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l. INTRODUCTION

The objective of the Grant NSG 3307, from the NASA Lewis Research
Center to the School of Aerospace Engineering at Georgia Tech, was to
develop a unew numerical approach for computing unsteady compressible
viscous flows. This approcch offers the capability of confining the region
of computation to the viscous region of the flow. The viscous region is
defined as the region where the vorticity is nonnegligible and the
difference in dilatation between the potential flow and the real flow
around the same geometry is also nonnegligible. The method was developed
and tested. Also, an application of the procedure to the solution of the
steady Navier-Stokes equations for incompressible internal flows is

presented.



2. MATHEMATICAL FORMULATION

In this chapter the mathematical relationships that govern the time
histcry of c:mpressible viscous flow around an arbitrary body are
presented. The kinematic and kinetic boundary conditions are stated and a
method for estimating the surface vorticity is described. 1In order to
improve readability, the derivations of some of the equations used in this

chapter are omitted ia the main text and given in the appencices.

Governing Equations

In the absence of body forces, the Navier-Stokes equations for a
comprassible fluid with density 0, viscosity V, thermal conductivity k and
ratio of specific heat coefficients Y, may be written in an 1inertial

coordinate system as follows

»> »>
0 g% + p(TDV = -Up + .1 (2.1)

The equation of continuity is given by

13

+ V.0V) =0 (2.2)

Q

t

The energy equation and the equation of state are given by
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[} g—: - g% +p v.(%m) - 6.69 = -e.q + 90:% (2.3)
p = ORT = (1;.1.)9,, (2.4)

-+
+ * s . . . .
Here GV:T represents the dissipation function given 1in cartesian coor-

dinates by

where tij is the shear stress tensor and can be expressed as follows;

T §. A(V.V
ij’zueij+ ij v.v)

Here 'ij is the rate of strain tensor and A is the second coeffi~

cient of viscosity.

Xinematics Expressed in Integral Representation

The vorticity & and the dilatation B are related to the velocity

->
field V by:

ﬁxﬁsﬁ (2.5)

V.Vse8B (2.6)

The kinematics of the problem, governed by equations (2.5) and (2.6)

are elliptic in nature, requiring the specification of Neuman, Dirichlet or
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mixed type of boundary conditions for velocity. These conditions are
required both at infinity, known as the farstream condition, and on the
solid surface. In the present study, Dirichlet type boundary conditions
are prescribed on the boundaries.

The velocity boundary conditions are

<t
[}
<+

on b (2.7)

and R is the fluid domain bounded by the boundary b. For external flow
problems, the boundary b consists of the farstream boundary ¢ and the body
surface s. On s, the no-slip condition is used, while Vs q”i5 prescribed
on c.

Since the kinematic relationships are linear in ;, the velocity
vector ; can be decomposed into a solenoidal part 61 and an irrotational

->
part Vz with homogeneous boundary condition for the latter. Thus

+ o+
V= Vl + Jz (2.8)
with
6 . 61 = o (209‘)
3,61.5 (2.9b)

V. =0 (2.10a)
1s

V., =7 (2.10b)
lc @
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and, for Vz,

T . (2.11a)
V. v, =8
¥x 32 =0 (2.11b)

with boundary conditions

-+

Vz. = 0 (2.12a)
-+ - o
Vzc (2.12b)

Wu (1] has shown that it is possible to recast the kinematic aspect
->
of the problem into an integral representation for the velocity V in terms

of the vorticity © and the dilatation 8. Por two dimensional flows this

GR(T-t ) +B(F-7 ) .
,,f S 9% ame v, (2.13)
R ]r-tol

I~

+»
V(;o’t) s -

~

In (2.13) R is the region where the vorticity and dilatation are non-
negligible. At high and moderate Reynolds number the dilatation is
significant at distances from the body where the vorticity is already
negligible. Hence the approach does not seem as advantageous as in the
incompressible case. However, by using the potential flow solution around
the same body, it will be shown in the next section that the domain of the
computations can be reduced to include only the region where the vorticity

and the difference in dilatation between the viscous flow and potential
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flow are both non-negligible.

Use of the Potential Flow Solution to Reduce the Domain of Computations

Equation (2.13) can be written in the following form

+* > *> 4+
.- 1 wx(r-r ) +B(r-r )
V(ro,t) -5 2 dR
Rl |r-r°|

B(r-ro) .

-%.fm*"w (2.14)
Rz °

where Rl is the region of the flow where vorticity is non-negligible and R2
is the rest of the domain, extending to infinity for external flow
problems. This expression can be written for the potential flow around the

same body as follows:

1Y x(r-r )ds
e | By (2.15)
27 !;‘: IZ ®
s o

vhere the subscript p indicates potential flow and YP is the vortex sheet
strength on the surface, s, of the body due to the putential flow. Because
equation (2.15) is a limiting case of the general viscous compressible flow
relation (2.14), it gives the potential velocity everywhere except at the

surface where the equation is identically zero.
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If region Rl extends far enough from the body, the combination of

(2.14) and (2.15) gives

> > > >
wx(r-r ) +(B-B8)(r-r )
3(:°,a)--%;f 22—
Rl |r=z, |

+ +
Y x(r-r )ds

-Lf_z____o_..,v (2.16)
" + > 2 P
A |r-r|

o

The relation (2.16) implies the following. First, (B-BP) in region
R2 is small enough so that its effect on the velocity in region Rl is
negligible (a detailed discussion of this aspect is given in Reference 11).
Second, one needs to solve only in region Rl, which is a smaller region
than the region where B is significant.

The kinematic boundary condition for the external flow problem
requires that the wvelocity has to reach the freestream velocity at an
infinite distance away from the solid surfaces. This requirement is
referr'cd to in this work as the farfield boundary conditions. This
requirement is satisfied by equation (2.16). However, if a finite~dif-
ference method is used without any coordinate transformation, this bound-
ary condition is difficult to satisfy since the computational domain to be

included becomes very large.

Kinetics - The Vorticity, Dilatation, Density,

and Energy Transport Equations

By taking the curl of equation (2.1) and using equation (2.4} one

obtains
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. Vx\‘lxuiO(!:;-L)vlnD xVhOVx).%V. } (2.17)

Similarly, taking the divergence of equation (2.1) and using equa-

tion (2.4) results in

B 5 [6.57] <D -hngtiee ~Khiind
== [(v.vw] (Y)Vzh L )h7P1ap Ehin. 1m0

o A

e VLT (2.18)

ol

Specializing the equations for two-dimensional case, rearranging
the terms in equations (2.17) and (2.18), and collecting the coefficients

of B and w, equations (2.17) and (2.18) become

e

s - V.(Vw) + ( )V w + ¢(0,B,w,h) (2.19)

B T8 ¢ (=98 + X(5,8,u5, b) (2.20)
5? 3. Re (o]

The full details of the derivation of the above equations are given

in appendix B.

The density and energy equations can be also written in terms of the

derived variables w and Bas follows

Ang . _G(V1np) - T

™ (2.21)
e -0(W) + (graep)Vn + 6(0,8,u, h) (2.22)
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where w denotes the mognitude of the vorcticity vector. The terms ¢, x, [
and O look like source terms and are given in appendix B.

The governing aequstions (2.19) to (2.22) have been non-~dimen-
sionalized by normalizing the variables with respect to the following
reference quaatities: distance, L; velocity, va; density, 0 enthaipy,
V: ; aad tiame, L/VO. where L is the characteristic leagth of the body.

This type of normalization leads to the following non-dimensional para-

meters: Mach mumber, HQ; Reynolds mumber, Re; and Prandtl number, Pr.

Formulation for the Study of an Impulsively Started Airfoil

In this section, the mathematical formulation discussed above is
specialized and applied to the study of compressible laminar flow past an
impulsively started airfoil. The airfoil geometry and the grid system are
generated through a conformal transformation which I ansforms the airfoil
into a wnit circle. The airfoil chosen for the numerical study is &
modified 9% Joukowski airfoil.

By using the transformation relations given in appendix , the
governing equations (2.19-2.22) are written in the transformed plane and in
a conservation form as shown below.

The vorticity transport equation is

O S I (ot oL
at - az ( v'(vu)) * uz (Du) Vaouce ‘;E % (2.23)

where H is the scale factor.

The dilatation transport equatiocn is
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3. (-5.(68)) o Logatavls o Lx

(2.26)
uz .Re.p H

The dengity transport equation is

(2.25)

g:“" - L (-3.(31:\0)) -T

The energy transport equation is

dh _ 1 (2.26)

T a—z (-6.(“."1)) + ;2-

1 Yk
(M.Pr.o)vzh * e

vhere $ is the aspparent velocity in the transformed plane and the diver-~
gence and Laplacian operators are applied in the transformed plane. The
source terms §,X ,[' and © are given in appendix ‘A.

The radial sand tangential components of the velocity in the trans-

formed plane are

Y .H(rcos(8-6 )-r )ds
T oa-L(h o' T
Vglry,t) an >+ 2 * Y
A lr-rol P
2 ) 2 2.
) ;_- wH (r col(e-ﬂo) ro)dl i qu (8-8)): un(O-Oo)dl ‘
n ++ 2 an - 2 ;
Rl =%, Rl Ea |
(2.27) |
1 Zzg.r sin( 6-00)40 1 szr oin(e-ﬁp)dll |
Vr(to,t)"ﬁf . - 2 O-Z—u “‘ 2
s |r'-r°| al r"ol
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~ (B-8 )(r cos(8-8 )-r )dR
-5 } -2 2 sV (2.28)
Rl

+ <+ 2 4
[z, | P

gy oY AR N

Bquations (2.27) and (2.28) are essentially the same as the two

-

components of equation (2.16) in cylinderical coordinates, except for the

scale factor H.

S
- Rl

Sur face Vorticity Determination

- The vorticity values away from the surface are determined using the
vorticity transport equstion (2.23). In order to solve this equatiom, it
is necessary to prescribe the‘vorticity values on the solid surface at all
time levels. To do that, the viscous region is coanveniently divided into a
vortex sheet of strength Y located on the surface, and an outer vorticity
field where the vorticity W amnd the dilatation B are assumed to be known.

Applying equation (2.27) on the surface of the body yields

)(r cos(6~8 )-r )d@
2' 3 o 5 . v, (229
T -2:s cos(e—eo)

"
2
s

’ 1 B(Y-
. Ve(rﬁ,t) -0'-‘2_"f

T
]

Here Y represents the integrated value of wdn on the first cell adjacent to

!' the surface and r, is the position vector for the points om the surface
where the tangential component is calculated. Vt is the tangential

velocity at the body surface due to both the outer vorticity field and the

whole dilatation field in Rl, and is given by
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1 Uﬂz(t con(G-Oo)-to)rdrdO ! f )H T sm(e-e )Jrdrd®
Ve - =
T 7. .2 — T - N
21 T * T, ero cos(6 00) 21 2rr cos(8 Go)

(2.30)

It must be noted that the region Rl in the first integral does not
include points on the solid surface.

If r approach L) the first integral on the right-hand side of

equation (2.29) becomes (20).

2mn
, (y-Y,)H (r, cos(8-6)-r )rd® I(Y°Yp)ﬂds -1 (v-1m
T n A ri *ri -Zr: cos(G-Go) 4 o
(2.31)
The principle of conservation of total vorticity gives
2n
1 =L 2,
MIJ‘ YH T, de an f H w dR (2.32)
o (R1-3)

and, since the solution is started by a non-circulatory potential flow, it

folloqs that

2
1 | vy.Hr_d8 =0 (2.33)
lnrf P8

Substituting equations (2.30-2.33) into equation (2.29) yields

) (ri -r%)u? rdrde L I Hz(B'SP)r Sin(e‘eo)fdfde
Y Hogir T3 2 "t

2,..2_ _ 2_ e o
s (R1-9) rsﬂ: 21‘1:s cos(8 90) Rl Te*T zrrs ‘_03\9-90) i
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In equation (2.34) the region (Rl-s) is the computation region Rl
excluding the surface s. Since the radius of the circle in the transformed

plane is taken to be unity, equation (2.34) is rewritten as

| wil(ioedyededs 1 J HZ(B-Bp)r 3in(0-9_Jrdrdo
Y & -
2T 1+r2-2r cos(6-0 ) TH l.+t2-2r cos(G-Go)
(Rl-s) ° Rl
(2.35)
+
YP

Segmentation of the Velocity Field

The advantage of using equation (2.27) to calculate exterior flow
problem stems from its explicit nature. Thus, the integral formulation
permits the determination of the velocity on the boundaries of rectangular
regions without regard to the interior nodes. In several cases, since
rapid finite-difference computational schemes are available for solving
the Poisson's equation in regions with rectangular boundaries, a combi-
nation of equation (2.27) and such schemes can provide a faster way to
compute wvelocities in exterior flow problems. For this reason, the
computational domain is divided into compartments in which the kinematic
computations are perfo wed independently of each other. The choice of the
scheme, to be applied in each compartment, depends upon the shape of the
body surface and on the relative distance between the body surface and the
compartment. For example, as will be shown later in the static stall case,
the integral relation (2.27) is used in the whole wake and in inner regions

ad jacent to the airfoil surface in order to compute the velocities. The

o mtn s Ay
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Poisson's equation is used in the rest of the computational domain and the
velocity on the boundaries is calculated using the integral relation (2.27).

The Poisson's equation for the tangential velocity in the trans-
formed )lane is derived as follows:

The vorticity and dilatation can be written as-

6;6-m2=% (2.36)
-+ -+ 2
V .V=0R" = Bo (2.37)

Upon taking the curi of the terms in equation (2.36), the equation becomes

$x$°-$x$x5-$&$)-¥v (2.38)

Substituting equation (2.37) in equation (2.38) one obtains:

> » >
vV = 8, - Vxi (2.39)

‘lamo 38o »> 3“0 1 380(_’ 2 + .
T "3 (% o *r (% TV % TV e =0 (2:40

lvv .-—24——0- (2.41)

Equation (2.41) is the Poisson's equation for the tangential velo-

city writtea in the transformed plane.

e e o208 o S w0
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Once the tangential component of the velocity, \6, is determined the
radial éonponent of the velocity is calculated explicitly by using the

definition of the dilatation in the transformed plane, namely

0
v
¥ Y1 Y g (2.62)
or r r d60 o

Pressure and Shear Calculations

Since the surface pressure details are needed for any load esti-
mation on the body surface, the equation of state (2.4) is used to de-

termine the pressure on the surface as follows:

Y-
p= (-y-l-)ph (2.43)

. A pressure coefficient can be written as

¢, = (2.44)
P (loy 2

where P, is a reference pressure.

As will be shown later, the gradients of the flow variables on the
upper surface of a stalled airfoil are very sensitive to small disturbances
created either by using different approximations to the governing
equations or by sdopting different boundary conditions. Compressibility

effects are expected to be small for Hm = 0.4, 2nd in order
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to capture these small effects, it was decided to compar2 the present
compressible results with incompressible results obtained by using exactly
the same mathematical and mumerical procedures. For this reason, a
different (from that employed in the test cases) scheme for computing the
surface pressure, similar to the scheme used in the incompressible case
(7 ), is developed and presented below.

In the body-fitted coordinate system, the vector momentum equation

is

-+

> -
P g%f oWV = -Fp+ V. 1 (2.45)

At the surface, the momentum equation is reduced to the following

simple form because of the no-slip condition.

2.46)

Taking the dot product of the above equatiun with the tangential

<
unit vector t at the surface, defined positive in the counterclockwise

sense one gets

<>

> > > .
® .G (2.47)
where s is the coordinate direction tangeatial to the surface, and is
measured positive in the counterclockwise sense.

>
The surface vector t is definaed hy

v - n
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Also,

constant wmolecular viscosity,

dx * .dl'?
t- sl’dsJ

thermal conductivity and

. These assumptions are reasonable for low subsonic flows.

§.3 = iV« 1308

Inserting equation (2.49) into equation (2.47) one gets

P .. o2 1, . 28
5% WV (P

azvt 32vt
+
Bsz anz

vy, =

[' the direction away from the solid surface.
. azv
: . condition, Vt and 5 are zero everywhere on the surface.
! ds
. 2
v
!- vzvc = zt = g—w-
an n

17

(2.48)

For simplicity, it is assumed that the fluid is a perfect gas with
specific heat.
By using these

assumptions the right-hand side of equation (2.47) can be written as

(2.49)

(2.50)

(2.51)

-
where n is the unit normal vector on the body surface, measured positive in

Because of the no-slip

Thus,

(2.52)
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Combining the terms, equation (2.47) reduces to
2, a8
PR T (173 == (2.53)

1f the pressure is non-dimensionalized with respect to the dynamic
pressure at infiaity, and all quantities are non-dimensionalized with

respect to the reference quantities mentioned earlier, equation (2.53)

becomes
ac
_P . 2C (3w 38 (2.54)
as Re (an +1/3 as)
PP,
vwhere, ¢ = ———— and C is the chord length.
1 2
(‘5 DVQ )

The dimensionless shear stress at the surface is given by;

Ce=- g ¥ (2.55)

knowing the surface pressure and the surface shear stress distributions,
other quantities of interest such as lift, drag and moment can be easily

obtained.

Calculation of Loads

Once the surface pressure and shear stress distributions are known,

the loads are obtained from the following expressions.

\ i« -

T T T U My T
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c,=C, + (2.56)
N Np CNF
C.=C., +C (2.57)
T Tp T
(2M = GH + Cy (2.58)
P F
where
n
-l dx n
cN ¢ I cp(e) T de 2.59)
P ()
n
2 dy
Cy = e w(e) 0 de (2.60)
F 0
27
--1 dy
CT C f CP(B) 36 de (2.61)
P (4
L
- 2 dx
CTp Re j w(8) FT de (2.62)
0
an
« L 21 dyi
ch = c,(8) {x“ vy 55| d0 (2.63)

Jx 8¢ -, dxl
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The CN and c,r are force coefficients directed normal and tangential

to the airfoil chord, and cu

and P denote the pressure and the skin friction contribution respectively.

is the moment coefficient. The subscripts p

The moment is taken about the origin ot the coordinate system and is
positive in the counterclockwise direction.
The lift and drag coefficients referred to the wind axes are

obtained from:

CL = CN cos G~ CT sin qa (2.65)
(:D = CN sina+ C,r cos O (2.66)

where @ is the angle of attack.

Initial and Boundary Conditions

The non-circulatory potential flow solution is used as an
initial condition in the preseat work. Along the body surface, the
vanishing normal derivatives of enthalpy h and density P were used as
boundary conditions for h and 2. These conditions are convenient for an
adiabatic wall. The surface values of the dilatation B were obtained using
a three~point extrapolation formula during each iteration of the dila-
tation transport equation. The boundary values of 8 were relaxed and set
to be zero whenever the solution approached steady state. The integral
expression (2.35) was used to compute the surface vorticity at each

iteration while iterating the vorticity transport equation.
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The potential flow values were used as in flow boundary conditions,
while the vanishing second derivatives for B, h,P and zero vorticity were
! uesed as downstream boundary conditions. The wake never approached the
- downstream boundary during the calculations. The aforementioned boundary

conditions preserve the elliptic nature of the problem,

i
e e i e
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3. RESULTS AND DISCUSSION

The procedure developed was tested on two problems in order to
demonstrate the ability of the approach to compute attached and separated
flows. The test problems considered are: (i) laminar compressible flow
around a circular cylinder, (ii) laminar compressible flow over an airfoil
at zero angle of attack. Finally, the method was applied to the static
stall problea.

In the results discussed below, the non-dimensionalisation is done
with respect to the free stream velocity and the characteristic length of
the body in the transformed plane. 1In the airfoil case and other test
cases, the solid body was set into motion impulsively. Since the time
rate of change of all flow variables is very high after the impulsive
start, very small values of the time step, At, are used to obtain proper
timewise resolution at the initial time levels. As the gradients with
respect to time decrease, large values of At are used. The under-
relaxation parameter, which sometimes controle the acceleration of the
convergence of the iterations, is varied depending upon the type of problem

considered.

Laminar Compressible Flow Past a Circular Cylinder

The present scheme also has been applied to the study of laminar
compressible flow past & circular cylinder at a Reynolds number of 40, Mach
aumber of 0.4 and Prandtl number of 1. The Reynolds number is based on the
cylinder diameter and the free stream velocity. This classical test case
is chosen to demonstrate the ability of the approach to handle flows with

massive separatiom.
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The grid system consists of lines of constant radii and lines of
constant angle 6. The lines of constant @ asre equally spaced with n /20
intervals. 1In the radial direction, a stretching relation is assumed as

follows:

re= e', s = (j=1)As, j = 1,Jmax

By varying s uniformly, with As = 0.06, an exponential variation is
obtained. The total number of grid points used is 2000 points. It should
be noted c'hat with the present formulation not sll of these grid points are
involved in the computations at all time levels. At the earlier time
levels, the computational region contained about 40% of the total number of
grid points. As the solution progressed in time, the number of points in
the computational domain increased. When the computations were terminated
at a time level of 15.1, ihe computational region contained all the 2000
points.

In order to compute the kinematic part of the problem the segmen-
tation technique, explained in chapter [l was used. The computational
domain is divided into three annular regions R', R" and R"'. The inmner
region, R', consists of 240 nodes. The intermediate region, R", consists
of 600 nodes, while the outer region, R"', contains 1160 n»dal points.
Regions R', R" are matched - a distance of .35 radii awsy from the
surface; likewise the regions R" and R"' are matched at a distance of 2.52%
radii asay from the surface. The far-field boundary is located 17.916
tadii avay from the surface. The integral formula is used to
compute the tangential velocity in region R' and on all of the boundaries.
Then, the Poisson's equation is itercced to get the velocities in R" and

nlll‘
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The kinetic equations (2.19), (2.20), (2.21) =xed (2.22) are
approximated by an implicit finite-difference scheme in the polar
coordinates and are eolved by using the ‘'point successive under-
relaxation' technique. Central differences are used to approximate the
convection terms. It should be noted that no syametry was assumed
regarding this present case.

The solid body was set iuto motion impulsively. At this impulsive
start, the flow was prescridbed by the potentialflow solution sbout a
circular cylinder immersed in a uniform stream. The time step varied
gradually from 0.03 to 0.15. The solution was terminaced at t = 15.1. At
this time level the drag coefficient hsd converged to three digits. 1In the
present case, the time is non-dimensionalized relstive to the cylinder
radius and the free stream velocity.

In Figure 1 the surface pressure distribution at steady state is
compared with the mumerical solution obtained by Sankar and Tasss [z] .
The sgreement is quite good.

In Table 1, the present compressible and incompressible results are
compared with the compressible results of Reference 2 . In this Table, the
separation angle 6“9- is measured from the rear axis, and obtained as the
poiat on the surface where the vorticity changes sign. The length of the
standing vortex (L/R) represents the distance between the ceuter of the
cylinder and the point on the centerline where the velocity changes sign.
These comparisons indicate that the present solution and the finite-

difference method give results that are in satisfactory agreement.
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TABLE 1|
Comparison Between the Present Method and Reference 2
Presents Results Reference 2
Incompressible Compressible Compressible
(M=0) (M=0.4) (M=0.4)
0 53.5 53.7 52.5
sep

Leangth of Standing 5.80 5.85 5.08
Vortex (L/R)

Pressure Drag 1.025 1.230 1.32
Coefficient CDP

Friction Drag 0.555 .520 361

Coefficient C

D
F

Total Drag 1.580 1.750 1.881

Coefficient C

D,
T

Minimum Surface -6.60 -6.12 -5.82

Vorticity¢nmin

Compressible Laminar Flow Past an Airfoil at Zero

Angle of Attack

The computational procedure develuped here is next applied to the
case of compressible laminar flow past a symmetric 92 thick Joukowski
airfoil at a zero angle of attack. The airfoil is obtained by means of a

conformal transformation of a unit circle. The chord Reynolds number
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considered in this case is 1000. The Mach number is 0.4 and the Prandtl
number is unity. The normalizing reference time is obtained by dividing
the transformed circular cylinder radius by the free steam velocity. All
of the quantities are non-dimensionalized with respect to the free stream
velocity and cylinder radius.

The tangential velocity, Vo sy in the transformed plane, is
calculated using the integral relation for the set of nodes on the first
coordinate line next to the surface and at the outer boundaries. The
Pcisson's equation is then solved by using a 'successive point over-
relaxation' technique in the rest of the domain. The difference kinetic
equations, written in the transformed plane, are solved using a 'point
under-relaxation' iterative technique. The circular domain is discretized
with 60 equally spaced points in the direction and 40 points in the
radial direction. The time step is gradually varied from 0.0025 to 0.1
during the course of the computations. The computations are initiated with
an impulsive start. The initial surface vortex sheet strength is computed
from the potential flow velocity values. The kinematic computations are
done with the finite Fourier series method. At a time level of 6.5, a
steady state is determined to have been reached based upon the agreement
(withian 1X) of the computed surface vorticity values with those of the
previous time level.

In Figures 2, 3 the present surface pressure and surface vorticity
values are compared with the corresponding values obtained in Reference

2 . Both solutions are in very close agreement. The reference pressure
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used in these figures is the free stream pressure.

Laminar Compressible Flow Past an Airfoil at

an Angle of Attack

The airfoil used in the present study is the 92 thick symmetrical
Joukowski airfoil described in appendix E. The chord Reynolds number
considered is 1000. The Mach number is 0.4, the Prandtl number is 1.0 and
the angle of attack is 15°.

A number of publications (1, 2, 3, 5, 6, 7) have treated this
problem before by incompressible flow. It can be seen from these results
that the solutions are not quantitatively comparable. However, there is a
qualitative similarity between the results. In the static stall case, the
results depend on a number of factors 8uch as grid resolution,
specification of the far-field boundary conditions and the numerical
scheme. Therefore, in order to capture the small compressibility effects
expected here, the compressible results have been compared with
incompressible results obtained using the same computer program after

'switching off' the compressibility effects.

Consequently, before solving the compressible static stall problem,
it was appropriate to conduct first a series of incompressible numerical
experiments to : (i) test the code, (ii) inspect the seusitivity of this
solution with the change of mesh size in the 8 direction, (iii) examine the
role of the time increment on the accuracy of the solution, (iv) examine
the cyclic behavior of the solution, and (v) obtain incompressible data to
be compared later with the compressible data. The difference between the

two solutions represants the effect of compressibility.

athait et Ol ot i s
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Imguuib le Solution

The incompressible solution for the static stall case was obtained
by following the same procedure used later for the compressible case. In
order to demonstrate the accuracy of the scheme, the incompressible
solution has been compared with the numerical results of Mehta [7]. As
shown in Figure 4 , the present results agree very well with Mehta's results
at the early time levels. As expected, the two solutions differ quanti-
tatively at the later time levels. However, the qualitative behavior is
similar at these later time levels.

To illustrate the effect of the grid resolution on the solution, two
sequences of solution were obtained for A® = m/24 and A® =7 /30. Figure §
shows the history of a load comparison between the two solutions. It is
seen from this figure that the two solutions are comparable. Although
there is mo drastic difference between the two solutions, there still
exists enough of a difference that there could be a misinterpretation of
the results obtained for two different mesh size solutions, one compres-
sible and the other incompressible. This experiment demonstrates the
importance of using the same grid size whenever small compreseibility
effects are examined.

The continuation of the cyclic behavior of the solution for more
than one cycle and the validity of the present method for a number of
cycles of vortex shedding was demonstrated. The solution was advanced in
time up to a dimensionless time level of 62 (the reference time being the
transformed circle radius divided by the free-stream velocity). Figure 5

shows the time history of loads which illustrate the cyclic behavior of the
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solution with time. Note that there are two cycles observed in the
prescribed time range. This exercise provides considerable coanfidence ia
the formulation of the problem and in the computer program.

Finally, ia order to study the effect of the time step on the
solution, three mumerical experiments, with three differeat time
increments, were performed. Table 2 shows the comparisons among these
three solutions. Each solution has been started at time level of 20.175,
and then advanced in time up to a time level of 21.615 and 24.735. The good
agreement among the solutions is apparent in Table 2. It could be
concluded that, within the prescribed time range, the size of the time step

plays a minor role in the accuracy of the solution.
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Table 2

Comparison Among Three Different Time Increments Solutions

Time Level At Cc, Cp <y w, ‘min
0.06 0.2582 0.1641 0.1160 -89.26
t = 21.615 0.12 0.2574 0.1654 0.1150 ~-89.41
0.24 0.2623 0.1683 0.1127 -89.58
0.06 0.3475 0.1722 0.1225 -93.971
t = 24.735 _ " 0.12 0.3516 0.1718 0.1235 ~94.28
0.24 0.3527 0.1686 0.1257 -94 .46

Compressible Solution

In the Figute;.that follow, the chordwise distance denoted '"chord
percentage" is measured from the leading edge of the airfoil. The force
coefficients are normalized with respect to the free-stream velocity and
the radius of the unit circle. The normal .zed reference time is obtained
by dividing the radius of the unit circle oy the free-stream velocity.

The grid system contains 48 equally spaced points in the 8-direction
and 40 points in the radial direction. The exponential relation given ia
appendix E is applied for placing the points in the r direction. The time
increment used in this numerical study is progressively increased from At =
0.0005 to At = 0.24. A total of 255 time steps were used to march the
solution to a time level of 31.275, when the computations were terminated.

Using the flowfield segmentation technique described earlier in

chapter 1I, the velocity 1s obtained everywhere in the computational
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dowain. Figure 6 shows the segmented compartments and the kinematic
relation used in each of them.

The iterative procedure used in solving the kinetic equations were
varied to study their effects on the solution. Switching the iteration
direction in the tangential coordinates was used to accelerate the con-
vergence. The convergence criteria used in solving the vorticity tramsport
equation was based on the maximum vortex strength variations between two
consecutive iterations, where the vortex sheet strength is defined by Y =

wil

dr. Invariably, the maximum variation between two consecutive iter-
ations occured near the trailing edge, which can be explained by examining
equation (2.35). It is seen that the scale factor H appears in the
denominator. Because the scale factor is very small near the trailing
edge, it amplifies any error in the calculated value of the surface vortex
sheet strength. The above criteria for convergence allows more tolerance
for the vortex sheet strength near the trailing edge than anywhere else.
The tolerance level specified for the vortex sheet strength was 0.002 at
the earlier time levels and is subsequently reduced to 0.0005 at later time
levels. Continuation of the iteration beyond the above toulerance limit was
not found effective in reducing the residue. The residue instead oscil-
lated around a minimpum value without showing any teadency to reach zero.
The maximum tolerance criterion used in iterating the enthalpy and
density transport equations are 0.1% and .5% of the previous iteration,
respectively. In iterating for the dilatation transoort equation, a
stringent tolerance limit in the vicinity of the airfoil was assumed in
order to ensure proper convergence. In the outer rz2zions and near che

trailing edge, this limit is relaxed to accelerate the convergence. At
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later time levels, the maximum allowable tolerance, in the inner regions,
is taken to be 0.8%. This represents the maximum perceantage variation
between two consecutive iterations.

As described earlier, the total number of nodes are 1920. However
not all of these nodes were involved in the computations at all time
levels. At early time levels, the vortical region is confined to only
about 252 of the maximum computational region. The computational time per
time step depends on tk'se extent of the computational boundary and varies
from as little as 70 CPU seconds at the early time levels to 154 CPU seconds
at later time levels on the CYBER-70 computer with & GBC 6400 CPU.

The average computational time required in the present study to
advance the solution for one dimensionless time is 16 CPU minutes. Sankar
and Tassa 2 used an ADI scheme to solve the primitive variable system of
finite-difference equations, and took 11.5 CPU minutes to advance the
solution for one dimensionless time on the same computer. It should be
emphasized here that, in the present study, at later time levels the memory
requirements are larger than those required in Reference ' 2, 'HoueVer, due
to cowputer memory restrictions, the present computer program could not
utilize the maximum capacity of the CYBER-70 computer. Therefore, unneces-
sary computations have been carried out for a number of time steps.
Alternatively, if more computer core is used, along with using more
sophisticated numerical procedures, it is believed that the computational
time requiiad to advance the solution for one dimensionless .Lime can be
reduced below 11.5 CPU wminutes.

Table 3 gives the details of the time steps versus the computer time

for the present computations.
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Table 3
Sequence of Changing the Time Increment and
Summary of Computer Time
No. of Time Ac Time Level T Average CPU

Steps Time in Sec.*
10 0.0005 0.005 70
10 0.001 0.015 80
10 0.0015 0.03 85
10 0.0045 0.075 92
10 0.008 0.155 9%
10 0.016 0.315 98
10 0.032 0.635 100
10 0.064 1.275 105
20 0.09 3.075 108
20 0.12 5.475 119
30 0.12 9.075 128
25 0.12 12.075 130
80 0.24 31.275 154

* CYBER-70/Model 74-6400 CPU.

Flow Development

stages.

primary bubble,

The development of the flow field may be viewed as occuring in four

These are: (i) impulsive start, (1i) formation and growth of the

(iii)

the

bursting cof the

primary bubble which

is

ha o b i
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associated with the formation of both the secondary and the trailing edge
bubbles, and (iv) reattachment of the primary bubble. The initial attached
bubble which expands with time is referred as the 'primary bubble'.

The convention used is that the upper surface vorticity is negative
for attached flows while positive vorticity indicates flow reversal. The
opposite is true for the lower surface.

The first stage of the flow field development reflects the effects
of the impulsive start. Immediately after the impulsive start, the
vorticity is only non-zero at the surface, while potential flow exists in
the rest of the fluid. The rear stagnation point is located on the upper
surface of the airfoil, Within a short time, the rear stagnation point
moves close to the trailing edge. This movement is associated with the
formation of a "starting vortex'". At subsequent time levels the boundary
layer starts growing on the upper and lower surfaces of the airfoil. The
thickness of the boundary layer on both the upper and lower surfaces
increases with time, as is observed from the displacement of the
'streamline-like' 1lines near the surface. For convenience, the
‘streamline like' lines will be called 'streamlines'. The thickness of the
boundary layer on the lower surface is smaller than the thickness of the
boundary layer on the upper surface due to the existence of a favorable
pressure gradient on most of the lower surface. The extent of the region
of adverse pressure gradient on the upper surface is shown in the pressure
distribution plot. It is also observed, at this stage, that the magnitude
of the surface vorticity near the leading edge on the upper surface
continues to decrease with time, forecasting the onset of separation in
that neighborhood when the surface vorticity changes sign. However, the

separation does not actually occur until a time level of 1.88. During this
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first stage, and after the decay of the influence of the impulsive start,
the value of cL starts increasing due to the growth of circulation after
first reaching a minimum value at T = 1.0 as shown in Pigure 7. The value
of CD continually decreases because the decrease in the friction force on
the lower surface as the positive vorticity decreases with time.

The second stage of flow development describes the occurrence of
separation, together with the formation and growth of the primary bubble.
The separation first takes place at 20X chord at T = 1.88. The size of the
separation bubble increases with time until it covers most of the upper
surface. This is expected, since the separation point moves forward
towards the leading edge and the reattachment point moves rearward towarde
the trailing edge. At time level 7.214, the separation and the
reattachaent points are about 95% chord length apart. The increases in the
size of the separation bubble ircreases the effective thickness of the
airfoil, and the increase of the intensity of the reversed flow inside the
bubble causes additional suction pressure on the upper surface. The above
two factors result in an increase in the value of CL with time. During the
duration of the primary bubble, the drag coefficient remains approximately
constant.

In the third stage of flow development, the primary bubble is
ruptured and an open bubble is formed, indicating the cyclic start of
vortex shedding. The reattachment poiat of the primary bubble lifte off at
a time level of 7.214 causing separated flow over almost the entire upper
surface. The incresse in the number of streamline loops inside the
separated bubble, indicates an intensification of the reversed flow inside
the bubble. The flow rotation inside the bubble is clockwise, with the
fluid next to the surface soving upstream. The pressure plots at

T = 9.494, Figure 37, show a small region near ‘the trailing edge where
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there is a decrease in the pressure in the direction of the main flow
outside the bubble. This is equivalent to an adverse pressure gradient for
the flow near the surface. A small counterclockwise separation bubble
appears near the trailing edge at T = 11.775 as a result of the above
mentioned pressure gradient. The size of this bubble increases slowly with
time until it can be clearly seen at T = 14,.05%. At this time level, a
similar adverse pressure gradient develops at about 582 chordwise distance
from the trailing edge. Thia results in the appearance of a secondary
counterclockwise bubble at T = 16.71. The direction of the flow inside
this bubble is counterclockwise, with the fluid near the surface wmoving
downstream toward the trailing edge. The intensity of the flow rotatiom in
the trailing edge bubble is larger than it is inside the secondary bubble,
as indicated by the number of streaamline loops inside that bubble. The
size of the two bubbles increases with time. As time progresses, the
primary bubble starts to shrink while the other two small bubbles enlarge.
The secondary bubble expands locally in the normal direction, whereas the
trailing edge bubble gets enlongeted in the duwnsiream direction. At this
stage of flow development, the lift coefficient keeps on increasing, due to
the extent of the primary bubble beyond the trailing edge, until it reaches
a maximum at T = 10.75. Meanwhile, the drag coefficient starts increasing
very slowly after the time level 4.8. This slow increase in the drag is due
to the increase in the effective thickness of the airfoil as judged by the
shape of the zero streamline. This causes an increase in the pressure
drag. The value of cn continuously increases until it reaches a saximum at
T = 12, The downstream motion of the center of the ruptured clockwise

bubble, which is accompanied by the appearance of the two small counter-




o ———an

PRSI

amm—— e
. . . .

»

clockwise bubbles, causes & general drop in the value of CL after
T e 10.75. The reason for this drop is that the negative pressure
sustained by the primary bubble is partly removed by the formation of the
two counterclockwise bubbles. - This aleo results in a decrease in the
pressure drag, which explains the drop of cn after reaching a msaxioum at
T = 12,

The fourth stage of flow development involve the opening up of tnhe
secondary bubble, the lifting off of the trailing edge bubble, and the
reattachaent of the upstream part of the primary bubble. The streamlines
and equi-vorticity lines show the Zfollowing fiow development during this
stage: (1) the secondary bubble splits the primary bubble and opeas up to
the outside flow at a time level of 20.51; (2) the trailing edge bubble

moves downstream until it 1lifts off the airfoil by T = 21.9%; (3) the

downstream part of the primary bubble starts to disengage from the surface

at a tim: level of 25.455; and (4) as time progresses, the upstream part of
the primary bubble spreads in the downstream direction wntil the
reattachment point reaches the trailing edge at a time level of 31.275,
indicating the completion of the first cycle of vortex shedding. The
streamline pattern at T = 31.275 looks similar to the pattern at the start
of the cycle (T = 7,214), which indicates that the second cycle of
oscillatory behavior is going to start at T = 31.275. As the secondary
bubble opens up to the main stream, the reattachment point of the upytream
part of the primary bubble starts to move downstream, increasing the region
of the clockwise reversed flow. This reversed flow is able to sustain more
suction pressure which results in an increase in the value of CL. The
life-off of the trailing edge bubble and the shedding of the downstream

part of the primary bubble into the downstream flow enables the upstream
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part of the primary bubble to cover most of the sirfoil. This will lead to
a continuous increase in cL and Cp, as indicated in Figures 8 and 9.
Juaging either from the contour plots of the streamlines or from the
tive histories of the loads plots, it is estimated that one cycle of vortex
shedding occure during the time period from T = 7.214 to T = 31.275. With
the airfoil chord as the characteristic length, the Strouhal number,
defined by C/(TV), where T is the period of the cycle, is thean found to be

0.155.

Comparison Between the Compressible and Incompressidle Solitions

In order to predict the compressidbility effect for the present
static stall case at a Mach number of 0.4, the compressible and the
incompressible solutions obtained using the same grid are quantitatively
compared in Table 4. The importance of using the same grid size in both
solutions was demonstrated earlier in this chapter.

Based on the comparison shown in Table 4, the observations made may
be summarized as follows:

(i) At the earlier time levels, the compressibility seems to

decrease the rate of thickening of the boundary layer.
(ii) The onset of the separation of the primary bubile begins to
appear at a later time level in the compressible case.

(iii) Compressibility seeas to play & minor role in the growth of the
primary bubble.

(iv) The compressibility delays the appesrance of both the
secondary and the trailing edge bubbles. These two bubbles
grov at a faster rate in the compressible case than they grow

in the incompressible case as shown in Pigures (8-10).
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(v) When the first cycle of vortex shedding starts, the difference

(vi)

in the force coefficients between the compressible and the
incompressible solutions is small. As time advances, the
difference between the two solutions gradually increases, in-
dicating the increased influence of the compressibility. At a
time level of approximately 21 the compressibility effect
becomes very small. At this time level, the time rate of
change of ilow variables decreases to a minimum. At later time
v els, T = 23 - 31,275, the compressibility effect appears to
increase again but at a slower rate.

The effect of compressibility on the force coefficients is
shown in FPigures (8-10). This effect is comparable to the one

computed in Reference 2, as shown in Figures 11 and 12.
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Table ba
Quantitative Comparison Between the Present Incompressible
and Compressible Solutioas
Flow Events Compressible Data Incompressible Data
Onset of separation of T =1.88 T =1.76
the primary bubble
Separation location 20% 232
from leading edge
Cycle begins at T = 7.214 6.821
Cycle ends at T = 31.275 29.815
First appearance of T=11,775 T=11.24
trailing edge bubble
First appearance of T = 16.70 T = 15.374
secondary bubble
Opening up of the T = 20.51 T = 19.81
secondary bubble
Strouhal number 0.15478 0.16146
c/(rgn)
CL : 1.32 1.29
max.
CL 0.254 0.262
min.

* The force coefficients are given after the recovery from the impulsive
start.

Comparison With Other Numerical Solutions

The flow around a 92 symmetric Joukowski airfoil at an angle of
attack of 15°, chord Reynolds number of 1000, Mach number of 0.4 and

Prandtl number of one, has been solved numerically by Sankar and Tassa [ 2].
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The computational procedures of Reference 2 are significantly
different from those used in the present study, and it is very important to
bear this in mind when comparing the results of the two studies. The
procedures of Referemce 2 are as follows: (1) the primative variables
(u,V,P,h) are used as the unknown flow variables; (2.) the gouverning
equations are discretized using central difference formulas for the
spatial derivatives; (3) a second order artificial diffusion is added to
the real diffusion term to stabilize the solution; (4) an ADI procedure is
used to solve the system of difference equations generated from the
governing equations; (5) a fourth order dissipation term is added to the
governing equations to eliminate the wiggles arising in the solutions; (6)
the outer boundary is located at six chord lengths away from the airfoil
(in the present study the outer bounday is located at about 10 chord
lengths away from the surface); and (7) a uniform flow is used to start the
solution impulsively.

Table 6 show typical comparison between the present results and the
results obtained in Reference 15.

The stability requirement for non-linear problems may impose more
restrictions on the size of the time step ever in the case of implicit
schemes [8] However, Desideri et al [9] and Ballhaus eg al. DOj, i
separate studies, have shown that a cyclic variation of the size of the
time step between two limits is helpful in obtaining convergence in éhe
(ADI) schemes. In the present solution, no such restriction on the time
step was required. It is believed that the use of the under-relaxation
technique in solving the difference equations has a stabilizing offect on

the solution. The maximum time step used in Refe.ence 2 is 0.064,
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whereas, in the present study, the time size was successfully increased up

to 0.24. More details about the work can be found in Reference 11.

Table §

Quantitative Comparison Between the Present

Results and Those of Reference 2

Flow Feature

Present Results

Reference 2

Onset of separation of
the primary bubble

Separation location from

leading edge
Cycle begins at T =
Cycle ends at T =

First appearance of the
trailing edge bubble

First appearance of the
secondary bubble

Oyeniﬂg up of the
secondary bubble

Strouhal number C/(TV,)

o
max.

min.
max.

ain.

T = 1.8%

202

7.214
31.275

T =11.775

T =16.70

T = 20.51

0.15478

1.32

0.254

0.346

0.165

T=2.1719

242%

6.3117
27.376

T = 10.695

T = 12.52

T = 18.056

0.17626

1.34

0.251

0.364

0.141
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4. THE USE OF THE INTEGRAL REPRESENTATION METHOD WITH
SERIES SOLUTIONS FOR SOLVING THE NAVIER-STOKES EQUATIONS

The use of orthogonal functions in solving the Navier-8tokes
equations has offered high accuracy for certain problems. The reason is the
rapid decrease of the truncation error as the number of these functions
used increase in a series representation of the solution (16). 1In this
section of the report, the use of Fourier series with the integral
representation method (1) is developed. The procedure is applied to simple
test problems.

The Navier-Stokes equations, for steady incompressible flow, in a

region R, with boundary B, can be written as follows (1):

fJ x (£ -F) f(t "2 )(r -D)
> > 1 0 0 1 o o0 o
v(r) = - =~ ———————— 4R + = dB
2r g It*o_;’z o 2 B’;o_-;'z o
. f(h 2 )x(f. - )
¢} [¢] [+]
r ~-r
-+ +
P Re Gox %)x(ro—{)- =
27 R ';o . 1-_»'2 °
-+ -+
, Re f h, a x(ro-r) o
2n B + +.2
|t -t
+ o+ -+ -+
1 ﬁ (wox no)x(ro -r) -
27 B i;o -2 0

(4.2)

Where v and @ are the velocity and the vorticity vector respectively, T is

the position vector and n is the unit vector on B directed outwards. The
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subscript o indicates that a variable or an integration is evaluated in the
-+

r_ space. Notice that (4.2) is nonlinear because it is equivalent to our
familiar vorticity transport equation.

In a polar (r,6) coordinate system, the vector equations (4.1) and

(4.2) give the following scalar equations.

L f“’oro sin(eo - 0) .
r 2n 2

Rr™ + r2-2r r cos(@—0)
o o o

¢.vr [ro cos(8  -6)-r
B

L L e
‘' r2 + rz - 2r r cos(®@ -9) °
o o o

B §veoro sin(® o 0
r +r - 2t°r coa(eo- )]

w r_ cos(f ~-0) -r
v, =- f2o o o dR

& Zn R ri + tz - 2r°r coa(eo-e) 0
vr r, sm(e ~-0)
+ %— § 2 2 dB
m B )+ -2 r cos(e -6) °
. fve o[ro coa(eo- 2)] -r]
) 3 —=-=—dB_ (4.4)
n r- 4+ r° -~ 2r r cos(6 ~-6)
o o o
vrwo[ro -r cos(eo-e)] + vy ur sin(O-Oo)
Re f 0 o
w o =- 21 2 2 N dRo
T R r" +° - 2r r cos(C -0)
o o o
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, Re fhor oin(eo-ﬂ) —
2n B 2 2 -g) ©°
T, t T - 2r°r coc(ﬂo 0
1 fwo[ro -r coo(eo-e)]
+ '2_1' B 2 dBo (605)

2
r o+ - Zrot coc(eo—e)

In (4.3) - (4.5) v_ and v, denote the velocity components in the r and 9
direction respectively. Because we are looking at a periodic in the 6 -
direction flowfield we can assume a solution in the form of finite Fourier
series.
N
v.=8,+ 3 (s cosnd+t sinnb) (4.6)
a=l
N
Vg =P, *t I (p, cos 0§ + q sinn@) (4.7)
a=1
N
w =a,*+ X (a cos 09 +B sin nf) (4.8)
n=1
In these equations, the Fourier coefficients @, an'a, Bn'a, 8,
an's, tn'a, Py pn's, qn's are dependent on r only.
Using the method of residuals (Appendix (), the integrals in
equations (4.3), (4.4) and (4.5) could be evaluated explicitly and only the

Fourier coefficients are left to be determined (Appendix (C):

s, " 0 (4.9)
1 %5 (So)™! 1 f 8.

s = — dr_+ ¢ - dr

n 2 .!; nr o 2 A ro 0
sga o2y ! (4.10)
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]
1 F T, n+l 1 fl n-1
t 8 = - —— - - -r-—
[ a > { a, () dr -3 J °n(r°) dr,
1 n-1 1 n-1
+3 tn(l) r +3 pn(l) T (4.11)
r T,
P, = _{ ao(r—)dro (4.12)
81 r to n+l 1 fl " n-1
pn 2 {an(r) dro 2 A an(a) dl.o
1 n-1 , 1 -1
* ) e e s (1) (" (4.13)
' 1 4 ro n+l 1 1 r n-1
1‘! G =3 { Bn(;—) dto -3 { Bn(r—o') dro
| N PR P
L 2 5, r +3 qn(l) r (4.14)
1
[ o, = a (1) - Re {go ar, (4.15)
i
f 1
- n_Re n
' % an(l) r 2 ¥ .!; ({n -8 n) ’2 dro
}
i
’ Re [ To,®
t + 3 { (€, =T )G dr_
- Re fl ( r "
2 ) Cn +;n)(§) dro (4.16)

Bn 'Bn(l) " _g_e_ " fj (nn + un)r: dro
[o]

Re T r n
+2—{ (n, + w2 dr_
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1 n
Re r
+ 5 f (n, = u T dr (4.17)

r o
where 1 < n <N, the quantities au(l), t“(l), pn(l), qn(l) are the known
velocity Fourier coefficients on boundary (or at r=1) and £, L ,Nn, U are

the coefficients from convective terms:

N

wvr-£°+n§1 (§n cos nf +n sin nf ) (4.18)
N

v o=y n;-l (un cos nb % sin n8 ) (4.19)

Once the Fourier coefficients of the velocities and the vorticity
are determined, the velocity field and the vorticity field are easily cal-
culated using equations (4.3) - (4.5).

Equations (4.9)-(4.17) are solved using an iterative procedure for
the problem of steady flow inside a circle. The Fourier coefficients of
the boundary velocities are assumed to be known.

Starting with known values of the PFourier coefficients of the
vorticity ,ai, oi's, Bi'a, the superscript "i" being the iteration
counter, the following steps constitute one iteration loop.

(i) Determine the boundary values ai(l), ai(l)'a and Bi(l)'a.

The boundary values of the velocities need to be satisfied by
equations (4.9)-(4.14) during each iteration. Thus with one set of ai,
ai'a and Bli"s in R, the boundary values of ai(l), a‘i‘(l)'a and Bi(l)'s are
determined by

1
{ ar, dr = po(l) (4.20)
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_[l “lar = p (1) - e (1) (4.21)
A Qn l‘o !'o pll tn .
fl “lar =8 (1) +q (1) (4.22)
A Ba %o Yo " % % ’

The equations (4.20)-(4.22) are the constrains on the boundary
vorticity values derived from equations (4.9)~(4.14) when r=l. The po(l),
pn(l)‘s, qn(l)'s, sn(l)'s, tn(l)'s are the Fourier coefficients of the
velocities on the boundary which are assumed to be known. With the proper
numerical integration of the integrals in equations (4.20)-(4.22), the
values of qi, qi's and Bi's at r=] are easily determined.

(ii) Compute the Fourier coefficients of the velocities in R.

With the proper numerical integration, equations (4.9)~(4.14) give
explicit, point by point, calculation of ai's, ti'a, pg, pi's, qlil's in the
flow region R.

(iii) Compute the Fourier coefficients of the convective terms.

Because the Fourier coefficients of the velocities and of the
vorticity are known at this stage, the Fourier coefficients Ci,{i‘s, n‘i"s,
ui‘s, ;i's can be determined using equations (4.18) and (4.19). The
coefficient W need not to be determined because it will not get imto the
calculation of the Fourier coefficients of the vorticity. This quantity is
associated with the static pressure level and it remains arbitrary when the
flow is incompressible.

it]l i+l

(iv) Compute the vorticity Fourier coefficients a, sa_'s and

i+l,

&
Equations (4.15)-(4.17) permit explicit evaluation of a;*l, c;‘l's

8 in R,

i,

and 3i+1'a using quadratures if a;(l), ai(l)'l, B;(l)'s and E:, C;'a, 4

u;'s, r|;‘s are known on the right hand side of these equatioms.

o it
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In the above iteration loop, it wss found necessary to employ a

point under-relaxation technique to obtain converged solutions. The nes

values of aoul, an”l's and Bn “1'3 in R are computed from

a;’l = Ao a: + (1 -Ao)a; (4.23)
a;” - Ao; + (1= Nat (4.24)
Bi" - A6: + (1~ A)ai (4.25)

. * %
where 1 < n <N, Ao,kare the under-relaxation parameter and a, an'a and
*

Bn's are the values computed in step (iv).

Converged solution of a particular problem is assumed to exist when

the following criterion is satisfied.

i+l i i+l 1 i+l i
Ppax M;x lc‘oj %j’ %nj %j an an | <e3

|:n <N (4.26)

where subscript "j" denotes the Fourier coefficients at r-rj(rj< 1). A
good value for € was found to be 10-4.
The new numerical approach was tested and some of its features are

discussed as the Reynolds number increases.

(i) Flow without separation

This is & closed streamline flow problem. The boundary velocities

are:

v =20 (4.27)
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[ 115

+

N

-
\ceb cos® (4.28)

This example was treated by Burggraf (12). He used the Oseen
approximation, which took a rigid-body rotation as the basic flow. The
solution of such linearized differential equation is only applicable to the
case in which the whole flow field forms a singular circular eddy. The
asymptotic vorticity value of the inviscid core at high Re he obtained is
too low compared to Batchelor's (13) suggested model, which is proven to be
quite adequate by Imai (14) and the present calculatioms.

Using the present approach, converged solutions are obtained at
different Reynolds numbers, from O to 1,000. The number of iceratioms,
under-relaxation parameters and stream function values at tche origin are
presented i Table 6. The grid system is equivalent to 21 x 41 mesh
points. The variation of maximum deviation Diax (in equation 4.22) versus
the iteration number is shown in Figure 13 for Re = 1,000. In this case, the
process of escalating the Reynolds number has not been used, i.e., the
lower Reynolds number solution is not utilized as the initial solution to
start the iteration procedure. This has otherwise been very effective in
the calculations.

The computer time for each iteration is about 1 second. Compared
with the computer time that Imai had used at differeant Reynolds numbers
(14) this approach showed speedup by a factor 2 to 3.

The streamline patterns at Re = 0, 50, 300 are in Figure 14, The
vorticity values at 0 = O with differeat Re are presented in Pigure 15, As
Re increases, the value of vorticity in the inviscid core eventually goes

to the value suggested by Batchelor and Wood (13'5. Also in this figure,

* w?od."actuclly calculated this value exactly after using the Von
Mises transformation in the closed boundary layer region as Re—* =,
Stated simply, the wvorticity value in the inviscid core is

determined by the root-mean-square speed of the closed boundary
surface.

e it
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the boundary layer structure is clearly seen as the Reynolds number
increases. PFigure 16 ohows the wmigration of the vortex center with
increasing Reyrolds number. It is clearly seen that the ultimate location

of the vortex center for Re *® will be the center of the circle.

(ii) Flow consisting of two unsymmetric recirculating regions

This is also a flow with closed streamlines. The boundary

conditiona are

Vr = 0 (4029)
b
) S/
veb 3 + 3 coef (4.30)

The streamlines and vorticity values at different Reynolds numbers
are in Figure 17and Figure 18. Notice that the asymptotic flow psttern for
high Reynolds numbers cannot be found in a simple way as in the last
example, since the form of the separation line is nct known in advance.

(iii) Unflow - outflow problem

The flow problem together with the boundary velocities are depicted
in Figure 19 In this case, che flow is symmetric about the x-axis, thus the

Fourier expression could be simplified to

N
w= y B sinnd (4.31)
n=} n
' ¢
v.©" ngl s, cos nd (4.32)



~

A ngl q, sin b (4.33)
and
N
wv, = ‘El q %in né (4.34)
N
WV =t n}-;lu" cos nf (4.35)

Due to the velocity discontinuity at the boundary, a larger number
of grid points is used in the agrimuthal direction. The grid system used
in this case is equivalent to 21 x 81 mesh points in the whole plane. The
81 puints along the circumferential direction were proven sZequate. The
use of 121 points in that direction generated differences of the
streamfunction values less than 1 percent compared with the results that
used 8] points. The effect of the grid size in radial direction has also
been tested, as shown in Table 7. The computer time for each iterstion, on
the 2] x 81 grid system, is about 1.3 seconds, a CDC 6600.

The streamline patterns with different Reynolds numbers are
depictad in Figure 20. The occurrence and growth of the separation bubble

are ciearly seen in this figure, as the Reynolds number increases.
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i, Table 6
Re A A ITER v,

! | 0 1 . 3 .250
E 16 1 1 56 .256
N 2 1 1 51 .268
! 50 1 .1 40 .279
; 75 1 . 62 .289

100 1 1 66 .293
' 128 1 .1 128 295
| | 200 .01 .05 430 .296
| 300 .001 .01 475 .297
- 1000 .001 001 4114 .289
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Table 7
Re Ar A ’Ao ITER ] MAX
100 .1 .2 47 111
.05 .1 80 123
F 200 .1 .06 130 .116
.05 .05 211 132
|
' 300 .1 .03 230 115
; .05 .002 440 .131
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- APPENDIX A

L DERIVATION OF THE KINETIC TRANSPORT EQUATIONS

(1) The Vorticity Transport Equation

The vorticity transport equation (2.17) may be written as
L
= Tx(c) o LL_ V1opxin o &= Tx(g 9.0 (.1

Por two-dimensional flow, we have

ptd oL dbu oDl al-iw

Sy du ¥
y

Fap-iw el a.2)

Ojo=

Vx(vxw) s - ( Jo+wB) = <7 .V (A.3)

Upon differentiating the terms in equation (A-2) it reduces to

(A.4)

vhers ‘tl represents the summation of the free-viscosity change teras and Tz

tepresents the terms which include the change of viscositv-.
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x P
; --Lap(m?-z—'-zua—a-)’l-ge-(zu?-z—“-zuﬁ) (A.3)
925 a’2 kRl 17 92 y axz TH .

and

1
‘1'2 -5 (uy"x)(u -u ) + 3 (vy ux)uxy

. 202, ,2 - L - 2
’"x(ov'”’“xy pz(oxuy+v‘ot ZDyux*goyB)

2 2 1 b
NS LAY DA AC AN IERRNES LR

FPor simplicity and convenience, the viscosity coefficients U and

i A(A = -gu), specific heat radio Y and the thermal conductivity k have been

considered to be constant in the present subsonic study. In general, the
incorporation of variasble coefficients has no conceptusl effect on the
method. Several numerical experiments have been performed to verify the
foregoing assumption and the results indicate a negligible contribution of

the non=-constant coefficient term rz.

By using the above assumptions, equation (A.d) reduces to the

following simple form:

g‘% s - V (V@ + ("——) im + 9(w,8,0,h) (A.7)

vhere,
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¢ & (T8x ).k - %o.%w)
1 n.oz 3

¢ Y-1

L L )0
2 --;— (Vin x Vh).k

L
k is the wmit vector normal to the plane of flow (x-y).

(2) The Dilatation Transport Equation

The dilatation transport equation (2-18) may be written as

ab * - - - -
we- AN 17—‘ v - Tv—l h V2100 - 17‘- ¥100.%n
<
L .8

Specializing this for two-dimensional flow and expanding the first

and the last term in the right-hand side, one obtain:

-v.(6.66 - ;— (u %E . au (u Ov * g;)

2 2
(u%a—o A2 934(3" ova-—v-)

ay?
- (u ‘a—z! * ?-! 3u (?.!) o v ﬁ) (A.9)
axz ox ° ox 9%y

Further, noting that,
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2
Equation (A.9) reduces to the following form
REDH - B, gg vulevleay u) (A.10)
Equation (A.10)can be further reduced to
SNA TR PR N RE . hY
a - \6.(?18) + szxau.;) (A.11)
Similarly,
-
Giv-poG@al-tweLalainy
e GuRa L@l .12)

By separating the right-hand side intc two terms, similar to what

has been done in the vorticity tramsport equation, one ubtains

‘6 o(“ v-T) = C. + C (A-l3)

vhere




L J
TARTRIE AR W+ *i)
P

Wi

C., =
1 pz

8 > > 2 > > * 2
C,= (30 BT +F PxP).k - (go)svzu

2
+ (5) (Ilx = + vy uw) + (vx + uy)uxy

- (1 2 B +» =»
(;)(vx + uy) (ox.uy + 9y .ux) + (3) 35 Vo,V

2
- (8-2.) (pxouxo& + % . Vy. uy) (‘Ols)

Neglecting the term Cz, for the reasons mentioned before in (1), the

dilatation transport equation is written as follows

g% = - V.08 (‘;::ep) 728 + x(w,8,0,h) (A.16)

vhere
X® 4 *X2 * X3
Xl = =2 (vv x %u).-l’c

->

o
Xy = =3 Tot8 + dox iy
oZRe

Xy ® - (’-’-Y'—l) @2k + h¥lnp + Th. Tlnp)

L a gas P . " iaadec A i i g e i, A el
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(3) The Energy Transport Equation
Using the equation of state (2.4) in the energy equation (2.3), ome

obtains the following

>
g% = <V.% - (y-18h - 19.3+% @00 (A.17)

9

Bquation (A.17) can be written in dimensionless form as follows

->
s AR g Ty N s (@D (A.18)

Expanding the conductive and dissapative terms in equation (A.18)

one gets the following expressions

Y Gier Ll 23 (., o .19)
PRe.Pr Veq P Re.Pr axj ( l‘j Fj) A
and
-+ 3\!-
Y1 $0:%) =L —i
Specializing these two equations for two-dimensional flow, they
reduce to:
Y Tt Y 1 s 2
B - A.zl
T AR N i R A R LK) (A.21)
and
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-+
i % —;-; 3;‘.{ . BY'E: (g Bz*wz + 4@y x Tu).k) (A.22)

Neglecting the thermal conductivity variation term and placing

equation (A.21) and (A.22) into equation (A.18) one gets;

g—:— = -T.(Th) + 'ig‘:l‘%; 7%k + 5(w,p,8,h) (A.23)
vhere
<] -191 + 62
91 = (2-Y8h

62 a %{%32 + wz + 4(3\, x %).I}

(4) The Density Equation

The contimuity equation (2.2) can be written as follows.

Vi<

. 6‘) = o ‘.A.Z‘O)

Ojr—

qqca

"]
+
<4
*
<4
+

Further, noting that

. thus equation'(A.24) becomes,
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g%ﬁ e -8 V. %100 (A.25)
In conservative form, equation (A.25) can be written as follows :)
§of . -%(Vine) + T -(A.26)
vhere
[ = 8(1np-1)




o T TR o

APPENDIX B

TRANSFORMATION RELATIONS

The transformation relations used in che derivation of the kinetic
transport equations sxr2 given here. The following expressions relate the

sathemstical operatiorr Jone in the physical plane, ph, with those that

performed in the transformed plane, T.

(3:.3,)‘*. . ;‘1-2- (6:.6;)T | (5.1)
(foVg)ph. - ;—2 (Ve x %)T (8.2)
(vzf)ph. . ii (vzf)T (8.3)
@. (£0) )Ph. . iz- (V. (£D) )T (B.4)

wvhere,

(i) R is the transformation scale factor

(ii) £ and g are scalar functions which are invariant with the

transformation.
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(iii) 6'* is the velocity vector in the physical plane, while :I.r is
the apparent velocity vector in the transformed plane and its
components (ve,vr) are given by equations (2-27) and (2-28).

The components of the velocity vector V in the physical plane (u,v)

[ ]
are related to the velocity components (Ve,vr) as follows:

v nz(vOdr’tvrii%) : (3.3)
« L dy ,1, 4 (3.6)
v nz“’:i%’:'oi%’.

vhere y and x are the Cartesian coordinates in the physical plane. The
trensformed quantities can be expanded in polar coordinates (s-8) as

follows:

2
r SN O WA T 1 %% 2
G - [ - B-LF ] ®.n
V6 « Ua) = af 3g _3af 2
(Vf x Vl)r -z—yr_c (38 3s 38 ° 510) (3.8)
2 ]

. (2 2’ f 1 1,°9f 13¢ (3.9)

(vz£)r ( ) a. * r(t-a ( 'c) 58 * o a )

vhere s is the stretched radial coordinate in the transformed polar plane

and is given by;

r=e +¢ (3.10)

e st bt
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APPRDIY C

EVALUATION OF INTEGRALS IN EQUATIONS (4.3) - (4.5)

The integrals that need to be evaluatad are

cos -ao [to cos(Oo-O)-J
lﬂ - to A - — de (CQI)

2 2 (]
r,+r -Zror coa(eo-e)

sin m@ [r cos(6 -0)-r l
J =r 2% 2 2 a0 (c.2)
o A 2

T +r2-2r r cos(8 -0) °
o o o

-~ 2 T cos w0 sin(6 -0)
I =« 2 2 de (c.3)
m o)

2 2 [
T ¢T -Zror coc(eo-e)

- 2 27T sin n% sin(eo-e)
" T, [ 73 d (C.4)
o r+r®=2r r cos(® -0)
o o o

where 0 < m < N, If the following complex variables are dafined as

wn- In + i Jm (c.5)
Wl +i Jm (c.6)

ieo
z = e = cos Oo + i sin eo (c.7)
z = eie = cosf + i sing (c.8)

!
i
R




after the variable transformation from 6 , Oo to z, g, 3

5 1 [® u-1 [r (32 + '2)_ Zrnj
Lo W= - 220 2 ge
7 m 2ir i r, o
- (zo - r— z)(zo - t— z)
o
o o 0
W = =— dz
m 2r r o
: : r o
p . (zo-;—z)(zo-r—z)
; o
By using of residue theorem, the integrals in equations (C.9) and

are evaluated explicitly and the results are

-

(1) for r« r,

w =0
o
r w-1 n
Wm -ﬂ(t_) z
o
Wo = 0
r m-1 m
Hh = in (;-) 2
o
(2) for > r s
r
W o= = 21(=2)
0 r
r mtl
0 m
Hm "'ll('r— z
W =0
o
-~ T, o+l o
Wm = l.‘ll(;- z
L
]
¥4

!'“ Pt et orw - omamen s =4 A - i )
M.»&. T T S S U U

where i =\/-1, The quantities w. and 5_ could be reexpressed as follows

(c.9)

(c.10)

(c.10)

(c.11)

(C.12)

(c.13)

(c.14)

(C.15)

(C.16)

(c.17)

(c.18)

R
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vhere 1 < m < N. The values of Lo Jp0 Ig J.'o could be determined easily

by equations (C.5) and (C.6). Thus

(1) for r< r 3
- "0

1. =0

e m-1
1 = 'lf(r—/ cos m0

r m-1
- 17(;_—) sin md

(2) for r> r :
o

To
I = - 21!(}—)

T, mtl
-7 (-r—) ccs mé

G
[ ]

J =0

ro m+]
-7 (-r—) sin o

(Y
"

I =0

to m+]l
- "(r_) sin m@

=4
| ]

J =0

r, o+l
J -n(;-) cos m0

(c.19)
(c.20)
(c.21)
(c.22)
(c.23)
(C.24)
(c.25)

(C.26)

(c.27)
(c.28)
(€.29)
(c.30)
(c.31)
(c.32)
(c.33) !

(C.34)

[P P v~ U1 1 Yo
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The integrals that need to be evaluated in kinetics are
1 cos -Oo [ro -r coo(Oo-Gﬂ
t. - ro 3 2 dOo (c.35)
" 4 % - 2r r cos(0 -0)
) o o
Tsin m0 -r - r cos( -Q]
- ok o 0 - |
Jm T, fz 3 3 dOo (C.36)

° r 4+ - 2ror cos(eo-e)

- 21 cos ll3° .1n(e°-e)
1 = r.r f 7 3 aeo (€.37)
r +r - 2t°r cos(eo-e)

-]

- 21 sin ﬁo ain(ﬂo-G)
I =TT f 3 3 dOo (c.38)
() T +r -2r°r con(eo-e)

also the complex quantities are

W=1 +iJ (C.39)
o o )
wn- 1ﬂ+ i, (C.40)

Following the same procedure as in kinematics, the following expressions

are obtained

a-1 [ 2. 2 J
z e(e° +2°) ~-2ree
W st o L o 2924 a (C.41)
B 2ir r T, g,
y (zo - z)(zo -5 z)

o




- lf'o-l (s: - 1)

W= dz

s 2 . T, o
(:o - ;: :)(xo -7 z)

and the final results are

(1) for r <r°x
Io = 2y

I. = w(-:-—)'l cos m0
o

Jo =0

J an (=) sin m

a T,

T =0
[+ ]

I =- n(f,—)' sin m@
o o
J =0

J = n(f—)" sin w0

o
(2) for r> r
1 =0
()
r,m
In = - n(;—) cos md
J =0
o
r,m
Jn. -n(;-) sin mé
Io = 0
- r, =
I. s -q (;—-) sin =0
Jo =0
-~ r, s
g " n(-;-) cos =@

where 1< a < N.
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(r.42)

(C.43)
(C.44)

(c.45)
(C.46)
(C.47)

(c.48)
(C.49)

(c.50)

(c.51)
(c.52)
(c.53)

(Cc.54)

(c.5%)

(c.56)
(c.5?7)

(c.58)

[
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APPENDIX D

DERIVATION OF RELATIONSHIPS BETWEEN FOURIER COEFFICIENTS

The following expression for v, is obtained after sudbstituting

equations (4.6, 4.8 ) into equation (4.3)

1 ‘[ ~ ]
"r"z—?r-[ aolo4-2(%l +3J)dr°

n=]

[(1)1 + )_ (o(l)! +:(1)J)]

n=}

N|~

N
n[po(l) I+ X (p, (1) 1 +q (1) 3 )] (D.1)

a=}

N'v-

vhere I, 1, J, J J are those quantities defined in Section (i), Appendix K.

From equations (C.11) - (C.2%)

l]r N r, a+l T a+l ]
v.""3 )_c(-—) tinnG-B(—-) cos n8|dr

F o n=]

: [ l ;l " o- g e]
- & (— sin nf - —_— cos nf|dr
2 r a=IL? % g Yo
_ hn
+ 3 }:. s (1) r" ! cos a8+ ¢t (1) 2! 4in ne
2 pml® ' " -
o1 g ' (1) £ sin 00 - ¢ (1) ™} co 6] (p.2)
; I P nnb-q(l)r " cosn .

If v is also expinded in Pourier series (as in equation 4.6)), the

corresponding Pourier coefficients are related by




9%
s, =0 {13)
s -% {rsn(;)nﬂ dr + [ B“(~::—o)“.l dr
+ % s (1) 1o % q, (1) ! (16)
e, " -3 {ran(;)ml o, - 5 _!Ja n(;_':)n-l dr
+ % e (1) 7, % P, (1) ! (17)

where 1 ¢ n < N. Similarly, the expression for ve from equation {4.4)

N
- l jl Y
VO 2 A [ao Io + nil (antn + Bn Ju)J “o

N
1 -~ - ~y -~
* gl T+ nEl ()T st (1) §)]

slp)r o y (p, (1) 1+ q (1) 3)] (D.3)
2n Py () nél Py n "’ Y () *

which is

r n+l
B '% f p3 an(r—o) cos n@ + Bn(-;g) sin nOJdro

N n-} n-1

r r
E[an(a) cos nf Bn(a) sin nO]dro
-'

1 n-! . n-1
-3 3 1n(1) T sin n@ - tu(l) T cos nOJ

n 2=l cos nO ¢ qu(l) it ¢in aO] (D.4)
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Expanding ) in Pourier series as in equation ( 4,7) the corresponding

coefficients are related by equations (4.12)-(4.14).

By expanding wv , ¥, in equations (4.18) and (4.19) equation (4.5) could

be expressed as

w--gij}[gt+g(gt+ 3 )] ar
Zno oo n-lnn Mn'n /]

N
T 27 {1 [uolo * tlEll"ﬂln +;an)] dro

N
Re .
s le, 1+ 3 (£ (D1 + g (1I)]

n=1
1 N -
. z—n[ao(l)lo + ngl(an(l)zn + 8 (1)J)] (D.5)

where I, I, J, J's are those quantities defined in Section (ii) Appendix

C, and £, £ , g 's are the Fourier coefficients of the total pressure.

N
h=f + ;El(fn cos nf + g sinng) (D.6)

By the results of equations (C.43)-(C.58), equation (D.5) becomes

Re r N r, n[ ]
w7 { nfl‘:‘) (§,-L)) cos n® + (n_ +u )sin n)dr

1 N n
-.g_e.f {25’4- z(-:—) [(£n+cn)coa nb

a=]l "o

+(n, - W) sin nO]}d

r
o
Re N [ % s n ]
+ 3 21 - tn(l) r’ sinnb+ g (1) r cos nf
ns

C -2
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N n

+ '+ X a (1) " cos nb+B (1) t® sin n® (0.7)
=]

Thus, in using the Fourier series expansion for W (equation 4.8 ), the

corresponding coefficients are related by

a = a (1) - Re j‘l g, dr, (21)

r

Re To,? Re r \n
a =3 [ (En - Cn)(;-) dro -5 {‘ (Eh + Cn)(r—o) dr

. gﬁ g (1) " + %an(l) ® (D.8)
Re ro n Re 1 T n
l3n = -2-—.!: (r|n +u )(;—) dro t s [ (un - nn)(r—o) dro
Re

-2 e 38 ()" (0.9)

where 1 <n < N. Equations (p.8) and (p.9) are equivalent to equations
(4.16) and(4.17) respectively, where the terms gn(l) and fn(l) are cancelled

by applying the equations (p.8) and (D.9) on the boundary.
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APPENDIX E

THE INTEGRAL REPRESENTATIONS FOR A DOUBLY-CONNECTED REGION

The boundary integrals in equations (4.3)and (4.4)consist of two

parts, Bl and Bz

[ | ﬁ- £1 -£2 (E.1)

At the interior boundary Bz, the velocity components are assumed to

U SRSy

be known. The Fourier coefficients of the velocities at 82 are zero except

R

po(R;',, which is the magnitude of the circumferential velocity at r=R due to

3

the solid rotation.

The equations (D.1) for the velocity v, needs to be rewritten to

include the Bz effect:

Ao es, ey

o, e v

1 N 73]
.l_{al + 3 (a1 +BJ)] dr
Vr 2“ [oo n.lnn an [+ ]

N
egzls )1+ RAKORREACY 3]

o NG Y O R TN s e e
¥4 ' L4 ’

3 ]
3 (an(R) In + tn(R) Jn)

1
o [so(R) Io + R

Rt
L] '

- b1 . PICACE T RORS

L |

s [p )T + §( ® T +q @ J)] (e.2)
ap “Po 0 Py n ' 9 n *

n=]

where s (R), p (R), s (R), t (R), p (R), q (R) are the Fourier coefficients

[
L




of the velocities at r*R. Thus

1 n-1 1 n-1
+3 tn(l) r +3 pn(l) r
where 1 < n < N. Similarly, the velocity Y% i8 reexpressed as:

N
1
o def logty 3 @1 8000 ar,

N
l -~ ~ -,
*a [y T+ PALAGE AR ES)

1 y ]
“ gl 1+ 2 L ®

-~ N -~ -~
* 3 [, T, 4 2R T e q 1) 5]

1 ~ N ~ ~ ]
- ﬁ["o‘” I+ n§l (Py®) T+ q (&) T)

(15)

(8.3)

(E.4)

(B.5)

By using equations (4.7)and (C,17) the following relations are

obtained




shihEE A A A
Bt

a1 _9 1 g 2yl
Pp"3 { a (r) dto 3 .[ cn(to) dro
+2e ) e dp ) !
.1 ro n+l 1 fl . n-1
W2 d B a2 ) BG4

where linf_n.

The equation (D.5) becomes

N
T 1 +nI)] dr

1

e
W = = = EI*
Z"R 00 a1

" b d
3 I+t 3] ar

1
Re >
2 { [uolo * a=1 nn

u -~ ~
S (£ (T +g (1))

Re ~>
* o [fo(l) Io + X

N
Re ~ -~ ~
-5 £, ()T + I (® 1, g, i)

N
+ 3 la (1) 1)+ I @) 1, ¢ B (D) 3))

-L[a(n)1+g(a(n)1 +B.(R) 3]}
2n o © qep P n n n
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(2.6)

(!.7)

(E.8)

(E.9)
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vhere fo(l), tn(n) and gn(l) are the Pourier coefficients of the total

pressure at r=R. By using the equations (C.43)-(C.58):

r N r a
w =22 [ 3 & [ - )cos @ + (n, +u,)ein neler,

R a=l
N
- % J ‘ZQ, + 2 " [ +g)cos 00+ 0 -u )ein nb)ar_
T n=] ‘o

1

N
+ %'; 3 (- fn(l)rn sin nb + g (1) " cos n6)]

n=]
.y g [- ¢ (®)(E)" sin nb + (R)(B)u cos n6) (E.10)
2 n=1 " ’ o r .
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