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INTRODUCTION

Some present-day aeronautics studies center on aircraft flight operations in
the airspace surrounding airports. The Aircraft-Noise Levels and Annoyance Model
(ref. 1), for example, attempts to quantify the noise impact of airport operations on
the surrounding community by combining descriptive information of flight operations
with a variety of demographic data about the community. In another study, research
is being conducted on the automation of terminal—-area flight operations in order to
improve overall air traffic capacity and efficiency as well as approach and landing
capability during adverse weather conditions (ref. 2).

Any study involving near-terminal flight operations requires an adequate model
of aircraft movement along a given trajectory. It is well known, however, that on
actual flights there is some dispersion of the individual flight paths along the
nominal trajectory. It is necessary to simulate these dispersions within the model
in order to accurately assess the effect of actual flight operations.

This paper addresses the problem of stochastically representing the geometry of
flight paths of arriving and departing aircraft at a given airport. The flight paths
are considered to be joined linear and curvilinear segments. The variables describ-
ing these segments are then derived. Statistics of the variables developed from a
sample of flight paths are used to select the best fitting distribution from several
candidate probability distributions. Conversely, information on the probability
distributions of the segment variables are used in a Monte Carlo simulation to
generate a random sample of flight paths at the airport. The analysis and simulation
techniques presented are illustrated using actual flight paths recorded at Dulles
International Airport.

DESCRIPTION OF VARIABLES

The discussion in this section addresses the variables used to describe the
aircraft flight paths. The variables are defined, and the procedures required to
transform radar tracking data to these variables are outlined.

Data Description

The tracking data available for this study consist of the three-dimensional
Cartesian coordinates (x,y,h) of aircraft trajectories relative to a ground-based
radar tracking system which records one data point per revolution of the radar
antenna. Since an aircraft is usually tracked for several minutes and the radar
rotates at a rate of approximately one revolution every 4.5 sec, one flight path is
represented by about 300 measurements. Sach a large number of measurements for a
single flight path would make the process of fitting distributions to many paths
complicated and computationally cumbersome.



Segment Representation

The analysis and simulation processes are simplified by defining a more global
geometric representation of a single flight path. To accomplish this, each flight
path is assumed to consist of alternating linear and curvilinear segments. The
segment extending from the end of the runway is always taken to be a linear segment
since, during a departure or an approach, the flight path in this area approximately
coincides with an imaginary linear extension of the runway. Line segments are
described by the three variables: length &, track angle ¥ (measured positively in
the clockwise direction from true north), and change in altitude Ah between end
points (fig. 1). The curvilinear segments are assumed to be arcs of circles. As
such, each is described by the radius of the circle r, the angular measure of the
arc 0O, and the change in altitude Ah between end points (fig. 1). The ground
track, which is the projection of the flight path onto the x-y plane, is defined by
L and V¥ for the linear segments and by r and 6 for the curvilinear segments.
Each linear segment is assumed to be tangent to the adjoining arc in order to - achieve

a smooth path.

To further limit the number of descriptive variables required, each flight path
is restricted to five segments at most. Thus, the path of a single trajectory can be
represented by a maximum of 15 variables. In addition, only the nine possible ground
tracks illustrated in figure 2 are allowed, since the near-terminal-area air traffic
tends to follow certain specified pathways. This means that for an arbitrary airport
and runway, segments near the runway (for example, L2) will be heavily répresented by
data, while segments farther from the runway (such as L7) may not be represented at
all. However, the nine allowable ground tracks provide basic patterns one might
expect to see near an airport.

Initial Coordinates

The final variables required to describe a flight path fixed in space are the
initial coordinates of the trajectory. Given the coordinates of the runway endpoint,
the point on the flight path (x,y,h) which is closest to the runway endpoint and
exceeds a specified minimum altitude h* is considered to be the first point on the
track. The minimum altitude h* 1is a value greater than the runway altitude to
ensure the aircraft is airborne. Hence, all data relating to aircraft movement on
either taxi aprons or runways are eliminated from the analysis. Furthermore, since
runway identification may not be given, locating the closest pair of flight-path and
runway—-end coordinates also identifies the runway used.

Flight-Path Processing
Given the initial point of the flight path, the Cartesian coordinates are
processed sequentially to the outer extremity of the trajectory. The processing
consists of grouping the coordinates into alternate linear and curvilinear segments
with the restriction that the first segment be linear. This approach requires that
data corresponding to landing aircraft be processed in reverse time order.

Detecting Transition Points

The essential requirement for grouping a set of Cartesian coordinates into
linear and curvilinear segments is the ability to detect the transition from line to
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.curve and from curve to line. Two methods of determining the transition point were
examined. For each method, consecutive triplets of x-y coordinates are sequentially
processed, beginning with the point nearest the runway. The first method, referred
to as the circular method, consists of fitting a circle through the three points by
finding the parameters of the equation (x - a)2 + (y - b)2 = r2, where a and b
are the x-~ and y-coordinates of the center of the circle. The second method, known
as the triangular method, involves the construction of the perpendicular bisectors of
any two sides of the triangle formed by the three points; the two bisectors intersect
at the center of the circle through the three points. (See app. A.) In tests of
these two methods, both gave identical results and required approximately the same
amount of computer programming effort, storage, and execution time. Therefore,
neither method offers any advantages over the other. The triangular method was
arbitrarily chosen for all subsequent computations.

The triangular method yields a value of the radius r of the circle through the
three points. When the points are collinear, r is infinite; if the points are
approximately collinear, then r is large. Hence, the criterion is established that
the points are considered collinear when r exceeds some value ry; otherwise, the
points define a circle of radius r. To reduce the chances of detecting a false
curved segment because of random errors on x and vy, the new curved segment is not
considered to be legitimate unless the criterion is fulfilled at three consecutive
triplets of points (i.e., five consecutive data points). The first of the five data
points then defines the start of the curve.

Determining Turn Direction

Figure 3 is an illustration of the method for determining the direction of the
turn (left or right). The origin of the axes is translated to the first point on the
curve, then the axes are rotated such that the first two points of the curve lie on
the new x-axis. The sign of the y-component of the third point in the new coordinate
system determines the turn direction (positive is left, negative is right).

STATISTICAL METHODS

This section considers the techniques applied to the variables described in the
previous section in order to develop the distributional properties of those vari-
ables. A brief discussion then follows on the utilization of the distributional
properties in a Monte Carlo simulation to generate flight paths.

Continuous Variables

Before discussing how the best fitting distributions are found, some comments on
the variables are in order. First, let ¥, and V¥,,4 Dbe the track angles of two
line segments and ei the turn angle of the intervening curved segment for some
pathway. Then, if 9i is always defined to be positive, the geometry of a smooth
flight path requires that Yi+1 =¥ + ei for a right turn and Y¥;, , =Y¥; - 8; for
a left turn. In other words, if any two of these angles and the turn direction are
known, then the third angle can be determined from one of these equations. In this
study, the track angles are stochastically represented by best fitting distributions

and turn angles calculated deterministically from the appropriate equation.



Second, the line segment lengths £ are positive, continuous variables bounded
below by zero and (theoretically) unbounded above. Since the changes in altitude
Ah  are measured from the runway out along the flight path, one would expect them to
be similarly bounded below by zero. As a result, the three-parameter lognormal
distribution (see app. B), which is defined on the positive real axis, is considered
as a possible representative distribution.

Measurements obtained with an electronic instrument such as a radar device, or
the random errors associated with those measurements, are usually assumed to be nor-
mally distributed. However, it is possible that some of the variables considered
here are more widely dispersed; that is, the distributions may have "fatter" tails
because of pilot differences, local air turbulence, etc. Since the logistic distri-
bution (app. B) is shaped like a normal distribution but has more area in the tails,
the normal distribution and the logistic distribution are considered candidate dis-—
tributions. The uniform distribution (see app. B) is the fourth continuous distri-
bution considered since, in some small samples, the variables may appear to be
uniformly distributed.

Discrete Variables

Since the altitude of an aircraft is measured in 100-ft units, initial altitude
hy and the change in altitude Ah along any segment can be considered discrete
variables. Three discrete distributions were considered as candidate representations
of the change in altitude: binomial, negative binomial, and Poisson (app. B).
Binomial wvariables are bounded below and above. The distribution itself may be sym~
metric or skewed in either direction and has as one characteristic a mean value which
is greater than the variance. Negative binomial variables are bounded below, but
unbounded above; for this distribution, the mean is less than the variance. Poisson
variables are also bounded below and unbounded above, but the mean and the variance
are equal. Since these distributions are defined for nonnegative integer values and
since the minimum values of the initial altitude h0 and the change in altitude
Ah may be positive, the data are translated by the minimum value. The appropriate
digtribution to use is (app. B):

The negative binomial distribution, if z - z* ¢ 52

The Poisson distribution, if z - z* = 52

The binomial distribution, if z - z* > 52

where z* is the minimum value and 2z is the mean of the random variable z. Since
equality is unlikely, the Poisson distribution is chosen if (z - z*) and the sample
variance s? differ by no more than 5 percent. Estimation of the distribution
parameters is given in appendix B. For a sample of size one, the distribution is
assumed to be binomial with a zero variance.

Statistical Representations

Given samples of variables describing the air traffic on the various pathways
from one runway of an airport, the procedure for determining statistical representa-
tions of the variables is relatively straightforward. For each of the variable types
of a given segment, the sample mean and variance are calculated. In addition, the
three-parameter lognormal statistics and the upper and lower limits of the uniform

4



‘distribution are calculated for the continuous variables. The lognormal mean and

variance are found by calculating the mean and variance of the natural log of the
data. The "threshold" parameter (lower bound) of this distribution is taken to be
slightly smaller (about 0.1 percent) than the minimum value of the data. 1In refer-
ence 3, this is cited as the simplest and least accurate estimate, but it is also
shown that the distribution is not sensitive to errors in the "threshold"
parameter. The uniform limits are the minimum and the maximum values of the data.

Fitting Distributions

Selection of the best fitting continuous distribution to a set of segment vari-
ables is made by applying the Kolmogorov-Smirnov one-sample test (ref. 4) to the
variables on each segment and to each of the four continuous distributions. The
Kolmogorov-Smirnov test provides a nonparametric statistical measure of the deviation
between a hypothesized distribution and the sample distribution of the segment vari-
able. The significance level is defined to be the probability of rejecting a distri-
bution when the data actually are a sample from that distribution. The best fitting
continuous distribution is the one with the minimum significance level based on the
Kolmogorov-Smirnov statistic. For the initial altitude and change in altitude, the
appropriate discrete distribution is chosen according to the relationship between the
mean and the variance.

Probabilities of Alternative Paths

As indicated in figure 2, an aircraft can follow three or more alternative paths
at points A, B, and C. Based on the original data, the ground track at point A, for
example, is modeled as a line segment (L1), a left turn (ct, if O » 90°; C2, if
8 < 90°), or a right turn (C5, if © < 90°; C8, if 6 » 90°). By counting the
aircraft on each segment, the probability of an aircraft using a particular alter-
native path is readily calculated as the ratio of the number using the alternative
path to the number using the previous segment.

Once the best fitting distributions of the variables and the path probabilities
have been determined, the air traffic for a given runway has been statistically
modeled. Although it was not a part of thig study, it is also easy to stochastically
model total traffic for an airport by determining the probable use of each runway.

MONTE CARLO SIMULATION METHOD

All of the random numbers required for simulating the flight paths can be calcu~
lated from standard normal and uniform random variables generated by standard tech-
niques (ref. 5). Random variables of specific normal and uniform distributions are
obtained by appropriate translation and scaling of the respective standard vari-
ables. ILognormal variables are calculated by logarithmic transformation of standard
normal variables. Logistic and discrete random variables are obtained by applying
the appropriate inverse cumulative distribution function to standard uniform random
variables.

Given a statistical model of flight paths on each runway, a Monte Carlo simula-
tion can be readily performed. Let N be the number of flight paths to be generated
for one runway. For each flight path, the initial coordinates (xo,yo,ho) and the



variables of the first line segment are randomly generated; Cartesian coordinates of
points along this segment are generated. (See app. A.) A uniformly generated random
number is compared to the unit interval which has been subdivided according to the
path probabilities in order to determine the next segment to be generated at points A,
B, and C. The general procedure is to randomly select a path when necessary,

generate random variables appropriate to the distributions of the current segment,
and generate coordinates of points on that segment before moving to the next segment
of the flight path. This procedure is repeated N times for the desired N flight

paths.

APPLICATION TO DULLES AIRPORT DATA

This section presents the application of the preceding analysis and simulation
procedures to flight-track data supplied by the Federal Aviation Administration (FAA)
for flights at Dulles International Airport as an illustrative example. All of the
calculations required for these procedures were performed on Control Data CYBER 170
series computers at NASA Langley Research Center.

Description of Dulles Data

Shown in figure 4 are the runway configuration, the runway numbering scheme, and
the relative location of the radar at Dulles International Airport. The system
coordinate origin is the Dulles terminal radar located at 38°57'24" North; 77°27'50"
West. The raw FAA data consist of aircraft type identifier, unique track identifier,
flight number, time tags, and Cartesian coordinates of 678 flight operations at
Dulles on July 24 and July 30, 1979. The x-y coordinates are measured in units of
256ths of a nautical mile (1 n.mi./256 = 23.75 ft) from the radar, and the altitude
is given in hundreds of feet. Aall data points were coarsely smoothed by the FAA
using a three-point moving average.

All of the general-aviation, nonscheduled-commercial, and military flights were
discarded from the data set in order to focus on the trajectories of commercial jet
transports. The ground tracks of the remaining arrivals and departures are illus-
trated in figures 5 and 6; these plots include data points corresponding to aircraft
taxiing on the ground. These latter points were eliminated from the analysis by
using a minimum altitude of 500 ft. Some of the illustrated ground tracks were also
eliminated because they represented aircraft passing through the area, practicing
landings, or incomplete data-point sets. For example, the loop south of runway 5 in
figure 5 represents an aircraft performing a "touch and go" prior to the actual
landing.

Modifications for Dulles Data

The set of flight paths selected for use in this study consists of 135 arrivals
and 105 departures on runways 1 to 5. Table I is a list of the number of flights by
runway. Throughout the study, arrivals and departures are considered separately
since the characteristics of the two types of flight paths differ. For a departing
flight, the initial linear segment (L2) is quite straight and is usually shorter than
the same segment for an arriving flight. The differences in length and linearity of
this segment for the two types of flights are a result of the navigational freedom of
a departing aircraft to turn soon after leaving the runway and the requirement of an
arriving aircraft to align its path with the runway. For many arriving flights, the
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initial linear segment contained several shallow turns indicating possible overcom-
pensation for crosswinds and other turbulence. In order to reduce the effect of the
shallow turns when determining the transition to a "true" curvilinear segment, the
x-y coordinates of only the arrival data were additionally smoothed with a five-point
moving average.

A value of 2.5 n.mi. was used for the threshold radius ry to distinguish
between linear and curvilinear segments. The choice of r is critical since a
small value will cause points on wide turns to be treated as lines, and a large value
will cause noisy points on a line to be treated as turns. The latter situation may
be a result of atmospheric turbulence or shallow maneuvers during a landing
approach. The value of 2.5 n.mi. was determined experimentally from the Dulles data
and is acceptable based on a visual comparison of the data and the fitted segments.

Treatment of Track—-Angle Anomalies

With the exception of the track angle V¥, the segment variables are well-defined
by the radar data. The track angles for north-heading linear segments present a
special problem, particularly for the initial segments from runways 2 and 4. For
aircraft flying west of north, the track angle is near 360°, and for aircraft flying
east of north, the track angle is close to 0°; the mean of all such northbound track
angles is, therefore, about 180° (south). This error can be corrected by adding 360°
to the east-of-north track angles before calculating any statistics.

Particular attention was required for the one difficulty that arose in
generating track angles from the distributions. Because of small sample sizes and
large dispersions, the track—-angle distributions for successive linear segments (for
example, L5 and L6 in fig. 2) sometimes intersected. The result was a loop in the
simulated ground track. For example, the path from L5 to L6 requires a left turn
through C3, with the track angle on 16 being less than that on L5. When the
distributions intersect (see sketch), it is possible to generate a track angle on L6

f(Y)
L6

L5

greater than the track angle on L5 which would suggest a right turn; however, the
model specifies C3 as a left turn and a left turn of almost 360° to the new track
angle on L6 results. In order to virtually eliminate intersecting distributions for
this variable, the standard deviations of the two intersecting distributions were
adjusted down and both distributions were thereafter assumed to be normal. The
standard deviations were adjusted so that the midpoint between the two means is at



least 3.2 standard deviations from each mean. This reduces the chances of the two
distributions intersecting by a factor of 100.

Distributions of Continuous Variables

The number of best fitting distributions found for the continuous variables are
shown in table II. Each best fit distribution results from applying the Kolmogorov-
Smirnov test to the possible distributions that may fit all measurements of one
variable (such as r) on one segment. Table II does not include results for samples
of size one or two for which the distributions are assumed to be normal; for a sample
of size one, the variance is taken to be zero (i.e., the variable is deterministic).
Comparison of the best fitting distributions for various sample sizes indicated that
there was a slight correspondence between sample size and type of distribution which
best fits a sample. For the initial ground-track coordinates (XO'YO)' the type of
distribution appears to be independent of sample size. The numbers in parentheses in
table II indicate the number of best fitting distributions for which the significance
level in the Kolmogorov-Smirnov test is less than 0.1.

For the distance variables (L and r), the normal was the best fitting distri-
bution for sample sizes ranging from 3 to 45. The logistic distribution was best
fitting for sample sizes from 4 to 29, and the lognormal distribution was best
fitting for sample sizes from 3 to 33. However, the best fitting normal and
logistic distributions occurred fairly uniformly over all the sample sizes; whereas,
10 out of 13 lognormal distributions best fit samples of size 10 or less. The
lognormal distribution tends to fit smaller samples, apparently because a small
sample is more easily skewed by one or two random values than a large sample. The
uniform distribution best fits only one sample of size 6; this evidently is the
result of a small sample appearing uniformly distributed by chance. In general, the
continuous variables appear to be fit best by distributions which are symmetric and
unimodal (normal or logistic).

Distributions of Discrete Variables

Presented in table III are the results of fitting discrete distributions to the
altitude data (initial altitude h; and change in altitude along a segment Ah).
The table does not include binomial distributions resulting from samples of size 1.
Prior to comparing the mean and the variance in order to select the appropriate
distribution, the initial altitude was shifted to the origin by h* and the change
in altitude by the minimum Ah wvalue for each segment. As indicated in table III,
these two types of variables are overwhelmingly best represented by negative binomial
distributions. The initial altitudes in the arrival data best described by a Poisson
distribution occurred on runway 4 where all 12 initial altitudes were equal to the
minimum value of 500 ft. The binomial and Poisson representations resulted in sets
of size 11 and 3, respectively, and may be chance occurrences. Generally, the
variances of these data exceed the respective means because hO and Ah have fixed
lower limits and somewhat restricted upper limits. The upper limits result from
ascent/descent rates constrained by aircraft capabilities and passenger comfort. The
net result is that the negative binomial distribution generally provides the best
representation of the altitude variables. It is interesting to note that all initial
altitudes in the arrival data (that is, altitudes at the point closest to the
runway end) were less than 1100 ft; in the departure data, only 60 percent of the



initjial altitudes were less than 1100 ft. This difference is indicative of the
pilots' attempts to land smoothly along shallow slopes and to gain altitude rapidly
during takeoffs.

Test of Simulation Model

To test the simulation model, 50 flights each of arrivals and departures per
runway on runways 1 to 5 were generated using the best fitting distributions from the
arrival and departure data analyses. Arrival paths on runway 1 and departure paths
on runway 4 were not generated because of the small number of flights on those
runways in the original data. The ground tracks from the simulations are shown in
figures 7 and 8. Comparison of figures 5 and 6 with figures 7 and 8 indicates the
accuracy of the simulation model. However, three thoughts must be kept in mind when
examining these figures: (1) some of the ground tracks shown in figures 5 and 6 were
eliminated from the analysis, (2) the simulation results are based on only a five-
segment flight-path model, and (3) the number of flights per runway in the original
data is generally less than 50. In general, the model simulates the actual flight
paths very well.

As a further comparison of the simulated data with the Dulles data, plots of
altitude with respect to x~ and y-coordinates are presented in figures 9 to 12 for
the original and the simulated data. Comparisons of actual and simulated data are
illustrated in figures 9 and 10 for arrival data on runway 3 and in figures 11 and 12
for departure data on runway 5. These runways were chosen for comparison because
they bore the heaviest traffic in the original data. The figures indicate that the
simulated flight paths follow the same general trends as the actual flight paths.
The most visible weakness of the simulation model appears to be the larger disper-
sions of the simulated flight paths. The larger dispersions are apparently because
of large estimated variances of segment variables which could be caused by the small
samples available. Small samples can be expected on segments 4 and 5 of any pathway
unless the pathway bears a large proportion of the traffic or the corresponding
runway is frequently used.

CONCLUDING REMARKS

In the analysis discussed here, the radar tracking coordinates of points along
an aircraft flight path have been used to reconstruct the flight path as an
alternating sequence of joined linear and curvilinear segments in three-dimensional
space. Each of the segments is completely described by three variables$ and, for
curvilinear segments, a turn direction. The basic linear and curvilinear segments
were combined to produce a nine-path model of air traffic applicable to any runway.
Several of these runway traffic models can then be combined to model the air traffic
at any airport.

The model discussed was applied to radar tracking data of commercial flights at
Dulles International Airport. The continuous segment variables (length, radius, and
initial position) derived from the Dulles data were generally found to be best repre-
"sented as normal or normal-like probability distributions. The discrete altitude
variables (initial altitude and change in altitude along a segment) were best
described by negative binomial distributions. A Monte Carlo simulation of Dulles
arrival and departure flight paths based on the derived probability distributions



compared very favorably with the original data. The techniques presented in this
paper, therefore, provide reasonable approaches to modeling and simulating near-

terminal aircraft flight paths.

Langley Research Center

National Reronautics and Space Administration
Hampton, VA 23665

March 4, 1982
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TABLE I.- NUMBER OF USABLE COMMERCIAL FLIGHTS
IN DULLES DATA SET

Runway Arrivals Departures
1 1 21
2 19 17
3 54 24
4 12 3
5 49 40
6 0 0

Total 135 105

TABLE II.- NUMBER OF BEST FITTING DISTRIBUTIONS FOR

CONTINUOUS VARIABLES

Probability distribution?
Variable —
Normal Lognormal Logistic Uniform
Arrivals
X9 1(0) 2(0) 1(0) 0
Yo 2(1) 2(0) 0 0
2 12(6) 4(2) "1 0
r 4(4) 4(4) "(mn 0
Departures

Xq 1(1) 2(2) 2(0) 0
Yo 3(1) 1(1) 1(0) 0
L 10(4) 3(1) 3(1) 1(1)
r 5(5) 2(2) 2(1) 0

@Numbers in parentheses show number of

butions with significance level less than 0.1.

distri-
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TABLE IIT.- NUMBER OF BEST FITTING DISTRIBUTIONS FOR

DISCRETE VARIABLES

Probability distribution
Variable -
Binomial Negative binomial Poisson
Arrivals
hy 0 3 K
A (line) 1 16 0
M (curve) 0 8 1
Departures
hg 0 5 0
A (line) 0 17 0
& (curve) 0 ] _ 0




Y (NORTH)

0 X (EAST)

Figure 1.- Variables used to describe ground track of two
segment types.
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Figure 2.- Possible flight paths emanating from runway.



Figure 3.- Discrimination between left and right turns.
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Figure 10.- Altitude of arrivals on runway 3 at positions north (+) and south (-) of
radar-beacon at Dulles International Airport. : :
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Figure 11.~- Altitude of departures on runway 5 at positions east (+) and west (~) of

- radar beacon at Dulles International Airport.
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Figure ‘12.- Altitude of departures on runway 5 at positions north (+) and south»(-)
of radar beacon at Dulles International Airport.
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APPENDIX A

ANALYTIC GEOMETRY OF FLIGHT PATHS
Triangular Method of Fitting a Circle

Let (x1,y1), (xz,yz), and (x3,y3) be the Cartesian coordinates of three points
in two-dimensional space. Without loss of generality, consider the line segments
between (x1,y1) and-(xz,yz) and between (x2,y2) and (x3,y3). Points along the
perpendicular bisector of either line segment are equidistant from the two points
defining the segment. The intersection of the two perpendicular bisectors is,
therefore, equidistant from all three points and defines the center of the circle
through the points. If the perpendicular bisectors do not intersect, then
essentially the points lie on a circle of infinite radius; this is equivalent to the
three points being collinear.

Consider first the points (x1,y1) and (x2,y2). The line segment from the first
point to the second point has slope (y2 - y1)/(x2 - X4) and is given by the equa-
tiony =y, + (x - x1)(y2 - y1)/(x2 - x_.). The point of bisection of this line
segment is at (0.5(x1 + X5), 0.5_(y1 + y,)). For a line perpendicular to this line, the
slope is the negative reciprocal of the original slope, or —(x2 - x1)/(y2 - y1).
Therefore, the equation of a line through the point of bisection and perpendicular to
the line segment from (x1,y1) to (x2,y2) is:

y = 0.5(y1 + y2) - [x - 0.5(x1 + x2)](x2 - x1)/(y2 - Y1) (at)

By a similar argument, the equation of the perpendicular bisector of the line segment
from (x2,y2) to (x3,y3) iss

y = 0-5(y2 + y3) - [x - 0-5(x2 + x3)](x3 - x2)/(y3 - Yz) (A2)

The center of the circle is the simultaneous solution of equations (A1) and (A2).

Generating Points Along Segments

Let the initial point (xi'yi’hi)’ altitude change (Ah), length (%), and track
angle (¥ of a line segment be given. In order to generate points spaced AL wunits
apart along the segment, let m = 2/A%1 be the number of points to be generated. The
coordinates of the points are given by

Xy = X4 + j AR sin ¥

Yy = ¥y + 3 AR cos ¥

hj = hi + j Ah/m
where j = 1,2,;0.,!“.0
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For curved segments beginning at (xi,yi,hi) and having radius (r), turn angle (9),
and altitude change (Ah), the previous line segment must be tangent to the arc at the
initial point of the arc. Let Y be the track angle of the previous line segment,

AL be the spacing of the points along the arc, m = r8/A%, and A8 = 6/m. ILet turn
direction be indicated by T = +1 for a left turn, T = -1 for a right turn. The
coordinates of the points along the curve are given by the equations

Rj = 2r cos Bj
X, = x, + R, sin (¥ - Tj A6/2)
] i J
yj =y; * Rj cos (¥ - T§ A6/2)
hj = hi + j Ah/m
where j =1, 2, ¢es, m.

These equations are easily derived from sketch Af.

Sketch A1
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APPENDIX B

PROBABILITY DISTRIBUTIONS

This appendix briefly describes the probability distributions used in this
study. For each distribution, the presentation includes the probability density
function (pdf) defining the distribution and includes the equations used to estimate
the parameters of the distribution.

Continuous Distributions
The pdf of a continuous random variable must fulfill two conditions. The first
condition is that the pdf (£(z)) is nonnegative for all real values of =z. Second,

the integral of f£f(z) over all =z is equal to 1 (ref. 3).

Uniform distribution.- The uniform distribution (ref. 6) has the pdf

. 3 (d € z € e)

0 (Otherwise)

This pdf defines the distribution of what are commonly called random numbers. Since
d and e define the limits of the interval over which £(z) is positive, they may
be estimated from a random sample by setting d equal to the minimum of the sample
and e equal to the maximum. The distribution is illustrated in sketch B1.

Sketch B1
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Normal distribution.- This is the symmetric, bell-shaped, or Gaussian distri-
bution (ref. 3) usually associated with instrumentation errors or "noise." The pdf
is

(- < 2z < »)

The parameters § and ¢ are the population mean and the standard deviation which
are directly estimated by the sample mean =z and the standard deviation s. The
distribution is shown in sketch B2.

f(z)

Sketch B2

Logistic distribution.- The logistic distribution (ref. 6) shown in sketch B3 is
shaped very mach like a normal distribution (see sketch B2) except it has a larger

Sketch B3
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kurtosis (peakedness) and correspondingly more probability in the tails. The
logistic pdf is

£z) = ——lexpl-n(z - W/(o\3) /11 + expl-n(z - W/(c3)r}>
o\3

for == < z < =, The parameters u and o are the population mean and the standard
deviation and are estimated by z and s. This distribution can be derived in
several ways, such as the solution of an ordinary differential equation describing
growth curves.

Lognormal distribution.- The three-parameter lognormal distribution (sketch B4)
is defined by the probability density function (ref. 3),

[z -~ ©)oyzm) " exp[-0.5{log (z - T) - u}z/czl (z > 1)
f(z) =

0 ({Otherwise)

In this function, T 1is the threshold parameter and p and ¢ are the mean and the
standard deviation of log (z - T). The name is derived from the fact that if =z

has a lognormal distribution then 1log (z - 71) is normally distributed. This is
illustrated by substituting log (z - 1) for =z in the normal pdf. The lognormal
distribution has proven useful in describing the distribution of particle sizes and
of critical drug dosages. The distribution is skewed to the right (see sketch B4)
with the majority of the probabilities associated with values less than the mean.

f(z)

Sketch B4

From a random sample of data, the threshold <t can be estimated using a value
less than or equal to the minimum of the sample. The mean and standard deviation
(b and o) are estimated by transforming the sample with =z' = log (z - 1) and
calculating the sample mean and the standard deviation of z'.
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Discrete Distributions

Discrete distributions describe the probability of discrete events occurring and
are therefore defined on the (usually nonnegative) integers. A discrete probability
density function must be nonnegative for all integer values and must sum to one over

all the integers (ref. 7).

Binomial distribution.- This distribution describes the probability of obtain-
ing 2z successes in n independent trials when the probability of success on one
trial is p(0 < p < 1). A common experiment to which this distribution applies is
the tossing of a coin n times. The probability density function (ref. 7) is given

by

(:)92(1 - p)7E (z =0, 1, 2, eve, 1)
0 (Otherwise)

This distribution may be symmetric or skewed to the left or right. As shown in
sketch B5, the distribution skewed slightly to the right.

0.6,

n=>5
0.4}k p=0.4

f(z)
0.2}
0. : Ll ﬂ 0
0O 1 2 3 4 5
4

Sketch B5

Since the mean and variance are np and np(1 - p), respectively, n and p
are estimated from Z and s2 by

3
i

22/ - &%)
and

1 - (52/2)

e}
il

Note that estimation of positive n and p requires z > sz.
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Negative binomial distribution.- This distribution is complementary to the
binomial distribution in the sense that it provides the probability for needing to
perform 2z number of independent trials in order to obtain M successes when the
probability of success on each trial is p. In terms of this definition, the pdf
(ref. 7) is given by

z -1 z=-M

_(M - 1)pM(1 - p) (z =M, M+ 1, +00)

0 (Otherwise)

This distribution is always skewed to the right, as illustrated in sketch B6.

0.6
M=5
= 0.4
0.4 P
f(z)
0.2
0.0 ﬂ n rl n n [
0 1 2 3 4 5 6 7 8
Z
Sketch B6

The mean and variance are M(1 - p)/p and M(1 - p)/p2, respectively. Hence,
the estimates based on the sample mean and variance are

M= 322/(s> - 2)
and
p = E/s2

These estimates require that 52 >z in order for M and p to be positive.

Poisson distribution.- The Poisson distribution (see sketch B7) is the limit of
binomial distributions as n becomes infinite, p tends to zero, and the mean
remains constant (np = A). The probability density function (ref. 7) is
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A% exp(-\)/z! (z =0, 1, 2, eee; A > 0)
f(z) =
0 (Ootherwise)
0.6 5
A =2
0.4

f(z)
0.2

0.0

Clr___J T

T
3,] oo |

f—t
N
w
op
~p

Sketch B7

This distribution is often used in queueing theory and in reliability theory where
the event is an arrival at a waiting line or the failure of a machine, respec-

tively. The random variable 2z is the number of events occurring in one unit of
time.

The mean and the variance of the Poisson distribution are identical and are
equal to A. Therefore, this digtribution applies if Z and 52 are approximately
equal; A may be estimated from z or s2 , or the average of Z and s2.
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SYMBOLS

a,b coordinates of center of circle

A,B,C points where alternate paths diverge

C1,+¢..,C8 designators of curvilinear segments

d,e lower and upper limits of uniform distribution
£(z) probability density function of =z

h altitude, hundreds of feet (H on computer plots)
Ah change in altitude along segment, hundreds of feet
h* minimum altitude, hundreds of feet

h0 initial aircraft altitude, hundreds of feet

2 length of linear segment

AL increment to linear segment length

L1,¢es,L12 designators of linear segments

m number of points generated along segment

M negative binomial parameter

n binomial parameter

N number of flight paths generated from one runway

p probability of success on one trial

r radius of circle

ry criteria for distinguishing between curve and line; threshold radius
R distance from initial point to arbitrary point on curve
s sample standard deviation

s2 sample variance

T turn direction indicator (+1 is left, =1 is right)
X,y Cartesian coordinates (X,Y on computer plots)
XgrYg initial Cartesian coordinate of flight path

x',y! Cartesian coordinate used to find turn direction

z random variable
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sample mean
z* minimum value of 2z in sample
z' log transform of (z - T)
o angle between x-axis and line segment, rad
e turn angle, rad
AG increment to turn angle, rad
A parameter of Poisson distribution
B population mean
c population standard deviation
T threshold parameter of lognormal distribution
¥ track angle, rad
Subscripts:
i index of segment parameters
3j index of coordinates along segment
Abbreviation:
pdf probability density function
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