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INVERSE SCATTERING FOR AN EXTERIOR DIRICHLET PROBLEM

8, I, "ﬂriharan
Tnstitute forn Computer Appications in Science and Engineering

Abstract

In this paper we consider scatiering due to a metallic cylinder which
is in the field of a wire carrying a periodic current. The aim of the paper
is with a knowledge of a far field measurement in between the wire and the cylinder
to obtain information such as the location and shape of the cylinder. The
same analysis is applicable in acoustics in the situation that the cylinder
is a soft wall body and the wire is a line source. The associated direct
problem in this situation is an exterior Dirichlet problem for the Helmholtz
equation in two dimensions. We present an improved low frequency estimate
for the solution of this problem using integral equation methods and our cal-
culations on inverse scattering are accurate to this estimate. The farfield
measurements are related to the solutions of boundary integral equations in
the low frequency situation. These solutions can be expressed in terms of
mapping function which maps the exterior of the unknown curve onto the exterior
of a unit disk. The coefficients of the Laurent expansion of the conformal
transformations can be related to the far field coefficients. The first far-
field coefficient leads to the calculation of the distance between the source
and the cylinder. The other coefficients are determined by placing the source

in a different location and using the corresponding new farfield measurements.

This research was supported by NASA Contracts No. NAS1-16394 and NAS1-15810
while the author was in residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.




Introduction

In this note we are interested in the scattering due to a metallic
cylinder which is in a field caused by a wire carrying a periodic current,
The goal is to obtain information on the location and shape of the scatterer
from a knowledge of the far field. A similar problem but with plane wave
incidence has been recintly studied by Colton [1l] and Colton and Kleinmann
[2]). A rigorous analysis on forward scattering in this situation has been
recently given by Hariharan and MacCamy {3]. If the metal is not made of
ferromagnetic material then one will obtain an interior-exterior problem
with the boundary of the conductor as an interface. However, for a ferro-
magnetic conductor one will obtain an exterior Dirichlet problem. The de-
tails of this discussion are available in [3]. The analysis in what follows
is also applicable to acoustic wave propagation in the situation that the
scatterer is a soft material. The precise model of interest is illustrated

in Figures 1 and 2.
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Let § be the cross section of the cylinder in the x-y plane, Q+

be its exterior and ' be its boundary. The wire which is located at




Xq € Q+ carries a periodic current of the form Re(X e'im)
Yy
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Figure 2

The derivation of the assoclated general problem 1s discussed in [3]. For
detalls we refer the reader to this paper and present here the particular

problem, Find u € (12 (Q+\ {_)go}) U CO(I') such that

u-ug € cF@hudm,

Au + B2u =0 in oF,

J

us=20 on',

u - ug is the Sommerfeld's radiation condition.

Here u, is the potential due to the wire and is prescribed by

B

- - g Blx- xe ah, (1.1)

ug 1)
and B 1s a non-dimensional parameter which depends on the frequency w.

For moderate frequencies such as household ~urrents or AM transmissions the
value of B ranges from 102 < g < 1072, This is the size of B which is
of interest in this note. Since 62 is extremely small one might take B =0

in problem I, but there are two difficulties. First, the radiation condition
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will no longer be valid and second the incident field potential (1.1)
will become logarithmically infinite. However, it turns out that the

following theorem is true.

Theorem 1.1

u=v+ 0(1L/Log B) as B+ 0

where v satisfies the following problem

v & E@=~{x, )V O(n),

v-v, € cZ@h v O,

II Av = 0 in Q+,
v =20 on T,
v bounded as |x| » = (x E]Rz) ’
where
Vo) = 5 loglx- x| (xe @ .

Thus the solution of problem II will be the limiting value of tha solution
of problem I as 8 -+ 0.

In order to solve the inverse scattering problém several details of
forward scattering are required. In this process we shall prove theorem
1.1 and also provide an improved estimate:

Theorem 1.2

CFO 2
u=v+ 335??:?T'+ 0(B"log B),

where C€ IR, § € ¢ and F0(§) € CO(P) is a uniquely determined function.

Hence our results on inverse scattering would allow one to obtain the

shape of the boundary for low frequencies accurate to O(leog B).
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2. Forward Scatteving
Here we shall indicate the solution procedure for problems I and IT
We shall use simple

if the boundary, I' (sufficiently smooth), is given.

layer potentials for the construction of our solutions.

Let
lig[o) (x) = ";‘a(x)caﬁas.x)dax, (SE€R),
where
L - -
Gy ) - 2,; ,uzi;x yl 1f § = 0,
-7 by’ Slx-yD) 1f 6 4 0.

Then the following properties hold:

L)

(1) Allg + 82(16 =0 in ®

) Ug € c(m?)
(114) U satisfies Sommerfelds radiation condition if 8 + 0.
() Ugn (j;(r(x)dsx)logl__)ﬂ as x| » e 15 8 = 0.

Notation:
UG[U](g) - VS[U](K) for x €7,

We shall use this notation throughout this section.

Thus one can seek a solutivn of problem I in the form

uGp = Ugl91(x) + ug G & ah.
Then (2.1) will be a solution of (I) provided
LII. VB[¢] + ug = 0 on I'.

(2,1)

Similarly, we seek the solution of problem (IX) in the form of a simple layer

except incoxporating a constant (G € IR which is:




v = U1 + vy + ¢ (x €0 (2.2)

Demanding that v satisfies the boundaxry condition and the condition at

infinity, we have,
! Voiw] +vyg+C=0 on I

( 1}W(5)ds = -],

Remark 2..i

(a) The constant C i1s incorporated in (2.2) in order to make the system
of integral equations (IV) consistent. This 1s a standard argument.
(b) The uniqueness of problems I and II are also standard as is the exis-

tence of ¢ and (¥,C), see for example [3], [4]. Our low frequency theory

~1s based on the existence proofs presented in [3].

To present our main result we need several lemmas. We shall begin by

stating them. (The proofs may be found in [3].)

Lemma 2.1
There exists a unique solution (fo,Po) € ¢(') X R for the system of

integral equations

Volfod = Tg
(2.3)
[ £y(s)ds = 1.
r
Moreover, the solution is given by
13 V 1
£, = = 37 5 log|£(2)|, Ty = 5= log|€(z)| (z€ ) (2.4)

where w = f(z) is the unique mapping function which maps [' on to the ex-

terior of a unit disk |w] = R such that £(z) vz as 2z + =,



Remark 2,2
If we map ' onto the exterior of a unit disk with £(z) v az as

-1

z+® (a>0, a~ is the mapping radius) then |w| = |£(z)| = 1. Thus

I'o= 0.

0
As an aside we would like to point out that the result of this lemma
enabled us in [3] to prove the existence of the system without the condi-
tion that the mapping radius should not equal one. This is different than
the proof available in [4]. The following two lemmas may also be found in

{3]. A version of these proofs with less regularity assumptions are avail-

able in [5]).

Lemma 2.2

There exists a kernel P(s,0) of the form

P(s,0) = - = cot & + R(s,0), (2.5)

with R(*,*) analytic such that

, ™
£(s) = £5(8): = [ P(s,0)h'(0)do (2.6)
0
satisfies

Vo[f](s) = h(s) + I'(h), (2.7)

where TI'(h) (a constant) is a functional of h given by

o 7
I'(h) = —él;;{fo uo[fpuo)do:/: h(o)dd} X (2.8)

Remarks 2.3

Let us observe for later purposes that when h E 1

and rq) = -1, (2.9)

£f = 0.
P 0

0 SR BT




It is shown in [3) that the combinatién of Lemma 2.1 and 2.2 yields
the existence of (III), In particular when we set h(s) = —vo(a) we

have the following

Lemma 2.3

The unique solution of the system 1V is given by

Y = fP-+ afy, (2.10)
C o) P(h) - dro, (2-11)

where a € R 1is a functional of h given by
a(h) = - 1 - fr £,(s)ds. (2.12)

Remark 2.4

In Lemma 2.2 the normalization of T over [0,27] is used for

convenience.

Now we return to integral equation III. First of all by the expansion

of the Hankel function Hél)(z) for small 2z we have

- %Hél) (z) = 711; l1og(2/2) + (v - (w/z)i)} + 0(z2log z) -

Using this equation (III) for small B leads to the following equation:

Vgle] + m [$(s)ds + vy + m + 0(8%1og B) = 0, (2.13)
r
where
m = —2% {103(%) + Y—-g- it .

In (2.13) the term O(leog B) contains integral operators involving ¢.

Motivated by (2.13) we consider an assoclated cquation that



hsn

paii) Vol1 + mj;@(-)d- +m=h,

where I = Vo

It will be argued later that
o = %+ 0(8° log B).

Lemma 2.4
The solution of (III*) is given by
cf
- 1—----9—-
3 lp"'l‘o'ﬁm !

Proof
This 1is done in two steps. First we seek a solution of III* in the

form
$ = -mgy + 8y,

where g1 and gy satisfy

Volgyl + m j;gl(s)ds - 1, (2.14)

Vo[g2] + m j;gz(s)ds = h. (2.15)
We look for the solution of (2.15) in the form

g8y = £p + Ay, (L€ ¢©). (2.16)
Demanding g, to satisfy (2.15) we have
Volfp] + AV LE,] + mj;fp(s)ds + Am j;‘fo(s)ds = h,

and using lemmas 2.1 and 2.2 we have
~I'(th) - mffp(s)ds
I

m + PO

A= ACh) = . (2.17)

Thus g, dis known. The solution of (2.14) 1s obtained in the same way

setting h = 1,



Qe
By EP + A(l)fo. (2.18)
We observe by remark (2,3) that
A(L) = e (2.19)
m+T, ! *

0

and hence
~I'(h) - (14 ffp(a)ds)m
§ = £, + (A(h) =mA(L)E, = £, + - Fg £y -

Using the definition of o(h) in (2.12) we have
fIf(l\) ~’I‘-da + (m+To)o

- £ T, £0r
or
I‘(h)+I‘Oa
L T
Now using (2.10) and (2.11) we have
cf
£y
A

aand the lemma.
Remark 2.5

Uniqueness of the solution III* can be argued by considering the homo-
geneous equation of TITI*

Now we shall return to our main theorems 1.1l and 1.2, We shall describe
the proof of theorem 1.2 which also proves theorem l.l. First of all we indi~

cate the argument that

o = ¥ + 0(B 1og B). (2.20)

e N P

|
|
|
|
1
i
|
|
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To do this we simply consider the diffevence of equation (III) and (III%)
which is

Vold =¥ +n [ &-8)(s)ds = 0(5*1088) .
r

The operator on the left hand side is invertible, This can be shown in
the same way we did for equation (2.15) with h = Q(ﬁzlog B), and the
inverse operations are performed on terms of crder 0(82105 B). Thus we

have

= % + 0(8*10g B).
Now we return to the simple layer representation (Z,1)
u(x) = Uﬁ[tb](gg) + uB(_:g).
From the expansion of Hankel function for small £ we have
u(x) = Uo[tb](gg_) + m f¢(s)da +m+ 0 + O(leog B).
Substituting the relation (2,20) we have
u(x) = Up[31 () + mf §(a)ds + m + vy + 0(8%10g B),
P

and hence from lemma 2.4 we have

W00 = Uylv1 G + i Ugleg 100 + mfws)ds
4 o—n m” ff (s)ds + m + vy (x) + 0(a%10g B).

But

j;w(s)vds - -1,

and

£ (s)ds = 1.
fr

g etk




Thus,

U = UgIY1 G + mw%-g INERTOR ‘a%""'r; + vy @) + 0(8210g 8).

Observing,
r.c
cm  _o._..0
nrffo c m%‘ﬂo ’
we have

u(®) = Ug[Y1 GO + vy(x) + ¢ + E—f-xwa{uo[fou_&) - Tl + 08?10 8).
From the simple layer potential for problem (JI) we have
@ = v + m%; [Uol£g1 (0 - Ty | + 0(8%10g B). (2.21)

This proves theorem 1.2 and theorem 1.1 follows immediately.

3. Far Field Measurements and Inverse Scattering

In this section we follow the work appearing in [1] and [2]. The main
idea is to obtain a sequence of moment problems relating the Fourier couffi-
clents of the farfield to the coefficilents of the Laurent expansions of the
conformal transformation which maps the exterior of a circle onto the exterior
of the unknown curve. As in [l] and [2) it turns out that these moment pro-
blems are solvabic in terms of the mapping radius a, which in turn is deter-
mined by placing the source in a different position. The main difference here
is that the location of the source can be calculated, thus one 1ndeed,finds
the location of the scatterer. Such a result is useful in radar detection,
where one is interested more in the location of the radar than the shape.

The physical situation is portrayed in Figure 3. To avoid repetition

we shall cite [1] or [2] wherever possible.
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We aasﬁme that the far fleld measurements are available on a cirecle of radius

r and let the source be at a distance |§0| such that lﬁb' > r. From pro-

blem I the scattered part of u is given by
5 i (1)
u(x) = - prd’(l)uo Blx-y|)ds,.

From the asymptotic behavior of the Hankel function one has

kiJ
u®(,0) =.% ei(Br-PZQ /ﬁéz- F(9;8) + O(é%i) , (3.1)
2
where
Ry = - ~1Bpcos 6-¢
F(0;B) jr'¢(z>e ds - (3.2)

F is known as the far fileld. Expanding F(0;f) in a Fourier series we have

FO;8) = . a (B)e™,

n -00

where



S ~in0 ~ 18p cos m
a, (B) =-7- /2“" (e ds, 0
~n b (3.3)
- o ™0 A =L

= fowa, e s,

Remark 3.1 i

Usually one measures a finite number of an's. We shall be concerned
only with a for n > 0. Negatively indexed coefficients do not play a
role in our calculation (see [2]).

The Taylox series expansion of Bessel's function in (3.3) ylelds i

- =i"s" n -ind,
a_(B) o ‘{:Nx)p e dsx .
Define

2%n! aﬁ(_B_):i“
un(B) = Bn . (3» 10)

Therefore
- n -in¢g
1a@® = - focpete s, .
r
Now using (2.20) we have

Ha(B) = - fp QS(y)p"e"iwdsx (mod (0(3% log B)).

We shall drop mod(O(leog B)) for convenience of writing. Observe that

from Lemma 2.4 we have
cf

F = v + ;;;0—1,—6 (3.5)

and from the simple layer potential (2.2), $(y) is given by
V) = - -g—;(v—vo) ), YET (3.6)

where the normal derivative is in the outward direction. We want to map

' onto the exterior of a unit circle by

w= £(z) = az + 0(1),
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where a 1is the mapping radius. Thus PO = 0, We would also like to obtain

g(z) in terms of this mapping function £(z), For this we have:

Lemma 3.1
Let w = f£(z) = az + 0(1) be the unique mapping function which maps
I' onto the exterior of the unit circle |w| = L. Then the solution of

problem II is given by

‘ 1 1 r3

v(z) = 5= log|£(2) - £(zp)| - 3= log|£(2) E(zp) 1], (A7)
wheve %0 is the location of the source and the har denotes conjugation,

Proof
We make use of the uniquencss of the splution of problem IT, First
observe that the expression given by (3.7)
(1) satisfies Laplace's equation.
(1) 4s bounded ag =z == = (since £(z) vaz as z -+ ), and
(i1i) satisfies v(z) = 0 for 2z € I' (this follows from the fact that

ﬁ%-?(z) for z €1).

(iv) furthermore, v=-v, iLs regular (since 1oglf(z)&*f(zo)] has leading

singularity  log |z - zy|).

We now consider the behavior of v(z) -~ vo(z) for Zq large. First

abserve that £rom the Taylor series of log|z-zy| for |zy| large that
1 1
vo(z) = 3= log|z~zg| = 5%‘1°8|20|'

Since |z0| is large f(zo) = az, + b where b has the form

B B
bmno+-z-—1—+-;?~+,...,
0o %o




] 5w

We want to use this in the expression (3.7) for v. First of all

o aa

1og]f(z)-f(zo)| = log|£(z) - (azo+b)l :

- 108|nzo(1”=—‘€-$%:-l’gﬂ) l
%0

- loglnz0| + log) (1= 5*‘%;”‘3-)] |
“0

n log'nzo| i Rnp(%:“’p’) ’
0

where R.P denotes the real part. Since a>0, ?(zo) - n?o-f- b. Therefore
the second expression in (3.7) becomes

log|£(z)E(zg) = 1| = log|(aZy+B)E(2) - 1| = log|az,f(z) |+ 1og|tl*”‘L( (1) E)}
f(z

i e i el e

]_leaz | +1og|£(2)| - e ( 1 f(l)-'ﬁ')},
4

Thus noting R.p(»_-_l-’-.-) = R,.P(-g*) we have

e el ame

%0

v(e) v - 5 dog|E(n| - BB <~u~———-r<z» (3.8) ]

“n
We now consider two specilal cases.
1
Case (4 zy = (a,0) = a (Source on x axis) |
;
In this case
v(z) = - —-— 1og|f(z)| mo=itR P (£ (2) = 1 —_—), ,!
"’"m £(z) i

Case (ii) zg = (0,a) = 1a (Source on y axis)
Then

v(z) = - 2= log| £(2) | - gl - P(E(R) + 5y

where I.P denotes imaginary part. Therefore,
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(3.6) gives

- Log|£(z)| -

o R.P(£(z) ~ f( )) for zy ™ o

Zﬂaa
bla) = - &=

- oL 1og]£(z)|

2m 21ra01

(3.9)

First we consider the case that Zg = O In this case ¢ in (3.5) gives

2
§(z) = ma R.P (£ (2) - jE(z)) + Cruyge 2 an log|£(¢z)|. (3.10)
We use this in the expression for My which is
- . fi_-ing
Ny J;:ﬁ(z)p e ds.
Taking complex conjugates

Wy = - [ Bptettas

or using 2z = pe'w and (3.10) we have:

Mo © 21rau f R.P 3 w(£(z) - (s ))z ds
- '51;; (-%+ 1) {:3; log|£(z) |28 (3.11)

To deal with the integrals in (3.11) let us make the following observation:

B RPER -5y ~ - 35 W@ -5

by the Cauchy-Riemann equations.

'l'bar denotes conjugation. We used in (3.11) the expression that

F=y +

glio

fo, since § and fo are real valued functions.

L. P(f(z)'i-f( )) for 1z, = io.
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But
R.P(f(z)—'-{(l-;}-) 0 for z €T,
Thus
4 S -
an MPE@ ~FRy) = - 5 @) - gy
Similarly.
2 10g|£(z)| = - L arg £(z)
n T *
Since
w= £(z),
and
z = f_l(w),
we can rewrite (3.11) as
U=t Q—(w-—)[f (w)] Mds + o +1)f——- arg w[f (w)] ds
"n"™ Zmaa J, %s 21rm y
(3.12)
Observing that
?)B argwds --g‘-u-argwdw " -%dw on le-lt
we have that (3.12) can be written in the form
- 1
T f ( --)[f 1w Maw - (-+1) f L 1671 (w) M.
n 2paqg Iml-l 21 M= '_1
(3.13)

Since £(z) has the Laurent expansion

.i.,

see [2] for these calculationms.




B B

B(z) = az + By b —E b= 4 oy =, (B, €€, 1 = 0,1,2,..1,)
.
ve have £°F has a Laurent expansion of the form
-1 w by by |
£ (m) "‘5”“‘ bo ’*"K;”""""é""‘ P . (bie ¢, 1= 0,1,2,.“.) (3-14)

Since I' 45 smooth this series is uniformly convergent on |w| = 1. We
substitute (3.14) in (3.13) and evaluate the residues for each w. We
shall indlcate the first three and the rest can be done recursively. TFor
simplicity we shall take bO = (0, since it represents just a tranalatiau.+

For n = 0

Tr L g‘+ 1. (3‘15)
o ey
m
For n = 1
Ny ma(a + bl)' (3.16)
For n = 2
, 2b
by = %%’bz + Qg4~1) “;i ) (3.17)
- :

ete, From (3.16) one can determine bl in terms of a and «; knowledge of

by, ylelds bz in terms of a and G. In a similar way we can obtain the

A
higher order coefficients. The most important feature is from equation (i)

C can be determined.
f.ec, € =mQiy-1). (3.18)
We shall later show that
¢ = __31_1_; log|zy| = ~—2l1;10ga .

Thus (3.15) indeed measures the locations of the source and assigns origin.

¥ This translation will apply for both the origin of the scatterer and the
location of the source.
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Now knowing the origin we place the source at zg = ia, L.e.,, on the

y axis. [Sea Figure 4].

$ (0,0) source
Phe T =<
'd ’ > \
// \
/ r \
‘, / \ 9'4- \
1 Q |
LD T
\ /
\\ /
\ /
N e
N e
~ Y —br = -
Figure 4
In this case from (3.9)
1
P(z) = { = log|£(z)| + 52— waa (£G2) + 5y

Therefore

(3.19)

$(z) =

-.a_-. -——L—; .57'. 1 —3’-— .?—-
Znaa L.P on (f(z)*'f(z)) + (5" 1 2T on log|£(2)|.

Now the steps (3.11) through (3.16) remain valid. To do this let us denote

*
the far field coefftéient corresponding to (3.11) by e Then

—%

T ﬁ.p @ +giyes - 3 ( +1) f—-— log|£(z) |2"ds. (3.20)
T

n

The second integral in (3.20) remains the same as in (3.11). By the Cauchy

Riemann equations we observe that

- 1, . 3 1
I.P 3n(f(z)-+;§550 R.P as(f(z)-i- ??E?”

L



=20=

but

LR +5Gy) = 0 for z €T,
Therefore
9 s N N R 1
I.p EH(K(Z)*‘f(z)) P (f(z)-%i?zsq, (3.21)

and when we substitute (3.21) into (3.20) we have,

B puady e Loy P o €1y (et 1t |
Sk 1 W) )"0 + e 1) ShE W M, 3.22)
r

Computing the residues in (3.22) as before we have,

-

Mg ™ = G+, (3.23)
m

it . ,

hy = - - e, (3.24)

Thus (3.16) and (3.24) are two equations for a and b1 in terms of known
— s
oy and My Adding these equations we have

2 21

n BE v “yoronens;

M
am1+uﬁ

. (3.25)

Thus the mapping radius a can be determined.
Remark 3.2

Since in practice only a finite number of an's caa be measured we can
determine only a finite number of bn's in (3.14). In [2] an error estimate
is given when (3.14) is truncated after N terms. This applies in our case
too.
Remark 3.3

In determining o we used the fact that that

1l
C = - 5= logzy].

.




-1

If we consider the simple layer poteutial repreasentation for the solution

of problem II
v = 5 f¥nloklx-xldey + 5 Loglx- x| + C,

for |x| < |x5], (x € "), Fourier expansion nf log|x-y| gives no con-

stant term in the integral. However
1 1 1 )" z.n
7 1°8|2£-9_to' - ﬁloglz—zol - 1og|zol + rg -(-;‘-)* (;6) )

which has a leading constant -2-1;; 1og|zol . Sidce v(x) = 0 for x€T,

1
C + 3= log|z,| must be zero.

Remark 3.4

In our Laurent expansion (3.14) we took by = 0. This wan possible
since the corresponding translation in the 2z plane applied both to the
scatterer and the source by the same amount. However, one can in fact

calculate b, from equations (3.13) and (3.20), [6].
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