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SUMMARY

The VANS successive approximation numerical method has been extended
to the computation of 3-D, viscous, transonic flows in turbomachines. The
principal development reported herein is the generation of a cross-sectional
computer code, which conserves mass flux at each point of the cross-sectional
surface of computation.

In the VANS numerical method, the cross—sectional computation follows a
blade-to-blade calculation. The VANS blade-to-blade code was developed
earlier.

Numerical calculations were made for an axial annular turbine cascade
and a transonic, centrifugal impeller with splitter wvanes. The subsonic
turbine cascade computation was generated in blade-to-blade surfaces to
evaluate the accuracy of the blade-to-blade mode of marching. Calculated
blade pressures at the hub, mid, and tip radii of the cascade agreed with
corresponding measurements. The transonic impeller computation was conducted
to test the newly developed locally mass flux conservative cross-sectional
computer code. Both blade-to-blade and cross-sectional modes of calculation
were implemented for this problem., A triple point shock structure was
computed in the inducer region of the impeller. In addition, time averaged
shroud static pressures generally agreed with measured shroud pressures.

The principal conclusions drawn from this research effort are two-fold:

1. The blade-to-blade computation produces a useful engineering flow
field in regions of subsonic relative flow.

2. Cross-sectional computation, with a locally mass flux conservative
continuity equation, is required to compute the shock waves in regions of

supersonic relative flow.




1.0 INTRODUCTION

The results reported herein are part of a continuing joint U.S.Army
Propulsion Laboratory-NASA Lewis Research Center program concerned with
numerical simulation of three-dimensional, viscous flow fields in turbomachines.

Under Contracts NAS3-108016 and NAS3-20032 a blade-to-blade computer
code, called "VANS/BB", and a cross-sectional computer code, called "VANS/CS",
were developed. Starting from a quasi-three-dimensional flow field, such
as that generated by the MERIDL code (Ref.l), the VANS/BB and VANS/CS computer
programs are applied respectively, to compute the 3-D, viscous flow in a
turbomachine.

The research reported in this submittal addresses advanced VANS/BB and
VANS/CS code developments and applications of these codes to a subsonic
axial annular turbine cascade and a transonic centrifugal impeller with
splitter vanes.

The principal code developments concern the employment of a continuous
two-dimensinal interpolation scheme with VANS codes, a wedge force balance
computational algorithm for the VANS codes and modification to the cross-
sectional (VANS/CS) computer program. VANS/CS was modified to solve an exact
continuity equation in each cross—-sectional surface. Thus, the mass flux is
conserved both locally and throughout the cross-section. In addition, the
streamwise pressure gradient, which is the driving force for the cross-section
computation, was modified to suit both supersonic and subsonic regions of the
flow field. These modifications and their applications are the principal
subjects discussed. Appendix A addresses the interpolation scheme, while
Appendix B describes the wedge force balance algorithm. The mass flux conserva-

tive VANS/CS code is described in the main text of the report.



The report covers the following five topics:

1. Background.

2. Formulation of locally mass flux conservative numerical method.
3. Subsonic axial turbine cascade computations.

4. Transonic contrifugal impeller computations.

S. Conclusions and recommendations.

Dr. Theodore Katsanis helped develope the VANS blade-to-blade computer
code, generated the zeroth approximate field for the axial cascade, and ran a
portion of the axial cascade problem reported herein. Mr. Theodore McKain of
the Detroit Diesel Allison Division of General Motors generated the zeroth ap-
proximate field for the impeller computation and provided helpful suggestions
during the course of this work. Mr. Dennis C. Chapman of the Detroit Diesel
Allison Division of General Motors provided many helpful discussions and sug-
gestions in the process of solving for the impeller plow field. Messrs. Cur-
tis C. Walker and John Acurio of the Army Propulsion Laboratory provided many
helpful suggestions and discussions for both the axial turbine cascade and

centrifugal impeller- problems presented herein.



SYMBOLS

Heat Capacity at Constant Pressure

Heat Capacity at Constant Volume

Specific Internal Energy

Thermodynamic Heat Function or Enthalpy
Metric of Transformation

Metric of Transformation

Metric of Transformation

Unit Vector of Curvilinear Coordinate x

Unit Vector of Rotating Cartesian Coordinate of Xl
Unit Vector of Rotating Cartesian Coordinate of X2

Unit Vector of Rotating Cartesian Coordinate of X3

Unit Vector of Curvilinear Cooxdinate y

Index Specifying Streamlike-lines on blade-to-blade Surface
Index Specifying Potential-~like lines on blade-to-blade Surface
Unit Vector of Curvilinear Coordinate z

Von Karman's Constant

Momen tum

Mass

Time Index for Finite Difference equation

Pressure

Maximum Radius of the Impeller (at the exit)

Radial Coordinate, which together with)(3form a Cylindrical
Coordinate System

Grid Velocity Component along x Direction
Grid Velocity Component along y Direction
Total Laminar Stress Tensor

Time or Time-like-variable

Particle Velocity Component along x Direction
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e

Particle Velocity Vector
Speed of March along z Direction
Particle Velocity Component along y Direction

Critical Velocity Ratio

Particle Velocity Component along z Direction

whw-U Velocity along z on a Galilean Frame which moves with a Constant

X

Q/-*Q,\o(

£ ¥ n

S

NS KA

Speed Uz along z with respect to the laboratory frame
Curvilinear Coordinate along Azimuthal Direction

Coordinate Axes of Rotating Cartesian Coordinate which Rotate about
Axial Axis X3 with Speed W

Coordinate Axes of Rotating Cartesian Coordinate which Rotate about
Axial Axis X3 with Speed W

Axial Coordinate

Curvilinear Coordinate along Streamwise Direction (from inlet to
discharge)

Curvilinear Coordinate in Marching Direction

Symbols in Greek Letters

Heat Capacity Ratio Cp/cv

Boundary Layer Thickness

Incompressible Displacement Thickness
Eddy Viscosity

Molecular Viscosity Coefficient
Kinematic Viscosity Coefficient
Rotation Velocity of Impeller

Total Stress Tensor

Reynolds Stress Tensor

Pressure Blade Surface Meridional Angle
Local Flow Angle Between Pressure Blade Surface and Meridional Plane
Density

Characteristic Time



Zw Shearing Stress at Wall
?\ Viscosity Coefficient for the Deviatoril Strainh =-—2_/U
3

e Azimuthal Coordinate Angle, together with r and X3 form cylindrical
coordinate system

(é:/ ’;,,;?,) Curvilinear coordinates



3.0 BACKGROUND

The VANS numerical method is based on the combimation of two different
sets of principles developed for solving the parabolized steady Navier-

Stokes equations for three-dimensional viscous flow. These principles have
evolved from two independent studies of the parabolized NavierStokes
equations. The first set of principles were developed for parabolized

Navier ~-Stokes computations for supersonic flow by Lubard and Helliwell

(Refs. 2 and 3) and Schiff and Steger (Ref. 4). The second set of principles
evolved from parabolized Navies-Stokes computations for subsonic duct flows by
Patankas and Spalding(Ref. 5), Briley and McDonald (Ref. 6), and Moore and
Moore (Refs. 7 and 8).

For supersonic flow about a body-at-angle-of-attack (Ref. 3), it is
assumed that in the viscous terms of the equations of motioq,streamwise
derivativesjé' are smaller than derivatives away from the bodyo%_z and
derivatives around the bOdy;%Eé' The resulting system of equations is called
the parabolized NavierStokes equations (PNS) for supersonic flow. Supersonic
PNS approximations can be achieved for body conforming coordinate systems (%i,$2j53).
The equations are solved by marching in the El direction with elliptic effects
accounted for in the$’2 and;3 coordinates.

An integral part of the supersonic PNS method is the evaluation of the
pressure term;fP in the streamwise momentum equation. For supersonic
regions of the &low field, the term¥ P can be backward differenced, Based
on streamwise pressure gradient diffézzgcinglthe computation of shock-wave
patterns have been an integral part of this method. However, where the local
Mach number is near or less than unity, there is a possibility for departure
solutions. Suppression of departure solutions requires proper numerical treatment
ofqﬁg in subsonic regions. Thus, supersonic PNS methods are applicable to

o

supersonic flows and may be extended to small local regions of subsonic flow.



For subsonic duct flows the Navier-~Stokes equations are solved by iteration
between a marching integration of the conservation relations through the flow
field, and the solution of an elliptic pressure correlation equation (Refs. 8
and 9). This method is referred to as the subsonic PNS technique. The
solution proceeds from an initial approximation to the pressure Pa(fi,?’,$g).
The momentum equations are updated in the streamwise direction El throughout

a given cross-sectional surface to determine the velocity components 4. ,4,/U

3

1’
using the estimated pressure distribution Pa(EE’EEfEE)' The equation of state
is employed with either the rothalpy relation for rotating systems, or uniform
stagnation temperature for stationary systems,to compute the specific internal
energy and density. A three-~dimensional elliptic pressure-correction equation
is then solved, to obtain an improved estimate of the pressure distribution.
The pressure-correction equation depends on the error in cross-sectional mass
flow rate, which is evaluated for each iteration. The iteration proceeds
until a mass flow rate with desired accuracy is obtained. The method of
Reference 7 is limited to subsonic flow mainly because density variations are
neglected in the formulation of the pressure-correction equations. This results
in convergence problems for the iteration process at Mach numbers near and
above unity. However, it is believed that even if the iteration method were
made convergent at supersonic speeds, correct shock structure prediction would
be beyond this scheme, due to the appruximate nature of the continuity equation
being solved.

For mixed supersonic-subsonic flows, which occur in many impellers, one
mﬁst either extend the supersonic PNS method into the subsonic domain, or
revise the subsonic PNS analysis to include supersonic flow. It is doubtful
that the subsonic PNS analysis can be extended to supersonic flows; hence, the

supexrsonic PNS approach was adopted here.



The original VANS* successive approximation method has been described
in detail previously and the integral equations solved cited (Refs. 9,10,and 11).
In the next four paragraphs the original method is briefly reveiwed.

For illustrative purposes we start with a schematic of a radial impeller
for a centrifugal compressor shown in Fig. 1. The machine is rotating clock-
wise about the system's axis. Let us consider the darkened blading passage.
The blade surface labelled "pressure surface" is like the windward side of
an airfoil, while the blade surface, labelled "section surface" is like the
leeward side of an airfoil.

In the blade-to-blade mode of marching, the computation takes place on
a blade-to-blade surface which is normal to the meridional planes of the machine,
extends from inducer to the discharge, and moves from the hub to the shroud.
The darkened surface of Fig. 1 is the hub blade-to-blade surface. The blade-
to-blade method of marching is illustrated in the blade passage schematic
shown in Fig, 2. The Xl'XZ’ and X3' coordinates of Fig. 2 represent a left
handed, rotating, Cartesian coordinate system and coordinates (x,y,2) represent
a left-handed, rotating, orthogonal, curvilinear coordinate system. The
z-direction is the marching direction with the calculation taking place in the
(x,y) blade-to-blade surfaces. The (x,y) blade-to-blade surfaces move from the
hub to the shroud of the impeller. As the surface moves from hub to shroud,
elliptic terms of the finite difference equations are evaluated from the zeroth
approximation$ i.e., the solution of Katsanis and McNally (1), while parabolic
terms are evaluated directly from data within the blade~to-blade surface.
Elliptic terms have to do with hub to shroud derivatives, with respect to z,

and all other terms are considered parabolic terms.

*The letters VANS stand for Vectorized Asymmetric Navier Stokes codes.



In the cross-sectional mode of marching we move down the channel, from
the inducer to discharge, in cross-sectional surfaces normal to the hub and
shroud of the system. A schematic of the blade passage with the cross-
sectional surface indicated is presented in Fig. 3. The z-direction is now
normal to the (x,y) cross-~sectional surface of Fig., 3. The (x,y) cross-
sectional surfaces move from the inducer to the discharge of the impeller.
The elliptic and parabolic terms in the cross-sectional mode of marching
are the reverse of what they were previously in the blade~to-blade mode. Now
streamwise derivatives become elliptic terms, since z moves in the streamwise
direction, and hub-shroud derivatives are parabolic terms. This permutation
of elliptic and parabolic terms, resulting from alternating the direction of
marching, produces rapid adjustment of the field in a few passes through the
system.

The blade-to blade march accounts for blade separations and upstream
influence effects, while the cross-sectional march accounts for shroud scrubbing,
blade leakage, hub effects and channel corner vortices. The cross-sectional
mode of computation integrates the blade fluid mechanics with the effects of
the shroud,hub and leakage.

Integral equations for conservation of mass, x-momentum, y-momentum
z-momentum and the internal energy relation are presented in Appendix A.
These relations are applicable to blade-to-blade surfaces and cross-sectional
surfaces. A permutation of the (x,y,z) curvilinear coordinates is all that is
required to go from one surface to another. Derivations of these relations
are presented in Ref. (8) and Ref. (10).

To illustrate the elliptic source terms and parabolic terms of the

equations of motion, the equation for mass conservation on a zone of the



blade-to-blade surface (Fig. 2) is presented below.
da - . nd
L (thhy +fe<a%) ndg
A o4

+1 fg(Uz—w)gs » ndC =_1 g_{ [Q (Uz_w)hxhydA_
A

U u

z C z (1)
where:

q= uhyhzl + thhzi (2)

gs= thyhz£-+ Syhxhzl (3)

z = Uzt. (4)

Eg. 1 represents the conservation of mass theorem in terms of area integrals
for a zone in the (x,y) plane and line integrals evaluated on a curve C
representing the zone perimeter in the (x,y) plane. Curvilinear effects are
accounted for by the metrics hx'hy'hz and their derivatives.* The term on the
right-hand-side of Eq. 1 is an elliptic source term and must be evaluated from
flow field properties of the zeroth approximation. The second term on the left-
hand—éide of Eq. 1 is a parabolic term which is evaluated directly. The third
term on the left-hand-side of Eq., 1 is associated with grid motion and the
elliptic source term on the right-hand-side of Eg.l. However, it is evaluated
directly to maintain the self-consistency properties of the numerical method.

The VANS numerical method described above is applicable to both subsonic

and supersonic flows. For subsonic flows the method produces gquantitabely relevant

flow field data (Ref. 1). However, it has been found that for the supersonic
case, VANS calculated shock-waves are smeared out and generally weaker than they
should be. This has been txaced to the approximate continuity equation solved
in the algorithm. Continuity Eq.l has a source term on the righ-hand-side,

which causes the shock-wave problems.

*The variables of Eq. 1 are defined in Section 2.0.
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In order to correct the continuity equation deficiency, a modified VANS
cross—-sectional code was generated. The modified code, designated “VANS/CS/MC",
numerically solves the exact continuity equation for steady, three-dimensional
flow. The revised mass conservative VANS numerical method is the subject of

Section 4.0.

11



4.0 FORMULATION OF LOCALLY MASS FLUX CONSERVATIVE NUMERICAL METHOD

The locally mass flux conservative method herein is based on a combination
of the principles upon which the supersonic and subsonic PNS techniques are
based, In particular, the cross—-sectional finite difference equations are
formulated along the lines of the supersonic PNS method, and the blade-to-
blade mode of computation is employed to determine the streamwise pressure
gradient in regions of subsonic flow. The revised method is similar to that
described in Section 3.0. It is composed of the blade-to-blade mode of
marching, followed by the cross-sectional mode of marching.

4.1 Blade-to-Blade Mode of Computation

Integral equations of the blade-to-blade mode of computation are
presented in Appendix C. These relations apply to a zone of the blade-to-blade
surface of Fig. 2 and are the same as presented previously (Ref. 10). 1In fact,
the blade-to-blade mode of computation is identical to that developed previously.
This field is computed in two steps.

1. The computation is conducted at the hub blade-to-blade surface
until the pressure field has stabilized there.

2. The blade-to-blade surface is then moved from hub to shroud
using the unsteady analogy; i.e., the time variable in the Equations of
Motion of Appéendix A is related to the curvilinear distance variable 2
according to Eq.(4).

The procedure for explicitly solving equations Cl to C6 of Appendix C
is as follows:

1. The approximate Continuity Eguation(Cl) is solved for the density
field throughout the blade-to-blade surface.

2. The Internal Energy relation (€2) and the Equation of State (C3)
are solved simultaneously for the specific internal energy, pressure and stress

tensor.

12



3. The x, vy, and z momentum equations (C4,C5, C6) are solved,

respectively, for (Mx, My, MZ) and (u,v,w). This mode of computation is
weakly coupled to the pressure gradieht in the hub-shroud direction, i.e.,&/P.

o2
This is precisely what is required, since the hub-shroud pressure gradient

is not well known from the quasi-3-D zeroth approximate field. This technique
produces a satisfactory flow field in the blade-to-blade surface itself for
subsonic flow. However,poor predictions of the hub-shroud component of velocity (w)
result. This is because the hub-shroud component of velocity depends strongly

on the pressure gradient in this direction, which is not well defined in the

zeroth approximate quasi-3-D solution.

4.2 Cross-Sectional Mode of Computation

Integral equations for the revised cross-sectional mode of
computation are presented in Appendix D. These relations are applicable to
a zone of the cross-sectional shown in Fig.3.It is seen from the Appendices that
the Continuity Eg. D2 differs from Continuity Eg. Cl. Eg. Cl contains a
source term on the right hand side,while Eq. D2 is exact. In fact, the
Internal Energy relation D5, Momentum egquations D1, D7, and D8 are all missing
a source term in comparison to theixr respective equations C, C, and C.
Furthermore, the dependent variables updated in Appendix p contain the stream-
wise component of velocity w.

The procedure for explicitly solving the equations of Appendix D is
similar to that of supersonic PNS computation (Ref. 2). Computation is
conducted by marching in the z direction in five steps.

1. The z direction momentum flux is computed from Eg. Dl. This

flux parameter, (va) is strongly dependent on the stress gradient,

z momentum’

JO = 1 g fhxhy 6’52_ a |, of Eq. DL.
Uz ¥ A

-13



For supersonic flow regions this term is evaluated from the blade-to-blade
pressure gradient of Section 4.1, corrected by its zeroth approximate pressure
gradient, while for subsonic flow regions it-is evaluated from the blade-to-
blade pressure gradient of Section 4.1 directly. In addition, the pressure
gradient is corrected in a manner similar to the Patankar and Spalding method
(Ref. 5), to insure that mass flux is conserved from cross-section to cross-
section.

2. Continuity Egqg. D2 is then solved for the mass flux (evﬂ continuity.

3. Egs. D3 and D4 are solved for the z component of velocity and
density, respectively.

4. The Internal Energy relation D5 and Eq. of state D6 are solved for
the specific internal energy, pressure and stress tensor.

5. The (x,y) momentum equations,D7 and D8, are solved for u and v,
respectively.

This method strongly couples the streamwise pressure gradient to
compptation of the flow field and considers both supersonic and subsonic regions
of the flow, 1In addition, the mass flux is exactly conserved in the flow

passage. The mass flux conservation property is illustrated in Appendix E.
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5.0 CALCULATION OF THE FLOW FIELD IN AN AXJIAIL ANNULAR TURBINE CASCADE

The VANS blade-to-blade code,i.e., VANS/BB, computed the flow field on a
blade~-to-blade surface which moved from the hub to the tip of the system,
Calculations were conducted on the U.S. Army CDC 7600 computer in Huntsville,
Al abama. To move the blade-to-blade surface from the hub to the tip of
the cascade required 2.68 hours on the CDC 7600. In this period of computational
time approximately unit characteristic time* passed.

This section is comprised of the following Six topics:

1. Cascade geometry and input conditions.

2. Finite difference meshes, boundary conditions, and initial
conditions.

3. Flow stabilization at hub.

4. General flow field structure.

5. Critical velocity ratio contours.

6. Comparisons of calculated and measured surface pressures.

5.1 Cascade Geometry and Input Conditions

The turbine cascade geometry is comprised of an annular ring of
36 vanes having a hub radius of 8.5 inches and a shroud radius of 10 inches.
A schematic cross-sectinal view of the axial annular cascade experimental
setup is shown in Fig. 4. The blade geometry and coordinates are shown in
Fig, 5. The solidity at the mean radius, defined as the ratio of the axial

chord to the pitch of the blades, is .93, This is similar to an axial fan.

*Unit characteristic time is defined as the time it takes a particle to
travel from the leading to trailing edges of blade.

15



Flow conditions for the cascade are as follows:

1. |V = ,231
Ver ji
2. |V = 78
Ver e
3. m = .31132 slug/sec
where{V | represents the ratio of velocity to critical velocity upstream
Ver' i \
of the blades,|{V ! represents the ratio of velocity to critical velocity
ver| e

far downstream of the blades at the mean radius, and m represents the mass
flux passing through cascade.

The principal objective of this calculation is to apply the existing
blade-to-blade, computer code,, i.e., VANS/BB, to the axial cascade problem.
Application of the VANS/BB program to the cascade and comparison of calculations
with experimental data (Ref.1l2) will demonstrate the wvalidity of the unsteady
analogy for subsonic flows.

5.2 Finite Difference Meshes, Boundary Conditions and Initial Conditions

Figs. 6 to 11 present finite difference meshes at the hub radius,
mean radius and tip radius, respectively. Figs. 6 and 7 correspond to the hub,
Figs. 8 and 9 correspond to the mean radius, and Figs. 10 and 11 correspond to
the tip. All the meshes are comprised of 42 streamline-like-lines and 63
potential-like-lines. Spacing is fine near the blade surfaces and coarse in
the center of the channel. Figs. 7, 9, and 11l present blow-ups of the mesh at
the blade trailing edge. The blunt blade trailing edge is clearly seen at
the pressure surface in these figures.

As the blade-to-blade surface moves from the hub to the tip of the
system, the domain of computation increases. This is clearly seen in Figs. 6,
8, and 10. The increased domain of computation is caused by the increasing
radius of the system. Thus, the flow in the axial annular turbine cascade system

is clearly three-dimensional.
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The hub blade-to-blade surface finite difference mesh for the
axial annular cascade problem is shown in Fig. 6. This mesh is comprised
of 42 streamline-like-lines and 63 potential-like-lines, i.e., 2646 mesh
points. The streamline-like~-line spacing is fine in the viecinity of the
blade surfaces and coarse in the center of the passage. In addition, it
is seen from Fig. 6 that the upstream boundary of the domain of computation
is approximately 90% of an axial chord upstream of the blade leading edge.
Figure 7 shows a blow-up of the finite difference mesh at the blade trailing
edge. The blunt trailing edge is clearly shown in the figure.

Boundary conditions for this problem are as follows:

1. At the upstream boundary the MERIDIL particle velocities
are prescribed.

2. Along the lateral boundaries of the system, both upstream
of and downstream of the blading, periodic boundary conditions are envoked.

3. Along the blade surfaces themselves, no slip flow is enforced.

4. At the downstream boundary of the region of calculation the
MERIDL computed static pressure multiplied by the factor 1.1 is enforced.

The MERIDL quasi-3-D flow field (Ref.l) serves as the zeroth
approximate solution and initial condition for the computation. Blade-to-
blade computation does not consider hub or shroud effects. The MERIDL dquasi 3-p
field at the hub becomes the initial condition for the hub stabilization
computation.

5.3 Flow Stabilization at Hub

The axial annular cascade problem stabilization process is very complex.
Calculation starts with the hub MERIDL blade~to-blade field as the initial
condition and develops from there. The blade-to-blade surface was moved at low
speed, i.e., Uz = 5 fps, to stabilize the hub flow field.

The upstream boundary location of the axial annular cascade, which

was 90% of an axial chord upstream of the blade leading edge, produced a
17



stagnation pressure rise of 7.8 percent at the upstream boundary. However,

the upstream critical velocity ratio was
v

less . than the input critical velocity ratio(.:r Therefore, the effects of this

v ) = ,225, which was .006 units
i

upstream boundary location were to primarily increase the incoming pressure
level of the system, with little change to the basic system fluid mechanics.
Hence, if the back pressure is increased, the calculations and measurements
can be compared on a non-dimensional basis. The poor MERIDL zeroth
approximate field is the principal reason for this interaction at the
upstream boundary.

The flow field calculation at the hub took place in two stages.
First, the MERIDL pressure was imposed at the downstream boundary and the
flow field was run to stabilization. As described above, this produced
a stagnation pressure rise at the downstream boundary. Since the MERIDL

pressure P was imposed downstream, the ratio of MERIDL pressure to upstream

3M
stagnation pressure was (P3M/Pto)M = ,594. This value was too low. The

M/Pto)AM = .65.

hub after-mixed-static-to-total pressure ratio should be (P3
Therefore, the MERIDL pressure was multiplied by 1.10 to produce the proper
downstream static-to-total pressure ratio. Based on the revised back pressure,
the second stage of the computation was conducted. The second stage computation
continued until the pressure field did not change on the blade surfaces.

Figs. 12 and 13 show hub pressure surface and suction surface pressure
distributions, respectively. The three distributions correspond to three
characteristic times z’in the computation. Unit characteristic time corresponds

to the time it takes a particle to travel an axial chord. It is seen from

Figs. 12 and 13 that the pressure variations at characteristic times 1'= 2.667

18



and T= 2.717 are almost identical. Two hundred cycles of computation exist
between charapteristic times 7‘= 2.717 and T‘= 2.667. Therefore, the hub
flow field was stabilized at characteristic time Tl= 2.717.

5.4 General Flow Field Structure

The general flow field structure for this turbine cascade is

depicted in velocity vector plots at the hub, mean and tip of the system,

Figs. 14, 16, and 18 show the velocity fields on blade-to-blade surfaces

at the hub, mean and tip of the cascade, respectively. Figs. 15, 17, and

19 show blow~ups in the discharge region at the hub, mean and tip, respectively.

The blunt leading edge stagnation point flow is clearly seen at
the hub, mean and tip in Figs. 14, 16, and 18, respectively. At the
leading edge of the pressure surface, the flow actually becomes negative at
the hub (Fig, 14). This negative pressure surface leading edge flow becomes
more pronounced at the tip (Fig. 18). At the hub and tip of the system, a
horseshoe vortex forms at the pressure surface leading edge (Ref. 13). Since
the effects of the hub and tip walls are not included in the blade-to-blade
solutions, no horseshoe vortex can be calculated. However, it is interesting
to note that some negative flow is computed in this region, even in the blade-
to-blade computation.

A strong boundary layer flow is seen along the suction surface and
pressure surface at the hub, mean and tip (Figs. 14, 16, 18). These boundary
layers separate at the blunt trailiﬁg edge of the blade., The trailing edge
separated region is clearly seen on the pressure surface in the velocity vector
blow-up of Fig. 15, 17, and 19 at the hub, mean and tip of the systemn,
respectively. Aft of the blade trailing edge a strong viscous near-wake is seen

emanating downstream (Figs. 15, 17, 19).
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5.5 Critical-Velocity Ratio Contours

Contours of the ratio of the wvelocity to the critical velocity
are presented in Figs. 20 to 25. Figs. 20, 22, and 24 present contour
plots over the entire domain of computation at the hub, meén, and tip radii,
respectively. Critical velocity ratio blow-ups at the discharge are shown
in Figs. 21, 23, and 25.

At the hub (Fig. 20), the flow expands from V _~ .20 to V ~ ,80.

Ver Vcr
However, near the suction surface islands of contour level V. _r~ .90 are
Ver

present, Thus, the flow is not uniformly expanded to a critical velocity
ratio near .80. Boundary layers are indicated on both the pressure and
suction surfaces. The suction surface boundary layer is thicker than the
pressure surface boundary layer.

A strong near-wake flow is indicated at the hub in the critical
velocity ratio blow-up of Fig. 21. The strong shear layer flow persists
aft of the suction and pressure surfaces. Due to the geparation at the
trailing edge of the pressure surface, the shear layer aft of the pressure
surface is thicker than the shear layer aft of the suction surface. Thus,
a strong shear layer flow persists at an axial station of 19.05 percent of an
axial chord aft of the blade trailing edge.

Fig. 22 presents a critical velocity ratio contour plot at the
mean radius of the system. The flow now expands from V. ~ .20 to _V_ «~ .70,

Ver Vcr

Furthermore, there are large islands of vV ~ .80 in a sea of contour
Vecr
level Vv ~ ,70. BAs was discussed in Section 5.1, the measured critical
“Ver
velocity ratio far downstream of the blades at the mean radius was _V_ = .778.
Vecr

This value is consistent with the contour plot of Fig. 17.
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Strong boundary layer flows are indicated along the blade surfaces
(Fig. 22), as well as strong shear flows in the near-wake of the system (Fig. 23).
The shear layer flow aft of the suction surface is thicker than the corres-
ponding shear layer flow aft of the pressure surface trailing edge.
Comparison of the contour plots at the hub and mean radii indicate
that the flow is decelerating as the radius increases. This is. consistent
with the static pressure measurements of Goldman and McLallin (Ref, 12).
The after-mixed ratio of static pressure-to-upstream stagnation pressure
varies from .65 at the hub to .725 at the shroud (Ref. 12).

At the tip radius the cascade flow accelerates from V -~ .20 to

Ver
v n .70 (Fig. 24). The tip radius expansion produces a nearby uniform
Ver
flow at the critical velocity ratio V n .70, There are no islands present

Ver
in the discharge region at the tip radius (Fig.24).

Comparison of Figs. 20,22, and 24 clearly shows the effects of
increasing the backpressure with increasing radius. The peak speed at the
hub is V ~ .90, the peak speed at the mean is V n ,80, and the peak

Ver Ver
speed at the shroud is V n .70,
Ver
Strong boundary layer and wake flows are shown at the tip radius in

Figs. 24 and 25, respectively. The separated pressure surface trailing edge

flow produces a strong shear layer flow throughout the near-wake region (Fig.25).

5.6 Comparisons of Calculated and Measured Static Pressures

Figs. 26 to 28 compare calculated and measured surface pressures
at the hub radius, mean radius, and tip radius, respectively. The solid
line indicates the viscous VANS blade-to-~blade calculation, the
dashed line indicates the inviscid TSONIC blade-to-blade calculation
(Ref. 14) and data points are the measured pressures of Goldman and McLallin
(Ref. 12). The area between the solid curves of these figures represehts
the blade loading as predicted by VANS.
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At the hub of the system (Fig. 26) the VANS prediction produces
a good correspondence with data on the suction and pressure surfaces of the
blade. The TSONIC prediction matches the pressure surface data quite well,
except near the trailing edge where the inviscid pressure ratio returns to
unity. On the suction surface, the TSONIC prediction is high at X3 V.08 and
at the trailing edge.

At the mean radius of the system (Fig. 27) the viscous VANS prediction
and the inviscid TSONIC prediction are in excellent correspondence with data.
However, since the TSONIC prediction is based on inviscid theory, it returns
to a stagnation condition at the blade trailing edge., Thus, there is some
trailing edge discrepancy in the TSONIC prediction.

Fig. 28 compares the surface pressures at the tip radius. The
viscous VANS prediction is in excellent agreement with these data of Goldman
and McLallin. The inviscid TSONIC prediction is in good agreement with pressure

data except at X, v .06, where it is low, and at the trailing edge.

3
On balance both the VANS and TSONIC predictions are generally in
accord with the measurements. Since TSONIC assumes inviscid flow, it cannot
compute the separation and wake flow at the blade trailing edge.
The results of Section 5.6 clearly indicate that the VANS blade-to-
blade prediction is in accord with the measurements of Goldman and McLallin (Ref.12).
Thus, the unsteady analogy produces a satisfactory pressure field for the subsonic
turbine cascade. However, the effects of the hub and tip end—walis are not
yet included in the VANS prediction. To properly include end-wall effects
a meridional mode of machining; i.e. VANS/MD, must be implemented, followed by
the cross-sectional marching mode; i.e., VANS/CSM. This procedure would result

in the computation of the horseshoe vortex as well as the remaining end-wall

effects.
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6.0 CALCULATION OF THE FLOW FIELD IN A TRANSONIC CENTRIFUGAL IMPELLER

The VANS computer codes have been appl;ed to solve for the three-
dimensional viscous flow field in the blading passage of a Detroit Diesel
Allison* centrifugal impeller design (Ref. 15)., The computation included
transonic relative flow with shocks, shroud leakage effects, and inducer
bleed slot effects. It is the objective of the section to describe the VANS
blade-to-blade and cross-sectional computations.

This report covers three principal topics:

1. Schematic of impeller geometry and input conditions.
2., Calculated blade-to-blade field.
3. Calculated cross-sectional field.

6.1 Impeller Geometry and Input Conditions

The hub and shroud lines for the system are schematically indicated
in Fig. 29. VANS evaluates the blade-to~blade and cross-sectional flow fields in
the curvilinear coordinate system (x,y,z). For the blade-to-blade calculation
streamline-like-lines represent traces of blade-to-blade surfaces and define
curves of constant z-coordinate. Potential-like-lines, orthogonal to the
streamline-like-lines, define curves of constant y-coordinate. The parameter
X represents the angular coordinate. For the cross-sectional calculation the
z and y coordinates permutate.

Input conditions for the geometry of Fig.29 are as follows:

laboratory stagnation pressure Plti = 2116.22 psfa

laboratory stagnation temperature Tlti = 518.7°R

inducer tip critical velocity ratior~ 1,22

*This work funded by Detroit Diesel Allison Division of General Motors under
Purchase Order No. HO 1321.
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6.2 The Blade-to-Blade Flow Field

Computation of the intermediate blade-to-blade flow field required
six hours on the CfBER 176 computer.* The principal fluid mechanical effects
calculated concern a leading edge suction surface separation at the hub and a
trailing edge suction surface separation at the shroud.

A velocity vector plot of the flow field in the neighborhood of the
leading edge of the suction surface is shown in Fig.30. The blade-to-blade
surface meridinal trace is located approximately 12 percent of the distance
between hub and shroud. A vortex is clearly indicated at the leading edge
of the suction surface. This vortex occupies about 15 percent of the blade
passage at the leading edge. It is believed that its cause is a 6degrees
angle -of-attack with respect to the camber line leading edge. As the blade-to-
blade surface moved towards the shroud, the angle-of-attack decreased to 2
degrees. This resulted in attached flow at the suction surface leading edge
near the shroud.

A velocity vector plot of the discharge flow field in the neighborhood
of the suction surface is shown in Fig.31. The blade-to-blade surface
meridinal trace is located near the shroud in this case. A long narrow
separated region exists along the suction surface. This region occupies about
10 percent of the passage between the splitter pressure surface and suction
surface. The separation point occurs near an inflection point in the suction
surface shape.

The blade-to-blade flow field, which contains leading and trailing
edge suction surface separations, serves as the previous approximation to the

cross-sectional mode of computation. Cross-sectional calculations are discussed

*CRAY-1 computation presently reguires two hours, while future calculations
should require 2/3 of an hour.
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in the next section.

6.3 The Cross—-Sectional Flow Field

Computation of the cross-sectional flow field required 4.9 hours*
on the CDC7600 computer. Numerical results are specified in terms of
velocity vector plots, critical velocity ratio contours and static pressure
contours. These plots are made on various cross-sectional surfaces of
computation.

Fig. 29 shows a schematic meridional view of the impeller including
cross-sectional traces which have been analyzed. Each cross-secti®nal surface

analyzed is labeled with the parameter Z defined as follows:

¥ = hub meridional distance from blade leading edge
hub meridional disfance between leading and trailing edge of blade

A parameter Z = .105 means the cross-sectional surface is located 10.5 percent
of the way to the discharge; negative Z values imply hub distances upstream of
the blades. It is noted that the cross-sectional traces of Fig. 29 represent
computational cross-sections which are not normal to the blading. Thus, these
surfaces depict the angular component of velocity and portions of the radial
and axial components. Secondary flows are difficult to visualize in these
computational surfaces.

The cross-sectional flow field is first described generally in terms
of velocity vector plots, then critical velocity ratio and pressure contour plots
are presented. The inducer shock structure is then discussed. Finally, shroud
pressure comparisons are made to evaluate calculational accuracy.

6.3.1 General Flow Field Structure

Velocity vector plots are shown in the inducer region in
Figs. 32 to 39. In each figure the suction surface is labeled, the pressure

surface is labeled, the hub and shroud lines are indicated, and the direction

*CRAY-1 computation presently requires 1.6 hours,while future calculations should
require half an hour,
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of rotation is specified. The ordinate m represents distance along the cross-
sectional traces of Fig. 29, while the abcissa 2. represents an arc length.

Fig. 32 shows a velocity vector plot upstream of the blading
(2= - .2183). The cross-sectipnal flow is basically undisturbed with the
angular component increasing with radius.

In Fig. 33 (2 = .1053 of Fig. 29) the cross-section is completely
within the blading. The flow separates at the suction surface near the hub,
with a vortex norxrmal to the plane of the paper. The low energy air in the vortical
region is acted upon by the outward centrifugal force, producing an outward
radial-like flow. This is clearly indicated in Fig. 33.

Leakage flow at the suction surface tip and an oblique shock-wave
emanating from the pressure surface are also indicated in Fig. 33. The obligue
shock-wave impacts the shroud at about 25 percent of the total shroud distance
between blades.

The downward radial-like flow and fairly large angular components
of velocity shown in the neighborhood of the suction surface (Fig. 33) are
caused by the shape of the cross-sectional surface upon which the velocity
vector plot is made. Since this surface is not normal to the blades, a portion
of the streamwise velocity will show up. This will distort the secondary flow
picture somewhat. To remedy the situation, data on the cross-sections of
Fig. 29 should be interpolated onto a set of true cross-sectional surfaces.
There was no time or funds to accomplish this undexr the present program.

The flow field just upstream of the bleed slot is shown in
Fig. 34 (2 = .1362). This field contains three fluid mechanical elements.

1. A strong outward radial flow along the suction surface,
caused by the centrifugal force in the suction surface boundary layer and

separated region.
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2. Inward flow at the suction surface tip, due to the
leakage.

3. An oblique shock-wave, whose trace impacts the shroud
at approximately 40 percent of the blade-to-blade distance along the shroud.

At Z = .1522 (Fig. 35), the cross-sectional flow field is
shown just downstream of the bleed slot leading edge (see Fig. 29). Outward
radial-like~flow-exists along the suction surface in the center of the cross-
section. This is a continuation of what was described previously in Figs. 33
and 34. Since the interior pressure increases as one moves from the suction
to the pressure surface, bleed slot flux will enter the system near the suction
surface and exit the system near the pressure surface. This is clearly
indicated in Fig. 35. In addition, the bleed slot flow has affected the
oblique shock trace, which was indicated in Figs,., 33 and 34. This trace is no
longer clearly defined.

The velocity field shown in Fig. 36 (Z = ,1645) occurs when
the cross-section is in the center of the bleed slot. Strong outward radial-
like flow is indicated along the suction surface in the center of the cross-
section, and a strong inward radial flow occurs at the bleed slot near the
suction surface. Furtherxrmore, the oblique shock wave trace of Figs. 33 and 34
is not well defined in Figure 36.

Fig. 37 (¥ = .185) represents the flow field just aft of the
bleed slot trailing edge. A large cross-sectional vortex is indicated at the
shroud-suction surface junction. This vortex is caused by the interaction of
the strong inward radial flow from the bleed slot and the outward radial flow
along the suction surface. The streamwise flow is also negative in the vortical

region; hence, a true three-dimensional separation has occurred.

27



Figs. 38 and 39 present velocity wvector plots of the cross-
sectional flow field at z parameters of .440 and .959, respectively.

At Z = .440 (Fig. 38) the velocity field is shown on a
cross-section in the radial portion of the impeller. Comparison of Figs. 37
and 38, clearly indicates that the splitter wvane greatly reduces the
secondary flow distrotion in the c¢ross section. The radial cross-section
of Fig. 38 represents a true cross-sectional surface with respect to the
blades; hence, the secondary flows of the system are clearly seen. The
centrifugal forces near the pressure and suction surfaces produce an outward
secondary flow in the low energy boundary layers on these walls.

In the backswept portion qf the impeller, the cross-—sections
exhibit rake. Rake is clearly seen in Fig. 39.

The introduction of rake clearly increases the secondary
flow distortions in the system. Fig. 39 shows higher distortion levels
than Fig. 38. Furthermore, at z = .959 the flow at the junction of the
suction surface and shroud is separated.

The velocity vector plots of Figs. 32 to 39 have provided a
qualitative picture of the inducer fluid mechanies. Principal elements of
the fluid mechanics are fivefold:

1. The leading edge suction surface flow separated near
the hub and the centrifugal force produced a radial outward flow in this
region,

2. An oblique shock-wave emanated from the pressure
surface.

3. The bleed slot produced a strong radial inward flow
near the suction surface.

4. The interaction of the outward radial flow on the

section surface and the inward bleed slot flow, produced a three-dimensional
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vortex at the junction of the shroud and suction surface.
5. The trailing edge suction surface flow is separated.

6.3.2 Critical Velocity Ratio Contours

Figs. 40 to 44 show contour plots of the critical velocity
ratio on the cross-sections labeled‘;’= .105, .136, .185, .440 and .954,
respectively. These contour maps show the pressure surface on the left and
suction surface on the right. This is opposite to the orientation of the
velocity vector plots shown previously. Different plotting codes were employed
to generate the contour maps.

Atz = .105 (Fig. 40), the cross-section surface is just
inside the blading. Boundary layers are seen on the hub, pressure surface and
shroud. The suction surface separation is indicated near the hub by the
thickening of the boundary layer there. A peak critical velocity ratio contour
of WWcrewl,4 is indicated in Fig. 40. Coalescence of the contour levels
W/Wecr ~1.4 and W/Wer ~1.3 defines the obligque shock trace; although, the
definition is not sharp.

On the cross-section just upstream of the bleed slot
(Fig. 41, 2= .136), the region of contour level W/Wcr~’1l.4 is smaller than
the corresponding region of Fig., 40. The obligque shock-wave trace is moving
towards the suction surface. In addition, boundary layers are indicated on
the hub, shroud, and pressure surface. The thick layer along the suction
surface represents the separated region near the hub and the effects of leakage
inflow near the shroud.

In Fig. 42 (§'= .185), the critical wvelocity ratio contours
are shown on a cross-section just aft of the bleed slot trailing edge. This
contour map corresponds to the velocity vector plot of Fig. 37, which showed a
vortical flow at the shroud-suction surface junction. The region of contour

level W/Wcr”~”1.4 is now smaller than those of Figs. 40 and 41.
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In what corresponds to the vortical region shown in the
velocity vector plot of Fig. 37, the critical velocity ratio rapidly changes
from W/Wer a 1.4 to approximately W/Wcr ~.40. That is, a normal shock trace
exists between the regions of W/Wcr.wl.4 and W/WcrA ,.40. Through the normal shock
the critical velocity ratio goes from W/Wcrasl.4 to Wera/.90. As the parameter
m increases the sonic line departs from the normal shock front. At the shroud

the shock front is oblique. The oblique shock transition produces a critical

velocity ratio change from W/Wcr““1.4 to W/Wcr~1.10. The normal shock, oblique

shock and sonic line are labeled in the figure.

In summary, the critical velocity ratio contour plot of
Fig. 42 depicts the interaction of a normal shock and an oblique shock. This
interaction, which produces a slip stream, is commonly referred to as the
"triple point." In Section 6.3.5 the triple point is further discussed.

Figs. 43 and 44 present relative-to-critical ratio contours
on cross-sections whose z parameters are.440 and .954, respectively.

The velocity field in the radial portion of the system
is indicated in Fig. 43. Fig. 43 (E = .440) shows boundary layers on the
hub, shroud, main blade and splitter vane. Loading of the blade is clearly
indicated in the lefthand passage (between the main blade pressure surface and
splitter suction surface); the shroud critical velocity ratios near the
pressure surface are lower than those near the splitter suction surface. A
peak critical velocity ratio contour level of W~ .80 exists in Fig. 43.
Furthermore, the left and right hand passages x:ie similar flows near the hub,
but differ near the shroud. It is believed that the effects of the bleed slot
injection are still present in the right hand passage.

The velocity field in the backswept region of the impeller,
which also indicates rake , is shown in Fig. 44. Flow field deceleration is

indicated in a comparison of Figs. 43 and 44. In the left hand passage of Fig. 44,
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the average critical velocity ratio is W s .40, while W A .80 exists in the

) Wcr Wer
corresponding passage of Fig. 43. Furthermore, the left hand passage of Fig. 44
shows little loading near the hub and higher loading near the shroud. This
result is in accord with the critical velocity ratio plot of Fig. 42 in the radial
portion of the impeller. Finally, the right hand passage of Fig. 44 has greater

distortion than the respective left hand passage.

6.3.3 Pressure Ratio Contouxrs

Contours of the ratio of static pressure P to laboratory

stagnation pressure P 1 are shown in Figs. 45, 46, 47, and 48.

t.
i

Fig. 45 shows the pressure field on a cross-section just
inside the blading (AzJ = ,105). The trace of the oblique-shock emanating from
the pressure surface is clearly indicated. This front corresponds to the front
shown in the velocity vector plot of Fig. 34. The oblique shock impacts the
shroud at approximately 25 percent of the distance between pressure and suction
surface, The pressure ratio corresponding to the peak critical velocity ratio

. . . 1
region W/Wcr~/1.4 of Fig. 40 is P/P ~ .40, Fig. 45 also shows that the blade
ti
loading is farily high; P/f 1 2’ 1.10 near the pressure surface and P/P lAJ-4O
ti ti
near the suction surface.

Vad
At z = ,136 (Fig. 46) the oblique shock trace has moved
closer to the suction surface than in Fig. 45. The trace impacts the shroud
at the 40 percent blade-to-blade distance. Fig. 46 also shows high blade loading,
P/Pl A4 1.10 near the pressure surface and P/El »~ .40 near the suction surface.
ti ti
Figs. 47 and 48 show contour plots of the ratio of static
pressure P to the laboratory total pressure éii' An examination of these figures
shows that the static pressure of the system gradually rises from about P 1.6
Ptil
~ £ A.
at z~.440 to Ptil”w3.2 at z = ,954. In the radial portion of the system
(Fig. 47) the cross sections are strongly loaded near the shroud. This was also

indicated in the critical velocity ratio plots of Figure 43.
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Finally, pressure contour plots in the right-hand-

passage of Fig. 48 clearly indicate higher distortion than the corresponding

contour plots in the left-hand-passage.

6.3.4 Inducer Flow Field Shock Structure

Based on the pressure and critical veloéity ratio contour
plots of Sections 6.3.2 and 6.3.3 the inducer shock structure was mapped on
the shroud blade-to-blade surface. This section presents the mapped shock
field and discusses the validity of this field in the inducer region.

Fig. 49 shows the flow field structure in the impeller
inducer region at the shroud. The abscissa represents meridional distance
m = Shydy, while the ordinate represents the arc length jl=)jhxdx. The solid
lines indicate the shock structure, while the dashed lines indicate traces
of streamlines.

The shock structure is composed of three elements. An
oblique shock emanating from the pressure surface of the system, a normal
shock at the leading edge of the bleed slot, and a reflected obligque shock.
The mass injection causes the normal shock to form and propagate toward the
suction surface. At the intersection of the oblique shock (emanating from
the pressure surface) and the normal shock (at the bleed slot leading edge) a
reflected oblique shock is seen propagating towards the pressure surface.
This is the formation of the triple point. A slip stream, dividing supersonic
and subsonic flow, is also seen emanating from the triple point. Schlieren
photographs of a started cascade (Fig. 50) indicate a similar triple point
interaction (Ref. 16).

In oxder to evaluate the accuracy of the shock structure
of Fig. 49, three items are discussed in the remainder of this section. They
are as follows:

1. Kantrowitz-Donaldson starting criterion for cascades.

2. Theoretical calculation of the critical velocity
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ratio just upstream of the geometric throat.
3. sStrength of oblique shock emanating from
pressure surface.
The Kantrowitz-Donaldson criterion (Ref. 16) for a cascade

is given by the inequality below:

s . _ 3 S. 1. ) Pol (7)
g Cos /3 jgeometric g CosB isentropic _—
] od Poth
where: ( )l = property just upstream of the throat of Fig. 49
g = pitch of blading
S, = throat area
/500 = flow angle upstream of the cascade with respect to m axis of Fig.49
Poth/Pol = pressure recovery across a normal shock at the throat of Fig. 49

Inequality 7 represents a necessary condition for an inlet to be started.

Data for use in Inequality 7 are as follows:

_ .0
Bos =70
(_s_t) = .5378'
g geometric
(W) = 1.22
W
cr
(W) = 1,40
W 1
cr
S = (A, ) = .94509
—r— —
(q Cos%) isentropic a v
Poth l~= .91319
ol
Based on the above:
(s, = .5378 = 1.5725
g Cosg.o geometric . 3420
and (s, P, \= 94509 = 1.3049
g Cosso6 i sentropic .91319
Ptn

Therefore, according to Inequality 7 the impeller inducer flow is started.
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Based on the free-stream critical velocity ratio; i.e.,

(W ) = 1,22, and the free-streamline trace, the critical velocity ratio
W o0
cr
(W ) was estimated just upstream of the geometric throat. Fig. 49 shows
Wcr 1
the free-~streamline traced through the leading edges of the pressure and

suction surfaces. The free-stream to throat area ratio becomes

Ros = ,857.
Ath
Isentropic expansion from free-stream to the throat produces a critical velocity

ratio

( ) = 1.41

W 1
cr
and a static to laboratory total pressure ratio

(P ) = .457

These values are in accord with the corresponding parameters of ( W )l = 1.40
W

and ( ) = .40 computed by VANS and discussed in Sections 6.3.2°" and 6.3.3.

Therefore, based on the Kantrowitz-Donaldson criterion and
the above theoretical analysis the calculated flow field must ke correct just
upstream of the throat of the system.

To establish the strength of the oblique shock emanating
from the pressure surface leading edge, it is assumed that two-dimensional
obligue shock theory holds on the shroud blade-to-blade surface. The effective
wedge angle made by the pressure surface leading edge with respect to the incoming
flow is¢f= 11.50. Wave angle comparisons are made between strong shock theory,
weak shock theory and VANS predictions in the forthcoming paragraph.

Based on cf= 11.5° and an incoming critical velocity ratio

( )l= 1.41, the strong and weak shock wave angles 69W'are determined. These
W
cr

angles are compared with the VANS calculated angle in Table 1.
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TABLE 1

Comparison of Wave Angles from
Theory and Calculation

Computational W 8 Wave Angle
Mode (Wc—r) 1 deg ew, deg

Strong Shock
Theory 1.41 11.5 75.9

Weak Shock
Theory 1.41 11.5 57.0

VANS Calcula-
tion - - 65.0

It is seen from Table 1 that the VANS calculated wave angle
lies ketween strong shock and weak shock theory. Thus, the calculated shock
strength may be correct at the pressure surface leading edge.

6.3.5 Shroud Pressure Comparisons

VANS calculated averaged shroud pressures are compared with
measurements and quasi-3-D predictions in Fig. 51. Curve 1l represents the VANS
blade-to-blade calculation,CUurve Zyepresents the VANS cross-sectional calculation,
the dashed line corresponds to the quasi-3-D prediction and these data points
are measured pressures. Except for the data point just upstream of the bleed
slot leading edge, the VANS cross-sectional calculation matches these measured
data. The slightly higher measured pressure just upstream of the bleed slot
could be attriluted to the upstream influence effects of the injection.

The lower blade-to-blade average shroud pressure distribution
is a result of the approximate continuity equation employed in the blade-to-blade
mode of computation. This technigue produces valid pressures in the subsonic

domain of the impeller. However, the blade-to-blade pressure gradient is
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corrected by the zeroth approximate field and used herein in supersonic
domains of flow. Thus, the approximate nature of the blade-to-blade

computation is corrected in supersonic regions of the flow.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The VANS successive approximation method has been extended to the
computation of 3-D, viscous, transonic flow in turbomachines. A cross-
sectional computer code was developed, which conserves mass flux at each
point of the cross-sectional surface of computation. Numerical calculations
were made for an axial annular turbine cascade and a transonic centrifugal
impeller, with splitter vanes and inducer mass injection.

The_principal conclusions drawn from this research effort are twofold:

1. The blade~to-blade computer code produces a useful engineering flow
field in regions of subsonic relative flow.

2. Cross-sectional computation, with a locally mass flux conservative
continuity equation, is required to compute shock waves in regions of super-
sonic relative flow.

It is recommended that the axial annular turbine cascade problem be
completed through meridional and cross-~sectional modes of computation.
Implementation of these additional computational modes may produce the
horseshoe vortices that form on the hub and shroud end walls. Since (1)
pressure data exist, (2) laser velocimeter measurements have been taken
and more will be taken, and (3) flow visualization experiments have been
conducted with this geometry,a quantitative assessment of the VANS computa-
tions can be made. Hence, an evaluation of the VANS numerical capability
can be made. Furthermore, the effects of the horseshoe vortex on the turbine
cascade fluid dynamics can be assessed. 2 knowledge of horseshoe vortex

fluid mechanical effects will eventually lead to more durable turbine designs.
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APPENDIX A

CONTINUOUS INTERPOLATION SCHEME

The interpolation scheme in the VANS computer codes was modified so
that interpolated quantities of the previous approximation were continuous
in the three dimensional domain of computation. The research was conducted
in three phases.

1. An analysis of the interpolation scheme previously embodied in VANS.

2. Adaptation of a continous interpolation scheme for VANS codes.

3. Modification of the interpolation scheme in the VANS computer codes.

Interpolation Scheme Previously Embodied in the VANS/BB Computer Code

After careful study of the VANS numberical data,it was found that the
first order double Taylors se;ies employed to interpolate data from the
previous approximation field onto the mesh points in either a blade-to-blade
or cross-sectional surface produced small oscillations in interpolated quantities.
Consider the point P in (x, y, z) curvilinear space. In each (x,y) blade-
to-blade surface, the point P maintains the same axial coordinate (X3), metrics
(hx, hy, hz), metric derivatives Plhx, a’hx,:;ﬂ, hy, 0_’_rix__, ¢hx), and axial

dy Jz y oz Jdy z)
coordinate drivatives nya,Jx3) independent of the angular coordinate x. 1In

Iy Iz

addition the zeroth approximate MERIDL velocities (Ref. 1) at the blade surfaces
(Wg , Wtr), mean stream surface velocity and angular coordinates (wm’/Sm’ ogp and
angular coordinates of the pressure and suction surfaces of the blade (Xg, Xtr)
are specified along streamline-like lines in a meridional plane; hence, these

data are independent of the angular coordinate x as well, Therefore, the three-
dimensional interpolation in (x, y, 2z) space has been reduced to a two-dimensional
interpolation in the (y, z) plane, The angular dependence of the velocity
components away from the blades is introduced after the interpolation has taken

place.
The previous procedure was to locate the zone in (y,z) space containing point
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P (y,z) and interpolate using a first oxder double Taylor's series. Figure S1
shows the point P located within the zone labelled (1, 2, 3, 4) in (y,z) space.

Let Vl, V., V3 be zeroth iterate properties, respectively, at points 1, 2, 3.

Using a first order double Taylor's series we get the following relations.

_ v - V) (z,-2z) (A1)
1% H;’/y)p W) * gz t
v - \4 (z.-2z) (a2)
2= Y +<c')’—y)p (vy-y) + G 2

A v _
3 Vp +$'_y')p {yy-y) + g—z_)p (2,-2) (A3)

Equations (Al, A2, and A3) can be solved simultaneously for Vb. We then

<
I

<
I}

repeat the procedure for points (2, 3, 4),(3, 4, 1), and (4, 1, 2). The value
of V at point P is then the arithmetic average of the above.

The above procedure is continous as long as the point P remains within
or on the boundary of zone (1, 2, 3, 4). However, as the blade-to-blade
surface moves from hub to shroud the point P could cross the zone boundaries
and be contained by another zone. After the point P crosses a zone boundary,
two of the four end points of the new zone will be different. This introduces
a discontinuity in the property Vp after point P crosses a boundary. These
discontinuities caused fluctuations in the source terms of the equations of
motion, which in turn produced the small oscillations recorded in the annular
cascade flow field.

Revised Interpolation Scheme for VANS/BB

The continuous interpolation scheme developed by Katsanis (Ref. 1) was
selected for incorporation into the VANS computer codes.

The Katsanis scheme for interpolation is quite simple for a rectangular
zone (1, 2, 3, 4) located in the (y, z) plane containing the point P (y,z)
(Figure 52b). We first form the numerical derivatives

£

2z

£
Y

(z—zz)/(z3—zz) (24)

(y-y,)/(¥,-Y,) (25)
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Linear interpolations are then conducted with fy to find V at the points 1

and 3 of Figure 52b.

o
il

- \
Vv, + £y (V; - V) (A6

V3 + fy (V4 - V3) (A7)

s
A linear interpolation with fz determines the property VP

VP =V + fz (Yz - Vl) (A8)

Equations A6, A7, and A8 can be combined to determine Vp directly in terms
of £ and f_.
Y z

vp= v, fy (1-fz) + v2(1—fy) (1-fz) + V3fz(1-fy) + V, fyfz (29)

1 4
Equation A9 reduces to a linear interpolation along any boundary line of the
zone (1, 2, 3, 4). Therefore, this linear, two-dimensional interpolation
scheme produces a continuous interpolated variable Vb.
Although the above interpolation scheme is quite simple to implement,

a fairly extensive coding effort was required to revise the VANS/BEB

computer code.

Linear Continuous Interpolation Scheme Incorporated into Existing Versions of

VANS /BB and VANS/CS Computer Codes

The Katsanis 2-D linear continuous interpolation scheme, called "LININT",
was coded and incorporated into the present versions of the VANS computer
codes. The axial annular turbine cascade problem (Section 5.0) was utilized to
debug this coding.

Table 1 presents a comparison of interpolated zeroth approximation flow
field quantities based on a Taylors series interpolation and the LININT
interpolation.

These data corresond to a blade-to-blade surface just above the hub, i.e.,

at a z coordinate of .4000000-05 radians, and at a point on the surface having

an axial coordinate X, of .3051584-0l1 ft. and a radial coordinate hx of .708330 ft.

3
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The MERIDL blade~to-blade surfaces bounding the above blade-to-blade surface
have z coordinates of 0.0 and .10236-01 radians, respectively.

TABLE 1
Comparison of Taylor Series and LININT Interpolation

Schemes

z = ,40000000-05 radians

X .3051584~01 ft.

hi = .708330 ft.

Variable Units Taylor Series Interpolation LININT Interpolation
hy ft/rad .B833333 .833333
hz ft/rad .4884698 .4884698
353/ y ft/rad .833333 .833333
X3/ z ft/rad 0.0 0.0
hx/ y ft/rad2 0.0 0.0
hx/ 2z ft/rad2 .4884698 .4884698
hy/ v ft/rad2 ~.2095527-10 -.2095527-10
hy/ =z ft/rad2 0.0 0.0
hz/ vy ft/rad2 0.0 0.0
hz/ z ft/rad2 -.1666937 -.1666937
X radians -.6356348-01 ~.6356348~-01
Xtr radians .5189184-01 .5189184-01
Wm ft/sec .3761843+03 .3761844+03
m radians -.3102789 -.3102790
m radians -.1328640-05 -.1328640-05
W ft/sec .6185929+03 .6185930+03
Wtr ft/sec .1337685+03 .1337686+03
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It is seen from Table 1 that corresponding quantities are almost
identical. This is true because the point in question lies within the
same zone in (y,z) space. Where the blade-to-blade surface moves to just
above z = .10236-01 radians significant differences between the two

methods of interpolation will exist.
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APPENDIX B
QUADRILATERAL WEDGE FORCE BALANCE
In order to increase the accuracy and degree of continuity of dependent
variables computed by VANS, the method of calculation of forces was revised.
The force balance previously embodied in VANS considers the three dimensional
computational element as an equivalent quadrilateral slab. Actually the
geometric figure is a wedge shaped quadrilateral. A discussion of the original
method of force calculation and the revised method of force calculation follows.
The original method of force calculation considers the computational
element as an egquivalent quadrilateral slab. Let us consider the three
dimensjional element of Fig. 53 in cartesian (X

,X3) space with X_ being

1% 3
the axial direction. This figure shows half of the computational element,

i.e., the z-curvilinear dimension is Az/2, and divides the (x,y) blade-to-
blade surface labeled 2, 3, 4, 5, 6, 7, 8, 9 into four guadrilateral zones
(solid lines) and one momentum zone (dashed line). The four quadrilateral

zones are labeled by the letters a, b, ¢, and d, respectively. The momentum

zone is labeled by the number 1. The stress tensor is defined in each of the
quadrilateral zones and is labeled by the letter defining that zone. For example
Oq 1is the stress tensor of quadrilateral zone a. To determine the force on
Momentum zone 1, we simply contract the appropriate stregs tensor with the

areas of Momentum zone 1. This method of force calculation is second order
accurate and internally consistent.* To the knowledge of the author of this

submittal, this method of force calculation is the only one known that exhibits

both properties.

*Internal consistency implies that the finite difference continuity, momentum,
and internal enexrgy relations imply an exact finite difference conservation of
total energy equation.
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According to the momentum equations of Reference 10, the three components

of force for Momentum zone 1 are evaluated from the following integrals:

Fx = /; Gx « n dc (Bl)
Ry T /. 0, - née (82)
B = _,(c.: [D—z :

dc (B3)

k=]

where

0 xx hyhz i +Txy hx hz j

O «

O v
O =

and where c is the perimeter a, b, ¢, d of Fig. 53, n is a unit normal to

T xy hyhz i +0yy hx hz 3

Tzx hyhz i + T2y hx hz j

the curve ¢, (hx, hy, hz) are the metrics of the tramnsformation, (i,]J) are unit
basis vectors for curvilinear coordinates (x,y) respectively ( xx, yvy) are
normal stresses, and ( xy, zx, 2y) are shear stresses., Equations (B1l) - (B3)
define forces only within the (x,y) blade-to-blade surface. Contributions oé
the wedge face areas of Fig. 53 to the force acting on Momentum zone 1 are
evalvated from different terms of the equations of motion.

Under the approximation that the geometry of Fig. 53 is approximately
a quadrilateral slab, the finite difference approximation to integral Equations
(Bl) and (B2) becomes

F, = - Fa - Fb + Fc + Fd (B4)

where

- =21
m=0b .3,
2
Fc = Sc - Age
2
¥d = 0d .
= —— 28
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and where the finite difference contribution of the wedge face areas to the
force acting on Momentum zone 1, i.e, Ewl, appears elsewhere. The vector area

524 is defined in terms of the curvilinear coordinates x, y, 2 and their metrics

as follows:
(v,7¥,) by 4hzy,
—(x2-x4) hx

A,
B4
24"%24

where the upper term of the vector is the x component and the lower term of
the vector is the y component.

For the case where quadrilateral 1, 2, 3, 4 is a slab, i.e., the wedge
faces are parallel, it can be shown that

= -2 (éad + A ) (B5)

224 —aa

Similar results apply for vector areas A However, quadrilateral

Bppr Bggr and B

28°
1, 2, 3, 4 is not a slab and Equation(B5) is approximate, with the degree of
accuracy becoming higher as one moves away from the axis of the system. In
fact for the case where 0;=0;=0;=Dc;= pressure (p), the force balance of
Equation B4 coupled with the wedge face force terms in the equations of motion
do not go identically to zero. A small force balance residual occurs which
diminishes as one moves away from the axis.

In order to rectify the above, the computational element was considered
a quadrilateral wedge for purposes of formulating the force balance. A
schematic of the three dimensional computational element illustrating the
quadrilateral wedge force balance is showin in Figure 54. The quadrilateral
force balance becomes
+

F, = F _ + +

-1 a Eb (B6)

E, + By
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where

Fa=0’a. (A 14 + Aal + ] Awa)

4
Fb =0 b . (&bl + Ala + 1 Awb) (B7)
4
Fc =0c . (Alb + Acl + 1 Awc)
4
Fd Da . (Alc + Adl + 1 Awd)
4
and where the areas Ald and Ral are defined in terms of the following vectors:
Ax
(¥,7¥q) Py P2 )l 14 (88)
2d _(x,-x) hx, hz .| \P1g
178 g 1a
Aal = (yi-yl) hyglhza_l ___(Axil (B9)
Ayal

—(xi-xl) hxalhzal a

The upper terms of the above vectors represent the x component, while the
lower terms represent they y component. Finally, the wedge face areas are
defined in terms of the planar areas as follows:
= (- + +
Awa ( Z(Aylg Aygl + Ayi2 Ayza)) (B10O)

with similar expressions for Awb, Awc, and Awd. Equation(Bl0) is based on the

following geometric relations:

Ay23 B Ay_2_3
Aygl = Byyo (B11)

Bx1a 7 2xa> T Pxaz T Py33
The points a, d, 2, and 3 were selected to satisfy Equations (Bll).

For the case where 0‘; =0; =0: =6c; = p, the vector areas of Equations (B7)

cancel, i.e., é-ld + édl = 0, etc., Thus, only the wedge face contribution to
the force on Mom;ntum_zone 1 remain.

g‘_l = P/4 (Awa + Awb + Awc + 2Awd) . (B12)
Equation (Bl2) is in turn cancelled by the remaining wedge face terms in the

equations of motion. Therefore, for the hydrostatic case the overall force

balance for Momentum zone 1 is zero.
The quadrilateral force balance logic was incorporated into the blade-to-

blade VANS computer code and the cross-sectional VANS computer code.
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APPENDIX C

INTEGRAL CONTINUITY MOMENTUM AND SPECIFIC INTERNAL ENERGY RELATIONS IN
GENERALIZED COORDINATES FOR BLADE-TO-BLADE MODE OF COMPUTATION

Continuity
)
— h dA + - dc
5t _(h fp(gg)n (c1)
- L 1.
T .gpw %ﬂdc
z
1 3
- U_ at f hxh)’dA
A
where

= uh_h
1 uhy 21+ thhzl

g = Syhyhol + S hoh )

Internal Energy Equation

3
a——.{;EhhdA+ pr(g_g)ndC

- [PEv'g -ndC = - ——-f"?:w h,h dA
c

1 3
+ u—{"zz 3t A"“xh dA

F
Tyz 3efonh A + atAuhhdA}

- w4 wq_°ndC + t vq_-ndC
Uz{zzjéﬂs-— yzj;ﬂs~
Tox .gugs _gdc} + _Q‘xhyhz"EdA + '&' T ppdA
+ fo_n°qdC + -q dC + .
pR'edC + fr,0°9,dC + fr .0:g, dC

+ T

(c2)
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where

ah
f. = O ‘ v x ., .V x l
E XX hxhy 3y h h_ 92
- 2h u 3h
+ g D ——zl
yyjh h, oz hxhy 9x
2h dh
u 2 z
+Ozzthh 5% T h_h_ 9y
x 2
2h th
T lhvh st WLR. 3
xy|h, y xy y
oh 2h
u X + W ¥4
sz\h h_ oz h h_ ox
z X
oh 3h
- T l W z , v zl
yz hzhy 2y h h_ 3z
9(h_h_ )
T ® - X
gp = "1050W * TyV P Tl
(g . I(h hz)
xxu Txyv + szw]—_gi_~_
3(h_h_)
-[ao + T Xz
vy xy9 Ty I—53
—_— o 0
S = XX
B 0
yy
0 1
T = xY)
P T 0
Xy
0 T
sz = zy
Tex 0

HT = uhxhzi + vhyhzi

9, = thhzi + whyhzi
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Equation of State

P = ("(—l)e E
X~direction momentum
u
at.‘( x ydA + j(':pu(_q—_qs)-ﬂdc
+(h 1
jA' xhythdi - U—J;puw'_qs-gdc
z

1 3

-

- == = {‘p"ﬁa'h

Uz ot A xhydA

1 3 by
+ 7=~ = f1
Uz Bt_!; thxhydA

where

5h 3h oh \
A_ = u{u 2 e L X L F
X h_lh_ 9x LI b oz
2 3h 2 9h 2 3h
_L{L—K+L—X+L‘z}
hth 3x © h o 3x b 0x
XX y z
X aX
w 3 v 3
+ pr(h Ay - h dz )
y
_ Dwz axlx aXZX )
h Ix 71 dx "2
x
. b ah
o - xy x , _2X X
x ~ h_h_ 3y heh, 82
Xy
o 3h g ah
_Cyy 'y o 22 z
h h_ 3x h h,  ax
x"y z
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y-Direction Momentum

3
t-g‘ovhxhyu + jc'pv(_q-_qs)-ﬂdc

1
+ h_h h A dA - = ' .

1 _a_

U 3t & 'h h dA
1 2 - 1
T B¢ - = *ndC
Uz at _& x"yT zy U .g yig M

+£hxhyhznydA + rop -ndC

cly

(c5)

where

o =hh T i+hho J
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z-Direction Momentum

3
3t -{.pwhxhydA + -[(;pw(ﬂ_&s).ﬂdc

1
f{hxhyhzazd‘m- U—zﬁw 'g, - ndc

-_-L-a_ w'hhdA
UzatA Xy

1 3 - 1
o 3- fh_h © - .
U, Bt,{; xPy Oz 94 Uz.l‘;ozzﬂs ndC

+ fh_h h_m_dA o .
,&‘xyzz +f(;°pzﬂdc

+

where

A = P_"_{_“- . v 2Py LR ahZ}
z hz hx ax hy 3y h_ oz
2 3h 2 3h 2 3h
- L{E_ x v "y, wo Z}
h_th_ 3z h 9z h_ 3z
z y z
X X
v 3 u 2
+ pr<h 3x  h_ 3y )
y
_ ol X, \ x 8%,
h 1l 3z 2 3z
z
T ah T dh o d9h
= ZX b4 z 2 - XX X
z h_h_ 3x h_h_ 3y h h 23z
2y
o] 9h
.Yy Yy
h_ h 2=z
zy
cp = hyhz'rle + hzthsz-
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APPENDIX D

MASS FLUX CONSERVATIVE INTEGRAL EQUATIONS OF MOTION

z-Direction Momentum

1 5 /. .
-I-Jg;a—t/-[(wwhxhydz\ + j;pw(g_ 94) "ndcC
A - .
— ' -
+_£hxhythsz Uzﬁww . ndC

1 3 - 1 .
= .IZ ﬁj;hxhyozzd“ - Uz_l(;ozzﬂs ndc

h_n_dA+ (G0 -ndC
+,£hxhy z 2 'I(; Pz —

Continuity
-.}- 2 fowh_h dA + [p(g-q_) ndcC
U, dt gwhy y '/C s’ =
A
1
- 5 f[pw'q-ndC = O
Uz_g %
w = (wa)

Z momentum

%
(Q )continuity

(P_w) continuity
\

)
I

w
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+ h h dA + 1 —a-uhhdﬁ}

9
Tyz 3e0 %"y zx ot x'y

1 . .
- T.l:{ozzjc‘wﬂs ndC + Tyzjévgs ndC

. + dA + fn_ dA
+ 'rzxj;ug‘ _gdc} xhyhzﬂE ',A‘ Ep

A
+£;pg_'gdc +jc'tp_l'1'31dc +jc'-rng'g,udc

Equation of State

P = ("6-1)QE

X-Direction Momentum

x~direction momentum

1 2
U, 3t _!\'Qthhy“dPH’_];P“(ﬂ‘ﬂs)'DdC

1
- et ' L3
+fhxh th dA Uzj(;puw _gs ndC
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y-Direction Momentum

-2 -q_)-adC
U, a:_ﬁ"“”’xhyv dA +_£°"<s 9 )'n

1 '
A dA - pvw'q +ndC
t [ Pxhyhaty U, LoV e,

1 23 - 1 endC
= o as T _.4dA - — [T n
- Uz ot _I;hxhy zy Uz ',C. zyﬂs

+ o] ‘ndC
*./A.hxhyhz"yd‘\ fc p,
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APPENDIX E

MASS FLUX CONSERVATION PROPERTY ILLUSTRATION

In order to develop the mass flux—-conservative VANS cross~sectional
code, a sample problem was run for debug purposes.
A centrifugal impeller was selected for which the blade-to-blade
solution was known. Input conditions for the impeller are as follows:
rotational speed = 33620 rpm
tip speed = 420 m/sec
passage mass flux = .0410 kilograms/sec
The cross—-sectional code was run two hundred cycles starting at a station
upstream of the blading. Then the code was run through the blade leading
edge starting from a station just upstream of the leading edge. Table 1
presents the integrated passage mass-flux on two cross-sections upstream of
the blading, a cross-—section at the blade leading edge, and at two cross-
sections just downstream of the blade leading edge. The parameter ? represents
the ratio of the distance along the hub to the hub distance between blades.
Negative values represent distance upstream of the blades.
TABLE 1

Passage Mass-Flux Evaluation At Four Cross-Sectional Surfaces

- Percent Difference
z m From Incoming Mass-
Flow

-.3994 .0410 0
-.3461 .0410 0
-.0077 .0410 o]
.0988 .0406 -.97
.1024 .0406 -.97
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“y
It is seen from Table 1 that for ? parameters upstream of the

blading the mass-flux is exactly conserved. As the cross-section passes

<y
through the blade leading edge, i.e., between?d = -.0077 and
—
Z = ,0988, the mass flux decreases by .97 percent. When the cross-section

is within the blading, i.e., for 2 >‘.0988, the mass flux is again exactly
conserved. The small mass flux deviation through the blade leading edge comes
from the blade thickness. The lateral boundary between the suction surface
blade tip and shroud is slightly different than the corresponding lateral

boundary between the pressure surface blade tip and shroud.
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Figure 1. Passage between blades in an impeller of a typical compressor.
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Schematic of rotor blading passage illustrating
cross-sectional mode of marching.
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interpolation.
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Figure 535, Two-dimensional double Taylor's series
interpolation.
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Figure33. Schematic of three~dimensional computational element
illustrating equivalent quadrilateral slab force
balance.
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Figure 54. Schematic of three-dimensional computational element
illustrating quadrilateral wedge force balance.
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