
DEVELOPMENT OF A CRAY 1 VERSION OF THE

SINDA PROGRAM ,

Susan M. Juba and Peter E. Fogerson
Lockheed Engineering and Management Services Company, Inc.

SUMMARY

The SINDA thermal analyzer program was transferred from the UNIVAC 1110
computer. to a CYBER and then to a CRAY 1. Significant changes to the code of
the program were required in order to execute efficiently on the CYBER and
CRAY. The program was tested on the CRAY using a thermal math model of the
Shuttle which was too large to run on either the UNIVAC or CYBER. An effort
was then begun to further modify the code of SINDA in order to make effective
use of the vector capabilities of the CRAY.

INTRODUCTION

The computer available for thermal analysis at the National Aeronautics
and Space Administration/Johnson Space Center (NASA/JSC) is a UNIVAC 1110
which has a maximum user core of 190,000 words. However, since the 1110 is
operated in a time-sharing environment with nonthermal users, its full
resources are not available. This computational capability has not proven
adequate for all requirements. For example, core storage restraints did not
allow construction of a single thermal model of the Space Shuttle. Instead,
five separate models were built - three representing the forward, mid, and aft
fuselage sections, and one each for the aft propulsion system (APS) and the
hydraulic system. A complete transient analysis thus required five
interconnected computer runs.

In hopes of producing a combined Space Shuttle model and to provide a
backup capability for computation during peak load periods on the UNIVAC 1110,
a contract was made with the United Computing System (UCS) for time on their
commercial networks. The basic host computer of UCS is a CYBER of the Control
Data Corporation (CDC). A CRAY 1 (ref. 1) is also available; however, it
requires the CYBER as a front end. The first task was to establish a CDC
version of the thermal analysis program, SINDA (ref. 2), and to transfer the
five thermal models to CDC files. The UCS CYBER configuration actually
offered less core than the NASA/JSC UNIVAC. The CRAY 1, however, has 2
million words available, and additionally offers the prospect of increased
speed by virtue of its vector processing capability. The ultimate purpose,
then, was to develop a version of SINDA for the CRAY 1.

425

https://ntrs.nasa.gov/search.jsp?R=19820015623 2020-03-21T09:28:12+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42856757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ci

Gij

GSUMi

Lj

Qi

Rij

Ti

T;

At

SYMBOLS

heat capacity of a node i, J/OK (Btu/OR)

thermal conductance between node i and node j, J/hr-OK (Btu/hr-OR)

net heating rate to node i, J/hr (Btu/OR)

node number indexes

incident heat to node i, J/hr (Btu/OR)

thermal radiation between node i and node j, J/h+OK4 (Btu/hr-OR4)

current temperature of node i, OK (OR)

new temperature of node i, OK (OR)

time interval, hr

STRUCTURE OF THE SINDA ANALYZER

SINDA is a general-purpose thermal analyzer, which means that the user
can construct a thermal model of anything, unrestricted and unaided by
geometry. It uses the finite difference formulation of the thermal diffusion
equation, thus requiring a lumped parameter representation of the physical
system in a resistor-capacitor (R-C) network. The program has two parts, the
preprocessor and the processor. The preprocessor reads the user input data
(the definitions of the nodes, heat capacities, temperatures, conductances,
etc., which make the thermal model) in an 80-column card input format, and
writes:

a. An executable program to perform the analysis

b. Tables listing the thermal parameter actual numbers (assigned by the
user) vs. the relative numbers (assigned by the program)

c. A table called the first pseudocompute sequence (PCSl) which tells which
nodes are connected to each other and by what type of connection

d. A table called the second pseudocompute sequence (PCS2) which contains
the nonlinear thermal parameter information

The processor consists of the program (a) and user-selected subroutines
from the SINDA library which, when executed, use as input the data files
(b, c, and d) to produce a transient or steady-state simulation.

426

DEVELOPMENT

UNIVAC-to-CYBER Conversion

NASA was fortunate to have access to a version of SINDA which would run
on- CDCmachines. This version was developed from a UNIVAC source and retained

.the exact bit configuration in the pseudocompute sequences; i.e., only the
first 36 bits of the 60-bit CYBER word'were used. The program was transferred
to UCS along with an update package .which would bring the version to the cur-
rent UNIVAC level. Successful execution was easily achieved, but Central
Processor (CP) second comparisons revealed the CYBER was requiring twice as
much time as the UNIVAC. The problem was traced to the unpacking of the PCS
data.

In UNIVAC FORTRAN, the unpacking is performed by a special function, FLD,
which is fairly efficient. The statement:

NG = FLD(5,16,PCSl(I))

causes 16 consecutive bits, beginning with bit 5, to be taken from the
location PCSl(I) and stored, right-adjusted, in the variable NG. The CYBER
version had an assembly language subroutine, IFLD, to perform this function.
It was of the form:

CALL IFLD(5,16,PCSl(I),NG)

These subroutine calls for unpacking the PCS data were replaced with in-line
code using the CYBER SHIFT function and logical AND statements. For example,
the call to I FLD shown above was replaced by:

DATA IAND6/01777770000000OOOOOOB/
NG = SHIFT((PCSl(I).AND.IAND6),21)

This causes a logical AND operation between the location PCSl(1) and the
variable IAND6, thus picking out bits 5-21 of PCSl(1). The result is then
left-circular shifted 21 bits before storing in NG. SUBROUTINE SUBFLD was
used to pack the data in the first place. Using similar techniques, its calls
were also replace! by in-line code. After making these subroutine call
replacements throughout SINDA, the execution time required for some runs was
reduced by a factor of 5.

CYBER-to-CRAY Conversion

Having established a working version of SINDA on the CYBER, the CRAY
conversion effort was begun by making changes necessitated by differences in
byte and word size between CDC and CRAY machines. For the purposes of this
discussion, a byte is defined as the sequence of bits required to represent a
character. The number of bits in a byte is therefore character-code depen-
dent. Six bits are required to represent a character in Extended Binary Coded
Decimal Interchange Code (EBCDIC) which is used on the CYBER, whereas eight

427

bits represent a character in the CRAY version of the AmericanStandard Code
for Information Interchange (ASCII). The 60-bit word size of a CYBER machine
allows representation of 10 characters per word, opposed to a maximum of 8
characters in the 64-bit word of the CRAY 1. The primary impact of this word
and byte size difference is on the preprocessing/decoding processes, where
node and conductor-related data are packed into words. The packing and
unpacking processes which were implemented to conserve memory became
unnecessary with the CRAY l’s 2 million word core memory. However,
preprocessor and processor modifications to eliminate these steps would not be
cost-effective in terms of programming and checkout time when weighed against
the possible increases. in execution speed. Therefore, the sections of code
where data packing and unpacking were carried out were altered only-where
alphanumeric data are involved, i.e., where byte size is significant..

Another difference between CDC and CRAY FORTRAN exists in DO-loop
handling. CDC FORTRAN will cause loops to be executed at least once, whereas
a CRAY DO-loop need never be executed: as in a loop where the initial index
value is 1, the final value is 0, and the incrementation value is 1. The cor-
rection for this DO-loop handling discrepancy is a simple one: CRAY FORTRAN
provides a “J” option on its compiler control command that Nil1 ensure CDC-
like handling of DO-loops when activated.

One characteristic of CRAY FORTRAN with global ramifications in the SINDA
program is the ability to undefine variables. An entity will become undefined
if an entity of different type which occupies the same memory location becomes
defined. During SINDA processor execution, it is often necessary to access
integers and floating-point values from the same array. The preprocessor
packs integer information about the number of values in a real array in the
first location of that array, and the entire vector is passed to an inter-
polation subroutine as a floating-point array. What happens upon entry to the
interpolation routine is illustrated in the following simplified example:

1 SUBROUTINE INTERP(A)
2 DIMENSION A(1)
3) EQUIVALENCE (PN,NP)
;,’ L’; = A(l)

= NP

These five lines of code show the original approach to accessing the integer
value contained in A(1). When, statement number 4 is executed by the CRAY-1,
however, variable NP becomes undefined and statement 5 becomes a meaningless
assignment. A quick-fix solution was discovered and is shown below:

:
SUBROUTINE INTERP (A)
DIMENSION A(1)

3) EQUIVALENCE (PN, NP)
4) PN = A(1)
4A) NP = NP
5) LX = NP

428

The addition of statement 4A redefines NP so that the value in A(1) may be
accessed as an integer. Statement 4A also has the effect of undefining PN,
but since PN is not referenced after statement 4 in this application, further
processing is not adversely affected.

As with the CYBER, it was also necessary in the CRAY conversion effort to
replace with in-line code the calls to the two bit-manipulation routines,
SUBFLD and I FLD. The substitution was accomplished through use of the Boolean
selective merge function of CRAY FORTRAN, called CSMG. This function merges
two words according to a third mask word, taking bits from word 1 where the
mask wgrd bits are set, and from word 2 where the mask word bits are cleared.
This approach required that mask words be set up for each subroutine that had
previously called SUBFLD or IFLD. In the preprocessor, these mask words could
be defined in the driving routine, PREPRO, and accessed through a common block
by other routines as necessary. In. the processor, however, the driver is
created uniquely for each run, so a different solution was needed. All
routines that had accessed I FLD and SUBFLD were examined to determine what
mask words were required, and DATA statements defining those words were added
to each subroutine. A typical example of the changes involved in an I FLD
substitution is illustrated below.

Bit manipulation previously effected by

VARE = IFLD(0,6,VARl)

(right-justify leftmost six bits of VARl in VAR2) is now effected by

VARE = CSMG(SHIFTR(VAR1,(64-(0+6))),0,56)

where 56 is a mask word with the six rightmost bits set.

SUBFLD substitution is slightly more complicated. If the original SUBFLD
call was

CALL SUBFLD (5,l VARl,VAR2)

(replace bit 5 in VAR2 with bit 5 from VARl) the replacement is

VAR2 = CSMG(SHIFT(VAR1,(64-(1+5)),VAR2,1551)

where 15Jl is a mask word containing one set bit in the fifth position from
the left, where the leftmost bit is bit 0. The modifications to SUBFLD and
IFLD calls in the preprocessor were made on a line-by-line basis, producing a
factor of 3 decrease in execution time. Several hundred references to the two
routines in the processor library made the use of statement functions more
appropriate in the 51 library subroutines i,n which IFLD and SUBFLD were
referenced.

429

MODEL EXECUTION COMPARISONS

After establishing working versions of SINDA on the CYBER and CRAY 1,
some test executions on production size models were made. Selected were the
MID model which has 1959 nodes and 15,271 conductors, and a combined Shuttle
model which had no external radiation network, leaving it with 6,489 nodes and
only 24,445 conductors. Table I shows the comparative performance of SINDA
with the MID model on the NASA/JSC UNIVAC and the CYBER and CRAY 1 of UCS.
The UNIVAC cost figure is based on $457/hr; the CYBER and CRAY 1 figures are
actual costs including the NASA discount. The decrease in execution time in
CP seconds going from UNIVAC to CYBER to CRAY 1 was as expected, but there was
no significant corresponding decrease in cost. A similar CP second/cost com-
parison for the UNIVAC and CRAY 1 using the combined Shuttle model is shown in
table II. Only preprocessor data is shown because the model is too large to
run the processor on the UNIVAC. The CYBER would not handle even the preproc-
essing of the combined model. The results are about the same as those of the
MID preprocessor; the CRAY 1 gives a dramatic reduction in CP seconds but a
slightly higher cost.

VECTORIZATION

After establishing a working version of SINDA on the CKAY and recording
some comparative execution times for purely scalar code, the next effort was
to incorporate some vector code into SINDA. The proportionately large amount
of time spent in the network solution routines suggested that a vectorization
effort in this area would be the most productive initially. Study led to the
conclusion that merely applying vectorizing techniques to the existing code
might not provide significant improvement, so a simultaneous attack was begun
on the PCS structure.

Execution Routine Code Modification

The first routine to be examined for vectorization potential was the
convergent explicit forward differencing routine SNFRWD. This routine was
chosen because it produced consistent, reliable predictions of network
response, was already one of the most efficient network solution routines, and
consequently was heavily used. At this time, there are no cost comparison
figures for any of the execution routines, but a brief discussion of the
vectorization process for SNFRWD will provide some familiarity with the
modifications involved in vectorization.

The ultimate objective when vectorizing code is to significantly reduce
array processing time. This reduction can be achieved by accessing array
elements so that memory banks are referenced sequentially, and by avoiding
statements or constructs that inhibit the pipelining of operands and
instructions.

430

In the SNFRWD routine, some loops cannot be vectorized effectively due to
the extensive use of indirect addressing, and the presence of nonvectorizable
external references and GO TO's. In loops that appear to be candidates for
vectorization, but contain a few nonvectorizable statements, the solution can
be the creation of two or more loops so that one or more will vectorize. CRAY
FORTRAN offers vectorization aids in the form of vectorizable utility routines
to replace conditional assignment statements within loops, as in this example
adapted from SNFRWD:

i THIS LOOP DOES NOT VECTORIZE
C

DO 1 I = 1,lOOO
LSUM = LSUM + LEN(I)*2
IF (LEN(I) .NE. 0) LSUM = LSUM + 2

1 CONTINUE

: THIS CODE VECTOR1 ZES FOR LOOP 1
C

DO 1 I = 1,lOOO
LSUMT(I) = CVffiZ(LSUMT(1) + LEN(I)*2,

LSUMT(1) + LEN(I)*2 + 2, LEN(I))
1 CONTINUE

RSUM = SSUM (lOOO,LSUMT(l),l)
LSUM = xFrx (RSUM)

Note that scalar summing variable LSUM in the original loop is replaced
by temporary array LSUMT in the vector version to avoid scalar register use.
With up to four million words of core memory available, and considering the
high cost of CRAY processing time, this trade-off becomes economically
justifiable in many cases. The vector utility routine CVffiZ performs the
conditional test of the original loop and allows the assignment statement
that preceded the test to be performed at the same time. CVffiZ tests the
third argument, LEN(I), against a zero value, and if the test succeeds,
LSUMT(1) is assigned the value of the first calling argument. If the test
fails, the value of the second argument is used. LSUMT and LEN are typed real
for the second example, so that real library function SSUM can be used to sum
vector LSUMT. This real sum is then converted to type integer. The vector
version of the loop actually contains more code, plus an external reference,
but executes more than 12 times faster than th,e original. For an iteration
count of five or less, vectorization of this loop would not have resulted in
any time savings because of the required post-loop processing. Generally, the
more times a loop is executed, the greater are the potential savings from
vectorizing it.

431

PCS1 Restructure

The R-C network is contained in PCSl. Each word contains several pieces
of information, as illustrated in figure 1. Each node in the network has one
of these words for each connection it has to other nodes; i.e., if node 10 is
connected to four other nodes, then the portion of PCS1 belonging to node 10
will be four sequential words. Obviously, the length of PCS1 is twice the
number of conductors in the network. All current SINDA execution routines
perform the new temperature calculations with an outer DO loop with the range
of 1 to the number of nodes and an inner loop whose range varies depending
upon the number of connections for that node. The basic forward difference
formulation is an example:

T; c G..(T. - T.) + c R..(T? - T?) t Q.
1JJ 1

j 1JJ 1 1
I

The inner loop, using PCSl, sums the Gij on Rij AT product for each conductor

to the node and the outer loop does the calculation of the new temperature,

Ti '
for each node.

Extracting data from bits of a word is an expensive process in terms of
computer time. However, the increase in allowable problem size resulting from
packing of the data was judged to be worth the price for the machine on which
it was first coded; for the CRAY 1 it is not.

Assuming the inner loop work has been done and stored, i.e.

GSUMi = C G..(T. - Ti) + c R..(T4 - T;)
j 1J J j 1J J

the equation resulting from substitution into equation (1):

T; = Ti + At/$ (GSUtf + Qi)

(2)

is well suited for vector processing because all terms are vectors of
length i. However, the largest amount of time is 'spent in forming the GSUMi
term, and the code dictated by the PCS1 structure is not well suited for
vectorizing.

One approach taken to make SINDA more efficient on the CRAY 1 was to
restructure PCS1 so that a new execution routine could be written which did
not require unpacking of data and which contained vectorizable code. (See
fig. 2.) The original PCS1 contained four types of information:

a. type of conductor - bits O-4 and 21
b. conductor number - bits 5-20
c. adjoining node - bits 22-35
d. subject node - implied by current location in PCSl.

432

The new PCS1 has the conductors sorted by types (instead of by subject
node as in the original) and three arrays, one specifying conductor number,
and two to list the connected nodes (subject node and adjoining node).

Currently, the new PCS1 is being built from the old PCS1 in a post
preprocessor operation, as opposed to recoding the preprocessor to construct
it in the new form. It is anticipated that this overhead cost will be more
than offset by the elimination of unpacking and the resulting existence of
more vectorizable code.

CONCLUDING REMARKS

We have shown that it is possible to build and use for analysis thermal
math models on the CRAY 1 computer of UCS that are much larger than those
allowed on our local computer, the JSC UNIVAC 1110. We have presented data
showing the CRAY 1 executing scalar code to be competitive with the UNIVAC
1110 for the same model. An additional small cost reduction would probably
result if the total cost of running the five UNIVAC models were compared to
the cost of a single execution of the combined model on the CRAY. However,
the largest potential cost savings lie in developing efficient vectorized code
for the CRAY. There is no exact method for determining the point at which run
time savings gained through vectorization are offset by programming costs
accrued in the modification process. Program portability, frequency of use,
and life expectancy, along with programmer hours and expected savings should
be considered before beginning any vectorization effort.

REFERENCES

1. CRAY-1 Computer System FORTRAN (CFT) Reference Manual. CRAY Research,
2240009, May 1980.

2. SINDA User's Manual. TRW Systems, 14690-HOOl-RO-00, April 1971.

433

TABLE I.- COM'ARATIVE PERFORMNCE 'OF SINDA WITH THE MID THERMAL MTH MJDEL

UNIVAC CYBER CRAY 1

CP
cost

CP
seconds seconds 'Ost fkonds cost

Preprocessor 2059.0 $261.38 1034.3 $304.26 244.1 $279.39

Processor
0.2 - 45.4 hr

5762.0 $731.45 2248.0 $614.38 451.7 $506.33

TABLE II.- COMPARATIVE PERFORMANCE OF SINDA WITH
THE COMBINED SHUTTLE THERML MATH MODEL

CP
seconds 'Ost E!conds

cost

Preprocessor 6541.0 $830.30 830.6 $1012.07

434

LAST G FOR THIS NODE

NONLINEAR CAPACITY

NONLINEAR CONDUCTANCE

RADIATION CONDUCTOR

EXTERNAL HEAT SOURCE ONE-WAY CONDUCTOR

5-20 1211 22-35 1
4 4

Figure l.- PCS1 packed data structure.

OLD PCS1

I 1 y------Ia=2*#g's

LAST NODE

NEW PCS1

I ::: 1 1 CONDUCTOR NUMBERS R = # g's

1' 1:: -11 SUBJECT NODES

I ::: II ADJOINING NODES

TYPE 1 TYPE 2 TYPE 3 LAST TYPE 'total
= 3*# g's

Figure 2.- Old versus new PCS1 organization.

435

