
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 

https://ntrs.nasa.gov/search.jsp?R=19820015506 2020-03-21T09:30:18+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42856792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IGASE
C

f

11

INVERSE SCATTERING FOR AN EXTERIOR DIRICHLET PROSLp

S. I. Hartharan

(NASA-TM-d4U4u) iNV, RSE bCAITI;LIM; 1-Cu AN	 N^2-:^.^3H0
EXTk;,410R U1.ej1Cjli. ;"t`	 (NASA)	 2J N
EIC AUK/Mk Aul	 c:SII 2ON

3^^ciaa	 _

G,3/j2 19125
r	 .

Report No. 81-17

May 26, 1981

JUN. 18 1961

-EN
L IBRARY, 14WSA

l^x^N; II,IRt+^1N1^^

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia

 Operated by the
^^o	 CO

r±

k	 UNIVERSITIES SPACE 	 SIR	 RLSEARCH ASSOCIATIO
a

g
i
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Abstract

In this paper we consider scattering due to a metallic cylinder which

is in the field of a wire carrying a periodic current. The aim of the paper

is with a knowledge of a far field measurement in between the wire and the cylinder

to obtain information such as the location and shape of the cylinder. The

same analysis is applicable in acoustics in the situation that the cylinder

is a soft wall body and the wire is a line source. The associated direct

problem in this situation is an exterior Dirichlet pnoblem for the Helmholtz

equation in two dimensions. We present an improved low frequency estimate

for the solution of this problem using integral equation methods and our cal-

culations on inverse scattering are accurate to this estimate. The farfield

measurements are related to the solutions of boundary integral equations in

the low frequency situation. These solutions can be expressed in terms of

mapping function which maps the exterior of the unknown curve onto the exterior

of a unit disk. The coefficients of the Laurent expansion of the conformal

transformations can be related to the far field coefficients. The first far-

t	 field coeffigient leads to the calculation of the distance between the source

and the cylinder. The other coefficients are determined by placing the source

In a different location and using the corresponding new farfield measurements.
7
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Introduction

In this note we are interested in the scattering due to a metallic

cylinder which is In a field caused by a wire carrying a periodic current.

Tile goal is to obtain Information on the location and shape of the scatterer

from a knowledge of the far field. A similar problem but with plane wave

incidence has been reci',itly studied by Colton [11 and Colton and Kleinmann

(2). A rigorous analysis on forward scattering in this situation has been

recently given by Hariharan and MacCamy (3]. If the metal is not made of

ferromagnetic material then one will obtain an interior-exterior problem

with the boundary of the conductor as an Interface. However, for a ferro-

magnetic conductor one will obtain an exterior Dirichlet problem. The de-

tails of this discussion are available in [3]. The analysis in what follol-►8

is also applicable to acoustic wave propagation In the situation that the

scatterer is a soft material. The precise model of interest is illustrated

In Figures I and 2.

z

Figure 1

Let Q be the cross section of the cylinder in the x-y plane, S1

be its exterior and P be its boundary. The wire which is located at
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ISO E e carries a periodic current Of the form Re ( I a-'Wt)

Figure 2

The derivation of the associated general problem is discussed in [3J. For

details we refer the reader to this paper and present here the particular

problem. find u E G2 oS *%{x=0 )) U c0 a) such that

U u0 C C2 ($I+) U C0 (0 ,

	

Qu+ 2u K 0 	 InQ+,

I

	

u = 0	 on r

U u^ is the Sommer,feld's radiation condition.

Here u$ is the potential due to the wire and is prescribed by

4 H (1) (R 1 X 250 1) (AE

w

and $ is a non-dimensional parameter which depends on the frequency W.

For moderate frequencies such as household ,urrents or AM transmissions the

value of a ranges from 10-9 < R < 10
-2 . 

This is the size of S which is

of interest in this note. Since a2 is extremely small one might take ^ = 0

in problem 1, but there are two difficulties. First, the radiation condition
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will no longer be valid and second the incident field potential (l.l)

will become logarithmically infinite. However, it turns out that the

following theorem is true.

Theorem 1.1

u • v + 0(1/log 0)

where v satisfies the following problem

v e C2 (st+-, (x
=

 U C0 (r) ►

v - V  E C2 (1+) V CO M

II	 Av • 0	 in Sa+,

	

v-0	 on r,

as 0 + 0

v bounded as 4xI + 00
	

(xE12)r

where

v0 (X-) - 
I log 12i - x01
	

(x E d) .

Thus the solution of problem TI will be the limiting value of the solution

of problem I as 0 + 0.

In order to solve the inverse scattering problem several details of

forward scattering are required. In this process we shall prove theorem

1.1 and also provide an improved estimate.

Theorem 1.2
CF

U a 
v+ log S 0& + 0(0 

2 
log S) ,

where C 9 1R, 6 E C, and FO (x) E C0(r) is a uniquely determined function.

Hence our :results on inverse scattering would allow one to obtain the

shape of the boundary for low frequencies accurate to 0(02log 0).



2. Forward Scattering

flore we shall indicate the solution procedure for problems t and 11

if the boundary, r (sufficiently emooth), is given. We shall use simple

layer potentials for the construction of our solutions.

Let

for(,
y (SC ),1R)G,(x,y)d9

where

.L logy- yl	 if 6 0 0,

OS 	
21r

li	 0 [E- Y-1	 if 6 + 0.
0

Then the following properties hold:

	

M	 AUS + SUS
 
	 0	 I- ► IR 2

	

(a)	 (1
6
 4 C(M2)

	(III)
	 U, satisfies Sommerfelds radiation condition if 6 + 0.

	

(iv)	 U	 (fa(y)ds log JjEj as 141 + 01	 ifs 	 0.
r

4

10

Notation:
Ua Ca] (2) - V6 1a )(20	 for x C

We shall use this notation throughout this section.

Thus one can seek a solution of problem I in the form

U IQ) - U 0 10 1 (2) + u 0 () 	 (x

Then (2.1) will be a solution of (1) provided

(211)

M.	 Vega  + U 
a 

K 0	 on P.

Similarly, we seek the solution of problem (11) in tile form of a simple layer

except incorporating a constant C 9 A which Is;
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V(X) . I!QN) (A) + v0 (A) + C	 (x 4 e)	 (2.2)

Demanding Chit v satisfies the boundary condition and the condition at

infinity, we have,

Vol l+ vo +CN0	 on r
IV

1'r*(s)ds . -l.
Remark 2.i

(a) The constant C is incorporated in (24) in order to make the system

of integral equations (IV) consistent. This is a standard argument.

(b) The uniqueness of problems I and II are also standard as is the exis-

tence of 0 and (4),C), see for example [3), [4). Our low frequency theory

is based on the existence proofs presented in [3].

To present our main result we need several,. lemmas. We shall begin by

stating them. ('The proofs may be found in [3].)

Lemma2.1

There exists a unique solution (f0 ,r0) c C(r) x IR for the system of

integral equations

V0[f 0 i - r0
(2.3)f f0 (s)ds . 1 .

r

Moreover, the solution is given by

a	 f0 ' ` ZTr an log If (z) I, r0 - it log I f (z)) (z E r)	 (2.4)
i b	 f

Y

where w f(z) is the unique mappiYig function which maps r on to the ex-

terior of a unit disk IwI	 R such that f(z) n, z as z +



(2.7)

(2.8)

,6e

Remark 2.2

If we map P onto the exterior of a unit disk with f(z) ti a z as

Z -+	 (a > 0 0 a-1 is the mapping radius) then jw) - j f (z) j - 1. Thus

PO = 0.	
M

As an aside we would like to point out that the result of this lemma

enabled us in [3] to prove the existence of the system without the condi-

tion that the mapping radius should not equal one. This is different than

the proof available in (4]. The following two lemma 's may also be found in

(3]. A version of these proofs with less regularity assumptions are avail-

able in (5].

Lemma 2.2

There exists a kernel P(s,a) of the form

P(spa) _ 1cot s20 + R(s a),
7T 

with R ( • , • ) analytic such that

7r
f(s)	 fp(s): M 

0
P(s,C)h'(a)da ,

satisfies

(2.5)

(2.6)

V0(f](s) - h(s) + P(h),

where P(h) (a constant) is a functional of h given by

 7r
P(h) ^° 27rV2"VO [fp ) (tt)dc J h(a)do
 u

Remarks 2.3

Let us observe for later purposes that when h E 1

and	
r(1) - -1,	 (2.9)

fp M 0.
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It is shown in (3) that the combinatiibn of Lemma 2.1 and 2.2 yields

the existence of (TIT). In particular when we set h(s) - -v0 (s) we

have the following

Lemma
The unique solution of the system IV is given by

• f  + af0 ,	 (2.10)

C	 r(h) - ar0 ,	 (2 .11)

where a C R is a functional of h given by

a(h) W - 1 - 
Ir f

p (s)ds.	 (2.12)

Remark 2.4

In Lemma 2.2 the normalization of r over [0,2ir1 is used for

convenience.

Now we return to integral equation III. yirat of all by the expansion

of the Hankel function H (l) (z) for small z we have

.. 
4 H

(1) (z)	 27r log (z/2) + (Y - (?r/2)1)^ + 0(z2 log z)

Using this equation (III) for small R leads to the following equation:

V
0 
[fl+ m f Q W ds + vo + m + 00 2 log 0) - 0,	 (2.13)

r
where

m = Tf flog(2) 
+Y _ 7r,

}

in (2.13) the term 0(0 2log $) contains integral operators involving c^.

Motivated by (2.13) we consider an associated equation that
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xx	 Vol$] + Mfr (.)d + a. h ►
where

it will be argued letter that

0 - ^ + 0 0 2  log 0) •

Lemma 2. 4

The solution of (lIx*) is given by

Of
s	 ,. + ro +m

Proof

This is done in two steps. Furst we seek a solution of X11* in the

form

M -mgt + 82,

where g1 and 
9
2 satisfy

Vo[ gl i + m f 91(s)ds - 1,	 (2.14)
r

V0 19 2 1 + m f'g2 (s')ds - h•	 (2.15)

r

We Look for the solution of (2.15) in the form

92 - f  + Af0 ,	 (A 9 C) .	(2.16)

Demanding g2 to satisfy (2.15) we have

V0 [fp] + XV0 [f0] + m f fP Wds + am f f0 (s)ds h,
r	 r

and using lemmas 2.1 and 2.2 we have

-r(h) - mf fp (s) ds
A - AN

m 
+ r	 (2.17)

0

Thus 92 is known. The solution of (2. 14) is obtained in the same way

setting h - 1.
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81 M f  + A M fo.

We ob serve by remark (2.3) that

m+ r0
	 (2.19)

81 "' X(l)fo

and hence -r(h) - (I+ f fp(s)ds)m
f  + (A (h) - mX (1)) f0 = f  +	 + r 	 f 00

Using the definition of qx(h) in (2.12) we have

-roo - r6a + (m +rb)a
. f  ,	 m + r0	 too

or

r (h) + roa
fP + Cif

0 " m+ r0	 f0'

Now using (2.10) and (2.11) we have

CIO

0 ►
and the lemma.

Remark 2.5

Uniqueness of the solution III* can be argued by considering the homo-

geneous equation of III*
4	

Now we shall return to our main theorems 1.1 and 1.2. We shall describe

the proof of theorem 1.2 which also proves theorem 1.1. First of all we indi-

cate the argument that

^ + 0 (02 log 0)
	

(2.20)
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To do this we simply consider the difference of equation (111) and (111*)
which Is

VO	 + m f	 (a) d s • 0 (02los
r

The operator on tha left hand side is invertible, This can be ahown in

the same way we did for equation (2,15) with 11 a 0($2 log O P and the

inverse operations are performed on terms of order 0(0 2 log 0). Thus we

have	
0 on T + 0 (0 

2 log 0).

Now we return to the simple layer representation (2.1)

u (0 - U 01(20 + U000.

From the expansion of Hankel function for small 0 we have

U	 UO	 + M f 0 (s) do  + in + vo + 0 (P 2 log

Substituting the relation (2,20) we have

U (A) a u0 p)(4) + mf ^(s)ds + m + vo + 0($ 2 
log4 'r

and hence from lemma 2.4 we have

u W at U m(a) + I U
1 ](0	 + r 0 0 10 20 + Mf(s)ds* 

r

+ Cm ffo (s)ds + m + VO (A) + 0(0 2 
log 0).

0 r

V

I

k
But

fr  
(S) do

P0(a)do
r

and



/.111..

Thus,

U(A) . U0 10 (x) + m* U0 [f0 ](X) + m+ + VOW + 0(0 21086).
0	 0

Observing,

CM	
PC

m 
0'0"m" 

4-1-
0

we have

is " U0 (X) + v0 (x) + C + m+I'O UQ (f0 ] (x) roI + 0(02108 R)

From the simple layer potential, for problem (11) we have

U(X) r v(x) + m+TT' I Orfoi (x) - ro I + 0( 2]og ^)
0

This proves theorem 1.2 and theorem 1.1 follows immediately.

(2.21)

M

3. Far yield Measurements and Inverse Scattering

In this section we follow the work appearing in (11 and (2). The ma in

Idea is to obtain a sequence of moment problems relating the Fourier coeffi-

cients of the farfield to the coefficients of the Laurent expansions of the

conformal, transformation which maps the exterior of a circle onto the exterior

of Ole unknown curve. As in (11 and (2] it turns out that these moment pro-

blems are solvable in terms of the mapping radius a, which in turn is deter-

mined by placing the source in a different position. The main difference here

is that the location of the source can be calculated, thus one indeed finds

the location of the scatterer. Such a result is useful in radar detection,

where one is interested more in the location of the radar than the shape.

The physical situation is portrayed in Figure 3. To avoid repetition

we shall cite (1) or (2) wherever possible.
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V$,gure 3

We assume that the far field measurements are available on a circle of radius

r and let the source be at a distance 1x01 such that IK01 > r. From pro-

blem Z the scattered part of u is given by

us () C "`	 J4	 ^(y)H(1)(012 -Yj)ds .
r

From the asymptotic behavior of the Hankel function one has

Tr
si(Or + )	 2
u (r,e) --I

4 
e	 4	

^	 F(0,'0) + 0	
(3.1)

3
r 12

where

F(e;O) = - f P(y)e_iOPCos 6_^ d Y
	

(3.2)

r

F is known as the far field. Expanding F(0; 0) in a Fourier series we have

0 i

F(e3R) '^	 an(R)ein6^
n = -00

where
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I	 -•inO - i0p cos 4-¢
an (0)'" 2^t^ r^(x)e	 dsYd@

i"n f 0 Q)3n ( 0A) e`In(Pd X
r

Remark 3.1

Usually one measures a finite number of an I s. We shall be concerned

only with an for n > 0. Negatively indexed coefficients do not play a

role in our calculation (see [2]).

The Taylor series expansion of Bessel's function in (3.3) yields

a n	 2nn1 fi ) 
(Y) pne-inOdsx .

Define

2nnl a__( B)in
Un (R)	 n	 (3.4)

R

Therefore

}a n (0) . " fi' (Y) pne-inod Y.
r

Now using (2.20) we have

bn (0) '° - f ^ (Y)
pne-inOds	 (mod (0(a2 log 0))•

We shall drop mod(O( $2log s}) for convenience of writing. Observe that

from Lemma 2.4 we have
Cf

(Y)	 ►V(Y) + ai+r0	 (3.5)

i

and from the simple layer potential (2.2), 0(y) is given by

z	
^(Y) _ - 8n(v- vp ) y), 	 y E r	 (3.6)

where the normal derivative is in the outward direction.. We want to map

t r onto the exterior of a unit circle by

W . f(z) . az + 0(1),
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where a in the mopping radius. Thus P
O * 0. We would also like to obtain

S(z) in terms of this mapping function f(z), For this we have:

Lemma 3.1

Let w	 (z) - az + 0(l) be the unique mapping function which maps

r onto the exterior of the unit circle IwI - 1, Then the solution of

problem 11 is given by

v(z)	 log If (Z) - f ( ZO ) I	 log I f WT. ( ZO) -	 (3.7)
	21T	 2-ff

where z
0 

is the location of the. source and the bar denotes conjugation.

Proof

We make use of the uniqueness of tile solution of problem 11, First

observe that the expression given by (3-7)

(i) satisfies Laplace's equation.

(ii) is bounded as z	 00 (since f (z) nu a z as z + 00 ) and

(iii) satisfies v(z)	 0 for z a P (this follows from the fact that

f(z)	 f(z) for z C 0.

(iv) furthermore, v - v 0
 

is regular (since loglf(z) - f(z0) l bas leading

singularity	 log I - Z01).

We now consider tho behavior of v(z) - v 
0 
(Z) for zo large. First

observe that from the Taylor series of logiz - zo l for Izo l large that

V
0
 (Z) - 1 1081 z - zol W -L log  ZOI

27T	 21T

Since IzO I is large f (zo) = azo + b where b has the form

b ft B 
B,

+ _ + ^2 +
0 z 

0 
z 
0



I
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We want to use this in the expression (3.7) for v. First of all

log l c (z) - f (z0) I - log l f (z) - (uzo +b) I

- loglaz0 (1	: hazb )
0

. log I ar.0l . log l a
•0

Au loglaz0 )	 R.p(f 
zj - 

b)az 
0

where R.P denotes the real. part. Since a > 0, f(Z 0) -U7 0  + b. 'Therefore

the second expression in (3.7) becomes

log If(z) 7. (z0) - 1	 log l 070 +b)f(z) _ 1	 log IazOf(z) I+ log l l-
az0 f (z)

ti 1 1091az0l + 1091fWI	
R,rl I

	 x	
!g

) I -
I

U. f(Z) 

Thus noting R. P (^^) .^ R - P ( b we hav e
z0

	v(z) 	 loglf(x) I - 2 , ( Q ^^ fM) •	 (3.8)
n

We now consider two special cases.

Casex i	 z0	 (a, 0) . a	 (Source on x axis)

In this case

v(z) ' - ? logIf(z) I - -j P(f (z) f^Z)).

Case ii)	 z0	 (0,01) - 101	 (source on y axis)

Then

v(z) _	 log I f(z) I 2=-I—I
	 (z) + Z))

where I.p denotes imaginary part. Therefore,
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(3.6) gives

2fir log f (z) [ - 2 a R. I? (z) -» t
z)

) for zo

^( z ) '° ~ 8n

- 2 
log l f (Z)I 2' ua x.P(r(z)+ Viz) )	 for zp 	ia.

(3.9)

First we consider the case that zo ot. in this case ^ in (3.-5) gives

(z) "` 2n a x.r an (fCx) '^
 

-F( Z—) + (^+y)2 an logIf (z)J,	 (3.10)

We use this in the expression for p  which is

Pn ' 
~ f $(z)Pue i'Ods.

r

Taking complex conjugates

^n  
_f ^ (Z) PneW)ds,

r

or using z = ,Pei ' and (3.10) we have:

n	 21aa 1r 
R.P an (f (z) - f(z)) znds

-- 1 (C 1) f an log( f (z) I znds ^.	 (3.11)
r

To deal with the integrals in (3.11) let us make the following observation:

an R.P(f(z) f 1 ) a ao xm(f(Z) - f(z))

by the Cauchy-Riemann equations.

"}bar denotes conjugation. We used in (3.11) the expression that

+ C f o, since	 and fo are real valued functions..
M
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But

R.P(f(z) - f ez) )	 0	 for z t r.

Thus

as R.P (f(z) - f(z ) ) 	- as (f (z) - ..

r	 Similarly,

2n log  f (z)) • - 8s arg f (z) .

Since

W ' f (z) ,

and

z f-1 (W)

we can rewrite (3.11) as

un- 2Traa Jr as(W- ^) [f-1 (W) ] nds + 2^( + 1) Jr 8s arg w[f Ml nds.

(3.12)

Observing that

as arg w ds - aw arg w dW	 w d(t)on I W I - 1>

we have that (3.12) can be written in the form

1a	 1	 1	 n	 1 C	 1	 1	 n
un 27raa J f	 8w(W- w) [f- (W) ] dw - (-+ 1) f	 [f (w) J dw•

IWI - 1	 m	 I W I - 1
w

(3.13)

Since f(z) has the Laurent expansion

fisee [2] for these calculations.
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B	 D

2
f(z) - az + 0 + — + +	 WO

0	 z	
z 

we have f
-1 has a Laurent expansion of the form

!!f'1 (W) - L4 + 
b0	 (1)	 2	

1+!+!^+ Poo* 	 (b C i s I - 0 i 1,2 1 too t ) (3*14)
a 

Since	 r	 is smooth this series is uniformly convergent on IWI	 - 1. we

substitute (3.14) in (3.13) and evaluate the residues for each
	
no We

shall indicate the first three and the rest can be done recursively. For

a tranalation.*I.simplicity we shall take bra	 0, since ft represents just

For	 n = 0

'R	
C= + 1.

0	
01

For	 n - I

}il	 n^a + bl). (3.16)

For	 n	 2

C
	

^al
b
2 
+ (^^+ 1)	 , (3.17)

t
m

etc. From (3,16) one can determine 1), in terms of a and ct; knowledge of

b, yields b2 in terms of a and OL. In a similar way we can obtain the

higher order coefficients. The most important feature is from equation (i)

C can be determined.

C - WOO - 1) -	 (3-18)

We shall later show that

(; W - 1
21t lob' Z

O I - - 27Tl - log cl

Thus (3-15) Indeed measures the locations of the source and assigns origin.

t This translation will apply for both the origin of the scatterer and the
location of the Source-

4

A

v



Now knowing the origin we place the source at z 0 i a , i.e., on the

y axis. [Sea Figure 41.
(O,a) source

f

/	 r	 1

f	 1	 1

Figure 4

In this case from (3.9)

4)W	 8n {2R log If (z) I + 27reoot 	 (f (Z) 
+f(z))

Therefore

	

(z) . 2 -aa I.P an (f (z) + f(z) ) + (m"y )	 8n log If (z) I . (3.19)

Now the steps (3.11) through (3.16) remain valid. To do this let us denote

the far field coefficient corresponding to (3.11) by }t. Then

jn	 2iraa fl.Pan(f(z)+ f ẑ) )znds^( +l) fn1oglf(z)lznds.(3.20)rr
The second integral in (3.20) remains the same as in (3.11). By the Cauchy

Riemann equations we observe that

I.P On 
(z) + f(z) " R P as (f (z) + (z))



,
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but

LP(C(r)+£ ) a 0 for z E P

Therefore

x. p ^n(f (z) + f I	 - 0 (f (z) + f x) ),	 (3,21)

and when we substitute (3.21) into (3,20) we have,

^-*	 1	 L	 1 -1	 n	 ^. C	 ^. -1	 ti
bn " ` 2^raa f	 Dw (w+^) [f (w) ] dw + 

21r (m+ ') 
f ^Cf (w) ] dw. (3.2,x;)

P

Computing the residues in (3.22) as before we have,

C
PO	 + 1) ,	 (3.23)

m	 k

	

act (-- a
+ b1 ) .	 (3.24)

Thus (3.16) and (3.24) are two equations for a and b  in terms of known

a, ^^1 and 11	 Adding these equations we have

a2	 -, Zi *	 (3,25)
a (Fi l + }.i )

Thus the mapping radius a can be determined.

Remark 3.2

Since in practice only a .finite number of an I s can be measured we can

determine only a finite number of bC1 I s in (3.14), in [2] an error estimate:

is given when (3.14) is truncated after N terms. This applies in our case

too.

Remark 3.3

In determining a we used the fact that that

C = ` 1logizol.

E
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if we consider the simple layer potesitial representation for the solution

of problem II

V(x)" z^ f ^(y)lojIx -YIdaY + zL log 1x— :.coI + C,r

for I x 1 < (A01 , (x C e) , Fourier expansion of log l2 - y,l gives no con-

stant term in the integral. However

n
F log I x 41 ^ 27r log I z - x0 1 ^ 27t

log 
I zO I + 

n
^ (ZQ)n

which has a leading constant 2L log 1 z0 1 . Sidce v (x) s 0 for x s r,

C + 27r loglzol must be zero.

Remark 3.4

In our Laurent expansion (3.14) we took h 0 • 0. This wan possible_

since the corresponding translation in the z plane applied both to the

scatterer and the source by the same amount. However, one can in fact

calculate b 0 from equations (3.13) and (3.20), [6].

Acknowledgment

The author is greatly indebted to Professor D. L. Colton for his interest
in this work and his suggestions and encouragement. Discussions with Professor
W. D. Lakin are also greatly appreciated.

Y



o-22-

ReferjuggL

[1) COLTON, D,

Proc, Roy.

t2l COLTON, Ili.

problems f

Proc. Roy.

L * w "The inverse scattering problem for a cylinder,"

Soc. Edinburgh See A s4 (1979), pp. 135-143,

L. and XLEIRMAN) R• ) "The direct and inverse scattering

or an arbitrary cylinder: Dirichlet boundary conditionapto

Soc. Edinburgh See A 86 (1980) t pp. 29-42,

(31 IIAIIIIIAIM,, S. I.and 14,ACCMfyp R. C. 0 "Integral equation procedures

for eddy current problems," J. Computational Phys. (to appear).

[4) HMO, G. C. and MACCAMYp R. C-o "Solution of boundary value problems

by integral equations of the first kind," SIAM Review, Vol. 15, No. 4)

(19 113) ) pp. 687=705,

[5] 11ARMARAN, S. 1. and STEPHAN t n.o "A boundary element method in two-

dimensional electromagnetics," ICASE Report No. 81-14, April 28, 1983,

(6) COLTON, D. L. private communication.

4


	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf



