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SUMMARY 

The SINDA thermal analyzer program was transferred from the UNIVAC 1110 
computer. to a CYBER and then to a CRAY 1. Significant changes to the code of 
the program were required in order to execute efficiently on the CYBER and 
CRAY. The program was tested on the CRAY using a thermal math model of the 
Shuttle which was too large to run on either the UNIVAC or CYBER. An effort 
was then begun to further modify the code of SINDA in order to make effective 
use of the vector capabilities of the CRAY. 

INTRODUCTION 

The computer available for thermal analysis at the National Aeronautics 
and Space Administration/Johnson Space Center (NASA/JSC) is a UNIVAC 1110 
which has a maximum user core of 190,000 words. However, since the 1110 is 
operated in a time-sharing environment with nonthermal users, its full 
resources are not available. This computational capability has not proven 
adequate for all requirements. For example, core storage restraints did not 
allow construction of a single thermal model of the Space Shuttle. Instead, 
five separate models were built - three representing the forward, mid, and aft 
fuselage sections, and one each for the aft propulsion system (APS) and the 
hydraulic system. A complete transient analysis thus required five 
interconnected computer runs. 

In hopes of producing a combined Space Shuttle model and to provide a 
backup capability for computation during peak load periods on the UNIVAC 1110, 
a contract was made with the United Computing System (UCS) for time on their 
commercial networks. The basic host computer of UCS is a CYBER of the Control 
Data Corporation (CDC). A CRAY 1 (ref. 1) is also available; however, it 
requires the CYBER as a front end. The first task was to establish a CDC 
version of the thermal analysis program, SINDA (ref. 2), and to transfer the 
five thermal models to CDC files. The UCS CYBER configuration actually 
offered less core than the NASA/JSC UNIVAC. The CRAY 1, however, has 2 
million words available, and additionally offers the prospect of increased 
speed by virtue of its vector processing capability. The ultimate purpose, 
then, was to develop a version of SINDA for the CRAY 1. 
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SYMBOLS 

heat capacity of a node i, J/OK (Btu/OR) 

thermal conductance between node i and node j, J/hr-OK (Btu/hr-OR) 

net heating rate to node i, J/hr (Btu/OR) 

node number indexes 

incident heat to node i, J/hr (Btu/OR) 

thermal radiation between node i and node j, J/h+OK4 (Btu/hr-OR4) 

current temperature of node i, OK (OR) 

new temperature of node i, OK (OR) 

time interval, hr 

STRUCTURE OF THE SINDA ANALYZER 

SINDA is a general-purpose thermal analyzer, which means that the user 
can construct a thermal model of anything, unrestricted and unaided by 
geometry. It uses the finite difference formulation of the thermal diffusion 
equation, thus requiring a lumped parameter representation of the physical 
system in a resistor-capacitor (R-C) network. The program has two parts, the 
preprocessor and the processor. The preprocessor reads the user input data 
(the definitions of the nodes, heat capacities, temperatures, conductances, 
etc., which make the thermal model) in an 80-column card input format, and 
writes: 

a. An executable program to perform the analysis 

b. Tables listing the thermal parameter actual numbers (assigned by the 
user) vs. the relative numbers (assigned by the program) 

c. A table called the first pseudocompute sequence (PCSl) which tells which 
nodes are connected to each other and by what type of connection 

d. A table called the second pseudocompute sequence (PCS2) which contains 
the nonlinear thermal parameter information 

The processor consists of the program (a) and user-selected subroutines 
from the SINDA library which, when executed, use as input the data files 
(b, c, and d) to produce a transient or steady-state simulation. 
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DEVELOPMENT 

UNIVAC-to-CYBER Conversion 

NASA was fortunate to have access to a version of SINDA which would run 
on- CDCmachines. This version was developed from a UNIVAC source and retained 

.the exact bit configuration in the pseudocompute sequences; i.e., only the 
first 36 bits of the 60-bit CYBER word'were used. The program was transferred 
to UCS along with an update package .which would bring the version to the cur- 
rent UNIVAC level. Successful execution was easily achieved, but Central 
Processor (CP) second comparisons revealed the CYBER was requiring twice as 
much time as the UNIVAC. The problem was traced to the unpacking of the PCS 
data. 

In UNIVAC FORTRAN, the unpacking is performed by a special function, FLD, 
which is fairly efficient. The statement: 

NG = FLD(5,16,PCSl(I)) 

causes 16 consecutive bits, beginning with bit 5, to be taken from the 
location PCSl(I) and stored, right-adjusted, in the variable NG. The CYBER 
version had an assembly language subroutine, IFLD, to perform this function. 
It was of the form: 

CALL IFLD(5,16,PCSl(I),NG) 

These subroutine calls for unpacking the PCS data were replaced with in-line 
code using the CYBER SHIFT function and logical AND statements. For example, 
the call to I FLD shown above was replaced by: 

DATA IAND6/01777770000000OOOOOOB/ 
NG = SHIFT((PCSl(I).AND.IAND6),21) 

This causes a logical AND operation between the location PCSl(1) and the 
variable IAND6, thus picking out bits 5-21 of PCSl(1). The result is then 
left-circular shifted 21 bits before storing in NG. SUBROUTINE SUBFLD was 
used to pack the data in the first place. Using similar techniques, its calls 
were also replace! by in-line code. After making these subroutine call 
replacements throughout SINDA, the execution time required for some runs was 
reduced by a factor of 5. 

CYBER-to-CRAY Conversion 

Having established a working version of SINDA on the CYBER, the CRAY 
conversion effort was begun by making changes necessitated by differences in 
byte and word size between CDC and CRAY machines. For the purposes of this 
discussion, a byte is defined as the sequence of bits required to represent a 
character. The number of bits in a byte is therefore character-code depen- 
dent. Six bits are required to represent a character in Extended Binary Coded 
Decimal Interchange Code (EBCDIC) which is used on the CYBER, whereas eight 
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bits represent a character in the CRAY version of the AmericanStandard Code 
for Information Interchange (ASCII). The 60-bit word size of a CYBER machine 
allows representation of 10 characters per word, opposed to a maximum of 8 
characters in the 64-bit word of the CRAY 1. The primary impact of this word 
and byte size difference is on the preprocessing/decoding processes, where 
node and conductor-related data are packed into words. The packing and 
unpacking processes which were implemented to conserve memory became 
unnecessary with the CRAY l’s 2 million word core memory. However, 
preprocessor and processor modifications to eliminate these steps would not be 
cost-effective in terms of programming and checkout time when weighed against 
the possible increases. in execution speed. Therefore, the sections of code 
where data packing and unpacking were carried out were altered only-where 
alphanumeric data are involved, i.e., where byte size is significant.. 

Another difference between CDC and CRAY FORTRAN exists in DO-loop 
handling. CDC FORTRAN will cause loops to be executed at least once, whereas 
a CRAY DO-loop need never be executed: as in a loop where the initial index 
value is 1, the final value is 0, and the incrementation value is 1. The cor- 
rection for this DO-loop handling discrepancy is a simple one: CRAY FORTRAN 
provides a “J” option on its compiler control command that Nil1 ensure CDC- 
like handling of DO-loops when activated. 

One characteristic of CRAY FORTRAN with global ramifications in the SINDA 
program is the ability to undefine variables. An entity will become undefined 
if an entity of different type which occupies the same memory location becomes 
defined. During SINDA processor execution, it is often necessary to access 
integers and floating-point values from the same array. The preprocessor 
packs integer information about the number of values in a real array in the 
first location of that array, and the entire vector is passed to an inter- 
polation subroutine as a floating-point array. What happens upon entry to the 
interpolation routine is illustrated in the following simplified example: 

1 SUBROUTINE INTERP(A) 
2 DIMENSION A(1) 
3) EQUIVALENCE (PN,NP) 
;,’ L’; = A(l) 

= NP 

These five lines of code show the original approach to accessing the integer 
value contained in A(1). When, statement number 4 is executed by the CRAY-1, 
however, variable NP becomes undefined and statement 5 becomes a meaningless 
assignment. A quick-fix solution was discovered and is shown below: 

: 
SUBROUTINE INTERP (A) 
DIMENSION A(1) 

3) EQUIVALENCE (PN, NP) 
4) PN = A(1) 
4A) NP = NP 
5) LX = NP 
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The addition of statement 4A redefines NP so that the value in A( 1) may be 
accessed as an integer. Statement 4A also has the effect of undefining PN, 
but since PN is not referenced after statement 4 in this application, further 
processing is not adversely affected. 

As with the CYBER, it was also necessary in the CRAY conversion effort to 
replace with in-line code the calls to the two bit-manipulation routines, 
SUBFLD and I FLD. The substitution was accomplished through use of the Boolean 
selective merge function of CRAY FORTRAN, called CSMG. This function merges 
two words according to a third mask word, taking bits from word 1 where the 
mask wgrd bits are set, and from word 2 where the mask word bits are cleared. 
This approach required that mask words be set up for each subroutine that had 
previously called SUBFLD or IFLD. In the preprocessor, these mask words could 
be defined in the driving routine, PREPRO, and accessed through a common block 
by other routines as necessary. In. the processor, however, the driver is 
created uniquely for each run, so a different solution was needed. All 
routines that had accessed I FLD and SUBFLD were examined to determine what 
mask words were required, and DATA statements defining those words were added 
to each subroutine. A typical example of the changes involved in an I FLD 
substitution is illustrated below. 

Bit manipulation previously effected by 

VARE = IFLD(0,6,VARl) 

(right-justify leftmost six bits of VARl in VAR2) is now effected by 

VARE = CSMG(SHIFTR(VAR1,(64-(0+6))),0,56) 

where 56 is a mask word with the six rightmost bits set. 

SUBFLD substitution is slightly more complicated. If the original SUBFLD 
call was 

CALL SUBFLD (5,l VARl,VAR2) 

(replace bit 5 in VAR2 with bit 5 from VARl) the replacement is 

VAR2 = CSMG(SHIFT(VAR1,(64-(1+5)),VAR2,1551) 

where 15Jl is a mask word containing one set bit in the fifth position from 
the left, where the leftmost bit is bit 0. The modifications to SUBFLD and 
IFLD calls in the preprocessor were made on a line-by-line basis, producing a 
factor of 3 decrease in execution time. Several hundred references to the two 
routines in the processor library made the use of statement functions more 
appropriate in the 51 library subroutines i,n which IFLD and SUBFLD were 
referenced. 
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MODEL EXECUTION COMPARISONS 

After establishing working versions of SINDA on the CYBER and CRAY 1, 
some test executions on production size models were made. Selected were the 
MID model which has 1959 nodes and 15,271 conductors, and a combined Shuttle 
model which had no external radiation network, leaving it with 6,489 nodes and 
only 24,445 conductors. Table I shows the comparative performance of SINDA 
with the MID model on the NASA/JSC UNIVAC and the CYBER and CRAY 1 of UCS. 
The UNIVAC cost figure is based on $457/hr; the CYBER and CRAY 1 figures are 
actual costs including the NASA discount. The decrease in execution time in 
CP seconds going from UNIVAC to CYBER to CRAY 1 was as expected, but there was 
no significant corresponding decrease in cost. A similar CP second/cost com- 
parison for the UNIVAC and CRAY 1 using the combined Shuttle model is shown in 
table II. Only preprocessor data is shown because the model is too large to 
run the processor on the UNIVAC. The CYBER would not handle even the preproc- 
essing of the combined model. The results are about the same as those of the 
MID preprocessor; the CRAY 1 gives a dramatic reduction in CP seconds but a 
slightly higher cost. 

VECTORIZATION 

After establishing a working version of SINDA on the CKAY and recording 
some comparative execution times for purely scalar code, the next effort was 
to incorporate some vector code into SINDA. The proportionately large amount 
of time spent in the network solution routines suggested that a vectorization 
effort in this area would be the most productive initially. Study led to the 
conclusion that merely applying vectorizing techniques to the existing code 
might not provide significant improvement, so a simultaneous attack was begun 
on the PCS structure. 

Execution Routine Code Modification 

The first routine to be examined for vectorization potential was the 
convergent explicit forward differencing routine SNFRWD. This routine was 
chosen because it produced consistent, reliable predictions of network 
response, was already one of the most efficient network solution routines, and 
consequently was heavily used. At this time, there are no cost comparison 
figures for any of the execution routines, but a brief discussion of the 
vectorization process for SNFRWD will provide some familiarity with the 
modifications involved in vectorization. 

The ultimate objective when vectorizing code is to significantly reduce 
array processing time. This reduction can be achieved by accessing array 
elements so that memory banks are referenced sequentially, and by avoiding 
statements or constructs that inhibit the pipelining of operands and 
instructions. 
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In the SNFRWD routine, some loops cannot be vectorized effectively due to 
the extensive use of indirect addressing, and the presence of nonvectorizable 
external references and GO TO's. In loops that appear to be candidates for 
vectorization, but contain a few nonvectorizable statements, the solution can 
be the creation of two or more loops so that one or more will vectorize. CRAY 
FORTRAN offers vectorization aids in the form of vectorizable utility routines 
to replace conditional assignment statements within loops, as in this example 
adapted from SNFRWD: 

i THIS LOOP DOES NOT VECTORIZE 
C 

DO 1 I = 1,lOOO 
LSUM = LSUM + LEN( I)*2 
IF (LEN(I) .NE. 0) LSUM = LSUM + 2 

1 CONTINUE 

: THIS CODE VECTOR1 ZES FOR LOOP 1 
C 

DO 1 I = 1,lOOO 
LSUMT( I) = CVffiZ(LSUMT(1) + LEN(I)*2, 

LSUMT(1) + LEN(I)*2 + 2, LEN(I)) 
1 CONTINUE 

RSUM = SSUM (lOOO,LSUMT(l),l) 
LSUM = xFrx (RSUM) 

Note that scalar summing variable LSUM in the original loop is replaced 
by temporary array LSUMT in the vector version to avoid scalar register use. 
With up to four million words of core memory available, and considering the 
high cost of CRAY processing time, this trade-off becomes economically 
justifiable in many cases. The vector utility routine CVffiZ performs the 
conditional test of the original loop and allows the assignment statement 
that preceded the test to be performed at the same time. CVffiZ tests the 
third argument, LEN(I), against a zero value, and if the test succeeds, 
LSUMT(1) is assigned the value of the first calling argument. If the test 
fails, the value of the second argument is used. LSUMT and LEN are typed real 
for the second example, so that real library function SSUM can be used to sum 
vector LSUMT. This real sum is then converted to type integer. The vector 
version of the loop actually contains more code, plus an external reference, 
but executes more than 12 times faster than th,e original. For an iteration 
count of five or less, vectorization of this loop would not have resulted in 
any time savings because of the required post-loop processing. Generally, the 
more times a loop is executed, the greater are the potential savings from 
vectorizing it. 
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PCS1 Restructure 

The R-C network is contained in PCSl. Each word contains several pieces 
of information, as illustrated in figure 1. Each node in the network has one 
of these words for each connection it has to other nodes; i.e., if node 10 is 
connected to four other nodes, then the portion of PCS1 belonging to node 10 
will be four sequential words. Obviously, the length of PCS1 is twice the 
number of conductors in the network. All current SINDA execution routines 
perform the new temperature calculations with an outer DO loop with the range 
of 1 to the number of nodes and an inner loop whose range varies depending 
upon the number of connections for that node. The basic forward difference 
formulation is an example: 

T; c G..(T. - T.) + c R..(T? - T?) t Q. 
1JJ 1 

j 1JJ 1 1 
I 

The inner loop, using PCSl, sums the Gij on Rij AT product for each conductor 

to the node and the outer loop does the calculation of the new temperature, 

Ti ' 
for each node. 

Extracting data from bits of a word is an expensive process in terms of 
computer time. However, the increase in allowable problem size resulting from 
packing of the data was judged to be worth the price for the machine on which 
it was first coded; for the CRAY 1 it is not. 

Assuming the inner loop work has been done and stored, i.e. 

GSUMi = C G..(T. - Ti) + c R..(T4 - T;) 
j 1J J j 1J J 

the equation resulting from substitution into equation (1): 

T; = Ti + At/$ (GSUtf + Qi ) 

(2) 

is well suited for vector processing because all terms are vectors of 
length i. However, the largest amount of time is 'spent in forming the GSUMi 
term, and the code dictated by the PCS1 structure is not well suited for 
vectorizing. 

One approach taken to make SINDA more efficient on the CRAY 1 was to 
restructure PCS1 so that a new execution routine could be written which did 
not require unpacking of data and which contained vectorizable code. (See 
fig. 2.) The original PCS1 contained four types of information: 

a. type of conductor - bits O-4 and 21 
b. conductor number - bits 5-20 
c. adjoining node - bits 22-35 
d. subject node - implied by current location in PCSl. 
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The new PCS1 has the conductors sorted by types (instead of by subject 
node as in the original) and three arrays, one specifying conductor number, 
and two to list the connected nodes (subject node and adjoining node). 

Currently, the new PCS1 is being built from the old PCS1 in a post 
preprocessor operation, as opposed to recoding the preprocessor to construct 
it in the new form. It is anticipated that this overhead cost will be more 
than offset by the elimination of unpacking and the resulting existence of 
more vectorizable code. 

CONCLUDING REMARKS 

We have shown that it is possible to build and use for analysis thermal 
math models on the CRAY 1 computer of UCS that are much larger than those 
allowed on our local computer, the JSC UNIVAC 1110. We have presented data 
showing the CRAY 1 executing scalar code to be competitive with the UNIVAC 
1110 for the same model. An additional small cost reduction would probably 
result if the total cost of running the five UNIVAC models were compared to 
the cost of a single execution of the combined model on the CRAY. However, 
the largest potential cost savings lie in developing efficient vectorized code 
for the CRAY. There is no exact method for determining the point at which run 
time savings gained through vectorization are offset by programming costs 
accrued in the modification process. Program portability, frequency of use, 
and life expectancy, along with programmer hours and expected savings should 
be considered before beginning any vectorization effort. 
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TABLE I.- COM'ARATIVE PERFORMNCE 'OF SINDA WITH THE MID THERMAL MTH MJDEL 

UNIVAC CYBER CRAY 1 

CP 
cost 

CP 
seconds seconds 'Ost fkonds cost 

Preprocessor 2059.0 $261.38 1034.3 $304.26 244.1 $279.39 

Processor 
0.2 - 45.4 hr 

5762.0 $731.45 2248.0 $614.38 451.7 $506.33 

TABLE II.- COMPARATIVE PERFORMANCE OF SINDA WITH 
THE COMBINED SHUTTLE THERML MATH MODEL 

CP 
seconds 'Ost E!conds 

cost 

Preprocessor 6541.0 $830.30 830.6 $1012.07 
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LAST G FOR THIS NODE 

NONLINEAR CAPACITY 

NONLINEAR CONDUCTANCE 

RADIATION CONDUCTOR 

EXTERNAL HEAT SOURCE ONE-WAY CONDUCTOR 
--- 

5-20 1211 22-35 1 
4 4 

Figure l.- PCS1 packed data structure. 

OLD PCS1 

I 1 y------Ia=2*#g's 

LAST NODE 

NEW PCS1 

I ::: 1 1 CONDUCTOR NUMBERS R = # g's 

1' 1:: -11 SUBJECT NODES 

I ::: II ADJOINING NODES 
--- 

TYPE 1 TYPE 2 TYPE 3 LAST TYPE 'total 
= 3*# g's 

Figure 2.- Old versus new PCS1 organization. 
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