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1. INTRODUCTION

The objective of the Grant NSG 3307, from the NASA Lewis Research

Center to the School of Aerospace Engineering at Georgia Tech, was to
a

develop a new numerical approach for computing unsteady compressible

viscous flows. This approach offers the capability of confining the region

of computation to the viscous region of the flow. The viscous region is
1

defined as the region where the vorticity is nonnegligible and the

difference in dilatation between the potential flow and the real flow

around the same geometry is also nonnegligible. The method was developed

and tested. Also, an application of the procedure to the solution of the

steady Navier-Stokea equations for incompressible internal flows is

s	
presented.
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2. MATHEMATICAL FORMULATION

In this chapter the mathematical relationships that govern the time

history of c.:mpresaible viscous flow around an arbitrary body are

presented. The kinematic and kinetic boundary conditions are stated and a

method for estimating the surface vorticity is described. In order to

improve readability, the derivations of some of the equations used in this

chapter are omitted in the main text and given in the appenCices.

Governing Equations

In the absence of body forces, the Navier -Stokes equations for a

compressible fluid with density P, viscosity V, thermal conductivity k and

ratio of specific heat coefficients Y , may be written in an inertial

coordinate system as follows

P 3t + P (V,D)V	 -Vp + V. -r 	 (2.1)

The equation of continuity is given by

ap

dt + V. (PV) : 0	 (2.2)

The energy equation and the equation of state are given by



i	 3

P 3t -
 at + P V	 V.Vp = V.q +Vii:	 (2.3)

F

P = PRT = (L )Ph	 (2.4)

r
t•	 Here a *V: TT represents the dissipation function given in cartesian coor-

dinates by

r	 %	 aij x i

t.

{	

where ij is the shear stress tensor and can be expressed as follows;

T i, = 2N e ij + 6 ij A (p V)

Heree ij is the rate of strain tensor and A is the second coe f  i-

cient of viscosity.

xinsnatics Expressed in Integral Representation

4
The vorticity w and the dilatation $ are related to the velocity

r'

field V by:

^'	 V x V	 ww	 (2.5)

V . V	 S	 (2.6)

The kinematics of the problem, governed by equations (2.5) and (2.6)

are elliptic in nature, requiring the specification of Neuman, Dirichlet or



v. V1 =0

VxV I =w

having boundary conditions

4.

V

4.

Vic

(2.9a)

(2.9b)

(2. 10a)

(2.10b)

i.

I.

I:

I:
I:

t

c

G
r.

r
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mixed type of boundary conditions for velocity. These conditions are

required both at infinity, known as the farstream condition, and on the

solid surface. In the present study, Dirichlet type boundary conditions

are prescribed on the boundaries.

The velocity boundary conditions are

.0-1-
V = Vb 	on b	 (2.7)

and R is the fluid domain bounded by the boundary b. For external flow

problem, the boundary b consists of the farstream boundary c and the body

+ i
surface s. On s, the no-slip condition is used, while V = V. is prescribed

on c.

Since the kinematic relationships are linear in V, the velocity

4	 +

vector V can be decomposed into a solenoidal part V  and an irrotational

part V2 with homogeneous boundary condition for the latter. Thus

V = V 1 +12
	

(2.8)

with

j



S

and for V2,
t

V . V2 	S	 (2.11a)

`	 x V2 n 0	 (2.11b)

with boundary conditions

V
s
	0	 (2.12a)

V2c = 0
	 (2.12b)

Wu ( 1 has shown tt-.at it is possible to recast the kinematic aspect

of the problem into an integral representation for the velocity V in terms

of the vorticity W and the dilatation S. For two dimensional flows this

means

wx r-r ;B(f r
V(r'o , t) _ - L2 1T  4.^ 2	

o 
dR * VW	 (2.13)

	R 	 ^r
_
 ro^

In (2.13) R is the region where the vorticity and dilatation are non-

negligible.	 At high and moderate Reynolds number the dilatation is

significant at distances from the body where the vorticity is already

negligible. Bence the approach does not seem as advantageous as in the

j	 incompressible case. However, by using the potential flow solution around
i

the same body, it will be shown in the next section that the domain of the

jcomputations can be reduced to include only the region where the vorticity

y	
and the difference in dilatation between the viscous flow and potential

i

f
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flow are both can-negligible.

Use of the Potential Flow Solution to Seduce the Domain of Computations

Equation (2.13) can be written in the following form

♦ 	 wx(r r) +B(r r )

	

V(r0 ,t) _ - Zn J
	 2 	 dR

	

Rl	 I r ro 1

r-10)0
1	 + 2 +

o	
(2.14)

2 Ir-r)
R2

where R1 is the region of the flow where vorticity is non-negligible and R2

is the rest of the domain, extending to infinity for external flow

problems. This expression can be written for the potential flow around the

same body as follows:

1 /' Bp ( r-ro )dR	 1 	 Sp('-ro)dR
Vp( o ) = 2n J	 211 f

	Rl I r-ro 1 2	 R2 ( r-r° 12

1	 Y px(r-ro)dS

TV' 	 2	 ;,	 {2.15)

s	
Ir-r°I

where the subscript p indicates potential flow and Y  is the vortex sheet

strength on the surface, s, of the body due to the potential flow. Because

equation (2.15) is a limiting case of the general viscous compressible flow

relation (2.14), it gives the potential velocity everywhere except at the

surface where the equation is identically zero.
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n i

if region Rl extends far enough from the body, the combination of

(2.14) and (2.15)g ives

Wx(r-r ) +(S-B)(r-r )V	 - L r	 O
	

P.( ro,t)	 2^ J	 . ^ 2	 dR

	

Rl	 ( r-r+ 	1

• •

	

iii	 Y x(r-r )ds
- 1 f -P	 °	 * Vp	 (2.16)

2^ J + + 2

	

s	 1 
r-rol

	

!	
The relation ( 2.16) implies the following. First, (S-Sp ) in region

	

t	 R2 is small enough so that ' its effect on the velocity in region R1 is
1

negligible (a detailed discussion of this aspect is given in Reference 11).

Second, one needs to solve only in region R1, which is a smaller region
i

than the region where B is significant.

i The kinematic boundary condition for the external flow problem

r requires that the velocity has to reach the freestream velocity at an

infinite distance away from the solid surfaces. 	 This requirement is

	

(	 referred to in this work as the farfield boundary conditions. 	 This

requirement is satisfied by equation (2.16). However, if a finite-dif-

ference method is used without any coordinate transformation, this bound-

ary condition is difficult to satisfy since the computational domain to be

included becomes very large.

	

t	 Kinetics - The Vorticity, Dilatation, Density,

r-	 and Energy Transport Equations

`

obtains 

By taking the curl of equation ( 2.1) and using equation (2.4) one

t.

f

L
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aw
• ox V xW + (—)IY  	 InA Oh +Px i p V. Tf	 (2.17)

Similarly, taking the divergence of equation ( 2.1) and using equa-

tion (2.4) results in

A. ^(V.V )'V] -( 7, 1̂ )V2h -( YY1 )h^laA -( YY1)9h.Vlc^

+ P.(p p.^
	

(2.18)

Specializing the equations for two -dimensional case, rearranging

the terms in equations (2.11) and ( 2.18), and collecting the coefficients

of S and w, equations (2.17) and ( 2.18) become

a • - p.(VW) + ( Re. A
)V2w + 00 9 8,w,h)	 (2.19)

Tt 
• - V.(VO) + (3.Re.0)P20 + X(P,S,w, h)	 (2.20)

The full details of the derivation of the above equations are given

in appendix B.

The density and energy equations can be also written in terms of the

derived variables w and 0 as follows

ainp	 Q!V1no - r	 ( 2.21)
at

22__

dt	
V•(Vh) + 

(Re.Pr.A)V2h + 
8(A,6,w, h)	 (2.22)

i

f

s
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(	

where w denotes the magnitude of the vorticity ,actor. The terms 	 X , r

and 0 look like source terms and are given in appendix B.

The governing equations (2.19) to (2.22) have been non-dimen-

sionalised by normalising the variables with respect to the following

reference quantities: distance, L; velocity, V
ae ; 

density, p A ; enthalpy,

i	 V2 ; and time, L /V o , where L is the characteristic length of the body.
t.

This type of normalisation leads to the following non-dimensional par&-

€	 actors: Mach cumber, Mme ; Reynolds number, Re; and Prandtl number, Pr.

Formulation for the Study ofanImpulsively Started Airfoil

In this section, the mathemat ical formulation discussed above is

specialised and arplied to the study of compressible laminsr flow past an

impulsively started airfoil. The airfoil geometry and the grid system are

^- generated through a conformal transformation which ; . lnsforms the airfoil

into a unit circle. The airfoil chosen for the numerical study is a

modified 92 Joukowski airfoil.

. By using the transformation relations given in appendix , the

governing equations (2.19-2 . 22) are written in the transformed plane and in

^.	 a conservation form as shown below.

The vorticity transport equation is

a• 
HZ 

-p.(V*j) * H2 (oft G `^ • H2 s	 (2.23)

where b is the scale factor.

The dilatation transport equation is



f

10L
r

at RZ	 R2 T-Re,P	 H2

•`	 The density transport equation isY	 P	 q

at	 2 ^' Q. ( vinP)) - r
81nP

N

The enerjy transport equation is

I _	 h • 12 (-'V. ( vh)) * 12 ( Re—  p ;p)Q2h * 6
8	 H

(2.24)

(2.25)

(2.26)

where I is the apparent velocity in the transformed plane and the diver-

(	
Sence and Laplacian operators are applied in the transformed plane. The

(	 source terms #,X ,r and() are given in appendix i1.

4	 The radial and tangential components of the velocity in the trans-

forsed plane are

1

♦ 	 1	 Yos(O-9o)-ro)ds

Ir	 ru , p
s

i.

- 1	 WH2(r coo(" )-ro Mit
2tt f 	 +i	 2

- 1
2n ,f

H2 (3- p)r`sin(9-9o)dR

I , r-ro , •+	 2
, r-ro,Rl 'R1

(2.21)	 !

1	 Y 8  sin( 9-9o ) ds
f

1	 f WH2 r $in(" MR
Vt(ra , t)	 -	 •2%	

+
2a ^2•_

. 1 ,00a	 1 rs-ro 1 al r-



I

.,°.. ^,r.,,e3or.IN•^• ..,.,,fir... .. _	 .•...wv..n...._-,.,.,^...,••.x.n......, 	 -	 ... _._

La

F

1	 (s-0 X r cos (6-6o)-ro)dR

2w f 	 2	
'Vr

R1	
IT-rol 	 p

11

(2.28)

Equations (2.27) and (2.28) are essentially the same as the tyro

components of equation (2.16) in cylinderical coordinates, except for the

scale factor H.

Surface Vorticity Determination

i
t

The vorticity values away from the surface are determined using the

•	 vorticity transport equation (2.23). In order to solve this equation, it

is necessary to prescribe the vorticity values on the solid surface at all

tine levels. To do that, the viscous region is conveniently divided into a

t

vortex sheet of strength Y located on the surface, and an outer vorticity

field `here the vorticity w and the dilatation R are assumed to be known.

l	 Applying equation (1.27) on the surface of the body yields

±	 'H(Y-Y )(r cos(9-9 )-r )d6

	v e(rs,t) - 0 . - 2n J	 2p s Z o s	 + V	 (2.29)

	

s	 r 
	 o

	

*r2

2 

-2r 2 cos(9-8	

t

)

Here Y represents the integrated value of wdn on the first cell adjacent to

the surface and r  is the position vector for the points on the surface

where the tangential component is calculated. 	 V  is the tangential

velocity at the body surface due to both the outer vorticity field and the

whole dilatation field in R1, and is given by

0
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I
WH2(r cos(A-AO )-r0 )rdrd@ 

1 

f 
W—a p )H2r sin(@-Ao)rdrd@

t	
2n Rl r2 + ro -2rro cos(A-Ao) 

2n	
r2+ ra	 o-2rr cos(A-@o)

(2.30)

It must be noted that the region R1 in the first integral does not

include points on the solid surface.

If r approach ra , the first integral on the right-hand side of

equation (2.29) becomes (20).

2n

	

(Y-Y )H (r cos(@-A )-r )rd8	 1
1	 p	 s	 o	 s	 = 1	 (Y-Yp)Hds - Z (Y-Yp)H

2a s rs +r$ -2r2 cos(A-@o)	
4n o

(2.31)

The principle of conservation of total vorticity gives

2n
1

4n	
YH rs d@ _ - 4n
	

H 
2 
w dR	 (2.32)

o	 (R1-s)

and, since the solution is started by a non-circulatory potential flow, it

follows that

2n

	

1 f Yp .H r s d@ = 0	 (2.33)
41t

0

Substituting equations (2.30-2.33) into equation (2.29) yields

L	 (r2 -r 2 )wH2 rdrd@ 1	H2(s-a )r sin(@-@ )rdrd@
Y H	 -	 P	 0	 +', HHO

 r2+r2-2rr cos(@-@ )	 r2+r2-2rr cosi@-H )(R1- s)	 s	 s	 o	 R1	 s	 s	 o

(2.34)

E
f.
r

I
i
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r.

I:

In equation (2.34) the region (Rl-s) is the computation region Rl

excluding the surface s. Since the radius of the circle in the transformed

plane is taken to be unity, equation (2.34) is rewritten as

Y s 1	
w 82 (1-r2 )rdrd9	 - 1	

H2(S-6p)r sin(9-9o)rdrd9

27FR	
1+r 

2_
2r cos(9-9o)	

71H	
1+r 2-2r cos(9-9o)

(Rl-s)	 Rl

+ Y	 (2.35)
P

i
M

L

Seg!entation of the Velocity Field

The advantage of using equation (2.27) to calculate exterior flow
r

problems stems from its explicit nature. Thus, the integral formulation

(	 permits the determination of the velocity on the boundaries of rectangular
s

regions without regard to the interior nodes. In several cases, since

rapid finite-difference computational schemes are available for solving

the Poisson's equation in regions with rectangular boundaries, a combi-

nation of equation (2.27) and such schemes can provide a faster way to

i	 compute velocities in exterior flow problems. 	 For this reason, the
r

computational domain is divided into compartments in which the kinematic

computations are perfo• 3ed independently of each other. The choice of the

i	 scheme, to be applied in each compartment, depends upon the shape of the
C

body surface and on the relative distance between the body surface and the

compartment. For example, as will be shown later in the static stall case,
k

the integral relation (2.27) is used in the whole wake and in inner regions
P

adjacent to the airfoil surface in order to compute the velocities. The

3
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Poisson's equation is used in the rest of the computational domain and the

velocity an the boundaries is calculated using the integral relation (2.27).

The Poisson's equation for the tangential velocity in the trans-

formed ; ►lane is derived as follows: 

The	 dilatation	 be	 asvorticity and	 can	 written

xV=(JH2 = W (2.36)1 .
f	

t o

=	 2=v	 sx	 so (2.37)

Upon taking the ccri of the terms in equation ( 2.36), the equation becomes

v x wo 	Q x v x V= V (V.V) - v2V/ (2.38)
t

+ Substituting equation (2.37) in equation ( 2.38) one obtains:

OZV = Vao - V x o (2.39)w

_ Writing equation (2.39) in polar coordinates

' 10° - as°	 a	
-! awo + 1	 a8  l e

	
+ p

2V	 +Q2V	 e	 0^
e'

f

(2.40)
M

r a@	 ar	 r	 tar	 r	 a@	 @	 a@	 r	 r

By singling out the tangential component terms in equation ( 2.40) one gets

as	 ^
V2  1 loo 'oo (2.41)

@	 r a@	 ar

Equation (2.41) is the Poisson's equation for the tangential velo-q	 q	 n8

' city written in the transformed plane.

A



i

& 15

i
Once the tangential component of the velocity, V is determined the

s rad ial component of the velocity is calculated explicitly by using the

definition of the dilatation in the transformed plane, namely

V = Sh2 = Sa
i

avr	 V 	 1	 aVA
+	

s 
s0	

(2.42)_
ar	 r	 r	 ae

i

Pressure and Shear Calculations

Since the surface pressure details are needed for any load esti-

mation an the body surface, 	 the equation of state (2.4)	 is used to de-

I termine the pressure on the surface as follows:

p = ( -)Ah	 '.

AP ressure coefficient can be written as

..
P Po

P	
{	

(2.44)
V2 )2I

where p  is a reference pressure.

As will be shown later, the gradients of the flow variables on the

 upper surface of a stalled airfoil are very sensitive to small disturbances

`	 created either by wing different approximations to the governing

equations or by adopting different boundary conditions. Compressibility

effects are expected to be small for M	 0.41 =d in order

4



to capture these small effects, it was decided to compare the pr!sent

compressible results with incompressible results obtained by using exactly

the same mathematical and numerical procedures. 	 For this reason, a
s

r	 different (from that employed in the test cases) scheme for computing the

^.	 surface pressure, similar to the scheme used in the incompressible c:aae

j
(7 j, is developed and presented below.

i.
.In the body-fitted coordinate system, the vector momentum equation

F	 {
is

	

i	 iP 
8^ + 

A(V.^)V	 - ^p + V. T	 (2.45)

T "
i

At the surface, the momentum equation is reduced to the following

	i	 simple form because of the no -slip condition.

	

VP a V. T	 (2.46)

l
Taking the dot product of the above equatiun with the tangential

	

I
	

unit vector t at the surface, defined positive in the counterclockwise

sense one gets

as
	

(V.T).'t	
(2.47)

	

i
	

where s is the coordinate direction tangential to the surface, and is

	

r
	

measured positive in the counterclockwise sense.
f
r

The surface vector t is defined by

16
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ds	 ds
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(2.48)

p T.  . µ^V + 1/308 (2.49)

For simplicity, it is assumed that the fluid is a perfect gas with

•	 constant molecular viscosity, thermal conductivity and specific heat.

These assumptions are reasonable for low subsonic flows. By using these

assumptions the right-hand side of equation (2.47) can be written as

fo11ovs:i
r.

I
Inserting equation (2.49) into equation (2.47) one gets

as'OVV + (3)u^s

Also

(2.50)

i

72 : a2Vt + a2Vt

V-vt	
as 
	 ant

(2.51)

where n is the unit normal vector on the body surface, measured positive in

the direction away from the solid surface. 	 Because of the no-slip

a2vt
condition, Vt and	 2 are zero everywhere on the surface. Thus,

as

2

	

0 2
V ,^ a V  s aw	 (2.52)
t	 an2	 an

1

x



la

I

Combining the terms, equation ( 2.47) reduces to

	

= uw + (1/3)U2	
as	 (2.53)r	 1. as	 an	 1_8

1.

If the pressure is non-dimensionalized with respect to the dynamic

pressure at infinity, and all quantities are non -dimensionalized with

respect to the reference quantities mentioned earlier, equation (2.53)

becomes

f -

	

±	 acae 2C ( N + 1/3 a8)	 (2.54)

	

s	 ReI

where, C
oo and C is the chord length.

P	

P'P

 
(

2
 PVw2)

The dimensionless shear stress at the surface is given by;

i
	Cf 	 - Re W

	 (2.55)

{

knowing the surface pressure and the surface shear stress distributions,

other quantities of interest such as lift, drag and moment can be easily

obtained.

Calculation of Loads

Once the surface pressure and shear stress distributions are known,

the loads are obtained from the following expressions.

e

l

k
^

L.



r c 	 a CNp + CNF

CT - CT + CT
1 P F

c 	 ' Cm +
P F

where

^, n

CN Cp(8) 
d9 

de

foP '

)_ n

` CN	 2F
w(8) 

6 
d8

o

2n

..
CT	 - C cp ( 0) 

d6 
d8

^.

P o

. cT	 Re dod6 d8F
o

2n

CM 	• 1Z Cp ( 8) ^ 	 + y 
d8j 

d8
p

i.

C

1.

CMF	
Re.0	

w( 8)	
I X dA	 y dO ( de

low^.

C:

19

(2.56)

(2.57)

(2.58)

( 2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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The C  and CT are force coefficients directed normal and tangential

to the airfoil chord, and CM is the moment coefficient. The subscripts p

I
and F denote the pressure and the skin friction contribution respectively.

The moment is taken about the origin of the coordinate system and is

positive in the counterclockwise direction.

The lift and drag coefficients referred to the wind axes are

obtained from:

f	
CL - C  cos a- CT sin a	 ( 2.65)

i

CD = C  sin a+ CT cos a	 (2.66)

where a is the angle of attack.

Initial and Boundary Conditions

The non-circulatory potential flow solution is used as an

initial condition in the, present work. 	 Along the body surface, the

vanishing normal derivatives of enthalpy h and density p were used as

t
boundary conditions for h and 13. These conditions are convenient for an

adiabatic wall. The surface values of the dilatation $ were obtained using

1 a three-point extrapolation formula during each iteration of the dila-

tation transport equation. The boundary values of 8 were relaxed and set

to be zero whenever the solution approached steady state. The integral

expression (2.35) was used to compute the surface vorticity at each

iteration while iterating the vorticity transport equation.
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The potential flow values were used as in flow boundary conditionsg
s

while the vanishing second derivatives for S, h,A	 and zero vorticity were

} used as downstream boundary conditions. The wake never approached the

_ downstream boundary during the calculations.	 The aforementioned boundary

conditions preserve the elliptic nature of the problem .

r

r.

r

i

r

i

i

i
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r.
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3. RESULTS AND DISCUSSION

The procedure developed was tested on two problems in order to

demonstrate the ability of the approach to compute attached and separated

flows. The test problems considered are: (i) laminar compressible flow

around a circular cylinder, (ii) laminar compressible flow over an airfoil

at zero angle of attack. Finally, the method was applied to the static

stall problem.

In the results discussed below, the non-dimensionalisation is done

with respect to the free stream velocity and the characteristic length of

the body in the transformed plane. In the airfoil case and other test

cases, the solid body was set into motion impulsively. Since the time

rate of change of all flow variables is very high after the impulsive

start, very small values of the time step, at, are used to obtain proper

j timewise resolution at the initial tine levels. As the gradients with

respect to time decrease, large values of At are used. The under-

relaxation parameter, which sometimes controls the acceleration of the

convergence of the iterations, is varied depending upon the type of problem

considered.

I
Laminar Compressible Flow Past a Circular Cylinder

The present scheme also has been applied to the study of laminar

compressible flow past a circular cylinder at a Reynolds number of 40, Mach

Inumber of 0.4 and Prandtl cumber of 1. The Reynolds number is based on the

cylinder diameter and the free stream velocity. This classical test case

is chosen to demonstrate the ability of the approach to handle flows with

massive separation.
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The grid system consists of lines of constant radii and lines of

constant angle 0. The lines of constant 8 are equally spaced with it /20

intervals. In the radial direction, a stretching relation is assumed as

follows:

r - e s ,	 s - (j-1),&s, j - l,Jmax

By varying s uniformly, with As - 0.06, an exponential variation is

obtained. The total number of grid points used is 2000 points. It should

be noted that with the present formulation not all of these grid points are

involved in the computations at all tine levels. At the earlier time

levels, the computational region contained about 40% of the total number of

grid points. As the solution progressed in time, the number of points in

the computational domain increased. When the computations were terminated

at a time level of 15.1, the computational region contained all the 2000

points.

In order to compute the kinematic part of the problem the segmen-

tation technique, explained in chapter lI was used. The computational

domain is divided into three annular regions R', R" and R"'. The inner

region. R', consists of 240 nodes. The intermediate region, R", consists

of 600 nodes, while the outer region, R"', contains 1160 r. ,.)dal points.

Regions R', R" are matched a distance of .35 radii away from the

surface; likewise the regions R" and R"' are matched at a distance of 2.525

radii away from the surface. The far-field boundary is located 11.916

radii away from the surface. 	 The integsal fowls is used 	 to

compute the tangential velocity in region R' and on all of the boundaries.

Then, the Poisson's equation is itereted to get the velocities in R" and

R"'
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The kinetic equations (2.19) 9 (2.20), (2.21) mad (2.22) are

approximated by an implicit finite-difference schems in the polar

r

coordinates and are solved by using the 'point successive under-

'•	 relaxation' technique. Central differences are used to approximate the

convection terms.	 It should be noted that no symmetry was assumed

regarding this present case.

The solid body was set into motion impulsively. At this impulsive
r

start, the flow was prescribed by the potentialflow solution about a

circular cylinder immersed in a uniform stream. The time step varied

gradually from 0.05 to 0.15. The solution seas terminated at t n 15.1. At

this time level the drag coefficient had converged to three digits. In the

present use, the time is non-d imens ions 1 iced relative to the cylinder

radius and the free stream velocity.

In Figure 1 the surface pressure distribution at steady state is

compared with the numerical solution obtained by Sankar and Tassels] .

The egreemest is quite good.

i
In Table 1 9 the present compressible and incompressible results are

compared with the compressible results of Reference 2 . In this Table, the

separation angle 
8sep. is measured !row the rear axis, and obtained as the

point on the surface where the vorticity changes sign. The length of the

standing vortex (L/R) represents the distance between the center of the

cylinder and the point on the centerline where the velocity changes sign.

These	 comparisons	 indicate that	 the	 present solution	 and the	 finite-

difference method give results that are in satisfactory sgceement.
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TAB LE 1

y
Comparison Between the Present Method and Reference 2

( R

j

Presents Results Reference 2

Incompressible	 Compressible Compressible

' km-0) (M=0.4) (M=0.4)

g 53.5 53.7 52.5
^• aep

Length of Standing 5.80 5.85 5.08

Vortex (L/R)

Pressure Drag 1.025 1.230 1.32

Coefficient CDP
1

Friction Drag 0.555 .520 .561

Coefficient CD
F

Total Drag 1.580 1.750 1.881

Coefficient CD
T

Minimum Surface -6.60 -6.12 -5.82
Vorticity w min.

Compressible Laminar Flow Past an Airfoil at Zero

Angle of Attack

The computational procedure developed here	 is next applied	 to	 the

^- case	 of compressible	 laminar	 flow	 past	 a symmetric 9%	 thick Joukowski

airfoil at a zero angle of attack.	 The airfoil is obtained by means of a

conformal transformation of a unit circle. The chord leynolds	 number

$	 ^ 7
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considered in this case is 1000.	 The Mach number is 0.4 and the Prandtl

number is unity.	 The normalizing reference time is obtained by dividing

the transformed circular cylinder radius by the free steam velocity. 	 All

of the quantities are non-dimensionalized with respect to the free stream

velocity and cylinder radius.

i
i
C

The	 tangential	 velocity,	 V. ,	 in	 the	 transformed	 plane,	 is

calculated using the iutegral relation for the set of nodes on the first

coordinate	 line next	 to	 the surface and at the outer boundaries. 	 The

j

`

Poisson's equation	 is	 then	 solved by using a	 'successive point over-

relaxation' technique in the rest of the domain.	 The difference kinetic

equations, written in the transformed plane, are solved using a 'point

under-relaxation' iterative technique. 	 The circular domain is discretized

with 60 equally spaced points in the 	 direction and 40 points in the

radial direction.	 The time step is gradually varied from 0.0025 to 0.1

during the course of the computations. 	 The computations are initiated with

an impulsive start.	 The initial surface vortex sheet strength is computed

f
from the potential flow velocity values. 	 The kinematic computations are

{ done with the finite Fourier series method. 	 At a time level of 6.5 1 a

steady state is determined to have been reached based upon the agreement

(within 12) of the computed surface vorticity values with those of the

i previous time level.
i

f
In Figures 2, 3 the present surface pressure and surface vorticity

values are compared with the corresponding values obtained in Reference

2 .	 Both solutions are in very close agreement. 	 The reference pressure
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!	 used in these figures is the free stress pressure.

Laminar Compressible Flow Past an Airfoil at

an Angle of Attack

The airfoil used in the present study is the 9Z thick symmetrical

Joukowski airfoil described in appendix B. The chord Reynolds number

considered is 1000. The Mach number is 0.4, the Prandtl number is 1.0 and

the angle of attack is 15
0

.

A number of publications (1, 2, 3, 5, 6 9 7) have treated this

problem before by incompressible flow. It can be seen from these results

that the solutions are not quantitatively comparable. However, there is a

qualitative similarity between the results. In the static stall case, the
v

results depend on a number of factors such as grid resolution,

specification of the far-field boundary conditions and the numerical

scheme. Therefore, in order to capture the small compressibility effects

_	 expected here, the compressible results have been compared with

(	 incompressible results obtained using the same computer program after

1
$switching off' the compressibility effects.

Consequently, before solving the compressible static stall problem,
i

`	

it Was appropriate to conduct first a series of incompressible numerical

I experiments to (i) test the code, (ii) inspect the seusitivity of this

solution with the change of mesh size in the 0 direction, (iii) examine the

role of the time increment on the accuracy of the solution, (iv) examine

the cyclic behavior of the solution, and (v) obtain incompressible data to
i

be compared later with the compressible data. The difference between the

two solutions represents the effect of compressibility.
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It
Solution

r

Incowressible

The incompressible solution for the static stall case was obtained

by following the same procedure used later for the compressible case. 	 In

order	 to	 demonstrate	 the	 accuracy	 of	 the	 scheme,	 the	 incompressible

solution has been compared with the numerical results of Mehta [7]. 	 As

shown in Figure 4 , the present results agree very well with Mehta ' s results

at the early time levels.	 As expected,	 the two solutions differ 9 uanti-

tatively at the later time levels.	 However,	 the qualitative behavior is

similar at these later time levels.

E To illustrate the effect of the grid resolution on the solution, two

1
sequences of solution were obtained for p8 = n/24 and A8 = 7r/30. 	 Figure S

shows the history of a load comparison between the two solutions. 	 It is

seen	 from this	 figure	 that	 the	 two solutions	 are comparable.	 Although

i

there	 is	 no	 drastic	 difference	 between	 the	 two	 solutions,	 there	 still

exists enough of a difference that 	 there could be a misinterpretation of

s
the results obtained for two different mesh size solutions, one compres-

sible	 and	 the	 other	 incompressible.	 This	 experiment	 demonstrates	 the

importance of using the same grid size whenever small compressibility
i_

i
effects are examined.

r

The continuation of the cyclic behavior of the solution for more

than one cycle and the validity of the present method for a number of

cycles of vortex shedding was demonstrated. 	 The solution was advanced in

time up to a dimensionless time level of 62 ( the reference time being the

transformed circle radius divided by the free -stream velocity).	 Figure S

^- shows the time history of loads which illustrate the cyclic behavior of the

i
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solution with time. Note that there are two cycles observed in the

prescribed time range. This exercise provides considerable confidence in

the formulation of the problem and in the computer program.

Finally, in order to study the effect of the time step on the

solution, three numerical experiments, with three different time

increments, were performed. Table 2 shows the comparisons among these

three solutions. Each solution has been started at time level of 20.175,

and then advanced in time up to a time level of 21.615 and 24.735. The good

agreement among the solutions is apparent in Table 2. It could be

concluded that, within the prescribed time range, the size of the time step

plays a minor role in the accuracy of the solution.
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(	 Table 2

.-	
Comparison Among Three Different Time Increments Solutions

Time Level	 At	 CL	 CD	
-CM
	 ws min

	

0.06	 0.2582	 0.1641	 0.1160	 -89.26

t - 21.615	 0.12	 0.2574	 0.1654	 0.1150	 -89.41

	

0.24	 0.2623	 0.1683	 0.1127	 -89.58

I	 0.06 0.3475 0.1722 0.1225 -93.971

1.
t - 24. 73 5	 0.12 0.3516 0.1718 0.1235 -94.28

0.24 0.3527 0.1686 0.1257 -94.46

Compressible Solution

In the Figures that follow, the chordwise distance denoted "chord

percentage" is measured from the leading edge of the airfoil. The force

coefficients are normalized with respect to the free-stream velocity and

the radius of the unit circle. The normal tzed reference time is obtained

by dividing the radius of the unit circle Dy the free-stream velocity.

The grid system contains 48 equally spaced points in the 8-direction

and 40 points in the radial direction. The exponential relation given in

appendix E is applied for placing the points in the r direction. The time

increment used in this numerical study is progressively increased from At -

0.0005 to At - 0.24. A total of 255 time steps were used to march the

solution to a time level of 31.275, when the computations were terminated.

Using the flowfield segmentation technique described earlier in

chapter II, the velocity is obtained everywhere in the computational



f	 31

I
domain. Figure 6 shows the segmented compartments and the kinematic

relation used in each of them.

The iterative procedure used in solving the kinetic equations were

	

C

varied to study their effects on the solution. Switching the iteration 	 .

direction in the tangential coordinates was used to accelerate the con

I,	 vergence. The convergence criteria used in solving the vorticity transport

equation was based on the maximum vortex strength variations between two

consecutive iterations, where the vortex sheet strength is defined by y a

wH2dr. Invariably, the maximum variation between two consecutive iter-

ations occured near the trailing edge, which can be explained by examining

equation (2.35).	 It is seen that the scale factor H appears in the

denominator. Because the scale factor is very small near the trailing

edge, it amplifies any error in the calculated value of the surface vortex

i	 sheet strength. The above criteria for convergence allows more tolerance

t
for the vortex sheet strength near the trailing edge than anywhere else.

The tolerance level specified for the vortex sheet strength was 0.002 at

the earlier time levels and is subsequently reduced to 0.0005 at later time

levels. Continuation of the iteration beyond the above tolerance limit was

not found effective in reducing the residue. The residue instead oscil-

lated around a minimum value without showing any tendency to reach zero.

The maximum tolerance criterion used in iterating the enthalpy and

'	 density transport equations are 0.1% and .5% of the previous iteration,

1

respectively.	 In iterating for the dilatation transport equation, a

stringent tolerance limit in the vicinity of the airfoil was asoumed in

order to ensure proper convergence. 	 in the outer regions and near the

i_	 trailing edge, this limit is relaxed to accelerate the convergence. At
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later time levels, the maximum allowable tolerance, in the inner regions,

is taken to be 0.8X. This represents the maximum percentage variation

between two consecutive iterations.

As described earlier, the total number of nodes are 1920. However

^•	 not all of these nodes were involved in the computations at all time

levels. At early time levels, the vortical region is confined to only

about 25% of the maximum computational region. The computational time per

time step depends on the extent of the computational boundary and varies

from as little as 70 CPU seconds at the early time levels to 154 CP U seconds

at later time levels on the CYBER-70 computer with a CX 6400 CPU.

The average computational time required in the present study to

•	 advance the solution for one dimensionless time is 16 CPU minutes. Sankar

1	 and Tassa 2 used an ADI scheme to solve the primitive variable system of

finite-difference equations, and took 11.5 CPU minutes to advance the

solution for one dimensionless time on the same computer. It should be

emphasized here that, in the present study, at later time levels the memory

requirements are larger than those required in Reference^'2. ,However, due

to Computer memory restrictions, the present computer program could not

utilize the maximum capacity of the CYBER-70 computer. Therefore, unneces-

sary computations have been carried out for a number of time steps.

Alternatively, if more computer core is used, along with using more

sophisticated numerical procedures, it is believed that the computational

1.	 time required to advance the solution for one dimensionless Lime can be

r	 ^: reduced below 11.5 CPU minutes.

Table 3 gives the details ,)f the time steps versus the computer time

i_
	 for the present computations.
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Table 3

Sequence of Changing the Time Increment and

Summary of Computer Time

No. of Time	 At	 Time Level T	 Average CPU

Steps	 Time in Sec.*

10 0.0005 0.005 70

10 0.001 0.015 80

10 0.0015 0.03 85

10 0.0045 0.075 92

10 0.008 0.155 94

10 0.016 0.315 98

10 0.032 0.635 100

10 0.064 1.275 105

20 0.09 3.075 108

20 0.12 5.475 119

30 0.12 9.075 128

25 0.12 12.075 130

80 0.24 31.275 154

* CYBER-70/Model 74 -6400 CPU.

Flow Development

The development of the flow field may be viewed as occuring in four

stages. These are: (i) impulsive start, (ii) formation and growth of the

primary bubble, (iii) the bursting of the primary bubble which is

r
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associated with the formation of both the secondary and the trailing edge

bubbles, and (iv) reattachment of the primary bubble. The initial attached

bubble which expands with time is referred as the 'primary bubble'.xP	 P	 Y

i	 The convention used is that the upper surface vorticity is negative

r

	

	 for attached flows while positive vorticity indicates flow reversal. The

opposite is true for the lower surface.

The first stage of the flow field development reflects the effects

of the impulsive start. Immediately after the impulsive start, the

vorticity is only non-zero at the surface, while potential flow exists in

the rest of the fluid. The rear stagnation point is located on the upper
{

surface of the airfoil. Within a short time, the rear stagnation point

moves close to the trailing edge. This movement is associated with the
I

formation of a "starting vortex". At subsequent time levels the boundary

layer starts growing on the upper and lower surfaces of the airfoil. The

thickness of the boundary layer on both the upper and lower surfaces

increases with time, as is observed from the displacement of the

'streamline-like' lines near the surface. For convenience, the

'streamline like' lines will be called 'streamlines'. The thickness of the

boundary layer on the lower surface is smaller than the thickness of the

boundary layer on the upper surface due to the existence of a favorable

pressure gradient on most of the lower surface. The extent of the region

of adverse pressure gradient on the upper surface is shown in the pressure

distribution plot. It is also observed, at this stage, that the magnitude

of the surface vorticity near the leading edge on the upper surface

continues to decrease with time, forecasting the onset of separation in

that neighborhood when the surface vorticity changes sign. However, the

separation does not actually occur until a time level of 1.88. During this
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first stage, and after the decay of the influence of the impulsive start,

the value of CL starts increasing due to the growth of circulation after

r	 first reaching a ninisnas value at T - 1.0 as shown in Figure 7. The value

Dof CD continually decreases because the decrease in the friction force on

the lower surface as the positive vorticity decreases with tine.

The second stage of flow development describes the occurrence of

separation, together with the formation and growth of the primary bubble.

The separation first takes place at 202 chord at T • 1.88. The size of the

separation bubble increases with time until it covers most of the upper

surface. This is expected, since the separation point moves forward

towards the leading edge and the reattachment point moves rearward towards

the trailing edge.	 At time level 7.214, the separation and the

reattachment points are about 952 chord length apart. The increases in the

size of the separation bubble increases the effective thickness of the

airfoil, and the increase of the intensity of the reversed flow inside the

bubble causes additional auction pressure on the upper surface. The above

two factors result in an increase in the value of CL with time. During the

duration of the primary bubble, the drag coefficient remains approximately

constant.

In the third stage of flow development, the primary bubble is
f

ruptured and an open bubble is forted, indicating the cyclic start of

vortex shedding. The reattachment point of the primary bubble lifts off at

a time level of 7.214 causing separated flow over almost the entire upper

^.	 surface. The increase in the number of streamline loops inside the

separated bubble, indicates an intensification of the reversed flow inside

the bubble. The flow rotation inside the bubble is clockwise, with the

^.	 fluid next to the surface moving upstream. 	 The pressure plots at

i	

T - 9.494, Figure 37, show a small region near the trailing edge where

L
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there is a decrease in the pressure in the direction of the main flow

outside the bubble. This is equivalent to an adverse pressure gradient for

the flow near the surface. A small counterclockwise separation bubble

appears near the trailing edge at T - 11 . 775 as a result of the above

mentioned pressure gradient. The size of this bubble increases slowly with

time until it can be clearly seen at T - 14 .05%. At this time level, a

similar adverse pressure gradient develops at about 58 % chordwise distance

from the trailing edge. Thia results in the appearance of a secondary

counterclockwise bubble at T - 16.71. The direction of the flow inside

this bubble is counterclockwise, with the fluid near the surface moving

downstream toward the trailing edge. The intensity of the flow rotation in

the trailing edge bubble is larger than it is inside the secondary bubble,

as indicated by the number of streamline loops inside that bubble. The

size of the two bubbles increases with time. As time progresses, the

primary bubble starts to shrink while the other two small bubbles enlarge.

The secondary bubble expands locally in the normal direction, whereas the

trailing edge bubble gets enlongated in the duvnetream direction. At this

stage of flow development, the lift coefficient keeps on increasing, due to

the extent of the primary bubble beyond the trailing edge, until it reaches

a maximum at T - 10.75. Meanwhile, the draft coefficient starts increasing

very slowly after the time level 4.8. This slow increase in the drag is due

to the increase in the effective thickness of the airfoil as judged by the

shape of the zero streamline. This causes an increase in the pressure

drag. The value of 
CID 

increases until it reaches a maximum at

T - 12. The downstream motion of the center of the ruptured clockwise

bubble, which is accompanied by the appearance of the two small counter-

I^
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clockwise bubbles, causes a general drop in the value of C L after

T - 10.75. The reason for this drop is that the negative pressure

sustainedthe primary bubble is partly removed b the formation of theb3'	 P	 y	 P	 y	 Y

two counterclockwise bubbles. • This also results in a decrease in the

pressure drag, which explains the drop of C D after reaching a maximum at

T - 12.

The fourth stage of flow development involve the opening up of the

secondary bubble, the lifting off of the trailing edge bubble, and the

reattachment of the upstream part of the primary bubble. The streamlines

and equi-vorticity lines show the following flow development during this

stages (1) the secondary bubble splits the primary bubble and opens up to

the outside flow at a time level of 20.51; (2) the trailing edge bubble

moves downstream until it lifts off the airfoil by T - 21.95; (3) the

downstream part of the primary bubble starts to disengage from the surface

at a time level of 25.455; and (4) as time progresses, the upstream part of

the primary bubble spreads in the downstream direction vintil the

reattachment point reaches the trailing edge at a time level of 31.2759

indicating the completion of the first cycle of vortex shedding. The

streamline pattern at T - 31.275 looks similar to the pattern at the start

of the cycle (T = 7.214), which indicates that the second cycle of

oscillatory behavior is going to start at T - 31 . 275. As the secondary

bubble opens up to the main stream, the reattachment point of the upstream

part of the primary bubble starts to move downstream, increasing the region

of the clockwise reversed flow. This reversed flow is able to sustain more
i

suction pressure which results in an increase in the value of CL. The
r

lift-off of the trailing edge bubble and the shedding of the downstream

^.	 part of the primary bubble into the downstream flow enables the upstream
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part of the primary bubble to cover most of the airfoil. This will lead to

a continuous increase in Cl. and CD , as indicated in figures 8 and 9.

Judging either from the contour plots of the streamlines or from the

tiwa histories of the loads plots, it is estimated that one cycle of vortex

shedding occurs during the time period from T a 7.214 to T a 31.275. With

the airfoil chord as the characteristic length, the Stroubal number,

defined by C/(V) 9 where T is the period of the cycle, is then found to be

0.155.

Comparison Between the Compressible an al Incompressible SOIL tions

I In order to predict the compressibility effect for the present

static stall case at a Mach number of 0.4, the compressible and the

Incompressible solutions obtained using the sane grid are quantitatively

compared in Table 4. The importance of using the same grid size in both

solutions was demonstrated earlier in this chapter.

Based on the comparison shown in Table 4, the observations made nay

be summarized as follows:

M At the earlier time levels, the compressibility seems to
decrease the rate of thickening of the boundary layer.

(ii) The onset of the separation of the primary bubF-!e begins to

appear at a later time level in the compressible case.

(iii) Compressibility seems to play a minor role in the growth of the

primary bubble.

(iv) The compressibility delays the appearance of both the

t
	 secondary and the trailing edge bubbles. These two bubbles

grow at a faster rate in the compressible case than they grow

in the incompressible case as shown in figures (8-10).
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(v)	 When the first cycle of vortex shedding starts, the difference

in the	 force coefficients between the compressible and the

incompressible	 solutions	 is	 small.	 As	 time	 advances,	 the

difference between the two solutions gradually increases, in-

dicating the increased influence of the compressibility. 	 At a

time	 level	 of	 approximately	 21	 the	 compressibility effect

becomes very small.	 At this	 time	 level,	 the time rate of

change of flow variables decreases to a minimum. 	 At later time

els, T - 23 - 31.275, the compressibility effect appears to

iurrease again but at a slower rate.

(vi)	 The effect of compressibility on	 the	 force coefficients is

shown in Figures (8-10).	 This effect is comparable to the one

computed in Reference 2, as shown in Figures 11 and 12.
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_	 Table 4 1

Quantitative Comparison Between the Present Incompressible

^•	 and Compressible Solutions

Flow Events Compressible Data Incompressible Data

Y	 Onset of separation of T - 1.88 T = 1.76
li	the primary bubble

Separation location 20% 23%
from leading edge

Cycle begins at T = 7.214 6.821

Cycle ends at T - 31.275 29.815

First appearance of T - 11.775 T - 11.24
trailing edge bubble

First appearance of T - 16.70 T = 15.374
secondary bubble

Opening up of the T - 20.51 T = 19.81
secondary bubble

Strouhal number 0.15478 0.16146
C/(T W)

CL 1.32 1.29
max.

CL 0.254 0.262
min.

* The force coefficients are given after the recovery from the impulsive
start#

r
is

I^

Comparison With Other Numerical Solutions

The flow around a 9% symmetric Joukowski airfoil at an angle of

attack of 15 0 , chord Reynolds number of 1000, Mach number of 0.4 and

Prandtl number of one, has been solved numerically by Sankar and Taass [ 2].

J..
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rr.

The computational procedures of Reference %2 are significantly

different from those used in the present study, and it is very important to

bear this in mind when comparing the results of the two studies. The

procedures of Reference 2 are as follows: (1) the primative variables

C.	 (u,V,p,h) are used as the unknown flow variables; i2) the governing

E

equations are discretized using central difference formulas for the

spatial derivatives; (3) a second order artificial diffusion is added to

f	 the real diffusion term to stabilize the solution; (4) an ADI procedure is

used to solve the system of difference equations generated from the

governing equations; (5) a fourth order dissipation term is added to the

governing equations to eliminate the wiggles arising in the solutions; (6)

t

the outer boundary is located at six chord lengths away from the airfoil

M	 (in the present study the outer bounday is located at about 10 chord

lengths away from the surface); and (1) a uniform flow is used to start the

solution impulsively.

r	 Table 6 show typical comparison between the present results and the

results obtained in Reference 15.

The stability requirement for non-linear problems may impose more

restrictions on the size of the time st`p eves: in the case of implicit

schemes 18 1	 However, Desideri et al C91 and Ballhaus et al. [103, in

separate studies, have shown that a cyclic variation of the size of the

Itime step between two limits is helpful in obtaining convergence in the

(ADI) schemes. In the present solution, no such restriction on the time

step was required. It is believed that the use of the under-relaxation

technique in solving the difference equations has a stabilizing effect on

the solution.	 The maximum time step used in Reference 2 is 0.064,
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whereas, in the present study, the time size was successfully increased up

to 0.24. More details about the work can be found in Reference 11.

Table 5

Quantitative Comparison Between the Present

Results and Those of Reference 2

1	 Flow Feature Present Results Reference 2

Onset of separation of T = 1.8 T - 2.1719
t	 the primary bubble

j	 Separation location from 20% 24%
leading edge

Cycle begins at T 7.214 6.3117

Cycle ends at T 31.275 27.376

{	 First appearance of the T = 11.775 T = 10.695
trailing edge bubble

First appearance of the T $ 16.70 T = 12.52
secondary bubble

i	 Opening up of the T = 20.51 T = 18.056
secondary bubble

Strouhal number C/(TV.) 0.15478 0.17626

!	 CL 1.32 1.34
max.

CL0 .254 0.251
min.

CD 0.346 0.364
max.

CD 0.165 0.141
k	 min.

i
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F	
4. THE USE OF THE INTEGRAL REPRESENTATION METHOD WITH

}	 SERIES SOLUTIONS FOR SOLVING THE NAVIER-STOKES EQUATIONS

The use of orthogonal functions in solving the Navier-Stokes

equations has offered high accuracy for certain problems. The reason is the

rapid decrease of the truncation error as the number of these functions

used increase in a series representation of the solution (16). In this

section of the report, the use of Fourier series with the integral

representation method (1) is developed. The procedure is applied to simple

test problems.

The Navier-Stokes equations, for steady incompressible flow, in a

region R, with boundary B, can be written as follows (1):

x (r -_)	 (v n )(i -r)
V+6) _ - 27r,^o

	

	
°^ 2 d% + Z,^ f .. . z o dBo

R Iro - r	 B , ro - r^

- 1	 ((vox no)x(ro - r)

27r B	 +,2	 dB	 (4.1)o 

'ro " rI

W _ Re f ox ^ )x(r0 r) dR

s 2 7r R
	 r- r l

2	 0
o

+ Re f 
h0 nox(rQr) dB

2n B 1= _r 1 2	 0
!	 o

- 1	 (wox n'o )x(=o - r)

21t B	 f r - t i2	 dB0
(4.2)

k	 Where v and W are the velocity and the vorticity vector respectively, r is

E	 the position vector and n is the unit vector on B directed outwards. The

t

i
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subscript o indicates that a variable or an integration is evaluated in the

r0 space. Notice that (4.2) is nonlinear because it is equivalent to ours

f

familiar vorticity transport equation.

In a polar ( r,e ) coordinate system, the vector equations ( 4.1) and

(4.2) give the following scalar equations.

^ 
1	 rworo sin(eo - 9)

v — J

	

r	 R ro + r 2-2ror cos(Qa e)

t

(  + 1	 vr01r0 Cos(e 0 -e)-r]
(j	

JJJ	

dB

2n B ro + r2 - 2r 
o
rcos(e o-e)	 °

r

- 1 ^veoro s i n(6 0- e)

2tr B 2	 2
	

dB 	 (4.3)
r0 + r - 2r 

0
rcos (e o- e)

1	 w0 r0 cos(e0-e) -r
a -.	 J dR

	

ve	
2n R ro + r2 - 2ror cos(eo-e) 0

1	
vro 

r0 sin( e0-e)

r	
+ 27r B a + r2 - 2ror cose 

o
-9) dBr	 o

+ 1 jve0	
.Y

 

fro cos( %- e) -r^—_

2w B 2	 2
	 dB 	 (4.4)

r	 - 2r0 + r	 or cos(60-6)

Re	
vro o[ro - r cos(60-9)] + veowor sin(0- a

f	

)

W	 - 2n "	 --- dR
R	 r 

2
o + r z - 2r

0
r cos(E0-e) 	

o

I
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+ xe 	 h 
o 
r sin( o- 6)	

dB
2w B r

o + r2 -
 
2r 

0
rcos(Qo Q) o

+ 1 j [ro - r cos(Qo-Q)]	
dB

2a 
B rc + r

2 -
 
2r 0rcos (Qo-Q)

(4.5)

In (4.3) - (4.5) 
v  

and v  denote the velocity components in the r and Q

direction respectively. Because we are looking at a periodic in the Q -

direction flowfield we can assume a solution in the form of finite Fourier

series.

N
yr = sO + . ( an cos no + to sin no)	 (4.6)

n=1

N
ve = po +	 (pn cos no + qn sin no )	 (4.7)

n=1

N
	W = a  + I (an cos no + S n sin no)	 (4.8)

n=1

In these equations, the Fourier coefficients a 
O f a n ts '

 
On 

is, 
so'

an i s, tn ' s, 
Po' 

pn 's, qn 's are dependent on r only.

Using the method of residuals (Appendix C), the integrals in

equations (4.3), (4.4) and (4.5) could be evaluated explicitly and only the

Fourier coefficients are left to be determined (Appendix CJs

so = 0	 (4.9)

i
r
I:

I^

l r	 ro n+1	 1	 r n-1an = 2 f On (= )	 dro + 2
	

sn(r )	 dro
o	 r	 o

Y 2 an(1) rn-1 - 2 qn(1) rnrl	 (4.10)
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Y

F r
_ 1	 0

tn a
	 a (—)

n+l

dr	 -
o

n-1
2	 a	 dr0n (=o)r

^. + 2 tn (1) rn-1 + 2 Pn(1) rn-1
(4.11)

(
t	 .

r	 r

P	 /' a (Adr0	 0	 o r	 o (4.12)

1	 r	 ro n+1
Pn a 2 f an (= )	 dro - 2

n-1
an(r)	 dro

r	 o

+ 2 tn(1) rn-1 + 
2 Pn(1)

rn-1
(4.13)

= 1	
r	 r0 n+l

qn 	 2	 on (r )
dro -

1
2

r	 n-1fl

0 sn ( ro)	 dror

2 s(1) rn-1 + 1 qn(1) rn-1n (4.14)

1
ao ao(1) - Re f 0 dro	 (4.15)

r

1
an = a n (1) rn - 

2e rn f (&n -4 n) ro dro
0

+ Z
e fr (

fin - c n )(= n0 )  dro
0

	

fl 	 drn2e 
r (f,n + 4n ) (r0 )	 o	 (4.16)

R n = s n(1) r  - Re 
rnf 	1 ( % + µn )ro dro

0

	

r	 r n
+ 2e f (r,n + un)(=0 ) dro

0
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+
 2e

^1

	

on - un)(= 
n
) dr0 	(4.17)

r	 o

where 1 1 n < N, the quantities an (1), tn ( 1), pn (1), qn(1) are the known

	

velocity Fourier coefficients on boundary (or at r= 1) and	 n , u are

the coefficients from convective terms:

N

	

W v  = E o + Y ( Fh cos n6 + n n sin n@ )	 (4.1$)
n=1

N

	

W v a 
uo * 1 (Ph cos n8 +C n sin n6 )	 (4.19)

n=1

Once the Fourier coefficients of the velocities and the vorticity

are determined, the velocity field and the vorticity field are easily cal-

culated using equations (4.3) - (4.5).

Equations ( 4.9)-(4.17) are solved using an iterative procedure for

the problem of steady flow inside a circle. The Fourier coefficients of

the boundary velocities are assumed to be known.

Starting with known values of the Fourier coefficients of the

vorticity , aO, a n's, S n's, the superscript "i" being the iteration

counter, the following steps constitute one iteration loop.

(i) Determine the boundary values a
0
 (1), an(1)'s and 8 1(1)'s.

The boundary values of the velocities need to be satisfied by

equations (4.9)-(4.14 ) during each iteration. Thus with one set of ao,

a l 's and ¢ 1 's in R, the boundary values of al (1), a M's and 0 M's are
n	 n	 o	 n	 n

determined by

!1 ao ro dro 	 po (1)	 (4.20)

0
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n*1	 -
J a n ro	dro	pn(1)	 tn (1)	 (4.21)

1.	 o 1f on ron+l dro	an(1) * qn (1)	 (4.22)
0

The equations (4.20)-(4.22) are the constrains on the boundary

vorticity values derived from equations (4.9)-(4.14) when r-l. The p
0 
(1),

pn (1)'s, %(')'a ' an (1)'8
1 

tn (1)'a are the Fourier coefficients of the

velocities on the boundary which are assumed to be known. With the proper

numerical integration of the integrals in equations (4.20)-(4.22), the

values of a n, a n's and sn'a at r-1 are easily determined.

(ii) Compute the Fourier coefficients of the velocities in R.

With the proper numerical integration, equations (4.9)-(4.14) give

explicit, point by point, calculation of an's, tn ' s, po, pn' s, qn 'a in the

flow region R.

(iii) Compute the Fourier coefficients of the convective terms.

Because the Fourier coefficients of the velocities and of the

vorticity are known at this stage, the Fourier coefficientsa,n1's,
t

o n	 n

un ' s, C n'a can  be determined using equations (4.18) and (4.19). The

coefficient 
P 

need not to be determined because it will not get into the

calculation of the Fourier coefficients of the vorticity. This quantity is

associated with the static pressure level and it remains arbitrary when the

flow is incompressible.

(iv) Compute the vorticity Fourier coefficients a ol'l, a n+1 's and

.1, 8 in R.

Equations (4.15)-(4.17) permit explicit evaluation of an;l tog Q l's
andsna using quadratures if a l (1), al (1)'o f 0 M's and CL, & l 's, {i's,

	

o	 n	 n	 o n	 n

' 8, ti	 unin's are known on the right hand side of these equations.
t_
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j In the above iteration loop, it was found necessary to employ a

point under-relaxation technique to obtain converged solutious. The not

values of of+l, ci +l 's and sn i+l, s in R are computed from

CL i+
l 

= A (I * + ( 1 -A )ai	 (4.23)0	 0 0	 0 0

a n
+1	 Aa n + ( 1 - A)an	 (4.24)

S n
+1 

= A sn + (1 - A)an	 (4.25)

!	 where 1 < n < N, A o ,A are the under-relaxation parameter and ao, an*, s and

$n , s are the values computed in step (iv).

Converged solution of a particular problem is assumed to exist when

the following criterion is satisfied.

i+1	 i	 i+l	 1	 i+l	 i
D
	

=M ax 10 1. - oj , anj - anj , Snj - s nj	 «3
j

`<n < N	 (4.26)

where subscript "j „ denotes the Fourier coefficients at r=ri (ri < 0. A
good value for E was found to be 10-4.

The new numerical approach was tested and some of its features are

discussed as the Reynolds number increases.

(i) Flow without separation

This is a closed streamline flow problem. The boundary velocities

are:

v
rb	

0	 (4.27)
( 



50

• 1 * 1 cosh	 (4.28)
ve

b 2 2

This example was treated by Burggraf (12). He used the Oseen

approximation, which took a rigid-body rotation as the basic flow. The

solution of such linearized differential equation is only applicable to the

case in which the whole flow field forms a singular circular eddy. The

asymptotic vorticity value of the inviscid core at high Re he obtained is

too low compared to Batchelor's (13) suggested model, which is proven to be

quite adequate by Imai (14) and the present calculations.

Using the present approach, converged solutions are obtained at

different Reynolds numbers, from 0 to 1,000. The number of iterations,

{	 under-relaxation parameters and stream function values at the origin are

I presented iv Table 6. The grid system is equivalent to 21 x 41 mesh

points. The variation of maximum deviation Dmax (in equation 4.22) versus

the iteration number is shown in Figure 13 for Re - 1,000. In this case, the

process of escalating the Reynolds number has not been used, i.e., the

lower Reynolds number solution is not utilized as the initial solution to

start the iteration procedure. This has otherwise been very effective in

the calculations.

The computer time for each iteration is about 1 second. Compared

with the computer time that Imai had used at different Reynolds numbers

(14) this approach showed speedup by a factor 2 to 3.
I

The streamline patterns at Re - 0, 50, 300 are in Figure 14. The

vorticity values at 0 - 0 with different Re are presented in Figure 13. As

Re increases, the value of vorticity in the inviscid core eventually goes

to the value suggested by Batchelor and Wood (131. Also in this figure,

*	 Wood actually calculated this value exactly after using the Von

	

Mises transformation in the closed boundary layer region as Re —*­ .	 i
Stated simply, the vorticity value in the inviscid core is

j -	 determined by the root -mean-square speed of the closed boundary
j	 surface.
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the boundary layer structure is clearly seen as the Reynolds number

increases. Figure lb •bows the migration of the vortex center with

increasing Reynolds number. It is clearly seen that the ultimate location

of the vortex center for Re ♦W will be the center of the circle.

(ii) Flow consisting of two unsymmetric recirculating reaions

This is also a flow with closed streamlines.	 The boundary

conditions are

v  
= 0	 (4.29)

b

v8 = 3 + g cos@	 (4.30)
b

The streamlines and vorticity values at different Reynolds numbers

are in Figure 17 and Figure la. Notice that the asymptotic flow pattern for

high Reynolds numbers cannot be found in a simple way as in the last

example, since the form of the separation line is not known in advance.

(iii) Unflow - outflow problem

The flow problem together with the boundary velocities are depicted

in Figure 19 In this case, the flow is symmetric about the x-axis, thus the

Fourier expression could be simplified to

N
W = 2: B n sin n 9

n=1

N
yr = Y. s cos n@

n=1 
n

(4.31)

(4.32)



W v
r 
a I n 

sin n6	 (4.34)
awl	

^

r

i«

and

I:

R

	

W v	 ;^ + I p coo ne

	

e	 nal n
(4.35)

Due to the velocity discontinuity at the boundary, a larger number

of grid points is used in the agrimuthal direction. The grid system used

i	
in this case is equivalent to 21 x 81 mesh points in the whole plane. The

81 points along the circumferential direction were proven adequate. The

use of 121 points in that direction generated differences of the

streamfunction values less than 1 percent compared with the results that

!.	 used 81 points. The effect of the grid size in radial direction has also

been tested, as shown in Table 7. The computer time for each iteration, on

the 21 x 81 Yrid system, is about 1.3 seconds,	 a CDC 6600.g 

The streamline patterns with different Reynolds numbers are

depicted in Fig-nv 20. The occurrence and growth of the separation bubble

are 4earl, seen in this figure, as the Reynolds number increases.
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r
r	 Re	 O	 a	 ITBR	

0

0 .1 •1 3 .250

16 .1 .1 56 .256

32 .1 .1 51 .268

50 .1 .1 40 .279

75 .1 .1 62 .289

100 .1 .1 66 .293

128 .1 .1 128 .295

200 .01 .05 430 .296

300 .001 .01 475 .297

1000 .001 .001 4114 .289

53

i



54

ii
Table 7

i
f

Re Ar I,x
0 !TER

I
MAX

t

100 .1 .2 47 111

.05 .1 80 .123

200 .1 .06 130 .116

.05 .05 211 .132

300 .1 .03 230 .115

i

.05 .002 440 .131

E

i

is
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Region I	 The Integral Relation (3.30) is used to Calculate V 

Region II	 The Integral Relation (3.30) is used to Calculate V 

Region III Finite-Difference Equation (3.34) is used to Calculate V0

FIGURE ( 6) SEGMENTATION OF KINEMATICS AT LATE TIME LEVELS
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APPENDIX A

DERIVATION OF THE KINETIC TRANSPORT EQUATIONS

78

(1) Theme icitY„Transport Equation

The vorticity transport equation ( 2.17) may be written as

r- 139* r) + Y1) 11npxVh ' Ae Vx(^

For two-dimensional floe, we have

1x( 1 T) - 8 (i 8 
ATU + rx) + A r (A+ ly- u8)^y	 r

Tx-

and

(A.1)

(A.2)

Vx(vxW) - - (V.VW + WS) - -V.(VW)
	

(A.')

Upon differentiating the term in equation (A-2) it reduces to

9lic(^ V. T) R T1 +T2	(A.4)

where T 1 represents the summation of the free-viscosity change terms and T2

represents the terms which include the change of viscosit,,.
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2	
2a 2

u 	2v
T1 2 Fat M_y ^ 8 3t2) * 12 ryy (u Z + N ky) p ^w
P 	 P	 a y

12- 3P	 Ev(2P-Na^) + 1 	 (2u ru -NM)
P	 ay	 '02	 ax

T2 • P ( uywx)( N xx- Nyy	 y) + p tv -ux)Nxy

+ ux (p V2v + p uxy 

-; 
(P xuy + vx px - 2Py ux +Toy$)

+P (- ? V2u* Z v - 1 (20v -uP -vP	 2 OP) (A.6)
Y P	 P xy P2 x 	 y  x 	 T x

(A.$)

{	
For simplicity and convenience, the viscosity coefficients is and

i	 ^(^ • 3 N), specific heat radio Y and the thermal conductivity k have been
i

considered to be constant in the present subsonic study. In general, the

incorporation of variable coefficients has no conceptual effect on the

method. Several numerical experiments have been performed to verify the

foregoing assumption and the results indicate a negligible contribution of

l	 the non-constant coefficient term T2.

By using the above assumptions, equation (A.6) reduces to the

following simple forms

I

r	 Mere,

i

rt - V.(Vw) + ( P Re) 9;W
	

(A.7)



- srw

W

5

t

r

u	 4	 .
4	 Ol . ^.... i (3 (VO: VP).k - f0vw)

PA.A

0 • Y-1 (Oln x Vh).k
2	 y

k is the wit vector normal to the plane of flow (x-y).

k
(2) The Dilatation Transport Snustion

The dilatation transport equation (2-18) may be written as

f

a^ aW • - V.(V. )V - - V - Y= h V2 1np - Yy 91nA ^h

Re
(.•8)

l

f

f	 r

1

^:	 fr
r

E

f

Specialising this for two-dimensional flow and expanding the first

and the last term in the right-hand aide, one obtain:

—v.cv.^v .—a cu au •^ a2) — a ( u a •^a")ay	 ay	 ax	 ay

- (u Ry + a
au 

+ (ay) 2 + V LZ)

ay

z
- (u axi + ax . ar +

s

(a

z

' " 3XJY)

Further, noting that.

(A.4)
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i.

r.
r

r

{r
r^	 r^

1
is

^z

f_

r

au.s'ax'By

Equation (A.0 reduces to the following fors

.0 .#
a(V.V)V = -(u	 + v ay + uX * v? + 2v x uy )	 (A. 10)

Equation (A.10)can be further reduced to

♦♦ ♦ 	 as	 as	 2 41	 .01

- V.(V.bf _ -(U -g + v - + g + 2VvxVu.k)

_ - lv.(V R) + 2VvxVu.k) 	 (A.11)

Simi lar ly 9

V.(1 Vt ) =
a (1 (a (2U au -2ND) + a (u au +u v )))IT	 57.p ^	 ax 3	 ^ ay	 ax

+ !— (! (a ay (0 (ax (Pau ay + u ax ) + ay (2u ay - 3µs)})	 (A.12)

By separating the right-hand side into two terms, similar to what

has been done in the vorticity transport equation, one u btains

V.(pV.t) 
a 

C 1 + C 2
	 (A.13)

where
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C 1 3 r 920 - (^ N2 VP.VB + N2 (VPxVW).k 	 %A.14)

P	 A

C2 • (3 P) 
0.0
 VP 

+ -S 
(WRVP) . k - (3 P) SV2 µ

* (p) (ux xx)+ vY 
u YY + (vx + uY)Pxy

-
x 

+ uy ) ( Px . Py + Py . x) + (3) A2 VP. Vu

P 2	 x x Px Py	 Y y

Neglecting the tore C2 , for the reasons mentioned before in (1), the

dilatation transport equation is written as follows

• - MOO) 
+ (3.Rep) p

2
0 + X(W,s,p,h)	 (A.16)

X • X1+X2+X3

X 1 • -2 X x yu).k

X 2' P 
2 

Re 1- 3 VP •^B + (^p x W) . k j

X3 • - (Y71) (V 2h + hV2 1np + %. V1np)



+-0

PBe.P - V . q • P (—Re)( k V 2h + Vh.4k)	 (A.21)
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(3) The tnern transport Equation

gain& the equation of state (2.4) in the energy equation ( 2.3) 9 one

obtain@ the following

t • 0A - (Y-WOh - P V.q + Y (VV :t')	 (A.17)

Equation (A.17) can be written in dimensionless form as follows

n
• V.Vh - (

Y-08h - P Be ier V' q + p^Be (VV:t)	 (A.18)

Expanding the conductive and dissapative terms in equation (A.18)

one gets the following expressions

I

i

i	 and

Y	 D a s Y	 1 a	
(-k. ah )	 (A.19)PBe.Pr	 P Re.Pr axj	 1

Y 1 -++^	 Y	 au'
F ne (VV:T) = p . —Re . (T ij ax	 (A.20)

Specializing these two equations for two-dimensional flow, they

(	 reduce to:
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x

OVtt ' PP R (3 8
2+W + 4(Dv x Du).k)	 (A.22)

iNeglecting the thermal conductivity variation term and placing

t	
equation (A.21) and (A.22) into equation (A.18) one gets;

ac -D.h) + Re
Yk
.Pr 

72  + 3(W,P:S,h)
	

(A.23)

1	 where

@. @1 +@2

@ 1 = ( 2 -Y)Oh

@2 
s p

ee 3 	
+ W2 + 4(Vv x D u).k^

(4) The Density Equation

The continuity equation (2.2) can be written as follows.

1 8P+ D. V + V . DP - 0P at	 a :w.24)

Further, noting that

-I-+
s = D.V

thus equati0n'(A.24) becomes,
f ^-

t
r

f

4-



SS

FI

{
r.r

alga

it
(A.2S)

In conservative fors;, equation (A.25)'can be written as follows

.	 8 lop,^— s
-p V P + r. ( In )

where

r • 8(1nP-1)

•(A.2b)
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APPENDIX E

TUNSFORMTION RELATIONS

The transformation relations used in the derivation of the kinetic

transport equations are given here. The following expressions relate the

mathematical operatia^e done in the physical plane, ph, with those that

performed in the transformed plane, T.

(Vf. VS)	 1 ( V:. 9g)
ph.	 H2	 T

(VfxVg)	 = 1 ( Vf x Q^)
ph.	

H2	
T

(V2 f )	 = 1 (V2 f )
Ph.	 H2	 T

(v. (4))	 1 ( D. ( ff) )
ph.	 H2	 T

Where,

(i) 8 is the transformation scale f.4ctor

(ii) f and g are scalar functions which are invar isnt with the

trans f ormat ion.

f.
f.
I
I
I
I
I
I (b.l)

(3.2)

(a.3)

(BAY



r
r

I^
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^Y
S

(iii) Vph is the velocity vector in the physical plane, while V T isr.
the apparent velocity vector in the transformed plane and its

1	
components (Ve , Vr ) are given by equations ( 2-27) and ( 2-28).

The components of the velocity vector V in the physical plane (u,v)
•

are related to the velocity components (Ve ,Vr )as follows:

U ' ^2 (-ve a 4-r Vr de)	 (s.$)

v - R2 
(vr d ' r ve d6) •	

(3.6)

where y and x are the Cartesian coordinates in the physical plane. The

transformed quantities can be expanded in polar coordinates (s-9) as

follows:

2

' 8s
( 0f. Vg

)T [(_L)

rc To	 + r 2 'M ' X91	
(D.7)

i	
1	 of U - of a^ )(0f x ^) ' r r-c (8 s a s ae aA	 (D.8)

T

(V2 f) • (

_.L)2

  
a2, 

+ ( 1	 - ( 
1 ) 2 of + 1 a"f	 (D.9)

T	 r-c as 	 r r-c	 r-c	 r oe2

where a is the stretched radial coordinate in the transformed polar plane

and is gives by;

i

Y

7

^yy

i`

r =es +c
	

(s.lo)
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r	 APPENDIX C
K(6,"
r̀,	 f
a

EVALUATION OF INTEGRALS IN EQUATIONS (4.3) - (4.5)

^•	 The integrals that need to be ev4luated are

CJs W 1 r Cos (e0-0)J
lm = r02 2 	 d c

o r° + r -2r
0
r cos(e o-e)

sin m8 
Iro

cos(e -e) -r 1o 	 0
Jm 

r° o	
r2+r2-2r r cos(9 -e)	

de0

0	 0	 0

	

n cos 
moo

	 -6)
= 2	 0	 0

Im r0 o
	 r2

0 
+r2-2r r cos (e -e)	

d 6

0	 0

J r2 2 a
sin m 

o 
9in(00 d)	

d
+rm	 o o	 ro2-2ror cos(60 0) °

(C.1)

(C.2)

(C.3)

(C.4)

where 0 < m < N. If the following complex variables are definedg	 sP 	 a

F

and

l:

W = I + i J
m m	 m

Wm = Im + 1 a

i9
zo = e ° = cos eo + i sin 0o

(C -5)

(C.6)

(C.7)

Z = eie = cos 8 + i sine
	

(C.8)
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where i	 The quantities V and	 could be reexpressed as follows
a %

after the variable transformation from e, e
o 

to a t so

1	
z 
U-1	

(z 2 + 22 )- 
2rasW a

	 2ii	
[ro 0	 r -j dz 

0	 (C.9)f	 r( to - 7 2)(20 - 
r 
0 Z)

0

r fzo M-1 
(z 2-Z 

2 )

W	 -2	
0	

dz	 (C.10)
a 2r	 r	 0

(zo	 Z) (z - -2 Z)

	

r	 0 r0

By using of residue theorem, the integrals in equations (C.9) and (C.10)

are evaluated explicitly and the results are

(1) for r < r
0

W 0
0

W	 z
a	 r

0

W n 0
0

.%.	 M
W	 in
a	 r

0

(2) for r>.r:
0

r
W	 2w(-2)

0	 r
r m+l

W	 (-2)	 z2	 r

W 0
0

r m+l
W	 i (-!)	 za	 r

(C. I I)

(C. 12)

(C. 13)

(C. 14)

(C. 15)

(C. 16)

(C. 17)

(C. I a)
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where 1 < m < N. The values of I® , Jm , Im, Jm's could be determined easilyi

by equations (C.S) and (C.6). Thus

r (1)	 for	 r < ros
1.

- I = 0

1. 0 m-1
Im = W(= ,	 cos m e

0

I: J.o
0

M-1

m
tt(r )	 sin me

ii o

10 

Im = - W  )	 sin me
o

J = 0
0

,r
Jm

m-1
rt(= )	 cos m e

0

I(2) for	 r> ros
r

I. r	 m+l
ccs so7)

^. Jo =0

r	 m+l
Jm = - rt (ro )	 sin m

I 0
o

r	 m+l
Im = - n(sin me=2)

Jo =0

r	 m+l
Jm = n (r—°)	 cos m8

ti

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.2S)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C. 34)
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The integrals that need to be evaluated in kinetics are

I cos so Cr - r cos ^ -
01

In = 
ro	

2	 2 o	
O	

d o	 (C. 35)

	

o	 r0 4 r - 2r 
o
rcos(Ao A)

it sin so r - r Cos (0 - (11
J	 r	

o L o	 o	
dA (C.36)

m	 ° o	 ra + r2 - 2r 
o
rcos (Ao A) °

/'2 n cos me sin(A -A )

Im 
= ror J
	 2	 2	 o	

do 	 (C.37)

	

o	 r0 + r - 2r 
o
rcos (A 

c 
A)

271 sin uO sin(e-6)
14, = r r f	 °	 °	 -- dA	 (C.38)
m	 o o
	 ro + r2-2ror cos(Ao A)	 °

also the complex quantities are

W	 I + i J
m m	 m

1 ti	 N
m = Im + i Jm 	(C.40)

Following the same procedure as in kinematics, the following expressions

are obtained

W = 1	
zO0-1 Cr(ao + 22)

m 2ir	
L

'	 (LO - = L
0

- 2rOSOCi 
d
	

(C.41)

)(ao - =o s) 
Eo
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r

	

_-	
C

r

	

}	 j

	

Y	 ^.

r-

1.

t.

f	

i
i.

S

7

'W 1 °r 1 ( s° s2) ------- ds
m 2	 r	 o

(so - = s)(so - =0 s)
0

and the final results are

(1)	 for	 r < rot

Io =2w

Im = e(= )° 	 Cos m 8

0
J = 0
0

= w (_ )m sin m
0

I' 0
0

I° _ - w( 	 ° sin me-)
0

Jo =0

= n(= )° sin so
0

(2)	 for	 r > r0

I = 0
0

r	 m

(r 00 )	 Cos m8

Jo =0

Jm
r m

=	 -n (r0)	 sin m8

I = 0
0

r	 n

-w ( r-0 )	 sin m8

Jo =0

in

r m

= W(=0)	 Cos m8

Where I< m < K.

(P.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)

(C.5S)

(C.56)

(C.57)

(C.58)



30where I, I, J, J are those quantities defined in Section ( i), Appendix R.

LFrost equations (C.11) - (C.34)

t

t.

f:

f.

N	 s n+1	 r 6y1

yr • - T	 2 [a n(ro)
	

sin no - Sn(i) cos nO dro
o nn 1

I r1 N[	 n-1	 r n-I
- ? J	

acn (
r
_ )	 sin no - ^(_ )	 cos n0 dro

r n• 1	 0	 0

N

+ 2 E [on(&' ) r
n-1 cos no 4 to (1) rn-1 sin n 9l

n•1

N
+ 2 

1 [Pn(1) rn-1 sin n9- qn(1) rn-1 cos n9 	 (D.2)
n•1 

^"	 APPElIDIX D

f
DERIVATION OF RELATIONSUPS BETWEEN PWRIER CORFFICICPTS

The following expression for yr is obtained alter substituting

eguations(4.6, 4.8 ) into equation (4.3)

yr • 2w f,[  ao io +. (%In + s n.1ndr0
 n•1 J

N
+ 2wp so (1) I0 + z ( an(1) In + en(1) Jn)

n•1

1
N

- 2 ,s [po(1,, Io + 2 (pn(1) In + qn(1) Jn )	 (D.1)
n• 1

If yr is also expanded in Fourier series (as :n equatiob 4.6)), the

r	 corresponding Fourier coefficients are related by

t.
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,, 1

t
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a  a O

( ls)

1	 r °•l	 a-1

'n ' 2 
o 

S n(=°)	 dro •	 Sn(r )	 dro
r	 o

Z n(1) rn-1 _ 1•	 a	 3 qn(1) ra-1	
(16)

r
to 
a 2 f a ( 0)n+ dr - I	

r n-I
o n r	 o 2 a n (s )	 dr

r	 °	 o

• 2 tr(1) 
rn-1 • Z P.0) rn-1	

(17)

(	 where I c n c N. Similarly, the expression for v  from equation ;$.q)

^f

1

which is

f.

	

1	 x

	

ve' 2 	 [ao I°+ Z (a i
O	 Gal	 n n

1	 r
+ s [so (1) I° + 2	(an(1)

awl

1	 „
+ 2-x Cpo ( 1) Io + Z (pn(1)

nal

+ sn Jn )] dro

In • tn (1) in)]

In + Q.(1) J.)] (D.3)

v8 2
/'r	 N	 r

,/	 [on (r )n!I

a+1
Cos no • 0n (= )a+l Sin no]dr

_ 1

2

I1 N	 n-1

fCan(= )
n-1

COs no • s(r )	 sin n6]dror awl	 O
n

O

- Z C'^nQ ) rn I Sin no - tA (1) rn-1 COs no]n•1

I
* z

DnEICPn ( 1) !^-1 cos no + qn (1) rn-1 sin no] 	 (D.a)

I

r

M.-
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W = - 2n	 CF+°I0 + 2 Qn In + nnJn)] dro
o	 n=1

Re	
E

- 2w o [Polo + p 1 u n In + nJn)] dro

+ 2n Efo(1) Io + 2; ( fn(1)In + gn(1)Jn)]
A=1

	

1
r	 p

+ 2 "`o(1)Io + Y. (Cl n(1)In + 0n(1)Jn):
A=1

(D.5)

B
h = fo + I ( fn cos n 9 + gn sin n 9 )

n=1
(D.6)

U	 Expanding ve in Fourier series as in equation ( 4.7) the corresponding

r	 coefficients are related by equations (4.12)-(4.14).
1.

By expanding wv r , wve in equations (4.18) anc i (4.19) equation (4.5) could

be expressed as

^f

'I

'I

Iwhere I, I, J, J ' s are those quantities defined in Section (ii) Appendix

C, and f0 , fn , gn ' s are the Fourier coefficients of the total pressure.

By the results of equations (C.43)-(C.58), equation (D.S) becomes

{

r
{ 1.

f:

L:

L

r N r n

	

W = 2
e 1	 (_°) t(F,n-fin) cos no + (nn + u n )sin nA dro

o n=1

1	 N	 n
- 
2e 1 2 + I (r) L (Cn + n )cos no

	r 	 n=1 0

+ (nn - Mn) sin no] dro

B

+ T- I [ %(1) r" sin a 6 + gn(1) rn cos n8
n=1

C _Z
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96	 j

N
+	 ` + 1 01 n(1) rn cos no + 0 n(1) rn sin no	 (D.7)

n=1

Thus, in using the Fourier series expansion for w (equation 4.8 ), the

corresponding coefficients are related by

a° = a°(1) - Re / &° dr°	 (21)
r

an = 2
e f (Cn - n)(=°)n dro - 2e
	

(F,h + ;n)(= )a dro
o	 r	 o

+ 
2
e g

n(1) rn + 2 an (1) rn 	(D.8)

r n	 1	 a

2e	 (nn + u )(_°) dro + 2e f (un - %) (I-) dr°
o	 r	 o

Re f
n(1) r° + 2 a n( 1) rn 	(D.9)-

where 1 < n < N. Equations (D.8) and (L.9) are equivalent to equations

(4A0and (4.17) respectively , where the terns gn(1) and fn(1) are cancelled

by applying the equations (D.8) and (D.9) on the boundary.

P
i

5

I

C
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APPENDIX E

THE INTEGRAL REPRESENTATIONS FOR A DOUBLY -CONNECTED REGION

The boundary integrals in equations (4.3)and (4.4)consist of two

parts, B 1 and B2

is 
1 - 2	

(E.1)
 i

At the interior boundary B2 , the velocity components are assumed to

be known. The Fourier coefficients of the velocities at B 2 are zero except

Po
 (R), which is the magnitude of the circumferential velocity at r-R due to

the solid rotation.

The equations W-1) for the velocity 
v  needs to be rewritten to

include the B2 effect:

1

v = 1 Ca oIo
N

+	 2: (anln + BnJn )^ dro
r	 2+r	 R n=1

+ ?n [so ( 1) Io
N

+ I (a(1) In + t(1) J)3
n=1

n n	 n

I- Z,R Cso(R) 1 

N
+	 Y. ( an (R) In + tn(R) Jn)^

n=1

1
- 2n LPo ( 1) Io

N
+ E ( pn (1) In + qn(1) T O

n=1

1
+ 2n 1po (R) Io

N
+ E ( pn(R) In + %, R)Jn A	 (6.2)

n=1

where so (R), po (R), sn (R), tn (R), pn(R), qn(R) are the Fourier coefficients



1

I^,r

f.
f.
f
f
f
f
f.
f
f
f

f.
f.
C

of the velocities at r=R. Thus

aO= 0

1	 r n+l

sn = 2 R o n (70) 	 dro +	 s n (= )n-1 dro

r	 o

+ 2 n

	

e	 n-1(1) rn-1 _ %(1) r

1	 r	 r n+1
to =- 2 f a (=o) d

	

n	 - 2	
a-1

	

R	
ro	 a n(r )	 dro

	r 	 o

	

+ 2 n	 +t(1) rn-1 2 Pn(1) rn-1

where 1 < n < N. Similarly, the velocity v. is reexpressed ass

1	 N
ve 

= 2n lotl0o 
+ 

n 1 (an I
n +0 nid ] 

dro

	

+ 2u [so (1) Io +	 (sn(l) In + tn (1) Jn A
nn 1

1N
2R [so (R) IO 

+ n 
1 (sn (R) In + tn (R) Jn)^

1 	 N
+ 2 ►̂ Po (1) Io + nEl ( Pn (1) In + qn (1) Ja )]

N
2n [po (R) Io + . (pn (R) In + %(R) Jn)^

n=1

(15)

(8.3)

(8.4)

(E.S)

By using equations (4.7)and (C.17) the following relations are
obtained
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f

r' po=	 ao (r°O) dro + = po(t) (E.6)

r	 r	 n+l
pn = 2	 an (r°)	 dro

 - ?	 an(	 )n-1

^rl	 o

dro

t

1.
r

+ Z tn(1) rn-1 + ? pn ( 1) r -1 (E.7)

r	 n+1	 n-1
%	 Z ,^ Sn(r°O )	 dro - 2 ^ Rn(r )	 dro

!i R	 ro

- 2 sn(1) rn-1 + 2 %M rn-1 (E.8)

where 1 < n < N.

1 The equation (D.S) becomes

1.
W = - 

Rer1	 N
3 	 +	 Y. (Ervin + nnJn )	 dro

2 n	 oio
R	 n=1

- 2e f 1 (uolo +
	 (unln +^	 dronJn )^

R	 n=1

N
+	 Ifo(1) Io +	 (fn(1) In + gn(1) id]

i
n=1

N
- 2v [fo(R) io +	 E ( fn(R) in + gn(R) Jn)^

n=1

r
1.

N
+(ao(1) io +	 I	 (an(1) in + Sn(1) Jn)l

a=1

l	 N

2T Ia
o(R) Io +	 E	 (an(R) In + OJ in (1.9)

a=1 i

is	 l:

C I
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r
' where fo(R),	 fn (R) and gn(R) are the Fourier coefficients of the total

pressure at r•R.	 By using the equations (C.43)-(C.58)s

rr 	 11	 r	 n
E	 )cos no + (nn + NnW	 e J	 (_°)	 [(rn - ^ n2 )sin nA]dr

` R	 n•l
o

1 !i
- Re f )(2	 + E (r )n [(	 +	 )cos nA + h -N )sin n8ldr;h2	 r

a	 s
1	 n• 1 ro	 n o

r.
+ 12- E [- f ( Or"sin n8 + an(l) rn cos no]n

n•l
3

N
- 2e Y

n
[- fn (R)(i)n sin no + gn(R)(=)	 cosn A] (B.10)

1

n•l

t	 {.

f

t

r:

I
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