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The techniques which are the su`iject of this report were developed to support

the Agriculture and Resources Inventory Surveys Through Aerospace Remote

Sensing program. Under Contract NAS 9-15800, Dr. C. B. Chittineni, a
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Inc., performed this research for the Earth Observations Division, Space and
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1. INTRODUCTION

Recently, considerable interest has been shown in developing techniques for

the classification of imagery data such as remote sensing data obtained using

the multispectral scanner (MSS) on board the Landsat for inventorying natural

resources, monitoring crop conditions, detecting mineral and oil deposits,

etc. Usually, the inherent classes in the data are multimodal, and non-
supervised classification or clustering techniques (refs. 1-3) have been found

to be effective (refs. 4, 5) in the classification of imagery data. Cluster-

ing the data partitions the image into its inherent modes or clusters.

Labeling the clusters is one of the crucial problems in the application of

clustering techniques for the classification of imagery data.

Cluster labeling is similar to the prohlem of labeling the regions obtained by

using segmentation algorithms in the development of scene understanding sys-
tems. The recent literature shows considerable interest in the use of relaxa-

tion labeling algorithms for labeling the segmented regions (refs. 6-8).

These algorithms use relational properties of the regions through compatibil-

ity coefficients. In cluster labeling, the relational properties of th--

clusters are either not available or not meaningful. For example, in aero-

space agricultural imagery, the regions of interest are crops, nonagricultural

areas, etc. These can be anywhere in the image. Hence, it is not meaningful

to define relational properties for the clusters.

Most of the imagery data contain much spatial information, and several

researchers (refs. 9-12) have attempted to use spatial information in the

classification of imagery data.

This paper documents an investigation of the problem of labeling the clusters

using spectral and spatial information. It is assumed that the probability

density functions and a priori probabilities of the clusters or modes are

given. Let these respectively be p(Xlsl = i) and 5 i ; i	 1,2,---,m, where

m is the number of modes or clusters. It is also assumed that a set of

labeled patterns X i (j) with labels wi (j) = i and their neighboring patterns

1-1



Yi (j)(k = 1,2, • ••,I O = 1,2,•• • ,N i and i - 1,2,•*-,C) are given, where. C is

the number of classes.

In remote sensing, the labels for the patterns are provided ► y an analyst

interpreter (AI), who examines imagery films and uses other data such as

historic information and crop calendar models. Very often the Al labels are

imperfect. 'Recently, Chittineni (refs. 13-15) investigated techniques for the

estimation of probabilities of label iwNperfections using imperfectly labeled

and unlabeled patterns. It is assumed that the probabilities of label

imperfections are available. Methods are developed in the paper for obtain-

ing probabilities of class labels for the clusters using all the available

information.

This paper is organized as follows. In section 2 0 a relationship is developed

between class conditional densities and cluster conditional densities in terms

of probabilities of class labels for the clusters. Section 3 concerns the

problem of obtaining probabilities of class labels for the clusters without

using spatial information. Expressions are presented in section 4 for updat-

ing the a posteriori probabilities of the classes of a pixel using spectral

and spatial information from its neighborhood. Section 5 deals with the

problem of obtaining probabilities of class labels for the clusters using

spectral and spatial information. Imperfections in the labels of the given

pattern set are considered in section 6. Section 7 contains the experimental

results in the processing of remotely sensed imagery data, and the concluding

remarks are given in section 8. In Appendix A, the problem of obtaining the

probabilities of class labels for the clusters using information from a given

set of labeled fields is considered. Contextual cluster labeling with the

probability of correct labeling as a criterion is treated in Appendix B. 	 9
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2. A RELATIONSHIP BETWEEN CLUSTER AND CLASS CONDITIONAL DENSITIES

In this section, a relationship is developed between clu,ter and class con-

ditional densities. In general, the class conditional density functions are

multimodal. Let C be the number of classes and m be the number of clusters.

Let p(Xiw = i) be the class conditional densities and p(XIn - i) be the mode

cluster conditional densities. Let P(w = i) and P(n - i) be the a priori

probability of class i and the a priori probability of cluster i,

respectively. The mixture density p(X) can be written in terms of class

conditional densities as

p(X) = ^ P(w = i )P( X I w = i)	 (1)
i=1

The mixture density p(X) can also be written in terms of mode conditional

densities as

m

p ( X ) - L P(st = R)P(XIn = 0
k=1

M	 C

p(Xin . X)	 P( n = k,w = i)
R=1	 i=1

C	 m
P(w = i) F P(n	 RIw = i)p(XIn = X)	 (2)

i = 1 	 k=1

The Following assumption is made from comparing equations (1) and (2).

M
p(XIw = i) _ L P(n = R I w	 i) p(XIn = R)	 (3)

x=1

Equation (3) can be rewritten as

m
p(w = iIX) = E aei p(a = RIX)	 (4)

where a, i = P(w = iI n = 0 and is the probability that the label of mode x is
class i. The probabilities a ki satisfy the constraints given in equation (5).



aRi > q
	 i	 1,2,...,C and P, - 1,2,...,m

C	 (^)

^=1
°tRi ^ 

1	 ^ R x 1, 2, •••,m

Equation (3) provides a relationship between class and cluster conditional

densities in terms of probabilities of class labels for the clusters,

2-2
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0 
3. MAXIMUM LIKELIHOOD PROBABILISTIC CLUSTER LABELING

This section concerns the problem of obtaining the probabilities a4i 
(the

probabilities of class labels for the clusters). It is assumed that we are

given a set of labeled patterns X i (j) with class labels wi (j) a i

j = 1,2, •.. ,N i and i = 1,2, •• -,C. It is also assume4l, that the a priori proba-

bilities of the modes or clusters and mode conditional densities are given.

Let S i and p(Xlst = i) be the mode a priori probabilities and mode conditional

densities, respectively. The criterion used in obtaining the probabilistic

description of class labels for the clusters is the likelihood function. The

likelihood of an occurrence of patterns X i (j) with their labels

w i (j) = i is given by

r	 Ni

L _ ri 11 pCXi ( j) ► wi (j) 
= i]	 (6)

^-1 =1

C Ni
Since n n p[X i (j)] is independent of w i (j), for mathematical simplicity,

i=1 j=1
dividing the above equation by it yields

L NC	 Ni PCX ,( j )' wi( j ) = i]	

(7)
1 in j=1	 p i

Noting that the logarithm is a monotonic function of its argument and taking

the logarithm of L 1 of equation (7) and using equation (4) yield the

following.
F

C	 Ni
	

m

IL

	 L . = log(L 1 )	 E E logE1 a'ti pD, = z l x i ( j )]	 (8)

The probabilities 
ati 

satisfy the constraints given in equation (5). Closed-

form solutions for 
aRi 

by maximizing L of equation (8), subject to the con-

straints of equation (5), seem to be difficult to obtain 	 The probabilities

az1 can easily be obtained using optimization techniques such as the Davidon-

Fletcher-Powell procedure (refs. 16-18).

31
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3.1 A FIXED-POINT ITERATION aCHEME FOR OPTIMAL anti

The following fixed-point iteration equation (similar to maximum likelihood

equations in parametric clustering in reference 3) for the solution of the

above optimization problem can easily be obtained by introducing Lagrangian

multipliers. That is:

Ni

Ed
am =

(9)

	

F	 d Ri j
i=l j=1

where	
dti j W maRip L st - R X i (,I)3	 (10)

sLOISI PEn slx i (j)7

However, closed-form solutions for aki caA be obtained with the criterion

as the maximization of a lower bound on L, and they are given in the next

section.

3.2 CLOSED-FORM SOLUTIONS FOR THE PROBABILITIES a,i

Since the logarithm is a convex upward function, we have the inequality

IC
log	 ai g i (X) >	 ai 1 o gc gi (X ) a	 (11)

Ix 	 i=1

C
where	 ai	 1

i =1	
t

(12)
and	 ai > 0 s 1	 1,2,•••,C

Using the inequality of equation (11) in equation (8), a lower bound on the

log likelihood function L can be obtained as

N

L >	 F F, j p[Q = X1X 0)1log(a .)1	 (13)
=1 j=1 1=1	

^^ I
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With the introduction of the Lagrangian multipliers, the probabilities

Oki that maximize the lower bound of equation (13), subject to the con-

straints of equation (5), can be obtained as follows.

	

Nî iR	 (14)

LNrerR

N1

where	 eiR ' N F P[n = RIX i (J)]	 (15)

This solution simply states that the probability of the i th class label for a

given cluster 9 is the ratio of the sum of the a posteriori probabilities of

cluster ^ given the labeled patterns from class i to the sum over all classes

of the sum of a posteriori probabilities of cluster R given the labeled pat-

terns from each class. Having obtained ati , qi (the proportion of class i)

can be estimated as follows.

q i =p(W=i)

m	 m
- E A(w = i'n	 kaRi	 (16)

R-1	 k^l

Hence, q i (the estimate of q i ) can be computed from the following.

m

qi	 6.,01R1	 (17)

a
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4. UPDATING A POSTERIORI PROBABILITIES OF THE CLASSES OF

A PIXEL USING INFORMATION FROM ITS NEIGHBORHOOD

The last section covered the prob,em of estimating the probabilities 
axi 

(the

probabilities of class labels for the clusters) using information from a given

set of labeled patterns. The probabilities 
a,i 

are seen to be functions of

p[w i (j) = ilX i (j)];the a posteriori probabilities of the classes and spatial

information is not used in obtaining a0 f Most of the natural imagery is

abundant in spatial information and can be used to obtain better estimates

for aRi . In this section, expressions are developed for updating the a

posteriori probabilities of the classes of a picture element (pixel) using

information from its local neighborhood. These expressions are used in

section 5 to obtain the probabilitie, of class labels for the clust .?rs using

both the spectral and spatial information.

Let the pixel under consideration be pixel 0. Its four neighbors in a two-

dimensional local neighborhood are shown in figure 1.

Y1 (j)

1

Y4 (j) Xi (j) Y^(j)
4' wi ( J ) 2

0

Y3 (j)

3

^	 1	 I

Figure T. Four neighbors of a pixel b.
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The following a posteriori probabilities of the classes of a pixel 0 are

obtained by using information from its local neighborhood.

P
 [

w	 k X	 ^1	 Y4	 _ P Wi(,l) = k X i(J)# y (J),...,Y4(J),

i (,J) =	 i (J) > i (P ,... 9 
i 
(j )^ -	 --°--^

P[X i (J), Y i (J),..., Y i 
(a)]

The denominator of equation (18) can be written as

P[Xi(J),Yi0),••• O Y4 (J), = E

C 

P [Wi(a) = k, Xic^), Y^(a)9•••, Y4( j)]

Similarly, from the numerator of equation (18), we obtain

P[w i(,)) = k,Xi(j),Yi(j) ► -•-,Y40

... F P[w^(J) = k,X i (J),wi(J) = k 1 .Y10),...,^,^4(9) = k4'O(jI
k i =1	 k4=1 L 

C
k C ... 

k 

C

C P[Xi(j),Y^(J),•:- •,Y4(j)jwj(j) _ k ,wl(,l) = kl,..., w4( i) 
= k4]

	

1	 4

P i
LL
w j(J) = k,w10) = ki,...,w4(j) = k4

where C is the number of classes.

In the following, it is assumed (a) that the probability density function of a

pattern, given its label, is independent of other patterns and their labels

and (b) that the labels of the patterns are independent of the labels of their

nonneighbors. In the following analysis, the pixels having a common side are

considered as neighbors. (For example, in figure 1, pixels 0 and 1 are

neighbors, whereas pixels 1 and 2 are nonneighbors.) By repeatedly using

assumption (a), the following is obtained.

4-2
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ti
r

P [Xi(j),yi(j)I...,y4(j)lwi(j) = k,wi(j)	 k1,...,w4(j) = k4]

= P[X i (j) l w i (j) = k, y ^ ( j ),w^ ( j ) = k 1 , ... ,y4(j),w4(j) = k4]

P[y(j),...,y4(j)Iwi(j) = k , w^( j ) = k1,...,w4(j)]= k4

- p [X i (j) Iwi ( j ) - k]p[y ^ ( j ),...,y4(j) I wi ( j ) - k,wl( j ) = kl,...,w4(j)	 k4]

4
-	 - p [X i ( j ) I w i ( j ) = Q n P[y ^( j )I w i( j ) - k R ]l	 (21)

By repeatedly using assumption (b), the second term in the summations of

equation (20) can be written as follows.

P[w i ( j ) = ko ( j ) = kl,...,w4(j) = k4]

= P[w i ( j ) = QP[w^ ( j )  = k l , 00. ,w4(j) = k4lwi ( j ) = k]

= P[w i (J) = k]P [wl(j) = k ll w i( j ) = k a w2(j) = k 2 ,...,w4 0) = k4]

+O) = k2,...,w40)	 k4lwi ( j ) = k]

4
P[w i ( j ) = Q	 + ^(j) = Q wi( j ) = k]	 (22)

R=1 

4-3



Using equations (21) and (22) in equation (20) results in

PCw i (J) = k,X i ( j ),Y; (J), ••• ,Y '(3)1

C	 C

= P[w i (J) = kl p [X i (J)l wi (j)	
Q kEl ... kLl

JP w^(J) = kR w i (J) " k p[Y^(J)Iw^(J) = kR
X=1	 `-

= P[w i (J) = k1 p[X i (J)1 w i (J) = Q

4	 C

11	 E P w 1 	= k^I w i (J) = k P Y ^(^)^ w 1	 = k R 	(23)

R-1 k -, C	 J [	 JI

From equations (18), (15), and (23), we obtain

P[w j (J) = kjXi(J)•Y^(J)....,0(J)]

k w.	 = k
p [w i(i) = kIX•(,i)	 11	

PRO) =	
(J)

RI ,(J) 	
P wf	 = k YR)l1	 t	

^ k=1 k^=1	 wR(J) = k R	 ` ^	 R
(j

P , ^	 J

PCw i ( j ) = kjX j ( j )^ n	

P w (J) =Rk^^wi(J)	
k Pp(,l) = k YR (k 	 ^I ,.i)^

k = 1	 PC=1 k R=1	 w^(j) = k
t

(24)

In equation (24), the spectral and spatial information from the neighborhood

of a pixel is used in obtaining the a posteriori probabilities of its classes.
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5. PROBABILISTIC CLUSTER LABELING WITH SPECTRAL AND SPATIAL INFORMATION

This section covers the problem of obtaining the probabilities axi (the

probabilities of class labels for the clusters) using spectral and spatial

information. It is assumed that we are given a set of labeled patterns

X i (j) with labels w i (j) = i and their neighbors Y (j), R = 1,2, ••• ,4, as

shown in figure 1. For j = 1,2, • • • , Ni and, i = 1,2, ••• ,C, the likelihood

of occurrence of patterns Xi(j) with labels wi (j) = i and with

Yi(j), R = 1,2,•••,4, as their neighbors is given as

C	 Ni
L' nn P[X i ( j ) ' wi ( j ) = i'Y;(j),...,Y4(j)'	 (25)

i =1 j=1

From equations (24) and (25), the log likelihood function can be written as

C	 Ni
L = E E log{ 

p[wi ( j ) = i IX i (j)])
i=1 j=1

C N i 4	 C	 P WRo) = i Iw

tix

(j) = i
+	 v log	 PP (J) = i ' I Y (j)l 	 R R

i=1 j=1 R=1	 iR=1	 P wi (j) =

(26)

Using equation (4) in equation (26) yields

C N i 	 m
L = E E log Fl a 	 = rlXi(j)l

i=1 j=1	 r=1

C	 N i 4	 CP P ( j ) = ielwi( j) = i]	 m
to	 ar

i 
L1 = r Y i+^ ^ ^ g i

	 (j) - i^l 	P w	 ^	 RP	 I (J

(27)

5-1

if



Closed-form solutions for the probabilities a ri that maximize L of

equation (27), subject to the constraints of equation (5), seem to be diffi-

cult. Optimization methods (refs. 16-18) such as the Davidon-Fletcher-Powell

procedure can easily be used to obtain probabilities a ri that maximize L of

equation (27), subject to the constraints of equation (5). By introducing

Lagrangian multipliers, the following fixed-point iteration equation for the

solution of the above optimization problem can easily be obtained. That is,

N i	 p[a = rlXi(j)]

	

ari F m	 _	 ^ ari
asi p[s1 - slx i (j)]1 

ari 
w C	 i	 p[sl = r)Xi(j)J

ari 	 m	 + ari

F asipla = slXi(j)7
s=1 (28)

where

F	 4
ari	

k = 1 j=1	 1

P [wk(j) = i l wk( j ) = k

P wx ( j =	
p[Q = rl Y k

R(j )]
L	 )

	

wk(j) = ' R wk(J)	 k	 m asi p sa = sl yslk(J)]
=1 

P	

P w (j) = i	 s=1	 R[
k	 I k	 k

(29)

If the spatial information is not used (that is, when ari = 0), it is easily

seen that equation (28) becomes identical to equation (9). 0



6. CLUSTER LABELING WHEN THE LABELS OF THE

GIVEN PATTERN SET ARE IMPERFECT

In practice, such as in the classification of remotely sensed, MSS imagery

data, it is difficult and expensive to obtain labels for the training pat-

terns. The labels for the patterns are usually provided by an AI who examines

imagery films and uses some other information. (For example, in labeling

pixels of remote sensing agricultural imagery, the information that is most

often used is historic information, crop growth stage models, etc.) These

labels are very often imperfect. Recently, there has been considerable

interest (refs. 13-15) in estimating the probabilities of label imperfections

and using these estimates to obtain the improved classification and to

identify mislabeled patterns with a specified degree of confidence. This

section pertains to the problem of probabilistic cluster labeling by taking

into acount the imperfections in the labels of the given labeled pattern set.

Let w and w' be the perfect and imperfect labels, respectively, each of which

takes values 1,2,- • -,C. The imperfections in the labels are described by the

probabilities

P(w' = i,w - j )	 (30)

C
where	 Rji - 1	 (31)

i=1 

To obtain a relationship between class conditional densities with and without

imperfections in the labels, consider

C

P( X 1 w ' = i ) = p w 1=
	

P(X,w' = i,w = j)

k

- P w 1= iT 
j=1 P(Xlw' = i,w = j ) p ( w

'
 = i1w = j ) P ( w = j )L 

1	
C

_ 
?7wT f j	

oj i p(w = j ) P (Xiw = j)^
-1

(32)

N



where it is assumed that

p ( X 1W' = 
.i'W 

= j ) = p(X1W - j)	 (33)

Using the Bayes rule, from equation (32), we obtain

p(W' = i1X) = ^ sji p (W = j I X )	 (34)
j=1

In the following, it is assumed that a set of labeled patterns X i (j) with

imperfect labels Wi(j) = i and with the neighbors Yi(j), 004 ,0(j) as shown in

figured for j = 1,2,•--,N i and i = 1,2,-- • ,C is given. It is also assumed

that the probabilities of label imperfections 
Oji 

are available. The probab-

ilities of imperfections in the labels being O ji , the likelihood of the

occurrence of patterns X i (j) with imperfect labels W!(j) = i, Yi(j),•-- ,Yg(j)

being their neighbors is given by the following

N

L' = n ri p k( j ) = i,Xi(j)'Y^(j),..•,Y4(j)^	 (35)
i =1 j=1

Consider

P[w !(j) = k,Xi(j),Y'(j),...,Yi(j)]

s	 ... E
E 	 P 4w i(j) = k,Xi(j),Y!(j),W!(j) = k......yl(j),W4(j) = k

k 1 =1	 k4= 1 	 t	 4^

C	 C	

1k^1 ... k^1 p[X^(J),Y^(.)),...,Y4(l)j^i(j) = k, wi( j ) = k 1 , •• - , W (.1) - k4J
1	 4

P IW i( j ) = k,w^(j) _ !c^,..., w4(j) = k41	
(36)

a
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Given the probabilities of imperfections in the labels and proceeding simi-

larly to equations (21) and (22) while using assumptions (a) and (b) of

section 4, the following can easily be obtained.

p [X i (J), YI (J),...,Yj (J)1w (J) = k,wi (J) = kl,...,w4(J)	 k4]

4

u	 - PCX i (J)I wi(J) = Q 11 + ^ (flj wf (fl  = kx]j
R=1

(37)

and

Prw1 (J) - 
k>w1 

(J) = k l ,...,w (J) - k 41 = PCwit (,J)	 Q
L

4
n P[wq(J) = ke lwt(J) = k]	 (38)
.e=1

4
Since pCX i (J)J 11 p [Yl wl is a constant, dividing equation (35) by it and

R =1	 J
using equations (37) and (38) in equation (35) yields

+!(j)  = k, Xi(J),Yi(J),...,Y w

p CX i (J)J	 p Y11 (j)
R=1

- p Cw !(J) = klXi(J)J
X=1 k l

	

+i(j) = k,IYi(,l),	
p 40)	 k=

x 	 R

p[w ' (J) = k i X i (J)] 4	 C

P w• (J)	 k	
n kE1 p[wi(J) = QYf (j)]vk^i	 (39)

[ 1	
]
	 R

C	 PCwi(j) _ s]	 Rwhere	
vk i = E p si	

— P[wi (j) = k R l wi(J) = s]	 (40)
R	 s=1	 P H O) = k011
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and it is assumed that

Osk 
S P[w! (J) - klw i (j) - s]

= P[Wi(j) = kl Wi( j ) = s'W(j) = k

Since the logarithm is a monotonic function of its argument, taking the loga-

rithm of equation (35), using equation (39) in equation (35), and treating a

priori probabilities of the imperfect labels as constant, the log likelihood

function becomes

C	
N

i
L = E E log `p[W^ ( j ) = i lxi (j)l)

i=1 j=1

C	 Ni 4	 C
+	 log

i ffi1 J=1 9-1	 kR=1
vk i p P( j ) = P,^IY;(j)] (42)

Using equations (4) and (33) in equation (42) yields

Ni	
m	 C

L `	 F l09 E E arsssip[a = rIxi(j)]
i=1 j=1	 r=1 s=1

Ni

+ E E E log 1 E F avk ip[st - rIY^(j)^
	i=1 j=1 k=1	 l r=1 k,= 1	 R R

Optimization methods such as the Davidon-Fletcher-Powell procedure (refs. 16-

18) can easily be used to the obtain optimal a uv that maximizes L, subject to

the constaints of equation (5). Also, fixed-point iteration equations simi`[ar

to equation (28) can easily be derived to obtain the optimal auv by introduc-

ing Lagrangian multipliers and are given in the following.

1	 2 /

	

a	 _	 auv auv 
+ duv /	 (44)u v	

r
r^	 ( 1	 2
Taus aus * dus

(43)
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where

	

1 =	
NiOviPISI = u1Xi(j)1

uv i 1 j=1
F, ( 

m C

	

 

I 
E	

arsosipGsl - rjXi(j)3
r=1 sal.

and	
62 _ C
	 N i 4	 vvipISt = m y (j)]

uv = j=
	 v	 rs^	 vi(j)]^

	

E	 rk k P(, = r)

	

r-1 k R = 1	 R A,

If the spatial information is not used, the fixed-point iteration equa -

tion (44) for obtaining a uv , the probabilities of class labels for the
clusters become the following.

C	 Ni

F L d i jvu
i=1 j= 1

	

auv = C
	

C	 1
E1 F ^ d i j vu

auvovipin = ulxi(j)a
where	

dijvu = C m

E F Ns ssi p[Q = kjXi(j)]
s=1 k=1

(45)

(46)

(47)

(48)
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7. EXPERIMENTAL RESULTS

This section presents some results obtained in the processing of remotely

sensed Landsat MSS imagery data. The objective of the processing is to

estimate the proportion of the class of interest in each image. There are two

classes in the image. (lass 1 is wheat, and class 2 is nonwheat, which is

designated as "other." The class of interest is wheat. The MSS images of

several segments were processed in the following manner. [A segment is a 9-

by 11-kilometer (5- by 6-nautical-mile) area for which the MSS image is

divided into a rectangular array of pixels, 117 rows by 196 columns.] The

image is overlaid with a rectangular grid of 209 grid intersections.

Class labels were given to the pixels corresponding to a subset of 209 grid

intersections by an Al who examined the imagery films and used some other

information such as crop growth stage models and historic information. These

are. imperfect labels. Also, ground-truth labels or true labels of these

pixels are acquired.

The numbers and locations of the segments, the number of pixels labeled, and

the number of features or the number of channels used for each segment are

listed in table 1. Several acquisitions were used for each segment. The

Gaussian mode (cluster) conditional densities and a priori probabilities of

the inherent modes in the data of each segment are obtained using a maximum

likelihood clustering algorithm (refs. 3, 19). The number of clusters

generated for each segment is listed in table 1. The theory developed in

sections 3 and 5 is applied in estimating the probabilities of class labels

for the clusters of each segment using AI-labeled patterns and ground-truth-

labeled patterns, both with and without the use of contextual information.

The proportion of class 1, the class of interest, is estimated for each

segment using equation (17) for all the cases, and,the estimates are listed

in table 1. The proportion of class 1 of each segment based on true [ground

truth (GT)] labels of all the pixels in the segment is listed in the last

column of table 1. In equations (28) and (29), the following a priori and

7-1

19



7-2

^ ^ ^ ^1+ A (") Yi IV Trl
m n o c a e o o cz

4 L

O.• N00 n W n N.•ko . Ip • -W A C¢ ton w n

wvv.	 v
^(	 14 M	 k' q	 N N N b	 N H 8 N	 N B	 fl

0	 0

...
IA

.. o
N
vap

M

M N
n 4

N M Sr 1

4
CO W G^ O O O O Q 4` 6 4^ P

n

^̂ a
r • N n ^ N N O

p
M n n

v°, o c a o a o
Oc o c CD

^ I co
{y^v

tp.
ppp^

M

M m

V O C;w W
M•
Q

•
G

•
O

•
C O

•
O O

•.
O

.
O n̂

w M

g N

^~v Or
N

P,
M n K O b 1f1

K d 7 • b .^-^ Mh h. Q
^

Of
N

to
.^

lVV
M

.el
a0

M
nya.+ w n 4O O O!

N
M.O

M.O C
N
O •O •O •O •C •O n

V
V

p^ H.Nv lG tL5 ti'f of M U'1 ..• iD N

2.°- 'IWO qO N u
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transition probabilities are used, where w 0 is the label of the central pixel

and w h is the label of its neighbor.

	P(wC - i)	 0.5 ; i - 1,2

•	 0.8 if i X j	 (49)
P (w

N	J 1w0	
J) :, 0.2 if i * 3

From table 1, it is seen that considerable improvement haS been We in the

pro portion estimates with the use of contextual information if the labels

are good.

The probabilities of label imperfections of AI labels or the 0-matrix are

estimated for each segment by comparing imperfect (AI) ',%bels and perfect

(ground-truth) labels. These are listed in table 2. From tables I and 2, it

is observed that, when the imperfections in the labels are small, the use of

contextual information with the AI labels resulted in improved proportion

estimates (see segment 1231).

Equations (44), (45), and (46) are used with the AI labels and the corre-

sponding 5-matrix for estimating the probabilities of class labels for the

clusters. The values used for a priori and transition probabilities in these

equations are given in equation (49). ,ae resulting proportion estimates are

listed in column 5 of table 2. The proportion of wheat in each segment is

also estimated using equations (47) and (48) with the AI labels and the

corresponding o-matrix. The resulting proportion estimates are listed in

column 6 of table 2. From table 2, it is seen that there is considerable

improvement in proportion estimates when the probabilities of label

imperfections are taken into account.
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TABLE 2.- ESTIMATION OF PROPORTION OF CLASS 1 WITH AI LABELS AND $-MATRIX

No. of A1 , labele0 Proportion proportion proportion
Location patterns Computed estimate estimate, estimate GT

Segment (count,yy, 8-matrix comparing using using directly with proportion
state) Wheat "Other" Al and GT labels eqs.	 (44),	 (45), eqs.	 (47) eq.	 (9)

and (46) and (48)

1005 Sherman, 20 77 0.5455	 0.45451
[0.0308	 0.9692,

0,3227 0.3025 0.2456 0.348
texas

1060 Cheyenne, 17 89 0.5667	 0.4343
C 0.0263	 0.9737

0.2174 0.2172 0.1975 0.231
Corrado

1231 Jackson, 71 25 f 0.9315	 0.06851 0.6921 0.7139 0..6265 0.744

nklahoma l 0.1304	 0.8696)

1520 Big Stone, 20 71 0.7917	 0.20831 0.2432 0.3647 0.2109 0.301
Montana `0.0149	 0,9851,l

1604 Renville, 31 70 r 0.4600	 0.54n0 0.4937 0.4814 0.2963 0.524
4orth Dakota l 0.1569	 0.9431

1675 Mcpherson, 10 97
C 
0.2667	 0.73331 0.2142 0.2156 0.1085 0.291

South Dakota 0.0390	 0.9610

1805 Gregory, 15 129 ('0.4211	 0.57891 0.1569 0,1932 0.1181 0.164
South Dakota ` 0.064n	 043601

1853 Ness, 24 67 ( 0.8077	 0,1923] 0.3021 0.3052 0.3246 0.306
Kansas l 0.0615	 0.9385

Sias 0.3271E-01 0.1441E-01 0.9763E-01

Mean square error 0.1682E-02 0.1947E-02 0.1514E-01
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8. CONCLUDING REMARKS

In the classification of imagery data such as in the machine processing of

remotely sensed MSS data, unsupervised classification techniques have been

found to be effective. Clustering of the data partitions the image into its

inherent modes. Labeling these clusters is one of the crucial problems in the

application of clustering techniques for the classification of imagery data.

In the analysis of remotely sensed data, labels for the training patterns are

usually provided by an AI who examines the imagery films and uses ancillary

information such as historic information and crop growth stage models. These

labels are usually imperfect. Most of the imagery data are abundant in

spatial content, and spatial information improves the classification by

machine processing.

In this paper, the problem of obtaining the probabilities of class labels for

the clusters is considered. It is assumed that a set of labeled patterns 	 I

X i (j) with class labels w i (j) = i and their neighbors Y (j)(x = 1,2, 	 ,4;

J = 1, 2,	 ,N i ; and i = 1,2,	 ,C) are given, where C is the number of

classes. The probabilities of imperfections in the labels are assumed to be

available. It is also assumed that the number of inherent modes in the data,

mode conditional densities, and a priori probabilities of the modes are given.

Expressions are developed for obtaining the probabilities of class labels for

the clusters using all the available information.

Experimental results are obtained from the processing of remotely sensed MSS

imagery data. One of the important objectives in the analysis of remotely

sensed data is to estimate the proportion of the crop of interest. In

estimating the proportions through cluster labeling, use of contextual

information resulted in better estimates when the imperfections in the labels

are small. Furthermore, the use of probabilities of label imperfections

resulted in better proportion estimates through cluster labeling.

t
f

^, 3
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APPENDIX A

PROBABILITIC CLUSTER LABELING WITH FIELD STRUCTURE

In the practical applications of pattern recognition, such as in the classifi-

cation of remotely sensed agricultural imagery data, one of the difficult

problems is obtaining labels for the traininj patterns. The labels for the

training patterns are usually provided by an analyst-interpreter who examines

imagery films and uses other information such as historic information and crop

calendar models.

It has been observed that the field-like structures that are normally in agri-

cultural imagery are relatively easy to label in comparison to the pixels.

Recently, considerable interest has been shown in developing techniques for

locating fields in the imagery data (ref. 20) and for developing maximum like-

lihood clustering algorithms (ref. 21) to fit the mixture of Gaussian density

	

functions by taking the field structure of the data into account. These	
Y

algorithms typically give the a priori probabilities and Gaussian cluster

conditional densities for the inherent modes in the data. The situation is

illustrated in the following figure.

1
	

0— fields

clusters

— classes

Figure A-1.- Illustration of fields, clusters, and classes in an image.

It is the purpose of this appendix to consider the problem of obtaining the

probabilities of class labels for the clusters using information from a given

set of labeled fields. It -is assumed that a set of labeled fields from each

class is given. Let F
i
(i), j = 1,2,•••,f(i) be the labeled fields of class i,

I -
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i = 1,2,4-••,C. Let N j (i) be the number of pixels in the 
jth labeled field of

class i. Let xjk (i) be the spectral vector of the k th pixel of j th labeled

field of class i. Let X j (i) be the concatenated vector of spectral vectors of

pixels in the j th labeled field of class i. That is

xjl (i)

X j (i)	 xj2(i)

(A-1)

xjNj(')(i,)

It is also assumed that the probability density functions and a priori

probabilities of the clusters are given. Let these be p(Xlst = i) and

a i ,i = 1,2,- •• ,m, respectively, where m is the number of clusters. Assuming

the fields are independent, the likelihood of occurrence of X j (i) with their

labels w j (i) = i, but normalized, is given by

C W ) p[X

= 

(i),w (i) = i]

R
i [I j =1 ^pLX O N

C f(i)
n	 p[wj (i) = i ) Xj ( i ) j	 (A-2)
i =1 i`=1

If X is a concatenated vector of spectral vectors in a field, similar to

equation (4), we have

m

p(w = i1X) _ R - ao p(a = JO)	 (A-3)

Using equation (A-3) in equation (A-2), the log likelihood function can be

witten as

L = 1 o (R)

_	 f i) log F,a :p[a = RIX•(i)]	
(A-4)

i=1 j=	 R=1 R^

it

{
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A fixed -point iteration equation for the probabilities of class labels for the

clusters aRi that maximize L of equation (A-4), subject to the constraints of

equation (5), can be written from equations (9) and (10) as

f i)
dRi j

F1 s; d Xr s

where

dRij = m
	

-j 	 -	 (A-6)

E1 asi p[ !a = SIX j(i)]

But from the Bayes rule, we have

P(Q = R)p[X (i)IQ = R]
p [st = R^ X j ( i )] -	 p Xj 

ice_

P(st = R)p[X i MI n = R]
m	 (A-7)

P(n = s ) p[X j ( i )I S1 = s]
S=1

The computation of a posteriori probabilities of the clusters pCQ = RIXj(i)]

can be considerably simplified by noting that the sequence [Xj(i),Sj(i),

j	 1,2,---,f(i); i = 1,2,•--,C] is a sufficient statistic for the criterion,

where X j (i) and S j (i) are the sample mean and the sample scatter matrix of the

`	 jth field of the i th class, respecti%,ely. That is

and

Ni M
Xj (i) = N 1^	 xjk(i)

k=1

Nj(i)
S j (i) _	 Exjk (i) - x j (i)][X jk (i) - Xj(i)JT

k=1

(A-8)
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The sufficiency of the sequence [Xj(i),Sj(i)] implies that

	

P(St = R)p[X=(1 $1 = R]	 aRgR[Xj(i),sj(i)]
(A-9)pCXj 	 -q[Xj(i),Sj(i)]

where q, [Xj(i),Sj(i)] is the joint density of X j (i) and Sj (i), given that-the

cluster R contains the field Fj (i) and

m

q[Xj(i),Sj(i)] = E1 61g j[ i(i),Sj(i)]	 (A-10)

if p(a)st = X) - N(W I ,E R ), the joint density qj[ j(i),Sj(i)] can be expressed
,as

gRCXj(i),sj(i)] = NdIXj (i); UR ,^ ER Wd [s j (i); N j( i ) - 1, EP]

	

 J	 ,^

(A-11)

where Nd (X j (i) ; uR , ^-1 - E R) i s the d-vari ate normal density of X j (i ) and
J

Wd [S j (i); N j (i) - 1, E ,,]is the Wishart density of Sj(i) with N j (i)	 1 degrees

of freedom. It can easily be shown that the density of sample mean X j (i) is

given by

P[Xj(i)ln = 11 N N( PV 
7T ER1	

(A-12)

The Wishart density of S j (i) with Nj(i) - 1 degrees of freedom can be written

as

	

-	
iS^(i)^(1/2)1[Nj(i) - 11 - d 	

1 ^ exP^-	 tr (sp 
E-1 

1

W Si 0) 	 0 - 1.E J -
d l

'Ni
	

2[1/21[Nj(i)-17d Rd(d-1)14 1ER `1/2[N p ) -1] 
d r( 

1
[Nj (i) - 11 + 1 - Uj)

[u=1

(A-13)
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Using equations (A-12) and (A-13) in equation (A-9) yields

P(n - c )gX [x^(t).s 3 m -	 s4{ItrI,NJz	 expr	 tr ( ^l ^s i f11 + ^^^(il[ic 1 ltl - w R7[it 1 lil -	 ]T))

]TI

r; a rjlt r l z exa [- 7 tr(sr I sj (it ; N 1 (il[z1 (i) - url[x i (i} . url I

(A-14)

Equation (A-14) can be used in equattons (A-5) and (A-6) to obtain optimal

probabilities of class labels for the clusters using information from a given

set of labeled fields.

y
r
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APPENDIX B

CONTEXTUAL CLUSTER LABELING WITH THE CRITERION OF PROBABILITY

OF CORRECT LABELING

The problem of obtaining the optimal probabilities of class labels for the

clusters using the criterion of probability of correct labeling is formulated

in this appendix. It is assumed that a set of patterns Xi(j) with imperfect

labels w(j) = i and with the neighbors Y^(j),--•,Y4(j) as shown in figure 1,

for j = 1,2, • --,Ni and i = 1,2,---,C, are given. The probabilities of label

imperfections 
0ji 

are assumed to be available. It is also assumed that the

probability density functions and the a priori probabilities of the clusters

are given. If a pattern X with the neighbors Y 1 ,-• • ,Y 4 comes from class i,

then for particular a priori probabilities and probability densities of the

classes the probability with which it is correctly classified into class i is

p(w = i:X,Y1,••6,Y4): Since logorithm is a monotonic function of its argu-

ment, the criterion of probability of correct labeling (PCL) may be defined,as

P CL =	 P(w = i) f lo g C p ( w 
= ijX,Y 1 , 0,. ,Y 4)1p(Xjw - i)dx

L

0

(B-1)

Let s be the matrix of probabilities of label imperfections, where

a	 10 i j]
	

( B-2)

Let
	

V = (OT )-1
	

( B-3)

Using equations (B-2) and (B-3) and inverting equation (32) results in

C

P(w = i ) p ( X l w = i) = ;^ Vij P(w = j ) P(Xl w, = j)
J=1

( B-4)
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From equations (B-1) and (B-4) we get

PCL W 
C	

`' i jP(w' - j) I lo g[ p(W- ilX,Y 1 ,...,Y 4 )] p (Xlw' = j) dX
1̂1 .;l1

( B-5)

Using the given imperfectly labeled patterns and their neighbors, an estimate

for PGA of equation (B-5) can be written as

N

PCL _ 

C

.; ^i j P (w '	j ) ^, t 109 p[w = i lX j(k),y^(k),...,y4(k)

	

J=1	 k=1 

(B-6)

Substituting sample estimates for P(w' = j) and using equations (24) and (4)

in equation (B-6), the criterion can be written as

N

Cr = E E vij i 
log1 E ari P[n = rlXj(k)]

i =1 j=1	 k=1	 r=1

	

C C	 C 4	 C m

*, E 
vuj 

kL 
L1 logIk

=I
F- E1 ark ^^kRup[st - rl y j (k)a	 (B-7)

a

	

P w.(k) = k x lw.(k)	 u
where	

4k 
u =	 (B-8)

R	 P wj
R

(k) 	 kR

The probabilities a ri that maximize Cr of equation (B-7) and that are subject

to the constraints of equation (5) can be obtained using optimization tech-

niques such as Davidon-Fletcher-Powell (refs. 16-18). However, fixed-point

iteration equations are developed in the following.
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B.1 FIXED-POINT ITERATION SCHEME FOR OPTIMAL ar„,i

I't is noted that in equation (B-7), vii might be negative. In the following
fixed.-point iteration eq^,aations for obtaining optimal arit, the probabilities

of class labels for the clusters are developed. Consider

r

P(X1W	i) =w -1 jF P(X,w = i,w'	 j)

C

E si j P(XI W ' - j )	 (B-9)
J=1

where it is assumed that

p(Xlw = is w' = j) = P(X1 W ' = j)	 (B-10)

In terms of probabilities of label imperfections, the a priori probabilities

of perfect and imperfectly labeled classes are related as

C
P(w' - i) _ E 0ji P ( w - j )	 (B-11)

J= 1

Inverting equation (B-11), we get

C

P(w	 i )	 E vi4 P ( W ' - j)	 (B-12)
j=1

Using equation ( B-9) in equation (B-1), an estimate for PCL can be written as

N

P CL =	 4 n ij 	 ^ p^w = i IXj(k),Y^(k),...,Yi(k)	 (B-13)
i= 1 =1	 k-1

P(w = i )S
ijwhere	 n	 =	 (B-14)i j 

J
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From equations (4), (24), and (B-13), the criterion becomes

C Cm
N'

Cr -	 i n i j ^ log L "ri PLQ = rlXj(k)]
i=1 j = 1	 k=1	 r=1

C C	 N	 4	 C	 m
+	 nuj	 L log	 "rk 9 k up[Q = r)Y^(k)]	 (B-15)

U=1 j=1	 k=1 9 -1	 kR=1 r= 1 	 t R

The following fixed-point iteration equations for obtaining optimal ari that

maximize Cr of equation (B-15), subject to the constraints of equation (5),

can easily be obtained by introducing Lagrangian multipliers. That is

1	 2 1
"ri ari +arilari = --^---1	 2	 (B-16)

i =1 ri( Sri +ari

where

al - C
	 N	 _ p[ sZ = rlX (k)]

ri E n i j IE m'	 (B-17)

F asi PCs2 = SIX1 

N•R

and 6 2 =	 n	
4	 iup	

- r ^ YJ(k 	 B-18ri	
u=1 j=1 uJ k=1 =1	 C	 m	

(	 )

t
k=1E1 "sk Rgk Ru p [^ = s^Y

k

J(k)J
X

If the spatial information is not used, the fixed-point iteration equations

for obtaining the optimal probabilities a ri become the following.

"	
1

ri =	
ri ari

" 
^i _

i "ri a ri

(B-19)
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Where 61is gi g+-n by equaion (B-17). It is noted that when there are no
ri

imperfections in the labels, equation (B-19) is identical to equation (9).

B.2 EXPERIMENTAL RESULTS

This section presents some results from the processing of remotely sensed

multispectral scanner imagery data. The objective of the processing is to

estimate the proportior of class of interest through probabilistic cluster

a	 labeling. The class of interest is wheat and its proportion is estimated

using equation (17). The same labeled patterns and the cluster statistics of

section 7 are used. The a priori probabilities of imperfectly labeled classes

for use its equation (B-12) are estimated as sample estimates. The a priori

and the transition probabilities used in the local neighborhood of the given

labeled patterns are given in equation (49). The results are listed in

table B-1. From table B-1, it is seen that better proportion estimates are

obtained by taking the imperfections in the labels into account.

r

}
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TABLE B-1.- ESTIMATED PROPORTION OF CLASS 1 WITH IMPERFECT LABELS AND 0-MATRIX

4

Segment
Location
(countx,
state)

Computed
0-matrix comparing

A.I.	 and G.T.	 labels

Proportion
estimate
using eqs.

(B-16),	 (8-17)
and (B-18)

Proportion
^,^stimate
using eqs.

(B-19)	 and (B-17)

Proportion
estimate

directly with
Al labels

using eqs.	 (9)

G.T.
proportion

1005 Sherman, 0.5455	 0.45451 0.3194 0.3641 0.2456 0.348
Texas 0.0308	 0.9692)

1060 Cheyenne, 0.5667	 0.4343] 0.2297 0.2787 0.1975 0.231
Colorado 0.0263	 0.9737

1231 Jackson, (0.9315	 0.06851 0.7640 0.7546 0.6265 0.744
Oklahoma `0.1304	 0.8696

1520 Big Stone., 0.7917	 0.20831 0.2398 0.2661 0.2109 0.301
Montana 0.0149	 0.9851

1604 Renville, (0.4600	 0.54001 0.4981 0.5035 0.2963 0.524
North Dakota ` 0.1569	 0.84311

1675 McPherson, ( 0.2667	 0.7333
10.0390	 0.961Q^

0.2681 0.2448 0.1085 0.291
South Dakota

1805 Gregory, (0.4211	 0.57891 0.1502 0.1385 0.1181 0.164
South Dakota `0.0640	 0.9360)

1853 Ness, (0.8077	 0.19231 0.2769 0.3164 0.3246 0.306
Kansas 10.0615	 0.9385)

Bias 0.20350E-01 0.52875E-02 0.9763E-01
Mean square error 0.89969E-03 0.89725E-03 0,1514E-01

P

NASA-JSC

im
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