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ABSTRACT

This report deals with progress made on the Grant NSG-3048 during the
twelve month period beginning October 1, 1980 and ending September 30, 1981.
The NASA Technical Officer for this period was Dr. Kurt Seldner of Lewis
Research Centsr. The director of the research at the University of Nutre
Dame was Dr. Michael K. sain, who has been assisted by Mr. Stephen Yurkovich,
Mr. Joe P. Hill, and Mr. Thomas A. Klingler, research assistants, in the
Department of Electri- al Engineering. Mr. Yurkuvich received the degree
of Mastar of Science ¢uriang this period, for his January 1981 thesis en-
titled "Application of Tensor Ideas to Nonlinear Modeling and Control".

Mr. Hill and Mr. Klingler expect to complete research investigations for
the Master of Science degree within the next calendar year. Mr. Yurkovich

may complete requirements for the degree of Doctor of Philosophy in 1982.

Researches during the preceding calendar year have centered on basic
topics in the modeling and feedback control of nonlinear dynamical systems.
Of spacial interest have been the following topics: (1) the role of series
descriptions, especially insofar as they relate to questions of scheduling,
in the contcol of gas turbine engines; (2) the use of algebralc tensor
theory as a technique for parameterizing such descriptions; (3) the rela-
tionship tetween tensor methodololy and other parts of the nonlinear lit-
erature; (4) the improvement of interactive methods for parameter selection
within a tensor viewpoint; and (5) study of feedback gain representation

as a counterpart to these modeling and paramecterization ideas.

Progress has been made in all five of the areas just described. Of
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special interest, we believe, are the natural design ties which exist be-
tween scheduling and series representations and the natural mathematical
ties which exist between symmetric tensor representations and formal series.
In the light of rapidly evolving capabilities of microcomputers and mini-
computers, in view of the qualitative tensor model possibilities estab-
lished by Mv, Yurkovich in M.S. studies, and taking into account both the
state of the art and prospects for further advance in tensor techniques

for feedback from such models, we believe that significant opportunities

for research progress are cccurring in this area,
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I. BACKGROUND

1.1 INTRODUCTION

i In this report, we discuss progress which has been made on NASA Grant
NSG-3048, entitled "Alternatives for Jet Engine Control", during the
twelve mouth period beginning on October 1, 1980 and ending on September

30, 1981.

This section contains, in subsections }.2 and 1.3, some mathematical
background material, which may be useful for reference during an examina-

tion of later sections.

Section II reports on the results of an extensive literature examin-
ation carried out by Mr. Stephen Yurkovich. This material explains many
of the relationships between the theoretical machinery in use under this
grant and various other methodologies involved in other theoretical
studies. Insofar as we can determnine, this group remains the pioreer in
assessing practical utility of such methods for use in realistic appli-
cation simulations. This means that our viewpoint and evaluation may be
weighted in a manner different from that of the pure theoretical investi-

gator.

Section III treats in an introductory way the polynomic and formal
series ilmplications of controller scheduling. The practical process of

scheduling linear multivariable controllers leads naturally to families

RvS——

such as those which we have under investigation.

=

Section IV gives an update on the group's progress in developing

parameter selection methnds for choosing coefficients in tensor represen-
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tations. This work has been carried out by Mr. Thomas Klingler. As will
be apparent in the comparison of present capabilities with thcse of last
year, a number of very positive steps have been taken. We expect these

steps to be of conusiderable assistance in subsequent work.

Section V deals with the use of feedback on nonlinear tensor dynamical
models. This study {s in the formative stagss and is being carried out by

Mr. Joe Hill.



1.2 ABTRACT DIFFERENTIATION

As will be indicated in Section 1.2, the idea of pclynomic scheduling,
of gains cr time constants, suggests a state description in terms of series.
Because we wish to use operator theoretic methods to some extent, it is
convenient here to ask a few introductory questicns about derivatives in

such a context.

Let V and W be normed real vector spaces, with Z open in V.,
A function f : Z + W 1is differentiable at a point p in 2Z 4if there
exists a continuous linear map F : V -+ W such that, for (p+h) in 2
and h in V,

lim  [[f(p+h) - £(p) - Fh|]
[In[|-0 Thil

- o .

If F exists, then it is unique and is called the derivative ¢f f at
p, and is dencted by

(DE)(p) : V+W .,
In case f 1is differeutiable on 2, then we have a construccion

Df : Z + L(V,W) ,
where L(V,W) denotes the real vector space of R-linear maps V - W,
Higher order derivatives are definad in a recursive fashion,

@) (p) = @O E)) ()

with r a positive integer, provided that the indicated limit exists.

An important connection exists between the calculus on rnormed vector
spaces and the tensor algebra. Indeed,
D2£(p) € L(V,L(V,W) ,

D3E(p) € L(V,L(V,L(V,)))



whenever the limits exist. Laet us denote by
L(Vl |v2’ L3N ] ,Vn,")
the redl vector space of n-linear functions

V1 x V2

xn.l%¢w,

an n-linear function being one which is linear in its remaining argument
whenever (n~1) of its arguments are fixed. It can be shown that there
exist isomorphisms

LV V) = L(VLL(V,W)

L(V; Yy Vgu W) + L(V, LV, L(V,, W)

so that (Dtt)(p) can be regarded as an :-linear map vE - w, up tc iso-
morphism. We suppress '“is isomorphism and think of (Drf)(p) as just

such a map.

It is now straightforward to establish a connection with the tensor
algebra, and we do so in the section following. The importance of the
connection lies in itn parametric possibilities: Every r-linear map can
be composed from a linear map and a universal r-linear construction called
tensor product. In a sense, the linear map embodies the parameters which

are available for scheduling; and we pursue this view in a later section.



1.3 TENSOR ALGEBRA

In this section, we develop soms of the structures with which we can
subsequently disci.s scheduling questions in Section 3.3. Let V be a
resl vector space. For each integer r which is two or greater, lat

(o°v, o)
be a tensor product for r copies of V. The notion extends to 1 and O
by the definitions
oveyv , Over.

The sequence o’v, t=0,1,2,..., can be developed into a biproduct, and
the images of o'V under insertion can be given the same notation. Then
the tensorial powera o™V can be developed into an associative algebra by

defining the internal direct sum

w = E v,
n=0

and by equipping OV with the bilinear mapping (a,8) = a8 for a, 8, aB
¢ @ V whose result is defined by

af = Z Gn ® Bm ’

where a = z . f = Z Bm for an € OnV and Bm € OmV. With this multi-
n m
plication, @V becomes the graded tensor algebra over V with elements
4
(ao. al....), which are sequences of the tensors a, € eV, {=0,1,...,

and with unit element (1,0,...). We emphasize the fact that multiplica-

tion in the tensor algebra is not a tensor product.

Now let @V and oW be tensor algebras as defined above, over V
and W respectively. For every pair n, m 2 1, let 0:(V,W) be a tensor

product nf o™V and o“w. that is,



o:(v.w) . (o™) o (o) .

We set og(v.u) = o and o:(v.w) ] O'H. In a manner similar to that
preceding,

o:(v.w) , n=0,1,2,..., 3= 0,1,2,...

can also be developed into a biproduct; and the images of each of these
spaces under natural insertion into the biproduct can again be given the
same symbolic representation. Again, then, we construct the internal direct
sum
° n
oV, W) = ] @ (V,W)
n,m20
with
It n
o(v,W) = ] [ ] e (V,W)]
k=0 n+mek

functioning as the induced gradation on @(V,W).

Now consider two spaces O:(V.W) and a:(v.w). There exists a unique
bilinear mapping

. n « @f - atr
W am(v W) ’5 (V,W) 'MB (V,W)

with action
u(an ®8,a 9 Bs) ~ (an ® °r) ® (Bm ® Bs) ,
r 8 n+r
where a € v, a, €OV, B € omw, Bs € 9 W, The pair (Om+s(V.W).u) is
a tensor product, or

n+r n r
am+'(v,W) - om(v,W) ® a’(v,w)

and

(an o “r) '1 (sm 9 ss) = (an @ am) 02 (ar ® 88) .



We have subscripted the product symbol @ in this equation in order to
emphasize the fact that the defining product '1 on the left side is be-
tween an (n+r)~tensor and an (m+s)=-tensor, while the defined product °,
on the right is between an (n+m)-tensor and an (r+s)-tensor.

An algebra structure may be placed on o(V,W) by defining a multi-

n

plication operation. To this end, let “m € O:(V,W) and B: € O:(V,W)

so that the tensors

a= J q: , 8 = 7 B:
n,m r,s
are elements of @(V,W). Then the product of two such tensors is given by
, n r
ud = ] (a @8,
n,m
r,s
where the symbol @ {s the same as 32 above. Notice that the multipli-
cation rule implies

(an ? Bm)(ar ® Bs) - (an ® Bm) ? (ar ® Bs)
= (a ®a) @ (8, ® 8,)
= (aga) ® (88,) .
This relation shows that the algebra @(V,W) is the canonical tensor pro-
duct of the subalgebras @V and oW, or
@(V,W) = (8V) @ (eW) .
Our motivation is, of course, the expansion of functions £f : X x U + X,

for X a real vector space of states and U a real vector space of con-

trols.

In concluding this section, which goes into considerable detail, we

remark that there iz more than one way in which to develop a tensor algebria.



A portion of the difficulty in applications studies is to de:.rmine how
to develop the sequence of tensor vector spaces into an algebra. Various
choices on multiplying tensors may be made. The foregoing choice fits

well with preceding grant studies and is suitable for use in later sec-

tions of this report.




II. PROGRESS IN MODELING THEORY*

2.1 INTRODUCTION

The study of nonlinear systems has become increasingly more active with
efforts focused on overcoming the well known analytical difficulties that ac~
company them. A vast collection of literature exists relative to this ac-
tivity, particularly noticeable in the last 15 years. It is this body of
literature, then, that this section c;nsiders. focusing primarily on the
topics dealing in system approximation, bilinear systems, and aigebraic
structures. While these areas themselves represent a large body of the
literature, only those papers deemed directly relevant to the present re-

search aims are reported on here.

By approximate systems we mean that branch of study which attewpts to

model complex nonlinear systems, such as

% = f(x,u),

y = g(x,u), (2.1.1)

| x(0) = x_,

for x ¢ Rn. u € Rm, and y ¢ Rk, by simpler, workable forms which possess
the desirable properties of stability, causality, controllability, and so on.
First order linearization schemes form a subset of this class of systems and,
as we will point out, the problem has been well studied. Polynomic systems,
which we also consider as representing a subclass of approximate systems, are
equally important and are thus reviewed here in the subsection to follow.

Topics in analysis, treated thoroughly in the classic works of Dieudonne (1]

and Apostle [2], are crucial in all of these studies.

*Contributed by Stephen Yurkovich. See Section 2.5 for references [A..],
[Bvl], [C'o]o



Bilinear systems may be considered as a specialization of (2.1.1) when we
add the assumprion of linearity in the control or in the state; that is, hi-
linear systems are lincar separately with respect to the state x and the
control u, but not jointly. We characterize them by the following dynami-
cal equation:

m
Xx=Ax+Bu+ ) N

u, X ,
=1 171
, (2.1.2)
y = Cx
for the matrices A, B, Ni' and C of appropriate dimensions (time invari-
ant case), where u, is the ith component of u. In a more concise form,

the system (2.1.2) is {llustrated in Figure 1. There are several practical
and theoretical motivations for the study of such systems, as seen, for ex-

ample, in {3].

Algebraic system theory is the main vehicle toward the goals of the pre-
sent research, The works of Wonham [4] and Sain [5] in the area of multivar-
fable systems offer a necessary springboard for studies in this field. In
[7.8,9,10] the motivations put forth in [6]) are extended toward real modeling
problems, utilizing the symmetric tensor algebra. Unfortunately, the liter-
ature is rather sparse on this topic relative to nbnlinear system theory,
However, the papers we will cite in the area of algebraic tensors are ex-
amples of the uses of similar ideas in the literature. The intent 1is not to
expound the details of the theory:; this may be found in such works as [1l1]
and [12]. Similarly, the theory of Lie algebras apparently plays a perti-
nent role in the research. Several leading works will be cited, while a

more complete exposition of the theory is given in [13) and [14].

10
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2.2 APPROXIMATE SYSTEMS

We begin this subsection by discussing an important linearization techni~
que which a handful of authors have utilized in recent years. It will be seen
to be useful not only in linearization of nonlinear systems but in bilineariza-
tions as well. This approach appears to have been introduced first by Carleman

[Al] in 1932.

Let us initially consider the following scalar nonlinear differential

equation,
x = £(x) , (2.2.1)
where f(x) may be required to have certain analytic properties. The

Carleman Linearization Process (CLP) is based on the fact that any homogeneous

nonlinear differential equation (2.2.1) can be converted into a linear dif-
ferential equation of infinite order by defining new variables

X, =X . (2.2.2)

By cutting off this infinite system at a finite stage a closed set of equa-

tions which model (2.2.1) may be obtained.

One of the earliest (1963) applications of this linearizatior approach
appears in [A2], where the basic idea is to employ the CLP in rewriting non-
linear equations as an infinite sequence of coupled linear equations. This
sequence is then truncated by a linear closure approximation invoiving a
mean-square error minimization., The multidimensional case is treated in the

following manner. Consider the set of nonlinear differential equations

dx N N
[
) a X, + Z

1 3y ke gk g M

12
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xi(O) -, (2.2.3)

Taking x as new variables - X X and using vector ncotation,

1% Yik T YN
(2.2.3) becomes

X = Ax + By ,

y o= Ay +6(x), (2.2.4)

where x 1{s an n-vector so that y and $(x) are of dimension nz. A 1s

” .
nxn, A, s n2 xn", and B 18 2n x n. Similarly, we can form the n3
X n3 system satisfied by functions xixjxk. While the notion of tensor

products involving x or vy (to form the monomial terms) {s not used, it

is pointed out that the A are the iterated Kronecker sums (denoted by

1
q() of :\,
A, = A Gk A,
Ay T AQ A,
= A Gk A @k A, (2.2.5)
and so on. (A discussion of the Kronecker sum may be found in Beliman [15];
this and the Kronecker product are major topics in 2.4 of this review.)

Stability of (2.2.4) is related to the characteristic values of A,

Alternate linearizations are also considered in [A2] in which any
continuous function (2.2.1) (not necessarilv analytic) can be expanded in
an orthogonal series. For example, assuming that x varies only over
-1 < x © 1, Legendre polynomjials offer the best linear approximation in

the mean square sense. A similar statement can be made for Chebychev

polvnomials,

A form of the CLP is used in [A7] in estimating the ''domain of attrac-

13
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tion" (stability resules) for a class of nonlincar systems. A statement of
the CLP {s presented with a detailed proof in which an algorithm is developed
for an {terative procedure for estimating the domain of attraction. The

theorem involves an error bound in terms of Euclidean norms.

The work of Sira-Ramirez in [A9,A10] follows the work in [A7], particu-
larly in [Al0] where the main theorem used by Loparo, et.al., forms the
basis of the paper. In [AlQ], the use of the CLP i{s proposed for feasible
set (set of all possible solutions of the systems of differential equations)
computation on a class of nonlinear analvtic feedback systems. The error-
bound result of [A7] is used, then, to approximate arbitrarily close the
feasible region of a nonlinear system (whose {nitial state is bounded by a
compact generalized polvhedron). Moreover, the higher dimensional linear
svstem obtained from the CLP has parameters which are shown to be comput-

able in terms of the Volterra series expansions of the nonlinear map.

let us now introduce some notation which {5 generallv acceprted and
tvpically attributed to Brockett (see [B2] and [Cl12)) for use of the CLP.

denote bv x[p] the (n+p-1)

Given the n-vector x with components x£.
P

dimensional vector with elements of the form

n P,
! X, (2.2.6)
i=1
n
. Lnd ¥
with LoPg TP 0, and & a constant scalar. For example, we
{=1
can represent tvpical terms as
0
L0V oy '
1
AN R .
(2] - (~<q X. X X, X ‘2 X, X X, X :)' 2.2.7)
X ’ 1 2. . . l'n' -2' 1 3' ey ,2 4 o.'( , &- -l



;
¢
[
{
I
4
8
t

i

(p)

' denotes transposition. The elements of x are ordered

and so on, where
lexicogtaphicnllyl. in the manner (2 2.7), which becomes important when any
actual calculations are done. 1in (9] {8 given a general algorithm which ac~
complishes this for use on a digital computer. There it is pointed out that
such objects (2.2.7) are actually elements of a tensor product between p

vectors.

With this notation defined, we consider now the results of Krener in [AS5)
and a specific class of nonlinear control systems, We restrict ourselves
here to the case of scalar u, entering linearly, ylelding the differential
system
X = fo(x) + ufl(x)
v = go(x) + ugl(x)
ful <1, x(0) =0 . (2.2.8)
With the assumption that £ and g, are as smooth as needed, (2.2.8) in

i

general gives rise to an infinite dimensional bilinear system of the form

R

+u Dix[i] , (2.2.9)

p p
T Bi' Ci' and D

(

may be truncated by setting x pl = 0 for p > q, and by defining a new

for matrices A of appropriate dimensions. Now (2.2.9)

i

1There has appeared in the literature at least three different words for this
same connotation: lexicographically, lexigraphically, and lexographically.
Interestingly enough, the third of these apparently is not an accepted word
(according to Merriam-Webster) but is seen most cften, probably due to its use
by Brockett {B2]., We will adopt the first of these, lexicographically, an ac-
cepted term from formal language theory.

15
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state vector as

X (xlol. x[ll_”.'x[q-ll).

3 (2.2.10)
the resulc i{s a finite dimensional bilinear system
X = Ax + uBx

y = Cx + uDx

fu] <1, x(0) = (1,0,...,0) . (2.2.11)
We state now the main theorem for bilinearization about a poinc,

Theorem [AS5] Consider the nonlinear control system (2.2.8).
For any integer 1 > 0 cthere exists a bilinear control
system (2.2.11) such that for some constants M, T > 0

for any admissable inputs the outputs y(t) and y(c)

of the nonlinear and bilinear system, respectively, satisfy

ly(e) = y(e)| < M8
for all t ¢ [0,T]. Also, 1f x 1is the state of (2.2.8)

and x consists of X, to X of the state of (2.2.11),
then
|x(t) - (o] < Mc*E

for all ¢ ¢ [0,T].

An equivalent result is proved for bilinearization about a reference trajec-

torv.

An earlier work by Krener, [A4], studies the problem of when two control
systems (where the control enters .inearly) are equivalent, i.e., that there
exist a local diffeomorphism which takes the solution of one system for each
control into the solution of the other for the same control. Necessary and
sufficient condirions are derived. As a corollary, necessary and sufficient
conditions are derived for a nonlinear system to be locally diffeomorphic to

a linear system. These equivalence and linearization results hinge on the

16
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theories of manifolds and Lie brackets.

A method of formal linearization is presented in [All] in which the state
of a nonlinear system is au mented with linearly independent functions (lif's®
of the state variables. The result is a system, where the dynamicsl equation
of the augmented state i3 expanded in a series of lif's, which is lir ar in
the function space spanned by the lif's. This of course amounts :o a form of
the CLP and, in fact, a result using Taylor's Theorem (with remainder term)

is given. Moreover, a numerical example is reported on,

In [Al3] Crouch offers a rigorous development in which he cornsiders non-
linear systems described by finite Volterra series, with certain analyticity
and linear-in-the-control requirements. The natural properties of Lie algebra
of the system lead to the formulation of the state space as a homogenecus
space of nilpotent Lie groups. This leads to showing that the state space
is homeomorphic to a2 Cartesian space. Thus, when these systems are set in
natural coordinate svatems 1t {8 seen that the state space admits a natural
vector space structure. A finer structure is also identified which shows

that these systems are cascades of linear systems with polynomial link maps.

Further results dealing with Volterra series esnansions are discussed
in [A6]. There, a general methodology is developed for obtaining fundamental
expansions consisting of multilinear integral operators. Validity conditions
for the expansions ace ohtained, as are results concerning the approximation
errors for appropriately defined aormed spaces. Several such error bounds
have been mentioned thus far, and are crucial in any approximate system re-
sults. Another method, which defines a dynamical error system, is described

in [A3).

17
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As a lead-in to the discussion of polynomic systems, we point out two
papers by Porter. In [A8] polynomial operators (one example is a usual
Volterra series) are used {n the approximaction of nonlinear systems. The
classic Weierstrass result is used in which the function to be approximated
need not be differentiable; rather, emphasis 18 placed on approximating the
function by polynomials over a compact set. The Bernstein system (employing
Bernstein polynomials) is one constructive realization of the Weierstrass
approach. A comparison is given for this methodology versus power series ex-
pansions. In [Al2], Porter utilizes a Hilbert space setting and considers
two distinct problems, interpolating and approximating (for a "black box"
phenomenon). The basic theorem here shows that interpolators which can be
realized linearly on a vectorized space have a specific approximation pro-

perey.,

A rather complete overview of the the>r: of polynomic systems is given
by Porter (1976) in [Al4], containing 75 references on the topic. In this
framework, a function is said to be polynomic if it is a finite sum of multi-
power maps (defined also in [Al5]) and said to be analytic if it is an in-
finite sum of multipower maps with an appropriate convergence. Thus, poly-
nomic operators are a subset of analytic operators. In [Al5] it is shown
that a Wei~rstrass-type uapproximation result does not hold between the
finite memoryless polynomic functions and the memoryless continuous function.
A svmmetric multilinear operator W from HY o H (where H 1is a Hilbhert
space) {s said to generate a multipower function Q : H-H by the rule

Q(x) - Wix,x,...,x] . (2.2.12)

For causality studies, orthoprojectors are introduced.
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The problem treated in [Al83] can be constructed as an identification
problem, the representation of a black box phenomenon by polynomic or multi-
linear models. From a collection of observed input-output pairs a polynomic

operactor 1is constructed.

Conditions are derived in (Al6] which guarantee that a feedback system
modeled by a 'general quadratic and cubic" plant and controller will be of
the type
X = Ax + kBx + Du + N(x,x) + M(x,x,x)
y = Cx, (2.2.13)
for vectors x, u, and y and the feedback factor k ¢ R, where N 1is a
bilinear form in x and M 1is a trilinear form in x. These systems do

not, however, contain forms which are trilinear in xi and ui mixed.

The concept of span reachability {s considered in [Al7) where discrete
polynomial state-affine systems are treated. The class of systems studied

are said to be span-reachahle (f the set or state vectors which are reachable

from the origin span the entire state space.

The use of tensor products has recently emerged in che literature rela-
tive to polynomic system theory. For example, in [Al9] a multivalued
switching function f 14 said to be realized by "polylogic'" (over an index
set) if there exists a polynomic function vhich computes f (on the domain
of f). The implication 13 that a polynomic realization 5 (x) of a given
switching function f : A" - A exists if and only 1f a linear realization
exists,

F(x) = p(x) = Tx 2.2.14)

—~
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for x ¢ An. where

X, e® x),34=1,....n. (2.2.15)

To tlluscrate, if the index set is {0,1,2,3}(n=4), then
Xx=(l, x, «®x, x®x® x) (2.2.16)
since §° is defined to be 1. Computation of such ¢ ad T 1in (2.2.14)

is discussed.

A further example of the use of ‘tensor products is given in [A20) where
the topic is state representations of polynomic maps. Briefly, {f H 1is a
H{lbert space then for x ¢ H, the quadratic operator
y(x) = (1, x, x @ x) (2.2.17)
15 defined in order tc create the new Hilbert space
H e closed span {y(x) : x ¢ H} (2.2.18)
with inner product induced by that of H. Moreover, ﬁ is shown to be a
Hilbert resolution space. With this, causality properties of non-epic poly-
nomic maps such as Yy : H =+ H are discussed, and the treatment of higher
order polynomic operators is alluded to, These concepts are then employed

for state decompositions.
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2.3 BILINEAR SYSTEMS

A brief introduction to bilinear systems was given in Section 2.l where
(2.1.2) and Figure 1 servec to depict such systems in mathematical and block
diagram forms. The importance of bilinear systems to the present rescarch
is evident by the fact that any bilinear function may be represented in terms
of the universal tensor product function. In fact, bilinear (or "2-linear')
functions are merely a subset of the class of multilinear (or r-linear) func-
tions which {n turn, with appropriate operations defined, can be identified
up to an isomorphism with a space of algebraic tensors. Furthermore, inner
product spaces have inherent relations to such ideas since over the real num-
bers any inner product is a bilinear form. So the area of bilinear system
theo.y, while in itself a large and growing field, contributes in many ways to

ongoing research in multilinear (and thus nonlinear) dynamical systems.

An introduction to bilinear systems and the accompanying body of liter-
ature can be found in the survey papers [B5]) and [B6]) in 1974, and [Bl7] in
1980. Bruni, Dipillo, and Koch in [B5] (an often cited work) outline some
basic definitions of bilinear systems. To summarize, let us rewrite (2.1.2)
here for convenience, in a slightly different form:

x = A(t)x + B(t)u + N(t)xu
y = C(£)x (2.3.1)
where the input u 1is assumed a priori to be of a specific class. The ma-
trix A(t) belongs to R™™, B(t) to R" " and N(t) is a bilinear form
in x and u which can be rewritten in the manner

N(t) xu = E Ni(t) Xu (z2.3.2) .

i=l
This definition (2.3.1) of a time varving bilinear

i ’

for N (¢) in RO

21



B ¢ e
R

system (time f{nvariant if A, B, C, and N are not time dependent) can be

further specialized under additional hypothesis. Bilinear systems are de-

fined to be homogeneous in the scate {f B = 0, homogeneous in the input if

A= 0, and strictly bilinear if A = B = 0. Along with these and further

definitions, the authors stress the fact that there have been no effective
contributions to the application of bilinear system theory to the solution of
practical modeling problems . While there has been some recent contributions,
the general identification problem remains unsolved today, and only a few re-
sults for the special cases seem to be available. The top.cs of stability

and distributed parameter systems are also listed as trends for future re-

search.

In 1974 Mohler [B6] pvolished another such survey=-type paper in which
he discusses the evolution of bilinear svscems, with emphasis on their ap-
plication to population models, biological svstems, nuclear fission processes,
and socioeconomics. Tt i{s pointed out that in these various instances bi-
linear mathematical models arise in a natural manner, while in others they
represent another degree of approximation beyond that of linear models.

This paper may be overshadowed now by a more recent work (1980) by Mohler
and Kolodziez [B17]. Here, feedback combinations of bilinear systems are
discussed, and the following point is made. In many systems feedback com-
hinations result in multilinear models which may be decomposed into open
loop bilinear svstems for certain analvses. In this manner multilinear mod-
els and bilinear systems may be used to approximate more highly nonlinear
svstems. An anproximation theorem due to H.J. Sussman {s quoted where it

is stated that arbitrary functions satisfying certain causality and con-
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tinuity conditions can Le approxima.ed arbitrarily close by maps which arise
from bilinear systems for measurable and bounded inputs. The authors note,
however, that this does not give a method for constructing the approximate
bilinear system for a given nonlinear system and that the basic assumptions

may in fact be too restrictive.

Possibly the most often cited paper in the bilinear system literature
is [B2]. Brockett considers the algebraic structure of bilinear systems and
sketches the general procedures for constructing a taeory parallel to that in
linear systems for parallel and series interconnections, canonical forms,
controllability, observability, and equivalent realizations. The startirg
point uses the fact that (see also [Cll]) any input-output map which can be
realized by

m m
x(c) = [A+ ] u (€) B,] x(c) + [ ) u, () b, ]

{=1 i=]
y(t) = Cx(t) , (2.3.3)
for appropriate matrices A, Bi and € and vectors bi’ can be realized by
m
z(t) = [F+ [ wu ()G, 2(t)
i i
i=1
y(e) = H z(t) . (2.3.4)

A more involved result says cthat any input-output map realized by

m
k(o) = (A + [ u (2) B] x(t)
i=1

q
y(e) = ) v (x(£), x(t),...,x(")), (2.3.5)
p=1 P

where Wp is a p~linear map in x(t), can also be realized by the form
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(2.3.4). One such construction uscs a form of the Carleman linearization pro-
cess. These results rest on the fact that if x satisfies a homogeneous in

(m]

the state bilinear system, then so does x (the lexicographically ordered
vector defined in the preceding section). That is, {f 2z {is given by x[zl,
then there exist matrices Alz] and Bizl such that
(21, 3 (2)
g(e) = AT+ T ou(0) BT 2(o) . (2.3.6)
1=1

At this point Brockett alludes to the use of Kronecker product relation-
ships (for iterative construction of the A[i] and B[i]) and the theory

of symmetric tensors, citing reference ([13]; again, however, tensors are not

used in the development.

Several other general points of interest are made in [B2). With re-
spect to inra2rconnections, 1f the parallel connection of two bilineur reali-
zations is defined, the resulting system will have a bilinear realization.
The same {s not true for series connections; that is, bilinear svystems are
not closed under series connections. However, if the series connection of
4 system having a bilinear realization followed by a system having a linear
realization is defined, then the resulting system has a bilinear realiza-
tion. As a final point, Brockett notes that in classifying systems and in
determining equivalent realizations, the results available in the study of

Lie algebras are of fundamental importance.

A global bilinearization result is given by Lo in [Bl2], summarized
in the following. Consider the nonlinear differential system
X(t) = f(x) + [C(x)] u

2{(t) = h(x) + [Q(x)]) v , (2.3.7)




for x € R“, z € Rk. u € mm. and v ¢ mp. The nonlinear system (2.3.7) is
dynamically equivalent to the bilinear system

m
y = (A + Z Bi ui) y(t)

im]
z(t) = (C + E D, vy) y(®) (2.3.8)
im]
for some M, > 0, i = 0,1,...,p, such that
i
Mo-l Ml-l D'
rank {C', A'C',...,(A") c', Di. A'Di....,(A') 1’
M -1

coeDhy ATDLL L (AY) P D'l
= dim A (2.3.9)
if and only if (2.3.7) has a finite-dimensional sensor orbit. Briefly, if
L(g(x)) = gx(x)f(x) where gx(x) is the gradient of g, and {f h ¢ Cw.
the set of functions
(h(x), L(h(x)), LEh(x)),...}

U, (@0, 1,00, Lo (0,000 (2.2.10)

where Qi denotes the i-th :olumn of Q, 1is called the sensor orbit of
(2.3.7) at time t for any {nput. In a final note, Lo points out that

a method of constructing (2.3.8), attributed to Brockett (B2}, is achieved

W1 (120 [maxGep))y,

by letting vy =

[ICECICIR )

Stochastic bilinear systems are treated in [B7] in which systems with
multiplicative noise processes (thus, bilinear) are considered. Brockett's
"moment equations' ([Cl13]) are used to compute the expected value of x[p]
for zero mean white noise Gaussian processes. The condition that E{x[p]}
have a closed form solution is that the Lie algebra be solvable (see [14]).

If the Lie algebra is not solvable, an approximation method is used by

truncation of cumulants (coefficients of the Taylor Series expansion of
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the logarichm of the characteristic function).

In [Bl6) the optimal control of a class of single-input discrete bilinear
systems is considered. Through dynamic programming solutions are obtained
for the deterministic and stochastic problem, where the performance index is

the usual quadrvctic cust function in discrete time.

Controllability of bilinear systems has been treated by many authors
during the 1970's. One of the originél works (1968) on the subject is that
of Rink and Mohler [Bl]. There, two sufficient conditions are given for a
bilinear system such as (2.3.1) to be completely controllable. Several ex-
amples are given, and in an appendix the set of equilibrium points for bi-
linear systems is described. This work is extended in [Bl13] where the solu-
tion of the parameterized equation

m

X = [A(t) + T B (t) v ] x(t) + N(t) u(e) , (2.3.11)
(o 1 1

with x(co) =X, and v an element of a Banach space of continuous Rm-
valued functions on a finite interval, is given by
t

x(t) = d(c, ty v) L + f d(t, s; v) N(s) u(s) ds . (2.3.12)
t

)
Here, (t, tO; v) 1s the state transition matrix associated with the matrix
which premultiplies x(t) in (2.3.11). From this, then, a nonnegative sym-

metric controllability matrix is defined which i{s used to obtain global and

totally controllable results by bounding #(t, e, v).

In [B3] is given a description of the "least linear subspace' that con-
tains all the states of the system (2.3.1) (for scalar u) reachable from
the origin. For this purpose a canonical decomposition of the state space

into a8 direct sum of four subspaces 1is considered. Sufficient conditions
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for the reachable set of a bilinear system at a fixed time to be convex are
given in [B9]. Under the hypothesis for reachability (convexity), the mini-
mum time control for transferring L to any other reachable point is dis-
cussed under the guise of bang-bang control. A rigorous treatment of reach-
ability (and observability) concepts is found in [Bl4]). This paper shows that
any two "quasi-reachable" and observable realizations of bilinear systems are
isomorphic. Thia leads to the construction of canonical forms utilizing the

Kronecker p-aducr of matrices.

As mentioned previously, Lie algebras play a vital role in bilinear
system theory, particularly in the study of controllabilicy. In fact, in
the opinion of Elliot [B8] in 1974, the most important criterion for con-
trollabiliey and accessability of a homogeneous (in the state) bilinear svs-
tem is the transitivity of the associated Lie algebra. We briefly state
such a controllahility (necessary) condition concerning the bilinear system

X = (A + uB) x . (2.3.13)
Let L be the smallest real linear subspace of matrices A and B closed
under the Lie product, and let (cl....,cm) be a basis for this Lie algebra
L. If system (2.3.13) is con:roliable then L 1is transitive (see below
also), that is,

rank (c x,...,cmx) = (2.3.14)

1
for all x ¢ R: - Rn - (M Since the origin is an i{solated equilibrium
point for a bilinear system such as (2.3.13), Rg 1s the usual state srace

considered.

The work of Cheng, Tarn, and Elliot [Bl0] offers a brief survey of

works concerning controllability of bilinear systems. Moreover, a discus-
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sion of Lie algebras and Lie subalgebras is given. A definition of tranai-

tivity is given, stated in the following. e say that a set M of matrices

is transitive on R: if for every x, y € m: there exists an X in M

such that Xx = y, In this paper both discrete and continuous time control-

labilicy is discussed.

Observability is considered f{n [Bl8) for homogeneous in the state bi-
linear systems. It is noted that an observabla (in the usual sense) bilinear
system may be unog;ervable for some inputs. The primary concern, then, is
the design of inputs u* which are as close to the given input u (in the
L2 sense) as required so that the bilinear system will be observable rela-
tive to wu*; an algorithm for choosing such inputs is developed. cher
methods for achieving this are discussed, such as optimization of observa-

bility matrix eigenvalues, Here, however, appropriate inputs are achieved

by slightly perturbing given inputs.

Tdentification of bilinear systems is discussnd in [B4]. A deterministic
approach using Newton's method 1is emploxfd. then statistical hypotheses are
allowed and Maximum Likelihood Estimatior 1s carried out forming a differen-
tial bilinear model. Similar aims are pursued in (Bll] where Isidori and
Ruberti consider time varying bilinear systems such as (2.3.1) in finding
internal descriptions. The state transition matrix associated with x =
A(t)x 1is used to express the response in terms of Volterra kernels. This
leads to necessary and sufficient conditions for realizability by a finite
dimensional bilinear internal description. This paper follows closely along
the lines of [B22]. 1In [B15] is given necessary and sufficient conditions

for the existence of a nonsingular matrix with real entries which transforms
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the given multi-input, multi-output bilinear system into a triangular can-
onical form, which amounts to a coordinate transformation within the state
space. Conditions on the internal description are outlined, and on the ex-
ternal description (external data) conditions are specified via a realizable

formal power series.

The review of the literature for bilinear systems up to this point sug-
gests an adequate foundation on which the study of .calization theory can be
undertaken. A detailed discussion of this broad topic and numerous theories
involved is of course beyond the scope of this review. However, because of
its overall importance, several papers on the subject of bilinear system

realization are listed and will be briefly discussed.

An early (1969) work by Arbib (B19], following the work of Kalman, ob-
tains a decomposition for multilinear discrete-time constant systems in
terms of linear subsystems and multipliers. For instance, it {s shown that
a bilinear system may bhe characterized by two layers of linear systems.
While most of the paper concerns automaton minimization, an appendix in-
¢ludes a summary of the theory and use of the tensor product to achieave some
of the results for bilinear systems concerning the construction of canonical
forms. This decomposition idea is further developed in [B20] where explicit
conditions for minimal realizations of time-varying multilinear maps are
obtained. The Nerode realization theory is applied with algebraic concepts
such 48 quotient spaces. Again, as suggested in {Bl19], the bilinear map @
is used in the canonical factorizations Another work concerning multilinear

maps and their realizations is [B2Y] which further extends these ideas,

studving also observability and quasi-reachability of the multilinear systems.
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Similar are discussed in [B27] by the same author, with Denham, for

bilinear systems,

In [B26] a technique for bilinear system identification is developed
which uses a finite orthonormal expansion to approximate input-output func-
tions. The basis of the expansion is Walsh functions which form a complete
orthonormal set. Two useful properties of Walsh functions are chat with the
proper multiplication deflined they form a commutative group and that the in-
tegral of a Walsh function can be represented in terms of Walsh functions.

The technique is illustrated with four computational examples.

Tarn and Nonoyama [B24] obtzin algorithms for the construction of dis-
crete~time internally bilinear state space models. The notions of the ten-
sor product and the less known affine tensor product are used to describe

such systems,

Minimal realizations are studied in [B21] by introducing a ''generalized
“ankel matrix", analogeous to linear system theory, formed from input-output
map parameters., Ir [B22] the realization theory for bilinear systems is de-
veloped in terms of Volterra series expansions of the zero state response,
while [B25) uses functional series expansions, building on previously cited

works.

Based on the theorem for global bilinearization given by Lo (as dis-
cussed in [B1Z2]) in [B28] is developed an approximation theorem of linear-
in-the-control bilinear systems. Use of’Taylor's Theorem is discussed and
construction for the bilinear approximations is given in the proof of the

theorem. In [B23] Krener developes a result similar to that of [A5], where

30



again {t is shown that every nonlinear realization can be approximated by a
bilinear realizaction with an error that grows like an arbitrary power of t.
In [B23], however, Lie algebraic concepts are employed, making the develop-

ment somewhat more rigorous than that of [AS].
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2.6 ALGEBRAIC STRUCTURES

Several references have already been cited for a general introduction to
cpe algebraic topfics with which the current research is concerned. Since the
work of [7-10] hinges primarily on the usage of algebraic tensors and spaces
of multilinear functions, our main emphasis here is on that of the tensor al-
gebra. While [l1) and (12] offer a formal treatment for the necessary back-

ground, we mention several works in the literature 2o add to these sources.

We begin with two tutorial-type introductory papers on these topics.
In {C2] the theory of multilinear forms is reviewed and the main discussion
centers on the notion of the linear operator contraction. A technical dif-
ference between the contraction of tensors (which exists independent of its
expression in particular bases) and the contraction of multilinear forms
(which in general is basis dependent) is outlined. Beginning with vector
spaces and their duals, several types of contractions ard discussed and are

shown to coincide with the "usual"” engineering definition of contractirn,
The second tutorial paper, {C3}], discusses the properties of bilinear forms
(or "second-order tensors’). For V an F-vector space (F a field), the set
of all billinear forms on V x V can be constituted as a linear vector space
itself with dimension equal to (dim V)2 by the definitions
(a, + az)(') - al(-) + az(')

(kal)(-) - kal(-). (2.4.1)
where a and a, are arbitrary bilinear forms on V x V, k ¢ F. Many
other elementary topics are introduced and extended, including a discussion

of the inner product as a real positive definite symmetric bilinear form

a: VxV-R.



We have already witnessed various uses of the Kronecker product and of
Kronecker sums of matrices (or, absiractly, linear transformations) in’ the
literature. The Kronecker product i{s of course itself a tensor product.
Bellman ([15), Chapter 12) has supplied a solid foundation for the properties
of the Kronecker product, and has shown [A2] how they may be employed in the
Carleman linearization process. The utility of the concept for computational
aspects has also been axplored for use in such topics au solution of linear
equations and algorithms for Fast Fourier cranlformsz. Because of its ver-
satility, then, we will discuss some works concerning the usefulness of the

Kronecker product which relate to the topics explored thus far,

Brewer [C6]3 gives a general overview of th« algebra reluted to the
Kronecker product, surveying the literature and quoting many useful theorems,
definitions and properties. Furthermore, the calculus of matrix valued
functions {s reviewed. The main emphasis of the paper i8 the development of
a parameter identification methcd, based on Newton Raphson Iteration, for
linear time invariant systems using the matrix calculus and the Kronecker
algebra. In an earlier work (1973) of Barnett (Cl] matrix calculus ideas

are explored and a solution to the matrix differenctial equation

y(r) + ale(r—l) + ...+ arKry =0 (2.4.2)

is developed. The interesting point here is that y 1is a vector given by

stacking the rows of an m x n matrix X = [x,,], denoted by

3
x_]' (2.4.3)

1021 % *mn

vr(X) - [xll.xlz....

ki
“We mention this application for the interasted reader, particularly in ref-
erence to a paper by H. Sloate {n IEEE Trans. Cir. Svs., Jan. 1974, p. 109.

3Brewer adds corrections to this paper the following vear, IEEE Trans. Cir.
Svs., May 1979, p. 360.
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and K = A QK BeAQ® In + Im ® B' i3 the Kronecker sum of some matrices A
and B. Results Iinvolving v, are given, such as

vr(CXD') = (C®D) vr(X). (2.4.4)

for the p xm matrix C and the q x n matrix D, The Kronecker product
does not in general commute, but {t is shown that, for C and D as defined
above,

T@®@C=P(C®DNQ (2.4.5)
where P (depends only on p and q) and Q (depends only on m and =a)

are permutation matrices.

Similar results have been devived by Kuo [C4], where {t is shown that
the nonhomogeneous product system

(A; @ A,)y = b, ® b, (2.4.6)

{s golvable 1if and only {(f

Alxl - b1 and Azxz- b2 , (2.4.7)

for some x and X.,.
1 2

v = xl @ x,. This result is used in accordance with the column stacking op-

And, in fact, {f y 1is a golution to (2.4.6), then

eration (analogous to that foc rows in (2.4.3)) to develope tensor factor

equations (2.4.7) for a system such as (2.4.4). In [C7] the notion of the
"axtended'' Kronecker product and its accompanying properties is given, de~
noted by

- ! !
AOSB (Alasl.....Aranr) , (2.4.8)

where A = (Ali...:Ar) and B = (Bl{..,!Br) are two partitioned real ma-
trices (in [C6) a similar notion is described and called the "Khatri-Rao"

product). Results similar to those found in [C4] are given involving the
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product (2.4.8). The use of tensor products in linear programming is also

discussed.

Another use of these ideas is given in [Cl0] where state transition ma-
trices are utilized. Consider the system

X(e) = Al(t)x(t) + X(C)Az(t) . (2.4.9)

This can be rewritten in the form (2.4.2),
4. .
T V0] = AV (X) (2.4.10)

where A(t) = Al GK Ay with state transition matrix QI(C.co) ® Oz(t.to)
for 01 the state transition matrix associated with Ai' It should be noted
that in a follow-up commenca on this paper, Barnett presents an alternate

derivation for this result.

As an {ntroduv:tion to a segment of the literacuré involving computa-
tional aspects of tensor products, we cite [C9]. This numerical work de-
scribes the tengor factorization algorithm for tensor spline5 approximation
and how it applies to lesst-squares fitting. Also used is the singular
value decomposition and matrix condition number. Here, 'tensor' again re-

fers to the Kronecker product of matrices.

A technique for identification of nonlinear systems using tensor ideas
is developed in [C5]. Systems which admit a finite Volterra series repre-
sentation are considered, where each multidimensional system transform is a

product of single variable transforms. It is shown that this type of system

/
*1EEE Trans. Autom. Contr., April 1981. p. 603,

SA spline function is one which approximates a, say, continuous and differ-
entiable function on an interval in a piecewise fashion using low degree
interpolating polynomials.
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can be modeled, from an input-output point of view, as a cascade of a linear

system, a homogeneous nonlinearity, and another linear system, as shown in

Figure 2,
g P z
u ‘H(S) [j] L 3
> = L oo AG(——>v
i=1
Figure 2. Input-Output Model.

A (minimal) realization of the system in Figure 2 (s given by

X = Ax + Bu, 0 = Cx

e = b oprgld]
e
v = Lv + Mz, v = Nv, (2.4.11)

Steady state sinusoidal analysis 1s used in the identiffcacion. As an al-
ternative to an association of variables method, techniques are used to
identify the system transforms leading to a response analysis (where the
inpﬁc consists of a finite sum of sinusoids and/or exponentials) based on

tensored transfer funcrions. In short, for Ha(s) = H(s)u(s), we have

R
v) = (5 ol e (2.4.12)
a
=1 -
so0 that the key is to compute the tensored transfer function Hgk](s),
given Ha(s). It is important to note that F[k](s) # (F(s))[k] for a

transfer function F(s). The authors point out the fact that because of

the recursive nature of the approach, the practical question of error
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propagation is under investigation.

In [CB8} Buric treats the problem of optimal state feedback regulation of
polvncnial nonlinear systems6. Tensor algebraic operators are the main vehicle
towards this end, and the symmetric tensor algebra‘fotms the foundation for
the development. Both time-varying and time invariant systems are treated

over finite and infinite regulation intervals.

The final body of literature to be considered in this section---Geometry
and Lie aglebra~--represents rich mathematical notions which contribute to a
wealth of useful cunrepts. A thorough understanding of the ideas developed
in these papers would contribute immensely to the understanding of all pre-
vious citations in th's review and their importance cannot be overemphasized.
Due to their complex an! rigorous nature, we shall move quickly through most

of the discussion and outline only the general concepts encountered.

We begin by centering our attention on the work of Brockett in these
arvas, cltlong seven papers from 1972 through 1976, Five of these seven form
a foundation on which much of the l%terature builds; two others, [Cl5] and
[Cl7], repgesent significant contributions in general nonlinear and linear
systems theory, respectively., In {Cll] the system

m
X(t) = (A + 121 u (8)B,) X(e) (2.4.13)

y(e) = wX(t)
is studied, under the hyvpothesis that X belongs to a matrix group 3 and
where A and Bi belong to the Lie aglebra associated with 2. The nota-

tion $X(c) 1is to be interpreted as being a coset in 0 for the matrix

1

6This paper summarizes the authors Ph.D thesis at the University of Minne-
sota, 1978.
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group ¢. The primary interest in the class of systems (2.4.13) 18 control-
lability in so far as it contributes to a framework for studying other system
theoretic questions such as observability and realization theory. In this
way, the objective is to reduce all questions about the system to questions

about Lie algebras and group manifolds.

The study of Lie aglebras in control theory was motivated mainly by the
confrontation of some physical problems which proved linear system theory to
be inadequate, and by work on Lie algebraic methods in differential equations.

This latter topic is treated in [Cl2) where the expression

af T
szg(x) axf(x) (2.4.14)

arises naturally for smooth functions f and g from Rn to Rn. The

quantity (2.4.14), usually written as [f,g], 1is called the Lie Bracket

of f and g. An extension of the Carleman linearization process is de=-

n+p-1
P
thien, us discussed previously, associated with each map from Rn to R

n

scribed, summarized in the following. If N = ( ) and x e R,

n

1s a sequence of maps, the p-th one mapping RN into RN. A convenient

basis choice contains elements (2.2.6), or

- 5 - — p P 1
JCOIEPY L PP Py g
P, P, Py 1

, T eox T, (2.4.15)
< n

n

with Z Py Py Py 2 0. The constants multiplying the monomials in (2.4.15)
i=]

are chosen such that

(P (k] P (2.4.16)
1/2

for l’x}ﬁ = (<x,x>) , where <<»:> 1is the standard inner product. More

generally,
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ex,y>P = «x(P] glPl (2.4.17)

A[p]

Finally, denote by the map (matrix) which satisfies

(p1 _ plp) [0]

y = AXmpy . (2.4.18)

(p)

Another construction, A , defined exclusively in terms of matrices,
i{s the compound of the matrix A (see also [16]), and a theory analogous
to that for A[p] is outlined. These two constructions are shown to be
specializations of the tensor product. Many other topics are treated in
[C12]}, including controllability and observability, optimal control, sto-
chastic differential equations, and stability theory. These ideas are ex-
panded upon in [Cl3] where Brockett constructs a theory for control problems
defined on spheres in which results from Lie theory again play a natural
role. Results analogous to those for linear systems are developed for sys-
tems of the tvpe

m
x(t) = (A+ J ug (£)B,) x(r)

i=1
vy = Cx(t) , (2.4.19)
where A and Bi are skew symmetric matrices and (2.4.19) can be thought
of as evolving on the sphere |{x(t)|l = [{x(0)]].

Differential geometric methods are used in the treatment of singular
optimal control problems in [Cl6]. Volterra series expansions and function
space Taylor series expansions are the main tool in the studies, as the
[p]

X notation is utilized for the expansion of the kernels. Here, however,

o (1]
an expression such as u (01""’01) is represented as a tensor product

u(cl) Q... 9 u(ci). Volterra series and geometric control theory are ex-

pounded in the often-cited [Cl18]. Again the Volterra kernals are computed
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in terms of the power series expansions of the functions defining the con:
trolled differential equation. Some applications are considered, including

singular control and multilinear realization theory.

In [C15] Brockett surveys some of the main results available then (1976)
on the use of differential geometry in nonlinear system theory. To this end,
background information on manifold theory Is supplied in the form of an ap-
pendix. Some geometric aspects of linear system theory are studied in [Cl7],

where single input-single output systems are ccnsidered (in the frequency

demain).

The duality between controllability and observability for nonlinear sys-
tens is investigated in [Cl9]. Instead of constructing a 'dual' system (as
might be done in linear system study but is a much harder problem for the
nonlinear counterpart) the duality between ''vector fields" and "differential
forms" on manifolds is exploited, along with the use of Lie algebraic con-
cepts.  In [C23] the topic of nilpotent Lie algebras is considered for the

derivation of an optimal bilinear filter.

W. cite two papers by Baillieul in which optimal control is dicusssed.
In [Cl4] classical optimization techniques (the calculus of variations) are
used in the context of Lie groups. Multilinear optimal control is treated
in [C20)}. There, the nonlinear differential equation

% = a)xP, x0) = x ) (2.4.20)

where xIp] has elements as in (2.4,15), is solved by a particular series
of successive approximations involving the terms x[p]. The condition for

solution is the convergence of such a series. Using operator norms and the
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differential equation for the "k-fold Kronecker product",

; . k
' '&%(XQ.-.@:()- )‘ x@...@A(t)x[p]@...Qx. (2.4.21)
iw]

(p]

! where the term A(t) x is in the i-th position, the condition for the

uniform convergence of the series is derived,

Another paper by Baillieul ([C24] offers methods alternative to the
usual Lie theoretic approach to the study of nonlinear systems. These
methods are based on topics of algebraic geometry and manifold theory, the
knowledge of which is assumed of the reader. Systems of equations of the

form
n (q,]
k=axPle T uBx by x0) =x (2.4.22)
i1 o
iw]
are treated, as are systems of multilinear differential equations such as

(2.4.20).

Necessary and sufficient conditions for the invertibility of a class
of nonlinear systems are derived in [C21]. Included in this class are ma-
trix bilinear systems for which Lie algebraic invertibility criteria are ob-
tained. 1In [C22] an abstract realization theory for finite dimensional
discrete time internally biaffine systems is presented. The affine tensor
product is introduced in terms of the ordinary temsor product, then used in

describing biaffine systems,
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III. MOTIVATION: SCHEDULING

3.1 INTRODUCTION

In the applications, one common way to design a control system for a
nonlinear plant is to localize its behavior along lines of operation spec-
ified by the plant manufacturer, to develop linear multivariable controls
for these localizations, and to schedule those controls with key plant
variables which vary smoothly along operating lines. An important part
of practical design lore, the art of controller scheduling has received

little modern attention from the conceptual point of view,

Bristol [17,18] has likened the process of control design to the use
of idioms in a language. At least three types of idioms can be identified.
First, there are idioms which have baen with mankind for such a length of
time that they seem universal to the human psyche. In some sense, feed-
back itself is an example of such an idiom, inasmuch as it may be traced
at least back to ancient Arabian water clocks. Second, there are idioms
which are the characteristic of certain authors. Several classic examples
are the Nichols chart, the Bode plot, tiie Evans loci, and the Nyquist plot.
And third, there are idioms which are typical of certain types of control

applications. An example is that of gas turbine control systems [19].

Because of the idioms of type three, any application of control de-
sign has idiomatic features. In & sense, the task of the control designer
is to blend the idioms of the application with universal idioms, with
idioms of classical and modern authors, and with his or her own idioms,

so as to produce a melodious and effective composition.
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It goes without saying that some idfoms do not play well together.
In some areas of application, this may acceunt for the famous theory/ap-

plication gap.

One universal idiom is to attack the overall system design by breaking
it down into manageable pieces. An important case of this type of thinking
1rises in the design of certain classes of nonlinear systems. Examples in
point may te found in the area of gas turbine control. In brief, the ncn-
linear engine 18 linearized locally along lines of operation agreed upon by
the manufacturer and the control contractor. These linear multivariable
localizations are used to devzlop a family of local controllers, which are
then sewn together by scheduling control gains and dynamics with some eng-
ine variable, as tor example speed, which varies smoothly along operating

1ines.

As pointed out by Bristol [17}, the idioms have to blend together.
In the case of scheduling, the methods used [or deslgn of the local, linear
multivariable controllers have to be amenable to a common thread of smooth

scheduling, else a global whole is not obtained, but only a sum of parts.

The goal of this section is to examine in an Introductory way cer-
tain »f the conceptual questions associated with scheduling., What follows

should be regarded as exploratory in nature.
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3.2 SIMPLE EXAMPLE
Consider the elementary dynamical system
X = -ax + bu . (3.2.1)

The transfer function associated with (3.2.1) is of course

s ° (3.2.2)

Rewritten in terms of gain and time constant, (3.2.2) becomes

k
Tetl ° (3.2.3)
where
k=b/a , t=1l/a. (3.2.4)

Suppose that we wanted to schedule the gain k as a function of the input
u, say

k(u) = @y + Blu + yluz . (3.2.5)

Then the scheduled system would look like

¥ » -ax + aa,u + .Sluz £ 5*1“3 . (3.2.96)

1
Alternatively, we might schedule the time constant <t as such a function,
for example

2
T(u) = a, + 82u + YU, (3.2.7)

in which case we would have

2
am= l/(a2 + 82u + Y u )
-1 -2
- Gz - Bz 2 u + Y (3-208)
so that
% = -a lx + 8.0 %ux + bu + (3.2.9)
2 22 L N . L]

on out to a denumerably infinite number of terms. Next suppose that we
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as a function not

wanted to schedule the y2'n k or the tima constant <
of u but of x, 1in the manner
k(x) = ay + Bx + v, (3.2.10)
(x) = a, + BX + v, %" . (3.2.11)
Then the nchedulaed systems would be
- -ax + aa,u + a83xu + aYJXZu , (3.2.12)
(3.2.13)

3
. -1 -2 2
X = -04 X + 3«“4 X +bu+...,

again with a denumerably infinite number of terms.
Generally speaking, the polynomic scheduling concept tends to convert

the system (3.2.1) into a system of the form
3 (3.2.14)

X = Z Z r,,xu .
1=0 j=0
Indeed, if the original system were of the more general form
x© [ -] k
k= ] [ a x u® (3.2.15)
k=) m=Q

and if the parameters were scheduled in an analogous way, such as
@ x q
P
A L (3.2.16)
p-o q-O q

W (3.2.17)

L
’

© w

then (3.2.15) becomes
[ ]
. k+p
ke 3003 ) 1 a_ %
k=0 m=0 p=0 q=0 Pq
In broad

which can be formally rearranged in the same form as (3.2.15).
(3.2.15) 1is closed under formal power series scheduling.

terms, then,
of this closure feature, we find interest in systems of this

Because

J type.
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3.3 ABSTRACT SERIES

As intimated in the section preceding, the formal series is a natural
candidate in studies of scheduling. Various approaches can be made to the
description of such series. Based upon the background of Sections 1.2 and
1.3, we wish to indicate briefly here the viewpoint toward which we are
tending at the time of this reporc.

Consider a nonlinear state description of the general form
x = f(x,u)
for

f : XxU=+X
with X and U real vector spaces, equipped with norm. Let (x,u) be
a point in X x U, and suppose that
D€ : 2+ L(X x U,...,X x U,X)

is available for r =~ 0,1,2,..., with 2 open in X x U and (x,u)

in Z. Then, formally,

-

E(R + 8%, G + du) = L ok (x,3) (ax, 0w ),

.

=
1~ 8
o
=

where (Ax,Au)(k) = ((Ax,Au), (Ax,Au),...,(8%x,Au)), the right member having
(Ax,Au) k times. It should be recognized that this series could be re-
placed by a finite number of terms together with a remainder. However,

the above representation is adequate for brief illustrative purposes.

Space does not permit a discussion of whether, or how, the series accept-
ably describes the function. Along the same lines, we ~ass over the re-
lated question of how it affects the vector field associated with the dif-
ferential equation, and therefore its solutions. Instead, we remind the

reader that (Dkf)(§,ﬁ) is a k-linear function on (X x U)k to X; and
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this suggests that we can use tensor algebra to parameterize it. Indeed,
denote by (Ax.Au)k this k-fold censor product of (4x,4Au) with itself.
Then the k-linear function (Dkf)(i.ﬁ) can be factored uniquely in the
manner

L (5,5 o o,
where

@ & x vy, ¢
is a tensor product for k copies of X x U, or what is sometimes called
a kth tensorial power for X x U, In this case, the kth parameter map
operates in the manner

L, (x,u) : (X x 1) + X .

We have, therefore, that

EGx +0x, 5+ 0w = [ b L ED o 0,0 *
k=0

e 1. ,== K
- == L, (x,u) (Ax,Au) .
kzokll‘k

Next consider the rearrangement of a term of type

Lk(§.ﬁ)<Ax.Au)k .

Consider, for example, the case k = 2, namely

(Ax.Au)2 = (Ax,4u) @ (4x,4u)
Such a form does not relate directly to the structure of the section pre-~
ceding, which would involve terms of type (Ax)j @ (Au)m. However, there
is a natural way to convert to that structure. Define projections

T ¢+ XxU~+U ;3 7w XxU=+X;
u X

and injections
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VeX=—+S

.o

iuu tUeU=-+8 ; iux

i it XeoeU-+8 ; 1

X®eX=-+S

..
-e

for
S=(UoU) x(UaeX)x(XoU) x(X@X).
Then we can write
(8x,8u) @ (&x,8u) = 1 (7 (8x,8u) @ 7 (4x,Au))
+ 1xu(nx(dx,Au) ® m (8x,4u))
+1 (7 (8x,80) @ 7 (4x,80))

+ iuu(ﬂu(Ax,Au) ® wu(Ax,Au)) .

If we identify images of the injections with their domains, as for example

L, Uev) =veu,

then we can write

(Ax,8u) @ (Ax,Au) = Ax © Ax + Ax @ Au + Au @ AX + Au @ Au .
According to the cenventions of @(X,U), however, discussed in the section
preceding, we agree :o write

Au ©® Ax = T AX @ Au
ux,Xxu

for an appropriate isomorphism Tux xu’ In that way, we can p‘oceed to
1
L, (%, (ax,0u)° = Lz(i,ﬁ)(Ax)2
+ Lz(i,ﬁ) Ax @ Au
+ Lz(x’u)Tux,xu AX ® Au
FL,GED ew?,
which we re-notate to (with factorials included)

Lzo(i.ﬁ)(Ax)z + L, (%,8) ox @ du + Loy (%o) (0w} %

e

In this way, the formal expansion becomes

)

= TeNeTY

”
H 2
3
B
*
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f(x+8x, u+du) = ] T L

gy G )l o (auyd
i=0 j=0

from which point we can examine the scheduling questions previously raised.

The clear distinctions established by these nota’tions are expected
to make possible a deeper investigation of the issues of controller

scheduling.

Besicnunny
5
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IV. "ROGRESS IN PARAMETER SELECTION*

4.1 INTRODUCTION

The purpose of Section IV is to provide some visual indication of pro-
gress which is being made on the interactive approach for nonlinear tensor

model identification, simulation, and validation.

To begin this process, we wish to recall the situation for previous
computer studies of this type. Probably the quickest and most efficient
way to do this is to excerpt an example from the previous grant report,
which was for the period from March 1, 1979 to September 30, 1980. This
excerpt is included in the following pages. It is primarily a reference

in subsection 4.3.

*Contributed by Thomas Klingler.
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Excerpt

Pages 115 - 128

Technical Report

on

NASA Grant NSG-3048

March 1, 1979 -« September 30, 1980
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The intent of this chapter is to illustrate thu notions discussed in
Chapter V with two representative case studies. The first example is a sys-
tem of two nonpolynomic, nonlinear differential equations with two states
and two inputs. A degree-2 approximation is used in constructing a model
of the system; foilowing this, a degree-3 approximation is discussed. The
sacond example consists of a system of three polynomic differential equa-
tions of three states and three inputs. A degree-2 approximstion is used to
generate the third-order model. The equations of this example are chosen
as sums of monomials from the tensor products to illustrate the manner in
which the identification scheme weights the appropriate parameters of the

linear operators in the model.

Simulation and verification of each model maks up the bulk of the chap-
ter. Plots {llustrating comparison of the simulated, linear, and true so-
luctions are given, and extensive use of the error analysis described in
Section 5.5 is made. For each model, an operating region of validity about

the origin 1s established.

6.2 SECOND ORDER SYSTEM
In this first example, let the state x be given by the 2-vector

(xl.xz) and the input u by (ul.uz). Consider the system
dx1
£ (x,u) = =
2u1
- uzcosh(xlxz) - e ainh(le) - 3sinh(x2) .

. dx2
Fa(xou) = g

u u
= e 1 2sinh(xl) -e 1u cosh(xi) + sinh(x

1 9)



The input forcing functions are cosinusoids and are each a function of two
parameters, amplitude and frequency. Notice that

£(0,0) = 0,
so that the origin is an equilidbrium point and will thus be the point of ex-

pansion in the series truncation approximation.

The iinear operators which form the standard linear approximation are

calculated according to

ox ox
- 1 2
Lo
ax ox
L2 Uix o (0,0)
us= (0,0)
P
-2 -3-.1
1 1
b -
and - -
du u
- 1 2
Loy
%u du
e 2{lx = (0,0
u= (0,0)
0 1
-1 0

Observe that L

01 is full rank; each function has linear terms in the in-
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puts. Moreover, local stability of the system is ascertained by the fact
that LlO has eigenvalues with negative real parts. Thus, the origin is a

stable equilibrium point.

Consider a truncation approximation up to second degree tensor product
terms only. As discussed earlier, identification of an accurate model re-
quires that the system be perturbed a small distance from the point of ex-
pansion by choice of the initial condition vector Xq° To this end, the
system i{s integrated with

Xp * (0.005, -0.005) ,

while the input amplitude vector a is taken to bdbe

a = (0.05, 0.05) ,
and the vector of frequencies is

¢ = (0.75, 1.0) ,
in hertz. The solutions to the coupled differential equations are then
sampled at 200 time points, evenly spaced at intervals of 0.02 seconds. In
order to ensure accurate derivative estimates, the integration stepsize is
taken to be 0.005 seconds. A degree-2 approximation results in a model com-

prised of five linear operators, as the matrix equation

a, A
L1y Lool %y

is formulated for the least squares minimization identification scheme.

* a, " A,
X = (L1 Loy Lag

Tke linear operators for the above-mentioned formulation are given in
the following:
-2.001 -3.009 0.002 0.997

E.. - , L. = ,
10 1 4,006 1.011 00 |_j.000 0.000
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00 239 -00 145 -0. 720
(- .

20 1.0.323 -0.128  0.359

=4.150 -0.074 -0.048 -0.176

txz °
-0.007 0.083 0.008 0.102

=0.105 0.027 0.012

e

02 | _0.982 0.015 -0.013

Note that 210 and 201 closely approximate the analytical expressions
given by the Jacobien matrices of first partial derivatives. The task that

remains, then, is the model verification, presented in the following.

Verification tests involve numerous simulations of the model for var-
ious combinations of the parameters Xge O ¢, Two tests will be given
here, the first of which consists of twelve different choices for Xg°
with nine choices for a and one pair (¢1,02); this gives a total of 108
simulations. Results of the test are tabulated in Table 6.1, where ¢ =
(0.75, 1.3) for all simulations. The two columns on the right of the
table give the values € and <, for X, and Ry» respectively, as the
maximum relative error between the model simulation solution and the linear
approximation. As discussed in Section 5.5, a negative value for the &
indicates that the model has outperformed the linear approximation of LIO

and L.,. Observe that ¢, and ¢, are negative for all individual sim-

01 1 2
ulations in this test, for single precision calculations. While these re-
sults show that the model has outperformed the linear approximation in a
region about the expansion point, comparison plots of these solutir~g

against the true solution offer a final indication of the validity of the
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Table 6.1t Ervor Anslyses {or Degree-
Model: ¢ = (0.73, 1.0
(n10°% (no™h (o™h)

*10 "0 | 1 % £ f1
g.1 0.1 0.0 9.0 q.000 0.000
0.1 0.1 0.50 0.50 | «0.044 «0.02?
o:l 001 0-’0 -0-30 .000‘2 -0.033
0.1 o.; '00” ‘00’0 '°o°‘, ‘0-03’
00‘ o.‘ .0530 o.” -0.053 .000”
e.1 0.1 1.50 1.50 | -0.404 «0.299
0.3 0.1 1.50 1,50 -0.6[’ «0,22%
0.1 0.} =1.50 <1.50 | ~0.447 =0.297
0.1 0.t -1.50 1.50 | -0.407 «3.240
0.1 =0.4 0.0 0.0 0.000 0.000
0-1 'Ot‘ 0-” 05” '0.0“ .0.027
0.1 -0.1 0.30 .0-” -0.052 -0-0”
0.3 =0.3 «0.50 <0.30 [ -0.044 0,027
0.4 «0.1 «0.50 0.350 | -0.082 «0.026
0.1 =0.% 1.3 1,50 ]| -0.406 ~0.297
0.1 «0.1 1.50 <1.30 }-0.420 -0.239
8.1 =0,1 -1,%0 «1.50 «0.452 «0.287
g.1 «0.1 -K.SO 1.50 «3,407 -0-1‘0

«0.1 «0.1 0.0 0.0 0.000 0.000

0.1 0.1 0.50 0.50 | -0.043 =0.037

~0.1 =0.1 0.50 <0.30 {-0.04) «0.02%

2.1 0.1 «3.50 <0.30 | =0.047 =0.027

-0.1 ~0.1 «4.50 0.50 |-0.042 <0.02¢

«0.1 0.} 1.30 1.30 | -0.407 =0.28)

«0.1 «0.1 1.50 ~1.50 }=0.423 «0,238

«0.1 «0.1 «1.50 -1.50 | -0.434 «0.258

-0.‘ -0.1 ‘t-so 1.30 -0.‘01 ~°-33'

=0,1 0.3 0.0 0.0 0.000 0.000

-0.1 0.1 0.50 0.50 | =0.064 «0.03?7

=0.1 0.1 0.50 -0.350 | -0.042 «0.028

«0.1 0.1 «0.50 <0.50 | -0.046 «0.027

0.1 0.1 -0.50 0.50 | -0.042 «0.028

«0.1 0.1 1.50 1.50 }-0.408 «0.256

=0.1 0.1 1.50 <1.50 {-0.420 <0.238

0.1 0.1 «1.50 <1.50 | ~0.449 =0.2%6

«0.1 0.1 -1.50 l.!ﬂ -0.‘0‘ -0-3‘0
0.3 0.5 0.0 0.0 0.000 0.000
0.5 0.5 0.50 0.30 | ~0.043 «0.026
9.5 0.5 0.30 <«0.30 [ <0.08F  =0.024
9.5 0.5 ~0.50 <~0.50 | -0.042 «0.016
0.9 0.5 ~0.20 0.30 | -0.081 «0.028
0.5 °" 1.50 lc” '0.”’ -0-331
0.3 0.5 1.30  <1.50 {-0.415 =0.239
0.5 0.5 «1.50 ~1.50 |-0.433 «0.282
0.3 0.5 -1.50 1.50 | -0.407 «0.241
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Tanle 6.1, concinued

0.8 <a.3 | 0.0 0.0 | 0.000 0.000
. 0.9 0.%0 0,50 |-0.044 -0.028
0.9 «0.9 0.50 <0.30 |-0.042 «0.028
0.3 =0.9 «0.30  <0.50 | «0.048 «0.038
0.5 «0.$ «0.30 0.30 |~0.06L =0.026
0.3 «0.3 1.5 1.0 }<0.410 <0.299
0.3 «0.% 1.50 <1.50 | +«0.420 «0,23%
¢.3 «).3 1,30 1,30 |-0.,4%7 «0.2%4
0.8 .8 «1.30 1.%0 =0, 400 =0.239
«0.5 «0.5 0.0 0.0 0.000 0.000
«0.$ «0.3 0.30 0.30 | =0.08) «0.018
0.5 0.3 0.50 -0.30 |-0.04) -0.026
«0.3 «0.9 «0.50 «0.30 |-9.0%0 «0.028
«0.3 0.8 «0.50 0.30 |-0.043 =0.036
«0.8 «0.5 1.50 1.50 {0,413 =0.2%9
«0.9 «0.3 1,50 «1.50 |-0.425 =0.23%
«0.3 =0.3 «1.50 =1.50 | -0.467 «0.260
«0.8 =0.9 -1.50 1.30 | =0.404 «0.2%
«0.5 0.3 9.0 0.0 9.000 0.000
=0.3 0.5 0.50 0.30 | <0.04) «0.02?
«0.5 0.8 0.50 +0.30 |-0.082 «0.023
0.8 9.3 =0.50 =0,30 «0.04% «0.026
«0.5 0.3 =(,30 0.30 |-0.042 «0.028
‘0.3 Q.3 1.5 lo’o «0.401 00.3’3
«0.5 0.5 1.50 1,30 | ~0.420 «0.23%
0.3 0.8 «1.30 =1.50 | -0.44) <0.283
=0.$ 2.5 -1.50 1.30 | -0.408 =0.240
1.0 1.0 0.0 0.0 0.000 0.000
1.0 1.0 0.50 0.50 | -0.047 =0.027
1.0 1.0 0.50 <0.50 | «0.040 =0.022
1.0 1.0 «0.30 «0.50 | -0.04) =0.028
1.0 1.0 «0.50 0.5¢ | -0.0) =0.026
1.0 1.0 1.50 1.30 ]-0.28% «0.243
1.0 i.0 1.30  -1.50 |-0.410 «0.233
1.0 1.0 «1.30 .toso 0,418 «0.24)
1.0 1.0 «1.30 1.30 | -0.40L «0.263
1.0 -1.0 0.0 0.0 0.000 0.000
1.0 =1.0 0.30 0.50 | -0.06) «0.028
1.0 «3.0 0.50 -0.%0 |-0.042 =0.026
3.0 -1.0 «0.50 -0.30 |-0.049 «0.029
1.0 -1.0 =0.30 0.350 |-0.042 «0.026
1.0 «l.0 1.50 1.50 {+0.413 =0.288
1.0 -1.0 1.50 =1.30 |-0.421 «0.23%
1.0 -1.0 «1.30 ~1.30 |-0.464 <0.2%9
1.0 -1.0 -1.30 1.50 [-0.404 «0.239
-i.0 -1.0 0.0 0.0 0.000 0.000
-1.0 -1.0 0.50 0.30 |<~0.048 -0.028
-1.0 -1.0 0.50 <0.30 {=0.04) «0.026
-1.0 -1.0 «0.50 <0.3%0 |-0.0%) «0.030
-1.0 -1.0 «0.50 0.50 [<0.04) «0.028
-1.0 «1.0 1.%0 1.50 | ~0.424 «0.287
-1.0 -1.0 1.50 <1.50 |-0..48 .
«1.0 -1.0 =1.50 «1.50 |-0.482 =0.262
-1.0 1.0 -1.30 1.30 | -0.401 =0.237
-1.0 1.0 6.0 0.0 0.000 0.000
«1.0 1.0 0.50 0.30 |=0.043 =0.026
-1.0 1.0 0.50 -0.50 |-0.062 -0.02%
-1.0 1.0 «0.50 <0.50 |-G.043 «0.02%
=1.0 1.0 -0.50 0.50 | -0.041 «0.028
-1.0 1.0 1.5%0 1.50 |-0.397 =0.249
-1.0 1.0 1.50 -1.350 |-0.420 «0.238
-1.0 1.0 «1.50 <1.350 |-0.436 «0.251
-1.0 1.0 -1.50 1.30 ] -0,406 =0.240
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m~del. To best illustrate the tracking ability, consider a simulation of
the model with the initial condition set at (=-0.01, 0.01) but with

a = (0.25, -0.25)
as the input amplitude pair, at the same frequency pair (0.75, 1.0). Sim=
ulation of the model for these conditions is depicted in Figure 6.la for
variable %y and Figure 6.1b for variable Xqe Clearly, the model solu-

tion, curve C, tracks the true solution, curve A, well throughout the

integration intervai.

An interesting feature of this example concerns the sensitive behavior
of f(x,u) for low frequency inputs; in the D.C. case, input amplitude
steps of over 0.1 in magnitude cause instability in the system. The second
test here, then, is for low frequency inputs with small amplitudes. Four

choices of ¢, four ~f o, and two of x, are utilized, a total of 32

0
simulations. Table 6.2 illustrates the results by way of the comparative
error analyses where it is seen that the model again outperforms the linear
approximation for the various conditions tested. The next two figures de-
pict simulations of the model for two of these tests verifying its ability
to track the true solution. In Figure 6.2 is given the response of the
system for

Xp = (0.01, -0.01) ,

a = (-0.075, -0.075) ,

¢ = (0.05, 0.05) .

A step response (that is, for ¢ = (0,0) in the test) is given in Figure
6.3 at the same value for X, and a. In both instances the model simu-

lation matches the true solution well while the linear approximation is

poor.
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Table 6.2: Low Frequancy Error Analyses
for Degres=2 Model.

(%103 (x10™% (x10" ) (xt0™h

*10 *0 8 8y " 7] ! ¢

0.1  -0.1 0.10 =-0.78 | 0.0 0.0 |-0.082  «0.081
0.1  -0.1 0.10 -0.73 | 0.10 0.10 |-0.082  <0.076
01 <0.1 0.10 -0.78 | 0.28 0.25 [-0.081  <0.061
0.1 0.1 0.10 +-0.75 | 0.50 0.50 |=0.062  <0.061
0.4 <01 | -0.50 0.30 | 0.0 3.0 [-0.293 <0.263
0.1 <0.1 | <0.50 0.50 | 0.10 0.10 [-0.492  -0.812
0.4 -0.1 | -0.30 0.30 | 0.25 0.5 {-0.728  -0.673
0.1  -0.1 | -0.50 0.50 | 0.50 0.50 [-0.748  <0.629
0.4 -0.1 | -0.7% 0.10 | 0.0 0.0 [«0.589 -0.520
0.1  -0.1 | -0.7% 0.10 | 0.10  0.10 |-1.010 -1.040
0.4 <01 | -0.7s o0.10 | 0.25 0.5 [-1.490 -1.370
0.4  =0.1 | -0.7% 0.10 | 0.50 0.30 [-1.430 ~1.210
0.1  <0.1 | -0.78 «0.7% | 0.0 0.0 |-0.832 -0.48¢
0.1  -0.1 | -0.75 -0.7% | 0.10 0.10 |-0.706  -0.737
0.1  -0.1 { -0.75 -0.78 | 0.25 0.29 |-1.080 -0.960
0.1  <0.1 | «0.75 ~0.78 | 0.5 0.50 |-1.010 -0.876
1.0 =1.0 0.10 -0.73 | 0.0 0.0 |-0.079 -0.079
1.0 -1.0 0.10 -0.75 | 0.10 0.0 |-0.080 -0.074
1.0 -1.0 0.10 -0.73 | 0.25  0.23 |-0.063  -0.081
1.0 1.0 C.10 -0.75 | 0.50 0.50 |-0.062  -0.06i
1.0 -1.0 | -0.50 0.50 { 0.0 0.0 |-0.297 -0.266
1.0 -1.0 | -0.50 0.50 | 0.10 0.10 |-0.492  -0.812
1.0 -1.0 | -0.50 0.50 | 0.25 0.25 [-0.726  -0.873
1.0 -1.0 | -0.50 0.50 | 0.50 0.50 [-0.745  -0.629
1.0 1.0 | -0.7% 0.10 | 0.0 0.0 [=0.39%  -0.s28
1.0 =10 | -0.7% 0.10 | 0.10 0.10 |-1.010 -1.060
1.0 -1.0 | -0.78 0.10 | 0.25  0.28 |-1.490 1.370
1.0 =1.0 | -0.78 0.10 | 0.50 0.50 {«1.430  -1.230
1.0 <1.0 | -0.78 -0.75 | 0.0 . 0.0 [-0.528  -0.4%
1.0 1.0 | -0.73 <0.73 | 0.10 ~ 0.10 |-0.706  -0.737
1.0 -1.0 | -0.75 -0.78 | 0.28  0.25 (~1.080  -0.960
1.0 1.0 | -0.78 -0.75 | 0.50 0.50 |-1.010  -0.876
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4,2 SOFTWARE GOALS
The intent of this phase of the research has been to devise an algor-
ithmic procedure and implement it in the testing portion of the overall

modeling scheme.

According to Figure 3, the overall modeling scheme is broken up into
three main divisions - LOADER, IDENTIFY, and SIMULATE. A brief description
of each follows:

LOADER - generates a Model Parameter File contai.iing the number of states,
number of controls, length of tensor term vector, degree of ap-
proximation, and number of sample points. This routine also sam-
ples the states and derivatives of the system and stores them in
the Temporary Data Flle.

IDENTIFY-uses the data in th:. Temporary Data and Model Parameter Files and
generates a model using the SIMEQUAT routine in the SPEAKEZY
package. The model i3 then stored in the Model File; and the Tem-
porary Data File is deleted.

SIMULATE-uses the data in the Model and Model Parameter Files and performs
a comparative simulation between the true, linear, and nonlinear

solutions. An error analysis procedure is also contained in the
routine.

The entire modeling scheme has previougsly been implemented on the Uni-
versity's IBM 370-168 computer system. Results from the use of this soft-
ware have been very acceptable; however, the use of the system itself has
become increasingly difficult due to the immense number of users bidding
for time. Consequently, it was advantageous to develop a modified version
of the software and to implement it on the Department of Electrical Engine-

ering's DEC PDP11/60 computer system,

Figure 4 illustrates the peripheral units available on the PDP11/60

gsystem, Two of these units are of particular interest in the modeling
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TEMPORARY MODEL
DATA - PARAMETER
FILE
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Figure 3: Flowchart of Overall Modeling Scheme
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Figure 4: Block Diagram of PDP11/60 Peripherals
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S

scheme. The first is the Tektronix 4025 video graphics terminal, and the
second is the Versatec eslectrostatic printer/plotter. Use of both these
peripherals is a valuable plus in the simulation phase, for the trajec-
tory curves can be quickly and easily displayed on the Tektronix tube,
and upon request can be spooled to the Versatec plotter. This definitely
enhances the routine and improves the interactive ability of the modeling

scheme.

Another viiw indicates that two drawbacks currently exist with the
implementation of the modeling scheme on the PDP11/60. First, the 96K
of core memory is divided into thirds, with 32K being allocated to each
terminal. Unfortunately 32K of memory is not a sufficient amount to per-
form the identification phase of the scheme. Secondly, the PDP11/60 does
not currently support floating point hardware. In other words, all float-
ing point operations are presently performed in software which greatly in-
creases the execution time of routines which contain a large number of

computations, such as LOADER and IDENTIFY.

With this in mind, work has been underway to institute an interac-
tive nonlinear model identification and testing scheme whereby the PDP1l/
60 computer will be linked via a data link to a Remote Job Entry (RJE)
port on the IBM 370-168#, In chis configuration, a user could sit at the
Tektronix terminal and have both the IBM 370-168 and PDP11/60 facilities
at his or her fingertips. Consequently, the memory dependent and righly
computational routines LOADER and IDENTIFY could be executed on the IBM

370-168, and the Model and Model Parameter Files could be transferred to

*This link is net yet complete.
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the PDP11/60 where they could be used by the SIMULATE routine. In this
fashion, the SIMULATE routine could utilize both the graphics capabilities

of the Tektronix, and the plotting capabilities of the Versatec.

Figures 5 and 6 contain flowcharts which describe the simulation and
testing phase of the modeling scheme. Specifically Figure 5 illustrates
the order in which various program functions are performed. The systems
(true, linear, and nonlinear) are integrated, using a unique set of initial
conditions and control parametars, and the error analysis is displayed.
From an interpretation of this analysis, the user has the option to: 1)
print the simulated solution at the Versatec; 2) display comparative sol-
ution curves on the Tektronix: 2) store the comparative solutions in a
plot file; or 4) resolve the systems using a cifferent set of input para-
meters. This portion of the routin. is highly !'nteractive and allows the

user to test out a given model over a specified region.

At the termination of the routine, if a Solution Plot File exists,
the user can execute the hardcopy plot procedure shown in Figure 6. This
procedure uses the Solution Plot File and creates binary parameter and
data files which are used by the system routine RAS to perform the actual

plotting at the Versatec.
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4,3 DEVELOPING DISPLAYS

The following pages contain examples of the displays associated with
discussions in subsection 4.2. These are self-explanatory and may be com-
pared with the excerpt from the preceding technical report, which has been
included in subsection 4.1. In addition to comparison curves for .igures
6.1, 6.2, and 6.3 in that excerpt, some additional curves have been selacted

from Tables 6.1 and 6.2 to illustrate the capability.
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V. PROGRESS ON NONLINEAR FEEDBACK
FROM TENSOR MODELS
Work on this aspect of the research has been underway only a few
months. The goal i3 to assess ths practical issues involved in an imple-
mentation of the nonlinear feedback schaze proposed by Buric {20) for use

on tensor models.

in particular, it is desired to deteruine exactly what is ‘nvolved in
calculating the feedback gains, to study whather the theory must be applied
without modification or whether it may be possible to begin with certain
simplification of method, and to carry out the software steps needed to

execute a nontrivial example.

At the time of this report, the group is nearing completion of the
first of the three steps above. The principal issues involved for the
second of the three steps appear to be the following: (1) How intrinasic
is the use of duality, which necessitates an indirect approach to vector-
valued tensors aid applies the lass-than-intuitive method of contractions?
(2) Should the initial example employ the symmetric tensor algebra, with
its additional learning overhead but with compucational advantages, or
should it employ the easier and more intuitive parent algebra embodying

both symmetry and skew symmetry?

Decis’ons on these issues are expected to be made in the near future.
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VI. CONCLUSIONS

This report has described progress on NASA Grant NSG-3048, entitled
"Alternatives for Jet Engine Control"”, during the twelve month period be-
ginning on October 1, 1980 and ending on September 30, 1981. Included
have been reports on modeling theory, controller scheduling, interactive

parameter selection, and nonlinear feedback from tensor modcls.

In light of rapidly evolving capabilities of microcomputers and mini-
computers, in view of the qualitative tensor model possibilities estab-
lished earlier by ¢Mr. Stephen Yurkovich, and taking into account both the
state of the art and prospects for further advance in tensor techniques
for feedback from such models, we believe that current progress continues
to point out significant new opportunities for productive research in

this area.
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AbscEsSE

Recent discussions ia the litersturs have
Joinced out che exiscence of decoupled concrol sys-
ten examples vith high classical savgins {n the in-
dividual loope but lictle loop stabilicy colerance
t gain variation. This paper poiacs out the ap~
piicability of che Crus-Perkine ssnsitivity satvix
to design problems lavolving sush plancs, which may
be foressea vith graphically interactive sechods
developed by Schafer and Sain.

lscsadyceton

Consider the system of Figure 1. Here ¢
represencs & veacor of requescs, u a vegtor of
conerol sctioas, and y 3 vector of planc respon~
se8. Assuue that

yo*Pu, (1)
wueM?T, 2)
yeTe, (3

for appropriste linear operscors P, M, and °T.
Combine these three equations so thac

Te o fe, (4)

and require that (4) hold for all requests r.
Then

T =M, ¢ )]
or in macrix form
(P ;-1 87~ (0). (6)
U

Any possible control action-plant response pair
(usy) can thus be represented as an element L0

kar (? } -1}, m

vhere the kernel cao be conceived either (n vector
space or sodule theotetic terms.

A very broad type of fesdback system within
the class indicaced by Figure 1 has been scudied
*This vork was supported in part by che 0ffice of
Naval Research under Contract Number N 000L4=79=C-
0473 and i parc by the Nacional Aeronautics and
Space Adniniscration under Grant NSG 3048.
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by Bengtssan (1], for che case in vhich the plant
sacrin (P(s)] arisze from a controllable and obd-
servable tviple (A,3,7) wich 3 eonic. In pare~
ticular, there exiscs an {nternally scable feedbaci
realizacion of Bengtsson Cype foc sacvices (M(s)|
end (T(s)] sactafying (6) {f and only £f (M(s)]
is proper and boch (M(s)] and ([T(s)] ere ste-
bu.t ’ror an extension to the case (P(s)] proper,
see {2}.

Concroller

Pigure 1.
Cese tn Poige

The incroductory discussion sbove lesds rap~
tdly to some very practicsl guidelines vhen (T(s)]
is diagonal and nonsingular snd vhen (P(e)] is
square. This s the case of desired decoup!ing.
From (3), (P(s)] will have to be tavertible if
decoupling .e¢ to be attained.

for discuseiocn in this paper, ve vish to aske
use of the exanple

9 0
a1 %
(PCa)] = . 0 (8)
‘o =

studied by Rekasius {}], vwho in turn actriduces it
to J.C. Doyle. A scraighcforvard calculacion then
gives

=L , (9(sel) 10(s+2)
(PC¢o)} [,(.ﬂ) 9("2)1 . (9
For decoupling,

Ly, (8) 0
Te) o 1} . (10)

0 :zz(l)
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sad (3) teplies

o)1 o (Mo} bR
’(»ueu

l(»l)cu

10Dy ab

Yeod)ey,

which for {nteraslly stable feedback reslizabilicy
aust be preper and stable by the Beagtason condi-
tiens. The chetes

a0

o) an
o h

sests the cenditions. 1In fast, this choice caa be
reslized by an oucput error feeddsgk configuracicn
of che type showa (o Figure 2, while maintaining
incernal scabtility, vith che cholee

’ 10
G(s) » . ay»
s 9

The ressens for the interest attradated by this
example can be explainad as follows. The fervard
path gsin

(Q(s)] @ [(P(a)](C(m)] (14)
ia Figuce 2 t»

2r o]
o .L,J

tdeally, then, the two=input, two=output problem
has besn reduced O CWO Jne~input, ONE=cuUtPut probe
lems. Moreover, each of the one=input, oas=output
problems has infinite gein {n the usual
classical sense. Unfortunacely, the infinite gsin
aargio is but ao (llusion, as shown Lo the follow=
fag section.

1%

gabilicy Anslyeis

The keay to0 & sCability ravgio determination,
for an oparacor gain with satrix

bt 0
{R} = :"'

lﬁz

(16)

inserted betvasn (P(s)] and (G(s)],
relation
CLCP(s) = [T+{P(e) (K] (C(s)]| OLCP(s) ”n

betvesn the closed loop and opes loop characteris~
tic polynomtiales CLCP(s) end OLCP(s) respective=
ly. Por chis cass, (17) becomes

ts the

2
CLCP(s) = 8" & (5 + *k,)s
itk (18)
. (6 + 8k = TBKy + kK,
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Pigure 1.
kz

/4
\ «6/83 \
-$ kl
STABLE
-3
FPigure ). (Not to scale).

st P(8) -

] “(.) Mn

Figure 4.
which generaces & stadility region
S*klvhz»o (19
[ IR lil\1 - 70&2 . sz » 0 (20)

ta cthe (k,.k,) plane. This region {s skectched in
Figure 3, ¢h ts not, however, drawva to scale.
for this skecch, the boundary of (20) vas writteo

ky @ (6 + 83k,)/(78 - k), (2

aond che assumpcion |k, |<<78 gives a close approx~
imacion to a sctraight Iine. Figure ) mskes clear
that very small changes in the length of control
space basis vectors can destabilise the loop.

Sensitivity Macrix Design

The stabilicy sargin observacions of the two
sections preceding are instructive, in chat cthey
point out the pocentisl fallacies which can be as-
sociated with filcer design c¢f control loops, when
sensitivity aspects have not bdexp explicitly con-
sideved.
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Te incocryorace chis aspect, ve make use of
the comparison sensicivicy macrix {4} of Crus and
Perikins, wiChin che (eeddeck struccure of Figurve 4.

for the design of G(s) aend H(e), wve sske use of
the equactions
L SRR §
ety (2 -3y, (23)

wvhete the subsctipe (0) denotes nominal represen-
tations of the plant P, cthe response operstor T,
and the Crus-PerkiLs operator S, Che last setis~
fying s vall known equation
-]
So s (1+ Pocﬂ) . 28)
Regard (22) and (1)) as design equations in terws
of a given plant and of specificacions on filter
response Tg and comparison seasicivity $g. Por
Tgs choose (12); then ve ssincain the ssse nominal

filter behavior sbtained in Figure 2, For 3,
choose
.01%9s
(Sy(0)] » =pesesT ¢+ (23)

which represencs an iaprovement doth in gain and
bandvidch over the compariscn sensitivity mecrix

sel
w0
(26)
0 gl
)
which occurs tn Pigure I when (H(s)] 18 L. It

{s scragghtforwvard to calculate

,01398+ Lg‘sﬂi‘.mgho“
. 9 (s* . 9 (8.

ag=¢f5§.oxgg-¢;) 9(se2) (.01398s1) |

N 8 (s* . 8 (s

(G(s)] =

. an
[l
o |
(H(8)] = (28)
0 d J
JUidavee.
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for which Lt felleve that
crere) = (L0139 oF ¢ 01398 (24 k) o k) .
e (le hl - :; . k‘hz)) (.013%s + 1)

* (sel) (802}t (o+)), 29

and tharn
1+ kl . hz » 0 (30)
lthlokzﬂs.‘kz-o (31)

ace councerparcs of (19) end (20). The aev scabil~
ity region {» sketched in Pigure §.

Clearly, tha shape snd chavaster of the scabil-
icy vegion shown {a this f(igure cepresents 4 sub~

stancial improvement over that of Figure ). Ia

" offest, the doundaries showw (n Figure § are very

prastical, because (K]
st those potacs. Az a vesult, [P(e))(K], con~
stdered as & nev plant astrix (P(s)), would be
siaguler and could not produce a decoupled syscea.

Rleng charegter

The special character of the Rekasius=0Ooyle
example could have bdeen foreseen defore s decoup=
ling design vas completed. To see thie, notice
that & deccupled T(s) 1in configutation of the
Pigure 2 vill alvays generste & dlagonal forward
path operacion Q(s), ae ia (14). As & conee-
quence, G(s) may be regarded as & pre-compenns~
tor chosen t0 schieve column dominance of Q(s).
A grephically tacersctive procedurs for assessing
such quescions has been developed by Schafer and

in (16) becomes stiagular

Sain (5,6]. Precompensecion ts taken o be of the
torm
i £, (0)%14,,(8)
(¥(0)) o 12 L I
ru(l)tjlu(l) 1
(32)

for ¢ an element of & Nyquistc contour, pairs
(Pun(s), (s)) which schieve coluan dominance of
0(“ are visuslized as inceriors of solid ciccles
or exceriors of dashed circles (n the (Pun, Llgg)
platts. As s follows the Nvquist concour, these
circles generate a CARDIAD (Complex Accepcability
Reglon for DIAgonal Dosinance) ploc. Figures 6
and 7 give the CARDIAD ploes for the original plane
(8). Now write (1)) in the form

(Ga)] » i 10/91 {9 0 (33
8/9 1 0 9

o (o)) (97 . (36)

In Pigure 6, observe that (8/9 = ,888..., (s just
slighely to the left of alli the dashed circles; (a
Figure 7, (10/9 = 1.111...) s wichin all the
solid circles. Thya the CARDIAD ploc predicts col-
umn dominance of J(s). Howaver, the situacion
vith vegard to this dominance coadition 1s precari-
ocus, ioasmuch s (8/9) remains quice <lose to the
dashed circles while (10/9) wsusc be delicately
pleced 2o remain insside all the solid circles.
Figures 8 and 9, and Pigures 10 aund ll, presenc che
CARDTAD plocs of (¥(s)] for (ky,ky) equal to
(0,=.1) and (0,.1) respectively. The former (s
4 stable conditiocn, the lacter unstable, as seen (o
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Figure ). Figurs 9 shows thac column two fails to
be dominant at all s; and Figuces 10 and 11 show
boech columas failing dominance—~celacive to (3))-
(34). When the dominance condition fails, the in-
dividusl loop stability avguments based upon Rosen-
brock's theorem {7) fail; and this (s an indica~-
tion of robustness difficulty co be expected in
decoupling the planec.

Conclusions

This naper has discussed the use of procedures
developed by Schafer and Sain to forecast scability
robustness prodlems in decoupling control systeas
and has {llustrated the use of the Cruz-Perkins
comparison sensitivicy ides to carvry out design.
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QUOTIENT SIGNAL FLOWGRAPHS: NEW INSIGHTS
Michael K, Sain
Department of Electrical Engineering
University of Notre Dams
Notre Came, Indiana
USA 46556

SUMMARY

When large scale, intercionnected systems can be described in terms ../ signal flow grapns. there is
available a natural algebraic way in which to regard generalized mode! "order reduction”. The basic
1dea 18 to regard the node variables as abelfan group valued and to consider the mappings from node to
node as homomorphisms of groups. Then variable simplification on node variables can be established by
projections onto quotient groups. If the node-to-node homomorphisms are correctly related to the ker-
nels of these projections, then such a construction induces a new set of unique node-to-node homomore
phisms on the cosets of original node variables. One feature of the resulting quotient signa, flow
graph is that it preserves the connection structure of the original system. other feature is that the

rojections induced on node-to-node homomorphisms are interchangeable with basic flow graph operations.
1, ]. This prasentation reviews the notions above, extends them to the feedback case, and
discusses the possibility for generalizations.
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EXTERIOR ALGEBRA AND SIMULTANEOUS POLE-ZERO PLACEMENT

Ve Seshadri
Deparcment of Electrical Engineering
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Flinec, MI 48302

ABSTRACT

The ubiquity of the determinaant of rteturn
difference in tims~invariasnt multivaciable
linear sysces scudies csan be attridutad to the
aultivariable fesdback loop control prevalent {a
such syscems. As a link detwveen open=loop aund
closed=loop charactaristic polyvoatals, as the
fundamencal entity leading to woct genscalized
Nyquist studies, and indeed as the key quantity
in solving the gensralized loop, this determi~
nant {s of essential algédraic L{mpocrtance. Coa~
sequently, extecior algebras designed explicitly
for the anslysis of such calculacions as deter=
sinants can de of assistauce {n discussions of
mulcivariable systems with feedback control. In
this paper the bdasic usage of an exterior alge~
bra, in determinantal coustructions relating to
the poles and zeros of individual transfer func~
tions in the closed loop transfer matrix, is
{llustraced. When such exterior algebras are
tormed over the {aput and oucput vector spaces,
che map fros the L{nput space to the output space
induces & sorphism over the algedbras; this
{nduced exterior morphism plays & significanc
role {n the simultaneous placement of poles and
individual zeros of the cransfer macrix at
desired locations. Iz ts also expectcd that che
compact expressions for closed-loop individual
teros, ctendered zransparent by the extertior
algebraic scructurs, would be of gensral laterest

_ inssmuch as they enhance the designer's abilicy

to shape the transient responses of {ndividual
system outputs.

INTRODUCTION
c(s) . u(e) y(s)
’\,- ‘L(n); 4
= H(s) &=

Figure l. Outpuc Feedback Structure

Consider the system of Pigure |, which con=
sists of & scadbilized axm planc transfer malrix
L(s) and an axa outpus feedback aacrix H(s) over
the fleld ?(s) of racional funccions in s with
coefficients from the fleld F. Note that r(s),
u(s) and y(s) acrs the referencs, Loput and cuZpuc
g~vectors, delonging to F(s)=vector spaces 2, U
and Y respectively. The design of & fesdback
compensator H(s) as ia the above often leads co
the following equation (the depeudence on s is

dropped henceforth for nocational simplicity):
(I »LH)y =Lz, (1)

Figure | may be viewaed as follovs. Ounce the
loop has been cloeed through B, thers results s
closed=loop transfer matrix, having iao its
various rows snd colusns the {ndividual closed~
loop traansfer functions. 12 nuserous practical
applications, as for example (1], specificacions
are given in terms of the response of tadividual
outputs to individual references. This sesns
that the zeros of Lndividual closed=loop transfer
functions are of considerable Lmportance {n
design. ’

Relatively little seems to have been written
on this subject. The reasons for the pasucity of
1iterature in this area may becosa clearer if one
were to look, again, at Equation (l). Whereas it
{s generally acknowledged that the return-differ—
ence macrix (I + LH) plays ¢ key role {n decer~
aining the effect of faedback connectiocns oa the
output respouses (2], the explicit nature of
the relacionship and cthe precise way in which the

- regurn=difference 2serix entacs the dynamics of

the feedbazk control problem have bdeen difficult
to scudy. This {3 because ths return—diffecrence
aaerix {3 generally expressed {n the feedback
problem a8 the iaverse of & matrix sua.

Butlding on the work of Sein (3] ons can
construct &n exterior algebratic structurs (4,5,
6] suited co represent classtical adjoints and
determinants and hence, by definition, the ia=
verse of the resturn d1fference aatrix. It has
already been demoanstraced that this exterior
algebraic scructure is a useful and essily
spplied construction for pole sssignmant (n an
tmportant class of minimal design problems (7,8,

The present paper aay roughly be divided fo~-
to thres parts. The first part {acroduces the
exterior algedra. The presentation i{s extremely
brief due to limitations of space; for more de~
tails the reader is referred to Greud [4]. The
second part of tha peper considers the mulci-
variable concrol probles with full output feed=
back. Based on the exterior zorphisms iaduced
over the algebras, expressions are obtained for
the pole polynomial and Ladividual zero poly~
nouials of the closed=locop transfer macrix re~-
lating che asuthut vector to the reference vector.
Ia the last part of this paper the sbove expres~
sions are used, in concsrt with unity rank feed-
back, to place poles and individual zeros simul~
tangously. Depending on the number of specifi-
cations given, one 23ay de sble to either place
the poles and zeros precisely ot aske a least

122
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squartes approxisscs placessnt. An example of
this L{s included, involving solutlon using s
computer progras.

THE LXTERIOM ALCEBMA

Consider che F(s)=vector sprce U of Laputs,
vhake F(s) {s the field of rutfonal funccions in
s with coefficiancts from the €ield 7. An element
of che vector space U would .2 an input vector
u(e); Lo numerical calculsttions, u(e) would be
cepresented by 4 column vector whose elements are
cacional functions Lo s. An exterior slgebes AU
can be conscructed over tha vector space U (4],
The bilinear operator incroduced by this con=
struction s commonly called the exterior product
or the “wedge” product A, aad operates as

(ajay * a282) A 8y ® ajaiaay + a2ea83 (2)
aja{ajay + as484) ® a3snes + a4agang, (3)

where a1,82,33,84 belong to the algedra AU, and
31,32,33,36 are fleld elements from F(s).
furthermore, the operacor A Ls skev-sysmstric.

Now consider the map L from che taput vector
space U to the outpuc vector space Y. If we con~
struct the extsrior algebras AU aad AY over the
vector spaces U and Y respectively, the sep L
induces a unique aorphism L* over the algebras
{3], which {s just a sequence of maps L{ over the
kth ¢xzerior spaces, as shown in Pigues 2.

W res) U AU AT AU
I LA H Ls L? lle\ ¢ . 'LG ° e lt;
v l'l L‘- ¥ v v

AY £(s) Y A2 o o MY .o AgY

Pigure 2. Induced Exterior Morphisam LA,

{n cerme of aumerical calculations, ths map
L Ls cepresented by the feedforward transfef
astrix, each of whose elements {s a ratiounsl
fuaceion in s; the k°® excerior asp L) ts
obeatned by forming minors of order & from the
satrix L according co 3 predecerzined sequence
dspeandent on the choice ¢f hasis 12 extarior
spaces (10]. Also, iz has besn assumed hers that
the number of Llaputs is the sama as the aumber of
outputs and equals a; thus L3 would be repre~
senced (n sumerical calculstions by the deterat-
nant of che matrix L.

MULTIVARIABLE CONTROL WITH FULL OUTPUT FEEDBACK

Let us aow consider exprassiocas for {adivid=-
ual closed=loop transfer functions {a s genseral
case such as shown {a Pigure . Hezts L is the
feadforwsrd antrix and B {s the ocutput feedback
catrix. The feeddack aacrix d {s full, {a
general, and s represented as

11 B2 ..
He . . . (‘)
1 he2 .

Scarting with the equation relating the out=
put vector y to the reference vector r, namaly,

(I +LR)y » Lz (1)

ons can use the “wedge” operator A assoctaced
with the exterior slgedeas (10] tn order to teo-
late the closed loop transfer function uuctn!
che arbicracy 8™ output y, to cthe arditrary b h
cefarence Ty, oamely y,/ry, as

Ya  dec(Ied) - dec(I+til) (3
t'b et

vhers H and & are tdentical to the feedback
sacrix 8 except that the g‘*‘ columns, correspond=
tog to feadback of the &° output y,, are spacse
as showa below.

b1y« o hpget Bigel + - Mg |

. |Bb=1ls » huelgel
e hbl . . hb‘-l
Buelle o Borlgel

Rhyelatl * ¢« Np=ia
hb‘*l LY hb. (6)

Rysigel « « Dpela

Jal ¢ ¢ Nagel
fhiy .+« Npgel

hgasl o o Ngg
higet -+ « hig

P

=l
.

Bal ¢+ Nogel hage! “-J

Thus che at® column of T ts all zero while che
ath coluan of § has a stagle ! L{a the bEh row.

Oe o « O Oe o Qe Oe « O

We can now expand the aumerator and denomi-
?ntlor of Equacion (3) (n terms of sums of traces
4] as

{ (1+ex(L8)+er(L783 )+, . +er(lghy)

Ya _ =leee(Li)=er(LoN)=.  ~ex(L3D) |} (8)
ty l¥er T +. . ver(lLyfg
The numsracor of Equacion (8) above can bde
rearranged (10], based on the linearity of the
tTace operator, so thac the closed locop traansfer

funceion relacing che ath oucput to the H5D ref-
erance {3 axprassed as

{ee(L(B-D) [+ez (L3CE3-AD) |

7a +, Per(L3 (H-H) I} . (M
Ty leer +erilidg .. Ptrily
The above closed=loop expressiocn for the traasfer

function y,/ry contains o terms Lo the numerator
and =l terms in the denominator; this could sesn
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8 lot of cerms Lf u {8 lacge. lf, however, s {s
aoderate, say s ® I correspoading to {ive vaf-
ereuces asd five ocutputs, the aumber of cCerms is
Equation (9) would actually be quites small. Ia
either case the aumbet of terus Ls likely 2o de
teduced because it depends on che aumber of (o~
dividual feedback loops thac acte closed and,
ulcinacely, ou che rank of che feedback sacrix H.
This fact Ls used {n later sections, vhere the
extrems case of unity rank feedback i{s cousidered
ta ocder to obtain sisple expreseiocas for the
closed loop pola polyncaiel and L{ndividual sero
polynomtsls.

Lat us now consider, {n mors detsail, the
aserices ia ths numarator of (9). Because 8 snd
T ace slmost tdentical, the astrix

g - % (10)

will be sparse. Specifically, the macrix (10)
uy be calculated vis firsC obtaining & nev matrix
SR)(‘) of ordnr ==l from 8 by scriking out the
% row and at® column of 3, aad then calculating

(B(b)(.))k.p (11)

This (s consistent with the result obtained {n en
earlier paper {l1] that che zeros of the transfer
function telating the ath outpuc to the bEh ref-
erance cannoc be moved by zesns of feedback from
the &t outpuc or to the bEN peference.

Corresponding to this reduction of (10) eo
form the reduced mscrix (H(y) (a) k=1, the matrix
Lk to vhich this sagrixz {s to be multiplied may
also be reduced in size to {nclude only those
elemgnts vhich are involved {n the satrix product
sad {a the crace calculscions of EZquation (9).
Recall thet the elements of Ly ere sll possidle
minors of order & !omd from the feedforward
macrix L. The pars of Lg relevant here consiscs
of those elemants vhich result from ainors of L
of orvder k that Lnclude lgy, lgp deing the feed-
forvard tresnsfer function relsting the atB ocuce
puc %o che bEh reference (10]. Thus che produce
{navolves the reducad feedforvard macrix “k)ub
snd the reduced feedback sacrix (H(y)(q))ic=1 80
that the closed loop transfer !unceion rslacing
the a%D cucput co the B reference may be
expressed as

{1ap*erl (LD)apl(b) (a) 142 (L) gn (B(n) (a))2 1+

fa . __.verl(ly)n(8 el . ()
i e
ROOT PLACEMENT UNDER RANK-ONE FEEDBACK

Ia the pravious section, expressions ware
obtained for the arbditrary individual closed loop
transfer fuaction, that is, for elemsnts of the
closed loop trausfer mactrix, with feedback from
the @ ocutputs to the & comparison poincs. 1Ia
this section, ve use thess expressions ian orvder
to design a constant suthut feeddack aserix H so
as to place the poles and certais zeros of inter—

est. lo addition, ve trest the special case
vhare the output fesddack mstrix L{s restricted to
unity rank by pradefining Lits strusture in dyadtic
fora. Wheress chis restrictiocn reduces the aum~
ber of roote that can be placed arbitrarily, it
has the strong advantage of vesulting in s bi~
linear relacionship between the feedback satrix
and the closed loop chatecteristic polymomial,
thue eimplifying the calculsation of the feedback
ascrix; hence it has attracted cousiderable
atrention in regcent yesrcs (12,13]).

Our approach to using rank—oae feedback in-
volves the eimultansous placesent of poles and
cartain individual zeros of {nterest. The gea-
etal exprassions for the closed loop pcles snd
tndividusl closed loop szeros, in the case of
output feedback by means of s sscrix H, have al-
teady been derived in the previous secsion; Pig=
ute | Ls relevant here. Let the faedback macrix
R be expreseed ia dyadic form as

0 egl (16)
vhece £ and g belong co R&, thac s,
£ o7, g0 (50897 as)

The closed loop charactariscic polynomial of the
systes aay be expressed ia terms of the open loop
characteristic polynoaial as

CLCP » det{l + LH]OLCP. (16)

Ia che previcus section, va sav that dec{I+LH]
aay be vritten as & sum of tTaces ae

det [T+ ]=i+ee(LE)+er(La)+. crer(iqiy) (17)

vhere Ly ts the &SP gxcerior map tnduced dy the
asp L. BSased on the above ejusction and on the
assumption that the feedforwvard amcriz L (s
adjusted so chac i{ts common denominacor, den L,
is the open loop characteristic polynomial, ve
can rewrite Zquacion (16) for che closed loop
characteristic polynomial (CLCP) as

CLCP » [i+er(LH)+..+cr(loly) ldent. (18)

Because the feedback u:rzx H hae rank one, the
taduced exterior mmps Hg, ke®2, .00, 3, ars all
tero, 80 that the above exprassion simplifies as
shown bdelow, using the dyadic descripeion of H {2
(14).

CLCP = [i+ez(li)|den L * den L + 3T(aum L)E, (19)

vhere num L (s the numsrator of the fes .Otward
transfar macrix L. Rewriting che exprassion (19)
in order to state explicitly the dependency on s,
and calling the CLCP equivaleatly as ths pole
polynomial p(e), ve thus have

p(s) = den L(s) + g¥(num L(s)]¢. (20)

Hence in otder to placs the closed lscp poles of
the systea ve would need co fiad suitable valuas
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for the components g snd £ of the fesedback matrix
H oo thst the cighc=hsnd side of Equation (20) ts
tdencical co p(e). Assuming that ve are {ncer~
escad in plecing ao poles, ve would have o dilin~
ear equations in 2m uckoowms gi,...,8q s0d £},
sseyfge The approach to solving this probles, 1f
ve wers to place only poles and iguore the indi~-
vidusl serce, would depend on the value of n (n
compacrison to u. However ve are interested Lo
placing soms individual seros also in addition to
the poles, and heuce ve will defer solucion of
the problem uncil we have reswritten the expres~
sion for closed loop seros in & conveaient form
so that tha problem may be approsched in & com~
pcehensive asane?.

Just as the expression for cthe closed loop
pole polynomial wae simplified considerably be-
cause the feedback is of unity cank, so aleo s
the expression for the i{ndividual sero polync~
alal zgp(s) which Ls the numerstor of the trans-
fer function relating the closed loop oucput y,
to the reference oy Specifically, {f the plaat
has a2 references and @ outputs vith feedback fren
sll outputs to sll comparison points, the expres—
ston for the numsrtator of che closed loop trans-
fer function y‘/rb with rank—=ona fesddack decosss

(':f’nu- o Loprer(WDap(b)(a) s (21)

where we cecall that (L’i).b 1s & sud=matrix of L'z‘
obtained by tncluding oaly those ainors of order
two which Lavolve lgp; also, Réb)(.) is & sud~
aatrix of the feedback matrix H, obtainsd by de-
leting fzom B che bED top (correspouding to the
referance ry) and the a®? coluan (correspoanding
to the outpue v,), as discussed {n the previous
section. Because wa multiplied the denominacor
of che closed loop yq/ry expreseton by den L to
ge¢ the pole polynomial p(s), 30 also 4o ve mul-
tiply the numsratoe, as described {n Zquation
(21), by dea L and obtain che fndividual closed
loop aumeracor polynomial or zero polynomial.
Thue

2qpls) = n.b(o)ﬂr((L;).bﬂ(b)(.)ldcn L(s) (22)

where 24p(s) and ngp(s) sre the sero polynomials
of cthe closed loop snd open loop transfer funce
tions, respectivaly, celacing the ath oucput to
the bSh reference. Jusc as the feedback aacrix d
has been expressed as the ocutar product of o~
length vectors f and g, we can similarly express
the sub=macrix H(y)(q) a# the outer product of
(w=1)=lengch vecgors, as

T
Hevica) © E(v)8Ca) »

vhere Een) = (Epeelyifuyily)]
and ‘(.) - ('1'..‘.1.‘¢‘..h)r.
Then

2a(8) = 0, (8)48(4)T (1), (8)¢ (pydenLls).  (23)
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Zquation (23) above is the desticed exprassion for
the closed loop sero polynomtsl of y,/cty, di~
linesr in the acguments g(,) aad f(y). Depending
on the number of sevos that are of particular fa-
tevest and need co bde placed, ve will have cor-
responding equacions for che zero polymomisl,
sisilar to (23).

RECURSIVE POLE ZERO P

Zquations (20) and (23) for the pols poly=-
nostal sad che individual zero polynomial, te=
spectively, aay aov de used to place poles snd
geros of closed loop tiansfer functions 1ia speci-
£ied locations. Each placemant can ba done
exactly 1f the nuaber of desired poles plus
zeros, atz, does noc exceed 2=\ [l4]} oA i
ocher hand, Lf chis sus does exceed 2a~l, & least
squares approxiaate placement aay be made.
Weighting is also possidble to reflect the rela-
tive igportance of some roolts over others.

Assums that we wish co place a poles, at
Afyeeeyigs Also sssuma that ve wish ¢o place a
tocal of £ zeros, 4C uj,ees,lg, this total besing
the sum of differanc numbers of zeros asscclated
with tre various cransfer function aumerstors of
tacerast. The poles and the teros misc then sec~
tsfy the pole polynomial (20) snd ao appropriate
gero polynomial of the form (23) respectively.
Thus s have n equations

P(A;) = denL(i;)+gT (aual(h;)]g = 0

p(hy) © denk(} )+  (nual (A )1g = 0 (26)
for the n poles, and z equations
:.151(31) . n.lbl(n)

T~ -
ﬁ(“) (‘2)-‘b1(“1)‘(b1)"“"‘“1) 0 29)
z.'r,'(ug) - ﬂ‘zb'(u«l)

Ty~ -
"(") (Lz)"b'(\l')f(bz)dlﬂ&(ﬂz) Q

for the z teros. The subscripcs aydy, .., 83D,
ars meant to emphasize thac the individual zeros
to be placed are sssocisced with different trans~
far function aumerators i{n gensral, though more
than ous 3ay bs associated vith the same sumera~
tor.

Zquations (24) and (25) arze avz bilinear
equations in tha 22 unknowns .o 8geflseeesfnge
The equations are dilinesr {n that for a given g
the equactions are linear {a f, and for s given ¢
the equations are linear in g. Treating g ae a
consctant, the equations can ba formulacted as a
set of linear equations {an { as

Pt me (26)

vhate P {s a constant (a+z) x a matrix, and ¢ is
the (n+z)=vector
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¢ (‘“.L(X|).-op‘¢.ﬂ'nth)o
m.lbl(ul),...-n...‘(u,)lr.

Alternacively, treating ¢ as & coastant, the
equations can de formilaced as & svet of linear
equactions {n g as )
e e (27)
vhere Q {s & constant (a+3) x @ sacrix, and ¢ {8
the (a*x)=leagch vector definsd sbove. Natice,
1o formulacing Lquacloas (26) and (27), that each
placesent equation contributes ons tow to P and
to Q« The pole placemsnt equacions such as (24)
contribuca cowe of leagth a. The sero placement
equacions such as (23) concridute rows of length
a=l only; & sero must de placed {a these rtove at
the k&N posttion Lf the reference of {ntarest s
ia (26), or the output of tncerest is & ia
(27), to bring these rows up to lengch 3.

Zquations (26) sad (27) aay aow be solved
cecursively {n che least-squares sense by the
following algorithe to ainiaize the ecror func~
tion

a
2 2
ge p(A, ) s (ug)
Lzl : jzl ‘jbj 4
o ||pg=c||2e]|qg=c] |2, (28)

In addition, Lf scas tGot placements ars 3ore im~

portanc chan others, this may be reflected {a &

diagonal, iavertible matrix of waights
W e diagvieeowpes) (29)

s0 that the error function would be sodified to
a
2 2
By L owptOA ] vt (uy)

of [u(Pg=c)| |2} |w(Qg=e) ! (2. (30)

Seep cne. Assume an ingtial value of g = gli),
Then the least squares solucion of Equacion (26)
for £ {s 2nown to be

£C1) o trcglidy)*e (31)

wvhere *+ denotas & suizable pseudo~ianverse. The

sacrix P* ﬂ)uqu caleulaced when the (a+3) x a

aacrix P(glt’) {s of full rank a. If che lactar
c?ﬁzuon ts sacisfied by a suitable selection of
[ A

(pgll))* = (2Tp)=1pT,

Thus £€1) can be caiculated, and the lesst~
squares ervor of Iquation (28) is chen given by

gy = 1pegtte(t) < 12, 32)

x) -
Scep two. Sec f = £¢1) and obcata cthe least
squarss solucion of Equacion (27) for 3 as

82) = (qee(i)y)ve, (33)
The leset squares ecror of Zquacion (27) ts then
given by
g = (et < g2, (34)

This process (s cepeaced in the tou?n.u
sanner. The updated value of g, namely glé’, g
"ﬂ ia scep one, and & nev value of £, nsmely
£L47, Lo calculaced ueing (J1). ﬂu? sho 1.125
squares eTror By 1s cosputed using g 2) gng ¢4,
Next the updatad value of £, nsmely 9(3). ” used
1o ecep tvwo and & nev value of g, nemely g ’. 19
calculaced ustag (33). The h’" squpges error
£, {8 now calculsted using ¢ and g*°', This
procedurs is continued until the lesst=squares
error U 1a sufficiencly small. Lt kas Leen shown
(10] thet the lesst=squares ecror function € {s
gusaranteed to convarge.

EXNULE

The transfer aatrix, L(s), 3¢ & planc Lo
given as

Lec us assume that wve wish to kesp one of the
poles at =2 while aoviag the ocher from =3 to
=10; thus

Al - .z. \z e =]0,

Also sssume thac we vant to sove the (2,2) zero,
822, from {ts present louaction st +l to =5 in the
left half=plane vhile ensuring cthat the (l,!)
zero, 31], remains uanaffectad by feeddack.
Thersfore we have tvo more specifications

211(a) = s%6, 272(8) ® g+S,

Assuming that we are looking for s dyadic con-
scant feedback aatrix

B = £gf,

this problem vas run on the digital compucer,
using the tZerative algorizhm ocutlined sbove,
starcing fros an initial value of g as

g= (11T,

The program coaverged to a solution in five
itarations, wvith s corresponding lesst=square
error of the ovder of 10%®(=20);: che corras~
pouding f4ical values of £ and g wers

£ o (.15,1.87,1.5MT, g = (.06,1,37,.69)7
vhers we have rounded to the second decimal place

for conveniance. The feeddack aat:ix B aay de
calculaced as

126



T ey

e o

(S Il

.- v e W RS U e e

i

W, AGE S

OF P00 QUALITY

009 L2068 L10
Bogglelalle =2.571 =1.200
097 2,166 1,08

We ¢an check the positions of the poles and
the fadividual sercs to ses vhather our specifi-~
cations have been ssc. The pole polyncatal

p(s) = don L(s) *+ g% sua L(a)f

say be obctained, using the compuced values of ¢
aod g, a8

p(s) ® (82+36+4)+(6.929+12.68)
o (8+10.07)(s+1.8%).

Thus one of the poles Ls at =10.07 uwhich Ls close
to the desired value of =l0. We wantaed the other
pole 20 remaia at ~=2; {t has soved s little, toO
=1,85, tn the process of accomsodacing a leassc~
squares error solution. The two individual seros,
211(s) and 222(s), 38y also be calculaced; they
ate found to be at <5.93 and ~5.1 respectively,
vt;l.ch are close to the desired values of -6 and
CONi 10H3
In this paper wa hava considered multivari~
able cutput feeddack, and locked ac {2 f2oz the
viewpatiat of the exterior sorphisss induced over
the plant aap and the fesdback map. /JFcom this
vanctage point, we have derived exprsseions for
the individuel closed loop transfer funutions.
It is found that the individual closed loop zeros
ce affected by the corresponding iadividusl
teedforvard zercs and by the seros of ainovs
formad from che feedforvard macrix while faclud-
ing thess individual zeros. As far as feedback
is concerned, it i{s found that che iadividusl
closed loop zeros of the transfer function re~
lacing che ath output to che HED cefarance, say
are not affected at all by feedback fros the c‘f"
cutput co the 58 compartison point. Rather,
these zeros depend on the sub=matrix of feedback
ch-ncl cottnpondinc to feedback from outp.:.s
g :ho ath co comparison potacs ochsr
E;n the b . and on the extarior asps induced by
this sud-matrix.

The exprassions thac have been derived for
the {ndividusl closed loop zero polynomiule and
for the pole polynomial should chemselvas be of
interest bacause aany closed loop system specifi~
cacions are yet given in terms of single channsl
excitacions. I[n addition, howevar, che above~
sencioned exprassions hava bdeeu used {n this
paper, in conjunction with unitywrank fesddack,
to derive an iterative algorithm for simultanecus
pole~ and {ndividual sero-=placemsnt. A computer
progran has bdesn written to {aplemant this algo=
cicha, and an example of rooc placemsnt, using
this progrim, appears in the latcter part of chis
paper.

The suthoc would like co thamk Prof. 4. K.
Sain for Lntroducing his to the exterioc algebra
and for several helplul conversacions oa the
subjeat. The sutbor wishes also to thenk Prof.
8. 7. Gysan for providing his wigh & sathesmaci~
clan's view of slgebraic scructures.
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TENSOR DRAS FOR NONLINEAR
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Depascment of flectrissl Eagineering
Univessity of Yocre Dame
Nocre Dame, DM 46336

ABSTRACT

The tmportance of nonlinesr models for wodel following sechods so prevaleat ia the sodern
tuzbofen engine induscry dictaces the need for relisdble techniques for nenlinesr model gea-
eracion. This paper Taports upon & concinuing tavescigacion aised ac developing roalinssr
diffevencisl sodels ucilising the notions of power series and algedbraic censors. [Lmphasis
of the scudy (s on an applicecicn of these ideas in conlinesr sodel genccaticn using & resl-
cime digical turdofan eugine sisulstion.

INTRODUCTION

Nodel following control systems comstituce s solid backbone for much of the centrol wotk in
mscdern aviacion. Wasically, 2ne has the olane, which 3sy de aa airframs or &n enging==-orf
both the airframe and che engine regarded as an integraced whole. Uander certain conditions,
such &8 temparatutes, pressures, and compressor speeds, the planc say be said 2o sacisf~ cer~
tain nonlinesr diffarencisl equaticns. Morsover, zany of the variailes in t.sse equacions
sce relszed co one anocher chrough cowplicaied nonlinesr 3aps. .c is vithin this range of
scceptable conditions that any realistic conerol system musc carty on {ts vork. Accordingly,
«hen 8 concrol syescem feceives a requesc to change important phyeical quancities wighin the
plane, it musc arrvange to do 80 in such & vay that the plant soves to the nev conditiom vithe
out vtolating its idemcity, chat is. without leaving the sccepcable region of condigioms any-
where ajong the way. For exasple, if sltitude i{g to be changed, them this wst be sccompli-
shed without stell., Or, (£ chrust ts ¢o be changed, it must be changed vithouc jermitting
excessive increases in tuchine inlet tewpersture.

The resson that aodel following control chinking is so useful in euch situacions {s dus to
the fact zhat the sodels msy be used co prescride behaviors vhich are in consonsnce vith che
region of accepcable planc conditions. Scheduled over an opersring envelope. such acdels cen
sdeord s large part sf contvol stress, and can [res cthe feedback loop for ics priracy ctask of
achieving accuracy in che presence of parametric uncertainties and discurdances.

This paper desls with scud‘es on the use of algsbraic tensoes (1] for generacing a family of
nonlinear models. The zain feature of the algedraic tensor (nvolves the way that it gives
ground on dimenaionslity in ovder ro gain sdvencages of linearity. This provides an orgen-
.ged vay of looking at expansion formula szd provides s direct line wich parsmacer idencifi-
cation techniques fov linesr equations. DBasically. one has to design inicial condicions and
conerol signals (n order co assure thac the nonlinear sodel will outperform the linear sodel
locally, as vell as arvanging thet it yield s larger regican of sccepctable aodeling. Such
0deling exercises jave besn exhibiced {a {2) and (1] for representacive off-simulacor ex-
amples. ur purpose here, then, is t0 4pply the techaiques %o aonlinesr szcdel generacion
using & real-cime digital turbofan engine simulacicn, and to present some Preliminsry repre~
sencative resuits.

ALGEBRAIC TENSORS N MODELING
Yo Llluscrace now the use of algebraic censors (n noniinear aodel building, scilizing tdeas
of power series and tTuncetion approximations. <o this end, let x ¢t ¥ Dde the n-vector of

scates and o ¢ U he the m=vector of {nputs, vhere X and 7 are real vector spaces. (oo~
sider che nonlinear ordinery differential equation
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we will sssums vithout 1ees that the erigin Lo a8 equilidrium petat of (1). The fumstiom

£ 1 X80 =X, uREsr COrtais CechRical 4SSUBPLLons sush &8 anslyticity (s & seighberheed of
(0,0) ian X u U, usy bo ewpressed ia & power series exvansies of tve varisbles. Dus to the
netacionsl complomity of higher ovder ainsd pertial derivatives, oaly the fivet fov r. we of
SUth OB SEPARSION Gy be esslly reeerded. lNowever, Lf ve smpley the ualverssl bilineas tea~
sor predust funscion @ : X x U =X QU (4,3], where the am-dimsnsionsl real vecter spsss
LOU 1o the consor product of X wich U, we can exprese the right oide of (1) ia the
conpase {orn

.
t(n,0) o 'h"" (3010 ...050.0.0 ... 0y - @
o s
| ciane h tinas
The asin feature of (i) lies 1 the fasc that the My “ore aspe, facilitating ew or-

dorly treacmamt of higher ovder terms in the enmpansien. JSuch elamemts are bHuilt up by itere
atien, a8 for exsmple (X @ (X QO U)) @ U.

4 nonlinser sodel of (1) csm be obCatned by trumcacion of (2). Te allew fur this (1) say be
nt.ulud by iatreducing the nev limesr n. Ly whose sccien 1o chec of Moy folloved by
the scalar mulciplicaction by L/§tkt. itaur tdencification problea Ly be forwula~
ted via the equation

Be (L, Lo1 b20 by Yoz “y0 R IR Y (¢ })

whare Xe {8 & vestsr partitioned (nto tenser preduct Cerms iln 4n epprepriace order, given
by (X, 4, R @R, XQGu, U@u, @R @K, ...). Constder che censor preduct sseociaced vich
the ng 249 vhich (s generaced by elemencts i X QU @U. Furcthecase of ne ) snd o
e 1, cthe 12 sonimale of X @u @u sonsisc of teves such as X ul. Kjupus, Kjuguy, ond

so on. But dus to che comlmcativity of ecaler muitipiisasica ia .‘u e-..h chere exise thres
cedundant terms; eliminacion of chese terss results in sa odjest of dimension 9. lo gea-
eral, the aumber ~¢ Jiscinct elesancs from esch product (s given by the comdinaszorial ex-
preseien

QOQ.L’.(.og-L’

q ¢ (&)

P
for q copies of x and r copies of u in the product, Comnstruction of the syscem cone
sises of stacking these sunumials in the veccor 1y O give & reduced-eize version of (),
which amouncs 2o & use of the symsacric temsor algedrs (3]. Ic {s imporcant to nete thad
now the satrix L,k (s of reduced sise, corrasponding to the reduced order structure.

To complete the congeruction of Jur approximate systes, sinuosidal (nputs are epplied to (1),
and the scace solutions sre sempled ac h gselecced tims potnts. These sampled veiues are
ioaded tnco the pxh zacrix Xp. The firet ave rows of Xy are decermined from the. sampled
values of x and ui cthe remaining p=(tve) cove contain scmosials vhich are aultiplies
of the entries of those firse nem rows. The nxh sacrix X (s formed dy loading derivatives
estimactes for k. %), ..., ky 4C the h cise poincs. As en illustracion, for an approx-
isation retaining up to third degree 2ensor product terms ve have

Y (] 1 14

X e {lyg Loy 30 P11 boz B30 Fa1 Miz Yoy’ Sr )
The secthod employed here (o solving for the coefficisnt aacrix uses a singular velue decom=

posicion of che transpose of Xe 20 solve che sinimal lsasc-equares problem, returuiang the
2xp parcicioned macrix of the L.

APPLICATION: JET DNCTVE SIMULATOR

la the sodeling dilscussions to follow actencion will cencer agound NASA's ACSEE ("Yuixie')e=w
Jutec, Clean, Short-haul fxperimencal Ingine .%). Folloving io the evolution of cure
bojet to cursofan engines in airceaft sropulsion. the JCSE engine (s an advanced turbofas
designed spectifically {or powered=lift, short-haul aircrafc. The engine incorporates sever-
sl new concepts aot all curvencly used on turbofans 0 achieve opcimsl sfficlency as vell as
qutet, :lesn opczation. Primary uses of JCSEE-cype ergines will be on short take »¢f and
lanaing (STOL) sivcraft, promising bSrighter prospects {Or compact secropoiican airpores.

An {desi of anv propulsion simulacion is o achieve adbsoluce resaiism for use 16 flighc simu~
lacors. To approach chis (deal requires very detailed digital simulations (n the forwm of
compliex computer programs. The goal of the QCSEE simulator orogram employed in this study
hae Yeen tO achieve resal tima prapulsion simulation to be used (o sircraft sisulators «ith
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under-cho~ving eangine spplication.

Por the saslycical sedel te be dissussed. the ntaces and concrols emploved arve as followve.
Lagine etates are the ¢oBMUSCE? exil Cemperacure oand reter dynamige La the ferm of the faa
speed snd compresser epesd. Contrel Laputs ers the (usl sacering 7elve pesitien (vhich deo~
torninss sais burwmer fuel flov), nsssle sres sectisg, and & faa piteh angle pervamecer for
control of che variable piteh faa. Thus & thres~state, threo~centrol model vii) be fermu~
lated. MNedel fermulstions using sere thaa three states eve currsatly under Lavestigatien.

Cagine epsrecisn for Che nedel tdentificatien cam take twO dasic sppresches. he engine sile~
ulater asy de rum with che lesp closed, cthat {8, vith the digital concroller segment [ully
oparative, vaile simply veryiag the pover demsnd (ev, equivalently, the “throctle”) shout
sone equilibrium potac. [Figure . Lllustrates this schese vhere ve represent the engiss dy-
namice in terms of the statez snd their derivatives. The referescs {aput pover demand (PWRX)
{s depictes as & sinusoidal perturbaction vhich {a curm, vich plant ssssuremsacs y,, dJecer-
uines che concroller dynenice. An slteruscive sppreseh for the simulatorv cperscien invelves
cpeaing the locp, effeetivaly deastivaciag the concroller sad iadepecdently inserting che
tndividual contrel fapucs. This sicuattion is porcrsyed ia Figure 1 vhere we ilasert & ces~
eceac pover demand and “curn~off” the coucroller by equating thie concroller scace devivatives
vith gere. [a this vey sinusotdal faputs, u, Say de {aserted &nd engine scacas observed.

{a the sscond spproach sencionsd sbove, vhich ve will sdopt here, nonlineacities of the planc
are exgited vhich might othetvise have been less prenounced hed the ceacroller been in the
loop. For doch operstions the engine eimulacor is cum {nto tho sCesdy stace priov to amy
percurbacions Lia order to establish an operscisg pedat. The taitial conditions thus geaer-
:cu fore the poine of expansion for the saries trungation spproximstion in the wodel formm-
acion.

SAMFLE RESULTS

ln this f(inal sectica we offer en ovarview of the procedure for &n identification usisg th-
LSRE siaulator. A aciondd ia cthe preceding secticn, the opervation of QCSEX for purposas
of sodel generscion {n this scudy (s of the type depicted ino Figurs 1. The simulactor ts run
with & 100% pover demand for several seconds co sectle eil ctramsients. This produces some
equilibriue velue (x ,u ) where x and u 3ach consist of chres elemsncs. Within the
digical simulation prggr& the conevol variables are asnipuiaced 50 thet & einusolda’. loput
wich some amplicude and {requency {s i(neerted into esch impuc channel. Likevise, . scate
veriables are percurbed from ctheir equilibrius valuee and cthen sampled over some iaterval ac
evenly 6ydced poincs in tims. The difference decween these sempled values and the correspon-
d4iag equilibeium veluss form che block of odsecved {aca for cthe tdencification procedure.
The derivacive values are slso excracted dirsccly {rom the simsulator s¢ the jiven semple
times s0 chet ¢ trumcation spproximation, such &s shet given in (3), ssy he formulsced. Or-
dering of cthe elevents in xp (e of criticsl tmport for idencificacion as vell 4 simuls~
tion of the modal; & complece slgorithm for such sn ocdering procedure zsy bde found tn (2].

Yalid~ :+a studies of & sodel ~nsist of cumpering 3odel responses to ITue responses of the
stece varisbles o perturbativ-. (n the initial staces and taput signal paramecers asbout the
s0inc 4t which cthe model (s ildentified. Moveover, & scandacd linear spproximacion nodel (s
normally tdencified by another sathod and also used in the comparison ectudies. All sisula~
tions here sre done (i the open .cop. For exsmple, cbesrve the tesponse curves given (n
figuees 3=5. The first ploc cTepresents a sample responge for jercurbdetions in the tofcial
stace values: Pigute ) shows tha behavior of the coepressor speed for s decrease to 2523 of
the perturbacion used ia tha {dentification. Tigure 4 repr the respouns 2f zhe come
pressor speed for & dowoward perturbation in the conetrol signal emyliicudes. [Flnally, Tigure
$ exhibits che fan speed betiavior for & 202 increass in frequencies in esch signal.

Prelisinary scudies have resulted in seversl asonlinesr scdels for specific idencificacton
soines. To (llustrace the type of simulacions which result from such models, represencacive
response curves haAvVe jeen precented with various Laput peramecer secs for one such aodel. A
tlosl {dencificacton, that is, one with full validetien studies, i{s curreancly inder lnves-
tigacion.
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