ΝΟΤΙΟΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

AgRISTARS

A Joint Program for Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

Early Warning and Crop Condition Assessment

NOVEMBER 1981

EVALUATION OF THE DORAISWAMY-THOMPSON WINTER WHEAT CROP CALENDAR MODEL INCORPORATING A MODIFIED SPRING RESTART SEQUENCE

T. M. TAYLOR, F. W. RAVET, AND D. SMIKA

(E82-10207) EVALUATION OF THE N82-23580 DORAISWAMY-THOMESON WINTEE WEEKT CROP CALENDAR MODEL INCOEPORATING A MODIFIED SPRING RESTART SEQUENCE (Department of Unclas ...Agriculture) 11 p HC A02/MF A01 CSCL 02C G3/43 00207 in the interest of early and wide dssemination of Earth Resources Survey Program information and without inautity for any use made thereot."

Lyndon B. Johnson Space Center Houston. Texas 77058

EW- U1-04212 JSC-17801

EVALUATION OF THE DORAISWAMY-THOMPSON

WINTER WHEAT CROP CALENDAR MODEL

INCORPORATING A MODIFIED SPRING RESTART SEQUENCE

PRINCIPAL INVESTIGATORS

T.W. Taylor, F. W. Ravet and D. Smika

APPROVED BY

0. 54 . 12 Er_ . . . Glennis O. Boatwright, Manager

Early Warning/Crop Condition Assessment Project AgRISTARS Program

> Houston, Texas November 1981

1. Report No. EW-U1-04212 JSC-17801	2. Government Accession No.	T	3. Recipient's Catalo	g No.
4. Title and Subtitle			5. Report Date	
Evaluation of the Doraiswan	y-Thompson Winter Wheat C	rop	November 19	31
Calendar Model Incorporatin	rt	6. Performing Organi	zation Code	
Sequence				
7. Author(s)			8. Performing Organi	zation Report No.
T W Taulor (USDA) F W	Ravet (NASA) and D. Smik	a (USDA)		
1. H. 149101 (00007), 11		· · ·	10 Work Lloit No	······
9 Performing Organization Name and Addre	*		TU. WORK Unit NO.	
EW/CCA	-	(
1050 Bay Area Blvd.		Γ	11. Contract or Grant	No.
Houston, TX 77058				
			13. Type of Report a	nd Period Covered
12. Sponsoring Agency Name and Address				
ICC (CK)		ŀ	14. Soonsoring Anna	v Code
USDA/NASA Houston TX 7	7058		· · · · · · · · · · · · · · · · · · ·	,
15. Supplementary Notes				
AgRISTARS, Program				
16. Abstract				
		1 740		•
Ine Robertson phenology mo	del is used by both EW/CC	A and FAS t	o provide grow	th stage
information to a wheat str	ess indicator model. The	resistance	of wheat to a	given stress
varies with crop phenology	· ·			
A stress indicator model of	lemands two accurate predi	ctions from	a crop calenda	ar: (1) the
date of spring growth init	iation and (2) the crop c	alendar sta	ge at growth in	nitiation.
During the LACIE various a	approaches were studied to	predict th	ese two variab.	les.
The EU/COA such as here at				
The EW/CCA project has sti	idied several appraoches f	or restarti	ng the Roberts	on Phenology
model at spring growth int	tlation. An approach sug	gested by D	. Smika in 197.	was selected
and tested in conjunction	with the Doraiswamy-Thomp	son crop ca	lendar.	
17 Kay Words / Command has A sharefully		bution Cantanan -		
Stress Model		IDULION STATEMENT		
Winter wheat crop calendar	.			
Winter wheat growth restar	t l			
_	1			
	.			
19. Security Classif. (of this report)	20. Security Classif (of this page)	21. No. of Pages	22. Price*
	Unclassified		12	
Unclassified			1	_I
* Cor esta bu	the National Technical Information Sand	ice Springfield Vi	rainia 22161	
	are realigned rectinicer mighting (ion Serv			
JSU PORM 1424 (HAV NOV 75)			•. ⁻	NASA JS(
		• •		

A CONTRACTOR

٠

.

EVALUATION OF THE DORAISWAMY-THOMPSON WINTER WHEAT CROP CALENDAR MODEL INCORPORATING A MODIFIED SPRING RESTART SEQUENCE

The Early Warning/Crop Condition Assessment project of AgRISTARS and the Crop Condicion Assessment Division of the Foreign Agriculture Service have employed a version of the Robertson phenology model. The model was improved during the Large Area Crop Inventory Experiment (LACIE) to predict winter wheat growth stages. Model implementation requires an accurate estimation of planting date, the historical normal date are not adequate.

The Robertson phenology model is used by both EW/CCA and FAS to provide growth stage information to a wheat stress indicator model. The resistance of wheat to a given stress varies with crop phenology.

~

Stress that affects winter wheat prior to growth reduction ("dormancy") are not stage related, therefore accurate phenological data is unnecessary. Following spring growth initiation, phenology information is mandatory.

A stress indicator model demands two accurate predictions from a crop calendar: (1) the date of spring growth initiation and (2) the crop calendar stage at growth initiation. During the LACIE various approaches were studied to predict these two variables.

Baskett, et.al (1976) determined a start and stop dormancy criterion based on many years of Kansas and South Dakota Crop Reporting District data. A stage development rate criterion was incorporated based on daily maximum and minimum temperatures and day length. Their analyses indicated that the Robertson Biometeorological Time Scale (BMT) at spring growth initiation could vary between stages 1.0 and 2.0. This range, while unacceptable, was the best that could be acquired from their data source. The Feyerherm Yield Model used a version of the Robertson Crop Calendar that was reset to BMT 1.85 on Julian day 270. This procedure was used for the LACIE.

The EW/CCA project has studied several approaches for restarting the Robertson Phenology model at spring growth initiation. Best results were obtained with a solar thermal unit method (Caprio, 1971). Solar radiation is, however, not readily available on a global basis. Therefore, an alternate approach suggested by Smika (1977) was selected and tested. Smika indicated soil temperature as the controlling parameter for spring growth initiation; he found that summing the mean soil temperature above $-4^{\circ}F$ to a total of 25 degree days would predict spring growth initiation as long as the mean daily soil temperature was greater than $-4^{\circ}F$ for the period. Should the mean soil temperature fall below $-4^{\circ}F$, the summation is reset to zero and started over. Heuer, et.al (1978) stated that this is the best method to predict spring growth initiation.

Smika's method has soil temperature as the central parameter and it is also not readily available. EW/CCA is evaluating methods to predict soil temperature at the root node (ca. 3cm) for use in the winterkill model. No technique tested thus far has improved the present soil temperature algorithm used in the winterkill model. That algorithm is from a report by Moiseichik (1966) stating that a 4° C mean temperature differential exists between the ambient and root node temperatures. This approximation was selected for use in the wheat crop calendar restart model.

Analyses of ground truth data taken under Smika's direction for 2 years from 7 ARS sites indicate that a BMT of 1.4 rather than 1.85 is a more accurate approximation of the phenology of spring growth initiation.

Model Configuration

The restart model was designed to use the minimum and maximum temperatures provided by either World Meteorological Organization station data or Air Force gridded meteorological data. Coefficients in the Robertson model were modified by Doraiswamy (1981) and the restart model was added. Model structure was configured to accept solar radiation information should it become generally available and $S_{\rm AC}$ values can replace the growing degree-day calculations.

Model logic includes:

SOILT: = ((Tmin + Tmax/2) + 4 where SOILT is mean soil temperature Tmin is the minimum daily temperature, ^OC Tmax is the maximum dialy temperature, ^OC

The sum of the degree-days (SDD) is: SDD + (SOILT $-4^{\circ}C$) + SDD If the quantity (SDD- $4^{\circ}C$) is less than zero, then SDD is reset equal to zero, when SCC equals 25°, the phenology model is started with a BMT of 1.4.

Testing

The modified model (Doraiswamy-Thompson) was compared to the LACIE version using Agricultural Research Service (ARS) meteorological and ground truth data. Results are summarized in Table 1.

Conclusion:

An analysis of variance procedure was applied to the data in Table 1. A two-factor ANOV A model with interactions was used with ground truth growth stage information and both D-T and LACIE-Robertson model predictions as factors. Conclusions were:

- Neither model tracks phenology perfectly although greater inaccuracies occur with the LACIE-Robertson model (fig. 1).
- (2) Overall the D-T model more closely estimates ground-truth than does the LACIE-Robertson (fig. 2).
- (3) When compared to ground-truth:
 - a. Both models performed equally well in growth stages 1 (emergence), 3 (heading), 4.5 (waxy ripe) and 5.0 (harvest).
 - b. the D-T model is superior at stages 2 (jointing) and 4 (milky ripe).

																		TOTAL			
	1 1.R	E DS	GT	I.R	$\frac{2}{DS}$	GT	<u> </u>	<u>3 Н</u> DS	GT	L.R.		GT	<u> </u>	<u>.5 HC</u> DS) GT	I.R	<u>5 M</u> DS	GT	HR	2-5 DS	GT
77-78 Garden City	271	271	267	98	106	109	146	136	163	169	154	151	173	166	170	180	176	177	82	70	6
Tribune	259	259	258	98	106	136	148	132	151	170	149	164	174	162	177	178	174	184	76	68	48
Albin	246	246	244	113	120	123	163	144	152	185	166	162	190	178	186	196	190	195	83	70	72
Akron	256	256	253	108	117	129	159	141	143	178	162	158	182	174	171	187	184	186	79	67	57
Paxton	263	263	262	113	120	123	157	146	150	176	165	161	180	176	173	184	185	188	71	65	65
78–79 Paxton			270	112	120	124	156	146	162	180	168	170	184	177	183	189	189	192	77	69	68
Medford			270	91	100	112	137	139	143	161	156	151	165	168	-	169	178	172	78	78	60
LR - LACIE F DS - DORAISW GT - Ground	Robert VAMY-F Truth	ts RESTAF	RT MOL	DEL				E – J – H –	Emera Joint Headi	gence ting ing						SD - HD - M -	- Soft - Hard - Matu	: Doug Doug re	յի յի		

TABLE 1

MODEL AND GROUND TRUTH RESULTS USING ARS DATA FURNISHED BY DR. DARREL SMIKA

ω

ションテラ

.

and the second second

Acknowledgment:

 \mathbf{z}

We wish to thank Fr. Glen Boatwright for his advice on the approach used for testia, analyzing results and structure of the restart model; and Ed Miller for providing the statistical analysis of the results.

· .

REFERENCES

- Baskett, R.L., W.W. Hildreth, D.D. Wilcox, and S.K. Woolley, 1976, Large Area Crop Inventory Experiment (LACIE) Phase II Winter Wheat End-Of-Dormancy Restart Model, NAS9-012200, LEMSCO, Houston, TX.
- Caprio, Joseph M., 1971, The Solar-Thermal Unit Theory in Relation to Plant Development and Potential Evapotranspiration, 1971, Montana Agricultural Experiment Station, Montana State University, Bozeman, MT.
- Feyerherm, Arlin M., 1977, Response of Winter and Spring Wheat Grain Yields to Meteorological Variation, NAS9-14282, Johnson Space Center, Houston, TX.
- Heuer, George R., Dale F. Heermann, Thomas B. McKee and John F. Benci, Predicting Winter Wheat Phenology Using Temperature and Photoperiod, Colorado State University, Fort Collins, CO.
- Kulik, M.S. and V.V. Sinelshchikov, 1966, Lectures on Agricultural Meteorology, National Science Foundation, Washington, D.C.
- Robertson, G.W., 1968, A Biometeorological Time Scale for a Cereal Crop Involving Day and Night Temperatures and Photoperiod, Ontario, Canada.

Phenologic	cal			(Coefficient			
period	°0	a ₁	~^?	^b 0	b l	^b 2	°1	<u>د</u>
				Robertson M	rde l			
·	349	0	0	44.37	U.U1086	-0.0002230	0.009752	-0.0002?67
2	8.413	1.005	0	23.64	003512	.00905926	.0003666	30000428
3	10.93	. 9256	···• 06025	42.64	.0002958	0	.00006733	C
4	10.94	1.389	0.08191	42.18	.0002458	0	.00003109	G
5	24.58	-1.140	0	37.67	.0006733	0	.0003442	0
			D/T	Improved co	efficients			
<u> </u>	999	<u>c</u>	0	44.37	0.01086	-0.0002230	0.009732	-0.0002267
2	8.413	1.005	0	23.64	003512	.00005026	.0003666	00000428
3	10.013	.0945	0	.75	.000955	0	.009732	0.0002267
4	7	.9850	07050	45.18	.000625	0	.00003109	0
5	999	U	U	-5.50	.00046	0	.009732	0.00022

TABLE A1 - REGRESSION COEFFICIENTS FOR THE ORIGINAL ROBERTSON MODEL AND THE DORATSWAMY-THOMPSON IMPROVED COEFFICIENTS

1	.100E+20	14193-19	<u> </u>	.4437E+02	.76522-01	15/1E-02	.6857E-01	1597E-02
2	.9413E+01	.5581E01	e	.2364E+02	63242-01	.9050E-03	.6601E-02	7710E-04
3	.1093E+02	.2613E-01	- 1701E-02	.4265F+02	1047801	0	.1396E-01	С
4	·1094F+02	.º021E-01	1192E-u2	+.4218E+02	.1683E-01	0	.2136E-07	<u>9</u>
5	.24 285+02	J.2165E-01	C	.3767E+02	.3543E-02	0	.1811E-01	0

"Periods: 1 = planking to emergence; 2 = emergence to jointing; 3 = jointing to heading; 4 = heading to soft dough; and 5 = soft dougn to ripe.

NASA-JSC

A-1

ORIGINAL PAGE IS

.