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INTRODUCTION 

Proteins are produced in living systems by adding amino acids, 

one-by-one starting from the NH 2 terminus of the polypeptide chain. It 

has been established for some timelthat such chains can fold spontaneously 

into the native structure (three-dimensional, compact folded structure in 

which the protein may carryon its structural, regulatory or catalytic 

function) without any further information than is contained in the linear 

sequences of amino acid residues and their interaction with the surroundings 

(water, salts, pH, temperature). 

The spontaneity of the folding process may be considered to be a 

crucial element of Origin of Life studies concerned with the production of 

functioning biomacromolecules by non-biological methods, in the pre-

biological environment that may have led to the origin of self-replicating 

structures. Thus, the major question to be answered for amino acid polymers 

is what three-dimensional structure or structures are favored in a partic-

ular environment, and what physical mechanisms lead these biopolymers from 

the set of unfolded conformations to the set of folded conformations. 

These questions prompt one to divide the problem of the folding of a 

protein to its native structure into two parts. The first is the static 

aspect concerned with the elements in the amino acid sequence that provide 

the information; the second deals with the dynamics of the folding process 

itself. Clearly, the answer to the first part of the problem is involved 

in the second (in particular, the stabilities of intermediate structures 

may be important in selecting the folding paths) and conversely, it is 

possible, though less likely, that the second affects the first (that is, 

that the nature of the folding process results in a non-equilibrium 

structure). 
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Available data indicate that proteins "in vitro" can fold into 

their native structure in times from tenths of seconds to minutes in the 

absence of S-S bridges
2

; formation of S-S bridges coupled to refolding tends 

to take longer., Producing the complete, folded protein "in vivo" is also 

a seconds to minutes process. To appreciate the problems involved in 

understanding the folding dynamics, these times must be contrasted with 

the long time required to find the native structure by a random search 

through all possible conformations •. For example, for a protein consisting 

of 100 amino acids with three independent configurations for each one, 

100 13 there are 3 possible conformations. If each one can be searched in 10 

. 100 13 seconds, the total t~me to search each structure once is 3 x 10 seconds 

37 17 . 
~ 10 seconds, compared to 10 seconds, the age of the un~verse. Of 

course, this estimate neglects excluded volume effects, correlated motions, 

etc. but underestimates the possible configurations per amino acid and so 

gives the correct impression, that protein folding must make use of more 

sophisticated search procedures. 

The above comparison of experimental folding times with the simplest 

possible model of independent random searches by each amino acid indicate 

that in the folding processes fluctuations and correlated motions among the 

amino acid residues must play an essential role in searching out the native 

structure. Unfortunately, the vast range of configurational space that has 

to be examined, the many potential barriers that are likely to be present, 

and the long time scale of the overall process (tenths of seconds to 

minutes) make it very difficult to study the detailed motions of the atoms 

involved in the folding process. It is necessary, therefore, at present, 

to introduce models for the dynamical aspects of the folding process. 
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With the help of the models, it may be possible to theoretically _"fold" 

the protein using computer simulations to the point where energy minimiza-

tion techniques may be applied to a realistic representation of the amino 

acid chain, including environmental effects whether of solution or 

surfaces. "The alternative is to simplify the description of the amino 

acids in order to make a computer simulation from an unfolded state be 

technically, temporally and economically feasible. This approach has 

been attempted
3 

but without great success4 since the choice of simplified 

representation appears to be arbitrary, at present. 

A possibly viable alternative to the computer simulation of folding, 

starting from a realistic representation of the entire polypeptide chain, 

is to deal with only small fragments of the chain. Then, the forces can 

be made more realistic and perhaps the computer time element not so 

overpowering. This will be discussed further, below. 

It will be necessary to consider in some detail the elements of a 

dynamical model to represent the initial stages of folding and to discuss 

the calculation and/or experimental determination o'f the parameters of 

the model. This is done in the next section. 
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DYNAMICAL FOLDING MODELS 

5 6 
Karplus and Weaver and Baldwin have considered the experimental 

-
and theoretical evidence as to the basic folding mechanism and have 

concluded that a slow random search nucleation followed by rapid folding 

about the nucleus is unlikely to be the main folding mechanism. Instead, 

they have concluded that locally ordered intermediates, called 

microdomains (hereafter denoted as MD), form in several parts of the 

polypeptide chain then collide and coalesce with the rates of successive 

steps on the folding pathway generally depending on the stabilities of 

preceding intermediates. 

To describe the dynamical aspects of MD behavior, Karplus and 

Weaver 7 have introduced the diffusion-collision (DC) model of protein 

folding. In the DC model, the protein molecule is thought of as divided 

into parts (the MDs). Folding pathways are then studied by following the 

diffusive motion of the centers of mass of the MDs (in first approximation 

the detailed structure of the MDs is not included in the model) as they 

are subjected to random, external dissipative forces caused by very 

frequent collisions with solvent molecules. Collisions between MDs some-

times lead to their coalescence into MD pairs and so on into larger MD 

aggregates and eventually to the native structure of the protein. In the 

regime of high solvent friction that applies to the motion of protein 

parts in aqueous solution, the dynamics of the MDs is governed by the 

diffusion equation8 describing the spatial and temporal behavior of the 

probability density of a microdomain. 

In the DC model, the MDs themselves are local structures of limited 

stability (generally thought to be the a-helical and B-strand segments 

... 
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5 

which have been observed in crystallographic studies of folded proteins
9

, 

although this is not crucial to the model). In a real protein, the 

entire folding pathway would consist of a sequence of steps of diffusion, 

collision and eventual coalescence of MDs with the slowest, rate-determining 

step occurring at the end of the pathway. Particularly in the early stages 

of folding there may be a number of different sequences of folding steps 

(different pathways) which converge toward the rate determining slow step 

leading to the native structure. 

Thus the picture of a folding pathway given by a multistep DC 

mechanism is the following: first, two MDs both of which are in fast 

equil~brium between some folded conformations (perhaps a-helical or 

!3-strand) and an unfolded set of "random coil" conformations (with an 

equilibrium constant greatly favoring the coil state) combine by the 

DC mechanism. The state so formed would probably be somewhat more stable 

than the free but folded MDs if the state were on the folding pathway 

rather than being an incorrectly folded intermediate. This MD-MD state 

can in turn dissociate into the two separate MDs, or it can interact 

with a third MD to form a still more stable entity with a larger equili­

brium constant. Near the end of this pathway, the 'coalesced state 

encounters the attractive interactions which produce a very stable state 

to be identified with the native or near native set of conformations. 
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It is clear that in this model of the folding process, the computation 

aspects of the initial stages on a folding pathway may be reduced con-

siderably from consideration of the. entire polypeptide chain to consideration 

of the possible conformations of individual MDs and pairwise interactions 

among MDs. 

In order to make a quantitative study of the above folding picture, one 

needs to calculate, in the context of the DC model, how the reactions for 

the elementary folding step 

-+ 
(MD)1 + (MD)Z -+-

(MD)1 

III 
(MD)Z 

(1) 

affect the (time-dependent) probability of the existence of a MD-MO pair 

state. A basic assumption of the DC model is that the relative motion of the 

centers of mass of the MDs is described by the Smoluchowski equation
lO 

(the 

diffusion equation with potential energy of interaction) which has the form 

~ -+ -+ -+} ~ = V ·{D (Vp + pVV) 
dP 

(2) 

-+ -+ -+ 
where p(x, x , t) is the MO relative position probability density at position x 

o 
-+ 

and time t starting from position x at time zero. D is the (possibly position o 
-+ 

dependent) diffusion coefficient for the relative motion and Vex) is the 

potential energy of interaction between the MOs (in units of ~T where KB is 

Boltzmann's constant and T the absolute temperature). The diffusion is limited 

in spatial extent by how far away from one another two MOs may get without 

breaking the polypeptide chain on the one hand, and by how close together two 

MOs can get before they collide. 

--

1/ 
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To be specific, some of the details of the solution of Eq.2 will be 

given for a one-dimensional diffusion space with Vex) = O' and constant D. 

With these parameter choices, Eq. 2 becomes 

ap = 
at 

2 
nl.....e. 

ar2 (3) 

r being the distance between MD centers. The minimum value of r is the 

sum of the radii of the two MDs (assumed to be spherically symmetrical in 

this example) to be denoted by r = a. The maximum value of r, denoted by 

r = b, is equal to a plus whatever length of polypeptide chain occurs 

between the MDs. In order to solve Eq. (3), the behavior of p at the 

boundaries of the diffusion space r = a and r = b must be specified. As 

discussed in Ref. 7, the MDs are unable to attain a value of r greater 

than b (the MDs must always be connected) so the solution of Eq. (3) must 

there satisfy a completely reflecting boundary condition, that is 

ap = 0 r = b. - , ar 

Note that ap/ar is proportional to the flux of probability. For the 

(4) 

boundary condition at the contact distance r = a, one needs to include the 

possibility of coalescence or "folding" (which tends to reduce the value 

of p(a,t» and the possibility of dissociation or "unfolding" (which tends 

to increase the value of p(a,t». In the absence of dissociation, the DC 

model boundary condition at r = a (see Ref. 7 for further details) is 

ap I 
ar a = Bp I 

R.,y a 
(5) 

< < 
where B is the probability of reaction, (0 - B-1, if B = 1, every MD-MD 

collision leads to folding) y the probability of reflection at the target 
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(MD) surface and ~ is the characteristic length. The interpretation of 

these parameters has been extensively discussed in Ref. 7. 

In the DC model, it is assumed that the motion of the MDs can be 

described by a diffusion equation. This assumption is based on the -forces 

existing in proteins and their magnitude relative to hydrodynamic damping 

effects. A theoretical study of the hinge bending mode in lysozymel1 has 

. 13 -2-1 
shown that in spite of the large force constant (k ~ 3 x 10 ergs rad mol ) 

for bending due to the interactions (covalent plus non-bonded) between the 

two lobes of the enzyme, the relative motion is diffusive in character; that 

is, the system is overdamped due to the friction from the solvent. For the 

present case, a corresponding argument should be valid. Although the smaller 

size of the MDs would yield a reduced frictional coefficient, the effective 

force constant for the relative motion is expected to be much smaller as well. 

If the diffusing units are two MDs that are adjacent in the sequence and have 

some kind of bend (e.g. a S-turn) between them, the energy stabilizing the 

turn would be the major contribution to the force constant; the magnitude of 

this is not known, though the available data and calculations suggest that 

the energy is not large. Another possibility is two MDs that are further 

separated, in which case the polypeptide backbone is unlikely to contribute 

significantly to bringing them together. Then the most important force is of 

the hydrophobic type. This is expected to be relatively short range; that is, 

until the two MDs are sufficiently close to exclude water molecules, no 

hydrophobic attraction exists. Consequently most of their relative motion 

will involve essentially free diffusion. 

Because of the dissociation reaction in Eq. (1), the boundary condition 

at r = a.must be modified to incorporate the contribution to p(a,t) from 

., 

'" 

~ 
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dissociation of the MD pair into the individual MDs. 

9 

To this end, let n (t) 
a 

be the number (fraction or probability when the initial probability density 

integrated over the diff~sion space is normalized to one MD pair) of coalesced 

MD pair.s at time t. 

Since the number of uncoalesced pairs N(t) is given by 

b N(t) = J dr p(r,t) a 

with N(o) = 1, one finds that 

b n (t) = 1 -J dr p(r,t) a a 

(6) 

(7) 

Furthermore, from the rate at which N(t) changes due to the reaction at r = a: 

dN -D ap I = dt ar a 
(8) 

one may write n (t) as a 

n (t) 
a 

= D/ dt' ap I 
o ar a (9) 

In Ref. 7 it was found that to a very good approximation, n (t) followed 
a 

an exponential increase to its maximum value of one. This relatively simple 

behavior was quantified in Ref. 7 by using the mean coalescence time L 
c 

(see also Ref. 5 in which L was introduced for protein folding) to approximate 
c 

the folding kinetics to the native structure. The mean coalescence time is 

. . 12 13 14 15 an extension of the concept of f1rst passage t1me ' , • to the DC model 

physical situation, and may be used when the probability density goes to 

zero as t ~ 00 , the approximate situation during the folding step leading to 

the native structure. 
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As discussed in detail in Ref. 7, the mean coalescence time has the 

general form 

t!J.Vy + T 
T = DSA a c (10) 

where, as mentioned above, t is the characteristic length, !J.V the finite 

diffusion volume (spherical symmetry), A the target surface area for co-

alescence, y the reflection (non-coalescence upon collision) probability, 

and S the probability that both microdomains (or larger aggregates) are 

"folded" when they collide. Under the usual folding conditions S is expected 

to be small compared to unity and, therefore, y is approximately unity and is 

usually incorporated into t. T , called the mean absorption time, represents 
a 

the average time for two microdomains to coalesce if every collision were to 

result in coalescence. Under normal folding conditions, T »T. For the 
c a 

diffusion limits r = a to r = b with coalescence occurring at r = a, one finds 

in one dimension~ the results T = (b-a)2/ 3D , !J.V = b-a and A 1. 
a 

To include the effect of the dissociation (unfolding) reaction in 

Eq. 1, the probability density at the reaction boundary, r = a, must have 

a contribution proportional to the number of MD pairs already coalesced at 

, 16 
time t, that is, Eq. 5 must be modified to be 

ap I ar a 
= J-i I n (t) ty P - _a_---a K ,-

a 
} 

with K being the equilibrium constant for Eq. 1, that is, 
a 

K 
a 

= lim 
t-+oo 

. n (t) 
a 
N(t) 

(11) 

(12) 

the ratio of coalesced to uncoalesced MD pairs at equilibrium. In Ref. 16, 

it was found that use of the boundary condition in Eq. 11 leads one to consider 

lor 
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a quantity called the mean equilibrium time, T ,defined to be 
eq 

00 

T = J dt eq 0 

{N(t)-N } 
eq 

l-N eq 
(13) 

which, for a uniform initial distribution, may be used to approximately 

represent n (t) according to 
a 

I\, 

n (t) = na 
a eq 

{I _ e- t / Teq} 

the goodness of this approximation to n (t) depending 
a 

(14) 

on the size of 1" 
eq 

11 

compared (in one dimension) to the time unit (b-a)2/D• T has a particularly eq " 

simple form. It is 

with T defined by Eq. 10. 
c 

K 
T = a 

eq (l+K) 
a 

T 
c 

(15) 

The exponential approximation to the coalescence probability n (t) 
a 

has been discussed in some detail above. This approximation is meant to 

replace the infinite series of time-dependent exponential terms which 

characterize diffusional processes in closed systems such as the intra-

molecular protein folding system. While it is not necessary to make the 

exponential approximation when using the DC model" it is certainly very con-

venient to do so and also gives a simplified description (to the extent that 

the model is valid) of how the gross factors important in folding kinetics 

combine to determine the folding rate. In addition, numerical studies made 

to date by the author and others
17

, some of which have been discussed above, 

show that for most values of the relevant parameters, the exponential approxi-

mation.to na(t) is quite good, regardless of the actual application to protein 
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folding dynamics. Therefore, in discussing the DC m0ge1 further, it will 

be assumed that the exponential approximation holds to the extent that it 

simplifies discussion without compromising the possible validity of the 

model. 

In a real globular protein there will be a number of MDs whose mutual 

coalescence leads to the native, folded structure of the protein. For example, 

in a-helical proteins such as hemog10bin18 , the various helical segments 

into which the native structure is divided would be candidates for MDs (if 

one assumes that the interactions dominant in the native structure are also 

important on the folding pathway). In Ref. 7, the final step leading to the 

native protein structure was described and calculated with the DC model. 

Above,in the present paper, a preliminary step on the folding pathway leading 

to an unstable intermediate was described and the calculation of the pro-

babi1ity n (t) of a MD pair existing at time t was carried out. The next 
a 

step is to consider the detailed DC dynamics of a hypothetical protein whose 

observable folding pathway consists of the two steps mentioned above, that 

is, the first step is the coalescence-dissociation reaction of two unstable 

MDs: the second step is the coalescence of a third MD with the first pair 

(when they are in the coalesced state), the final state being the stable 

native structure. 

Consider three MDs connected in a linear fashion by relatively flexible 

portions of the polypeptide chain and interacting only by the trio of intra-
~ 

molecular reactions given by the two reactions in Eq. 1 and the following 

reaction 

(MD)l 

III + 

(MD)2 

(MD) -+ 
3 

(MD)l 

III )(MD)3 

(MD) 2 

(native structure). (16) 

" 
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Since the right hand side of Eq. 16 is the native structure of this protein 

the dissociation (unfolding) reaction is negligible and will not be con­

sidered. To obtain a folding pathway for which the probability of the 

"native structure" as a function of time may be calculated analytically, 

suppose that incorrectly folded intermediates are unimportant and that MD3 

does not interact 'significantly with either HDI or MD2 separately but 

interacts strongly with the pair MD
l

-MD2 when they are in the coalesced 

state, the right-hand side of Eq. 1. These assumptions restrict the dynamics 

to a particular pathway leading to the native structure, and lead to the 

decoupling of the relative position probability density of the MDl , ~ID2 

pair, call it P12' from the relative position probability density of MD3 , 

call it P3' except at the reaction boundary. That is, one may calculate 

the probability na12 (t) of the pair MDl-~ID2 being folded together (as done 

above) independently of MD
3

, and then use the results for nal2 (t) in the 83 

parameter to calculate P
3 

and n
3
(t) exactly, in principle. To summarize 

the physical picture of this assumed definite folding pathway for a three 

MD hypothetical "protein", imagine MD2 to be fixed in space and MDs one and 

three diffusing about it but not interacting with one another. Then, MD3 

will not coalesce until MDI has, first, coalesced with MD2. Because of the 

requirement of a definite order of coalescence, the diffusion problems for 

MDl and MD3 are independent except at the boundary with MD2 where the 

probability of MDI being coalesced influences the probability of MD3 

coalescing but not the reverse, since, by assumption,'the triplet is the 

native structure and does not dissociate appreciably. 

For this example, the following set of equations must be satisfied: 



ap12 
at 

aP12 
ar12 

= D12 

I = O. 
r
12 

= b 

aP12 I = 
ar12 r

12 
= a 

2 a P
12 ---2-

ar12 

B 

a < r
12 

< b 

n 

12 { I 
£12Y12 P12 r 12 = a 

'a
12 

(t) 

K
12

(b-a) } 

which are Eqs. 3, 4, and 11 with the notation modified for the pre~ent 

example, and 

ap
3 

at 

a2p 
3 = D3 -~--2--

. ar
3 

ap
3 h Ib , = 0 
3 

ap 3 B3 
ar3 la' = £3Y3 

a' < r < b' 
3 

n (t) P3 la' a12 

14 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

the equations satisfied by the relative position probability density of ~ID3. 

Until MD3 collides with the already coalesced pair MDl -MD
2

, there is no 

interaction (by assumption) between MD3 and either MDI or MD2• Thus, the 

equations for P12 and n
a12 

may be solved independently of MD3• This, in 

fact, has already been carried out in the preceding section. The result 

for n (t), which is the probability that MDs one and two are coalesced, 
a l2 

~ 

" 
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is then needed in the boundary condition, Eq. 22, describing the coalescence 

of MD3 with the pair. 

The time-dependent factor n (t) in Eq. 22 makes the solution of the 
a12 ' 

set of equations for n3 (t) difficult. However, under many circumstances 

relevant to protein folding and within the framework of the DC mode.l, an 

approximate solution for n
3

(t) may be derived. The results may be summarized 

in terms of the characteristic time constants T , T , and T with 
a 3 c3 eq12 

and 

Ta 
3 

= (b'_a,)2 

3D3 

, , ) R. Y (b -a 
3 3 + 

Tc = D3B3na eq 
3 12 

Also of importance is the ratio 

y -

T - T c
3 

a
3 

T 
a 3 

(b' -a') 2 

3D3 

In terms of these time cons~ants, the approximate analytical result 

for n
3

(t) is 

n (t) = 1 - e- t/Tc3 
a 3 

I T IT 
{[I +! (1 - e- t Teq12 )]y} eq12 c3 

y 

(23) 

(24) 

(25) 

(26) 

It is often true under protein folding conditions that T and T are very 
a2 a3 

small compared to their overall folding time counterparts, T and T , 
c2 c3 

respectively. In this case, as an approximation to Eq. 26, one may look 

at the limiting case in which y ~ 00. One obtains 
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n (t) ~ 1 _ e- t/T 
a

3 
c3 e 

-tIT ) (l-e eq12 
T 

eq12 
T .. 

c3 

(27) 

One notes that as T IT. ~ 0, Eq. 27 approaches the mean coalescence time 
eq12 c3 

approximation to n (t) which assumes that the preceding intermediates a
3 

have come to equilibrium with the individual MDs before the next reaction 

leading to the native structure occurs to any significant degree. Significant 

corrections to the (1_e- t/Tc3) approximation for n (t) will be required a
3 

. 

whenever T is not substantially smaller than L • As mentioned above, 
eq12 c3 

under protein folding conditions, their ratio has the approximate value 

LC 
3 

L 
eq12 

= ( -..2) ( (b' -a') ) ( D12 ) ( 
.t12 (b-a) D3 

(1 + K12) 
') ) 

(K
12

) 

1312 ) (-
133 

(28) 

To the extent that the first three sets of brackets on the right hand side 

of Eq. 28 are of order unity, the ratio of folding times depends on the 

various equilibrium constants. As discussed in Ref. 7, 

K12 K2 
1312 = (1 + K

l
) (~K2) 

where Kl and K2 are the individual MD folding equilibrium constants (coil-

helix equilibrium constants for helical MDs). Similarly, 

K3 
133 = 1 + K3 

(note that whereas 13
12 

is a product of two terms, each of which refers to 

a single MD, the product 133 na occurs in the rate of approach to the 
eq12 

native structure and it depends on all three MDs). In general, one will 

find the rates of subsequent reactions on the folding pathway depending in 

the above way on the equilibrium constants of the preceding reactions. 

~ 

~ 
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Since all of the equilibrium constants are expect~d to be much less than 

one in this example, Eq. 28 may be approximately written 

LC 
3 

L 
eq12 

K1K2 
2 

(K12) K3 
(29) 

As a further reasonable approximation for this estimate, one may ~et the 

MD folding equilibrium constants equal, that is K1 = K2 = K3• This leaves 

the ratio of folding times to be determined by the quantity K1/(K12)2. Since 

-3 K1 ~ 10 (as estimated in Ref. 5) and K12 is not expected to be more than 

an order of magnitude greater than K1 , the ratio of times in Eq. 25 could 

be greater than ten and thus a prior equilibrium approximation may be 

justified. 
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STATIC ASPECTS OF FOLDING 

The structure of a monomaic protein is conveniently divided into three 

parts. There is first the primary structure which is a description of the 

ordered sequence of amino acid residues in the polypeptide chain. It is 

thought that this sequence, along with ~nvironmental effects, determines 

the thermodynamic or kinetic native structure of the protein. However, study 

of the sequence does not directly provide detailed information about the 

three-dimensional structure and function of the protein in most cases. 

The next step in the organization ofa protein (both logically and 

probably physically, as well) is the propensity of amino acid chains to form 

a.number of well-ordered local structures with definite symmetry. 

among these local structures is a helix (commonly a right-handed 

Principal 

a-helix) . 

Because of its symmetry a helix is easy to -recognize in three-dimensional 

protein structures. Helices are stabilized by interactions among neighboring 

amino acid residues. In particular for a right-handed a-helix, there are 3.6 

residues .per turn, a translation of 1.5 AO per residue along the helix axis. 

Neglecting end effects, each peptide carbonyl .in the a-helix is a hydrogen 

bond acceptor for the peptide N-H donor four residues away. Among the commonly 

occuring amino acids, only proline is sterically prohibited from fitting into 

an a-helix. 

Among the other possible secondary structural elements, the most common 

is the 2-fold helix or pleated structure known as the 8-strand. This structure 

is not stable independently, because although the peptides form hydrogen bonds, 

they do so with other 8-strands along the polypeptide chain to form a 8~sheet. 

This calls, however, for a higher level of organization than is required for 

.. 
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a simple helix with intra-helical hydrogen banding such as an a-helix. The 

a-sheet structures may occur in parallel or antipara11e1 forms depending,on the 

relative orientation of the two a-strands. Both are known to occur in proteins. 

Also found in short stretches of globular proteins is the 310 helix with, . 

three residues per turn instead of the 3.6 residues of the'a-he1ix. 

Another definite secondary structural feature that is common in globular 

proteins is the 8-bend. This is a chain-reversal turn in the polypeptide chain 

in which four peptides participate with a hydrogen bond between the first and 

fourth peptides. Thus, this structure may be classified as a helix with zero 

pitch. Further classification of chain turns may be carried out to broaden the 

scope of this type of secondary structure. 

A separate type of secondary structure, the po1ypro1ine helices, occurs 

commonly in proteins of the collagen family but is quite rare in globular proteins 

of the single chain variety. 

When one examines the three-dimensional structure of a globular pr~tein as 

determined by its x-ray crystal structure,(approximate1y 10
2 

structures of this 

type are known), one observes that elements of secondary structure, as discussed 
, 

above, are arranged,in space,in definite three-dimensional patterns. These patterns 

are termed the tertiary structure of the protein, and it is to understand and 

be able to predict these structures that theoretical and experimental studies of 

proteins are aimed. 



PREDICTING PROTEIN STRUCTURE AND FUNCTION 

The aims of theoretical research on protein structure and dynamics 

are two-fold. On the one hand, one has the fundamental aim of under­

standing at the molecular level the properties of protein molecules 

since they play such an important role in the life processes. On the 

other hand, one has the "practical" aim of being able to predict protein 

structure and dynamics in order to design drugs, catalytic enzymes, etc~ 

Thus, one needs to develop methods for predicting protein conformation, 

conformational pathways to a given conformation from the unfolded 

structures as well as among folded conformations, the relative popula­

tions of these conformations, the rates of transitions among them and 
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for bimolecular transformations (allo~teric transitions, enzyme catalysis, 

etc.) their rates and changes in rates due to structural or environmental 

changes. 

In summary, the principle aims of theoretical research on protein 

structure are to predict the tertiary structure of globular proteins and 

to predict the functional aspects of the protein from its tertiary structure 

with the prediction including any dynamical aspects of the structure which 

are relevant. The starting point for any tertiary structure prediction is 

the primary structure of the protein, the linear sequence of amino acids 

that makes up the polypeptide chain, and which in conjunction with the 

particular environment in which the polypeptide finds itself determines 

the tertiary structure. 

Since the tertiary structure of most proteins is made up of the secondary 

structural elements mentioned above and since some, at least transient, 

secondary structural elements are required to account for the kinetic aspects 

of folding from the primary to the tertiary structure as discussed above, it 

.. 
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is important to have an understanding of and be able to predict theoretically 

the principal secondary structures observed in globular protein, namely 

a-helices, a-strands (and sheets) and a-bends. There are a large number of 

methods of predicting secondary structure from tne amino acid sequence;9-28 

all of wh~ch assume that only the short-range interactions between residues 

near one another in the primary sequence determine the local secondary structure. 

The methods of prediction may be classified as statistical19- 25 (analyzing 

known structures for the propensities of individual amino acids) and "physical" 

where the sizes and hydrophobicities of residues. are considered in determining 

h ' 1 1 26-28 As h b 'd' 29-31 t e1r oca structure. s own y several comparat1ve stu 1es, no 

individual method of predicting secondary structure is clearly superior to the 

others. As is also shown by such studies, the success of such predictive 

schemes is not increasing with time as the data base of crystal structures of 

protein increases. Thus, it appears that the formation of secondary structure, 

at least to the extent that the structure remains an element of the 

tertiary crystal structure, is determined in part by long~range interactions 

between secondary structural elements. Therefore, the production of 

secondary structure appears to require tertiary structure information and 

probably the production of tertiary structure requires secondary structure 

information so that to a certain extent, the native structure of a protein 

represents a self-consistent boot-strap kind of final state, and, thus, 

probably requires some dynamical scheme to be used as part of the folding 

algorithm to predict the tertiary structure. Such a scheme may be provided 

by the DC model discussed above. 
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In order to clarify the problems encountered in predicting the tertiary 

structure of a small globular protein, consider staphylococcal nuclease 

which contains 149 amino acid residues and no disulfide bonds or other 

restrictive interactions (e.g. heme group) to restrict the possible con-

formations of the native structure. The secondary structure consists of 

three a-helices: (residues 54-67, 99-107, 122-134) and three B-sheets 

(three-strand; residues 38-41, 108-113). If one assigns three possible 

energy minima to each amino acid residue, then a simple statistical count 

gives 3149 ~ 1071 possible conformational states for this small protein. 

There are also more than 1500 atoms to be considered in any kind of atomic 

resolutions energy minimization scheme to obtain the global energy minimum 

of this system (plus solvent interaction). Each of the atoms is, in 

principle, interacting with the other atoms via electrical forces, and 

since each atom has one or more polarizable electrons the net potential 

energy of interaction which must be minimized to obtain the global energy 

minimum is very complex. 

If the molecule were completely static, then the potential energy would 

be a sum of the individual Coulomb interaction energy terms for each atom 

with its associated electrons. Because of the po1arizabi1ity of the electrons 

and also the po1arizability of some of the hydrogen atom protons (hydrogen 

bond formers), a more complex potential energy of interaction emerges. In 

practice, any description of the protein molecule potential energy function 

to be used in a tertiary structure calculation will be put in somewhat dif-

ferent terms, that is, in terms of the bond directions and bond angles between 

atoms which are covalently bonded and the various non-bonded interactions 

which make up the greater part of the stabilization energy of the tertiary 

.. 
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structure (hydrogen bonds, van der Waals interactions, hydrophobic interactions). 

Such a description may be found, in principle, for a folded protein with a known 

crystal !;tructure from the crystallographic coordinates, but, of course, the 

essential non-bonded interactions are not known for most proteins. To start 

from a completely described polypeptide chain in a random conformation and 

attain the folded structure with lowest energy by energy minimization is not 

possible at the moment for two reasons. First, the size of the computational 

problem is too great, and second the time to compute the structure even if 

possible is too long for an individual lifetime. 

An alternative approach is to reduce the computational problem so that 

in the earlier stages of folding,groups of atoms are treated simultaneously. 

This has been done by several groups with limited success, since the simple 

structural representation and energy minimization techniques used appear to 

proclude the possibility of agreement with the known crystal structures. 

However, this method in modified form may have promise for further 

development. 

Some problems involving protein structure and dynamics are outlined 

below along with background material and potential methods of attack. 

1. Myoglobin Folding Kinetics 

The three-dimensional structure of myoglobin was shown by Kendrew, 

et. a1. 32 to be composed of a number of a-helical segments, connected to one 

another in a linear fashion by short lengths of polypeptide chain, and 

interacting via non-covalent bond forces in a well-defined way so that a 

globular container is formed for the heme group. As the first protein for 



which a high resolution structure was determined, and wi,th most of the 

amino acid residues occupied in quite regular helical arrays, myoglobin 

ought to be a prime candidate for having its folding pathway be well es-

tablished and even successfully computer simulated. However, the lack 

of kinetic information on the experimental side and lack of success to 

date on the theoretical side in folding simulations brings strongly to 

the fore the difficulties which one faces in unraveling the folding 

mechanism. 

The problem to be faced in understanding the folding of myoglobin 

153 ~ 72 is to understand how the native structure is found from the 3 ~ 10 

conformations available to the polypeptide chain if each amino acid has 

three independent configurations. As mentioned above, the solution to a 
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problem of this type is tv reduce the space of configurations to be searched 

by considering the collective concerted motion of a number of subunits of 

the polypeptide, the number being small compared to the number of amino 

acid residues,in order to reduce the search problem to tractable size. 

When this approach to the folding problem is considered, it is necessary 

to define the subunits (MOs) which collectively interact. The general 

characteristics of MDs have been discussed above, and it is clear that 

prime candidates for MDs would be secondary structural ~lements which are 

observed in the crystal structures of most proteins, namely, a-helices, 

B-strands and B-bends being careful to recall that secondary structural 

prediction methods are not completely reliable because some crystal 

secondary structure elements are stabilized by tertiary interactions. 

Therefore, in the initial stages of a folding simulation,it is necessary 

to consider a variety of MD sets and to test which set or sets lead to 

viable tertiary structures. If one uses only the MD set observed in the 

.. 
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crystal, then the result (which ought to resemble the crystal structure) 

is built irito the simulation. 

By using the secondary structure prediction algori~hms, one generates 

a set of myoglobin MDs 29- 3l which mainly reproduce the known myoglobin 

secondary structure. Of course, in the unfolded myoglobin molecule most 

of the polypeptide chain will be in random coil conformations and the pre-

dieted secondary structural elements will occur only transiently. The 

next step in the folding simulation will be to generate pathways of multi-

MD interactions. Again, one must be extremely careful not to bias the 

resulting tertiary structures by allowing only these MD~MD interactions 

that appear in the crystal structure. Instead, all possible interactions 

among the various helical segments must be considered to determine whether 
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or not the observed crystalline set is dominant~3,34 The tertiary structure 

or set of tertiary structures generated by the folding simulation may be 

further refined by energy minimization techniques35- 37 (see below) to pro-

duce the final predicted structure. Since the full ene~gy minimization 

only takes place on an already roughly folded protein molecule, the con-

straints of time and financial resources, which prohibit minimization of 

an unfolded structure without gross reduction of 'the parameter space, are 

negated. 

The algorithm outlined above represents one method for attacking the 

folding problem. In the next section an alternative method is outlined 

. which also avoids the time-money computer crunch. 

2. Protein Folding Using Simplified Representations of Residues 

A protein of 100 residues has about 1500 atoms and 400 degrees of 



freedom (single bond torsion angles). Calculating its free energy 

(particularly when considering interactions with rapidly moving solvent 

molecules) is an impossible task at present. Even if one considers only 

small protein fragments such as an a-helical segment the direct compu-

tat ion of conformational alternatives is too formidable.' Nevertheless, 

since MDs (a-helical, S-strand, S-bend) clearly play an extremely im-

portant role in folding, it will be necessary to attain a fairly complete 

theoretical understanding of them. 

Therefore, for direct study, one must, at present reduce the number 

of degrees of freedom by using a simplified model of the polypeptide 

chain. A model which has had some success is to represent each amino 

acid residue by a soft sphere with the volume of the true residue being 

maintained in this spherical approximation. This kind of representation 

has been shown by Richmond and Richards 34 to describe the packing of the 

residues in myoglobin, and it has been used by Levitt and Warshe135 in 

computer simulation studies of the folding of trypsin inhibitor. Although 

this type of model will not describe detailed atomic interactions, it will 

give an adequate approximation to the overall structure. and mobility of 

peptide fragments with regard to the more general interresidue constraints 

such as steric effects and hydrophobic interactions. 

In detail, in this simplified representation of a polypeptide chain, 
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the spheres representing near neighbor residues will be linked by virtual 

bonds (see e.g. Flory38) with harmonic restoring forces. Further neighbors 

will interact via an excluded volume spherical potential and an attractive 

van der Waals and solvent potential. Stabilization of helices,S-sheets or 

S-bends due to hydrogen bonding will be·simulated with an additive potential 

chosen to have a maximum size for the secondary structure under considera-

tion and to falloff rapidly to zero at other angles, the correct parameters 

~ 
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being chosen by comparison to pep tides in aqueous soluti'on (see e.g. Ref. 

39 for an application to the a-helix). 

3. Internal and External Friction Effects in Diffusion of Connected 

Polypeptide Segments 
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The main driving force in the intramolecular motion of MDs comes from 

random collisions with solvent molecules and with other parts of the poly­

peptide chain. Thus, the kinetics of folding is expected to be viscosity­

dependent through diffusion coefficients for the various MDs and MD aggre­

gates. The precise dependence of folding rates on solvent viscosity is 

controlled by the extent to which internal friction effects due to portions 

of the polypeptide chain moving over one another rather than through solvent 

only play a role in the folding pathways. 

In earlier papers,S,7 since the emphasis has been on obtaining the 

essential ingredients of the early stages of a DC model folding pathway, it 

has been assumed that the MDs diffuse freely until they are close together 

as defined by the interaction radius r = a. Their interaction to coalesce 

has been contained in the boundary condition at this radius (Eq. ll),and 

the diffusion coefficient D has been assumed to be constant, leading to 

Eqs. 13-15 for the MD-pair coalescence probability. An alternative approach 

involving potential barrier effects and variable diffusion coefficients was 

discussed briefly in Ref. 7. In either treatment, a general calculation 

allowing for a variable diffusion coefficient (for example, a transition 

from external to internal friction effects at a particular distance of 

separation of MDs) leads to time constants that depend both on the external 

and internal viscosity. 
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There are several experiments which bear upon the question of viscosity 

dependence of folding rates. Haas et. al., 40 inyestigated the kinetics 

of the fluorescence decay of the energy donor in a homologous series of 

oligopeptides each containing at its ends a donor and an acceptor of elect-

ronic excitation energy in solvent mixtures of different viscosities. With 

an assumed theoretical analysis, diffusion coefficients were derived which 

increased systematically upon decreasing the solvent viscosity. The values 

obtained for the diffusion coefficients were about an order-of-magnitude 

smaller than the values expected for the diffusion coefficients of the free 

chromophores in solvents of ~omparable viscosity, and appear to have a sol­

vent viscosity independent part when one considers n-l , that is, the friction 
\ 

coe'fficient, although this effect may be model dependent. In any case, there 

is a clear dependence of diffusion coefficient on solvent viscosity in this 

intra molecular, diffusion mediated interaction. 

Tsong and Baldwin,2l on the other hand, in their study of the kinetics 

of folding of the two forms of unfolded ribonuclease A (with all disulfide 

bonds intact) as a function of solvent viscosity, by adding either sucrose 

or glycerol, found no dependence on solvent viscosity, the rates of both 

folding reactions being either unchanged or slightly ,faster in the presence 

of sucrose or glycerol. 

In the same system, Tsong42 has recently found a reaction which is 

strongly dependent on solvent viscosity and somewhat faster than the re-

actions observed in Ref. 41. Tsong42 also observed the two solvent viscosity 

independent reactions. Thus, in all systems studied to date, there is a 

strong solvent viscosity dependence to the reaction rate, as well as a 

solvent viscosity independent contribution. 

~ 
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The precise interpretation of these experimental results is not com-

pletely clear, at present, due to the complexity of the systems involved. 

However, it appears that diffusion mediated reactions are playing a signi-

ficant role, and thus the reactions could be interpreted with the DC 

model. Further experimental studies on other systems are necessary to 

obtain a complete understanding of this effect. 

In previous work5- 7and above in this paper, it has been assumed that 

the diffusive motion of the MDs is essentially free. That is, until they 

approach to the distance r = a, their relative motion satisfies Eq. 2-with 

V(;) = 0 and constant D. All the MD-MD interaction has been placed, in 

the above calculation, in the boundary conditions, that is, the forces in-

fluencing the motion of the MDs are assumed to be short-range. While 

probably true of the MD-MD hydrophobic interactions, the nature of the 

polypeptide chain between diffusing MDs may well contribute to the potential 

energy function in Eq. 2 at longer ranges. For example, in a theoretical 

study of the hinge bending mode in lysozyme, McCammon, et. al. 43 found that 

the potential energy function for the relative motion of the two lobes was 

relatively harmonic, but that, nevertheless, the motion was overdamped due 

to the frictional drag of solvent, that is, the relative motion satisfied 

the Smoluchowski equation (eq. 2). 

To treat potential energy effects due to the polypeptide chain be-

tween interacting MDs in a rigorous way via a potential energy function 

is outside of the scope of analytical calculations since for most potentials, 

it, then, becomes impossible to obtain even approximate analytical results. 

Two points may be made however, concerning the effect of.an intervening 

potential. First, if the intervening potential may be approximated by a 
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periodic potential, then the diffusive motion is essentially the same as 

44 -that for a free Brownian particle, the difference being that the diffusion 

coefficient is renormalized to a smaller value. The second point is that 

40 
the results of the viscosity experiments of Haas, et.al. may be interpreted 

to indicate that an intervening polypeptide chain introduces, in addition, 

-1 
a term independent of the external solvent viscosity into D • If this 

turns out to be generally true for proteins, than the effect of the 

intervening chain may be fairly readily introduced into the DC model. 

Further work along these lines may be carried out by 1. studying a 

bead-spring type of model polymer to approximate a polypeptide chain in 

order to get a feeling for the effect of the intervening potential on. the 

interaction rate of the polymer ends (for example); 2. examining the DC 

model with interaction contained in the potential (rather than exclusively 

in the boundary conditions) and with a variable diffusion coefficient. 

4. Evolutionary Implications of DC Folding Mechanism 

The DC model envisions a protein molecule to be made up of several 

connected MDs which interact with a sequence of diffusion-collision-ccalescence-

dissociation steps until eventual coalescence in a cooperative manner into the 

relatively stable native structure. Particularly in the early stages of fold-

ing there would be possible a number of different sequences of folding steps 

which later converge toward the rate determining slow step. 

The stabilities of multi-MD intermediates are determined by the non-

covalent attractive interactions among the MDs which are, in turn, controlled 

by the sequences of amino acid residues. One would expect the viability of 

individual pathways to be sensitive to changes in the non-covalent interactions 

and thus to be amenable to evolutionary advances via mutational changes in 

the residue sequence of MDs. 

j, 
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There are (at least) two different ways in which such an evolutionary 

scheme could manifest itself. First, suppose that-the mutations cause 

residue changes that do not change the basic character ,of the MOs but 

only their potential for attractive interaction. TIle result could then be 
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a new native structure in which the same MOs are organized in a somewhat 

different way. Since the MDs are the same, it might be possible for the 

protein to retain some of its previous function and, at the same time; 

carryon a new function. Another possible result could be two native 

structures (one metastable but long-lived) which could, in turn, be separated 

by gene duplication and mutation to evolve separately. Second, suppose that 

the secondary structures of individual MDs are fluctuating among alternative 

forms (say a-helical and S-strand) and that mutation changes the stability 

from one to the other. TIlen a new protein could be formed with different 

MOs (although the same number as before). Again, a more viable possibility 

would be a pair of folded conformations with gene duplication leading to 

divergent evolution. A careful study of known sequence and structure for 

globular proteins might produce some evidence for these possibilities. 

5. General Description of Biomolecular Diffusion-Mediated Processes 

In the above discussions of protein folding, the dynamics is supp~ied 

by the DC model which discusses the diffusion of connected polypeptide seg­

ments. In many biologically important circumstances it is the diffusion­

mediated interaction via collision and coalescence which is important 

dynamically. TIlerefore, it is necessary to formulate the bimolecular 

analogue of the DC model, which will have relevance in several of the topics 

outlined in subsequent sections. 



Consider, for example, a spherically symmetrical infinite system of 

molecules of initial uniform concentration P surrounding a target of 
o 

radius a centered at r = O. The molecules diffuse according to Eq. 2 

(assume V = 0 for simplicity) with concentration P(r,t). Instead of 

Eq. 11, one has the boundary condition at the target surface r = a 

aL ap
1 = pi 

ar a a 

2 
4iTa PoD 

K f t Clp 
dt' - I pr a 

o 

For the other boundary condition, one may choose P (r , t) -+ P as r -+ 00 
o 

The diffusion equation with the above boundary conditions must be solved 

to obtain the rate of association 4iTa2D Clp/arla as well as the probability 

n (t) that a target-molecule pair is formed before time t. Preliminary 
a 

45 f· results indicate that fora concentration 0 targets a1:so equal to p 

that 

with 

n (t) 
a 

tV K(l _ e-t/r;) 

l+K(l - e-t/r;) 
= 

r; K(l+L) 
- 4naDp 

o 
= K(l+L)T 

o 
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where T:: It(4iTaDP ) is the basis time unit for this type of diffusional system. 
o 

It will be necessary to analyze this basic bimolecular process further in 

order that application may be made to systems of biological interest. Several 

possible applications are out'.ined below including glucagon interactions 

and collagen folding. 

... 
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6. Glucagon Trimer Formation and Glucagon-Receptor Interaction 

Glucagon is a polypeptide hormone with 29 amino acid residues46 which 

is synthesized and stored in the a cells of the islets of Langerhans of the 

panc'L"eas. The hormone activates glycogenolysis and gluconeogenic pathways 

resulting in raised blood glucose levels, by specific binding to a plasma 

membrane receptor site on the regulatory component of adenylate cyclase of 

liver and other cells, which give rise to an increase of intracellular 

levels of the second messenger cyclic AMP~7 To understand the glucagon-

receptor interactions, one must know the conformation of the hormone when 

bound to the receptor. Solution studies48 , 49 show that glucagon exists 

as unordered structure in dilute solution but self-associates at high 

concentration in a trimer with a high a-helical content. 
50 

X-ray analysis 

shows that in crystals the polypeptide adopts a mainly helical conformation, 

which is stabilized by hydrophobic interactions between mol~ovles related 

by threefold symmetry. 

Since it appears that the glucagon ordered structure requires the 

additional interaction provided by another hydrophobic surface such as 

another glucagon molecule or a receptor site, a DC mechanism both "in vitro" 

and "in vivo" is a reasonable possibility for the molecular folding mechanism 

of this small polypeptide. 

Application of the DC mechanism to glucagon-glucagon interactions will 

require some modification of the formalism described in Ref. 7 and above 

because the interacting segments are no longer in the same molecule but 

residue on different glucagon molecules or in the receptor site. The basic 

idea would still, however, be the same. That is, a-helical MDs in a glucagon 

molecule are in equilibrium between the "random coil" conformations and the 

ordered helical conformation. When, by diffusive movements the MDs of two 

molecules come into contact when both are ordered, they may have additional 
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stabilizing interactions to form a dimer intermediate state. The dimer may 

in turn further interact with another monomer to form the stable trimer, 

the equivalent of the native structure in the usual folding model. Alter­

natively, the mechanism might involve the simultaneous diffusion-collision­

coalescence of all three monomers to form the trimer, depending on the 

stabilities of the individual MDs. A similar mechanism in which the 

a-helical MDs of glucagon are stabilized by interaction with the receptor 

site may be envisioned. Elucidation of the folding pathway to the trimer 

by NMR techniques may be feasible, at least to distinguish between the two 

proposed pathways. 

In order to utilize the DC model dynamics for the above physical 

situation, the formulation described in the previous section must be used 

since the interaction is a bimolecular one. 

~ 
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7. Dynamics of Protein-Nucleic Acid Interactions 

On the basis of single crystal X-ray diffraction and circular 

dichroism studies of protamine binding to.a t-RNA, it has been suggested5l 

that the protamine molecule changes its conformation from a raridom coil 

to a structure containing a-helices on binding to t-RNA. This could be 

an example of the DC model"mechanism operating in a protein-nucleic acid 

system and one could speculate that such a mechanism is important in 

hormone-receptor and nucleic acid operator-repressor interactions. 

Particularly in tne interactions with nucleic acids at specific 

sites, the" ligand is faced with the difficult problem of finding a site 

along the rather lengthy nucleic acid chain. It has been suggested52 that 

a diffusional search in space can be considerably speeded up by confining 

the search to a space of lower dimensionality. For example, in nucleic 

acid-ligand interactions, the space could be reduced from three to one by 

having the ligand bind loosely to the nucleic acid and then diffuse along 

the chain until the specific site is found at which point tight binding 

would occur, perhaps with a change of conformation. A study of this 

hypothesis will require knowledge of diffusion along a helical path, 

probably using methods similar to those used in spherically symmetrical 

and spheroidal systems. 53 

35 
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8. Membrane Dynamics 

The motions" of molecules in biological membranes is a subject of 

"" 54 
considerable current attention. One aspect of this subject is the rates 

" 

" 55 56 of lateral diffusion of lipids and membrane proteins in the same system ' 

with the former generally diffusing much faster than the latter. These 

differences in the measured diffusion coefficients are too large to be 

explained on the basis of size differences alone according to the current 

57 
description of size effects in membranes. 

In many cases, lateral diffusion measurements correspond to one-

dimensional motion so for a specific example, consider motion in one-dimension 

in the lateral direction in"a membrane-in which the positionr of a specific 

kind of molecule is followed as a function of time t. Then concentration 

will then satisfy Eq. 2 in one-dimension and the diffusion coefficient D is 

defined by the equation 

-:---""":,,,2 "" 
D = lim (r - r) /2t 

t~Q) 

(33) 

where the bar indicates an average of the quantity over the diffusion space 

weighted with the normalized concentration. "The signature of diffusion is 

then the existence of D as defined by Eq. 33. When V(r) in Eq.2 is not 

constant and, in fact, goes to infinite at some point in space, there is 

no true diffusional motion. It seems unreasonable to expect that V(r) = 0 

everywhere in the membrane. Nevertheless, the interpretation of the 

54-56 . experiments mentioned above is carried out on that basis. Th1S leads to 

two problems. First, an incorrect diffusion coefficient may be extracted 

from the experimental results,. and, second, even if the correct diffusion 

coefficient is extracted because the definition of Eq.33 is essentially used, 

( 
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the diffusion coefficient may be interpreted as being for a free molecule 

rather than a molecule under the influence of an external force due to the 

membrane structure. 
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In fact, since membranes are regular structures, one would expect that 

the external force and hence the potential V(r) in Eq.2 would be periodic 

in space. In this case it is possible to derive a closed form expression 

for D which might apply to diffusion in membranes. In any case, it is 

clearly necessary to inspect the methods for extracting D from the raw 

experimental results and to calculate D for a periodic one dimensional 

potential. The aim of this kind of analysis would be ;0 learn something about 

the structure of the membrane (its periodicity in space as seen by a 

diffusing protein, perhaps) by measuring D and interpreting it in terms of 

potential barriers to free diffusion. 



9. FoldillS"" DYnarilics "of Collagen 

In some respects, the folding of collagen to the triple helical 

state ought to resemble the folding mechanism suggested above for the 

formation of trimers of glucagon molecules. But, on the other hand, one 

might expect considerable differences in the underlying mechanism for 

two reasons. First, the individual chains ofcoJlagen~olecules form 

helical secondary structures which have no hydrogen bonds to promote 
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stability, but rather depend on repulsive interactions (steric constraints) 

that cause each side chain to get far away from the others. Second, the 

tertiary structure is formed by twisting individual helices about one 

another, much more like double helical nucleic acids than like globular 

proteins. 

These differences allow collagen to some extent to be treated 

-' 
theoretically more like coil, helix type of transitions rather than like 

coil ~ native structure "type of transitions as in globular proteins. 

Nevertheless, the actual folding mechanism is not completely c1ear58 , 59 

and much work both experimentally and theoretically needs to be carried 

out to understand fully the dynamics of this important biochemical process. 

On the experimental side, detection of helical regions 'by chiroptical 

methods would appear to be useful at least for the longer time aspects of 

the tranSition, and perhaps, also for the faster processes which are probably 

not being observed at present. In particular, if the reaction proceeds 

through the trimer, one ought to find some spectroscopic evidence of double 

helical structures. 

Utilizing the general theory of bimolecular processes outlined above, 

one may proceed with the formulation of a dynamical model for triple helix 

-r, 
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formation by utilizing the dimer formation probability in a calculation 

of the trimer formation probability, as was outlined in the discussion of 

the DC model for protein folding above. This can be compared with a direct 

triple helical ~ormation calculation and with the existing experimental 

evidence mentioned above, although it appears that faster detection methods 

are necessary as indicated above, and so this particular project would 

require both theoretical and experimental efforts • 
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10. Molecular Dynamics of Folded Proteins 

As mentioned previously, most globular proteins have a well-defined 

equilibrium structure in the nature state with, however, their flexibility 

and structural fluctuations playing an essential role in their biological 

activity. One direct theoretical method for studying fast (subnanosecond 

movements)is molecular'dynamiCS~O In this method, one assigns initial 

positions and velocities to each of the atoms in the system and then solves 

the classical equations of motion simultaneously for all the atoms with 

the forces driving the motion being determined from the potential energy 

of interaction of the constituents. The potential energy is approximated 

in these systems by an empirical potential energy function with the form 

of a sum of terms corresponding to the interactions among the elements of 

the protein itself and separately the interactions of the protein With its 

environment. The former consists of terms for bondS, bond angles, torsional 

angles, van der Waals interactions, electrostatic interactions and hydrogen 

bonds. and the latter would contain only. van der Waals, electrostatic and 

hydrogen bond terms. In general, the extended atom approach is used in 

actual calculations, in which each non-hydrogen atom and any hydrogens 

bonded to it are replaced by one extended atom. An example of this mapping 

is given in Ref. 61 along with a discussion of the specification of the 

potential energy functions for bovine pancreatic trypsin inhibitor. One point of 

interest to protein folding studies which has been observed in molecular dynamics 

simulations is the existence of sizable frictional effects in the dis-

placements of atoms and groups of atoms, i.e., fluctuations from the 

~ 
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average structure were found to be subject to rapid damping. This would 

clearly bear on the question of internal versus external. friction dis-

cussed above. It was found, in fact, in an extension of the study initiated 

in Ref. 60 that torsional fluctuations of buried tyrosine residues in 

tryspin inhibitor obeyed the Langevin equation for an harmonic oscillator. 62 

Although attractive, in principle, the direct molecular dynamics method 

described above has the great drawback that large scale computation efforts 

are required to obtain even 100 ps simulations of internal protein dynamics. 

Unfortunately, many of the most interesting processes biologically occur 

as activated processes with rates of 109 sec-lor less, considerably slower 

than the molecular dynamics time frame (e.g. the chemical events associated 

with enzyme catalysis). Therefore, it is necessarY to develop more specific 

dynamical methods appropriate for particular problems (e.g. for the initial 

stages of protein folding, highly simplied potential functions describing 

the forces between MOs as mentioned above). Particularly interesting from 

this point of view would be the modeling of domains and domajn dynamics in 

certain enzymes such as lysozyme63 which has two lobes and, in particular, 

64 65 the kinases' where large structural changes involving closing of the 

active site cleft oc~ur on substrate binding. One approach to the study 

of this kind of motion is to model the domains by geometrical figures 

(spheres in lowest approximation) and the potential energy of interaction 

obtained from the potential described above for molecular dynamics simu-

lations when the domains are rotated with respect to one another. This 

approach has met with some success with lysozyme63 but has not been applied 

to other systems such as the kinases or immunoglobins (which are known to 

have a very well-defined hinged domain structure). This is clearly a 

problem with many ramifications and should be pursued further. 
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11. Small Holecule Penetration of Protein Interiors 

Globular proteins have closely packed interiors in" the sense that 

the packing is as dense as that found for crystals of small organic 

66 67 molecules, amino acids and small peptides. Nevertheless, it is 

accepted that the basically static property of close packing is the 

average in space and time of a wide variety of instantaneous structures 

and fluctuations the former rapidly interconnectihg due to the latter. 

Since individual proteins are small compared to the macroscopic structures 

for which there would be extremely small fluctuations in thermodynamic 

properties,68 one expects to have, on the contrary, relatively large 

fl . 69 
uctuat~ons. Such fluctuations can lead to a series of "holes" or 

channels to the protein interior sufficient to allow entry of water and 

other small molecules and to local variations in temperature. 

As has been amply demonstrated by hydrogen exchange,70 O2 quenching 

71 . 72 of fluorescence and CO binding at the heine group in myoglob~n small 

molecules do reach the interior of globular proteins by some mechanisms, 

with rates, in the case of hydrogen exchange retarded over a range of 

eight orders of magnitude compared to unstructured, random coil poly-

peptides. The mechanisms for such processes are of great interest because 

of the importance of intraprotein dynamics in protein function. A possi-

ble model of this process is outlined below. 

Considered from an abstract, physical point of view (and in one 

dimension for simplicity), a small molecule starting from a surface 

point on a globular protein must get from one side to the other of an 

irregular potential energy barrier in order to attain a particular location 

of the protein interior. There are two known mechanisms for getting from 

t" 
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one side of a potential barrier to the other side, penetration through 

the barrier by quantum mechanical tunneling and classical diffusion 

over the barrier. Higher energy (temperature) favors the latter mech­

anism ~o it would be classical diffusion over the barrier which would 

be responsible for the penetration at room temperature'. An alternative 

point of view is that a large scale unfolding fluctuation occurs exposing 

the target to the ligand without the necessity of overcoming any bar-

riers except in the protein itself during the unfolding process. For 

a diffusional model, the rate of penetration to the target site and in 

a rough approximation would be equal to the inverse of the first pas­

sage time for overcoming a series of potential barriers. An additional 

factor which ought to be included in such an analysis is the probable 

time-dependent nature of the potential barrier, both in height and width. 

Thus, the rate calculation would have to include an averaging of the 

potential (or perhaps the rate limiting step might be the barrier height 

fluctuation step itself). 

12. Protein Folding and Interaction Processes with Asymmetrical Geometry 
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In discussions of diffusion-controlled processes in biological sys­

tems including protein folding models,S, 7 domain dynamical models 73 and 

protein-ligand interactions,74 it is generally assumed that the reactants, 

boundary conditions and initial conditions are symmetrical so that only 

one coordinate is required to describe the spatial behavior (quasi one­

dimensional diffusion). This is clearly not the most realistic assump-

tion under most circumstances and one that ought to be relaxed when 

better approximations to the real physical situation are contemplated. 

Nevertheless, almost no work appears to have been done in this regard on 



biological problems of interest particularly for intramolecular dif­

fusion which is relevant in protein folding models and protein domain 

movement models. Some general theoretical principles for biomolecular 

processes have been discussed by Sole and Stockmayer75 and a particular 

process studied numerically by Samson and Deutch. 76 The basic proce­

dure to follow is after a particular interaction model is formulated 

44 

and translated into a diffusion equation with some asymmetrical elements, 

numerical solution at some point is required, the particular details 

depending on the particular physical situation. 

". 
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