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Abstract

Maximum likelihood estimation procedures for the Jelinski-Moranda

software reliability model often give misleading answers. We show here

that a reparameterization and a Bayesian analysis eliminate some of the

problems incurred by MLE methods and often give better predictions on

sets of real and simulated data.

Practical difficulties in estimating the initial number of errors

N and the failure rate of each error cj) by the method of maximum like-

lihood are:

/\

1. N , the MLE of N , is occasionally infinite (i.e., the routines

s\ s\

for calculating N and 4> do not converge). Littlewood and

Verrall show that N is finite if and only if the regression

line of the interevent times t. vs. i has positive slope.

/\

2. A serious problem is that often N - n , the sample size, and

sometimes N = n . Thus the MLE predicts that the program is

perfect even when it is far from being so. Forman and Singpur-

y\ /\

walla have shown that N and <j> can only be trusted near the

end of debugging, i.e., when almost all failures have been

removed. Sofer
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3. Even when these problems are not encountered, the results

obtained from the model are too optimistic; it predicts the

reliability to be greater than it really is.

In view of these deficiencies, we are led to consider a Bayesian

approach to the estimation problem. It seems plausible that it is easier

to correctly estimate the initial program failure rate A = N<(> than the
/\

initial number of bugs N , since small errors in (j) could lead to large

/\

errors in N . It is therefore plausible to reparameterize the model to

(A,(J>) instead of (N,<}>) .

: Using now the Bayesian approach, letting prior (A,<j>) = prior (A)*

prior (cf>) , where prior (A) and prior (cj>) are gamma distributed, and

using

Rn+l(t) "

t | A,cj>) post(A,<j) | t1 ..... tn)dAdtj)

we obtain an explicit estimate of the program's current reliability.

Similarly, we can get in closed form the distributions of the number of

bugs remaining in the program, the number of bugs that have to be removed

in order to attain a given reliability, and the times between future

consecutive failures (provided they are well defined, i.e., the program

is not perfect) .

The quality of these estimations was examined for the special case

when A and <j> have an (improper) uniform prior distribution over

[0,<») (i.e., a noninformative prior distribution). The predictions were

examined both for real and for simulated sets of data. In all cases where

ML erroneously predicts the program to be perfect, the Bayesian method

gives a positive probability that the program is not perfect. Moreover,
Sofer

G. Wash. Univ.
2 of 14



since the predicted reliability is given in closed form, problems of

convergence of the computer program are not encountered.

To examine the quality of prediction, we use a goodness of fit pro-

cedure. Suppose that from the data t..,...,t we predict the distribu-

tion of T ,n , the time to next failure. We then observe t , .
n+1 ' n+1

Define U = Pr(T ., < t ,,) . If the model is correct, then U are
n n+1 n+1 n

uniform variables on (0,£) . We compare the sample c.d.f. of the u 's
n

with a line of unit slope which is the uniform c.d.f.

When applying the goodness of fit procedure to real data sets, the

Bayesian approach is almost always better than the MLE method. For the

simulated data, the goodness of fit procedure on the Bayesian estimates

give very good results; this, however, is not always true for the real

data sets.

There seems to be evidence that the J-M model is intrinsically opti-

mistic in its estimate of software reliability. This could be a conse-

quence of the assumption that all errors contribute equally to the failure

rate. A new model by Littlewood relaxes this assumption with the result

that earlier fixes tend to involve larger reductions in the failure rate

than the later ones. It can be shown that this model is less optimistic

than the J-M model and we hope to examine its performance on real and

simulated data in future work.
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THE VIEWGRAPH MATERIALS
for the
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JELINSKI-MORANDA model assumptions:

1. Successive inter-failure times Tj, T2, . . . . are independent.

pdf (tj I Xj) = Xj e~Vi

2. Xi = ( N - i + 1)0 where

N is "initial number of faults" 0 is "contribution to program failure rate from each fault"

f.r

N0

(N-2)0

Note that
1. All fixes have same effect.
2. Same model by SHOOMAN and MUSA. Same assumptions

for NHPP model by GOEL-OKUMOTO.

time
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There seems to be 3 problems with J-M:
A A

1. N occassionally infinite (0 = 0)

Nee. & Suff. conditions: "Regression line of t= versus i has negative slope"
(Littlewood, Verrall: 1981IEEETR)

This can also occur with simulated data from J-M with finite N, 0 ¥= 0,
A A.

However X = N0 is finite, non-zero.

2. Reliability predictions always(?) too optimistic
A

3. N usually too small, sometimes equal to sample size (i.e. program is "perfect")
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Table 7.
Failure Intervals - System 3 System Test Phase

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

115,
o,
83,
178,
194,
136,

1077,
15,
15,
92,
50,
71,
606,
1189,
40,
788,
222,
72,

615,
589,
15,

390,
1863,
1337,
4508,
834,
3400,

6,
4561,
3186,
10571,
563,
2770,
652,
5593,
11696,
6724,
2546,

-10175,

1
1
3
3
3
3
3
3
3
3
3
3
6
8
8
18
18
18
18
26
26
26
27
30
36
38
40.
40
42
44
47
47
47
48
50
54
54
55
56
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SYSTEM 3

FAILURE
NUMBER

2
3
4
5
6
7
8
9

1O
1 1
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A

N
ESTIMATED
FAILURES

999999
999999

5
6
8
7
8
12
19
55

999999
22
15
18
18
21
25
25
25
31
33
26
26
25
26
27
28
29
30
31
32
33
34
35
36
37
38

riMATED INITIAL MORANDA
MTTF

O.5750E+02
0.6600EK>2
O.5900E+O2
O.6480E+02
0.7275E+02
0.7884E+02
0.8845E+02
O.1196E+03
O. 1396E+03
O. 1609E+03
O. 1688E+03
0. 1387E+03
O. 1 125E+03
O. 130GE+03
O. 1306E+03
0. 1476E+03
O. 1G16E+O3
O. 1622E+O3
0. 1612E+O3
0. 18O7E+03
0. 1854E+03
0. 1609E+03
0. 1606E+03
0. 152OE+03
O. 1628E+03
O. 1764E+O3
0. 1876E+03
O.2023E+03
O.2182E+O3
O.2427E+03
O.2642E+03
O.2853E+03
O.3041E+O3
O.3248E+03
O.3519E+O3
O.3804E+03
O.4O73E+O3

PHI

0. 173913E-07
O. 151515E-O7
0.338983E-O2
0.257202E-02
0. 171821E-02
0. 181206E-02
0. 141318E-02
0.696972E-03
0.377017E-03
0. 112990E-03
0.592304E-08
0.327621E-03
0.592367E-03
0.425447E-03
0.425294E-03
0.322715E-03
O.247463E-03
0.246615E-03
0.248210E-03
0. 178535E-03
0. 163413E-03
0.239046E-03
0.239457E-03
O.263205E-03
0.236199E-03
0.210001E-03
0. 19O384E-03
0. 17O456E-03
O. 152766E-03
0. 132935E-03
O. 118265E-03
O. 1062O2E-03
O.967196E-O4
0.879556E-04
0.789439E-O4
O.710397E-O4
O. 64604 1E-O4
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How well does model perform?

Simplest problem is estimation of current reliability:

Given data tj , . . ., t j_ j , what can we say about T;?

What is cdf F; (:)?

Obtain ML estimates of N, 0, based on tj5 . . > tL-1 and use "Predictor distribution"

If prediction is "good"

A

Uj = Fj (Tj ) is approx.

U(0,l). Examine Q-Q plots of realizations D,
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EXAMPLE

Data: MUSA "System 1", range of i:30-129

Jelinski-Moranda: poor prediction, optimistic

Littlewood-Verrall: good prediction, slight pessimism

J-M

1.0
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Bayesian J-M

Reparameterize to (X, 0) from (N, 0) where X = N0 "initial failure rate".

Assume:

prior (X, 0) = prior (X) • prior (0) where prior (X) and prior (0) are gamma distributed

Then "predictor distribution" is

F! (t) = P(Ti < t) = P(Tj < t | tj , . . . tj_j) = / P(Tj < t | X,0) post (X,0 1 1,. . Vr ) dXd0

Reparameterization: Informal Justification

f.r

"TRUE LINE"Xj = (N-i+1)0

N

i, FAILURE NUMBER

Sofer
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For the case of uniform (improper) priors we get:

ik!( i -k)!
-

i-k+1

,_, a
where c ' =

and where ak j is the coefficient of x' Mn n (x + k) = ]
' • k=i )

These coefficients are easily computed from the relation

If i K ~~ 1 i~" J K i^~ 7 *^*^
I*, jl fk. J J I 1 f^. yl i

I -t I \ /

DATA: MUSA "System 3", i=18. .37

J-M ML estimation of (N,0)
J-M Bayes, uniform (improper) priors on (X,

1.
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Data: MUSA "System 1"
i = 30 129
J-M MLE (N,0)
J-M Bayes, uniform

prior (X,0)-
slightly better

Conclusion!

1. Bayes J-M seems always (?) better than MLE J-M, but sometimes only slightly.

2. Results on real data are always optimistic.

3. But on SIMULATED data from J-M model, Bayes is very good, ML poor

=> real data do not follow J-M model?
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Hypothesis: Assumption of equal 0's is wrong. In fact <d's different.
Larger ones tend to be eliminated earlier:

f.r.

O

O

•

O "best fitting" linear
function (i.e. J-M).

J-M model f.r.

O

•

"true" f.r.

O

I

failure number
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