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SUMMARY

Finite-difference methods for unsteady transonic flow frequently use simplified
equations in which certain of the time-dependent terms are omitted from the governing
equations. This paper derives kernel functions for two-dimensional subsonic flow
which provide accurate solutions of the linearized potential equation with the same
time-dependent terms omitted. These solutions make possible a direct evaluation of
the finite-difference codes for the linear problem. Calculations with two of these
low-frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite­
difference codes. Comparisons of the low-frequency kernel-function results with the
possio-kernel-function solution of the complete linear equations indicate the
adequacy of the HYTRAN approximation for frequencies in the range of interest for
flutter calculations.

INTRODUCTION

Time-dependent finite-difference methods are receiving increased use for aero­
elastic calculations in transonic flow. These methods are implemented by computer
codes that solve various approximations to the time-dependent nonlinear potential
equation. For example, the widely used LTRAN2 code (ref. 1) provides a solution to
the two-dimensional small disturbance potential equation in which the only time­
derivative term retained is the first derivative term in the differential equation.
A more accurate approximation is made with the HYTRAN2 code (called LTRAN2-NRL in
ref. 2), which also includes the time-derivative terms in the boundary conditions and
pressure calculation. In the past, the adequacy of these approximations has been
assessed by comparing results from these codes with calculations based on an analytic
solution of the complete linear equations. In contrast with the finite-difference
codes, these linear calculations have included the second time derivative in the
differential equation.

In order to more easily assess the significance of omitting some of the time­
dependent terms from the equations and to evaluate the adequacy of the finite­
difference codes in solving these equations, kernel-function solutions to the simpli­
fied equations have been derived. This paper gives the derivation and compares cal­
culations using these new kernel functions with classical results from the Possio
integral equation. In addition, the accuracy of the finite-difference codes in solv­
ing the linearized simplified equations is demonstrated by comparing them with the
kernel-function solutions. This comparison verifies the linear theory aspects of the
code and may be used to assess the adequacy of the computational grid.

SYMBOLS

b airfoil semichord, m

Cp pressure coefficient

6Cp lifting pressure coefficient

c ta slope of lift coefficient



cma slope of pitching-moment coefficient about pitch axis

H~2) Hankel function of second kind for order i
~

K

k

M

N

p

kernel function

reduced frequency, bw/U

free-stream Mach number

integral (see eq. (A23) or (A43»

pressure term in integral equation, ~Cp

p~1/2,-1/2) Jacobi polynomial

r

s

t

t'

U

u

v

w

w'

x

x'

y

y'

z

z'

e

A, Il, 1:

v

2

scaled x-variable, M2k(x - ~)/~2

scaled y-variable, M2ky/~2

dimensionless time, Ut'/b

time, s

free-stream velocity, m/s

scaled x-variable, k(x - ~)/~2

scaled y-variable, ky/~2

dimensionless downwash, w'/U

downwash velocity, m/s

dimensionless x-variable, x'/b

streamwise coordinate, positive downstream from midchord, m

dimensionless y-variable, ~y'/b

coordinate normal to free stream, m

dimensionless mode shape, z'/b

airfoil mode shape, m

angle variable (see sketch B)

integration variables

parameter (see eq. (A10»



p

(J

<1>'

dummy x-variable

radial variable (see sketch B)

Fourier transform variable

dimensionless velocity potential,

velocity potential, m2/s

<1>' /bu

w

dimensionless acceleration potential,

oscillation frequency, rad/s

Subscripts:

H

L

P

HYTRAN

LTRAN

Possio

ANALYSIS

In this section the governing differential equation, the boundary conditions,
and the integral equation are presented for the classical Possio formulation and for
the HYTRAN and LTRAN approximations to it. The labels HYTRAN and LTRAN are used for
the kernel-function formulations which contain the same simplifications of the equa­
tions as are used in the HYTRAN2 and LTRAN2 finite-difference codes. The details of
the derivation are given in the appendix.

Differential Equations and Boundary Conditions

The problem is formulated in terms of the linearized, small-disturbance, pertur­
bation velocity potential. The differential equations and boundary conditions are
derived in section 5-1 of reference 3. They are given here in terms of dimensional
variables.

Complete linear equations.- In dimensional variables, indicated by primes
throughout, the perturbation potential satisfies the linear differential equation

(1 - M
2

) <1>'
XiX'

2M2 M2
+ <1>' - <1>' - <1>'y'y' u x't' u2 t't'

o ( 1 )

where M and U are free-stream Mach number and velocity, respectively. The pres­
sure coefficient is

C
P

2 (U"" + "" )- 2 'l'x' 'l't'
U

(2)
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For the small perturbations treated herein, the lifting part of the problem is anti­
symmetric in y' and we can limit our attention to the upper-half plane. For an
airfoil motion given by z'(x',t') = 0, the airfoil flow-tangency condition is

+w' (x',O ,t') Uz' + z'
x' t' (Ix'\ ~b) (3 )

where w' is the downwash velocity on the airfoil and b is the airfoil semichord.
The remaining boundary condition on the x'-axis is to require zero pressure discon­
tinuitYi that is

t,c (x',O,t')
p

c (x' ,0- ,t') - C (x' ,0+ ,t')
P p

o (Ix'i )b) (4)

In addition, the Kutta condition must be imposed at the trailing edge to insure a
unique solutioni this is enforced by requiring

ts:. (b,O,t') = 0
P

(5)

Finally, for this time-dependent problem, the Sommerfeld radiation condition requires
outgoing disturbances at infinity. (See sec. 6-4 of ref. 3.)

HYTRAN equations.- The HYTRAN formulation differs from that for the linear equa­
tions in the preceding paragraph only in that the ~t't' term is omitted from the
differential equation; that is, for this case, one solves

(1 - rl) <1>'
x'x'

2M
2

+ ~~'y' - U <I>~'t' o (6 )

The boundary conditions are unchanged.

LTRAN equations.- The LTRAN formulation solves the same differential equation as
does the HYTRAN formulation (eq. (6». The boundary conditions are further simpli­
fied by omitting the time-dependent terms; that is, the pressure coefficient is given
by

C
P

2
U ~~, (7)

and the airfoil boundary condition is

4

+w' (x',O ,t') Uz'x' (Ix'i ~ b) (8)



Integral Equations

The equations given in the preceding sections are formulated in the appendix by
use of integral transforms of the acceleration potential forms of the equations. In
each case, the solution is obtained from an integral equation relating the known
downwash on the airfoil to the unknown lifting pressure, namely

w(x) == r 1 P( 1;) K(x-I;) dt:
J- 1

(9)

where nondimensional variables are now used, and w is the downwash, P is the
lifting pressure, and K is the .kernel function. The time dependence is removed by
means of the Fourier transform and the resulting equations are for harmonic motions.

The three formulations differ only in the form of the kernel function. The
forms given in this paragraph are in terms of singular integrals which must be inter­
preted as finite-part integrals in Hadamard's sense. Computational forms are given
in the appendix. The results, expressed as integrals of the Hankel function, are as
follows:

Possio kernel function:

iMk
813

2
e -ik(x-I;) Jk(x-I;)!f3

-co

( 10)

HYTRAN kernel function:

2
e -ik(x-l;) Jk(x-I;)!f3

-co

( 11 )

LTRAN kernel function:

Note that the HYTRAN kernel function may be obtained from the Possio kernel func­
tion by replacing M with M2 in the two places M appears explicitly (not in

( 12)
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Finally,
formulation.
variable x-

equation (12) demonstrates a transonic similarity law for the LTRAN
One observes that KL/~ depends on a single parameter M2k/~2 and
~. The integral equation (9), with a slight rewriting is

the

w(x) i 1 ~p ~ de:
-1

(13 )

so that for this equation ~P also depends on the single parameter M2k/~2. It
follows that the aerodynamic forces obey the same similarity law.

Solution of Integral Equation

Integral equation (9) was solved by a collocation procedure. The unknown
pressure was approximated by a sum of 64 weighted polynomials

p( 1;)
,~64

f1+1~ a
n

sin [en - 1/2) arccos ~]

sin [(1/2) arccos ~]
( 14)

with unknown pressure coefficients an' The ratio of the sine functions is pro-

portional to the Jacobi polynomial
p( 1/2,-1/2)

n-1
(ref. 4, ch. 22) appropriate to

the pressure weight function ~(1 - ~)/(1 + ~). (This weight function enforces the
Kutta condition.) Equation (14) is substituted into equation (9), which leads to

64 1

w(x) = ~ an 1
1

~1 - S sin [en - 1/2) arccos s] K(x-~) d~
1 + ~ sin [(1/2) arccos e:]

( 15)

The integral is evaluated by the Jacobi-Gauss quadrature appropriate to the weight
function for a set of 64 collocation points at which the downwash is specified. This
procedure leads to a set of 64 simultaneous equations which are solved for the
unknown pressure coefficients an' The choice of 64 collocation points gives solu­
tions which have converged to plotting accuracy over the range of frequencies and
Mach numbers considered.

RESULTS AND DISCUSSION

Calculations of aerodynamic forces for an airfoil oscillating in pitch were made
with each of the three kernel functions. Comparisons among these kernel-function
results are presented which show the influence of Mach number and frequency on the
lift and pitching moment. A second comparison is made of calculations from the
kernel functions with those from two finite-difference codes.
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Kernel-Function Results

about the
the lift
are shown

in pitch
slope of
(fig. 2)

Calculations were made for a flat-plate airfoil oscillating
quarter-chord axis at Mach numbers 0.7, 0.8, 0.9, and 0.95. The
coefficient c\ (fig. 1) and pitching-moment coefficient c ma a
as functions of reduced frequency for each of the three kernel functions. In each
figure, both the real part (in phase with the motion) and imaginary part (in quadra­
ture with the motion) are shown.

In general, the agreement between calculations with the Possio and HYTRAN kernel
functions is good, with the real parts being in better agreement than the imaginary
parts and the lift being in better agreement than the pitching moment. In particu­
lar, for frequencies in the range of interest for flutter (k < 0.2, say), the two
results are quite close together. In contrast, the LTRAN-kernel-function results
differ greatly from those of the other two kernel functions even at quite low reduced
frequencies. (An exception occurs in fig. 2(a) for which the curves for the real
part cross at k = 0.58.) For example, at M = 0.8, the imaginary part of the LTRAN
c\ (fig. 1(b» differs by over 70 percent from the Possio value when k = 0.1.

a

Flutter calculations using each of the three kernel functions are reported in
reference 5. Those calculations show the agreement between Possio- and HYTRAN­
kernel-function flutter results and the disagreement between these and the LTRAN­
kernel-function results that might be expected in light of the comments of the
preceding paragraph.

Comparison with Finite-Difference Calculations

The finite-difference codes of references 1 and 2 have been widely used for the
unsteady flow analysis of airfoils at transonic speeds. These codes provide numeri­
cal solutions to approximations of the nonlinear, small disturbance potential equa­
tion for time-dependent transonic flow. The codes, LTRAN2 and HYTRAN2, omit the same
time-dependent terms from the equations as do the corresponding LTRAN and HYTRAN
kernel functions, as described in the section "Analysis."

These inviscid, finite-difference codes have been evaluated in the past in two
ways: by comparison with experiment or by comparison with exact linear theory. The
difficulty with the former includes, among other things, the effects of viscosity and
wind-tunnel walls. The problem with the latter comparison is that the equations used
for the linear theory corresponded to the Possio kernel function. The development of
the LTRAN and HYTRAN kernel functions herein has overcome this difficulty and has
made a comparison of the finite-difference and analytical solution of the same equa­
tions possible.

An example of such a comparison between finite-difference calculations and the
present analytic results is given in figure 3. The lift coefficient c\ is shown

a
as a function of reduced frequency for an airfoil oscillating in pitch about a mid­
chord axis at M = 0.8. The curves give the analytic results for each of the three
kernel functions. The sYmbols show the solutions obtained from the finite-difference
code of reference 2. This code permits the use of either the LTRAN2 or HYTRAN2 for­
mulation of the problem. For the present comparisons, these codes were run with the
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nonlinear terms omitted for a flat-plate airfoil to correspond with the kernel­
function results. These solutions for harmonic oscillation were obtained by running
the time-dependent codes through the three cycles of oscillation required for the
transients to die out. There were 360 time steps per cycle, and a Fourier transform
of the last cycle of oscillation was used to obtain the harmonic loads. The original
79 x 99 LTRAN2 grid was used with 33 points on the airfoil.

The agreement between the finite-difference and analytic solutions shown in fig­
ure 3 is very satisfactory. This comparison demonstrates, at least for this linear
case, the accuracy of the algorithm, correctness of the coding, and adequacy of the
boundary condition treatment, mesh spacing and extent, and time step size for the
finite-difference methods.

CONCLUSIONS

The kernel functions for two levels of approximation to the linear equations of
subsonic compressible flow have been derived. These functions were used in an
integral-equation solution and compared with results from the classical possio inte­
gral equation in order to assess the limitations of the approximations. In addition,
comparisons were made with two widely used finite-difference solutions of the approx­
imate equations.

Specific conclusions include

(1) The approximation which retains the time-derivative terms in the boundary
conditions (HYTRAN-like) agrees well with the complete solution over the
range of frequencies of interest in flutter calculations.

(2) The approximation which omits the time-derivative terms in the boundary
conditions (LTRAN-like) is adequate only at very low frequencies.

(3) The LTRAN2 and HYTRAN2 time-dependent finite-difference codes yield accurate
solutions of the corresponding approximate equations, at least for the
linear case.

The analytical solutions derived herein provide objective standards for assess­
ing attempts to enhance the efficiency of the finite-difference codes by techniques
such as reducing mesh extent and increasing time step size. It is possible, of
course, that the conclusions reached here may need to be modified for the nonlinear
transonic-flow applications for which the finite-difference codes were developed.
However, the kernel-function results can still be used to determine limits for the
finite-difference parameters which may not safely be exceeded.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
April 2, 1982
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APPENDIX

SOLUTION OF DIFFERENTIAL EQUATION

The derivation of the integral equation from the differential equation is pre­
sented in this appendix. The velocity-potential statement of the problem is refor­
mulated in terms of the acceleration potential and solved by integral transform
methods. The kernel functions for each of three levels of approximation are obtained
and forms useful for calculation are derived.

Complete Linear Equations (Possio Kernel Function)

Kernel-function derivation.- The derivation of the Possio kernel function uses
the acceleration potential to solve the linear differential equation. A derivation
by superposition of singularities is given in section 6-4 of reference 3. The nota­
tion used herein is similar. The complete linear equations (eqs. (1) to (5» are
expressed in terms of the acceleration potential ~ and nondimensional coordinates.
Let

x' bx

y' by/~

t' bt/U
(An

z' bz

w = w'/U

~' = bU~

and define the dimensionless acceleration potential to be

1 C
2 P

(A2)

This expression may be inverted to express the downwash in terms of the potential as

w(x,y,t) ~ (X ~ (A.,y,t-x+A.) dA.
Lex> y

(A3)
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APPENDIX

which can be verified by differentiation. On the airfoil, when the antisymmetry of
the pressure is taken into account,

P( x, t)

+-2Cp (x,O ,t) (A4)

The time dependence is removed by performing a Fourier transform on t. The result
is formally equivalent to specifying simple harmonic motion by letting

<\J(x,y,t) <\J(x,y) ikte (AS)

and similarly for other dependent variables, where

k buVu (A6)

In dealing with some of the integrals in the following analysis, it is necessary to
apply analytic continuation arguments in cases for which certain integrals do not
exist for real values of k. In particular, it is convenient to suppose that k has
a negative imaginary part.

Collecting these results, noting that <\J and ~ satisfy the same differential
equation, yields the following problem to be solved for y > 0:

(Ixl < 1)

(Ixl > 1)
(A7)

w(x,y) e-ik(x-A) <\J (A,y) dA
Y

The problem is treated by using the Fourier transform

10
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e <\J(x,y) ax (AB)



APPENDIX

The differential equation becomes

,1. - i~ = 0't'yy

in which

(A9)

2
v (A10)

The solution is (the branch being chosen for which Re(v) > 0)

«J( a,y)

= .!. e - vy (1 e- i a1; P ( 1; ) d1;
4 J- 1

The Fourier inversion formula

(A11 )

«J( A, y)
1
2n

iAa
e «J(a,y) dO' (A12)

is used with equation (A11) and the last of equations (A7) to obtain the integral
equation

w(X,y) = (1 P(1;) K(x-1;,y) d1;
J- 1

in which the kernel function is

(A13)

K( x-1;, y) = lL- ~ LX e-ik(x-A) i: e i ( A-1;) 0' e-vy dO' dA
8n oy -0:> ~

(A14)

The integral-equation formulation of the original problem (eqs. (A7» is obtained by
setting y = 0 and using the boundary condition (see eq. (3»

(A15)
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APPENDIX

in which z(x) is the nondimensional mode shape. The inner integral in equa­
tion (A14) is evaluated as follows. Let

+ @2~
t... = 1; k

k - 2
(J = -( (J + M )

~2 (A16)

x

y

Equation (A14) becomes (dropping the bars for convenience)

K(u,v)
it...

e
~'<'T ~<'T2 M2

e~~u e-v u - do dt... (A17)

where now vy Taking note of the parity of the inner integral yields

K(u,v) (A 18)

The inner integral is a Fourier cosine transform which may be evaluated by using
equation (1.4.26) of reference 6 and equations (9.6.27) and (9.6.4) of reference 4
to obtain

K(u,v)
ik
8~

(A19)

The choice of the Hankel function of the second kind is consistent with the
Sommerfeld radiation condition. For v > 0, the integral is well defined. To obtain
the desired kernel function, one must let v ~ o. Using equations (9.6.1) and
(9.6.27) of reference 4 yields
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APPENDIX

This result is substituted into equation (A19) to give the final expression for the
Possio kernel function

iMk
8~

which is equation (10).

. Q2
-J.fJ U

e (A21 )

This form for the kernel function is not useful for computation in that the
integrand has a second-order pole at the origin. It is possible to derive the form
given in equation (6-112) of reference 3 from it, but the form in the reference also
involves an integral of the Hankel function. In the following section, a form is
derived which involves only a standard quadrature of an elementary function.

Computational form of kernel function.- The integral
exist for u > O. This problem arose in taking the limit
useful computational form may be derived from it by using
the Hankel function and deforming the path of integration
formal analysis can be made rigorous by remembering that
negative imaginary part.

Equation (A21) may be rewritten as

in which

in equation (A21) does not
v = O. Nevertheless, a

the integral definition of
in the complex plane. The
k may be assumed to have a

(A22)

N(u) (A23)

It is convenient to treat positive and negative
script + for u > 0 or for u < 0. For

N N ~:I
-iA H(2) (MA) dA

= e
1 A

For u > 0,

N N + N
(X) +

where

N+ -~:1 e i A H~ 2) (MA) dA
A

u separately by using the sub­
u < 0, let A = -~ and

(A24)

(A25)

(A26)
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APPENDIX

and

cos (A27)

The integral in equation (A27) obviously does not exist. However, remembering the
source of the difficulty, one can use equation (A20) to rewrite it as

-i2@
M

(A28)

by equation (9.6.4) of reference 4 followed by equation (1.13.43) of reference 6.
Writing equations (A24) and (A26) compactly gives

(A29)

From equation (9.1.6) of reference 4,

Using this result with equation (9.1.24) of reference 4, the integral becomes

N
±

2M iU'fCD -iMlul ~- - e e
1t 1

(A30)

The integrand has poles at ~ = ±1/M and branch points at ~ = ±1. The path of
integration is deformed in the complex plane as indicated in sketch A.
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APPENDIX

fl-plane

-11M -1 1 11M

Sketch A

The integral along the arc vanishes since
the real axis can therefore be replaced by
axis. Let \.l. = 1 - ia, then

and

Re(iMlul\.l.) > 0 there. The integral along
an integral parallel to the imaginary

i2 i( HM)u
e

1lMu
e -,; -.J,; ± i2Mu d,;

,; - i( 1 + M)u
(A31 )

Substituting this result and equations (A24) and (A25) into equation (A22) yields the
computational form of the kernel function

-k
• 0.2

-~t-' U
e ~(1 + u) ~1 -L1 g 8~

M
2

1 i(1+M)u+ e
41t~u

-'t"
e h ± i2Mu ~--'-'--=---- d,;

,;-i(1+M)U

(A32)

The integral may be evaluated as a Laguerre-Gauss quadrature with weight function

-,;
fi e •
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APPENDIX

HYTRAN Equations

The HYTRAN formulation uses the same boundary conditions as the Possio formula­
tion. However, the differential equation (eq. (1» omits the ~t't' term for the
HYTRAN formulation. In the dimensionless acceleration potential variable of this
appendix, the differential equation is

<p + ,1. - i2k(M/Q)2<\J = 0
xx ~yy ~ x (A33)

for the case of harmonic motion. The derivation can be carried through in a parallel
fashion to that given for the Possio kernel function. One finds

. Q2
-J.~ U

e (A34)

which is equation (11). As noted in the text, the HYTRAN kernel function differs
from ~he Possio kernel function in that the HYTRAN equation has M2 in place of the
M that appears in the Possio equation.

The computational form of the HYTRAN kernel function is

(A35)

LTRAN Equations

The only time derivative in the LTRAN equations occurs in the differential equa­
tion. The differential equation is thus the same as the HYTRAN equation, but the
boundary conditions and pressure coefficient use the quasi-steady expressions.

Kernel-function derivation.- The acceleration potential formulation is used
again with the solution effected by use of the Fourier transform. The problem state­
ment (eqs. (A7» becomes

<p + <p - i2k(M/Q)2<\J 0
xx yy ~ x

(Ixl < 1)
(Ixl > 1)

(A36)

16
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APPENDIX

where now the acceleration potential is

<)J(x,y)
1

- - C2 p = ¢>x (A37)

The most significant difference between the HYTRAN and LTRAN formulations lies in
the absence of the convective exponential term from the integral in equations (A36)
(cL eqs. (A7».

The formal integral transform solution is carried out in a manner similar to
that for the Possio formulation. The result is

(A38)

which is equation (12).

Computational form of kernel function.- In contrast to the Possio and HYTRAN
kernel functions, the LTRAN kernel function can be expressed in terms of Hankel
functions without an integration. For this case, the analog of equation (A17) is

Let

K(U,v)

- 2
A = AIM

2­a = M a

u

2
v slM

k 0-- --
81t~ Ov

2 1f24
e H .( a+M ) e -v ~a--M - dO" dA (A39)

(A40)

and dropping the bars, one obtains

Performing the inner integration, taking the indicated derivative, and setting
s = 0 (y = 0) yields

(A41 )

K( r)
ir

e
ira

e \~lcr+1" da (A42)
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APPENDIX

The branch of ~a2 - 1 has been chosen for which the real part of the radical is
positive as IRe(a)1 + roo

The integral (eq. (A42» is evaluated by deforming the path in the complex
plane. The branch chosen is defined in sketch B.

For

For _ra-::-r"0+1
Sketch B

It is convenient to treat positive and negative r separately. Let

N

For r > 0,

(A43)

Re(ira) < 0

in the upper half-plane. The path of integration may therefore be deformed into the
path shown in sketch C. The integral around the branch point vanishes since the
integrand is of order 1/~ there. Below the cut,

= 1t

18



APPENDIX

and above the cut,

o

The integrals above and below the cuts combine to give

-2 i CD e -ira lra+1 dO'
~a-:1"

1

For r < 0,

Re( ira) < 0

(A44)

in the lower half-plane and the path of integration may be deformed as shown in
sketch D. Again the integral around the branch point vanishes since the integrand is
of order 'JP1 there. Below the cut,

and above the cut,

= 0

Sketch C Sketch D
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APPENDIX

One obtains

(A45)

The two results for r > 0
< (eqs. (A44) and (A45» may be written compactly as

N (r)
±

+2 fa:> e-i Irio ~ 0:' 1 do
1 0 + 1

(a:> e- i Irio 1 ± 0

-2 )1 ~ 02 _ 1 do

(A46)

The integral has been cast in the form of an integral representation of the Hankel
function (eq. (9.1.24) of ref. 4). Thus,

(A47)

Taking the derivative (eq. (9.1.28) of ref. 4) and substituting the result in equa­
tion (A42) yields the final expression for the LTRAN kernel function:

(A48)

where

2
M k(x - $)

~2

This form for the LTRAN kernel function is very convenient since Bessel functions are
relatively easy to compute.
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