NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Iwelve Month Technical Progress Report
 to the
 National Aeronautics and Space Administration
 on
 NASA Grant NSG-3048*
 ALTERNATIVES FOR JET ENGINE CONTROL
 October 1, 1980 - September 30, 1981

*Under the Direction of
Dr. Michael K. Sain
Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana 46556

This report deals with progrese made on the Grant NSG-30:18 during the twelve month period beginning October 1,1980 and ending September 30, 1981. The NASA Technical officer for this period was Dr. Kurt Seldner of Lewis Research Cencer. The director of the research at the Univarsity of Nutre Dame was Dr. Michael K. jain, who has been asaisted by Mr. Stephen Yurkovich, Mr. Joe P. Hill, and Mr. Thomas A. Klingler, research assistants, in the Department of Electrir al Engineering. Mr. Yurkuvich received the degree of Master of Science riring this period, for his January 1981 thesis entitled "Application of Tensor Ideas to Nonlinear Modeling and Control". Mr. Hill and Mr. Klingler expect to complete research investigations for the Master of Science degree within the next calendar year. Mr. Yurkovich may complete requirements for the degree of Doctor of Philosophy in ig62.

Researches during the preceding calendar year have centered on basic copics in the modeling and feedback control of nonlinear dynamical systems. Of spacial interest have been the following topics: (1) the role of series descriptions, especially insofar as they relate to questions of scheduling, In the control of gas turbine angines; (2) the use of algebralc tensor theory as a cechnique for paramaterizing such descriptions; (3) the relationship tetween tensor methodolo3y and other parts of the nonlinear literature; (4) the improvement of interactive methods for parameter selection within a tensor viewpoint; and (5) study of feedback gain representation as a counterpart to these modeling and paramecerization ideas.

Progress has been made in all five of the areas fust described. of
special interest, we believe, are the natural deaign ties which exist between scheduling and series representations and the natural mathematical ties which exist between symetric tensor representations and formal series. In the light of rapidly evolving capabilities of microcomputers and minicomputers, in view of the qualitative tensor model possibilities estabLished by Mr. Yurkovich in M.S. studies, and taking into account both the state of the art and prospects for further advance in tensor techniques for feedback from such models, we belleve that significant opportunities for research progress are uccurring in this area.

table of contents

Page
ABSTRACT 11
ACKNOWLEDGMENTS $v 1$
I. BACKGROUND 1
1.1. Introduction. 1
1.2. Abstract Differentiation. 3
1.3. Tensor Algebra 5
II. PROGRESS IN MODELING THEORY 9
2.1. Introduction 9
2.2. Approximate Systems 12
2.3. B111near Systems 21
2.4. Algebraic Structures 32
2.5. Bibliographical Appendix. 42
III. MOTIVATION: SCHEDULING 47
3.1. Introduction 47
3.2. Simple Example 49
3.3. Abstract Series 51
IV. PROGRESS IN PARAMETER SELECTION 55
4.1. Introduction 55
4.2. Software Goals 71
4.3. Developing Displays 78
Page
V. PROGRESS ON NONLINEAR FEEDBACK FROM TENSOR MODELS 103
VI. CONCLUSIONS 104
VII. REFERENCES 105
APPENDICES
A. GRANT BIBLIOGRAPHY: INCEPTION TO PRESENT 107
B. "Sensitivity Issues in Decoupled Control System Design' 113
C. "Quotient Signal Flowgraphs: New Insights" 119
D. "Exterior Algebsa and Simultaneous Pole-Zero Placement' 121
E. "Tensor Ideas for Nonlinear Modeling of a Turbofnr. Jet Engine: Preliminary Studies" 128

ACKOOWLEDGMENTS

The funded research on this grant k:es been aided by the voluntary, unfunded efforts of a number of individuals. We would like to thank Mr. Robert Spann and Mr. John Monaghan for helpful discussions relative to Col.1ege computing systems. Mr. Spann and Mr. Monaghan completed studies for the Bachelor of Science degree in May 1981. We also appreciate the interest of Mr. Joseph O^{\prime} Sullivin, who participated in the readings and discussions pertaining to portions of this work.

Special thanks are due to Dr. R. Michael Schafer, who has been most helpful in regard to isaues concerning the PDP-11 computir.

We also acknowledge encouragement and support extended to the priject by the Department of Electrical Engineering.

Finally, we are pleased to thank Mrs. T. Youngs, who has prepared the typescripts.

I. BACKGROUND

1.1 INTRODUCTION

In this report, we discuas progrese which has been made on NASA Grant NSG-3048, entitled "Alternatives for Jet Engine Control", during the twelve mosth period beginning on October 1, 1980 and ending on September 30, 1981.

This section contains, in subsections 1.2 and 1.3 , some mathematical background material, which may be useful for reierence during an examinaetion of later sections.

Section II reports on the reaults of an extensive literature examination carried out by Mr. Stephen Yurkovich. This material explains many of the relationships between the theoretical machinery in use under this grant and various other methodologies involved in other theoretical studies. Insofar as we can deteriaine, this group remains the pioneer in assessing practical utility of such methods for use in realistic application simulations. This means that our viewpoint and evaluation may be weighted in a manner different from that of the pure theoretical investigator.

Section III treats in an introductory way the polynomic and formal series implications of controller scheduling. The practical process of scheduling linear multivariable controllers leads naturally to families such as those which we have under investigation.

Section IV gives an update on the group's progress in developing parameter selection methnds for choosing coefficients in tensor represen-
cations. This work has been carried out by Mr. Thomas Kiingler. as wili be apparent in the comparison of present capabilities with those of last year, a number of very positive steps heve been taken. We expect these steps to be of considerable assistance in subsequent work.

Section V deals with the uee of feedback on nonlinear tensor dynamical models. This study is in the formative stagss and is being carried out by Mr. Joe Hill.

1.2 AB.JTRACT DIPPERENTIATION

As sill be Indicated in Section 3.2, the idea of pelynomic scheduling, of gains or time constants, suggests atate deacription in terme of series. Because we wieh to use operator theoretic methods to some extent, it is convenient here to ask a few introductory questions about derivatives in such a context.

Let V and W be normed real vector spaces, with 2 open in V. A function $f: Z \rightarrow W$ is differentiable at a point p in z if there exists a continuous linear map $F: V \rightarrow W$ such that, for ($p+h$) in 2 and h in v,

$$
\|h\|_{0}^{1 \operatorname{mon}} \frac{\|f(p+h)-f(p)-F r\|}{\|h\|}=0 .
$$

If F exists, then it is unique and is called the derivative of f at p, and is denoted by

$$
(D f)(p): V \rightarrow W .
$$

In case f is differeutiable on 2 , then we have a construction

$$
D f: Z \rightarrow L(V, W),
$$

where $L(V, W)$ denotes the real vector space of \mathbb{R}-1inear maps $V \rightarrow W$. Higher order derivatives are defined in a recursive fashion,

$$
\left(D^{r} f\right)(p)=\left(D\left(D^{r-1} f\right)\right)(p),
$$

with r a positive integer, provided that the indicated limit exists.
An important connection exists between the calculis on normed vector spaces and the tensor algebra. Indeed,

$$
\begin{aligned}
& D^{2} f(p) \in L(V, L(V, W)) \\
& D^{3} f(p) \in L(V, L(V, L(V, W)))
\end{aligned}
$$

whenever the limits exist. Let us denote by

$$
L\left(V_{1}, V_{2}, \ldots, V_{n}, W\right)
$$

the real vector spece of n-linear functions

$$
V_{1} \times V_{2} \times \ldots \times V_{n} \rightarrow W .
$$

an n-linear function being one which is linear in its remaining argumant whenever ($n-1$) of its arguments are $f 1 x e d$. It can be shown that there exist isomorphisme

$$
\begin{aligned}
& L\left(V_{1}, V_{2}, W\right) \rightarrow L\left(V_{1}, L\left(V_{2}, W\right)\right) \\
& L\left(V_{1}, V_{2}, V_{3}, W\right) \rightarrow L\left(V_{1}, L\left(V_{2}, L\left(V_{3}, W\right)\right)\right)
\end{aligned}
$$

so that $\left(D^{r} f\right)(p)$ can be regarded as an $:=1$ near map $V^{\boldsymbol{r}} \rightarrow W$, up to 1somorphism. We suppress inis lsamorphism and think of ($D^{\text {r }} f$) (p) as just such a map.

It is now straightforward to establish a connection with the tensor algebra, and we do so in the section following. The importance of the connection lies in ita parametric possibilities: Every r-linear map can be composed from a linear map and a universal r-linear construction called tensor product. In a sense, the innear map embodies the parameters which are available for scheduling; and we pursue this vinw in a later section.

1.3 TENSOR ALGEBRA

In this section, we develop some of the structures with which we can subsequently dischem scheduling questions in Section 3.3. Let V be a real vector space. For each integer t which is two or greater, lat

$$
\left(e^{r} v_{0}, e^{x}\right)
$$

be a censor product for r copies of V. The notion extende $t 01$ and 0 by the definitions

$$
e^{1} v=v \quad, \quad e^{0} v=R
$$

The sequence ${ }^{r} v, r=0,1,2, \ldots$, can be developed into a biproduct, and the images of $e^{r} v$ under ineertion can be given the same notation. Then the tensorial powers $0^{n} v$ can be developed linto an associative algebra by defining the internal direct sum

$$
O V=\sum_{n=0}^{\infty} e^{n} v
$$

and by equipping ov with the bilinear mapping $(\alpha, \beta) \rightarrow \alpha \beta$ for $\alpha, \beta, \alpha \beta$ c - V whose result is dafined by

$$
\alpha B=\sum_{n, m} a_{n} \circ \beta_{m},
$$

where $a=\sum_{n} a_{n}, B=\sum_{m} \beta_{m} f o r a_{n} \in o^{n}$ and $\beta_{m} \in 0^{m}$. With this multiplication, ov becomes the graded tensor algebra over V with elements (a_{0}, a_{1}, \ldots), which are sequences of the tensors $a_{i} \in e^{i} v, 1=0,1, \ldots$, and with unit elemant $(1,0, \ldots)$. We emphasize the fact that multiplication in the censor algebra is not a rensor product.

Now let $O V$ and $O W$ be tensor algebras as defined above, over V and W respectively. For every pair $n, m \geq 1$, let ${ }_{m}^{n}(V, W)$ be a tensor product of $\rho^{n} v$ and o^{m}, that $1 s$,

$$
e_{m}^{n}(v, w)-\left(o^{n} v\right) \cdot\left(o^{n} w\right)
$$

We set $\rho_{0}^{n}(V, W)=0^{n} v$ and $\rho_{m}^{0}(v, W)=0^{m}$. In a manner similar to that preceding,

$$
e_{a}^{n}(V, W) \quad, \quad n=0,1,2 \ldots,=0,1,2, \ldots
$$

can also be developed into a byproduct; and the images of each of these spaces under natural insertion into the byproduct can again ba given the same symbolic representation. Again, then, we construct the internal direct s

$$
\theta(V, W)=\sum_{n, m \geq 0}^{\infty} e_{m}^{n}(V, W)
$$

with

$$
\theta(V, W)=\sum_{k=0}^{\infty}\left\{\sum_{n+m=k} \oplus_{m}^{n}(V, W)\right\}
$$

functioning as the induced gradation on $\quad(V, W)$.
Now consider two spaces $\overbrace{m}^{n}(V, W)$ and $\overbrace{g}^{r}(V, W)$. There exists a unique bilinear mapping

$$
u: \otimes_{m}^{n}(V, W) \times \oplus_{s}^{r}(V, W) \rightarrow \Theta_{\mathbb{w}+\varepsilon}^{n+r}(V, W)
$$

with action

$$
\mu\left(\alpha_{n} \odot \beta_{m}, a_{r} \odot \beta_{s}\right) m\left(\alpha_{n} \odot a_{r}\right) \odot\left(\beta_{m} \odot \beta_{s}\right),
$$

where $a_{n} \in \theta^{n} v, a_{r} \in \theta^{r} v, \beta_{m} \in \theta^{m} W, \beta_{s} \in \theta^{s} W$. The pair $\left(\theta_{m+s}^{n+r}(V, W), u\right)$ is a tensor product, or

$$
\overbrace{m+s}^{n+r}(V, W)=\oplus_{m}^{n}(V, W) \otimes_{s}^{r}(V, W)
$$

and

$$
\left(\alpha_{n} \odot \alpha_{r}\right) ब_{1}\left(\beta_{m} \odot \beta_{s}\right)=\left(\alpha_{n} \odot \beta_{m}\right) Q_{2}\left(\alpha_{r} \odot \beta_{s}\right)
$$

We have subscripted the product symbol - in this equation in order to emphasize the fact that the defining product \bullet_{1} on the left side is between an ($n+r$)-tensor and an ($a+s$)-tensor, while the defined product 0_{2} on the right is between an ($n+m$)-tensor and en ($r+\infty$)-tensor.

An algebra structure may be placed on $O(V, W)$ by defining a multiplication operation. To this end, let $a_{m}^{n} \in a_{m}^{n}(V, W)$ and $B_{s}^{r} \in a_{s}^{r}(V, W)$ so that the tensors

$$
\alpha=\sum_{n, m} \alpha_{m}^{n}, \beta=\sum_{r, s} \beta_{s}^{r}
$$

are elements of $\oplus(V, W)$. Then the product of two such tensors is given by

$$
\alpha \beta=\sum_{\substack{n, m \\ r, s}}\left(\alpha_{m}^{n} \bullet \beta_{s}^{r}\right),
$$

where the symbol is the same as \otimes_{2} above. Notice that the multiplication rule implies

$$
\begin{aligned}
\left(\alpha_{n} \otimes \beta_{m}\right)\left(\alpha_{r} \otimes \beta_{s}\right) & =\left(\alpha_{n} \otimes \beta_{m}\right) \otimes_{2}\left(\alpha_{r} \otimes \beta_{s}\right) \\
& =\left(\alpha_{n} \otimes \alpha_{r}\right) \otimes_{1}\left(\beta_{m} \otimes \beta_{s}\right) \\
& =\left(\alpha_{n} \alpha_{r}\right)\left(\beta_{m} \beta_{s}\right) .
\end{aligned}
$$

This relation shows that the algebra (V, W) is the canonical tensor product of the subalgebras © and $\otimes W$, or

$$
\otimes(\mathrm{V}, \mathrm{~W})=(\otimes \mathrm{V}) \bullet(\otimes \mathrm{W}) .
$$

Our motivation is, of course, the expansion of functions $f: X \times U \rightarrow X$, for X a real vector space of states and U a real vector space of controls.

In concluding this secition, which goes into considerable detail, we remark that there is more than one way in which to develop a tensor algebi:a.

A portion of the difficulty in applications atudies is to defarmine how to develop the sequence of tensor vector spaces into an algebra. Various choices on multiplying tensors may be made. The foregoing choice fits well with preceding grant studies and is suitable for ase in later sections of this report.

II. PROGRESS IN MODELING THEORY*

2.1 INTRODUCTION

The study of nonlinear systems has become incressingly more active with efforts focused on overcoming the well known analytical difficulties that accompany them. A vast collection of literature exists relative to this activity, particularly noticeable in the last 15 years. It is this body of literature, then, that this section considers, focusing primarily on the copics dealing in system approximation, bilinear systems, and algebraic structures. While these areas themselves represent a large body of the literature, only those papers deemed directly relevant to the present research aims are reported on here.

By approximate systems we mean chat branch of study which atteiuts to model complex nonlinear systems, such as

$$
\begin{align*}
& \dot{x}=f(x, u) \\
& y=g(x, u) \tag{2.1.1}\\
& x(0)=x_{0}
\end{align*}
$$

for $x \in \mathbb{R}^{\mathbf{n}}, \cup \in \mathbb{R}^{\mathfrak{m}}$, and $y \in \mathbb{R}^{k}$, by simpler, workable forms which possess the desirable properties of stability, causality, controllability, and so on. First order linearization schemes form a subset of this class of systems and, as we will point out, the problem has been well studied. Polynomic systems, which we also consider as representing a subclass of approximate systems, are equally important and are thus reviewed here in the subsection to follow. Topics in analysi:s, trsated thoroughly in the classic works of Dieudonne [1] and Apostle [2], are crucial in all of these studies.
*Contributed by Stephen Yurkovich. See Section 2.5 for references [A..], [B..], [C..].

Bilinear systems may be considered as a specialization of (2.1.1) when we add the assumption of 1 anearity in che control or in the state; that is, bilinear systems aze lincar separately with respect to the state x and the control u, but not jointly. We characterize them by the following dynamical equation:

$$
\begin{gather*}
\dot{x}=A x+B u+\sum_{i=1}^{m} N_{1} u_{i} x, \\
y=C x \tag{2.1.2}
\end{gather*}
$$

for the matrices A, B, N_{i}, and C of appropriate dimensions (time invariant case), where u_{1} is the ith component of u. In a more concise form, the system (2.1.2) is illustrated in Figure 1 . There are several practical and theoretical motivations for the study of such systems, as seen, for example, in [3].

Algebraic system theory is the main vehicle toward the goals of the present research. The works of Wonham [4] and Sain [5] in the area of multivarlable systems offer a necessary springboard for studies in this field. In $[7.8,9.10]$ the motivations put forth in $[6]$ are extended coward real modeling problems, utilizing the symmetric tensor algebra. Unfortunately, the literatuie is rather sparse on this topic relative to nonlinear system theory. However, the papers we will cite in the area of algebraic tensors are examples of the uses of similar ideas in the literature. The intent is not to expound the details of the theory; this may be found in such works as [11] and [12]. Similarly, the theory of Lie algebras apparently plays a pertinent role in the research. Several leadirg works will be cited, while a more complete exposition of the theory is given in [13] and [14].

Figure 1 A Typical Bilinear System

2.2 approximate systems

We begin chis subsection by discussing an important linearization cechnique which a handful of auchors have utilized in recent years. It will be seen to be useful not only in linearization of nonlinear systems but in bilinearizacions as well. This approach appears to have been introduced first by Carleman [A1] in 1932.

Let us initially considar the following scalar nonlinear differential equation,

$$
\begin{equation*}
\dot{x}=f(x) \tag{2.2.1}
\end{equation*}
$$

where $f(x)$ may be required to have certain analytic properties. The Carleman Linearization Process (CLP) is based on the fact that any homogeneous nonlinear differential equation (2.2.1) can be converted into a linear differential equation of infinite order by defining new variables

$$
\begin{equation*}
x_{k}=x^{k} \tag{2.2.2}
\end{equation*}
$$

By cutting off this infinite system at afinite stage a closed set of equations which model (2.2.1) may be obtained.

One of the earliest (1963) applications of this linearizatior approach appears in $[A 2]$. where the basic idea is to employ the CLP in rewriting nonlinear equations as an infinite sequence of coupled linear equations. This sequence is then truncated by a linear closure approximation invoiving a mean-square error minimization. The multidimensional case is treated in the following manner. Consider the set of nonlinear differential equations

$$
\frac{d x_{i}}{d t}=\sum_{j=1}^{N} a_{i j} x_{j}+\sum_{j, k=1}^{N} a_{i j k} x_{j} x_{k}
$$

$$
\begin{equation*}
x_{1}(0)=c \tag{2.2.3}
\end{equation*}
$$

Taking $x_{j} x_{k}$ as new variables $y_{j k}=x_{j} x_{k}$, and using vector notation,

(2.2.3) becomes

$$
\begin{gather*}
\dot{x}=A x+B y \\
\dot{y}=A_{2} y+D(x) \tag{2.2.4}
\end{gather*}
$$

where x is an n-vector so that y and $f(x)$ are of dimension n^{2}, is nxn. A_{2} is $n^{2} \times n^{2}$, and B is $2 n \times n$. Similarly, we can form the n^{3} $x n^{3}$ system satisfied by functions $x_{i} x_{j} x_{k}$. While the notion of tensor products involving x or y (to form the monomial rerms) is not used, it is pointed out that the A_{1} are the iterated Kronecker sums (denoted by θ_{K}) of A,

$$
\begin{align*}
A_{2} & =A \Theta_{K} A \\
A_{3} & =A \Theta_{K} A_{2} \\
& =A \Theta_{K} A \Theta_{K} A \tag{2,2.5}
\end{align*}
$$

and so on. (A discission of the Kronecker sum may be found in Beliman 11j): this and the Kronecker product are major topics $\ln 2.4$ of this review.) Stability of (2.2.4) is related to che characteristic values of A.

Alternate linearizations are also considered in [A2] in which any continuous function (2.2.1) (not necessarily analytic) can be expanded in an orthogonal series. For example, assuming that x varies only over $-1 \leq x: 1$, Legendre polynomials offer the best linear approximation in the mean square sense. A similar statentent can be made for Chebychev polvnomials.

A form of the CLP is used in $[A]$] in estimating the "domain of attrac-
tion" (stabilicy results) for a class of nonlinear systems. A statement of che CLP is presented with a cetailed proof in which an algorithm is developed for an iterative procedure for estimating the domain of attraction. The theorem involves an error bound in terms of Euclidean norms.

The work of Sira-Rainirez in $\{A 9, A 10\}$ follows the work in $\{A 7]$, particularly in (A10) where the main theorem used by Loparo, etal., forma the basis of the paper. In $\{A 10\}$, the use of the CLP is proposed for feasible set (set of all possible solutions of the systems of difterential equations) computation on class of nonlinear analytic feedback systems. The errorbound result of [A7] is used, then, ts approximate arbitrarily close the ieasible region of a nonlinear system (whose inftial state is bounded by a compact generalized polvhedron). Moreuver, the higher dimensional linear system obtained from the CLP has parameters which are shown to be computable in terms of the Volterra series expansions of the nonlinear map.
let us now introduce some natat ton whloh is generallv accepted and cypically attributed to Brockett (see [B2] and $[C 12 \mid$) for use of the CLP. Given the n-vector x with components x_{1}, denote by $x^{[p]}$ the $\left(\begin{array}{c}n+p-1 \\ p\end{array}\right.$, dimensional vector with elements of the form

$$
\begin{equation*}
\prod_{i=1}^{n} x_{i}^{p_{i}} \tag{2.2.6}
\end{equation*}
$$

with $\sum_{i=1}^{n} p_{i}=p, p_{i} \therefore 0$, and a a constant scalar. For example, we can represent tupical terms as

$$
\begin{align*}
& x^{[0]}=1, \\
& x^{[1]}=x, \\
& x^{[2]}-\left(x_{1}^{2}, x_{1} x_{2}, \ldots x_{1} x_{n}, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{2} x_{n}, \ldots, x_{n}^{2}\right)^{\prime} \tag{2.2.7}
\end{align*}
$$

and so on, where, denotes cransposition. The elementa of $x^{〔 p]}$ are ordered lexicographically ${ }^{1}$, in the manner (2 2.7), which becomes important when any actual calculationg are done. In [9] is given a general algorithm which accomplishes chis for use on a digital computer. There it is pointed out that such objects (2.2.7) are actually elements of a censor product between p vectors.

With this notation defined, we consider now the results of Krener in (A5! and a specific class of nonlinear control systems. We restrict ourselves here to the case of scalar u, entering linearly, yielding the differential system

$$
\begin{align*}
& \dot{x}=f_{0}(x)+u f_{1}(x) \\
& y=g_{0}(x)+u g_{1}(x) \\
& |u| \leq 1, x(0)=0 . \tag{2.2.8}
\end{align*}
$$

With the assumption that f_{i} and g_{1} are as smooth as needed, (2.2.8) in general gives rise to an infinite dimensional bilinear system of the form

$$
\begin{align*}
\dot{x}^{[p]} & =\sum_{i=p-1}^{\infty} A_{i}^{p} x^{[i]}+u B_{i}^{p} x^{[1]}, \\
y & =\sum_{i=0}^{\infty} C_{i} x^{[i]}+u D_{i} x^{[i]}, \tag{2.2.9}
\end{align*}
$$

for matrices $A_{i}^{P}, B_{i}^{p}, C_{i}$, and D_{1} of appropriate timensions. Now (2.2.9) may be truncated by setting $x^{[p]}=0$ for $p \geq q$, and by defining a new
lhere has appeared in the literature at least three different words for this same connotation: lexicographically, lexigraphically, and lexographically. Interestingly enough, the third of these apparently is not an accepted word (according to Merriam-Webster) but is seen most cften, probably due to its use by Brockett [B2]. We will adopt the first of these, lexicographically, an accepted term from formal language theory.
state vector as

$$
\begin{equation*}
x=\left(x^{[0]}, x^{[1]}, \ldots, x^{(q-1]}\right)^{\prime} \tag{2,2,10}
\end{equation*}
$$

the resulc is a finite dimensional bilinear system

$$
\begin{gather*}
\dot{x}=A x+u B x \\
y=\Delta x+u D x \\
|u| \leq 1, x(0)=(1,0, \ldots, 0) \tag{2.2.11}
\end{gather*}
$$

We state now the main theorem for bilinearization about a point.

$$
\begin{aligned}
& \text { Theorem [AS] Consider the noniinear control system (2.2.8). } \\
& \text { For any integer } \geq 0 \text { chere exists a bilinear concrol } \\
& \text { system (2.2.11) such that for some constants } M, T>0 \\
& \text { for any admissable inputs the outputs } y(t) \text { and } \bar{y}(t) \\
& \text { of the nonlinear and bilinear system, respectively, satisfy } \\
& |y(t)-\bar{y}(t)| \leq M t^{q} \\
& \text { for all } t \in[0, T] \text {. Also, if } x \text { is the state of (2.2.8) } \\
& \text { and } \bar{x} \text { consists of } x_{1} \text { to } x_{n} \text { of the state of (2.2.11), } \\
& |x(t)-\bar{x}(t)| \leq M t^{q+1} \\
& \text { for all } t \in(0, T) \text {. }
\end{aligned}
$$

An equivalent result is proved for bllinearization about a reference crajectory.

In earlier work by Krener, $[A 4]$, studies the problem of when two control systems (where the control enters inearly) are equivalent, i.e., that there exist a local diffeomorphism which takes the solution of one system for each control into the solution of the other for the same control. Neressary and sufficient conditions are derived. As a corollary, necessary and sufficient conditions are derived for a nonlinear system to be locally diffeomorphic to a linear system. These equivalence and linearization results hinge on the
cheories of manifolds and we brackets.

A mechod of formal linearization is presented in [All] in which the state of a nonlinear system is au mented with linearly independent functions (lif's' of the state variables. The result is a syatem, where the dynamical equation of the augmented state is expanded in a series of lif's, which is lif ar in the function space spanned by the lif's. This of course amounts to a form of the CLP and, in fact, a result using Taylor's Theorem (with remainder ierm) is given. Moreover, a numerical example is reported on.

In [A13] Crouch offers a rigorous development in which he corsiders nonIInear systems described by finite Volterra series, with certain analyticity and linear-in-the-control requirements. The natural properties of Lie algebra of the system lead to the formulation of the state space as a homogeneous space of nilpotent lie groups. This leads to showing that the state space is homeomorphic to a Cartesian space. Thus, when these systems are set in natural coordinato syatems it is seon that the state space adalts a natural vector space structure. A finer structure is also identified which shows that these systems are cascades of linear systems with polynomial link maps.

Further results dealing with Volterra series enpansions are discussed in $[A G]$. There, a general mechodoiogy is developed for obtaining fundamental expansions consisting of multilinear integral operators. Validity conditions for the expansions ace ohtained, as are results concerning the approximation errors ior appropriately defined aormed spaces. Several such error bounds have been mentioned thus far, and are crucial in any approximate system results. Another method, which defines a dynamical error system, is described in (A3].

As a lead-in to the discussion of polynomic systems, we point out two papers by Porter. In [A8] polynomial operators (one example is a umad Volterra series) are used in the approximation of nonlinear systems. The classic Weierstrass result is used in which che function to be approximated need not be differentiable; rather, emphasis is placed on approximating the function by polynomials over a compact set. The Bernstein system (employing Bernstein polynomials) is one constructive realization of the Weierstrass approach. A comparison is given for this methodology versus power geries expansions. In [Al2], Porter utilizes a Hilbert space setting and considers two distinct problems, interpolating and approximating (for a "black box" phenomenon). The basic cheorem here shows that interpolators which can be reallzed linearly on a vectorized space have a specific approximation property.

A racher complete overview of the therr of polynomic systems is given by Porter (1976) in [A14], concaining 75 references on the topic. In chis framework, a function is said to be polynomic if it is a finite sum of multipower maps (defined also in (AlS]) and said to be analytic if it is an infinite sum of multipower maps with an appropriate convergence. Thus, polynomic operators are a subser of analytic operators. In [A15] it is shown chat a wornstrass-type approximation result does not hold between the finite memoryless polynomic functions and the memoryless continuous function. A summetric multilinear operator W from H^{n} to H (where H is a Hilbert space) is said to generate a mulefpower function $W: H \rightarrow H$ by the rule

$$
\begin{equation*}
W(x)=W[x, x, \ldots, x] . \tag{2.2.12}
\end{equation*}
$$

For causality studies, orthoprojectors are introduced.

The problem treated in (A18) can be conscructed as an ideneification problem. the reprementation of a black bux phenomenon by polynomic or multilinear models. From a collaction of observed input-output pairs a polyncmic operator is constructed.

Conditions are derived in [A16] which guarance thet a feedback system modeled by a "general quadratic and cubic" plant and controller will be of the type

$$
\begin{gather*}
\dot{x}=A x+k B x+D u+N(x, x)+M(x, x, x) \\
y=C x . \tag{2.2.13}
\end{gather*}
$$

for vectors x, u, and y and the feedback factor $k s \mathbb{R}$, where N is a bilinear form in x and M is a trilinear form in x. These systems do not, however, contain forms which are trilinear in x_{1} and u_{i} mixed.

The concept of span reachability is considered in (Al7] where discrete polynomial state-affine systems are treated. The class of systems studied are said to be span-reachable if the set or state vectors which are reachable from the origin span the entire state space.

The use of tensor products has recently emerged in che ilcerature relative to polynomic system cheory. For example, in [Al9] a multivalued switching function f is said to he realized by "polylogic" (over an index set) if there exists a polynomic function vich computes f (on the domain of f). The implication is that a polynomic realization $\gamma(x)$ of a given switching function $f: A^{n} \rightarrow A$ exists if and only if a lineaz realization exists

$$
\begin{equation*}
f(x)=D(x)=\Gamma \bar{x} \tag{2.2.14}
\end{equation*}
$$

for $x \in A^{n}$, where

$$
\begin{equation*}
\bar{x}_{j}=\sigma^{j}\{x\}, j=1, \ldots, n, \tag{2.2.15}
\end{equation*}
$$

To illustrate, if the index set is $\{0,1,2,3\}(n=4)$, then

$$
\begin{equation*}
\bar{x}=(1, x, ;<x, x \otimes x \otimes x) \tag{2,2,16}
\end{equation*}
$$

since \bar{x}_{0} is defined co be 1 . Computacion of such ad in (2.2.14) is discussed.

A furcher example of the use of censor produces is given in (A20) where the copic is state representations of polynomic mapa. Briefly, if H is a H1lbert space then for $x \in H$, the quadratic operator

$$
\begin{equation*}
\gamma(x)=(1, x, x \in x) \tag{2.2.17}
\end{equation*}
$$

1s defined in order to create the new Hilbert space

$$
\begin{equation*}
\hat{H}=\text { closed span }\{\gamma(x): x \in H\} \tag{2.2.18}
\end{equation*}
$$

with inner product induced by that of H. Moreover, H is shown to be a Hilbert resolution space. With this, causality properties of non-epic polynomic maps such as $\gamma: H \rightarrow \hat{H}$ are discussed, and the treatment of higher order polynomic operators is alluded to. These concepts are then employed for state decompositions.

2.3 BILINEAR SYSTEMS

A brief introduction to bilinear syatems was given in Section 2.1 where (2.1.2) and Figure 1 servec to depict such systems in mathematical and block diagrant forms. The importance of bllinear systems to the present rescarch is evident by the fact that any bilinear function may be represented in terms of the universal tensor product function. In fact, bilinear (or "2-1inear") functions are merely a subset of the class of multilinear (or r-linear) functions which in turn, with appropriate operations defined, can be identified up to an isomorphism with a space of algebraic tensors. Furthermore, inner product spaces have inherent relations to such ideas since over the real numbers any inner product is a bilinear form. So the area of bilinear system theoiy, while in itself a large and growing field, contributes in many ways to ongoing research in multilinear (and thus nonlinear) dynamical systems.

An introduction to bilinear systems and the accompanying body of literature can be found in the survey papers [B5] and [B6] in 1974, and [B17] in 1980. Bruni, Dipillo, and Koch in [BS] (an often cited work) outline some bastc definftions of bilinear systems. To summarize, let us rewrite (2.1.2) here for convenfence, in a slightly different form:

$$
\begin{gather*}
\dot{x}=A(t) x+B(t) u+N(t) x u \\
y=C(t) x \tag{2.3.1}
\end{gather*}
$$

where the input u is assumed a priori to be of a specific class. The matrix $A(t)$ belongs to $\mathbb{R}^{1 \times m}, B(t)$ to $\mathbb{R}^{r_{1}}$ and $N(t)$ is a bilinear form In x and u which can be rewritien in the manner

$$
\begin{equation*}
N(t) x u=\sum_{i=1}^{p} N_{i}(t) x u_{i} \tag{2.3.2}
\end{equation*}
$$

for $N_{i}(t)$ in $\mathbb{R}^{n x m}$. This definition (2.3.1) of a time varying bilinear
system (time invariant if A, B, C, and N are not time dependent) can be further specialized under additional hypothesis. Bilinear systems are defined to be homogeneous in the state if $B=0$, homogeneous in the input if $A=0$, and stricrly bilinear if $A=3=0$. Along with these and further definitions, the authors stress the fact that there have been no effective concributions to the application of bilinear system theory to the solution of practical modeling problems. While there has been some recent contributions, the general identification problem remains unsolved today, and only a few results for the spectal cases seem to be available. The cop cos of stability and distributed parameter systems are also listed as trends for future research.

In 1974 Mohler [B6] puolished another such survey-type paper in which he discusses the evolution of bilinear systems, with emphasis on their application to population models, biological systems, nuclear fission processes, and socioeconomics. It is pointed out that in these various instances biIfnear mathematical models arise in a natural manner, while in others they represent another degree of approximation beyond that of linear models. This paper may be overshadowed now by a more recent work (1980) by Mohler and Kuludziez [Bl7]. Here, feedback combinations of bilinear syscems are discussed, and the following point is made. In many systems feedback combinations resulc in multilinear models which may be decomposed into open loop bilinear systems for certain analyjes. In this manner multilinear models and bilinear systems may be used to approximate more highly nonlinear sustems. An anproximation theorem due to H.J. Sussman is quoted where it is stated that arbitrary functions satisfying certain causality and con-
tinuity conditions can ie approximased arbicrarily close by maps which arise from bilinear systems for measurable and bounded inputs. The authors note, however, that this does not give a method for constructing the approximate bilinear system for a given nonlinear system and that the basic assumptions may in fact be too restrictive.

Possibly the most often cited paper in the bilinear system literature is [B2]. Brockett considers the algebraic structure of bilinear systems and sketches the general procedures for constructing a theory parallel to that in linear systems for parallel and series interconnections, canonical forms, controllability, observability, and equivalent realizations. The startirg point uses the fact that (see also [C11]) any input-output map which can be realized by

$$
\begin{gather*}
\dot{x}(t)=\left[A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right] x(t)+\left[\sum_{i=1}^{m} u_{i}(t) b_{i}\right] \\
y(t)=C x(t), \tag{2.3.3}
\end{gather*}
$$

lor appropriace matrices A, B_{i} and C and vectors b_{i}, can be realized by

$$
\begin{gather*}
\dot{z}(t)=\left[F+\sum_{i=1}^{m} u_{i}(t) G_{i}\right] z(t) \\
y(t)=H z(t) . \tag{2.3.4}
\end{gather*}
$$

A more involved result says that any input-output map realized by

$$
\begin{align*}
\dot{x}(t) & =\left[A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right] x(t) \\
y(t) & =\sum_{p=1}^{q} \psi_{p}(x(t), x(t), \ldots, x(r)), \tag{2.3.5}
\end{align*}
$$

where ψ_{p} is a p-linear map in $x(t)$, can also be realized by the form
(2.3.4). One such construction uscs a form of the Carleman linearization process. These results rest on the fact that if x satisfies a homogeneous in the state bilinear system, chen so does $x^{[m]}$ (the lexicographically ordered vector defined in the preceding section). That is, if 2 is given by $x^{〔 2]}$, then there exist matrices $A^{[2]}$ and $B_{i}^{[2]}$ such that

$$
\begin{equation*}
\dot{z}(t)=\left(A^{[2]}+\sum_{i=1}^{m} u_{i}(t) B_{i}^{[2]}\right) z(t) . \tag{2.3.6}
\end{equation*}
$$

At this point Brockett alludes to the use of Kronecker product relationships (for iterative construction of the $A^{[1]}$ and $B^{[1]}$) and the theory of symmetric tensors, citing reference [13]; again, however, tensors are not used in the development.

Several other general points of interest are made in [B2]. With respect to in $2 r$ connections, if the parallel connection of two bilinear realizations is defined, the resulting system will have a bilinear realization. The same is not true for series connections; that is, bilinear systems are not closed under series connections. However, if the series connection of a system having a bilinear realization followed by a system having a linear roalization is defined, then the resulting system has a bilinear realization. As a final point, Brockett notes that in classifying systems and in determining equivalent :ealizations, the results available in the study of Lie algebras are of fundamental importance.

A glohal hilinearization result is given by $L o$ in [B12], summarized in the following. Consider the nonlinear differential system

$$
\begin{align*}
& \dot{x}(t)=[(x)+[G(x)] u \\
& z(t)=h(x)+[Q(x)] v . \tag{2.3.7}
\end{align*}
$$

for $x \in \mathbb{R}^{n}, 2 \in \mathbb{R}^{k}, u \in \mathbb{R}^{m}$, and $v \in \mathbb{R}^{p}$. The nonlinear system (2.3.7) is dynamically equivalent to the bilinear system

$$
\begin{align*}
& \dot{y}=\left(A+\sum_{i=1}^{m} B_{i} u_{1}\right) y(t) \\
& z(t)=\left(C+\sum_{i=1}^{p} D_{1} v_{i}\right) y(t) \tag{2.3.8}
\end{align*}
$$

for some $M_{1}>0,1=0,1, \ldots, p_{M_{-1}}$ such that

$$
\begin{align*}
& \operatorname{rank}\left[C^{\prime}, A^{\prime} C^{\prime}\right. \ldots,\left(A^{\prime}\right)^{M_{0}-1} C^{\prime}, D_{1}^{\prime}, A^{\prime} \tilde{D}_{1}^{\prime} \ldots .,\left(A^{\prime}\right)^{M_{1}-1} D_{1}^{\prime}, \\
&\left.\ldots D_{P}^{\prime}, A^{\prime} D_{p}^{\prime} \ldots\left(A^{\prime}\right)^{M_{P}^{-1}} D_{p}^{\prime}\right] \\
&=d 1 m A \tag{2.3.9}
\end{align*}
$$

if and only if (2.3.7) has a finite-dimensional sensor orbit. Briefly, if $L(g(x))=g_{x}(x) f(x)$ where $g_{x}(x)$ is the gradient of g, and if $h \in C^{\infty}$, the set of functions

$$
\begin{gather*}
\left\{h(x), L(h(x)), L^{2}(h(x)), \ldots\right\} \\
U\left[U_{i=1}^{p}\left(Q_{i}(x), L Q_{i}(x), L^{2} Q_{i}(x), \ldots\right\}\right), \tag{2.3.10}
\end{gather*}
$$

where Q_{i} denotes the $i-t h$:olumn of Q, is called the sensor orbit of (2.3.7) at time t for any input. In a final note, L_{0} points out that a method of constructing (2.3.8), attributed to Brockett [B2], is achieved by letting $y=\left(x^{[1]}, x^{[2]}, \ldots, x^{[\max (k, p)]}\right)^{\prime}$.

Stochastic bilinear systems are treated in [B7] in which systems with multiplicative noise processes (thus, bilinear) are considered. Brockett's "moment equations" ([C13]) are used to compute the expected value of $x[p]$ for zero mean white noise Gaussian processes. The condition that $E\left\{x^{[p]}\right\}$ have a closed form solution is that the Lie algebra be solvable (see [14]). If the lie algebra is not solvable, an approximation method is used by truncation of cumulants (coefficients of che Taylor Series expansion of
the logarithm of the characteristic function).

In (B16) the optimal control of a class of single-input discrete bilinear systems is considered. Through dynamic programming solutions are obtained for the deterministic and stochastic problem, where che performance index is the usual quadratic ciost function in discrete time.

Controllability of bilinear systems has been treated by many authors during the 1970 's. One of the original works (1968) on the subject is that of Rink and Mohler [Bl]. There, two sufficient conditions are given for a bilinear system such as (2.3.1) to be completely controllable. Several examples are given, and in an appendix the set of equilibrium points for bilinear systems is described. This work is extended in [B13] where the solution of the parameterized equation

$$
\begin{equation*}
\dot{x}=\left\{A(t)+\sum_{i=1}^{m} B_{i}(t) v_{i}\right] x(t)+N(t) u(t) \tag{2.3.11}
\end{equation*}
$$

with $x\left(t_{0}\right)=x_{0}$ and v an element of a Banach space of continuous \mathbb{R}^{m} valued functions on a finite interval, is given by

$$
\begin{equation*}
x(t)=p\left(t, t_{0} ; v\right) x_{0}+\int_{t_{0}}^{t} p(t, s ; v) N(s) u(s) d s \tag{2,3.12}
\end{equation*}
$$

Here, $p\left(t, t_{0} ; v\right)$ is the state transition matrix associated with the matrix which premultiplies $x(t)$ in (2.3.11). From this, then, a nonnegative symmetric controllability matrix is defined which is used co obtain global and rotally controllable results by bounding $\phi\left(t, t_{0} ; v\right)$.

In [B3] is given a description of the "least linear subspace" that contains all the states of the system (2.3.1) (for scalar u) reachable from the origin. For this purpose a canonical decomposition of the state space Into a direct sum of four subspaces is considered. Sufficient conditions
for the reachable set of a bilinear system at a fixed time to be convex are given in (B9]. Under the hypothesis for reachability (convexity), the minimum time control for transerring x_{0} to any osher reachable point is discussed under the guise of bang-bang control. A rigorous treatment of reachability (and observability) concepts is found in [B14]. This paper shows that any twn "quasi-reachable" and observable realizations of bilinear systems are isomorphic. This leads to the construction of canonical forms utilizing the Kronecker p-sduct of matrices.

As mentioned previously, Lie algebras play a vital role in bilinear system theory, particularly in the study of controllability. In fact, in the opinion of Elliot [B8] in 1974, the most important criterion for controllability and accessability of a homogeneous (in the state) bilinear system is the transitivity of the associated Lie algebra. We briefly state such a controllability (necessary) condition concerning the bilinear system

$$
\begin{equation*}
\dot{x}=(A+u B) x . \tag{2.3.13}
\end{equation*}
$$

Let L be the smallest real linear subspace of matrices A and B closed under the Lie product, and let $\left\{c_{1}, \ldots, c_{m}\right\}$ be a basis for this Lie algebra L. If system (2.3.13) is controllable then L is transitive (see below also), that is,

$$
\begin{equation*}
\operatorname{rank}\left(c_{1} x, \ldots, c_{m} x\right)=n \tag{2.3.14}
\end{equation*}
$$

for all $x \in \mathbb{R}_{0}^{n}=\mathbb{R}^{n}-\left(n^{1}\right.$ Since the origin is an isolated equilibrium point for a bilinear system such as (2.3.13), \mathbb{R}_{0}^{n} is the usual statt snace considered.

The work of Cheng, Tarn, and Elliot [B10] offers a brief survey of works concerning controllability of bilinear systems. Moreover, a discus-
sion of lie algebras and lie subalgebras is given. A definition of cransitivity is given, stated in the following. ive say that a set M of matrices is transitive on \mathbb{R}_{0}^{n} if for every $x, y \in \mathbb{R}_{0}^{n}$ there exists an X in M such that $X x=y$. In this paper both discrete and continuous time controllability is discussed.

Observability is considered in [B18] for homogeneous in the state bilinear systeths. It is noted that an observable (in the usual sense) bilinear system may be unobservable for some inputs. The primary concern, then, is the design of inputs u^{*} which are as close to the given input u (in the L_{2} sense) as required so that the bilinear system will be observable relative to u^{*}; an algorithm for choosing such inputs is developed. Other methods for achieving this are discussed, such as optimization of observability matrix eigenvalues. Here, however, appropriate inputs are achieved by slightly perturbing given inputs.

Tientification of hilinear systems is discussed in [B4]. A deterministic approach using Newton's method is employed, then statistical hypotheses are allowed and Maximum Likelihood Estimation $1 s$ carried out forming a differential bilinear model. Similar aims are pursued in [Bll] where Isidori and Ruberti consider time varying bilinear systems such as (2.3.1) in finding internal descriptions. The state transition matrix associated with $\dot{x}=$ $A(t) x$ is used to express the response in terms of Volterra kernels. This leads to necessary and sufficient conditions for realizability by a finite dimensional bilinear internal description. This paper follows closely along the lines of [B22]. In [B15] is given necessary and sufficient conditions for the existence of a nonsingular matrix with real entries which transforms
the given multi-input, multi-output bilinear system into a triangular canonical form, which amounts to a coordinate transformation within the state space. Conditions on the internal description are outlined, and on the external description (external data) conditions are specified via a realizable formal power series.

The review of the literature for bilinear systems up to chis point suggests an adequate foundation on which the study of tealization theory can be undertaken. A detailed discussion of this broad topic and numerous theories involved is of course beyond the scope of this review. However, because of 1ts overall importance, several papers on the subject of bilinear system realization are listed and will be briefly discussed.

An early (1969) work by Arbib [B19], following the work of Kalman, obtains a decomposition for multilinear discrete-time constant systems in terms of linear subsystems and multipliers. For instance, it is shown that a bilinear system may be characterized by two layers of linear systems. While most of the paper concerns automaton minimization, an appendix includes a summary of the theory and use of the tensor product to achinve some of the results for bilinear systems concerning the construction of canonical forms. This decomposition idea is further developed in [B20] where explicit conditions for minimal realizations of time-varying multilinear maps are obtained. The Nerode realization theory is applied with algebraic concepts such as quotient spaces. Again, as suggested in [B19], the bilinear map (8 is used in the canonical factorizations Another work concerning multilinear maps and their realizations is [B29] which further extends chese ideas, studying also observability and quasi-reachability of the multilinear systems.

Similar are discussed in [B27] by the same author, with Denham, for bilinear systems.

In [B26] a technique for bilinear system identification is developed which uses a finite orthonormal expansion to approximate input-output functions. The basis of the expansion is Walsh functions which form a complete orthonormal set. Two useful properties of Walsh functions are that with the proper multiplication defined they form a commutative group and that the integral of a Walsh function can be represented in terms of Walsh functions. The technique is illustrated with four computational examples.

Tarn and Nonoyama [B24] obtin algorithms for the construction of dis-crete-time internally bilinear state space models. The notions of the terisor product and the less known affine tensor product are used to describe such systems.

Minimal realizations are studied in [B21] by introducing a "generalized "alkel matrix", analogtous to limear system theory, formed from input-output map parameters. Ir \{B22] the realization theory for bilinear systems is developed in cerms of Volterra series expansions of the zero state response, while [B25] uses functional serims expansions, building on previously aited works.

Based on the theorem for global bilinearization given by l.o (as discussed in (B1:]) in [B28] is developed an approxination theorem of linear-in-che-control bilinear systems. Use of Taylor's Theorem is discussed and construction for the bilinear approximations is given in the proof of the theorem. In [B23] Krener developes a result sinilar to chat of [A5], where
again it is shown that every nonlinear realization can be approximated by a bilinear realization with an error that grows like an arbitrary power of t. In $[B 23]$, however, Lie algebraic concepts are employed, making che development somewhat more rigorous chan that of [A5].

2.4 ALGEBRAIC STRUCTURES

Several references have already been cited for a general introduction co the algebraic Lopics with which the current regearch is concerned. Since the work of (7-10] hinges primarily on the usage of algebraic tensors and apaces of mulcilinear functions, our main emphasis here is on that of the censor algebra. While \{l1] and (12] offer a formal treatment for the necessary background, we mention several works in the literature $=0$ add to chese sources.

We begin with two tutorial-type introductory papers on these topics. In [C2] the cheory of mulcilinear forms is reviewed and the main discussion centers on the notion of the linear operator contraction. A cechnical difference between the contraction of tensors (which exists independent of its expression in particular bases) and the concraction of mulcilinear forms (which in general is basis dependent) is outianed. Beginning with vector spaces and their duals, several types of contractisns ars discussed and are shown to coincide with the "usual" engineering definition of contractin. The second tutorial paper, [C3], discusses the properties of bilinear forms (wr "second-order tensors"). For V an F-vector space (F a field), the set of all bllinear forms on $V \times V$ can be constituted as a linear vector space itself with dimension equal to $(\operatorname{dim} V)^{2}$ by the definitions

$$
\begin{gather*}
\left(a_{1}+a_{2}\right)(\cdot)=a_{1}(\cdot)+a_{2}(\cdot) \\
\left(k a_{1}\right)(\cdot)=k a_{1}(\cdot) \tag{2.4.1}
\end{gather*}
$$

where a_{1} and a_{2} are arbitrary bilinear forms on $V x V, k \in F$. Many other elementary copics are introduced and extended, including a discussion of the inner product as a real positive definite symmetric bilinear form $\mathbf{a}: V \mathbf{x} V \rightarrow \mathbb{R}$.

We have already witnessed various usea of the Kronecker product and uf Kronecker sums of matrices (or, absiractly, linear transformations) in the literature. The Kronecker product is of course itself a tensor product. Bellman ([15). Chapter 12) has supplied a solid foundation for che properties of the Kronecker product, and has shown (A2) how they may be employed in the Carleman dinearization process. The utility of the concept for computational aspects has also been explored for use in such topics as solution of linear equations and algorithms for Fast Fourier cransforms ${ }^{2}$. Because of its versatility, then, we will discuss some works concerning the usefulness of the Kronecker product which relate to the topics explored thus far.

Brewer $(C 6)^{3}$ gives a general overview of tha; algebra related to the Kronecker product, surveying the literature and cuoting many useful cheorems, definitions and properties. Furthetmore, the calculus of matrix valued functions is revieved. The main emphasis of the paper is the development of a parameter identification methcd, based on Newton Raphson Iteration, for Inear time invariant systems using the matrix calculus and the Kronecker algebra. In an earlier work (1973) of Barnett [Cl] matrix calculus ideas are explored and a solution to the matrix differential equation

$$
\begin{equation*}
y^{(r)}+a_{1} K y^{(r-1)}+\ldots+a_{r} K^{r} y=0 \tag{2.4.2}
\end{equation*}
$$

is developed. The interesting point here is that y is a vector given by stacking the rows of an $m \times n$ matrix $X=\left\{x_{i j}\right\}$, denoted by

$$
\begin{equation*}
v_{5}(X)=\left[x_{11}, x_{12}, \cdots, x_{1 n}, x_{21}, \ldots, x_{2 n}, \cdots x_{m n}\right]^{\prime} \tag{2.4.3}
\end{equation*}
$$

[^0]and $K=A Q_{K} B=A 8 I_{n}+I_{m}$ © 8^{\prime} is che Kronecker sum of some matrices A and 8. Results involving v_{r} are given, such as
\[

$$
\begin{equation*}
v_{r}\left(C X D^{\prime}\right)=(C \odot D) v_{r}(X) \tag{2.4.4}
\end{equation*}
$$

\]

for the $p \times m$ matrix C and the $q \times n$ matrix D. The Kronecker product does not in general commute, but it 1 s shown that, for C and D as defined above,

$$
\begin{equation*}
\therefore \Leftrightarrow C-P(C \theta D) Q \tag{2.4.5}
\end{equation*}
$$

where p (depends only on p and q) and Q (depands only on m and n) are permutation matrices.

Similar results have been derived by Kuo [$C 4$], where it is shown that the nonhomogeneous product system

$$
\begin{equation*}
\left(A_{1} \odot A_{2}\right) y-b_{1} \odot b_{?} \tag{2.4.6}
\end{equation*}
$$

Is solvable if and only if

$$
\begin{equation*}
A_{1} x_{1}=b_{1} \text { and } A_{2} x_{2}=b_{2} \tag{2,4.7}
\end{equation*}
$$

for some x_{1} and x_{2}. And, in fact, if y is a solution to (2.4.6), then $y=x_{1} * x_{2}$. This result is used in accordance with the column stacking operation (analogous to that for rows in (2.4.3)) to develope tensor factor equations (2.4.7) for a system such as (2.4.4). In [C7] the notion of the "extended" Kronecker product and its accompanying properties is given, denoted by

$$
\begin{equation*}
A \odot B=\left(A_{1} \otimes B_{1} \ldots_{r}^{\prime} A_{r} \otimes B_{r}\right) \tag{2.4.8}
\end{equation*}
$$

where $A=\left(A_{1}, \ldots A_{r}\right)$ and $B=\left(B_{1}|\ldots| B_{r}\right)$ are two partitioned real matrices (in (C6) a similar notion is described and called the "Kharri-Rao" product). Results similar to those found in [C4] are given involving the
product (2.4.8). The ase of censor products in linear programming is also discussed.

Another use of these ideas is given in $[C 10]$ where state transition matrices are utilized. Consider the system

$$
\begin{equation*}
\dot{X}(t)=A_{1}(t) X(t)+X(t) A_{2}(t) \tag{2.4.9}
\end{equation*}
$$

This can be rewritten in the form (2.4.2),

$$
\begin{equation*}
\frac{d}{d t}\left[\dot{v}_{r}(X)\right]=A(t) v_{r}(X) \tag{2.4.10}
\end{equation*}
$$

where $A(t)=A_{1} \oplus_{K} A_{2}$, with state transition matrix $\Phi_{1}\left(t, t_{0}\right) \otimes \theta_{2}\left(t, t_{0}\right)$ for D_{1} the state transition matrix associated with A_{1}. It should be noted that in a follow-up comment ${ }^{4}$ on this paper, Barnett presents an alternate derivation for chis result.

As an introdustion to a segment of the literature involving computational aspects of tensor products, we cite [C9]. This numerical work describes the tensor factorization algorithm for tensor spline ${ }^{5}$ approximation and how it applies to least-squares fitting. Also used is the singular value decomposition and matrix condition number. Here, "tensor" again refers to the Kronecker product of matrices.

A technique for identification of nonlinear systems using tensor ideas is developed in [C5]. Systems which admit a finite Volterra series representarion are considered, where each multidimensional system transform is a product of single variable transforms. It is shown that this type of system

[^1]can be modeled, from an input-output point of view, as a cascade of a linear syatem, a homogeneous nonlinearity, and another linear system, as shown in Figure 2.

Figure 2. Input-Output Model.

A (minima:) realization of the systam in figure 2 is given by

$$
\begin{align*}
\dot{x} & =A x+B u, \sigma=C x \\
z & =\sum_{j=1}^{p} D_{j}^{\prime} j[1] \\
\dot{v} & =L u+M z, y=N v . \tag{2.4.11}
\end{align*}
$$

Steady etate siansoldal analysis is used in the identification. As an alternative to an association of vartables method, techniques are used to identify the system transforms leading to a response analysis (where the input consists of a finite sum of sinusoids and/or exponentials) based on tensored transfer functions. In short, for $H_{a}(s)=H(s) u(s)$, we have

$$
\begin{equation*}
y(s)=\left[\sum_{j=1}^{p} D_{j}^{\prime} H_{a}^{[j]}(s)\right] G(s), \tag{2.4.12}
\end{equation*}
$$

so that the key is to compute the censored transfer function $H_{a}^{[k]}$ (s), given $H_{a}(s)$. It is important to note that $F^{[k]}(s) \neq(F(s)){ }^{[k]}$ for a transfer function $F(s)$. The authors point out the fact that because of the recursive nature of the approach, the practical question of error
propagation is under investigation.

In [C8] Buric treats the problem of optimal state feedback regulation of polyncinal nonlinear systems ${ }^{6}$. Tensor algebraic operators are the main vehicle towards this end, and the symmetric tensor algebra forms the foundation for the development. Both time-varying and time invariant systems are treated over finite and infinite regulation intervals.

The final body of literature to be considered in this section---Geometry and Lie aglebram--represents rich machematical notions which contribute to a wealth of useful cunrepts. A thorough understanding of the ideas developed In these papers would contribure immensely to the understanding of all previous citations in this review and their importance cannot be overemphasized. Due to their complex and rigorous nature, we shall move quickly through most of the discussion and outline only the general concepts encountered.

We begin by centering our attention on the work of Brockett in these Huas, cillug seven papers [rom 1972 through 1976. Five of these seven form a foundation on which much of the literature builds; two others, (C15) and [C17]. represent significant contributions in general nonlinear and linear systems theory, respectively. In [C11] the system

$$
\begin{gather*}
\dot{X}(t)=\left(A+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) X(t) \tag{2.4.13}\\
y(t)=1 \omega X(t)
\end{gather*}
$$

is studied, under the hypothesis that X belongs to a matrix group a and where A and B_{i} belong to the Lie aglebra associated with Ω. The notation $\psi X(t)$ is to be interpreted as being a coset in Ω for the matrix

[^2]group ψ. The primary incerest in the class of systems (2.4.13) in controllability in so far as it contributes to a framework for studying other system theoretic questions such as observability and realization theory. In this way, the objective is to reduce all questions about the system to questions about Lie algebras and group manifolds.

The study of Lie aglebras in control theory was motivated mainly by the confrantation of some physical problems which proved linear system cheory to be inadequate, and by work on Lie algebraic methods in differential equations. This latter topic is treated in [C12] where the expression

$$
\begin{equation*}
\frac{\partial f}{\partial x} g(x)-\frac{\partial g}{\partial x} f(x) \tag{2.4.14}
\end{equation*}
$$

arises naturally for smooth functions f and g from \mathbb{R}^{n} to \mathbb{R}^{n}. The quantity (2.4.14), usually written as $[f, g]$, is called the Lie Bracket of f and g. An extension of the Carleman linearization process is described, summarized in the following. If $N=\binom{n+p-1}{p}$ and $x \in \mathbb{R}^{n}$, Lhell, ds discussed prevlously, associated with each map from \mathbb{R}^{n} to \mathbb{R}^{n} Is a sequence of maps, the $p-t h$ one mapping \mathbb{R}^{N} into \mathbb{R}^{N}. A convenient basis choice contains elements (2.2.6), or

$$
\sqrt{\binom{p}{p_{1}}\binom{p-p_{1}}{p_{2}} \ldots\left(\begin{array}{c}
p-p_{1}^{-} \tag{2.4.15}\\
p_{p}
\end{array}{ }^{\left.-p_{p-1}\right)} x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}, ~\right.}
$$

with $\sum_{i=1}^{n} p_{i}=p, p_{i} \geq 0$. The constants multiplying the monomials in (2.4.15) are chosen such that

$$
\begin{equation*}
\left\|x^{[p]}\right\|=\|x\|^{p} \tag{2,4.16}
\end{equation*}
$$

for $\|x\|=(\langle x, x\rangle)^{1 / 2}$, where $\langle, \cdot\rangle$ is the standard inner product. More generally,

$$
\begin{equation*}
\langle x, y\rangle^{p}=\left\langle x^{[p]}, y^{[p]}\right\rangle . \tag{2.4.17}
\end{equation*}
$$

Finally, denote by $A^{[p]}$ the map (matrix) which satisfies

$$
\begin{equation*}
y=A x \Rightarrow y^{[p]}=A^{[p]} x^{[p]} \tag{2.4.18}
\end{equation*}
$$

Another construction, $A^{(p)}$, defined exclusively in terms of matrices, is the compound of the matrix A (see also [16]), and a theory analogous to that for $A^{[P]}$ is outlined. These two constructions are shown to be specializations of the tensor product. Many other topics are treated in [C12], including controllability and observability, optimal control, stochastic differential equations, and stability theory. These ideas are expanded upon in [C13] where Brockett constructs a theory for control problems defined on spheres in which results from Lie theory again play a natural role. Results analogous to those for linear systems are developed for systems of the type

$$
\begin{align*}
\dot{x}(t)=(A & \left.+\sum_{i=1}^{m} u_{i}(t) B_{i}\right) x(t) \\
y & =C x(t) \tag{2.4.19}
\end{align*}
$$

where A and B_{1} are skew symmetric matrices and (2.4.19) can be thought of as evolving on the sphere $\|x(t)\|=\|x(0)\|$.

Differential geometric methods are used in the treatment of singular optimal control problems in [C16]. Volterra series expansions and function space Taylur series expansions are the main tool in the studies, as the $x[p]$ notation is utilized for the expansion of the kernels. Here, however, an expression such as $u^{[i]}\left(\sigma_{1}, \ldots, \sigma_{i}\right)$ is represented as a tensor product $u\left(v_{1}\right) \otimes \ldots \theta\left(\sigma_{i}\right)$. Volterra series and geometric control theory are expounded in the often-cited [C18]. Again the Volterra kernals are computed

In cerms of the power series expansions of the functions defining the con. trolled differential equation. Some applications are considered, including singular control and multilinear realizarion theory.

In [C15] Brockett surveys some of the main results available then (1976) on the use of differential geometry in nonlinear system theory. To chis end, background information on manifold theory is supplied in the form of an appendix. Some geometric aspects of linear system theory are atudied in (C17], where single input-single output systems are considered (in the frequency demain).

The duality between controllability and observability for nonlinear systens is investigated in [C19]. Instead of constructing a "dual" system (as might be done in linear system study but is a much harder problem for the nonlinear counterpart) the duality between "vector fields" and "differential forms" on manifolds is exploited, along with the use of lie algebraic concopts. In [C23] the copic of nilpotent Lie algebras is considered for the derivarion of an optimal bilinear filter.
W. cite two papers by Baillieul in which optimal control is dicusssed. In [Cl4] classical optimization techniques (the calculus of variations) are used in the context of Lie groups. Multilinear optimal control is treated in [C20]. There, the nonlinear differential equation

$$
\begin{equation*}
\dot{x}=A(t) x^{[p]}, x(0)=x_{0}, \tag{2.4.20}
\end{equation*}
$$

where $x^{[p]}$ has elements as in (2.4.15), is solved by a particular series of successive approximations involving the terms $x^{[p]}$. The condition for solution is the convergence of such a series. Using operator norms and the
differential equation for the "k-fold Kronecker product",

$$
\begin{equation*}
\frac{d}{d t}(x \otimes \ldots \theta x)=\sum_{i=1}^{k} x \otimes \ldots \theta A(t) x^{[p]} \otimes \ldots \theta x, \tag{2.4.21}
\end{equation*}
$$

where the term $A(t) x^{[p]}$ is in the $i-t h$ position, the condition for the uniform convergence of the series is derived.

Another paper by Baillieul [C24] offers methods alternative to the usual Lie theoretic approach to the study of nonlinear systems. These methods are based on topics of algebraic geometry and manifold theory, the knowledge of which is assumed of the reader. Systems of equations of the form

$$
\begin{equation*}
\dot{x}=A x^{[p]}+\sum_{i=1}^{n} u_{i} B_{i} x^{\left[q_{i}\right]} ; x(0)=x_{0} \tag{2.4.22}
\end{equation*}
$$

are treated, as are systems of multilinear differential equations such as (2.4.20).

Necessary and sufficient conditions for the invertibility of a class of nonlinear systems are derived in [C21]. Included in this class are matrix bilinear systems for which Lie algebraic invertibility criteria are obtained. In [C22] an abstract realization theory for finite dimensional discrete time internally biaffine systems is presented. The affine tensor product is introduced in terms of the ordinary tensor product, then used in describing biaffine systems.

2.5 BIBLIOGRAPHICAL APPENDIX

This appendix contains an organized list of the references cited in the literature review section. There are three major divisions, each with two subdivisions. The papers are listed in chronological order within each subdivision, numbered consecutively within each major division. So, for example, citation [B19] refers to reference 19 under group B, Bilinear Systems.

A. APPROXIMATE SYSTEMS

a. General

1. Carleman, T., "Application de la théorie des equations intēgrales singuliēres aux equations différentialles de la dynamique", Arkiv for Mathematik, Astronomi och Fysik, vol. 22B, no. 1, 1932.
2. Bellman, R. and Richardson, J.M., "On Some Questions Arising in the Approximate Solution of Nonlinear Differential Equations", Quarterly of Applied Mathemarics, 1963.
3. Donati, F., "A Dynainic Upper Bound of the Uncertainty in Linear System Approximation', Theory and Applications of Variable Structure Systems, R.R. Mohler and A. Ruberti, eds., New York: Academ1c, 1972, pp. 95-108.
4. Krener, A., "On the Equivalence of Control Systems and the Linearization of Nonlinear Systems", SLAM J. Control, vol. 11, no. 4, November 1973, pp. 670-676.
5. Krener, A.J., "Linearization and Bilinearization of Control Systems", Proceeding 12th Allerton Conf. on Circuit \& System Theory" , October 1974, pp. 834-843.
6. Gilbert, E.G., "Functional Expansions for the Response of Nonlinear Differential Systems", 1977 Joint Automatic Control Conference.
7. Loparo. K.A. and Blankenship, G.L., "Estimating the Domain of Attraction of Nonlinear Feedback Systems", IEEE Trans. Automatic Control, vol. AC-23, no. 4, August 1978, pp. 602-608.
8. Porter, W.A., "Approximation by Bernstein Systems", Mach. Systems Theory 11, 1978, pp. 259-274.
9. Sira-Ramirez, H., "On a New Class of Semi-Linear Systems and Their Appiications', Proceedings l6th Allerton Conf. on Communication, Control, and Computing, October 1978, p. 566.
10. Sira-Ramirez, H., "Determining the Feasible Region for Non-Stationary Non-Linear Feedback Systems", 17 th Annual Allerton Conference on Communication, Control, and Computing, October 10-12, 1979.
11. Takata, H. "Transformation of a Nonlinear System into an Augmented Linear System ", IEEE Transactions on Automatic Concrol, vol. AC24, no. 5, October 1979, pp. 736-741.
12. Porter, W.A., "Joint Interpolation and Approximation of Causal Syeteme", Journal of Mathematical Analysis and Applicaciona, vol. 72, no. 2, December 1979, PP. 399-412.
13. Crouch, P.E., "Dynamical Realiza:ions of Finice Volterra Series", Stam J. Control and Optimization, vol. 19, no. 2, March 1981. pp. 177-202.
b. Polynomic Systems
14. Porter, W.A., "An Overview of Polynomic System Theory", Proceedinge of the IEEE, vol. 64, no. 1, January 1976, pp. 18-23.
15. Porter, W.A., "The Common Causality Structure of Multilinear Maps and Their Multilinear Forms", J. Mach. Anal. and Apol., vol. 57, 1977. pp. 667-675.
16. Hahn, H., "On a Certain Class of Nonilnear Control Systems", IEEE Transactions on Automatic Control, February 1977, Pp. 119-121.
17. Nomura, T. and Furuta, K., "On the Span Reachability of Polynomial State-Affine Systems", IEEE Transactions on Automatic Control. vol. $\mathrm{AC}-24$. no. 4, August 1979, Pp. 630-632.
18. Porter, W.A., "Synthesis of Polynomic Systems", Siam J. Math. Anal., vol. 11, no. 2, March 1980, pp. 308-315.
19. Porter, W.A., "Polylogic Realization of Switching Functions", IEEE Transactions on Computers, vol. C-29, no. 7, July 1980, pp. 657-659.
20. Porter, W.A., "The State Representation of Polynomic Maps", IEEE Trans, on Automatic Control, vol. AC-26, no. 4, August 1981, Pp. 953-956.

B. BTLINEAR SYSTEMS

a. General

1. Rink, R.E. and Mohler, R.R., "Completely Controllable Bilinear Systems", Siam J. Control, vol. 6, no. 3, 1968, pp. 477-486.
2. Brockett, R.W., "On the Algebraic Structure of Bilinear Systems", Theory and Applications of Variable Structure Systems, R.R. Mohler and A. Rubert; eds., New York: Academic 1972.
3. d'alessandro. P., Isidori, A., and Ruberti, A., "Structure Analysis of Linear and Bilinear Dynamical Systems", Theory and Applications of Variable Structure Systems, R.R. Mohler and A. Ruberti, eds., New York: Academic, 1972, pp. 25-35.
4. Bruni, C., DiPillo, G., and Koch, G., "Mathematical Models and Identification of Bilinear Systems". Theory and Applications of Variable Structure Systems, R.R. Mohler and A. Ruberti, eds., New York: Academic, 1972, pp. 137-152.
5. Bruni, C., DiPillo, G.. and Koch, G., "Bilinear Systems: Ar, Appealing Class of 'Nearly Linear' Systems in Theory and Applications", IEEE Transactions on Automatic Controi, vol. AC-19, no. 4, August 1974, PP. 344-348.
6. Mohler, R.R. "Bilinear Systems: Gensis and Development", Proceedings 12 th Allerton Conf. on Circuic and System Theory, October 1974. PP. 814-822.
7. Wlllsky, A.S., Marcus, S.I., and Martin, D.N., "Analysis of Bilinear Stochastic Systems", Proceedings 12th Allerton Conf. on Circuit δ System Theory, October 1974, pp. 849-857.
8. Elliott, D.L., "Controllability and Accessibility Criteria for Bilinear Systems', Proceedings 12th Allerton Conf. on Circuit 8 System Theory, October 1974, pp. 844-848.
9. Brockett, R.W., "On the Reachable Set for Bilinear Systems", Variable Structurt Syatems with Applications $t 0$ Economics and Biology, A. Ruberti and R.R. Mohler, eds., New York: Springer-Veriag, 1975, pp. 54-63.
10. Cheng, G.-S.J., Tarn, T.J., and Elliott, D.L., "Controllability of Bilinear Systems", Variable Structure Systems with Applications to Economics and Blologi, A. Ruberti and R.R. Mohler, eds., New York: Springer-Verlag, 1975, pp. 83-100.
11. Isidori, A. and Ruberti, A., "Time-Varying Bilinear Systems", Variable Structure Systems with Applications to Economics and Biology, A. Ruberti and R.R. Mohler, eds., New York: Springer-Verlag, 1975, pp. 44-53.
12. Lo, J.T.H., "Global Bilinearization of Systems with Control Appearing Linearly", Siam J. Control, vol. 13, no. 4, July 1975, pp. 879-885.
13. We1, K.C. and Pearson, A.E., "Global Controllability for a Class of Bilinear Systems", IEEE Transaccions on Automatic Control, vol. AC23, no. 3, June 1978, Pp. 486-488.
14. Pearlman, J.G., "Canonical Forms for Bilinear Input/Output Maps", IEEE Transactions on Automatic Control, vol. AC-23, no. 4, August 1978, pp. 595-602.
15. DiBenedetto, M.D. and Isidori, A., "Trianguiar Canonical Forms for Bilinear Systems". IEEE Transactions on dutomatic Control, vol. AC23, no. S, October 1978, pp. 878-880.
16. Swamy, K.N., and Tarn, T.J., "A Solution for Bilinear Discrete-Time Concrol Systems", Proceedings 16th Allerton Conf, on Communication, Contro1, Computing, October 1978, pp. 645-654.
17. Mohler, R.R. and Rolodziej, W.J., "An Overview of Bilineat System Theory and Applications", IEEE Transactions on Systems, Man and Cyhernetics, vol. SMC-10, no. 10, October 1980, pp. 683-686.
18. Sen. P. "On the Choice of Input for Observability in Bilinear Systems", IEEE Transactions on Automaric Concrol, vol. AC-26, no. 3, April 1981. Pp. 451-454.

b. Realization

19. Arbib, M.A., "A Characterization of Multilinear Systems", IEEE Transactions on Autumatic Control, December 1969, pp. 699-702.
20. Marchesini, G. and Picci, G., "Some Results on the Abstract Realization Theory of Multilinear Systems", Theory and Applications of Variable Structure Systems, R.R. Mohler and A. Ruberti, eds., New York: Academic, 1972, pp. 109-135.
21. Isidori, A., "Direct Construction of Minimal Bilinear Realizations from Nonlinear Input-Output Maps", IEEE Transactions on Automatic Control, December 1973, pp. 626-631.
22. D'Alessandro, P., Isidori, A., and Ruberti, A., "Realization and Structure Theory of Bilinear Dynamical Systems", Slam J. Control, vol. 12, no. 3, August 1974, pp. 517-535.
23. Krener, A.J., "Bilinear and Nonlinear Realizations of Input-Output Maps", Slam J. Control, vol. 13, no. 4, July 1975, pp. 827-834.
24. Tarn, T.J, and Nonoyama, S., "Realization of Discrete-Time Incernally Bilinear Syscems", IEEE 1976 Deciaion and Control Conference.
25. Gilbert, E.G., "Bilinear and 2-Power Input-Output Maps: Finite Dimensional Realizations and the Role of Functional Series", IEEE Transactions on Automatic Concrol, vol. AC-23, no. 3, June 1978, pp. 418-425.
26. Karanam, V.R., Frick, P.A., and Mohler, R.R., "Bilinear System Identification by Walsh Functions", IEEE Transactions on Automatic Control, vol. AC-23, no. 4, August 1978, pp. 709-713.
27. Pearlman, J.G. and Denham, M.J., "Canonical Realization of Bilinear Inpue/Output Maps", Siam J. Conerol and Optimizacion, vol. 17, no. 4. July 1979, pp. 451-467.
28. Svoronos, S., Stephanopoulos, G., and Aris, R., "Bilinear Approximation of General Non-1inear Dynamic Systems with Linear Inputs", Int. J. Control, vol. 31, no. 1, January 1980, pp. 109-126.
29. Pearlman, J.G., "Realizability of Multilinear Input/Output Maps", Int. J. Control, vol. 32, no. 2, 1980, pp. 271-283.

C. algebraic structures

a. Tensor Algebra

1. Barnett, S., "Matrix Differential Equations and Kronecker Products", Stam J. Appl. Math., vol. 24, no. 1, January 1973, pp. 1-5.
2. O'Keeffe, J.D., "Tensors, Multilinear Forms and Their Contractions", The Marrix and Tensor Quarterly, September 1974, pp. 8-19.
3. D'Keeffe. J.D., "Properties of Second Order Tenscrs and Their Associated Linear Transformations". The Matrix and Tensor Ouarterly, September 1975, pp. 11-21.
4. Kuo, Y., "The Use of Tensor Products for Solving Matrix Equations", The Matrix and Tensor Quarterly, June 1976, ?p. 148-151.
5. Sandor, J. and Williamson, D., "Idenrification and Analysis of Noninnear Systems by Tensor Techniques", Int. J. Control, vol. 27, no. 5, 1978, pp. 853-878.
6. Brewer, J.W., "Kronecker Products and Matrix Calculus in System Theory", IEEE Transactions on Circuits and Systems, vol. CAS-25, no. 9, September 1978, pp. 772-781.
7. Kuo, Y., "The Use of Tensor Products of Matrices in Mathematical Sciences". The Macrix and Tensor Quarterly, June 1980, pp. 95-100.
8. Buric, M.R., "Application of Multilinear Aigebra in Optimal Regulation of Nonlinear Polynomial Systems", Proc. 16th Annual Allertion Conference on Comm., Con., ard Comp., October 1978, pp. 655-663.
9. Grosse. E., "Tensor Spline Approximation", Linear Algebra and Its Applications, vol. 34, 1980, pp. 29-41.
10. Weidner, R.J. and Mulholland, R.J., "Kronecker Product Representation for the Solution of the General Linear Matrix Equation", IEEE Transactions on Automatie Conercl, vol. AC-25, no. 3, June 1980. pp. 563564.
b. Geometry and lie Algebra
11. Brockett. R.W., "System Theory on Group Manifolds and Coset Spaces", Slam J. Control, vol. 10, no. 2, May 1972, pp. 265-284.
12. Brockett, R.W., "Lie Algebras and Lie Groups in Control Theory", Geometric Methods in System Theory, 1973.
13. Brockett, R.i., "Lie Theory and Concrol Systems Defined on Spheres", Slam J. Appl. Math., Vol. 25, No. 2, September 1973, pp. 45-57.
14. Bailifful, J., "Optimal Control on Lie Groups", Proceedings 12th Allerton Conference on Clrcuit \& System Theory, October 1974, pp. 823-833.
15. Brockett, R.W., "Nonlinear Systems and Differential Geomerry", Prom ceedings of the IEEE, vol. 64, no. 1, Jan- ary 1976, pp. 61-72.
16. Brockste, R.W., "Lie Theory, Functional Expansions, and Necessary Conditions in Singular Optimal Control", Machemarical Systems Theory, (Lecture intes in Economics and Mathematical Systems), vol. 1il, Springer-Verlag, Berlin, 1976.
17. Brockett, R.W., "Sume Geometric Questions in the Theory of Linear Systems", IEEE Transactions on dutomatic Control, vol. AC-21, no. 4. Auguse 1976, pp. 449-454.
18. Brockett, R.W., "Volterra Series and Geometric Control Theory", Automatica, vol. 12, pp. 167-176, 1976.
19. Krener, A. and Hermann, R., "The Differential-Geometric Duality Between Concrollability and Observability for Nonlinear Systems", 1976 Ames Research Ctr. (NASA) Conf. on Geometric Control Theory, 1977.
20. Bailifeul, J., "Multilinear Optimal Control:", 1976 Ames Research Cer. (NASA) Conf. on Geometric Control Theory, 1977.
21. Hirschorn, R.M., "Invertibilicy of Control Systems on Lie Groups", Stam J. Concrol and Optimizacion, vol. 15, no. 6, November 1977, PP. 1034-1049.
22. Tarn, T.J. and Nonoyama, S., "An Algebraic Structure of DiscreteTime Biaffine Systems", IEEE Transactions on Automatic Control, vol. AC-24. no. 2, Apri1 1979, pp. 211-221.
23. Chikte, S.D. and Lo, J.T.-H., "Optimal Filters for Bilinear Systems with Nilpotent Lie Algebras", IEEE Transactions on Automatic Concrot, vol. AC-24, no. 6. December 1979, $19.948-95 \mathrm{~s}$.
24. Baillieul, J.. "The Geometry of Homogeneous Polynomial Dynamical Systems". Nonlinear Analysis Theory, Mechods \& Applications, 1980.

III. MOTIVATION: SCHEDULING

3.1 INTRODUCTION

In the applications, one comon wey to design a control system for a nonlinear plant is to localize its behavior along lines of operation epecified by the plant manufacturer, to develop linear multivariable controls for these localizations, and to shedule those controls with key plant variables which vary smoothly aiong operating lines. An important part of practical design lore, the art of controller scheduling has received 11ttle modern attention from the conceptual point of view.

Bristol [17,18] has likened the process of control design to the use of idioms in a language. At least three types of idioms can be identified. Firat, there are idioms which have been with mankind for such a length of time that they seem universal to the human psyche. In some sense, feedback itself is an example of such an idiom, inasmuch as it may be traced at least back to ancient Arabian water clocks. Second, there are idioms which are the characteristic of certain authors. Several classic examples are the Nichole chart, the Bode plot, Eie Evans loci, and the Nyquist plot. And third, there are idioms which are typical of certain types of control applications. An example is that of gas curbine control systems [19].

Because of the idious of type three, any application of control design has idiomatic features. In a sense, the task of the control designer is to blend the idioms of the application with universal idioms, with idioms of classical and modern authors, and with his or her own idioms, so as to produce a melodious and effective composition.

It goes without saying that some idfoms do not play well together. In sone areas of appifation, this may account for the famous theory/applleation gap.

One universal ldiom is to attack the overall system design by breaking it down into manageable pleces. An important case of this type of thinking rises in the design of certain classes of nonlinear syatems. Examples in point may te found in the area of gas turbine control. In brief, the nenlinear engine is linearized locally along lines of operation agreed upon by the manufacturer and the control contractor. These linear multivariable localizations are used to develop a family of local controllers, which are then sewn together by acheduling control gains and dynamics with some engIne variable, as tor example speed, which varies smoothly along operating 1Ines.

As pointed out by Bristol [17], the idioms have to blend together. In the case of schedulling, the methods used for deslgn of the local, linear multivarlable controllers have to be amenable to a common thread of smooth scheduling, else a global whole is not obtained, but only a sum of parts.

The goal of this section is to examine in an Introductory way certain of the conceptunl questions associated with scheduling. What follows should be regarded as exploratory in nature.

3.2 SIMPLE EXAMPLE

Consider the elemencary dynamical system

$$
\begin{equation*}
\dot{x}=-a x+b u \tag{3.2.1}
\end{equation*}
$$

The transfer function associated with (3.2.1) is of course

$$
\begin{equation*}
\frac{b}{8+a} \tag{3.2.2}
\end{equation*}
$$

Rewritcen in terms of gain and time constant, (3.2.2) becomes

$$
\begin{equation*}
\frac{k}{\tau s+1} \tag{3.2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
k=b / a, T: 1 / a . \tag{3.2.4}
\end{equation*}
$$

Suppose that wanted to schedule the gain k as a function of the input u, say

$$
\begin{equation*}
k(u)=a_{1}+\beta_{1} u+\gamma_{1} u^{2} \tag{3.2.5}
\end{equation*}
$$

Then the scheduled system would look like

$$
\begin{equation*}
\dot{x}=-a x+a \alpha_{1} u+a g_{1} u^{2}+a r_{1} u^{3} \tag{3.2.6}
\end{equation*}
$$

Alternatively, we might schedule the time constant τ as such a function, for example

$$
\begin{equation*}
\tau(u)=\alpha_{2}+\beta_{2} u+\gamma_{2} u^{2} \tag{3.2.7}
\end{equation*}
$$

fa which case we would have

$$
\begin{align*}
a & =1 /\left(\alpha_{2}+\beta_{2} u+\gamma_{2} u^{2}\right) \\
& =\alpha_{2}^{-1}-\beta_{2} \alpha_{2}^{-2} u+\ldots \tag{3.2,8}
\end{align*}
$$

so that

$$
\begin{equation*}
\dot{x}=-\alpha_{2}^{-1} x+\beta_{2} \alpha_{2}^{-2} u x+b u+\ldots \tag{3.2.9}
\end{equation*}
$$

on out to a denumerably infinite number of terms. Next suppose that we
wanted to schedule the s, n or the time constant t as anction not of u but of x, in the manner

$$
\begin{align*}
& k(x)=a_{3}+\rho_{3} x+\gamma_{3} x^{2} \tag{3.2.10}\\
& \tau(x)=a_{4}+\beta_{4} x+\gamma_{4} x^{2} \tag{3.2.11}
\end{align*}
$$

Then the acheduled systems would be

$$
\begin{align*}
& \dot{x}=-a x+a a_{3} u+a B_{3} x u+a \gamma_{3} x^{2} u, \tag{3.2.12}\\
& \dot{x}=-a_{4}^{-1} x+8_{4} a_{4}^{-2} x^{2}+b u+\ldots, \tag{3.2.13}
\end{align*}
$$

again with a denumerably infinite number of terms.
Generally speaking, the polynomic scheduling concept tends to convert the system (3.2.1) into a system of the form

$$
\begin{equation*}
\dot{x}=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} r_{i j} x^{i} u^{j} . \tag{3.2.14}
\end{equation*}
$$

Indeed, if the original system were of the mure gene:al form

$$
\begin{equation*}
\dot{x}=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_{k m} x^{k} u^{m}, \tag{3.2.15}
\end{equation*}
$$

and if the parameters were scheduled in an analogous way, such as

$$
\begin{equation*}
a_{k m}=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{k m p q} x^{p} u^{q} \tag{3.2.16}
\end{equation*}
$$

then (3.2.15) becomes

$$
\begin{equation*}
\dot{x}=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{k m p q} x^{k+p_{u}}{ }^{m+q}, \tag{3.2.17}
\end{equation*}
$$

whicn can be formally rearranged in the same form as (3.2.15). In broad terms, then, (3.2.15) is closed under formal power series scheduling.

Because of this closure feature, we find interest in systems of this type.

3.3 ABSTRACT SERIES

As intimated in the section preceding, the formol series ia a natural candidate in studies of scheduling. Various approaches can be made to the description of such series. Based upon the background of Sections 1.2 and 1.3, we wish to indicate briefly here the viewpoint toward which we are tending at the time of this report.

Consider a nonlinear state description of the general form

$$
\dot{x}=f(x, u)
$$

for

$$
f: X \times U \rightarrow X
$$

with X and U real vector spaces, equipped with norm. Let (\bar{x}, \bar{u}) be a point in $X \times U$, and suppose that

$$
D^{r_{f}}: Z \rightarrow L(X \times U, \ldots, X \times U, X)
$$

is available for $r=0,1,2, \ldots$, with Z open in $X \times U$ and (\bar{x}, \bar{u})
in 2 . Then, formally,

$$
f(\bar{x}+\Delta x, \bar{u}+\Delta u)=\sum_{k=0}^{\infty} \frac{1}{k!}\left(D^{k} f\right)(\bar{x}, \bar{u})(\Delta x, \Delta u)^{(k)}
$$

where $(\Delta x, \Delta u)^{(k)}=((\Delta x, \Delta u),(\Delta x, \Delta u), \ldots,(\Delta x, \Delta u))$, the right member having $(\Delta x, \Delta u) k$ times. It should be recognized that this series could be replaced by a finite number of terms together with a remainder. However, the above representation is adequate for brief illustrative purposes. Space does not permit a discussion of whether, or how, the series acceptably describes the function. Along the same lines, we -ass over the related question of how it affects the vector field associated with the dif.. ferential equation, and therefore its solutions. Instead, we remind the reader that $\left(D^{k} f\right)(\bar{x}, \bar{u})$ is a k-linear function on $(X \times U)^{k}$ to X; and
this suggests that we can use tensor algebra to parameterize it. Indeed, denote by $(\Delta x, \Delta u)^{k}$ chis k-fold censor product of ($\Delta x, \Delta u$) with itself. Then the k-linear function $\left(D^{k} f\right)(\bar{x}, \bar{u})$ can be factored uniquely in the manner

$$
L_{k}(\bar{x}, \bar{u}) \bullet{ }^{k}
$$

where

$$
\left(\theta^{k}(X \times u), \theta^{k}\right)
$$

Is a tensor product for k copies of $X \times U$, or what is sometimes called a kith censorial power for $X \times U$. In this case, the k th parameter map operates in the manner

$$
L_{k}(\bar{x}, \bar{u}): \theta^{k}(X \times u)+X .
$$

We have, therefore, that

$$
\begin{aligned}
f(\bar{x}+\Delta x, \bar{u}+\Delta u) & =\sum_{k=0}^{\infty} \frac{1}{k!} L_{k}(\bar{x}, \bar{u}) \cdot \theta^{k}(\Delta x, \Delta u)^{(k)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} L_{k}(\bar{x}, \bar{u})(\Delta x, \Delta u)^{k} .
\end{aligned}
$$

Next consider the rearrangement of a term of type

$$
L_{k}(\bar{x}, \bar{u})(\Delta x, \Delta u)^{k}
$$

Consider, for example, the case $k=2$, namely

$$
(\Delta x, \Delta u)^{2}=(\Delta x, \Delta u) \otimes(\Delta x, \Delta u)
$$

Such a form does not relate directly to the structure of the section presceding, which would involve terms of type $(\Delta x)^{f} \otimes(\Delta u)^{\top}$. However, there is a natural way to convert to that structure. Define projections

$$
\pi_{U}: X \times U \rightarrow U ; \pi_{X}: X \times U \rightarrow X ;
$$

and injections

$$
\begin{aligned}
& 1_{U U}: U \bullet U \rightarrow S ; 1_{U X}: U \bullet X \rightarrow S ; \\
& 1_{X U}: X \bullet U \rightarrow S ; 1_{X X X}: X \oplus X \rightarrow S ;
\end{aligned}
$$

for

$$
S=(U \bullet U) \times(U \bullet X) \times(X \bullet U) \times(X \bullet X)
$$

Then we can write

$$
\begin{aligned}
(\Delta x, \Delta u) \bullet(\Delta x, \Delta u) & =1_{x x}\left(\pi_{x}(\Delta x, \Delta u) \pi_{x}(\Delta x, \Delta u)\right) \\
& +1_{x u}\left(\pi_{x}(\Delta x, \Delta u) \pi_{u}(\Delta x, \Delta u)\right) \\
& +1_{u x}\left(\pi_{u}(\Delta x, \Delta u) \pi_{x}(\Delta x, \Delta u)\right) \\
& +1_{u u}\left(\pi_{u}(\Delta x, \Delta u) \pi_{u}(\Delta x, \Delta u)\right) .
\end{aligned}
$$

If we identify images of the injections with their domains, as for example

$$
1_{u U}(U \odot U)=U \otimes U,
$$

then we can write

$$
(\Delta x, \Delta u)(\Delta x, \Delta u)=\Delta x \geqslant \Delta x+\Delta x \geqslant \Delta u+\Delta u \geqslant \Delta x+\Delta u \otimes \Delta u .
$$

According to the conventions of $\otimes(X, U)$, however, discussed in the section preceding, we agree $=0$ write

$$
\Delta u \otimes \Delta x=T_{u x, x u} \Delta x \otimes \Delta u
$$

for an appropriate isomorphism $T_{u x, x u}$. In that way, we can 1 ,oceed to

$$
\begin{aligned}
L_{2}(\bar{x}, \bar{u})(\Delta x, \Delta u)^{2} & =L_{2}(\bar{x}, \bar{u})(\Delta x)^{2} \\
& +L_{2}(\bar{x}, \bar{u}) \Delta x \otimes \Delta u \\
& +L_{2}(\bar{x}, \bar{u}) T_{u x}, x u \\
& +L_{2}(\bar{x}, \bar{u})(\Delta u)^{2}, \Delta u
\end{aligned}
$$

which we re-notate to (with factorials included)

$$
L_{20}(\bar{x}, \bar{u})(\Delta x)^{2}+L_{11}(\bar{x}, \bar{u}) \Delta x \otimes \Delta u+L_{02}(\bar{x}, \bar{u})(\Delta u)^{2} .
$$

In this way, the formal expansion becomes

$$
f(\bar{x}+\Delta x, \bar{u}+\Delta u)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} L_{i j}(\bar{x}, \bar{u})(\Delta x)^{i} \cdot(\Delta u)^{j}
$$

Erom which point we can examine the scheduling questions previously raised.

The clear distinctions established by these notations are expected to make possible a deeper investigation of the issues of controller scheduling.

IV. !?ROGRESS IN PARAMETER SELECTION*

4.1 INTRODUCTION

The purpose of Section IV is to provide some visual indication of progress which is being made on the interactive approach for nonlinear tensor model identification, simulation, and validation.

To begin this process, we wish to recall the situation for previous computer studies of this type. Probably the quickest and most efficient way to do this is to excerpt an example from the previous grant report, which was for the period from March 1, 1979 to September 30, 1980. This excerpt is included in the following pages. It is primarily a reference in subsection 4.3.

*Contributed by Thomas Kingler.

Excerpt
 Pages 115-128
 Technical Report

on

NASA Grant NSG-3048

March 1, 1979 - September 30, 1980

The intent of this chapter is to illustrate the notions discuseed in Chapter V with two representative case studies. The first example is aystem of two nonpolynomic, nonlinear differential equations with two states and two inputs. A degree- 2 approximation is used in constructing a model of the system; foilowing this, a degree-3 approximation is discussed. The second example consiets of ayatem of thre polynomic differential equations of three states and three inputs. A degree-2 approximation is used to generate the third-order model. The equations of this example are chosen as sums of monomials from the tensor products to illustrate the manner in which the identification chene weights the appropriate paramaters of the Inear operators in the model.

Simulation and verification of each model mak.e up the bulk of the chapter. Plots illustrating comparison of the simulated, Inear, and true solutions are given, and extensive use of the error anaiysis described in Section 5.518 made. For each model, an operating region of validity about the origin is established.

6.2 SECOND ORDER SYSTEM

In this first example, let the state x be given by the 2-vector $\left(x_{1}, x_{2}\right)$ and the input u by $\left(u_{2}, u_{2}\right)$. Consider the system

$$
\begin{aligned}
f_{1}(x, u) & =\frac{d x_{1}}{d t} \\
& =u_{2} \cosh \left(x_{1} x_{2}\right)-e^{2 u_{1}} \sinh \left(2 x_{1}\right)-3 \sinh \left(x_{2}\right), \\
L_{2}(x, u) & =\frac{d x_{2}}{d t} \\
& =e^{u_{1} u_{2}} \sinh \left(x_{1}\right)-e^{u_{1}} u_{1} \cosh \left(x_{1}^{2}\right)+\sinh \left(x_{2}\right)
\end{aligned}
$$

The input forcing functions are cosinusoids and are each a function of two parameters, amplitude and frequency. Notice that

$$
f(0,0)=0 .
$$

so that the origin is an equilibrium point and will thus be the point of expansion in the series truncation approximation.

The inear operators which form the standard innear approximation are calculated according to

$$
\begin{aligned}
L_{10} & =\left.\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]\right|_{\begin{array}{l}
x=(0,0) \\
u=(0,0)
\end{array}} \\
& =\left[\begin{array}{cc}
-2 & -3 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
L_{01} & =\left.\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}}
\end{array}\right]\right|_{x=(0,0)} \\
& =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
\end{aligned}
$$

Observe that L_{01} is full rank; each function has linear terms in the in-
puts. Moreovar, local stability of the system is ascertained by the fact that L_{10} has aiganvalues with negative real parts. Thus, the origin is a stable equilibrium point.

Consider a truncation approximation up to second degree censor product terms only. As discussed earlier, identification of an accurate model requires that the aystem be perturbed amall diatance from the point of expansion by choice of the initial condition vector x_{0}. To this end, the system is integrated with

$$
x_{0}=(0.005,-0.005)
$$

while the input amplitude vector a is taken to be

$$
\alpha=(0.05,0.05)
$$

and the vector of frequencies is

$$
\phi=(0.75,1.0),
$$

In hertz. The solutions to the coupled differential equations are then sampled at 200 time points, evenly spaced at intervals of 0.02 seconds. In order to ensure accurate derivative estimates, the integration stepsize is taken to be 0.005 seconds. A dagree- 2 approximation results in a model comprised of five linear operators, as the matrix equation

$$
\dot{x}=\left[\tilde{L}_{10} \tilde{L}_{01} \tilde{L}_{20} \tilde{L}_{11} \tilde{L}_{02}\right] X_{T}
$$

is formulated for the least squares minimization identification scheme.
The innear operators for the above-mentioned formulation are given in the following:

$$
\tau_{10}=\left[\begin{array}{rr}
-2.001 & -3.009 \\
1.006 & 1.011
\end{array}\right], 亡_{01}=\left[\begin{array}{rr}
0.002 & 0.997 \\
-1.000 & 0.000
\end{array}\right]
$$

$$
\begin{gathered}
\hat{\mathrm{L}}_{20}=\left[\begin{array}{ccc}
0.239 & -0.145 & -0.720 \\
-0.323 & -0.128 & 0.359
\end{array}\right] \\
\hat{L}_{11}=\left[\begin{array}{cccc}
-4.150 & -0.074 & -0.048 & -0.176 \\
-0.007 & 0.083 & 0.008 & 0.102
\end{array}\right] \\
\tilde{L}_{02}=\left[\begin{array}{ccc}
-0.105 & 0.027 & 0.012 \\
-0.982 & 0.015 & -0.013
\end{array}\right]
\end{gathered}
$$

Note that $\tilde{\mathcal{L}}_{10}$ and $\tilde{\mathcal{L}}_{01}$ closely approximate the analytical expreasions given by the Jacobian matrices of first partial derivatives. The task that remaine, then, is the model verification, presented in the following.

Verificatinn esess involve numerous simulations of the model for varLous combinations of the parameters x_{0}, a, ϕ. Two tests will be given here, the first of which consists of twelve different choices for x_{0}. with nine choices for a and one pait $\left(\phi_{1}, \phi_{2}\right)$; this gives a total of 108 simulations. Results of the test are tabulated in Table 6.1, where $\phi=$ ($0.75,1.3$) for all simulations. The two columne on the right of the table give the values ε_{1} and c_{2} for x_{1} and X_{2}, respectively, as the maximum relative error between the model simulation solution and the linear approximation. As discussed in Section 5.5, a negative value for the \boldsymbol{E}_{1} Indicates that the model has outperformed the inear approximation of L_{10} and L_{01}. Observe that ϵ_{1} and ε_{2} are negative for all individual simulations in this test, for single precision calculations. While these results show that the model has outperformed the linear approximation in a region about the expansion point, comparison plots of these solutires against the true solution offer a final indication of the validity of the

Table 6.1		Errer Amalyeen for Dagrecoz Hodal: - (0.75, 8.0$)$			
($\times 10^{-2}$)		$\left(0.00^{-1}\right)$		($\times 10^{-1}$)	
${ }_{10}$	${ }^{10}$	21	${ }^{0}$	${ }_{1} 1$	${ }^{6}$
0.1	0.1	0.0	0.0	0.000	0.000
0.2	0.1	0.30	0.30	-0.044	0.027
0.1	0.1	0.80	-0. 50	-0.042	-0.025
0.1	0.6	-0.50	-0. 50	-0.049	-0.027
0.1	0.1	-0.90	0.50	-0.042	-0.025
0.1	0.1	2.50	1.50	-0.404	-0.259
0.1	0.1	1.50	-1.50	-0.619	00.235
0.1	0.1	-1. 90	-1.90	-0.467	-0.237
0.1	0.1	-1.90	1.50	-0.407	-0. 240
0.1	-0.1	0.0	0.0	0.000	0.000
0.1	-0. 6	0.80	0.50	-0.044	-0.027
0.1	-0.8	0.90	-0.90	-0.042	-0.023
0.1	-0.1	-0.30	-0.90	-0.046	00.027
0.1	-0.1	-0.90	0.90	-0.062	-0.026
0.1	-0.1	1.50	1.50	-0.406	0.239
0.1	-0. 1	1.30	-1.30	00.470	0.235
0.2	-0.1	-1,30	-1.30	-0.432	-0.237
0.2	-0.1	-1.90	h. 50	-0.409	0.260
-0.1	-0.1	0.0	0.0	0.000	0.000
-0.1	-0.1	0.50	0.50	-0.043	-0.027
-0.1	-0.1	0.30	-0.50	-0.043	-0.023
- -.1	-0.1	-0.90	-0.90	-0.049	0.027
-0.1	-0.1	-0.50	0.50	-0.062	-0.026
-0.1	-0. 1	1.30	1.8n	-0.607	0.239
-0.1	-0.1	1.90	-1.50	-0.422	-0.235
-0.1	-0.1	-1.50	-1.50	-0.934	-0.238
-0.1	-0.1	-1.30	1.50	-0.407	-0.239
-0.1	0.1	0.0	0.0	0.000	0.000
-0.1	0.1	0.90	0.90	-0.064	-0.027
-0.2	0.6	0.50	-0.50	-0.042	-0.023
-0.1	0.1	-0.30	-0. 50	-0.066	-0.027
-0.1	0.1	-0.90	0.30	-0.042	-0.025
-0.1	0.1	1.50	1.50	-0.403	-0.256
-0.1	0.1	1.90	-1.50	-0.420	-0.239
-0.1	0.1	-1.30	-1.50	-0.449	-0.256
-0.1	0.1	-1.30	1.50	-0.408	-0.240
0.5	0.5	0.0	0.0	0.000	0.000
0.3	0.5	0.90	0.50	00.045	-0.026
0.5	0.5	0.50	-0.50	-0.048	-0.024
0.5	0.5	-0.50	-0.50	-0.062	-0.026
0.3	0.5	-0. 50	0.50	-0.062	0.025
0.5	0.5	1.50	1.50	-0.398	-0.251
0.5	0.5	1.30	-1.50	-0.415	-0.235
0.5	0.5	-1.50	-1.50	-0.633	-0.252
0.5	0.5	-1.90	1.30	-0.407	-0.261

0.5	0.5	0.0	0.0	0.000	0.000
0.3	-0.3	0.90	0,90	-0.044	-0.028
0.5	-0.5	0.50	-0.30	-0.042	-0.083
0.5	-0.8	-0.3n	-0. 50	-0.04	-0.038
0.5	-0. 0	-0.50	0.50	-0.001	-0.086
0.5	-0.3	1.50	1.50	-0.610	-0. 289
0.3	-0.9	1.50	-1.50	-0.420	0.235
0.5	-0. 5	-1. 90	-1. 30	-n. 615	-0.218
0.3	-0. 0	-1.30	1.30	-0.406	-0.239
-0.5	-0.3	0.0	0.0	0.000	0.000
-0.3	-0.3	0.50	0.30	-0.063	-0.028
-0.3	-0.3	0.50	-0.90	-0.063	-0.026
-0.5	-0.5	-0.30	-0.30	-0.090	-0.088
-0.3	0.5	-0.50	0.90	-0.046	-0.086
-0.8	0.5	1.30	1.90	-0.415	-0.259
-0.8	-0.5	1.50	-1.50	-0.425	-0.29s
-0.3	-0.5	-1. 10	-1.50	-0.467	-0.260
-0.3	-0.8	-1.50	1.90	-0.606	-0.235
-0.3	0.3	0.0	0.0	0.000	0.000
-0.3	0.5	0.80	0.50	-0.043	-0.037
0.3	0.5	0.50	-0.50	-0.042	-0.035
-0.3	0.3	-0.30	-0.50	-0.04s	-0.026
-0.3	0.5	-0.50	0.50	-0.048	-0.025
-0.5	0.8	1.50	2.30	-0.402	-0.235
-0.5	0.5	1.50	-1.80	-0.620	-0.233
-0.5	0.5	-1.30	-1.50	-0.443	-0.23s
-0.5	0.5	-1.30	1.30	-0.401	-0.260
1.0	1.0	0.0	0.0	0.000	0.000
1.0	1.0	0.30	0.30	00.047	-0.027
1.0	1.0	0.50	-0.30	-0.040	-0.022
1.0	1.0	-0.50	0.50	-0.063	-0.023
6.0	1.0	-0.50	0.98	-0.038	-0.024
1.0	2.0	2.90	1.90	-0. 385	-0.24s
1.0	2.0	8.50	-1.50	-0.0.10	-0.233
1.0	1.0	-1.30	-1.90	00.615	-0.243
1.0	1.0	-1.50	1.30	-0.401	-0.243
1.0	-1.0	0.0	0.0	0.000	0.000
1.0	-1.0	0.30	0.50	-0.043	-0.023
1.0	-1.0	0.50	-0.50	-0.042	-0.026
1.0	-1.0	-0.30	-0.50	-0.049	-0.029
1.0	-1.0	-0.30	0.50	-0.042	-0.026
1.0	-1.0	1.50	1.50	-0.413	-0.238
1.0	-1.0	1.30	-1.50	-0.621	-0.235
1.0	-1.0	-1.30	-1.30	-0.164	-0.239
1.0	-1.0	-1.30	1.90	-0.404	-0.239
- 5.0	-1.0	0.0	0.0	0.000	0.000
-1.0	-1.0	0.50	0.50	-0.049	-0.028
-1.0	-1.0	0.50	-0.30	-0.063	-0.026
-1.0	-1.0	-0.90	-0.30	-0.053	-0.030
-1.0	-1.0	-0. 90	0.50	-0.041	-0.03
-1.0	-1.0	2.30	1. 30	-0.424	-0.237
-1.0	-1.0	1.30	-1.50	-0.1.28	. .93
-1.0	-1.0	-1.30	-1.50	-0.482	-0. 262
-1.0	-1.0	-1.30	1.30	-0.408	-0.237
-1.0	1.0	0.0	0.0	0.000	0.000
-1.0	1.0	0.90	0.50	-0.063	-0.026
-1.0	1.0	0.90	-0.30	-0.042	-0.025
-1.0	1.0	-0.30	-0.30	-6.043	-0.025
-1.0	1.0	-0.30	0.50	-0.041	-0.025
-1.0	1.0	1.50	1.50	-0.397	-0.249
-1.0	1.0	1.50	-1.30	-0.620	-0.23s
-1.0	1.0	-1.50	-1.30	-0.4.436	-0.231
-1.0	1.0	-1.50	1.30	-9.4.66	-0.240

model. To best illustrate the tracking ability, consider a simulation of the model with the initial condition set at $(-0.01,0.01)$ but with

$$
a=(0.25,-0.25)
$$

as the input amplitude pair, at the same frequency pair ($0.75,1.0$). \$imulation of the model for these conditions is depicted in Figure 6.1a for variable x_{1} and Figure 6.1b for variable x_{2}. Clearly, the model soluEion, curve C, tracks the true solution, curve A, well throughout the integration interval.

An interesting feature of this example concerns the sensitive behavior of $f(x, u)$ for low frequency inputs; in the D.C. case, input amplitude steps of over 0.1 in magnitude cause instability in the system. The second test here, then, is for low frequency inputs with small amplitudes. Four choices of ϕ, four $n \in \alpha$, and two of x_{0} are utilized, a total of 32 simulations. Table 0.2 illustrates the results by way of the comparative error analyses where it is seen that the model again outperforms the linear approximation for the various conditions tested. The next two figures depict simulations of the model for two of these tests verifying its ability to track the true solution. In Figure 6.2 is given the response of the system for

$$
\begin{aligned}
x_{0} & =(0.01,-0.01) \\
\alpha & =(-0.075,-0.075) \\
\phi & =(0.05,0.05)
\end{aligned}
$$

A step response (that is, for $\phi=(0,0)$ in the test) is given in Figure 6.3 at the same value for x_{0} and α. In both instances the model simulation matches the true solution well while the linear approximation is poor.

OP HED QJALITY

ORIGINAL PAGE IS Of. POOR QUALITY

		-6.2:	Low Frequency Error Analyses lor Dagree-2 Modal.				
		$\left(\times 10^{-1}\right)$		$\left(810^{\circ}\right)$		$\left(\times 10^{-1}\right)$	
${ }^{*} 0^{0}$	${ }^{10}$	${ }_{8}$	a_{2}	1	12	${ }_{1} 1$	${ }^{6}$
0.1	-0.1	0.10	-0.75	0.0	0.0	-0.082	-0.081
0.1	-0.1	0.10	0.75	0.10	0.10	-0.082	-0.076
0.1	-0.1	0.10	-0.75	0.25	0.25	-0.061	-0.061
0.1	-0.1	0.10	-0.75	0.50	0.50	-0.062	-0.061
0.1	-0.1	-0.30	0.50	0.0	0.0	-0.293	-0.263
0.1	-0.1	-0.50	0.50	0.10	0.10	-0.692	-0.312
0.1	-0.1	-0.50	0.50	0.25	0.25	-0.786	-0.671
0.1	-0.1	-0.50	0.50	0.30	0.50	-0.763	-0.629
0.1	-0.1	-0.73	0.10	0.0	0.0	-0.589	-0.320
0.1	-0.1	-0.75	0.10	0.10	0.10	-1.010	-1.040
0.2	-0.1	-0.73	0.10	0.25	0.25	-1.490	-1.370
0.1	-0.1	-0.75	0.10	0.50	0.30	-1.430	-1.210
0.1	-0.1	-0.75	-0.73	0.0	0.0	-0.532	-0.654
0.8	-0.1	-0.75	-0.75	0.10	0.10	-0.704	-0.737
0.1	-0.1	-0.79	-0.75	0.25	0.25	-1.080	-0.960
0.1	-0.1	-0.75	-0.75	0.30	0.50	-1.010	-0.876
1.0	-1.0	0.10	-0.73	0.0	0.0	-0.079	-0.079
1.0	-1.0	0.10	-0.75	0.10	0.80	-0.080	-0.074
1.0	-1.0	0.10	-0.75	0.25	0.25	-0.062	-0.061
1.0	-1.0	c. 10	-0.75	0.50	0.30	-0.062	-0.061
1.0	-1.0	-0.50	0.50	0.0	0.0	-0.297	-0.266
1.0	-1.0	-0.30	0.50	0.10	0.10	-0.692	-0.512
1.0	-1.0	-0.90	0.50	0.25	0.25	-0.724	-0.673
1.0	-1.0	-0.30	0.30	0.30	0.50	-0.765	-0.629
1.0	-1.0	-0.75	0.10	0.0	0.0	-0.395	-0.325
1.0	-1.0	-0.75	0.10	0.10	0.10	-1.010	-1.040
1.0	-1.0	-0.75	0.10	0.25	0.25	-1.490	-1.370
1.0	-1.0	-0.75	0.10	0.50	0.50	-1.630	-1.210
1.0	-1.0	-0.75	-0.73	0.0	0.0	-0.528	-0.454
1.0	-1.0	-0.75	0.0 .75	0.10	0.10	-0.704	-0.737
1.0	-1.0	-0.75	-0.73	0.25	0.25	-1.080	-0.960
1.0	-1.0	-0.75	-0.73	0.50	0.50	-1.010	-0.876

URGIN. 2 L PAGE IS OF POOR QUALITV

Original page is
OF POOR QUALITY

x^{N}

Unigiadaz filge is OF POOR QUALITY

original page is of POOR QUALITY

4.2 SOFTWARE GOALS

The intent of this phase of the research has been to devise an algorithmic procedure and implement it in the testing portion of the overall modeling schame.

According to Figure 3, the overall modeling scheme is broken up into chree main divisions - LOADER, IDENTIFY, and SIMULATE. A brief description of each follows:

LOADER - generates a Model Parameter File containing the number of states, number of controls, length of tensor term vector, degree of approximation, and number of sample points. This routine also samples the states and derivatives of the system and stores them in the Temporary Data File.

IDENTIFY-uses the data in th: Temporary Data and Moriel Parameter Files and generates a model using the SIMEQUAT routine in the SPEAKEZY package. The model is then stored in the Model File; and the Temporary Data File is deleted.

SIMULATE-uses the daca in the Model and Model Parameter Files and performs a comparative simulation between the true, linear, and nonlinear solutions. An error analysis procedure is also contained in the routine.

The entire modeling scheme has previously been implemented on the University's IBM 370-168 computer system. Results from the use of this software have been very acceptable; however, the use of the system itself has become increasingly difficult due to the immense number of users bidding for time. Consequently, it was advantageous to develop a modified version of the software and to implement it on the Department of Electrical Engineering's DEC PDP11/60 computer system.

Figure 4 illustrates the peripheral units available on the PDP11/60 system. Two of these units are of particular interest in the modeling

Figure 3: Flowchare of Overall Modeling Scheme

F1gure 4: Block Diagram of pDP11/60 Peripherals
scheme. The first is the Tektronix 4025 video graphics terminal, and the second is the Versatec electrostatic printer/plotter. Use of both these peripherals is a valuable plus in the simulation phase, for the trajectory curves can be quickiy and easily displayed on the Tektronix tube. and upon request can be spooled to the Versatec ploter. This definitely enhances the routine and improves the interactive ability of the modeling scheme.

Another viaw indicates that two drawbacks currently exist with the implementation of the modeling scheme on the PDP11/60. First, the 96 K of core memory is divided into thirds, with 32 K being allocated to each terminal. Unfortunately $32 K$ of memory is not a sufficient amount to perform the identification phase of the scheme. Secondly, the PDP11/60 does not currently support floating point hardware. In other worde, all floating point operations are presently performed in software which greatly increases the execution time of routines which contain a large number of computations, such as LOADER and IDENTIFY.

With this in mind, work has been underway to institute an interactive nonlinear model identification and testing scheme whereby the PDP11/ 60 computer will be linked via a data link to a Remote Job Entry (RJE) port on the IBM 370-168*. In this configuration, a user could sit at the Tektronix terminal and have both the IBM 370-168 and PDP11/60 facilities at his or her fingertips. Consequently, the memory dependent and rigtily computational routines LOADER and IDENTIFY could be executed on the IBM 370-168, and the Model and Model Parameter Files could be transferred to *This link is not yet complete.
the PDP11/60 where they could be used by the SIMULATE routine. In this fauhion, the SIMULATE routine could utilize both the graphics capabilities of the Tektronix, and the plotting capabilities of the versatec.

Figures 5 and 6 contain flowcharts which describe the simulation and testing phase of the modeling scheme. Specifically Figure 5 illustrates the order in which various program functions are performed. The syetems (true, linear, and nonlinear) are integrated, uing a unique set of initial conditions and control parameters, and the error analysis is displayed. From an interpretation of this analysis, the user has the option to: 1) print the simulated solution at the Versatec; 2) display comparative solution curves on the Tektronix: ?) store the comparative solutions in a plot file; or 4) resolve the systems using a different set of input parameters. This portion of the routin $1 s$ highly interactive and allows the user to test out a given model over apecified region.

At the termination of the routine, if a Solution Plot File exists, the user can execute the hardcopy plot procedure shown in Figure 6. This procedure uses the Solution Plot File and creates binary parameter and data files which are used by the system routine RAS to perform the actual plotting at the Versatec.

Figure 5: Flowchart of Slmulation Procedure

Figure 6: Flowchart of hardcopy Plot Procedure

4.3 DEVELOPING DISPLAYS

The following pages contain examples of the displays associated with discussions in subsection 4.2 . These are self-explanatory and may be compared with the excerpt from the preceding technical report, which has been included in subsection 4.1. In addition to compaxison curves for igures $6.1,6.2$, and 6.3 in that excerpt, some additionsl curves have been selected from Tables 6.1 and 6.2 to illustrate the capability.

ORIGIINAL PLuE iS
OF POOR QUALITY

COMPARATIVE SOLUTION PLOTS: STATE $\quad 2$
θ - TRUE \quad - LINEAR MODEL $\quad *$ NONLINEAR MODEL
都

天
ratrar ar ar
PLOT SET 2

COMPARATIVE SOLUTION PLOTS: STATE 2
θ - TRUE $\quad \Delta$ - LINEAR MODEL $\quad *$ NONLINEAR MODEL

ORGGINAL PRGE IS
OF POO: QUALIT.
PLOT SET

COMPARATIVE SOLIJTION PLOTS: STATE * 2
NONL INEAR MODEL

SOLUTIOR : ARAMETERS:

[^3]
1.75%
1.768 - -

PLOT SET 5

SOLUTION PARAMETERS:

$$
c-2
$$

PLOT SET 6

STLUTION PARAMETERS:
-

ORIGINAL PAGE IS OF POOR QUALITY

COMPARATIVE SOLUTION PLOTS: STATE 2
θ - TRUE $\quad \triangle$ - LINEAR MODEL \quad - NONLINEAR MODEL
 x^{n}
SOLUTION PARAMETERS:

ORIGINAL PABE IS OF POOR QUALITY

V. PROGRESS ON NONLINEAR FEEDBACK. FROM TENSOR MODELS

Work on this aspect of the research has been underway only a fow months. The goal is to assess the practical issues involved in an implementation of the nonlinear feedback schate froposed by Buric [20] for use on tensor models.

In particular, lt is desired to decermine exactly what is novolved in calculating the feedback gains, to study whether the theory must be applied without modification or whether it may be posaible to begin with certain simplification of method, and to carry out the software steps needed to execute a nontrivial example.

At the time of this report, the group is nearing completion of the first of the three steps above. The principal issues involved for the second of the three steps appear to be the following: (1) How intrinaic is the use of duality, which necessitates an indirect approach to vectorvalued tensors aid applies the lass-than-intuitive method of contractions? (2) Should the initial exampie employ the symmetric tensor algebra, with its additional learning overhead but with computational advantages, or should it employ the easier and more intitive parent algebra embodying both symmetry and skew symmetry?

Decifions on these issues are expected to be made in the near future.

VI. CONCLUSIONS

This report has described progress on NASA Grant NSG-3048, entitled "Alternatives for Jet Engine Control", during the twelve month period beginning on October 1, 1980 and ending on September 30, 1981. Included have been reports on modeling theory, controller chaduling, interactive parameter selection, and nonlinear feedback from tensor modols.

In light of rapidly evolving capabilities of microcomputers and minicomputers, in view of the qualitative tensor model possibilities establiahed earliar by Mr. Stephen Yurkovich, and taking into account both the state of the art and prospects for further advance in tensor techniques for feedback fror such models, we believe that current progress continues tc point out significant new opportunities for producrive research in this area.

VII. REFERENCES

1. Dieudonne, J. Foundations of Modern Analysis, New York: Academic, 1960.
2. Apostle, T.M. Machematical Analysis, Reading, Mass.: Addison-Wesley, 1957.
3. Mohler, R.R. Bilinear Control Processes, New York: Academic, 1973.
4. Wonham, W.M. Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979.
5. Sain, M.K., Introduction to Algebraic System The sry, New Yort: Academic, 1981.
6. Sain, M.K., "The Growing Algebraic Presence in Systems Engineering: An Introduction', Proceedings of the IEEE, January 1976.
7. Yurkovich, S. aud Sain, M. K., "Generating Nonlinear Models from Digital Simulations: A Tensor Approach", Proc. Eleventh Pirtsburgh Conference on Modeling and Simulation, May 1980.
8. Yurkovich, S. and Sain, M.K., "A Tensor Approach to Modeling of Nonhomogeneous Nonlinear Systems", Proc. Eighteenth Allerton Conference on Communlcation, Control, and Computing, October 1980.
9. Yurkovich, S. "Application of Tensor Ideas to Nonlinear Modeling and Control". M.S. Thesis, Department of Electrical Engineering, University of Notre Dame, January 1981.
10. Yurkovich, S., Klingler, T.A., and Sain, M.K., "Tensor Ideas for Nonlinear Modeling of a Turbofan Jet Engine: Preliminary Studies", Proc. Twelfich Pirtsburgh Conference on Modeling and iimula:ion, May 1981.
11. MacLane, S. and Birkhoff, G., Algebra, Second Edition, New York: Macmillan, 1979.
12. Greub, W. H., Linear Algebra, Multilinear Algebra, Vol. 1 and Vol. 2 , New York: Springer-Verlag, 1967.
13. Samelson, H., Notes on Lie Algebras, New York: Van Nostrand, 1969.
14. Sagle, A.A. and Walde, R.E., Introduction to Lie Groups and Lie Algebras, New York: Academic, 1973.
15. Bellman, R., Introduction to Matrix Analysis, Second ed., New York: McGraw-Hill, 1970.
16. Gancmacher, R.F., Theory of Marrices, New York: Chelsea, 1959.
17. E. Bristol, "Process Control: An Application Theorist's Vtew of Control", IEEE Control Systems Magazine, Vol. 2, No. 1, pp. -:-8, March 1982.
18. E.h. Bristol, "Strategic Design: A Practical Chapter in a Textbook on Control", Proc. 1980 Joint Automatic Control Conf., Vol. I, Paper WA4-A.
19. M.K. Sain, J.L. Peczkowski, and J.L. Melsa, Eds., Alternatives for Linear Multivariable Control. Chicago: National Enginearing Consortium, 1978.
20. M.R. Buric, "Optimal Regulation of Nonlinear Systems by Methods of rensor Algebrai, Ph.D Dissertation, Department of Electirical Engineering, University of Minnesota, Minneapolis, Jaruary 1978.

APPENDIX A

grant plbliography, inception to present

(1) R.J. Leake, J.L. Melsa, and M.K. Sain, "Preliminary Proposal on Modern Approaches to Jet Engine Control", November 1, 1974.
(2) R.J. Leake, M.R. Sain, and J.L. Melsa, "Proposal to NASA for Support of a Work Entitled 'Alternatives for Jet Engine Control'", November 27. 1974.
(3) R.J. Leake and M.K. Sain, "Semi-Annual Status Report on NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", March 1, 1975 August 31, 1975.
(4) R.J. L.eake, M.K. Sain, and J.L. Melsa, "Proposal for Continuation of NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", October 1, 1975.
(5) J.C. Shearer, "An IBM 370/158 Installation and User's Guide for the DYNGEN Jet Engine Simulator", M.S. Thesis, November 1975.
(6) T.C. Brennan and R.J. Leake, "Simplified Simulation Models for Control Studies of Turbojet Engines", Technical Report EE 757, University of Notre Dame, November 1975.
(7) R.J. Leake, M.K. Sain, and J.L. Melsa, "Final Technical Report on NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", March 1, 1975 - February 29, 1976.
(8) R.R. Gefji and M.K. Sain, "Polynomial Techniques Applied to Multivariable Control of Jet Engines", Technical Report EE 761, March 1976.
(9) V. Seshadri and M.K. Sain, "Multivariable System Compensation Including Characteristic Methods for Jet Engine Control", Technical Report EE 763, May 1976.
(10) A.J. Maloney III, "Graphics Analysis of Dominance in Jet Engine Control Models", Techaical Report EE 765, June 1976.
(11) M.K. Sain, R.J. Leake, R. Basso, R. Gejfi, A. Maloney, and V. Seshadri, "Alternative Methods for the Design of Jet Engine Control Systems", Proceedings Fifteenth Joint Automatic Control Conference, pp. 133142, July 1976.
(12) J.C. Shearer, W.E. Longenbaker, Jr., and R.J. Leake, "An IBM 370/158 Installation and User's Guide to the DYNGEN Jet Engine Simulator", Technical Report EE 766, July 1976.
(13) R.R. Gejji and M.K. Sain, "A Jet Engine Control Problem for Evaluating Minimal Design Software", Proceedings Midwest Symposium on Gircuite and Systeme, Pp. 238-243, August 1976.
(14) V. Seshadri and M.K. Sain, "Interaction Studiea on a Jet Engine Model by Characteristic Methodologies", Proceedings Midwest Symposium on Circuits and Systems, Pp. 332-237, Auguat 1976.
(15) R.J. Leake and M.K. Sain, "Semi-Annual Status Report on NASA Grant NSG-3048, 'Alternatives for Jet Erigine Control', Supplement No. 1 ', March 1, 1976-August 31, 1976.
(16) R. Basso and R.J. Leake, "Computational Alternatives to Obtain TimeOptimal Jet Engine Control", Technical Report EE 767, September 1976.
(17) R. Basso and R.J. Leakı, "Computational Methods to Obtain Time-Optimal Jet Engine Contrul", Proceedings Fourteenth Allerton Conference on Circuit and System Iheory, Pp. 652-661, September 1976.
(18) M.K. Sain and V. Seshadri, "A Result on Pole Assignment by Exterior Algebra", Proceedings Fourteenth Allerton Conference on Circuit and System Theory, PP. 399-407, September 1976.
(19) R.R. Gejji, "A Computer Program to Find the Kernel of a Polynomial Operator", Proceedings Fourteenth Allerton Conference on Circuit and System Theory, Pp. 1091-1100, September 1976.
(20) R.J. Leake and M.K. Sain, "Proposal for Continuation of NASム Grant NSG-3048, 'Alternatives for Jet Engine Control'", October 25, 1976.
(21) R.M. Schafer, W.E. Longenbaker, and M.K. Sain, "System Dominance: A Preliminary Report on an Alternate Approach", Technical Report, University of Notre Dame, November 25, 1976.
(22) R.J. Leake and M.K. Sain, "Final Technical Report, NASA Grant NSG3048, 'Alternatives for Jet Engine Control', Supplement No. 1', March 1, 1976 - February 28, 1977.
(23) R.J. Leake, J.G. Allen, and R.S. Schlunt, "Optimal Regulators and Follow-Up Systems Determined from Input-Output Signal Monitoring", Procecdings IEEE International Symposium on Circuits and Systems, April 1977.
(24) R.M. Schafer, "A Graphical Approach to System Dominance", Technical Report EE 772, University of Notre Dame, April 1, 1977.
(25) W.E. Longenbaker and R.J. Leake, "Hierarchy of Simulation Models for a Turbofan Gas Engine", Proceedings Eighth Annual Pittsburghe Conference on Modeling and Simulation, April 1977.
(26) P.W. Hoppner, "The Direct Approach to Compensation of Multivariable

Jet Engine Modele", Technical Keport EE 774, University of Notre Dame. May 1977.
(27) R.R. Gejfi and R.J. Leake, "Timeaptimal Control of Single Spool Turbojet Engine Ueing a Linear Affine Modei", Technical Report EE 7711. Univeraity of Notre Dame, June 1977.
(28) R.M. Schafer, R.R. Gejf1, P.W. Hoppner, W.E. Longenbaker, and M.K. Sain, "Frequency Domain Compensation of a DYWGEN Turbofan Engine Mode1", Proceedings Sixteenth Joint Automatic Control Conference, pp. 1013-1018, June 1977.
(29) R.R. Geffi and M.K. Sain, "Application of Polynomial Techniques to Multivariable Control of Jet Engines", Proceedings Fourth IFAC Sym= posium on Muleivariable Technological Systems, pp. 421-429, July 1977.
(30) R.R. Gejf1, "Use of DYGABCD Program at Off-Design Points", Technical Report EE 7703, University of Notre Dame, July 1977.
(31) E.A. Sheridan and R.J. Leake, "Non-Interactive State Request Jet Engine Control with Non-Singular B Matrix", Proceedings Twentieth Midwest Symposium on Circuits and Systems, Pp. 539-543, August 1977.
(32) R. Gejji, R.M. Schafer, M.K. Sain, and P. Hoppner, "A Comparison of Frequency Domain Techniques for Jet Engine Control System Design", Proceedings Twentieth Midwest Symposium on Circuits and Systems, pp. 680-685, August 1977.
(33) W.E. Longenbaker and R.J. Leake, "Time Optimal Control of a Two-Spool Turbofan Jet Engine", Technical Report EE 7714, University of Notre Dame, September 1977.
(34) R.J. Leake and J.G. Comiskey, "A Direct Method for Obtaining NonIinear Analytical Models of a Jet Engine", Proceedings Internatinnal Forum on Alternatives for Linear Multivariable Control, National Electronics Conference, Chicago, pp. 203-212, October 1977.
(35) M.K. Sain and R.J. Leake, "Proposal for Continuation of NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", October 25, 1977.
(36) J.A. Ortega and R.J. Leake, "Discrete Maximum Principle with State Constrained Control", SIAM Journal on Control and Optimization, Vol. 15, No. 6, pp. 109-115, November 1977.
(37) Michael K. Sain and V. Seshadri, "Pole Assignment and a Theorem from Exterior Algebra", Proceedings IEEE Conference on Decision and Control, pp 291-295, December 1977.
(38) R. Michael Schafer and Michael K. Sain, "Some Features of CARDIAD Plots for System Dominance", Proceedings IEEE Conference on Decision
and Control. pp. 801-806, December 1977.
(39) M.K. Sain, "The Theme Problem", In Alternatives for Linear Multivariable Control, M.K. Sain, J.L. Peczkowaki and J.L. Melaa, Editors. Chicago: National Engineering Consortium, 1978, pp. 20-30.
(40) R.M. Schafer and M.K. Sain, "Input Compenaetion for Dominance of Turbofan Models", in Alternatives for Lineas Multivariable Control, M.K. Sain, J.L. Peczkowaki, and J.L. Melea, Editors. Chlcago: National Engineering Consortium, 1978, pp. 156-169.
(41) J.L. Peczkowski and M.K. Sain, "Linear Multivariable Synthesis with Transfer Functions", in Alternatives for Linear Multivariable Control, M.K. Sain, J.L. Peczkoweki, and J.L. Melea, Editors. Chicago: National Engineering Consortium, 1978, pp. 71-87.
(42) R.J. Leake and M.K. Sain, "Semi-Annual Status Report, NASA Grant NSG-3048, 'Alternatives for Jet Engine Control', Supplement No. 2", March 1, 1977 - August 31, 1977.
(43) R.J. Leake and M.R. Sain, "Final Technical Repurt, NASA Grant NSG3048, 'Alternatives for Jet Engine Control', Supplement No. 2", March 1, 1977 - February 28, 1978.
(44) M.K. Sain and R.J. Leake, "Semi-Annual Status Report, NASA Grant NSG3048, 'Altarnativas for Jet Engine Control'', March 1, 1978 - August 31, 1978.
(45) R.J. Leake, J.L. Peczkowski, and M.K. Sain, "Step Trackable Linear Multivariab.e Plants", Technical Report EE 789, September 1978.
(46) R.M. Schafer and M.K. Sain, "CARDIAD Design: Progress in the Four Input/Output Case", Proceedings Sixteenth Allerton Conference on Communication, Control, and Computing, p. 567, October 1978.
(47) M.K. Sain, "Proposal for Continuation of NASA Grant NSG-3048, 'A1ternatives for Jet Engine Control'", November 1, 1978.
(48) M.K. Sain, "On Exosubsets and Internal Models", Proceedings IEEE Confarence on Decision and Control, pp. 1069-1073, January 1979.
(49) M.K. Sain, "Annual Technical Report, NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", March 1, 1978 - February 28, 1979.
(50) V. Seshadri and M.K. Sain, "An Application of Exterior Algebra to Multivariable Feedback Loops", Proceedings Conference on Information Sciences and Systems, Johns Hopkins University, pp. 337-342, 1979.
(51) M.K. Sain and R.M. Schafer, "Alternatives for Jet Engine Control", Propulsion Controls Symposium, NASA Lewis Research Center, Preprints, p. III-15, May 1979.
(52) J.G. Comiskey, "Time Optimal Control of a Jet Engine Using a QuesiHermite Interpolation Model", Technical Report EE 791, May 1979.
(53) R.M. Schafer and M.K. Sain, "Frequency Dependent Precompensation for Dominance in a Four Input/Output Theme Problem Model", Proceedines Elghteenth Joint Automatic Control Confarence, Pp. 348-353, June 1979.
(54) M.K. Sain, "Semi-Annual Status Report, NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", March 1, 1979-August 31, 1979.
(55) V. Seahadri and M.K. Sain, "Loop Closures and the Induced Exterior Map", Proceeding: Seventeenth Allarton Conference on Communicatione, Control, and Computing, pp. 753-761, October 1979.
(56) R. Michael Schafer and Michael K. Sain, "CARDLAD Appronch to System Dominance with Application to Turbofan Engine Models", Proceedinge Thirteenth Asilomar Conference on Circuits, Systems, and Computers, Pp. 78-82, November 1979.
(57) R.J. Leake, J.L. Peczkowski, and M.K. Sain, "Step Trackable Linear Multivariable Plants", International Journal of Control, Vol. 30, pp. 1013-1022, December 1979.
(58) V. Seshadri, "Multivariable Feedback Loop Closures: An Approach by Exterior Algebra", Ph.D. Thesis, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana, January 1980.
(59) M.K. Sain, "Semi-Annual Status Report, NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", September 1, 1979-February 29, 1980.
(60) S. Yurkovich and M. Sain, "Generating Nonlinear Models from Digital Simulations: A Tensor Approach", Proceedings Eleventh Pittsburgh Conference on Modeling and Simulation, Pp. 797-801, May 2, 1980.
(61) R.M. Schafer, "On the Design of Dynamical Compensation for Diagonal Dominance", Ph.D. Thesis, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana, May 1980.
(62) M.K. Sain, "Proposal for Continuation of NASA Grant NSG-3048, 'A1teinatives for Jet Engine Control'", June 19, 1980.
(63) S. Yurkovich and M. Sain, "A Tensor Approach to Modeling of Nonhomogeneous Nonlinear Systems", Proceedings Eighteenth Allerton Conference on Communications, Control, and Computing, pp. 604-613, Oct. 1980.
(64) M.K. Sain, "Nineteen Month Technical Report, NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", March 1, 1979 - September 30, 1980.
(65) R.R. Gejfi, "Reliable Floating Point Computation of Minimal Bases", Proceedings Nineteenth Joint Automatic Control Conference, Paper WA-8B, August 1980.
(66) M.K. Sain, "Quotient Signal Flowgraphs: New Insights", Procegdinge IEEE Internacional Confarence in Circuits and Computera, p. 417, Oceober 1980.
(67) MK. Sain, "Semi-Annual Statue Report, NASA Grant NSG-3048, 'Alcernatives for Jet Engine Control" "Octobar 1, 1980 - March 31, 1981.
(68) M.K. Sain, A. Ma, and D. Perkina, "Sunsitivity Ianues in Decoupled Control System Design". Proceedings Twelfth Southeastarn Symposium on Syatem Theory, PP. 25-29, May 1980.
(69) Stephen Yurkovich, "Application of Tensor Ideas to Nunldnear Modeling and Control", M.S. Thesis, Department of Electrical Engineering, University of Notre Dame, January 1981.
(70) V. Seahadri, "Exturior Algebra and Simultaneous Pole-Zero Placement", Proceedincs Conference on Information Sciences and Systems, Johns Hopkina University, 1981.
(71) M.K. Sain, "Status of Computer-Aided Control System Feedback Design: Algebralc Methods", GE-RPI-NSF Workshop on Control Design, May 20, 1981.
(72) Stephen Yurkovich, Thomas A. Kilngler, and Michael K. Sain, "Tensor Ideas for Nonlinear Modeling of a Turbofan Jet Engine: Preliminary St:dies", Proceedinge Tweafth Annual Pittsburgh Conference on Modeling and Simulation, Pp. 1423-1427, May 1981.
(73) M.K. Sain, "Proposal for Continuation of NASA Grant NSG-3048, 'A1ternatives for Jet Engine Control'", June 11, 1981.
(74) M.K. Sain, "Twelve Month Technical Report , NASA Grant NSG-3048, 'Alternatives for Jet Engine Control'", October 1, 1980 - September 30, 1981.

APPENDIX B

Reprint

"Seneitivity Iasues in Decoupled Control System Design"

M.K. Sain, A. Ma, D. Perkins

Proceedings Twelfth Soucheastern Symposium on System Theory

Pages 25-29

May 1980

ORIGINAL FACE IS OF POOR QUALITY

stnsitivi. Issuzs 8x otcouple cowthot syster olizexo

Msehael R. Scin
Deparcmac of llecericel Engineeriag
Uabyersiky of Matre Dan
Macre Dane, Iadlane 46536

Abrchen Ma
Tuergy Controla ofvision
Cendin Corperatien
souch lond. Indsana 40620

Daphne Parkiae
Departmenc of Eleetybeal Enghacerias
Undvarssey of metre Deas
Mocra Dagn, Iadiart 66536

Abstase

Receat diecusolons in the ilcerscure have poinced out che entacence of decoupled concrol bysten axamples wich high clasascal eafeing in the ino dividuel loope bue bicele loop stebslity colerance cit gela variacion. This paper pelace out tho apo plicablility of the Crug-Parisias senciesvicy eaters to deelgn probleas saveiviag euch plages, which any be forcesea uifh graphically inceraceive sechode developed by Schafer and sala.

Treseduction

Consider the syoces of Figure 1 . Here p reprasance vancor of requeses, u a vecter of conerol ecelome, and y a vector of plane responses. Aseuve thec

$$
\begin{align*}
& y=P u . \tag{1}\\
& u=M r . \tag{2}\\
& y=E t . \tag{3}
\end{align*}
$$

for approprlace binear oparacors P. M. and I. Combine these chree equarsons so thet
Tt - PME.
and requife that (4) hold tor all requence E. Then

$$
\begin{equation*}
T=P M_{0} \tag{3}
\end{equation*}
$$

or in ancrix form

$$
\begin{equation*}
(1:-1)\left[\frac{x}{5}\right]=101 . \tag{6}
\end{equation*}
$$

Aay posesble concgol ectsonmplane reaponse part (u, y) can thus be sepresented at an elcmat io

$$
\begin{equation*}
\operatorname{kaz}\{: ;-5\}, \tag{7}
\end{equation*}
$$

where the kernal can be conceived elthar in vector space or module shooretic serns.

A very broas eype of teedbeck syatea withia che slane Indlcaced by Figure I hae been ocudded This rotk vat suppored in part by the office of Naval Reseazeh under Coneract Nubar \$ 00014-79-C0675 asd in pare by the National deronautics and Space dininlacracion under Grane ISG 3068.
by lemgesen (1). for the case in uhich the plane eactix $\{P(0)\}$ erlase frea a concrellable and obcervable efiple (A, B, C) uten t epalc. in parElcular, ehere exiacs an lacernaliy seable teedbeck realigacion of leagesion cype toc matrices ($M(a)$) and $\{T(s)]$ catiafying (6) if and only if (M(s)) ls proper and both [M(s)) and [T(s)] are seco ble. for an extenstoa to she case (P(B)) peoper, see (2).

Plgure 1.

Coce in Poing

The fucreducfory discuesion above leada rapLdiy 50 soee very pracescal guidelines vhen (T(s)) La diagonal and nonslagulaf and whan [P(a)] is square. Tinis in the cese of desifed decoup! fos. From (5), (P(a)) vill have co be tavareible if deceupling it to be efealaed.

For discuacion in ehis papar, wo urah to enke uee of the axample

$$
[P(8)]=\left[\begin{array}{cc}
\frac{9}{8+1} & -\frac{10}{8+1} \tag{B}\\
-\frac{8}{0+2} & \frac{9}{3+2}
\end{array}\right]
$$

seudied by Rekagiue [3], who in turn aetribueas is to J.C. Doyle. A straigheSorrasd ealculation then sives

$$
[P(0)]^{-1}=\left[\begin{array}{cc}
9(s+1) & 10(s+2) \tag{9}\\
8(s+1) & 9(s+2)
\end{array}\right]
$$

For decoupling,

$$
r^{\prime}(s)=\left[\begin{array}{cc}
E_{21}(s) & 0 \tag{10}\\
0 & E_{22}(s)
\end{array}\right] \text {. }
$$

ORLCINAL PAGE IS OF POOR QUALITX

and
(3) seplices

$$
\begin{align*}
(n(0)) & (P(0))^{-1}(8(0)) \\
& =\left(\begin{array}{ll}
g(0+1) \varepsilon_{22} & 10(0+2) t_{22} \\
& \left(0(0+1) e_{2}\right.
\end{array} \quad 0(0+2) e_{22}\right. \tag{16}
\end{align*}
$$

whish for fatarnably acable fecdback reallzability nuse to prepar aed acable by the teagtasen condiclome. the aholes

$$
F(a)=\left[\begin{array}{cc}
\frac{1}{0+2} & 0 \tag{12}\\
0 & \frac{1}{\cos }
\end{array}\right]
$$

 reallzet by ca output orter feedbeck conliguration of the sype ahown io Pigure 2, while andatalalas incarnal seabliley, with the cholee

$$
c(0) \cdot\left[\begin{array}{cc}
9 & 10 \tag{13}\\
0 & 9
\end{array}\right] .
$$

The reacent tor the incorest ateracted by this exacple cea be explained al followe. The forvard peth gela

$$
\begin{equation*}
|Q(s)|-(P(0) \mid(Q(\theta) \mid \tag{16}
\end{equation*}
$$

ta figure 2 is

$$
\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \tag{15}\\
0 & \frac{1}{s+2}
\end{array}\right]
$$

tdeally, then, the evo-iapuc, eromouepus groblem hae been reduced to two one-input, one-oucpue problens. Moreover, each of the one-inpue, one-output problece hat inflaste pain maptig in the usual claselcel gense. thefortunacily, ethe inflniec gela asegta ta bue an Llluation, at shovm to the follows las section.

Standrisy Andyase

The kay to acabillty fergio decentiontion, for an apagacor gata rich sactis

$$
(x) \cdot\left[\begin{array}{cc}
2+k_{2} & 0 \tag{16}\\
0 & 1+k_{2}
\end{array}\right]
$$

Inacted between ($P(s)$) and $[C(s)$), is the relatsoa

$$
\operatorname{LEP}(s) \cdot \mid\{+[P(s)]\{x \mid[G(s)| | \operatorname{oteP}(s)
$$

betvera the closed loop and open loop chazacterisELC polynonials CLCP(s) and OLCP(s) reapectively. For chls cage. (17) becosen

$$
\begin{align*}
\operatorname{cccs}(n) & =e^{2}+\left(3+k_{2}-k_{2}\right) s \tag{18}\\
& -\left(6+83 k_{1}-78 k_{2}+k_{2} k_{2} .\right.
\end{align*}
$$

Iigure 2.

Figure 3. (Mes co ecale).

Pigure 4.
uhich generacen acabiliey region

$$
\begin{gather*}
s+k_{2}-k_{2} \geqslant 0 \tag{19}\\
6+89 k_{2}-78 k_{2}+k_{2} k_{2} \geqslant 0 \tag{20}
\end{gather*}
$$

Ls the ($k_{1}, k_{,}$) phase. Shie region to skeched io Plgure 3, fhich ts sot, hovavar, dram to scele. Pos ente skecth, the bousdary of (20) vas rettece

$$
\begin{equation*}
k_{2}-\left(6-13 k_{2}\right) /\left(78-k_{2}\right), \tag{21}
\end{equation*}
$$

and the accumpeion $\left|\mathrm{H}_{\mathrm{n}}\right| \ll 78$ giver a clome approxingeion to eefaighe ilac. Pigure 1 ankes ciear that vary mall chaggee ta the laageh of concrol spues bande vectort can descabilise the loop.

Senelesulsy Matsis Desirn

The eeablley margin observacions of the swo sacetom praceding are inatructive, in thet ehey polat out the pocanelel taliacies uhich ean be ansaciaced utth lldeer design of control loope, when teasiesviey especes have not bevo expliciely consideres.

Tiguse 5.
Te decerperaco chst aspact; ve antio use of the compertsen seatielvity metix $|4|$ of crus and Pafisha, withia the feedseck sefucture of Plgure d. Pop the dealga of $\mathbf{G (s)}$ end $\mathrm{H}(\mathrm{s})$, ve meke uet of ent equaciona

$$
\begin{align*}
& G=P_{0}^{-1} s_{0}^{-1} r_{0} \tag{22}\\
& B=P_{0}^{-1}\left(s-s_{0}\right) . \tag{23}
\end{align*}
$$

where the subectipe (0) denotes nondad represancaetione of the plane F, the gespease operecor t. and the Crus-Pertile opepacer 3. the lase cectio fying a vall known equacion

$$
\begin{equation*}
s_{0} \cdot\left(2-P_{0} G\right)^{-1} \tag{26}
\end{equation*}
$$

Regerd (22) asd (23) to design equations in cosen of a glvan plane asd of apectfleseloan on 811 ear sesponse io and compariven ceasieiviey so. Por To. choose (12); then ve maincain the same nomirul tilter behavior obesiand ia Flgure 2. Tor 30. choese

$$
\begin{equation*}
\left\{s_{0}(s)\right)=\frac{.0199 a}{.0158 e}: \tag{25}
\end{equation*}
$$

which sapresencs an laprovement both in gein and bendyideh over the comparison sensietviey merix

$$
\left[\begin{array}{cc}
\frac{s+1}{1+2} & 0 \tag{26}\\
0 & \frac{s+2}{s+3}
\end{array}\right]
$$

which oceurs in Figute 2 when $[H(s)]$ to l . it 1 e aerelgheforvard to ealculace

$[H(0)] \cdot\left[\begin{array}{cc}\frac{0+2}{.0139 \theta+1} & 0 \\ 0 & \frac{.013+3}{}\end{array}\right]$
for which if followe that

$$
\begin{align*}
\operatorname{cLce}(s) & =\left(.015 s^{2} 0^{2}-.0159 s\left(2-k_{2} \bullet k_{2}\right)\right. \\
& \left.=\left(1-k_{2}-k_{2}-k_{1} k_{2}\right)\right)(.013 \varphi-1)^{2} \\
& =(0+1)(0+1)^{2}(0+3), \tag{29}
\end{align*}
$$

and thats

$$
\begin{gather*}
2+k_{1}-k_{2} \geqslant 0 \tag{30}\\
1+k_{2}+k_{2}-k_{1} k_{2} \geqslant 0 \tag{31}
\end{gather*}
$$

are counterparte of (29) and (20). The ace ncabllisy regien in skacehed in Figure $\$$.
clearly, ehe shape and chapescer of cha acabllbey rosion ohow in thso ligure cepresenc: aubecanclal inprovemat over thac of Iigure 3. is offose, the bounderios shown ls flyure g ere vary praetseal, bectuse (K) in (16) becomes ilegular at thoee telace. As result. $(P(s))(K)$. coem alderet ae am plame aastix (f(b)). would be olagular and could not produce a decoupled syacen.

Phens Ghregeer

The apasial character of the kehassug-boyle crample could have been forecen before a deceupliof dealgn ves conplated. To see ehde, netice that a deccupled $f(3)$ ta cenflsuration of the Pigure 2 ulli alyaya genorsee a diagomal forward pach operacion $Q(1)$, is la (16). As a consequence. $6(s)$ say be regarded as a pro-compenac505 choaen to schieve columa dowinance of $Q(s)$. A grephicaliy inceractive procedure for asmestag such quesesoas has been developed by schafer asd sala (5,6). Precompancecion is cahan to be of the torn

$$
(6(0)) \cdot\left[\begin{array}{c}
1 \\
r_{21}(a)+g 1_{22}(0)
\end{array}\right.
$$

$$
\begin{equation*}
\left.\mathrm{F}_{12}(\mathrm{~s})+11_{12}(s)\right]_{13} . \tag{32}
\end{equation*}
$$

Por at alemare at a Nyquise concour, peizs ($r_{\text {vin }}(s)$, (s)) which achisve colum domiance of Q(B) are fiambliaed at inceriors of solld circles or exteriors of daehed circles ta the ($\mathrm{ran}, \mathrm{man}$) plant. As tollowe the syquise concout, theere cifcles generace a CNDDIAD (Complez Accepesbidity Rogion for Dragonal ponmance ploc. Figuree 6 and 7 give the CAlDIDD plots for the orisiond plage (8). How vilee (13) in the sorm

$$
\begin{align*}
{[G(8)] } & \cdot\left[\begin{array}{cc}
1 & 10 / 9 \\
8 / 9 & 1
\end{array}\right]\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right] \tag{33}\\
& =[6(6)][9:] \tag{34}
\end{align*}
$$

In Pigure 6, obsorve chat ($8 / 9$ - .s88...) is juse slighely to the left of aid the deahed circlas; ta Ifgure 7. (10/9-1.211...) in wiehin all the solsd esselee. Thus the canotho plot predices coluna doatnance of $Q(s)$. However, the altuacton uteh ragerd co chle donlanace condieion is precartout, imemuch as (8/9) temas quite sjose to the daghed eircles while (10/9) mace be delicacely pleced to reanin imosde all the solid circies.
Plgures and 9, and Figures 10 and 11. prosent ene
 $(0,-.1)$ and $(0, .1)$ tespecesvaly. The former do a seable condieloa, the latear unstable. to seen to

Ifguse 7.

Figura 9.

> Ophath meg 13
> Of poent cuntry

Figure 3. Figurg 9 shows that columa two faile to be domionas af all s: and Figures 10 and 11 shou both colume falliag dominancemerelativa so (3j)(34). What the doninance condition talls, the ladividual loop seability argumente based upen Rosenbrock's theorea [7] lasl; and this 19 an ladleacion of robuseness difficuley co be expeceed in decoupllas the plaat.

Gonclucions

This napar has discuseed the use of procedures developed by Schafer and sasn co forncase seabiliey robusenase probleas in decoupline concrol syateas and hes dlluscrated the use of the Crus-Ferkins comparison sansiciviey idee co rarry out design.

Rafarences

1. C. Bengesmon, "Feedback Reslizeetong in Llaear Mul:zvariable Systean. LEte Eranacesions on Autenete Conerol. Vol. AC-22, pp. 576-585, Augure 1977.
2. R.J. Lanke, J.L. Pectikowak1, and M.K. Saln, "step trackable innear Muleiveriable Plants". Ine. Joumal of Control, Vol. 30, pp. 103-1022. Decenber 1979.
3. Z.V. Rakesius, "On Hidden scabilicy Margian in theleivariable Control", Proc. Joint Aucomarie Conerol Conference, pp. 354-357, June 1979.

Plgure 11.

4. J.B. Cruz, Jf. and W.R. Porkins, "A Nev approach to che Seasitivity Problea in Muleivariable Peedback Systea Design". IEEE Trensections con Autametic Conerol. Vol. AC-9, pp. 216-223. July 1964.
3. R.M. Schatar and M.K. Sain, "Tnpue Companactwa tot Dominance of Jurbofan Models", in Alternaelves for Linear Muleiveriable Concrol. M. K. Saln, J.L. Peczinoweki, and J.L. Kelsa, eda. Chicago: Naeional Engianeriog Consortium, 1978, pp. 156-169.
6. R.M. Schater and M.K. Saln, 'Frequency Dependene Precompanacion for Jominance in a Four InpucOutput Thee Problem Model". Proc. Joine Auto eatelc Coneroi Conference. pp. 348-353, Jues 1979.
7. H.H. Romenbrock, Conpucar-Alded Conerol Syacem Dea1n. Nev York: Acadeaic Prese, 1974.
APPENDIX CReprint
"Quotient Signal Flowgraphs: New Insights"M.K. SainProceedings IEEE International Conference on Circuits and Computers
Page 417
October 1980

quotient signal flowgraphs: new insights

Michael K. Sain
Department of Electrical Engineering
University of More Dame
Note Dame, Indiana
USA 46556

SUMMARY

When large scale, interconnected systems can be described in temp oi: signal flow graphs, there is available a natural algebraic way in which to regard generalized model "order reduction". The basic idea is to regard the node variables as abelian group valued and to consider the mappings from node to node of homomorphisms of groups. Then variable simplification on node variables can be established by projections onto quotient groups. If the node-to-node homomorphisms are correctly related to the kernils of these projections, then such a construction induces a new set of unique node-so-node homomorphisms on the cosets of original node variables. One feature of the resulting quotient signal, flow graph is that it preserves the connection structure of the original system. Another feature is that the projections induced on node-to-node homomorphisms are interchangeable with basic flow graph operations. $[1,2$]. This presentation reviews the notions above, extends them to the feedback case, and discusses the possibility for generalizations.

REFERENCES

1. M.K. Sain, Introduction to Algebraic System Theory, Academic Press, 1980 to appear.
2. M.K. Sain. "The Quotient Signal flougraph for Large-Seale Systems". LEEE Trans, on Circuits and Symteas, Vol. CAS-25, No. 9, September 1978, pD. 781-788.

APPENDIX D

Reprint

"Exterior Algebra and Simultaneous Pole-Zero Placement"
 V. Seshadri
 Proceedings Conference on Information Sciences and Systems

 1981EXTEREOR ALGEER NTD SEMLTANROUS POLE-ZENO PLACERENT

V. Seshadri
Departenat of Electrical Eagtreariag
Genefal Mocors tnacieuce
Fline, MI 48502

Alsteng:

The ublquity of the deceralnate of roeuza diffareace la esmotavariane milesvasiable llacar syacea seudlas can be aceribuead to the culetrartable fuedbeck loop coatrol prevalent la such ayscese. As a lint betwees opea-loop and closed-loop charactarlatic polyuoaldele, the the fundmencal enesey leads ag to moce generallzed Nyquist seudies, and ladeed as the bay quaneley ta solvtag the genaralized boop, this deterniasene ta of esceatial algebrale icporsance. Conseguencly, excertos algebras designed expllelely for the anslysis of ouch calculations as decerelrates cen be of assistance of discuestons of mlelvariable ayacem with foedback conesol. Ia ehse paper the beatc uaage of an exterior algebra, in deterainancal conatinctiona relating to the poles and zeros of iadividual tranafar funce cions in the closed loop eranstar aterix, is bluseraced. then such enearior algebrat are formad over ehe lapuc and oueput vector specee, the nap fros the haput space to the ousput space induces a aorphise over che algebeas: ehis induced extarior motphism plays a ulgnificane sole in the atmblameous plecement of poles and fadividual zeron of the cransfor matzix ue desirad locations. If la alao expeceed that the conpace expresalions tor closed-loop Ladividual zeros, sanderad eranaparane by the exeerior algebrale seructura, would be of general lacerene trasmuch at they enhance the destgner's ability to shape the eranateat responess of fadividual syscem outputs.

INTRODUCTION

Pigure b. Outpue Feedback Seruceure
Conelder the systes of ifguse 1 , which conslacs of a seablifzen axa plane eranefar mezix $h(s)$ and an axa outpue fecdback aserix $\mathrm{a}(\mathrm{a})$ over the flold $\mathrm{F}(\mathrm{s})$ of saciomal fuacesons ta trith coefficients from the Elold?. Hote that r(s), $u(a)$ and $y(s)$ are the safarance, fapue and output r-vectors, beloaging to $F(s)$-raceor spaces Z, σ and $\%$ zespeceively. The design of a foedreck compeasator $h(s)$ as in the above often leade to ehe soblowias equacion (the depeadence on 3 la
dropped hanceforth for nocallonel alapldelty):

$$
\begin{equation*}
(z+L s) y-L_{t} \tag{b}
\end{equation*}
$$

Pigure 1 any be vieved ac follove. once the boop has beas cloced through E, there reaules a clonad-loop eranster ancrix, havias in 158 rerious zows and columan the indstidual closed1000 tranefer funcesons. Ia runetous practicel applicaesoan, as for axample (1), apeciflcaetions are given in estre of the seeponse of laddvidual outpues to individual referances. hiss masas that the zeroe of ladividual closed-loop eranefer functions are of conaiderable taportance in deolen.

Relecivaly liecle seem to have beac wetecen on this subject. The ressons tor the paucity of dicerature la this area any become cleares if one weve to look, agaln, af Equatson (1). Wheress it is generaliy ecknowledged that the retura-differ once anesix ($1+L A$) playe a key role la deleralalng the effect of taedback conactions on the output sespouses (2), the explicit nature of the ralacionship and the precise way la which the securn-differeace meszix encers the dynamics of the feedbesk concrol problan have bean difficule to study. This is because she geturiodlefasance anerix is ganerally expreased ta the feedback problea as the laverse of a anerix aum.

Busldiag on the work of Saln (3) oue can conacruce an extertor algebrale struceure (4,5 , 6) autred to represeat clacsicel adjointa and decermannes and hence, by deflaicion, the invesse of the zetuta differeace astzix. It hat alresdy been demonstraced thee this exterior algebrate seructure is a uneful and eastiy appliad conaeruceion for pole aesigumane la an tuportane clase of ainimil design problem $[7,8$, 91.

The presaat paper any roughiy be divided $1 n^{-}$ co three parts. The ilrse pare latroduces the excerior algobra. The prasencation 1a axtramely briet due to liattations of spece: for mora decaile the reader ts referred to Graub [4]. The secoud pare of the papar conuldars the aulespariabla conerol problea orth tull output teedbeck. Besed on the exterior eorphism laduced over the algebrat, expraseions are obtalaed tor the pole polynonial and ladividual $2 a 50$ polynomala of the closed-loop eranetor macrix zelatiag che ouepue vecsor to the raforence vector. In the last part of ehis paper the abova expresshone are used, in concere with undey rank feedbeck, to place poles and individual zeros stmuleancously. Depending on the nuaber of spectificatious given, one any be sble 50 elther place the poles and zeroe precisaly or make a lease
equeres appromimate plecemat. An exataple of this is iacluded, lavolvias solucion ualine e computer progrea.

Thes Extrasod Acgelin

Consider ehe P(0)-rector aprice U of lapues. whate 7 is) is the tield of ratsonal funcesore ta - With confflelanta from the field Y. Am olemant of the rector space U vould at andine vector $u(a)$; 1a numerisal celculetions, $u(0)$ would be rapresenced oy columa vector whose elemace afe ractonal funcelons io a. Aa axeerior slgebra aU can be conseructed over the vactor apace U (4). The bilinear operacor latroduced by ehie conseruceion to commonly called the excertor produce or the "wodge" produce A, and operates as
whese al, $2, a, a, a 4$ belong $t 0$ the algebra $A U$, and $31,32,03,34$ tre fleld elements $\mathrm{from} \mathrm{f}(\mathrm{s})$. Purthermore, the operator n ta skem-symetic.

Now coasider the mip if fron the laput rector space U eo the output vector space γ. If ve corseruct the exterior algebras $A U$ and $A Y$ over the vaceor spaces U and Y zeapaceively, the map 6 induces a ualque sorphisu t^{\wedge} over che algebras (5). which is juse e sequeace of anp if over ene k th exterior spaces, as shown in iligure 2.

. 10	$\mathrm{f}(\mathrm{s})$	U	$\mathrm{A}_{2} \mathrm{O}$	$\mathrm{A}_{\mathbf{k}} \mathrm{d}$	${ }^{4}$
$\downarrow^{\mid b^{\wedge}}$	$\left.\right\|_{-i} ^{t}$				
. 18	f(s)	\boldsymbol{x}	$\mathrm{A}_{2} \mathrm{X}$	$A_{k}{ }^{8}$	

Pigure 2. Induced Exearior Morphise L^.
In cesme of aumertcal calculationa, the map 6 ls sapresented by the teedsotward tranafer neesix. cech of whoge olaments is a rasious tuncetion in si the k eh oxtorior sap $b \hat{k}$ ls obealiad by foraing arnors of order k^{k} from the ascers i accordiag to a predecoraciad sequance dependenc on the choice of basis in extartor spaces (10). Aleo, is hat bean agaumed hare thet the ruaber of tapucs is the sase as the aumber of oucpues and equals a; ehue $h \frac{1}{1}$ would be rapra* senced ta aumertcel calculacions by the dacarasnane of the matrix b.

MULTIVARLORLE CONTROL WITB PUKL OUTPUT EERDMCR

Lat us aow conalder exprasione for fadsordust elosed-loop eranger function fa a general caee such as shove in Figure i. Here it is the seedfonverd antrix and B is the outpus feadbeck anteix. The feedback meerix is is full, in gemeral, and is repreenated as

$$
a=\left[\begin{array}{cccc}
h_{11} & b_{12} & \cdots & b_{11} \tag{4}\\
\vdots & \vdots & & \vdots \\
n_{11} & \vdots & & \vdots
\end{array}\right] \text {. }
$$

Scarciag with the equacion relacing the ouco pue vector y so the raforsace vector E , Mambly,

$$
\begin{equation*}
(f+L x) y-L_{8} \tag{1}
\end{equation*}
$$

one can use the "uadge" operator a cesoclaced wheh the exterior algebras (i0) in order to laoo Late the cloaed foop cranefor function relectagh che arblerary ath ouspue y_{s} to the arblerary blh reforence E_{b}, aemoly y_{d} / r_{b}, as

$$
\begin{equation*}
\frac{y_{a}}{E_{b}}=\frac{\operatorname{det}(\gamma+L \bar{B})-\operatorname{det}(I+L \bar{B})}{\operatorname{dec}(\bar{I}+L H)} \tag{5}
\end{equation*}
$$

where \boldsymbol{H} and 面 are idencical to ehe feedback anceix a axcepe chat the $\mathrm{e}^{\text {en }}$ columas, corraapondlas so feadbeck of the ef outpue y_{s}, are aparse se show below.

Thue che ath columa of $\overline{\text { a }}$ is all zaro while che ath coluan of $\dot{\text { E }}$ has a single 1 ia the beh row.

We can now expand the numarator and danonsantor of tquation (g) fa zarm of sum of traces (4) as

The numaracor of Equacion (8) above can be reartanged (10), baed on the lineartey of the Erace operator, so thet the elosed loop traaser tunceion relating the ath output so the bih refernace la exprasead at

The above cloeed-loop expreselon for the craadiat funcelon $y_{a} / \mathrm{F}_{\mathrm{b}}$ contain tarm la the aumeracor and ati cesm in the denonaneor: thla could sean

- Loc of carte 18 a le lesge. 85 , howaver, a la coderate, cay a - S correspouds os co five seleraces ased five outpuls, the aubler of cerme is Equation (9) would actulily be quite andi. ia asther case the aumber of saran to likely to be reduced because le dapande on the mumber of las dividual feedback loops that ats cloned and, uletescoly, os the rask of the feedback eecerim I. Thse facc to used in laces ceectone, where the exerem cace of ualty rach toedbeck lo comasdored Ia order to obeala aleple expraseloce for the closed loop pola polynonal and fadividual sero polynomiels.

Lat wa now conalder, in mote datall, the enericas in the numpacor of (9). Ieceuge if and - aft aleose ideneleal, the natyix

$$
\begin{equation*}
\mathbf{t}_{\mathbf{k}}-\bar{E}_{k}^{A} \tag{10}
\end{equation*}
$$

will be aparse. Spaclfically, the aterix (10) cay be celculacad vis lizec obealaing a nev anezix
 bli sow and ath columa of a , and then calsulaclas

$$
\begin{equation*}
(B(b)(a))_{k-1} \text {. } \tag{11}
\end{equation*}
$$

This ts conalacene with the easule obealaed in an carller papar (11) that che zeroe of che eranifor function ralating the ath outpue to the beth refareace geanoc be moved by aeans of feedbeck from the $a^{\text {th }}$ oucput or to the $b^{\text {th }}$ reference.

Correapondiag to this reduction of (10) eo
 L \hat{k} to which this enerix is to be majeipliad my also be reduced in slese to faclude only those clemate which afe involved in the cerix produce sad ta the erace calculacions of Equation (9). Recell that the elements of \hat{t}_{k} efe all pososble ninors of order k fortad from the teedforward satix h. The part of \dot{k} relevanc here consises of those elamanes which resule from ainore of 2 of order k thas freclude lab, lab belas the feedfosvard eranafor funcsion relactag the ath ouepue so the bth geforeace (10). Thus the produce Involvas the reducad teedforvard metix (L_{k}) ab and the reduced feedbeck metix ($\mathrm{h}_{(\mathrm{b})(\mathrm{a})}^{\mathrm{k}} \mathrm{k}=1$ so that the cloged loop eranafer tuaceion sclatias the $a^{\text {th }}$ outpuc so the bth reforace nay be expressed as

$$
\begin{align*}
& \left(I _ { a b + E r } \left(\left(L_{\hat{2}}\right)_{a b}(b)(a) \mid+\operatorname{ter}\left(\left(L_{j}\right)_{a b}(G(b)(a))_{\hat{2}} \mid+\right.\right.\right. \tag{12}
\end{align*}
$$

200T PLACRTRNT UNDER RANR ONE TEEDBACR

In the previtue secelon, expreselons were obealned for the arbierary ladividual cloaed loop trapsef function, that is. for ilemente of the closed loop syacsior merix, with feedbeck fron the outputs to the comparison polnes. is this section, se use thess expresesions in ordar to design a coostane output Iaedbeck anctix 8 so at to place the poles and cercala zaros of incerm
est. In eddithon, we trase the apectal cace where the oucput faedback matrix la ranericted co unity radk by predeflalag len etruceure in dyedic form. Tharces ehls reserictioa seduces the aur bes of ceote that cea be placed asbicrassly, is hes the sefong advancage of resulting in a bilinear relectonahsp betwen the feedbeck eacrix and the clocet loop charectaristic polymonial, thue oleplifylag the calculation of the feedback -acriai hance it has ateracted conolderable etpention in reanat yeaze (12,13).

Our approach to ualng raak-one faedback lavolves the almileasaoue placespat of poles and ceptala ladividual seres of facerest. the gea-- rad axpraselone for the cloced loop poles aad sads otheral closed loop seron, in the case of output feadbeck ty seans of a merix H , have alseady been derived in the previous eceston; Pigure 1 le gelavant here. hat the feedback matelx I be expreaced in dyadic form as

$$
\begin{equation*}
\mathrm{H}=\frac{18}{} 8^{T} \tag{16}
\end{equation*}
$$

Where t and beloas 50 RH, that in,

$$
\begin{equation*}
s=\left(\varepsilon_{1} \cdots \varepsilon_{2}\right)^{T} \cdot\left(s_{1} \cdots t_{n}\right)^{T} \tag{15}
\end{equation*}
$$

The cloend loop chesaceeriselc polynomial of che syetel ay be exprased la serve of the open loop characteriatic polynomal as

$$
\begin{equation*}
\text { CLCP e doel }+ \text { LHloLes. } \tag{16}
\end{equation*}
$$

In che previous section, wa sat thee dee[Thil] ay be riteten as at of traces as

$$
\begin{equation*}
\operatorname{dec}(I+L A]-1+e r(L H)+e r\left(L_{2} \hat{H}_{2}^{A}\right)+\ldots+e r\left(i_{n}^{A} H_{n}^{n}\right) \tag{17}
\end{equation*}
$$

where the is the $k^{\text {th }}$ extertor anp Induced by the ap b. seasd on the above equation and on the cesupetion that the teadlorward aseziz L is adfusted so chat les common danominecop, den L, Ls the opea loop characterisele polynomel, ve san rewtite tquacion (16) sor the elosed loop charsceeriatic polynomiad (CLCR) as

Because the feadback mezix H hes repte one, the
 sero, so that the sbove exprescion simplifien as show below, uning the dyedic desertpecion of H is (14).

where nu i is the numerecor of the fec orward eranist encix h_{C} Rovrielag the expreselon (19) in osder so seate aplicitif the dependancy on 1 . and callise the CLCP equivalaaty as the pole polynordal $p(0)$, we chus have

$$
\begin{equation*}
p(s)=\operatorname{dac} L(a)+s^{3}[\text { aun } L(s)] \& \text {. } \tag{20}
\end{equation*}
$$

Hence in ofder $t 0$ place the clased leop poles of the oyoter we would aned 50 tind suleable velues
for the componats sad it of the sesdbetk eatriz H 10 chat the eigherhand side of Equation (20) is sdencical $t 0 \mathrm{p}(\mathrm{B})$. Asountas that vo are interencod in placias a polas, we reuld have a bsifa-
fe. The approagh to solvias thic problen. it ve vere so place ouly poles and lguote she ladsFicusl seron, rould dopand on the value of n is comprian to m. Howaver ve are laterested is plecting som ladividual seros also in adestion to che polen, ant hatice ve usll dater solucion of the problan uasid ce hava zawtitean the expression for closed loop seron in a coaventent form to that the probles may be appronched in corperhensive samat.

Juat an the expreceson tor the closed loop pole polynonlal vac alpilfied cooslderably because she tendback is of undey rank, so aleo is the expression for the sadividual sero polyoe atel zab(s) which ts the umeracos of the syane tep iuaction feleetns the closed lnop ouspue y_{s} to the referance 5b. Speciticeldy, if the plate
 all outpues to all comparison polnts, the aptess lon tor the mungator of the closed loop Efanster fuaceioa Ya/Eb ulth zantroun fasdback becones

$$
\begin{equation*}
\left(\frac{I_{a}}{F_{b}}\right)_{\text {aus }}-L_{a b+E}\left(\left(L_{2}^{+}\right)_{a b}{ }^{H}(b)(a) l_{1}\right. \tag{21}
\end{equation*}
$$

Whare wo secall that $\left(\mathrm{L}_{\hat{2}}\right)_{\text {ab }}$ te sub-asertx of $\mathrm{L}_{\hat{2}}$ obealnad by includias only shoen anors of order swo which Lavolve labi aleo, if (b) (a) is a ubo asterx of the foedback eateriz E, obealand by de-
 relerence r_{b}) and che $a^{\text {th }}$ colunn (correspondsas to the outpue y_{a}), as discusesed in che previous secelon. Because wa mitiplied the denominesor of che closed loop $y_{d} / \mathrm{r}_{\mathrm{b}}$ expranetion by dea t 0 tet the pole polynomial $p(a)$, to aleo do we ul5iply the nuestacor, as described in Equation (21), by dea t and obcaln che fadividual cloced loop aunerator polynoulal of eefo polynonial. Thes

$$
\begin{equation*}
a_{a b}(a)=n_{a b}(a)+e_{5}\left[\left(\hat{h}_{2}\right)_{a} b^{A}(b)(a)\right] \operatorname{den} b(a) \tag{22}
\end{equation*}
$$

where zab(s) and mab(a) ate the sero polynomiala of the clased loop and apen loop eranafer fuace cione, respaceively, celacine the th outpue to the bih rafarance. juse as the toedback metrix it has been apreseed se the oucer produce of lengeh veceors t and 8 , we can simiarly expees she sub-ate5ix $\mathrm{H}(\mathrm{b})(\mathrm{a})$ as the oucer producs of (s-l)-larigeh vecsory, is
where

$$
H(b)(a) \cdot E(b)^{E}(a)^{5}
$$

and

$$
f(b)=\left(f_{1} \cdot+f_{b-1} f_{v-1} f_{n}\right)^{T}
$$

$$
s(a)=\left(s_{1} \cdots g_{a-1} \varepsilon_{a+1} \cdot \cdot n_{4}\right)^{T}
$$

man

$$
\begin{equation*}
z_{a b}(s)-a_{a b}(s)+s(a)^{5}\left(b_{2}^{A}\right)_{a b}(s) f(b) d a n(a) \tag{23}
\end{equation*}
$$

Equetion (23) above ls the desifed expreacion 8 or the closed loop sero golynonsel of yeftho biIlnaer in the esgusencs $f(a)$ and $8(b)$. Dapending on the number of seroc that are of pargicular 10 cerese and need co be placed, we wil have gors respondlas equation for the cero polynoelal. stelder 50 (23).

REURSV POLE AND 2ERO PLACEMET

Equaclons (20) and (23) 805 the pole podynontal and the individucl zere polynomal. to epectively, uy now be used to place poles and seres of ciosed loop tiraster tunctione in spechE1ed locaclone. Each plecemant can be done exactly if the numpe of festred poles plus zeros, atz, does noe exceed 2 " 1 (1415 dil kin ofhes had, if this sun does axened 2 el, Least squares approximate placemant ayy be ude. Weigheing is also poasibla to rellece the releEive luportance of soen rooce over ochort.
desuet thet we wish 60 place n poles, ac $\lambda_{1}, \ldots, \lambda_{g}$. Also sesumat chat ve ulsh 60 place a cocel of z zeros, te ul,....ise, thle cotal belut the sun of differenc nubers of zeros assoctated Whe the vaplous eranafer funceion aumeracote of laceraet. The poles and the zeros asse chen reeLety the pole polynondel (20) and an appropriace tefo prifyontal of the form (23) respecetvely. Thus io have a equations

$$
\begin{align*}
& p\left(\lambda_{1}\right)=\operatorname{danh}\left(\lambda_{1}\right)+g^{T}\left(\operatorname{aush}\left(\lambda_{1}\right)\right] t=0 \\
& p\left(\dot{\lambda}_{n}\right)=\operatorname{dent}\left(\lambda_{n}\right)+\xi^{T}\left[\operatorname{aunL}\left(\lambda_{n}\right)\right] t=0 \tag{24}
\end{align*}
$$

for che n poles, and t equations

$$
\begin{align*}
& z_{a_{1}} b_{1}\left(\mu_{1}\right)-a_{a_{1}} b_{1}\left(u_{1}\right) \\
& \operatorname{LE}_{\left(a_{1}\right)^{T}\left(L_{2}^{A}\right)_{a_{1} b_{1}}\left(u_{1}\right) f\left(b_{1}\right) \operatorname{denh}\left(u_{1}\right)=0} \tag{25}\\
& z_{z_{8}} b_{2}\left(u_{2}\right) \cdot a_{z_{2}} b_{z}\left(u_{2}\right) \\
& \operatorname{LE}_{\left(a_{2}\right)}{ }^{t}\left(L_{2}\right)_{2_{2}} b_{2}\left(u_{2}\right) \&\left(b_{2}\right) \operatorname{dan}\left(u_{2}\right)=0
\end{align*}
$$

for the z eeros. The oubecripes al bl,.....at b_{2} are mane to empanise shae the individual zeros to be placed are associaced uth differane erangfer function numaratori is ganeral, thouch mote then one gay be assoctared with the sase aumare tot.

Equesions (24) and (25) are ate bidinear
 The equation afe bilsmest la that $f 05$ a ziven of tho equations are limear ia t. and for a given f the equetions are Linest in f. Preseins 8 at a conetane, she equetion can be formiased at a ses of lizasp equations in \mathfrak{f} as

$$
\begin{equation*}
P E=e \tag{26}
\end{equation*}
$$

Where P is cooseane $(a+5) x$ megix, and \in is the ($n+2$)-receor

$$
\begin{aligned}
& \text { - - (-deal }\left(\lambda_{1}\right), \ldots,-\operatorname{deal}\left(\lambda_{\mathrm{c}}\right) \text {, }
\end{aligned}
$$

Alearmatively, ereactag : at e coaseane, the equatione can be formbeted at wee of Llacer quactions to 84

$$
\begin{equation*}
q_{s}-c \tag{27}
\end{equation*}
$$

 the ($a+1$)-leageh rector datised above. Notice. Ia formulaciag qquetioas (26) and (27), that each placmmat equetsoa coacributes ose sove to P and to Q. The pole placemat equactore auch te (24) concribuce sow of leageh a. the sero placeanent -quectons auch as (25) coatribues rown of beageh oll only; e saro ase be placed ta thene rive at the $k^{\text {th }}$ posieion th the raference of interese is by fa (26), of the ouspue of lacerese is ak in (27), to belag these tow up to leageh m.

Equacioas (26) and (27) any now be solved recuraively ta the deast-squares eanse by the solloutas algorithe to alalalse the efrot fuacesea

$$
\begin{align*}
& s=\sum_{i=1}^{n} D^{2}\left(\lambda_{f}\right)+\sum_{j=1}^{2} s_{i j j}^{2}\left(\mu_{j}\right) \\
& =\left.\|P s-c\|\right|^{2}-\|Q g-c\|^{2} . \tag{28}
\end{align*}
$$

In addseion, if sem soot placmante are sere im portane than others, this alay be rafleceed ta a dlagonal, lavertsble anerix of walghes

$$
\begin{equation*}
W=\operatorname{diag}\left(v_{1} \cdot \ldots v_{x+8}\right) \tag{29}
\end{equation*}
$$

so that the ersor funceion would be modified to

$$
\begin{align*}
& E_{1} \cdot \sum_{i=1}^{a} u_{1} p^{2}\left(\lambda_{i}\right)+\sum_{j=1}^{2} w_{a+j} z_{j}^{2} b_{j}\left(u_{j}\right) \\
& -\|n(P q-c)\|^{2}-\| \|(Q-c) \|^{2} \text {. } \tag{30}
\end{align*}
$$

 Fhan the beas squares soluetion of Equacton (26) tor t ls kneve so be

$$
\begin{equation*}
g(1)-[p(g(1))]^{+} e \tag{31}
\end{equation*}
$$

Where + denotes sulgable peeudo-1averac. The

 sqodieion is sacistied by a suleable selection of (${ }^{(1) \text {, }}$

$$
\left(P\left(g^{(1)}\right)\right)^{+}=\left(2^{5} p\right)^{-i} p^{2} .
$$

Thue $g(1)$ can be caleulaced, and the leasesquaree efrer of Equation (25) is then givan by

$$
\begin{equation*}
E_{1}-\left\|P\left(f_{8}^{(1)}\right)_{8}^{(1)}-c\right\|^{2} \tag{32}
\end{equation*}
$$

Seap eno. Set : - g(1) and obeala the lenotsquaree solucion of Equacion (27) for as

$$
\begin{equation*}
e^{(2)}=\left|Q\left(e^{(1)}\right)\right|^{+} c . \tag{13}
\end{equation*}
$$

The least equares efror of Equation (27) is thea slven by

$$
\begin{equation*}
s_{2}-\left\|Q\left(2^{(1)}\right)_{E^{(2)}}-c \mid\right\|^{2} \tag{36}
\end{equation*}
$$

This proceses to repeaced ta the follogyas camar. The updaced value of g, namily (2), io ugit la etep one, and a acw ralue of s, mamely
 Next the updaced ralue of f, neacls $g(2)$, is used la acep ewo and a naw value of fo acmely' ${ }^{\prime}(1)$, is calculated uasus (33). The fggee squagee orror
 procodura do cones aued untid the lease-squares
 (10) that the lease=squares error function 8 ts guarazeed to convorge.

ExMy

The tranafer antis, $L(s)$, of a plane to
siven at

$$
L(a)=\frac{\left[\begin{array}{ccc}
s+6 & 2 & 2 a+6] \\
6 & -9+1 & 30+9 \\
30+6 & 20+6 & 0
\end{array}\right]}{(a+2)(\sigma+3)}
$$

Let ue angum that ve otsh to keep one of the polen at -2 whila sootiat the oeher trom -3 to -10; thus

$$
\lambda_{1}=-2, i_{2}=-10
$$

Also sesume that we wane to cove the (2,2) zero, s22, from ifs present locaction et +1 so os in the lefe halfoplane while easuring that the (1,1) 2020, sil, remine watfoceed by feedbeck. Therefore we have tvo eore specificetions

$$
z_{11}(0)=0,2_{22}(8)=0+5 .
$$

Aceumat that we are looking for a dyadic conseane feedbeck anerix

$$
a=f g^{T}
$$

chia problea was sun on the digital compucer, ualas the learative algoritho ouclined above, searelag trom an taselal value of g as

$$
t=(1 \quad 1 \quad 1)^{t}
$$

The progran converged to a solution in tive itaratsons, wheth correspoadsag least-square ezror of the ordar of 10 me (-20); the sertage poodias slach values of t and t vere

$$
s=(.15,-1.87,1.57)^{T}, g=(.06,1.37, .69)^{T}
$$

whare wo have geunded to the second dectral place tor convariance. The feedbeck antiza a ay be calculaced as

OF POOR QUALITY

$$
1 \cdot 18^{3}=\left[\begin{array}{rrr}
.009 & .204 & .102 \\
-.116 & -2.371 & -1.386 \\
.097 & 2.164 & 1.082
\end{array}\right]
$$

He can chack the postelone of the poles and che felfoldual seres 50 see whethar our speskiscatien have been met. The pole polynoutal

$$
\left.p(s)-\operatorname{dan} h(a)+t^{2} \tan \right)
$$

cay to obeckad, usias the cormead riluee of 8 act to se

$$
\begin{aligned}
p(s) & =\left(s^{2}+3 s+4\right)+(6.92+12.65) \\
& =(s+10.07)(s+1.85) .
\end{aligned}
$$

Thus one of the poles ts at -10.07 uhteh se close co the deshed value of $-\mathbf{i 0}$. Ho wanced the oches pole so semala te $-2 ;$ be ha moved bisele. 50 -1.85, la the procese of accomedaetor a leaserqueres efrot colution. the sso ladstiduel seros. $z_{11}(\mathrm{~s}) \mathrm{and} \mathrm{sz2}(\mathrm{~s})$, asy aluo be celculaced; shey afe 8 ound 50 be at -5.93 and -5.1 reapecetvaly. which are close to tho dealred valuen of of and -8.

conchustous

Ia ehis paper we have consldured mitiverisbla aspust seadback, and loaked as it from the viewpolas of the axterior sorphbeas saduced over the plane eap and the feedbeck map. fien this vantege polat, we have decived expruesion tor the Individual eloced loop erancfer tuncelocs. It ls found chat the ladividual closed loop saros te alfacend by the corfaopoadlus ladlviduci tendforvard zefos and by the seros of asnote lorma from the feedforward mestr while freludlag chese individucl seros. te far as feedback da concerned, it la fornd thet the ladividual closed loop zeros of the tranger funcelion reo Lation the $a^{\text {th }}$ outpuc so the bth gaferance, cay ars not alfected at all by feedback f roe she ath outpue to the bth coeparteon polat. Racher, chese zeros depend on the ubbaterix of geedbach clemacs corzempondins 50 lecdbeck gron oucp:is ghher that the eth to comparison polate oftres Ghen the bth, and on the exterlor sape saduced by ehis sub-anerys.

The expreselione that have been derived tor the individusi cloced loop sero polywomels and tot she pole polynomial should ehomselvas be of incereut because and closed loop syatem spaciftcations are yet given in term of aingle channel arcienesoas. In addiElon, however, the above concloned expriselous havn been uned in ehis paper. in con juaction with unseymarik feadbeck. to destve an icerative algorlth tor oferleaceous polem and fadividund sesomplecemat. A computer progzan has been ufiteat 40 faplenant this alsom ciehm, and an exarple of cooc placemate, undas this progrin, appeart in the later part of this paper.

serupurparys

The aucher would like co thank Prol. N. R. sala 805 latrearela hle so the antartar algobra and lor coveral holpivi cenversacteas on the cubject. the cuther ulehes cleo so chank Prof. B. T. Eiyan 80% prouldins hin ulsh a mehoeses* clan' a der of algebralc esfregures.

RIfMyPs

1. M.R. Saln, J.L. Pacsinowikl and J.L. Malan.
 Conerel, chicegoi Nite, 197., Pp. stov.
2. A.G.J. Maciarlane and N. Rageankan, Tolea and zeros of Linear Mulelvariable Syosent A Survey of the Algobrasc, Geocatete and Com plexvariable Theory ${ }^{\text {a }}$ laf. fouf. Conf.s. Vol. 24, No. 1, pp. 33-74, 1975.
3. M.R. Sala, The Groulng Algebrels Prosence da Syecens laglaantiag: Aa Iasgoduceion. "Proc. 1118, Yol. 64, Mo. d, pp. 96-1d1, 1976.
 Sperager. 1967 .
 Macalllan, 1967.
4. V. Sachadry and M.K. Seln. Zoop Cloures and the Induced Extarior Map. - Proc. Sevenempen Altritan conf. Compnteatiob, Controth and Con 24tar. pp. 753-761. 6974.
5. V. Saghadet and M.I. Saln, an dppronch to Pole Aasigneant by Emeerior Meobra. Proge Tourcench Alierson Conf. Cirents and 3ntin thon, PP. 399=407, 1976.
6. R.R. Gojgs and M.K. Sesa, Applleaslon of Polynomial Techasquee $c o$ Mulsivariable Coaerol of Jes incinee. Proc. Foureh ifac
 Brungoick, Canadr, 1577.
7. M.K. Sasn and V. Sechadri, Tole Aasignment and Theorem ison zxeerior Alsebra. "roce Cont. Des. Cont., Nev Orlesas, 1977.
8. 7. Sechari, Mnleiverable Iatheck Logs Cionures: An Appronch brenerirar Alsphth Phed. dienertacion, bepertence of Elecserced Englaeersing, Vaivecsisy of Motze Dase. Hotre Dern, Indiann, Jamary 1980.
1. D. Sainedet sad M.z. Saln, An Application of Ereertor Alcebra to Muleiveriable Feedback boope. Proc. 1979 Conf. Info. Sce and Sza, Beletmore, 泡, ppo J37-342, 1979.
2. T. Fallatdo and 8. Sasaj1. Design of Muled. vertabie Syctem Dasas Das ey-hanis Faedbeck," Int. Jour. Cout., Dol. 17. No. 2, pp. 35136d. 1973.
3. E.J. Devison, On Pole Mesigatent sa linear System uteh Iacomplate State Facback." Its Irang. duco. Conc. Vol. 15, No. 3. pp. 34.-351, 1970.
4. R.J. Davison and S.8. Heag, "On Pola Aasigno mate la Liean Muleivariable Syecem Uaing Outpuc Feedback. Ims Trane. Auso. Cone., Vol. 20. So. 4, p9. 316-516, 1973.

APPENDIX E

Reprint

"Tensor Ideas for Nonlinear Modeling of Turbofan Jet Engine: Preliminary Studies"

 Proceedings Twelfth Pittsburgh Conference on

 Proceedings Twelfth Pittsburgh Conference on Modeling and Simulation

 Modeling and Simulation}
Pages 1423-1427

May 1981

Scaphew Furkevteh. Theme A. Eliaglar, ad Micheal R. Sata Deparcmat of Elesertion Eaglaestas
University of Metre Diee
Hocre Deae, DI 46596

Alstmart
The tmportance of nonlfnear modele for codel following mechode so proveleat in the sodern
 ofacion. This paper rapores upoo a conetnulas lavenelgation almed ce developiac ronilnear

 cime digital eurtolan augrae inviation.
istroduction

 boen the aletrita and the ongine regardec is an incegraced whole. Under certasia conditions. such is somparafuras, prensuras, and compreneor speeds, the plane say be sald so saesisf-cercasn nendiacer differencial equactoas. Morsover, samy of the vafiailet in fi.see equactions
 secepeable sondtions that any reallatic sonezol syatem aute carry on tes vork. aceordinely, When a concrol oyoce receives a requese so change baportang phyeicel quancieice wishln the

 where along the yay. Foz ememple, if aletcude te to be changed, shen this tuse be accomplished usthoue acelb. Or, di chruse ta so be changet, te met be chasged michouc porniceing excosesve tncreasea in eurbine inlec somparsture.
 the face that the sodele ary be uned co preacribe baheviote which are in consonance with the

 achiovint aceuracy in the presence of parameric uncortalneles and diacurbences.
 nonlfacat models. The mala tanture of the algebealc zansor favolvas the way ehat te glvas sround on dimenaionalify in ordor io gain advancayen of linearity. This peovides an organ-

 solleling exercises anve been exhibiced in (2) and (2) for rapreseatacive otf-similator examplen. Jur purpose here, ehen. ts to apply the tachatques to aonlinear godel geanation
 sencaedve resulen.

ALCEBRALC EEASORS EX YODKEING

io bliuserace now ehe ute of alsebrale gensore in nonifman aodel building, atilising sdeas of pover serses and eruncation approximations. To thin and, lot x, t be the n-vectot of staces and 4 \& be the wrector of inpucs, where X and y are read vector spacen. Gonsider ehe nomblacer ordinary ilfferencial equetion
 ISG 3048.

 secpast tore

 cscin. ar for exmeple (I - $(X \in U)$) U.

 sed vis the equetion

$$
\begin{equation*}
\left.\dot{H} \cdot b_{80} L_{02} L_{80} L_{24} L_{02} t_{10} \cdots\right] x_{5} \tag{ग}
\end{equation*}
$$

 erab. the nuber af diecinec blemente frem oceh product de given by the combinagoriad ase prosics

$$
\begin{equation*}
p-(n-q \cdot b) \cdot(-E=1) \tag{4}
\end{equation*}
$$

 bastion Faralaing up 50 thisd dapree cengot peoduce cerme we have

$$
\begin{equation*}
\dot{x} \cdot 1 L_{10} L_{01} L_{20} L_{11} b_{02} \dot{-}_{30} L_{21} L_{12} L_{03}: x_{1} \tag{3}
\end{equation*}
$$

 15p pareseloned enerix of the buk.
APFL:CAEENT: JTI EMC.TE SEMLATOR

 botet co furpotan engines in adreraft propulezon, the jest angan is an advanced surbotas designed specsficaliy for powned-1ift, shopt-haul alzeraft. The otighe facorporaces sever-

unog-sherring ungite eppldeesea.

 opararsve. ville simply varylay che pever centad (or, equivalanety, the "ehrecede") steut

 oscat pever demand end "eurm-off" the comerollar by equacias che cosegollar scace dorivativon

 Laerim.

SATHLE RESULS

 with s 1008 power deand tor devaral saceade co secele ald eranaleacs. Ahis oreduces tome
 digseal simpletion prigrite the conerol vartables aft ambipuiaced to that asnusolda: bapue
 bariablet are parturbed froe theif equslibrive valuen and than sampled over uome dataryal at
 itne equilibrtu valuat torm che block of observed daea for the benesfication procedure.

 point it which she sodel do ideatified. Moreover, e seandard linear approxigation godel is
 sione hery are done th the open toop. Por oxtap le, obeerve the responge curven given ta
 stace values: figupe l thove tha behowior of the somprasgor speed for a decrasge to 252 of the pereurbacion ued la the tdentiflcaeton. If gure 4 reprecencs ethe reapons: of the eopprassor ipeed for dovmard parturbetion in the conerol itgal emistudes. Flachly. Figure

 stgaeson.

rzitenaces

 Jepartmat of Eloctrical Zaglneeriag, Univertity of Xoere Ome, Noete Oman, Indiana, SABuary 1981.

ORIGINRL PAGE IS OF POOR QUALITY

puring, octaber 1900.

Figure 1 Closed Loop Idanct."icaeion

Figure 2 Onen Loop Idencificacton

ORIGINAL PAGE IS OF POOR QUALITY

71gure J Compraseor Speed

Figuze 5 zan Soeed

[^0]: We mention chis application for the interusted reader, particularly in reference to a paper by H. Sloate in IEEE Trans. Cir. Sys., Jan. 1974, p. 109. ${ }^{3}$ Brewer adds corrections to this paper the following year, IEEE Trans. Cir. Svs. May 1979, p. 360.

[^1]: ${ }^{4}$ IEEE Trans. Autom. Contr., April 1981: p. 603.
 ${ }^{5}$ A spline function is one which approximates a, say, continuous and differenciable function on an interval in a piecewise fashion using low degree interpolating polynomials.

[^2]: ${ }^{6}$ This paper sumarizes the authors $P h . D$ thesis at the University of Minnesota, 1978.

[^3]: * FREOUENCY (CVCLES/SEC:

 CONTROL NUMBER

