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Sumnary 

Two perturbation techniques are applied to two singular perturbation prob- 
lems in heat transfer to obtain uniformly valid solutions which can serve as 
benchmarks for the numerical techniques: finite-difference and finite-element 
techniques. In the first problem, the method of strained parameters coupled 
with the application of a solvability condition is used to obtain a uniform 
solution for the problem of unsteady heat conduction in a long nearly circular 
cylinder. In the second problem, the method of matched asymptotic expansion 
coupled with Van Dyke's matching principle is used to obtain a uniform solution 
for the problem of one dimensional conduction-convection heat transfer of a 
uniform fluid flow. 

I. Introduction 

The main purpose of this paper is to demonstrate the capabilities of the 
perturbation techniques in developing approximate closed-form solutions for 
heat transfer problems involving difficulties which preclude their solutions 
exactly or require resorting to computational techniques such as finite- 
difference, finite-element, and panel techniques. These difficulties may be 
due to nonlinear governing equations, equations with variable coefficients, 
nonlinear boundaries, and existance of boundary layers near portions of the 
boundaries. 

Although computational techniques in the areas of fluid dynamics, heat 
transfer, and structures are rapidly advancing and are capable of developing 
excellent solutions for realistic problems, one always needs bench-mark 
solutions, if experimental data are not available, to check the developed com- 
puter code or to check the accuracy o.f the computed results. In this regard, 
a closed form perturbation solution for a simplified problem which retains the 
same difficulties (weakly nonlinear equations and boundary conditions and 
weakly irregular boundaries) can best serve this purpose. 

%ong the perturbation techniques, the strai$tforward expansion in terns 
of a parameter in the problem leads to satisfactory results if one is dealin? 
with a regular perturbation problem or if its region of nonuniformity is 
avoided (ref. 1 and 2). However, for singular perturbation problems, the 
straightforward expansions yield nonuniform solutions and one has to use 
other perturbation techniques to obtain uniform solutions (ref. 3-6). Ir?fini t.6 
domains in a problem,a small parameter multiplying the highest derivative of the 
governing equation, type change of a partial differential equation, and 
existence of singularities are some 07 the sources of nonuniforaities of 
straightforward solutions. 
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In this paper, two applications in the area of heat transfer are con- 
sidered and closed-form uniform perturbation solutions are developed. In the 
first application, the problem of unsteady heat conduction in a long 
nearly circular cylinder is considered and a straightforward solution is 
shown to breakdown. The method of strained parameters coupled with the 
application of a solvability condition is used to develop a unfform 
solution. 

Similar problems in the areas of duct acoustics (ref. 7) and vibrations 
(ref. 3) were considered where the methods of multiple scales andths method 
of strained parameters were used, respectively. 

In the second application, the problem of one dimensional conduction-con- 
vection heat transfer of a uniform fluid flow in a single channel is considered. 
For small ratios of conduction to convection heat transfer, the problem 
is shown to possess a thermal boundary 1a:Ier where large temperature gra- 
dients exist. The method of matched asymptotic expansion coupled with Van 
Dyke's matching principle is used to develop a uniform solution. This problem 
was considered in reference 8 for single and merging flows by using the finite- 
element technique. Steady two-dSmenslona7 problems with different locations 
of the boundary layer can be found in reference 6. 
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L.L---~~-~~~ Unsteady-Heat Conduction in a Long Nearly Circular Cylinder --___---_ 

We consider the two-dimensional unsteady heat conduction in a long cylin- 
der whose cross sectional area is nearly circular. Initially, the cylinder is 
at temperature g(r*,@) and at any later time the surface is kept at zero tem- 
perature. The radius of the cylinder is expressed as 

27T 

c = R + a f(a) where / fC$) d 4 = 0 and a << R (1) 
0 

Dimensionless quantities are introduced by using the mean radius of the cylin- 
der R, the characteristic temperature Tc, and the time R2/o (a is the thermal 

diffusivity) as reference quantities. The dimensionless form of the problem 
is given by 

-4 

8 

l- l- 
rr + F 'r + i2 ec$f$ = ; t (2) 

e(r,At) = 0 
2lT 

on r = 1 + 0 E f($) and / f($) d$ = 0 (3) 
0 

&A 0) = gh#J (4) 

The parameter E is a small quantity characterizing the small deviation of the 
crosssectional area from the circular shape. 
rated by assuming a solution of the form 

The temporal variation is sepa- 

G(r,$,t> = e(r,@) e-B2t 

Substituting equation (5) into equations (2) and (3), we obtain 

8 rr +he r + > e@$ + B2e = 0 

(5) 

(6) 

eb,,o) = 0 on r 
0 

= 7 + E f(G) (7) 

Equation (6) is the Helmholtz equation. Although equation (6) is linear, the 
problem is not separable because the boundary condition, in the present form, 
is not separable. Since E is a small parameter, one can expand e(r,@;E) in 
the form of a power series in terms of E as follows 

ehkd = 8, (r,$) + E 8, (r,$) + ----- (8) 
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In equation (8), only two terms are considered and hence a first-order solu- 
tion is intended. Since E appears in the argument ofe, equation (7), one 
needs to extract E from this argument so that the process of equating coeffi- 
cients of like powers of E can correctly be accomplished. Therefore, the 
boundary condition of equation (17) is expanded around r = 7 using a Taylor- 
series expansion. This process is well known as the "transfer of the boun- 
dary condition." Thus, we get 

e(r,4) = e(7,G) + E f(+) e,(i,~) + ---- = 0 (9) 

Substituting equation (8) into equations (6) and (9) and equating coefficients 
of like powers of E, we obtain the following two sets of problems: 

ok”) - Problem 

8 +‘e 7 
orr r or + p eo$$ 

+ B2eo = 0 

eo(l 4) = 0 

ok) - Problem 

'lrr + ;elr+’ 0 
r2 7M + B2e7 = 0 

(JO) 

(11) 

(12) 

e7(7d = - f(+) ear (7,+) (73) 

In the perturbation expansion used above, we note that only the dependent 
variable 0 is expanded in terms of the small parameter E. Such a perturba- 
tion method is called a "straightforward-perturbation method." Straightfor- 
ward expansions break down when we deal with singular perturbation problems. 
Next, it is shown that the straightforward expansion breaks down for this 
problem. 

The solution of the 0(&O) problem is obtained by using the method of 
separation of variables. The solution is found as 

eO 
= J, (knmr) (AnmeinG + znmeBinQ) (74) 

where k,,(=f3) are the zeros of the J,(B) = 0, and Anm are complex constants. 

Setting B2 = k2nm in equation (72) and subtituting equation (74) into 
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equation (73), we get 

'lrr + r J-0 1 
lr + j-2 e144 + kfm '7 =0 

e,(l,lp) = - knm J;(knm) f(4) (An,ein4 + $.,me-in') 

(75) 

(16) 

The solution of the O(E) problem is obtained by expanding each of e7 and 
f(G) in a Fourier series as 

. 
8, b-,44 =-x Gt(r) elt@ 

f(G). =-x fp eip+ 

(77) 

(18) 

1 2lT 
where f 

P 
= z / f(4) emip@ and f. = 0 according to the condition in equa- 

tion (3). SubsFituting equation (77) and (18) into equations (15) and (16), 
multiplying the results by exp(-is+) and integrating from 0 to HIT, we get 

G;*+ ; G; + (knm d), ~0 
r2 ' 

G,(J > = - knm Ji (knm) [Anm fs,n ’ ‘nm fs+nI 

(19) 

(20) 

If s # n, equations (19) and (20) have a unique solution since the only solu- 
tion for the corresponding homogeneous problem is the trivial solution. If 
S =n , we obtain 

G," + ; G; + (knm - $) G, = 0 
r 

G,(l) = - k nm f2n 'nm Ji (knm) 

(21) 

(22) 

we note that the corresponding homogeneous problem has a nontrivial solution 
and hence the inhomogeneous problem will not have a solution unless a solva- 
bility condition is satisfied. However, a solvability condition does not 
exist and hence there is no solution to equations (21) and (22). Therefore, 
the solution of the O(E) problem breaks down. 
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The reason behind this trouble is due to the straightforward method used 
here. To obtain a uniform solution, we use the method of strained para- 
meters. In this method, we expand B, in addition to the expansion given 
by equation (8), as follows 

B = 8, + E Bl + --- (23) 

where B7 is to be determined in the course of the solution. Substituting 

equations (8) and (23) into equation (6), substituting equation (8) into 
equation (9),and eauatina coefficients of like uowers of E. we again obtain two 

by equations 
(E) problem 

sets of orobiems. The Ore') Drob7em is the same as that given 
(10) and'(77) with the exception of rep 
is given by 

lacing B2 by 8:. The 0 

‘1 rr 
1 

+Fe7r 
7 2 8 +;2e14N$+Bo 1 

= - 2 f3,+ e. (24) 

and by equation (73). 

Substituting equation (74) into equation (24) and replacing B, by k,,, 
we get 

'lrr + r le ' 8 lr + L2 
2 8 

7&#1 + knm 7 
=-2k nm B7 J,,( knmr)(A einG + znme-in@) 

nm 

(25) 

The boundary condition is still given by equation (16). 

The solution of equations (25) and (76) is obtained by substituting 
equations (77) and (78) into equations (25) and (76), multiplying the result 
by exp(-is$) and integrating from 0 to 2n. Again, we obtain two cases 
corresponding to s + n and s = n. The former case is the same as that given 
by equations (79) and (20) in which a unique solution exists. In the latter 
case, we have 

G;* r n + (kf, + 1 G' - 5) G, = - 2’ knm B7 Anm Jn( knmr) 

‘3,(7 > = - knm f2n znm J;($.,,) 

(26) 

(22) 

As we mentioned before, the problem given by equations (26) and (22) has a 
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solution if and only if a solvabilitycond'ition exists. To obtain the solvability 
condition, we write equation (26) in the self-adjoint form by multiplying both 
sides of the equation by r. Next, we multiply both sides by the adjoint u(r) 
and integrate the result by parts over the range of r. Thus, we get 

1 
I Gn [(ru*)* + (kzm r - $)u] dr + [r u Gi - r u* G,,]' 
0 0 

1 
= - 2k nm '1 Anm / r u Jn(knmr) dr (27) 

0 

The adjoint equation is obtained by setting the coefficient of G, to zero. 
Thus, we obtain 

2 n2 
(r u*)* + (knm r - r ) u = 0 (28) 

The adjoint 

u(l) = 

in equation 

boundary conditionsare obtained by choosing 

0 and u(0) < m 

(27). Equation (27) reduces to 

1 

(29) 

I./( 1) G,(l) = 2 knm B, Anm I. r u 3, (k,,r) dr 
0 

The solution of the adjoint problem, equatl'ons (‘28) and (29), is given by 

u(r) = J,($,,r) 

Substituting equations (22) and (31) into equation (30), and performing the 
integration on the right hand side, we obtain the equation defining Bl as 

61 = - knm f2n %m'Anm 

since fzn, 'nm and A,, are complex constants, we assume 

A =ianme 
ixnm 

-i x,, 

nm , Tinm = $ a,, e 

(30) 

(31) 

(32) 

(33) 
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Substituting equation (33) into equation (32),and equating the real and imaginary 
parts, we get 

x 1 
nm =yzn or ; (Ypn - d 

61 ='knmb2n Or knm b2n 

(34) 

(35) 

Substitutin equation (34) into equation (33) and substituting the result into 
equation (4 B , we get 

e(l) = a 
0 nm J,.,(k,,,r) ~0s (n Q + ~~~12) 

and 

et’) = a 
0 nm J,(k,,,r) sin h @ + y2,,/2) 

Substituting equation (35) into equation (23), we get 

&')=k Ek nm - nm b2n 

fj(‘) = k 
nm 

+ck nm b2n 

(36) 

(37) 

(38) 

(39) 

Substituting equation (36) into equation (8), substituting this result and 
equation (38) into equation (5), repeating the same process with equations 
(37) and (39), and forming a linear combination of the two, we obtain 

8 b,bt> = n'm anm n 3 J (k,,r) {cos(n$ + yzn/2) Exp[- knm(knm - 2~ b2,,)tl 

+c nm sin(n 4 + yzn/2) Exp[- knm(knm + 2~ b2,,)t]I + ---- (40) 

The constants anm and cnm are found from the initial condition. 
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III. __.. = ;m;.Lm. One Dinensipnal Conduction-Convection Heat-Transfer in a Uniform Flow _ _ -___ .__ __---~~ - 

We consider the one dimensional convective diffusion equation modified by 
a convective surface loss term. This equation has been used to model the' far- 
field behavior of thermal regime for single and merging fluid flows. Here, 
only the problem of single channel flows with specified temperatures at the 
upstream and downstream boundaries is considered. The governing equation of 
the average temperature T(x*) is given by 

-k A T” + P C A u T' + h p(T - Te) = 0 (1) 

Theboundaryconditions are 

T(0) = T1 (2) 

T(L) = T2 (3) 

In equations (1) and (Z), k is the coefficient of thermal conductivity in the 
flow direction, A is the flow cross-sectional area, p is the fluid density, C 
is the fluid specific heat, u is the flow average velocity, h is the convec- 
tion heat exchange coefficient, p is the convection perimeter, T, is the con- 
vection exchange temperature, and L is the channel length. 

Dimensionless parameters are introduced by using the pipe length L, and the 
temperature difference T -Te 

b 
as reference quantities. The dimensionbess form 

of the problem is given y 

-(l/P,) y>* + y' + (N,/P,) Y = 0 (4) 

Y(O) = 1 3 Y(l) = 3 (5) 

where P, = pCuL/k is the Peclet number, Nu = hd/k is the Nusselt number, 

d = 4A/b is the hydraulic diameter, and y(x) = [T(x) - T,]/(T,-T,). For 

large Peclet numbers (small ratio of conduction to convection heat transfer) 
we let l/P, = E, where E is now a small parameter. Moreover, we assume 

NU/Pe = b = O(1). 

Thus, we obtain the following problem describing the spatial variation 
of the temperature: 

E y" - y-- - b y = CI (6) 

Y(O) = 1 , Y(l) = 82 (7) 
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Equations (6) and (7) describe a typical boundary-layer problem where a 
small parameter multiplies the highest derivative. This problem can success- 
fully be treated by using any of the several suitable perturbation techniques, 
namely, the method of matched asymptotic expansion, the method of multiple 
scales, and the method of composite expansions, among others. In this paper, 
we develop a uniformly valid solution by using the method of matched asymptotic 
expansion. 

Since the coefficient of y* is negative in the interval 0 5 x 5 1, the 
boundary layer exists at the boundary x =l. Next, we develop outer and inner 
solutions and match them by using Van Dyke's matching principle to obtain a 
composite solution which is uniformly valid everywhere. 

Outer Solution: 

The outer solution y'(x;~) is expressed in the form 

YOhd = y,(x) + E y,(x) + ---- 03) 

Dropping the second boundary condition of equation (7), substituting equation 
(8) into equation (6) and into the first boundary condition of equation (7), 
and equating coefficients of like powers of E, we obtain the following prob- 
lems: 

O(c") Problem 

y; + b y, = 0 

Y,(O) = 1 

O(E') Problem 

Y; + b Y 1 = Yii' 

Yl(O) = 0 

The outer solution of equations (9)-(12) is given by 

y" = e -bx(l t E b2 x) + O(E') 

(9) 

(10) 

(1’) 

(12) 

(13) 
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Inner Solution: 

To develop an inner solution valid near the boundary layer, we drop the 
boundary condition at x = 0 and introduce the following stretching transforma- 
tion for the inner variable 

p1-x 
E (14) 

. 
In terms of the inner variable, the inner solution ~'(E;E) is governed by 

- #S 
y' + yi' - cby'=O (15) 

J(o) = e2 (16) 

Next, we expand the inner solution in the form 

Y’(W = Y,(E) -I- E: Y,(E) + ---- (17) 

Substituting equation (17) into equations (15) and (16) and equating coeffi- 
cients of like powers of E, we obtain the following problems: 

O(EO) Problem ----__I 

Y;'t Yo' = 0 (‘8) 

Yom = e2 (19) 

_4(~') Problem -- 

y;’ + Yi = b y. (20) 

Yl(0) = 0 (2’) 

The inner solution of equations (18)-(21) is given by 

. 
y L = 8, + Ao(l - e-') t E{b s[S, + Ao(l t e-')] + Al(l - ems)> + O(E') 

(22) 

We note that the outer solution is completely known while the inner solu- 
tion contains the two unknown coefficients A0 and Al. They are determined by 
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applying Van Dyke!s matching principle to the inner and outer solutions. The 
principle states that: 

the m-term inner expansion of (the n-term outer expansion) = the n-term outer 
expansion of (the m-term inner expansion) 

where m and n are any two integers. To find the left hand side, we write the 
n-term outer expansion in terms of the inner variable, equation (14), expand 
the functions of E keeping the inner variable fixed, and keep m-terms of the 
resulting expansions. An opposite procedure is applied to the right hand 
side. For m = n = 2, we obtain 

A0 = Gb - e2, Al = b2 eeb (23) 

Substituting equation (23) into equation (ZZ), we obtain the inner solution as 

. 
Y’ = e2 + (eBb _ e=)(l - e-E) t &{b <[e2 t (e-' - 6,)(1 + e-')I + b2eWb(l-e% 

+ O(E2) (24) 

Next, we express the composite expansion in the form 

. 
YC =. y” t y’ - (yO)’ (25) 

Substituting equations (13) and (24) and the result of the left hand side of 
Van-Dyke's matching principle in equation (25), we obtain the composite solu- 
tion as 

YC = (1 + & b'x)e 
-bx 

+ [(l-b+bx)(e,-emb) - E b2emble 
-(l-X)/& 

+ O(E2) ' (26) 

It should be noted that an exact solution exists for equations (6) and (7) 
which is given by 

y = [(em2 - e2k m1x _ (e ml 
- e2)emzX],(eR2 - em') (27) 

where m,,2 = [l ? ~(1 = 4 E b)"']/Z E (28) 

The solution of the unsteady flow problem described by 

-k A Tx*x* + p C A U TX* + h p(T-T,) + p C A Tt* = 0 (2% 
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T(O,t*) = Tl , T(L,t*)= T2 , T(:x*,t*) = To (30) 

is an easy extension to the steady solution given by equation (26). The prob- 
lem is divided into steady and transient problems. The steady problem with 
the inhomogeneous boundary conditions is already considered. Upon assuming an 
exponential time-decay solution, the transient problem with homogeneous boun- 
dary conditions reduces to an eigenvalue problem coupled with a.boundary 
layer. A uniform solution of the problem is obtained by using the method of 
matched asymptotic expansions (as shown before) coupled with strained eigen- 
values which are expressed as a.power series of E. 

IV. Concluding' Remarks 

The methods of strained parameters and matched asymptotic expansions are 
successfully used to obtain closed-form perturbation solutions for heat- 
transfer problems with irregular boundaries and with boundary layers, respec- 
tively. The techniques given here are applicable to a large class of similar 
problems where various geometrical shapes and three-dimensional dependence are 
considered. Nevertheless, such solutions serve as bench marks for the compu- 
tational techniques. Moreover, useful solutions can be obtained by combining 
a computational technique with a perturbation technique in a certain problem. 
The computational technique is used to solve the zeroth-order problem while 
the perturbation technique is used to solve the higher-order problems. 
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