L

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

Development Techniques for Generic Software
Richard L. Hamilton

Bell Laboratories
Holmdel, New Jersey 07733

1. INTRODUCTION

In developing the first version of a generic implementation of X.25,
Levels 2 and 3, we examined three development techniques: table-driven

) finite state machine implementation, an integrated testing énvironment,
and top-down design. While not designed as an experiment, we monitored
the project closely and compared the product with other implementations
of X.25 at Bell Laboratories to evaluate potential benefips and

penalties.

2. TECHNIQUES
2.1 Finite State Machine

A finite state machine (FSM) is a powerful tool for both specifying and
implementing protopols} This technique was used in the X.25
specification and has been discussed in the literature{1,2,3,4]. A
table-driven implementation.of the FSM was chqsgn to facilitate changes
and simplify coding. We were intergsted in what effect this technique
would have on program size, speed of execution, coding time, and

debugging time.
2.2 Testing Environment

Contrary to common practice, we made a testing environment before
coding. The complexities of a communications protocol, especially

X.25, require careful attention to the problems of verifying that an

R. Hamilton
Bell Labs
10f 20

https://core.ac.uk/display/42856654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implementation of that protocol does in fact perform correctly. 1In
addition, we felt that the process of verification should start as
early as possible in the development process. The testing environment,
which runs under the UNIX* operating system, let us test the FSM and
its tables very early in the coding process. We were able to integrate

new modules easily and test them thoroughly using this tool.
2.3 Top Down Design

In designing and implgmenting a solution, we followed a top-down
approach. This made it possible t§ have a '"running" version at all
times, with unwritten modules replaced by dummy routines. This was nbt
rigorously followed in coding because it was often more sensible to
code all of the ioutines that performed one function even if that meant
coding some low-level functions early. Doing this still let us always

have a running version, but simplified testing.

3. MEASUREMENTS

Our main method for evaluatihg these techniques was comparison with
existing implementations of X.25 at Bell Laboratories. We measured the
size and execution speed of both our implementation and the existing

ones and ran some simple complexity metrics.

* UNIX is a Trademark of Bell Laboratories

R. Hamilton
Bell Labs
20f 20

We used the testing environment to help modify and transport existing
implementations of both Level 2 and Level 3 to a new environment, which
gave us the opportunity to compare our versions with the existing ones
in terms of the ease of making modifications. We kept a iog of prégram
bugs found and the effort it took to fix them, for all of the

implementations, and tried to characterize the types of problems found.

4. CONCLUSION

A combination of a table-driven finite state machine realization, a
comprehensive testing environment, and a top-down approach was used- to
produce an implementation of X.25, Levels 2 and 3. In comparison with
other, ad hoc, X.25 implementations, we found that our solution ran as
much 55 20% faster, but was about 35 to 40 percent bigger. We were
able to explain all but Ii% of that aifferenEe in ferms of added
function or added flexibility. A McCabe complexity metric showed

little difference between the implementations.

Comparison of time spent debugging showed that our approach was
superior to the ad hoc methods, both in terms of number of errors
detected and time taken to correct those errors. Even so, the testing
environment was shown to be a signifipant aid in debugging the other
implementations when compared to other testing techniques. Although
not intended as a controlled experiment, the data collected during

development support using these techniques in similar circumstances.

R. Hamilton
Bell Labs
30f20

REFERENCES

(1]

(2]

- [3]

{4l

Bochmann, Gregor V., "A General Transition Model for Protocols

and Communication Services," 1EEE Transactions on Communications,

vol. COM-28, no. 4, April 1980.

Bochmann, Gregor V. and Tankoano Joachim, 'Development and

Structure of an X.25 Implementation,'" IEEE Transactions on

Software Engineering, vol. SE-5, no. 5, September 1979,

Bochmann, Gregor V. and Carl A. Sunshine, '"Formal Methods in.

Communication Protocol Design," IEEE Transactions on

Communications, vol. COM-28, no. 4, April 1980.

Danthine, Andre A. S., "Protocol Representation with Finite-State

Models," IEEE Transactions on Communications, vol. COM-28, no. 4,

April 1980.

R. Hamilton
Bell Labs
4 of 20

THE VIEWGRAPH MATERIALS
for the
R. HAMILTON PRESENTATION FOLLOW

R. Hamilton
Bell Labs
50f20

0T309
$qeT] f1eg
rurey Y

DEVELOPMENT TECHNIQUES

FOR GEMERIC SOFTWARE

0TioL

$qQe] 129
uoiweH yJ

X.25 DEVELOPMENT

OBJECTIVES - Toofs

Portable - C language, minimal
-set of primitive functions

Maintainable Testing/
development environment

Flexible Table-driven finite state

Modifiable Layered approach

0z308
sqeT 11°d
wey Y

DEVELOPMENT ENVIRONMENT

UNIX™Operating System
® Make |
® AWK
e SCCS
¢ Shell

07306
8qe] P4
uoyTwey Y

LEVEL 2 -- MORMAL EMVIRONMENT

Level 2. Level 2

Level 1

Target Operating
Environment

Operating
Sysiem

0T 3001
sqe] fleg
uoyTwey ‘Y

i
[
=
im
—

Automated

Regrassion ====+

Testing

Interactive
Debugging

N

-~ TESTING EMYIRONMENT

"UNIX™ - Based Tester

0Tionl
$qQe] o9
JIueH “y

FINITE STATE LIACHINE
° Table-driven
"® Hierarchical

¢ Parallel

oozl
8qeT] [1og
uoyIwRy Y

X.25 IMPEEMENTATION

MESSAGE

|

LEVEL 3
TABLES

COMPUTER
OPERATING
SYSTEM

PHYSICAL
LINK

0TJotl

$qe1 ned
uojtwey ¥

FINITE STATE MACHINE

TATES

ARCHICAL S

R. Hamilton
Bell Labs
140f20

R.Hamilton
Bell Labs
15 0f 20

0T 3091
sqe] g
uojiweH “y

LEYEL 2
CONTROL

TRANSLATION

O

 QUEUES

T oA M) e s
= g4 3 : =
FRLAby 1 L =

INFORMATION FRAME

PRIMITIVES
PACKET TO

FINITE STATE
MACHINE

LEYEL 3

SqQe] Med

0TIo LT
uojrureH 4

LEVEL2 . LINES OF CODE % DIFFERENCE
* Existing. - 1039
® Generic 1846 | +78%
LEVEL2 LINES OF CODE % DIFFERENCE
® Existing 1590
® Generic 2252 +42%

0T 3o 81
$qe] 28
uojrurey -y

LEYEL 2
® Existing
® Generic

LEYEL 3
® Existing

* Generic

TEXT
5688
6766

TEXT
6818
8558

DATA
56
1236

DATA
268
926

- TOTAL % DIFFERENCE
5744

3002 +39%
TOTAL

7086

8484 +34%

Note: All programs compiled under the 5086 cross-compiler
with the optimize option, without primitives, and
. without any debugging aids included

sqe] nieg

0ZJo 61
uojiurey *y

s, e koA el L e § g e pam s gy
5! {tx- vy "-’ TR Ty i e P fete :? Foa g}*.,; :
Haa den E fomm e fima ex D tics tesa o 33 3 L—.E dAad

Aéldad function

@ Channel No. 200
- @ Timer routines 272
- Disconnect 186
Added flexibility
& Actian overhead 248
. ® Channel select 52
. & Multi-table FSM 200
- ® Table clarity 192
¢ Oplional prims 100
TOTAL _ 1450
Actual difference 2258

By tes unsccounied for 808

03007

Sqe] g
ugyjiurey “yJ

%EﬁS‘

é%EﬁENTS
Size - 35to 40% larger
Speed - 0 to 20% faster

| Complexity - Equivalent

