

VANS calculated averaged shroud pressures are compared with 

measurements and quasi-3-D predictions in Fig. 51. Curve 1 represents the VANS 

blade-to-blade calculation,Curve 2 represents the VANS cross-sectional calculation, 

the dashed line corresponds to the quasi-3-D prediction and these data points 

are measured pressures. Except for the data point just upstream of the bleed 

slot leading edge, the VANS cross-sectional calculation matches these measured 

data. The slightly higher measured pressure just upstream of the bleed slot 

could be attributed to the upstream influence effects of the injection. 

The lower blade-to-blade average shroud pressure distribution 

is a result of the approximate continuity equation employed in the blade-to-blade 

mode of computation. This technique produces valid pressures in the subsonic 

domain of the impeller. However, tti blade-to-blade pressure gradient is 

3.5 



corrected by the zeroth approximate field and used herein in supersonic 

domains of flow. !rhus * the approximate nature of the blade-to-blade 

computation is corrected in supersonic regions of the flow. 
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

The VANS successive approximation method has been extended to the 

computation of 3-D, viscous, transonic flow in turbomachines. A cross- 

sectional computer code was developed, which conserves mass flux at each 

point of the cross-sectional surface of computation. Numerical calculations 

were made for an axial annular turbine cascade and a transonic centrifugal 

impeller, with splitter vanes and inducer mass injection. 

The principal conclusions drawn from this research effort are twofold: 

1. The blade-to-blade computer code produces a useful engineering flow 

field in regions of subsonic relative flow. 

2. Cross-sectional computation, with a locally mass flux conservative 

continuity equation, is required to compute shock waves in regions of super- 

sonic relative flow. 

It is recommended that the axial annular turbine cascade problem be 

completed through meridional and cross-sectional modes of computation. 

Implementation of these additional computational modes may produce the 

horseshoe vortices that form on the hub and shroud end walls. Since (1) 

pressure data exist, (2) laser velocimeter measurements have been taken 

and more will be taken, and (3) flow visualization experiments have been 

conducted with this geometry,a quantitative assessment of the VANS computa- 

tions can be made. Hence, an evaluation of the VANS numerical capability 

can be made. Furthermore, the effects of the horseshoe vortex on the turbine 

cascade fluid dynamics can be assessed. A knowledge of horseshoe vortex 

fluid mechanical effects will eventually lead to more durable turbine designs. 
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APPENDIX'A 

CONTINUOUS INTERPOLATION SCHEME 

The interpolation scheme in the VANS computer codes was modified so 

that interpolated quantities of the previous approximation were continuous 

in the three dimensional domain of computation. The research was conducted 

in three phases. 

1. An analysis of the interpolation scheme previously embodied in VANS. 

2. Adaptation of a continous interpolation scheme for VANS codes. 

3. Modification of the interpolation scheme in the VANS computer codes. 

Interpolation Scheme Previously Embodied in the VANS/BB Computer Code 

After careful study of the VANS numberical data,it was found that the 

first order double Taylors series employed to interpolate data from the 

previous approximation field onto the mesh points in either a blade-to-blade 

or cross-sectional surface produced small osc$llations in interpolated quantities. 

Consider the point P in (x, y, z) curvilinear space. In each (x,y) blade- 

to-blade surface, the point P maintains the same axial coordinate (X3), metrics 

(hx, hy, hz), metric derivatives and axial 

coordinate drivatives 

addition the zeroth approximate MERIDL velocities (Ref. 1) at the blade surfaces 

‘Wp I Wtr), mean stream surface velocity and angular coordinates (Wm,dm, dm) and 

angular coordinates of the pressure and suction surfaces of the blade (Xg, Xtr) 

are specified along streamline-like lines in a meridional plane; hence, these 

data are independent of the angular coordinate x as well. Therefore, the three- 

dimensional interpolation in (x, y, z) space has been reduced to a two-dimensional 

interpolation in the (y, z) plane, The angular dependence of the velocity 

components away from the blades is introduced after the interpolation has taken 

place. 

The Previous procedure was to locate the zone in (y,z) space containing point 
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P (y,z) and interpolate using a first order double Taylor's series. Figure 51 

shows the point P located within the zone labelled (1, 2, 3, 4) in (y,z) space. 

Let Vl, V2, V3 be zeroth iterate properties, respectively, at points 1, 2, 3. 

Using a first order double Taylor's series we get the following relations. 

v1 =v +- p 5;) p (y,-Y) + p, Wz) (Al-1 

v2 = VP +$lp (y,-Y) + $glp (z2-z) (x2) 

v3 = VP +g@p (Y3'Y) + 6- 3, (Z,'2) (Aj) 

Equations (Al, A2, and A3) can be solved simultaneously for V . We then 
P 

repeat the procedure for points (2, 3, 4) ,(3, 4, 1) I and (4, 1, 2). The value 

of V at point P is then the arithmetic average of the above. 

The above procedure is continous as long as the point P remains within 

or on the boundary of zone (1, 2, 3, 4). However, as the blade-to-blade 

surface moves from hub to shroud the point P could cross the zone boundaries 

and be contained by another zone. After the point P crosses a zone boundary, 

two of the four end points of the new zone will be different. This introduces 

a discontinuity in the property V 
P 

after point P crosses a boundary. These 

discontinuities caused fluctuations in the source terms of the equations of 

motion, which in turn produced the small oscillations recorded in the annular 

cascade flow field. 

Revised Interpolation Scheme for VANS/BB 

The continuous interpolation scheme developed by Katsanis (Ref. 1) was 

selected for incorporation into the VANS computer codes. 

The Katsanis scheme for interpolation is quite simple for a rectangular 

zone (1, 2, 3, 4) located in the (y, z) plane containing the point P (y,z) 

(Figure 52b). We first form the numerical derivatives 

fz = (z-z,Mz,-2,) 

fy = (y-y2)/(Y1-Y2) 

(A41 

(A51 
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Linear interpolations are then conducted with f 
Y 

to find V at the points 1 

and 3 of Figure 52b. - 

v1 = v2 -I- fy (Vl - V2) (A6' 

v3 = v3 + fy 'V4 - V3' (A71 
- 

A linear interpolation with fZ determines the property V 
P 

V 
p 1 

= v + fz (V3 - Vl) 
- - 

(AW 

Equations AC, A?, and A8 can be combined to determine V directly in terms 
P 

of f 
Y 

and fz. 

VP= v1 fy (1-fz) + V,(l-fy) (l-fz) + V3fz(l-fy) + V4fyfz (A9) 

Equation A9 reduces to a linear interpolation along any boundary line of the 

zone (1, 2, 3, 4). Therefore, this linear, two-dimensional interpolation 

scheme produces a continuous interpolated variable V . 
P 

Although the above interpolation scheme is quite simple to implement, 

a fairly extensive coding effort was required to revise the VANS/BB 

computer code. 

Linear Continuous Interpolation Scheme Incorporated into Existing Versions of 

VANS/BB and VANS/CS Computer Codes 

The Katsanis 2-D linear continuous interpolation scheme, called "LININT", 

was coded and incorporated into the present versions of the VANS computer 

codes. The axial annular turbine cascade problem (Section 5.0) was utilized to 

debug this coding. 

Table 1 presents a comparison of interpolated zeroth approximation flow 

field quantities based on a Taylors series interpolation and the LININT 

interpolation. 

These data corresond to a blade-to-blade surface just above the hub, i.e., 

at a z coordinate of .4000000-05 radians, and at a point on the surface having 

an axial coordinate X 3 of .3051584-01 ft. and a radial coordinate hx of .708330 ft. 
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The M?BIDL blade-to-blade surfaces bounding the above blade-to-blade surface 

have z coordinates of 0.0 and .10236-01 radians, respectively. 

TABLE 1 

Comparison of Taylor Series and LININT Interpolation 

Variable Units 

W ft/rad 

hZ 
ft/rad 

ft,/ y ft/rad 

X3/ z ft/rad 

hx/ y ft/rad2 

hx/ z ft/rad2 

hy/ y ft/rad2 

hy/ z ft/rad2 

hz/ Y ft/rad2 

hz/ z ft/rad2 

X radians 

Xtr radians 

wm ft/sec 

m radians 

m radians 

W ft/sec 

Wtr ft/sec 

Schemes 

z = .40000000-05 radians 

x3 = .3051584-01 ft. 

hx = .708330 ft. 

Taylor Series Interpolation 

.833333 

.4884698 

.833333 

0.0 

0.0 

.4884698 

-.2095527-10 

0.0 

0.0 

-.1666937 

-.6356348-01 

.5189184-01 

.3761843+03 

-.3102789 

-.1328640-05 

.6185929+03 

.1337685+03 

LININT Interpolation 

.833333 

.4884698 

.833333 

0.0 

0.0 

.4884698 

-.2095527-10 

0.0 

0.0 

-.1666937 

-.6356348-01 

.5189184-01 

.3761844+03 

-.3102790 

-.1328640-05 

.6185930+03 

.1337686+03 
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IX is seen from Table 1 that corresponding quantities are almost 

identical. This is true because the point in question lies within the 

same zone in (y,z) space. Where the blade-to-blade surface moves to just 

above z = .10236-01 radians significant differences between the two 

methods of interpolation will exist. 
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APPENDIX B 

QUADRILATERAL WEDGE FORCE BALANCE 

In order to increase the accuracy and degree of continuity of dependent 

variables computed by VANS, the method of calculation of forces was revised. 

The force balance previously embodied in VANS considers the three dimensional 

computational element as an equivalent quadrilateral slab. Actually the 

geometric figure is a wedge shaped quadrilateral. A discussion of the original 

method of force calculation and the revised method of force calculation follows. 

The original method of force calculation considers the computational 

element as an equivalent quadrilateral slab. Let us consider the three 

dimensional element of Fig; 53 in Cartesian (X1,X2,X3) space with X3 being 

the axial direction. This figure shows half of the computational element, 

i.e., the z-curvilinear dimension is *=/a, and divides the (x,y) blade-to- 

blade surface labeled 2, 3, 4, 5, 6, 7, 8, 9 into four quadrilateral zones 

(solid lines) and one momentum zone (dashed line). The four quadrilateral 

zones are labeled by the letters a, b, c, and d, respectively. The momentum 

zone is labeled by the number 1. The stress tensor is defined in each of the 

quadrilateral zones end is labeled by the letter defining that zone. For example 

au is the stress tensor of quadrilateral zone a. To determine the force on 

Momentum zone 1, we simply contract the appropriate stress tensor with the 

areas of Momentum zone 1. This method of force calculation is second order 

accurate and internally consistent.* To the knowledge of the author of this 

submittal, this method of force calculation is the only one known that exhibits 

both properties. 

*Internal consistency implies that the finite difference continuity, momentum, 
and internal energy relations imply an exact finikdifference conservation of 
total energy equation. 
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According to the momentum equations of Reference 10, the three components 

of force for Momentum zone 1 are evaluated from the following integrals: 

F = n dc 
x1 l - 

(Bl) 

F 032) 

F (B3) 

where 

Gx = cxx hyhz L +yxy hx hz 1 

Q-J y = zxy hyhz i+6yy hx hz i 

cz = 'czx hyhz i +Gy hx hz 1 

and where c is the perimeter a, b, c, d of Fig. 53, n is a unit normal to 

the curve c, (hx, hy, hz) are the metrics of the transformation, (i,j) are unit 

basis vectors for curvilinear coordinates (x,y) respectively ( xx, yy) are 

normal stresses, and ( xy, zx, zy) are shear stresses. Equations (Bl) - (B3) 

define forces only within the (x,y) blade-to-blade surface. Contributions of 

the wedge face areas of Fig. 53 to the force acting on Momentum zone 1 are 

evaluated from different tcrmr; of the equations of motion. 

Under the approximation that the geometry of Fig. 53 is approximately 

a quadrilateral slab, the finite difference approximation to integral Equations 

(Bl) and (B2) becomes 

where 

El = - Ea - Fb + EC + Ed (B4) 

Fa=oa .II~~ - 
2 

Fb = 6b - 
2 * A-46 

EC = dc 
^ - A%6 

Fd=dd .i2% - 
2 
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and where the finite difference contribution of the wedge face areas to the 

force acting on Momentum zone 1, i.e. el, appears elsewhere. The vector area 

&24 
is defined in terms of the curvilinear coordinates x, y, z and their metrics 

as follows: 

$4 = 

where the upper term of the vector is the x component and the lower term of 

the vector is the y component. 

For the case where quadrilateral 1, 2, 3, 4 is a slab, i.e., the wedge 

faces are parallel, it can be shown that 

&24 = -2 'Sd + haa) 
- - 

Similar results apply for vector areas s6, A+,, and &28. However, quadrilateral 

1, 2, 3, 4 is not a slab and Equation(B5) is approximate, with the degree of 

accuracy becoming higher as one moves away from the axis of the system. In 

fact for the case where flaab=q=<= pressure (p), the force balance of 

Equation B4 coupled with the wedge face force terms in the equations of motion 

do not go identically to zero. A small force balance residual occurs which 

diminishes as one moves away from the axis. 

In order to rectify the above, the computational element was considered 

a quadrilateral wedge for purposes of formulating the force balance. A 

schematic of the three dimensional computational element illustrating the 

quadrilateral wedge force balance is showin in Figure 54. The quadrilateral 

force balance becomes 

036) 
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where 

cr Fa= a. - 

Eb=6b. 

Fc =bc . - 

Ed =ba . 

and where the areas 

(A 1; + Aal + 1 Awa) - -- 
4 

(Abl + Ala + 1 Awb) 037) - -- -- 
4 

(Alb + Acl + -- - 1 Awe) 
4 

(AlC + AdI + 1 Awd) -- - -- 
4 

Ald and Aal are defined in terms of the following vectors: -- - 

(B8) 

(B9) 

The upper terms of the above vectors represent the x component, while the 

lower terms represent they y component. Finally, the wedge face areas are 

defined in terms of the planar areas as follows: 

Awa=(-2(A +A +A 
Yld YE1 yc2 1) + Ay22- (B10) 

with similar expressions for iti, Awe, and Awd. Equation(B10) is based on the - - 

following geometric relations: 

A 
Yg = Ay49 (B11) 

A xld 
=A 

- x22 = Ax43 = A x33 

The points a, $, 2, and 2 were selected to satisfy Equations (Bll). 

For the case where 4 =T =< =s = p, the vector areas of Equations (B7) 

cancel, i.e., Ala + A+l = 0, etc. Thus, only the wedge face contribution to 
- - 

the force on Momentum zone 1 remain. 

5 = P/4 (Awa + Awb + &WC + Awd) U3121 - - 

Equation (Bl2) is in turn cancelled by the remaining wedge face terms in the 

equations of motion. Therefore, for the hydrostatic case the overall force 

balance for Momentum zone 1 is zero. 

The quadrilateral force balance logic was incorporated into the blade-to- 

blade VANS computer code and the cross-sectional VANS computer code. 
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APPENDIX C 

INTEGRAL CONTINUITY M3MENTUM AND SPECIFIC INTERNAL ENERGY RELATIONS IN 
GENERALIZED COORDINATES FOR BLADE-TO-BLADE MODE OF COMPUI'ATION 

Continuity 

& phxhydA + @(q-q,) ‘EdC 

- $- 
2 4 

pw’gpdC 

= - 1 &$?~'hxhydA 
"z 

where 

9s - =xhxhyi + Syhyhx.l 

2 = uzt 

w’-w-u 
z 

Internal Energy Equation 

(Cl) 

((3) 



where 

ah 
+ u 

I 

shy W-‘_Y.+*ax 
YY hy”, a2 XY 1 

ah ah 

I 

X 
V_Y+A-- 

- ‘xy hxhy ax hh ay 
x Y 

I 
ah 

- T VL+ 
YZ hzhy aY 

a(hxh > 

*EP 
- -bzzw + Ty7V + fZXUl aZ y 

3(h hZ) 
-[UxxU + Txyv + Tzxwl a: 

a(h h > 
-rayyv + TxyU + Tyz”l*- 

% - (“;x J 
‘IP = ry T;y) 

O Tzy 
TpzC T ( 1 0 

ZX 

% = uhxhzL + vhyhzi 

%z = whxhzi + \*hyhzi 
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Equation of state 

P = cd-11 
P" 

x-direction momentum 

& puhxhydA + ~Cp'J(g-gS)'ndC 

+ hhhAdA 
J AxYzx - j+~Puw'qS.~dC 

(C3) 

where 

cc41 

0 =a hhi+T 
px xx y z- 

hhi yx x 2 
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y-Direction Momentum 

(C5) 

+ ~x”yhZ~ydA + &y-ndC 

where 

ax ax 
1+x 2 

1 ay 2 aY 

u ah 
-xxx 

hh ay 
x Y 

a =hh~ 
pY 

i+hho 1 Y 2 xy- x = YY 

52 



z-Direction Momentum 

&jfWhXhydA + ~L'w(q-q,).ndC 
C 

+ h h h A dA- 
J AXYz= +jww'g;ndC 

2 

where 

T ah T ah a ah 
ll 

2 
=zL-y+*2- 

hXhZ = Y ay 

(C6) 

a =hh~ 
Qz 

i+hhr 2 y z zx- z x yz 
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APPENDIX D 

MASS FLUX CONSERVATIVE INTEGRAL EQUATIONS OF I@TION 

z-Direction Momentum 

Continuity 

i a -- .= 
‘z at A / hxhy:zzdA - &&c&ndC 

‘4 x y 
h h hznzdA+ 

1 -- “z E W’qndC = 0 

w = (ew 
Z momentum 

( 4p' continuity 

e 
= CP WI continuity 

W 

(Dl) 

(D2) 

(D3) 

tD4) 
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Internal Energy Equation 

1 a -- lPwhxhyEd~~~pE(q-q,).ndC ‘z at A C 

-4 ~Ew’q /ndC = 

Equation of State 

x-Direction Momentum 

x-direction momentum 

1 a 
- - j-~“~xhyU&&J w-+-q,) ‘CdC 
‘z at A C 

hxhyhzAxdA - Puv'q s*ndC 
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y-Direction Momentum 

ldjpwhxhy~dA~.pv(q-qs) 'z ae A 
*ndC 

C 

+ $hxhyhzAydA - &Jvw’qse~dC 

* = -- 
ut aat pxhyT=ydA 

-- 
iz pz y%3-“dc 

+ pxhyhznydA + ~py*~dC 
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APPENDIX E 

MASS FLUX CONSERVATION PROPERTY ILLUSTRATION 

In order to develop the mass flux-conservative VANS cross-sectional 

code, a sample problem was run for debug purposes. 

A centrifugal impeller was selected for which the blade-to-blade 

solution was known. Input conditions for the impeller are as follows: 

rotational speed = 33620 rpm 

tip speed = 420 m/set 

passage mass flux = .0410 kilograms/set 

The cross-sectional code was run two hundred cycles starting at a station 

upstream of the blading. Then the code was run through the blade leading 

edge starting from a station just upstream of the leading edge. Table 1 

presents the integrated passage mass-flux on two cross-sections upstream of 

the blading, a cross-section at the blade leading edge, and at two cross- 

sections just downstream of the blade leading edge. The parameter 3 represents 

the ratio of the distance along the hub to the hub distance between blades. 

Negative values represent distance upstream of the blades. 

TABLE 1 

Passage Mass-Flux Evaluation At Four Cross-Sectional Surfaces 

z 
. 
m 

Percent Difference 
From Incoming Mass- 
Flow 

-.3994 .0410 0 
-.3461 .0410 0 
-.0077 .0410 0 

.0988 .0406 -.97 

.1024 -0406 -.97 
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It is seen from Table 1 that for? parameters upstream of the 

blading the mass-flux is exactly conserved. As the cross-section passes 

through the blade leading edge, i.e., betweenz = -.0077 and 

z = .0988, the mass flux decreases by .97 percent. When the cross-section 
LI 

is within the blading, i.e., for 2 >.0988, the mass flux is again exactly 

conserved. The small mass flux deviation through the blade leading edge comes 

from the blade thickness. The lateral boundary between the suction surface 

blade tip and shroud is slightly different than the corresponding lateral 

boundary between the pressure surface blade tip and shroud. 
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Figure 1. Passage between blades in an impeller of a typical compressor. 
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Fig. 2 Schematic of rotor bladinq gassage illustrating 
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Fig. 3 Schematic of rotor blading passage illustrating 
cross-sectional mode of marching. 
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Figure 4 Schematic cross-sectional view of axial annular cascade experimental 
setup; outer annular radius of 10.0 inches and inner annular 
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Figure 5 Mean section vane geometry and 
coordinates for the axial annular 
cascade. 

63 



0.16- I 1 I I I I I 

!? 
-0. 

b k 
it 

-0. 

Pressure Surface 

Suction Surface 

0: 2 18 

m= /$d 
Figure 6 2 Finite Difference Mesh on the Hub B ade-to-Blade Surface: Mesh Comprised 

of 42 Streamline-like Lines and 63 Potential-like Lines. 

64 



0.0 

-0.0 

-0. 0 

k -0. 0 
,=L 
s- 

-0. c 

-0. 1 

-0. 1 

-0. 1 

c. c4 

1 

1 

4 

6 

6 

c 
5 
;ucti 
;urfa 

20 

Pressure Surface 
k 

0: .27 30 01.32 0: 35 
1 

0. 37 

Figure I Blow-up of Mesh in the Turbine Nozzle Discharge Region at Hub Radius 

65 



1 I I 1 I ’ -L 

0.12 

0.09 

0.04 

-0.00 

6 
x 

< 

” -0.04 
-5 

-0.16 
l 

.face 

1 I 1 I I I 
DO 0. 04 0. 08 0. 12. 0. 16 0.20 0.24 0: 28 

Figure 8 Finite Difference Mesh on the Mean Blade-to-Blade Surface; Mesh 
Comprised of 42 Streamline-like Lines and 63 Potential-like Lines. 

66 



x 
? 

4 
-0. 0 

-0. 1 

- - u. 0 4-- 

0. c 

-0. 0 

-0. 0 

6, 

8- 

Sl 
l- I 

6~- 
0. 

I I I I I I I 

Pressure Surface 

Figure 9 Blow-up of Mesh in the Turbine Nozzle Discharge Region at the Mean Radius. 

67 



0.12 

0.08 

0.04 

-0.00 

-0. 

-0. 

-0. 

-0. 

04 i 
08 

12 

16 1 -- 0.00 0.04 

Suction Surface 

--Z-O0 
I 

0.12 ----G-- ---z-i !8 

Figure 10 Finite #Difference Mesh on the Surface: Mesh Comprised 
of 42 Streamline-like Lines and 63 Potential-like Lines. 

68 



0. 01 

-0.06 

-0.11 

-0.13 

-0. 16, 
I 

action 
surface 

ii- 

- 
ire 

J- 
Surface 

-is-- 
--_ 

0: ----?----. 
0. 32 

- -.------ 
0. 35 ----ix 

p-J--- --..- 

Figure 11 Blow-up of mesh in the Turbine Nozzle Discharge Region at the Tip Radius. 

69 



2800 

2400 

2000 

1600 

A C = 2.717 

2 = = 2.667 

1 z = 2.344 

I 
0 

I 
.02 

I I I I I I 
.04 .06 .08 .lO .12 .14 

Axial Distance, X,Ft. 
Figure 12 Pressure Surface Pressure Distributions at ?hree Characteristic Times in the Cascade 

Calculation; a Characteristic Time 1: of Unity is the Time it Takes a Particle to 
Travel an Axial Chord. 



A T = 2.717 

2800 

2400 

2000 

1600 

1200 

800 

2 Y = 2.667 

1 c = 2.344 

f I I I I I I f 
0 .02 .04 .06 .08 .lO .12 .14 

Axial Distance, X3 Ft. 
Figure 13 Suction Surface Pressure Distributions at Three Characteristic Times in the Cascade 

Calculation; a Characteristic Time c of Unity is the Time it Takes a Particle 
to Travel an Axial Chord. 



0. 12 

0. ctl 

0. 04 

IO 
II 

-0. GO 
\ 
e- 
s 

-0.04 

-0. C8 

-0. 12 

-0. 16 

.- 

.- 

.- 

.- 

. 
L 

:: 

. 

. 

. 

. 

. 

. 
L 

. 
L. 
. . 

: 
. 
L 
. 
. 
L. 

:- 
. 
L 
. 
. 
. 

. 

. 

. 

: 

xi= *=s 
= = z-z.2 _ ..~ --- _ 
z ---=-=-:A __A..- -- = ___-a - 
=. -----‘=z 
_A = =-.- - 
_ A-.- ?-‘Z 

--- _ 4 =.&- 
. . - --“2 _ 4-- 
-A--- 
- -r---- 

I I I I I I I 
00. 0. 04 0. 08 0. 12. 0. .16 0.20. 0. 24 0. 20 

Figure 14 Velocity Vector Plot of the Stabilized Blade-to-Blade Flow Field 
at the Hub. 

72 



-0.01 

-0.04 

L 
II 

-0.06 

2 k 

z 

-0.06 

-0.11. 

-0.13. 

-0.16. 
c 

----1. -.----^I AL --I- -- --L.-.-.-.-L----- -A-.--.---. ---A.-.--- 

Pressure Surface 

action 
lrface 

!O 0:22 0:2s --ii!= 
m= 

.1-- 
0.30 

fh2 % 

-“---I-- 
--z-i2 0..35 0..37 

Figure 15 Blow-up of the Velocity Field in the Turbine Cascade Discharge Region 
at the nub. 

73 



% 

O* r------ 1 , , I 
I 

0.12 

0.08 I F: 
0.04 j 
-0.00 

I 
$ -0.04 

-0.08 

-0.12 

-0.16 l 

== 
L- 
L- 
-- 

-- 

L-b 

Me 

-4 

-d 

-4 
-A 
-4 
-- 
-4 

I I I I 
30 0.04 0.08 

I I 
0. 12 0. 

I 
16 0.20 0.24 0.28 

Figure 16 Velocity Vector Plot of the Blade-to-Blade Flow Field at the 
Mean Radius. 

74 



O..OA 

0.01 

-0.01 

-0. .c4 

-0.06 

2s 

s 
1’ -0. 06 

s 

-0.11 

-0.13 

-0. 16 

i __ Pressure Surface 

hc 
iur 

tic 
,fac 

I I I- 
20 0. 22 0: 25 0. 27 0. 

Figure 17 Blow-up of the Velocity Field 1% the Turbine Cascade Discharge Region 
at the Mean Radius. 

-----z 32 -2 35 

75 



i -0.08i 

i 

-0.16 _- c 
0. 00 

_-- --. 
--- -iriG---- 

I I I 
0. 08 0.12 0. 16 0. 20 0.24 

Figure 18 Velocity Vector Plot of the Stabilized Blade-to-Blade Flow Field 
at the Tip Radius. 

76 



0.01 

-0.01 

,-0.04 

-0. 06 

4 
e 

,, -0. 08 

-5 

-0.16 
t 

juctio 
jurfac 

ure 

61 

Surface 

27 
T----- a. 30 --- 

0. 32 
-.---I------ 

0. 35 

Figure 

m =Jhsd2 
19 Blow-up of the Velocity Field in the Turbine Cascade Discharge 

Region at the Tip Radius. 

77 

-l----- 
0. 37 



0. 16 

0. 12 

0. 08 

0. 04 

L 
II 

-0.00. 

‘2 
)r 

2 
-0. c4. 

Pressure Surface 

Suction Surface 

-0.08- 

-c. 12- 

-0. 1G 
0. 00. I 0. 04 0. I 

08 
I 

0. 12 
I 

0. 
I 

16 0. LO. 

I 

0.24 
I 

0. 28 

Figure 20 Contour Plot of the Ratio of the Velocity to the Critical Velocity 
on the Hub Blade-to-Blade Surface. 

78 



0.01 

-0.01 

-0.04 

?? 
-0.06 

> 
a- 

-0.08 

-0. 11 

-0.13 

-0. 16 

Pressure Surface 

b 90 

.90 
\ 90 

\ 141 L\!M 90 
B 90 

buction 
-I 7 

:urface 

Figure 21 Blow-up of the Ratio of the Velocity to the Critical 
Velocity at the Turbine Cascade Discharge Region at 
the Hub. 

79 



0.12 

0.00 

0.04 

-0.00 

-0.08 

-0.12 

-0. 16 

: LL< 
Preeeure Surface 

I I I I I 
0.08 0. 12 0. 16 0.20 0.24 0: 26 

Figure 22 Contour Plot of the Ratio of the Velocity to the Critical Velocity oti 
the Mean Blade-to-Blade Surface. 

80 



C..Ol 

I 

Pressure Surface 

0: 27 

Figure 23 VP Blow-up of the Ratio of the Velocity to the Critical Velocity at the 
Turbine Cascade Discharge Region at the Mean Radius. 

,’ 

81 



0.16 

0. 12 

0.00 

0.04 

-0.00 
-25 
3 11 -0. u4 

Y 

-0.08 

-0.12 

-0. 16 
( 

1 J I 3 I 1 1 

Pressure Surface 

Suction Surface 

I 
0: 

I 1 JO 0.04 00 0. 12 0: 16 0: 20 0. 24 0: 28 

Figure 24 Contour Plot of the Ratio of the Velkity to the Critical Velocity 
on the Tip Blade-to-Blade Surface. 

82 



-0. 06 

?s 
* ,, -0. 
Y 

-0. 

-0. 

-0. 

-1 .- 
Pressure Surface 

11 1 

sue 
Sur 

I3 1 

I 

16 I- 
0:22 

I 
0.20 0.25 -27 

I I 
0.3c 

1 
0.32 

I 
0.35 0.37- 

Figure 25 Blow-up of the Ratio of the Velo the Critical Velocity at the 
Turbine Cascade Discharge Region at the Tip Radius. 

83 



L 

1.2 

1.1 

1.0 

.s 

.8 

.7 

.6 

-- 
- - TSONIC Calculation (Ref.14) 

VANS Blade-to-Blade Calculation 

0 Suction Surface Data (Ref.12) 

A Pressure Surface Data (Ref.12) 

, - 

.4 

I I I I I I I I 

0 .02 .04 .O6 .08 .lO .12 .14 
Axial Station, X , ft. 

Figure 26 Comparison of blade pressure variatiks at the hub radius: Pto is the upstream 
stagnation pressure; hub radius Rhub= .7083 ft. 



-we- TSONIC Calculation (Ref.14) 

VANS Blade-to-Blade Calculation 

0 Suction Surface Data (Ref.12) 

A Pressure Surface Data (Ref. 12) 

I I I I I I I 
0 .02 .04 .06 . 0 *lO .12 .14 

Axial Station, X , ft. 
Figure 27 Comparison of blade pressure variations a s the mean radius; Pto is the upstream stagnation 

pressure; mean radius R = .7699 ft. 
mean 



1.2 

1.1 

1.0 

.8 

.7 

.6 

.5 

.4 

---- TSONIC Calculation (Ref.14) 

VANS Blade-to-Blade Calculation 

0 Suction Surface Data (Ref.12) 

A Pressure Surface Data (Ref.12) 

I I I I I I 1 t 

0 .02 .04 .06 .08 .lO .12 .14 

Figure 28 
Axial Station, X3, ft. 

Comparison of blade pressure variations at the tip radius; Pto is the upstream stagnation 
pressure; tip radius R tip 

= .8333 ft. 



- -Mm. 

bleed slot 
--lk-- 

L 
(-. 281) 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I yp;igfJ~~85) 

blade leading edge 

blade trai;ling edge I 3 
ii? . 

shroud \ 

Figure 29. Schematic of impeller geometry showing cross-sectional surfaces which have keen analysed; 
the parameter ??iis defined in parenthesis. 



I 
Rotation 

Figure 30. Velocity vector plot of the inducer flow field in the neighborhood of the suction surface; 
blade-to-blade surface trace in meridional plane located at 12 percent of the distance 
between the hub and the shroud. 
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Figure 38. Velocity vector plot of the cross-sectional flow field at a station 
corresDondinuto k? = .440. 
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Figure 44. Relative-to-critical velocity ratio contours on a cross-sectional 
located at non-dimensional station % = .954. 
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Figure 45. Pressure ratio contours on a cross-section located at a non- 
dimensional station 2 = .105. 
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non-dimensional station ?? = .136. 
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Figure 47. Pressure ratio contours on a cross-section located at a non- 
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Figure 48. Pressure ratio contours on a cross-section located at a non- 
dimensional station 7 = ,954. 
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(a) Unstarted flow regime. 

(b) started now regime. 

Fig. 50. Comparison Schlieren photographs for unstarted and 
. started cascades in the transonic flight regime. 
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Figure530 Schematic of three-dimensional computational element 
illustrating equivalent quadrilateral slab force 
balance. 

111 



7 6 5 

Figure 54. Schematic of three-dimensional computational element 
illustrating quadrilateral wedge force balance. 
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