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I. Introduction

The first six months of the contract were spent in developing the

mathematical models to be used i« the control system design. A major task

that was completed was the development of a computer program which takes

aerodynamic and structural data supplied by NASA for the ARW-2 aircraft and

converts these data into state space models suitable for use in modern control

synthesis procedures.	 This program has the ability to generate reduced order

models by eliminating selected modes. Reduced order models of inboard and

outboard control surface actuator dynamics and a second order vertical wind

gust model was developed. In addition, an analysis of the rigid body motion

of the ARW-2 was conducted, and it was shown that the deletion of the

aerodynamic lag states in the rigid body modes resulted in more accurate

values for the eigenvalues associated with the plunge and pitch modes than

were obtainable if the lag states were retained.

The remainder of the report consists of a summary of results in each of

the areas outlined above. The details are given in Working Papers contained

in the Appendix.

II. Actuatrr/Control Surface Models (Working Papers 1 b 5)

A.	 Elevator . (Working Paper 1) The elevator transfer function to be
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used is a simple first-order lag

^d

+ 20

The allowable control surface activity levels of Mach 0.86 and 15000 ft. are

+7' and -12 ° deflection anti *80 a / s for a 12 ft/s vertical gust. The bandwidth

of tha elevator is much less than the lowest flexural frequency ( 118 rad/sec),

and the gain of the elevator at this frequency is 0.167 ( - 15.54 Db);

therefore, it appears that the e ) v,vator will not be effective for flutter

suppression.

B. Inboard Aileron . ( Working Paper 1). An eleventh-order model with

third-order numerator dynamics was given for the inboard aileron. The first,

fourth, and sixth flexure modes appear to be the most important in modeling

flutter.	 ( See Section on Results.) The frequency of the sixth mode is 218

rad/s.	 In this range of frequencies, x fourth-order approximation of the

actual inboard aileron , ransfer functOn exhibits a maximum error of 0.25 Db

in gain and -9 0 in phase angle.	 It is proposed to use the fourth order

approximation given as

^	 X /G s ,^'S z-f 3,Z2.s t 7. 7/ X /Q 5^

LL LC
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The activity for the inboard aileron is limited to 20 '* down and 10 0 up

deflection and 130 °/s deflection rate for at 12 ft/s gust at the flutter

condition.

G. Outboard Aileron . (Working Paper 5) The modified transfer function

fo: the outboard aileron is given in Working Paper 5. (Nets the .iiscussion on

the Outboard Aileron given in Working Paper 1 is based on tit earlier model of

the aileron and should be ignored.) The exact transfer function is seventh

order with second order numerator dynamics. A third-order approximation gives

the same response characteristics as the exact model up to frequencies of 300

rad/s. This third order model is

uo	 =	 r, 77t x /0

The outboard aileron has a maximum deflection of ±15 0 and deflection rate of

0
740 /sec for a 12 ft/s rms gust at the flutter condition.

III.	 Wind Gust Model (Working Paper 2)	 A second-order vertical wind gust

model given below is to be used

where

W - vertical gust velocity
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L - characteristic length ( 2500 ft)

V - the forward velocity

Z
white noise input with intensity ( V )^"

p" rat gust velocity

At the flutter condition of Mach 0.96 and 15000 feet, (- -12 ft/s. At

the gust test condition of Mach 0.7 and 15000 feet ,1- 	 59 ft/sec. The control.

system should renuce bending moments 30 to 40% at all stations at the gust

test condition.

IV. State Space Model	 (Working Paper 3)

Modern control design techniques r"quire that the system be modeled in

state space form as

i= A:^ + -6 Ur + ['^

who re

Z - state vector

U s control vector
C

'n . white noise input

The equationu of motion for the flexible aircraft are given in the form

C I''1 5 z ^ Cs + K	 + ^ [A + A	 C-1	
+ 

A'2 cs z
z 3 	 ^zv

+	 ----------	 X
'5 	 v k

7	 U
W
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where

X • the rigid body (plunge and pfrch) and	 elastic mode

deflections

U • control surface deflections

W - ve rtical wind gust velocit,

(See next Secti)n and Working Paper 4 for details of this model.)

Incorporating the tranrfer functions for the control surfaces and the

vertical wing gust with the aircraft model results in a state vector. Z.

consisting of (1) rigid body deflection and rates. (2) flexural displacements

and rates. (3) elevator angular deflection, k4) inboard aileron angular

deflection, deflection sate, and acceleration. (5) outboard aileron angular

deflection a--.d deflection rate, (6) wind gust velocity and an aaaociated

variable (see Working Paper 2), and (7) lag states associated with the

unateaky aerodynamics.	 The control vector, Us consists of the commanded

inputs to the elevator, the inboard aileron, and the outboard aileron. The

white noise input is the forcing term for the wind gust model.

Since there are 10 flexural degrees of freedom. two rigid body degrees of

freedom, a lag state for each degree of freedom and each reduced frequency

included in the unsteady aerodynamic model, a first order elevator morel,

fourth and third order aileron models, and a second order gust model, the

dimensionality of the state vector is 46 even if only one lag state to

assumed.	 Thus it is necessary to computerize the manipulations required to

construct the state space model. 	 Such a program has been written and is

running on the University of Minnesota Computer System. This program allows

rigid body and flexure modes to be delected in order to generate a lower order

model if required.	 Results obtained from use of this model are described

later.



F

Popge 6

V.	 Unsteady Aerodynamic W,dol ( Working e'aper 4)
The flexible aircraft is modeled as

FM  5 '.+ CS + K] X + 4L Q <3) x	 o
W

where

M • generalized mars matrix

C - generalized structural damping matrix

K - generalized stiffness matrix

q - dynamic pressure

Q - matrix of aerodynamic coefficients

X. U are defined in Section 4.

The matrix of aerodynamic influence coefficients, Q (s-j 2V k), was provided
C

by NASA for a range of reduced frequencies. 	 The aerodynamic influence

coefficient matrix was approximated by

/ l 2

The error matrix E(s) is defined as

E :3) = QC3) - QA (s)

n	 ^.rl !s )
+ 

r
^L 5 t Zykm

G

S
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Determination of matrices Ao , A 1 , A 2 , and D,which give the best least squares

fit to the data is a relatively straightforward problem (see Working Paper 4).

The first column of the matrix A. must be set equal to the first column

of QW(which is zero) in order to reflect the fact that aerodynamic forces due

to the plunge displacement are zero. The remaining matrices can be determined

to give the best least squares fit to the data once the k ,,; s are specified.

The selection of I "'a which result in a "best" fit is not so straightforward.

(See Dowell, E. H. "A Simple Method for Converting Frequency Domain

Aerodynamics to the Time Domain" NASA Tech. Memorandum 81844, Oct 1980.) An

approach to the selection of thek^ a was developed as part of this study and

appears to yield good results with minimal computational effort.	 This

approach depends upon the fact that the spectral norm of a matrix equals its

maximum singular value. Thus the maximum singular value of E(s), defined as

c{^)equals E(s) and is a measure of the size of the error in the approximat.on

of Q(s). The procedure is to (1) arbitrarily select values for the k,, s, (2)

let the first column of A o equal the first column of Q(0) (which is zero), (3)

determine the remaining values of A., All A., and U. , m-1, ...n which give

the best least squares fic to the data, (4) calculate the maximum singular

value of the error matrix E(s), (5) vary the k,,s and repeat the process until

this singular value achieves a minimum. Since only a few values of k. are

commonly used, a relatively simple search procedure can be used to determine

r
the optimum values for the k ^ a.

VI. Results

A.	 Rigid Body Modes (Working Paper 15)

The procedure described above was used to generate a mathematical model

of the ARW-2 at the flutter condition of Mach 0.86 and 15000 feet. A single

aerodynamic lag state was used. The value of k Iwas varied until the maximum
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singalar value of the error matrix was minimized for a reduced frequency of

zero. The minimization was accomplished at zero frequency because it was felt

Chat the approximation should be best at .tow frequencies since rigid body

modes were to be studied. The resulting value of kiwas 0.13 which is very

close to the reduced flutteL frequency of 0.15. The elements of the Q matrix

supplied by NASA were plotted in polar form and were compared with polar plots

of the elements of the Q matrix resulting from the approximate model. As can

be seen in Working Paper 4, tness plots are almost identical, indicating that

the approximation is extremely good.

All flexure modes were neglected, and the eigenvalues associated with the

plunge and pitch modes were calculated as follows:

plunge	 6.1146, 1.828 x 10 -7

pitch	 -5.1767 t j 7.5543

If the lag terms were neglected when the eigenvalues were calculated, the

plunge and pitch eigenvalues were

plunge	 3.391 x 10 , 7.588 x 10

pitch	 -1.1188 # j 3.5572

These are not too different from the values given by Boeing of

plunge -0.0092 t j .0437

pitch	 -1.4274 f j 2.422

It appears that inclusion of the aerodynamic lag terms degrades the accuracy

of the calculation of the rigid body eigenvalues and that elimivaticn of the

lag states associated with the rigid body modes improves the accuracy of the

model. It is difficult at present to explain why this is so. The aerodynamic

lag terms represent unsteady aerodynamic effect and since use of quasi-steady

aerodynamics usually allows the accurate prediction of rigid body eigenvalues,

it is not surprising that the eigenvalues calculated by neglecting the lag

terms are near those given by Boeing. 	 What is surprising is that the
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inclusion of the lag terms has such an effect on the eigenvalues. The time

constants associated with the unatuadv aerodynamics are less than .0: Pic

while the time constant associated wiLh iho short period mode is of the order

of 0.5 sec and that of the plunge mode is approximately 125 rec.

B.	 Flexure Modes

An examination of the 10 flexure mod•o indicated that modes 2 and 5 were

primarily fuselage banding modes, and mode 7 was exclusively a tail mode.

Therefore, these three modes were not considered further in the analysis .

Moda 1 was the fit-at wing bending mode, mode 2 was the second wing bending

mode, and mode 6 was the first wing torsior mode. These modes were obviously

important and were retained. Modes 3 and 8 included wing tip bending and 't

was felt that them modes should also be analyzed further. Mode 9 &-*

primarily wing bending and mode 10 was primarily wing torsion, and these modes

were also retained. Thus seven flexure modes, the lot, 3rd, 4th, 6th, 8th,

9th, and 10th, were used in the flutter analysis. A single lag term with

reduced frequency of 0.13 was used. The loci of the eigeiivalues of those

modes as velocity I s varied are shown in Fig 1. The data from which Fig. 1 is

constructed is given in Table 1. It can be seen that the lot mode flutters at

a speed of approximately 9500 in/a at a frequency of approximately 120 rad/s.

The results are based ot: aerodynamic data for a Mach number of 0.86;

therefore, the values of the eigenvalues at low velocities are suspect,

however, 9500 in/s corresponds to a Mach number of 0.75 which is reasonably

close to 0.86.	 Fig 1 presents results which are very similar to those given

by NASA; therefore, it is felt that the mathematical modeling has been done

correctly. It should be noted that modes 3 and 8 are very insensitive to

velocity, indicating that they are primarily vibrational modes not affected by

aerodynamics. Modes 9 and 10 do however very considerably with velocity.

Eigenvalues were calculated using models in which various modes were
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deleted.	 (See Table 2.)	 It can be seen that even though the lot mode

flutters, a three mode model which contains the lot, 4th, and 6th modes is

required to accurately predict flutter. 	 This is not surprising since

classical flutter raquives both a bending and a torsion mode. Both the lot

and 4th modes are bending and the 6th is torsion. It is interesting to note

that at Mach 0.6, the 4th mode flutters. Deletion of the 3rd and 8th modes

has almost no affect on the eigenvalues of the other modes, and the 9th and

lath modes have very little affect on the lower modes.

VII. Conclusions and Future Plans

It is felt that we now have a valid moo q l of the aircraft to be used in

our flutter control studies. Since the elevator has such a low bandwidth

compared with the flutter frequencies, flutter control will be accomplished

using the inboard and outboard aileronA. A model consisting of the let, 4th,

and 6th modes will be used for control system design and a model containing

the let, 4th, 6th, 9ti', and 10th modes will be used for evaluation. A single

aerodynamic lag state is proposed to be used in both the design and evaluation

models. Currently a program to perform eigenspace design is being written as

is a program to interface the aircraft model with an existing evaluation

program for determining rms responses to stochastic wind gusts.
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Table 1. Variation of Eigenvalues with Velocity at 15000 Feet

Dyn• Pressure (Psi) Velocity (in/9) Mode No.	 Eigenvalue

0.0036 1000 i0 -4.6 t j 499.3
9 2.8 f j 421.5
8 -2.31 1 395.8
6 4.1 t j 267.3
4 -2.3 f j 191.3
3 -0.7 f j 136.7

i 1 -1.6.* j 50.7

0.144 2000 A -6.7.t j 498.2
9 -3.6 t j 421.6

'i 8 -2.5 f j 395.8
6 -6.8 t j 264.9
4 -3.7.± j 191.2
3 -0.71 j 136.7

` 1 -3.01 j 51.6
I

0.325 3000 10 -8.9 f j 496.4
i S) -4.3 j 42t.7

8 -2.8 t j 39j.9
6 -9.51 j 260.9
4 -5-1.± j 191.1
3 -0.7 f j 136.7
1 -4.5 t j 53.3

0.577 4000 10 -11.0 f j 493.8
9 - 5.1 f j 42„9
8 - 3.11 j 396.0
6 -12.0 f j 255.4
4 - 6.61 j 190.3
3 - 0.8 ,t j 136.7
1 - 6.0 t j 55.9

0.402 5000 10 -13.1 t j 490.5
9 - 5.9 f j 422.2
8 - 3.3 t j 396.2
6 -14.3.± j 248.2
4 - 8.4 t j 190.0

r 3 - 0.8 f j 136.7
1 - 7.7 t j 59.4

1.3 6000 10 -15.1 ± j 486.3
9 - 6.7 f j 422.5
8 - 3.5 t j 396.4
6 -16.12± j 239.7
4 -10.7 ± j 188.0
3 - 0.8 ± j 136.8
1 - 9.5 t j 64.4



Table 1. Variation of Eigenvalues with Velocity at 15000 Feet

i.77 7000 10 -17.161 j	 481.3
9 - 7.5 t j	 422.9
8 - 3.7 t j	 396.5
6 -16..9 t j	 230.5
4 -13.9 t j	 183.2
3 - 0.8 t j	 136.8
1 -11.7 t j	 71.6

2.31 8000 10 -19.1 t j	 475.5
9 - 8.4 f j	 423.3
8 - 3.9 f j	 396.8
6 -16.4 f j	 223.0
4 -18.3 t j	 171.5
3 - 0.9 t j	 136.9
1 -14.2 t j	 82.9

2.92 9000 10 -21.2 f j	 468.9
9 - 9.2 t j	 423.8
8 - 4.0 t j	 397.0
6 -15.7 f j	 218.8
4 -24.0 f j	 140.1
3 - 0.6 t j	 137.4
1 -16.1.t j	 108.6

3.61 10000 10 -23.0 t j	 461.2
9 -10.1 t j	 424.4
8 - 4.1 # j	 397.2
6 -16.0 t j	 217.6
4 -68.9 t j	 117.9
3 - 0.5 t j	 136.6
1 +21.2 t j	 121.9

4.37	 11000	 10 -24.8 t j	 452.5
9 -11.0 t j	 425.0
8 - 4.1 t 4	 397.4
6 -16.9 t j	 218.3
4 -97.1 t j	 108.4
3 - 0.7 t j	 116.6
1 +41.6 t j	 118.1

`y

1r

^

1



Ta5le 2. Eigenvalues for Combinations of Flexure Modes

Mode No.	 Eigenvalue

1 Mode Model
1 -13.6 f j	 78.6

2 Mode Model
4 -14.7 # j	 180.2
1 -15.0 # j	 86.6

2 Mode Model
6 +14.9 t j	 134.2
1 -65.0 # j	 121.7

3 Mode Model
4 -14.7 # j	 180.2
3 - 0.9 f j	 136.8
1 -15.0 f j	 36.5

3 Mode Model
6 -15.7 t j	 216.1
4 -94.3 f j	 106.4
1 +39.9 1 j	 118.0

4 Mode Model
6 -15.7 t j	 216.1
4 -94.2 t j	 106.6
3 --	 0.7 t j	 136.6
1 +39.7 f j	 118.0

5 Mode Model
8 - 4.9 # j	 397.2
6 -15.7 # j	 216.1
4 -94.1 t j	 106.7
3 - 0.7 t j	 136.6
1 +39.61 j	 118.7

5 Mode Model
10 -24.3 # j	 453.6

9 -10.2 t j 425.0
6 -16.6 t j	 218.3
4 -94.2 f j	 108.7
1 +39.8 f 118.2

6 Mode Model
9 -10.9 # j	 424.9
8 - 4.2 t j	 397.4
6 -15.7 t j	 216.1
4 -93.7 f j	 107.2
3 - 0.7 t j	 136.6
1 +39.3 t j	 118.2

7 Mode Model
10 -24.8 # j	 452.5

9 -11.0 t j 425.0
8 -	 4.1 f j	 397.4
6 -16.9 f j	 218.3
4 -97.1 t j	 108.4
3 - 0.7 # j	 136.6
1 +41.6 t j	 118.1
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Working Paper No. 1

Actuator Models for

Flutter control Study

W.L. Garrard

Dept. of Aerospace Engineering and Mechanics

University of Minnesota

Minneapolis, MN

Introduction

The BAST-2 vehicle has three independent control surfaces

available for flutter and pitch control. These are an elevator,

an inborad actuator, and an outboard actuator. This paper gives

the transfer functions for these actuators and suggests some

lower order model approximations for the ailerons.

Elevator

The elevator transfer function is a simple first order lag

((,^ 5+20

Bode plots for this transfer function are given in Figs. 1 and

2. The allowable rms control surface activity levels are +7°

and -12° deflection and +80 °/sec for a 12 ft /s vertical gust at
the flutter condition of Mach 0.86 and 15000 ft. altitude.

Inboard Aileron

The transfer function for the inboard aileron is

s 7 z39Xi,7 2}(5+4/0)(5 2 + ':3"^: -5 ^ 3. / G Xi0`)	 455.5)

(s'+ 40'715 4. 2,29X10 5 )lS 2+ 3;z5	 7. 70 73

(S1+ 258.35 +8.A'27 X/o-' ),"5 = + 28`x . 5 5 + 3.

or in factored form^6V 3 s + 7. 1 71 X ^,)')

1
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Bode plots for this transfer function are shown in Figs. 3 and

4. The terms s 2 + 2800s + 3.126 x 10 6 in the numerator and

s 2 + 2848.9 S + 3.183 x 10 6 can effectively be canceled. The

two high frequency factors in the denominator ( s + 1424.5 +

j 1074 . 2) and ( s + 332 . 7 + j 8461.6) have little effect on the

dynamic response over the frequency range of interest in the

control problem of 1 to 500 rad/s. Also the s + 610 term in

the numerator comes 'airly close to canceling the s + 455.5

term in the denominator and if there are no numerator dynamics

the state space representation is simplified somewhat. All

of these assumptions result in a sixth order model

1, 3705X /O
^-	 5 +335.5 ±^ 339.8 ^5+ 161 ±'^ 3Z 5.8,5 .^ Iq.4 + j $ ^5. ^^

The Bode plots over the frequency range from 10 to 1000 rad/s

are given in Figs. 5 and 6. It can be seen that the frequency

response for the exact transfer function and the sixth order

approximation are very close over this range of frequencies.

The comparison is presented in detail in Table 1. The flutter

frequency is about 150 rad /s and the correspondence between

the sixth order and exact transfer function is very good near

this frequency. At very high frequencies the exact transfer

function has a phase shift of -180 0 and a slope of 40 DB/Decade

greater than the sixth order approximation.

A fourth order approximation can be generated by elimi-

nating the dynamics associated with the factor s + 144 + j895.5.

This is somewhat difficult to justify as we retain the factor

s + 161 + j825.8 which is about the same frequency. The result-

ing fourth order transfer function is

I. r. 11 X / o(,l,	 _	
l,5 t 33 5.5	 339. 8 X S 4 ) 6 J ± ' S Z 5.3

S

2



Bode plots for this transfer function are given in Figs. 7

and 8; The fourth-order model gives a reasonably good approxi-

mation of the exact transfer function up to about 300 rad/sec

but deteriorates rapidly at higher frequencies. The numerical

details of the comparison are given in Table 1.

The final approximation considered is second order and is

given as

^^/ yc _	 .Gz so
U,	 (5 ♦ 335.5"

As can be seen from Figs. 9 and 10 and from Table 1, the accur-

acy of this model deteriorates fairly rapidly for frequencies

above about 175 rad/s.

The activity for the inboard aileron is limited to -10°

and +20 0 deflection and tol$ 0°/sec deflection rate for a 12 ft/s

vertical gust at the flutter condition.

Outboard aileron

The transfer function for the outboard aileron is

^/ _ 3.Sd y 8 X	 2

^	 (S * /o43,7s ^a.7s^-,c /^S^ (Sz +477.tis + 4.OQSx los)
oC

/f84.2 s + 4.23+)(/0`)( 5  f i1+7.4.3 + 5.35 X /06)

or in factored form

53 98 A /o
^ S+ 521.9 ± 3.2 5. 8 	 f

v`

(S+ 573.7	 .Z24 11.

Bode plots for this transfer function are given in Figs. 11 and

12 for frequencies from 0.1 to 1000 rad/s and in Figs. 13 and 14

for frequencies from 10 to 1000 rad/s. If we consider only fre-

quencies of the same order as the structural frequencies, a

fourth order model results. This is given by

-	 (^ + 5z ^, -'P t 325. S Y5 + ,Z 38. G + ' 594 ;

W_

3

j
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Bode plots for this transfer function are qiven in Figs.

15 and 16. It can be seen that this gives a very good approxi-

mation of the exact transfer function over the frequency range

of interest although at ver.i hi gh frequencies the exact model

will exhibit a phase shift of -360° and a slope of -80 DB/Decade

greater than the fourth order model.

A second order model given as

AA a	
- d 75 s^

,
o^	 l J at S.^/.7 .S f ^ .^^5, 8

was also examined and Bode plots for this model. are shown in

Figs. 17 and 18. The approximation resulting from use of this

model is considerably worse than given by the fourth order model.

The outboard aileron has a rms deflection limit of +150

and a deflection rate limit of 710°/sec for a 12 ft/sec vertical

gust at the flutter flight condition.

Conclusions and Recommendations

Initial controller designs will incorporate rigid body and

first, fourth, and sixth elastic modes. Since the sixth mode

has a frequency of 225 rad/s at the flutter condition,it is

felt that the fourth order approximation of the inboard actua-

tor whould be adequate even though the sixth order gives a

considerably better approximation of the actuator dynamics for

frequencies greater than 350 rad/sec. The fourth order model

of the outboard actuator gives a very good approximation of

the enact transfer function over the frequency range of interest.

4



Table 1: Comparison of Exact Transfer Function for

Inboard Aileron and Various Lower Order Approximations

A Phase (Deg)

Exact

2nd Order
Approx.

4th Order
Approx.

6th Order
Approx.

Freq(rad/s)

100

178

316

562

1000

830

100

178

316

562

1000

100

178

316

562

1000

298

100

178

316

562

1000

830

Gain(Db)

0

0.5

0.75

2.0

0

6.6(peak)

0

0

-.075

-4.5

-13.0

0

0.25

0.5

-0.5

-7.5

0.5(peak)

0.25

0.5

1.25

3.0

4.5

B.3(peak)

Phase(deg)

-27

-45

-81

-162

-396

-18

-27

-54

-108

-135

-18

-36

-62

-1115

-270

-23

-40

-72

-145

-300

A Gain (Db)

0

.5

1.5

6.5

13.0

0

0.25

0.25

2.5

7.5

6.1

-.25

0

-.5

-2.0

-4.5

-1.7

-9

-18

-27

-54

-261

-9

-9

-19

-27

-126

-6

-5

-9

-23

-36
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Table 2: Comparison of Exact Transfer Function for

Outboard Aileron and Various Lower Order Approximations

Freq(rad/s) Gain(Db) Phase(ueg) AGain(Db) AFreq(Deg)

Exact 100 0 -27 -- --

178 0.25 -45 -- --

316 0.5 -90 -- --

562 0.25 -180 -- --

14.000 -12.5 -306 -- --

433 0.9(peak) -- -- --

-92nd Order 100 0.0 -18 0
Approx.

178 -0.5 -27 I	 0.75 •-18

315 -1.0 -45 1.5 -45

562 -4.0 -81 4.?5 -99

1000 -10.0 -108 -2.5 -198

4th Order 100 0 -23 0 -6
Approx.

178 0 -38 0.25 -7

316 0.5 -72 0 -8

562 -1.0 -162 1.25 -18

1000 -15.0 -252 -2.5 -54

376 0.4(peak) --	 I 0.5 --
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OF POOR QUALITY
Working Paper No. 2

Gust Model for

Flutter Control Study

W.L. Garrard

Dept. of Aerospace Engineering and Mechanics

University of Minnesota

Minneapolis, MN

Introduction

A second order vertical wind gust model is described. The

vertical gust is to have a 12 ft/sec rms value at the flutter

condition of Mach 0.86 and 15000 feet and a 59 ft/sec rms value.

for the gust test condition of Mach 0.7 and 15000 ft. A 30 to 40

percent reduction in bending moment at all stations is desired

at this condition compared with the uncontrolled aircraft.

Gust Transfer Function

The transfer function for a second order gust model is given

as

where d = the vertical gust velocity

k = the characteristic langth (2500 ft in this case)

v = the forward velocity

rj= a white noise input

If we assume s n is the spectral ^of/ the white noise the expected

value of 6 2 is given as

1	 hou



2

If s 'I is constant, this integral can be evaluated from standard

tables [1] as

i^
1")S 7r

Now we want R[6 2 l to equal 0 2 , the specified rms value of the gust;
therefore,

S^ zT / V

Now

cOa
zir	 R ( ) . ^^-r^Z

where R n (T) is the autocorrelation function of n and since n is

white noise

where d is the Dirac delta function. Then

---1L	 C.. z
Sx	

7r	 z 7f
therefore the intensity of the white noise is

At flutter, Mach = 0.88, h = 15000 ft, v = 908.8 ft/s, Z/v = 2.75

j	 (/ t 4. 76 s ^	 z
al !s)	

l Z 753 +-

and

A = 396.00

At the gust test condition, v = 739.7 ft/s, Z/v = 3.38

J(s)^	 _ ( / 4. 5. 86 s^	 2.

tills)	 ( 3.38 5 4 ) )

and

A = 11765.78

_..+..,,, ^,.	 ..r:ia.::.w...^-:'a,-c 	 3 _	 4:^",.svd.zn.ateti:.S _.... e. - 3: 56^"	 .^.r.._	 ^¢;.^_i_.^Yyy^ :"fix..-• 	 --a,Y+.v4n+:."i Ai:Xr^^



3

Both transfer functions represent critically damped sys-

tems. The natural frequency at the flutter condition is

Wn = 0.363 rad/sec (flutter condition)

and at the gust test condition is

w ^ = 0.296 .rad/sec (gust test condition)

Bode plots for the flutter condition are shown in Figs. 1 and

2 and for the gust test condition in Figs. 3 and 4.,

State Space Representation

Since the gust models contain numerator dynamics a little

extra work is required to put them in state variabl= form. We

can accomplish this by using the block diagram shown in Fig. 5.

The transfer function is 	
1

^V

By inspection

^1 1 = -, 7v3 _VV

and
2

(% )

Now from the block diagram we have the equations of motion in

state space form as

= z + a.z85 (V

For M = 0.86 and 15000 feet

+ 0. / 04 It

- 0 ZZ7j^ - 0, i3Zd - 0,OS6 3 1L



4

and for M = 0.7 and 15000 feet

O = ^ f O, ps.¢,^

z--o .S-e9
;F _ 0. 1087S,'-0. OjS'S

1. Crandall, S.H. and Mark, W.D., "Random Vibration", Academic

Press, 1963, page 72.
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Working Paper No. 3

State Space Models for Flutter Control Study

S. S. Liebst

Department of Aerospace Engineering and Mechanics

University of Minnesota

Introduction

The structural, aerodynamic, and actuator inodels proposed

for use in the analysis of the DAST-2 vehicle have earlier

been presented in the frequency domain (see working papers No. 1

and No. 2). This paper gives the corresponding state space

representation of these models for use in the modal control system

design.

Second Order State Equation

The following is the proposed second order form of the

state equations of motion relating vertical gusts and control

surface deflections to the structural response of the vehicle.

x = modal coordinates and rigid body modes

u - control surface deflections

d = vertical gust velocity

V = forward velocity

9 = 1PV2

c = mean aerodynamic chord



	

[Mxx	 At(X.V jX	 1 [ Ls 	 ^,^z„^^x
x

+C^^s +^ 	 Y^

.^ CM x ,4 r	 A, CẐ ) ]	 ,-A^ ^LV^ Llk

+ A. u	 + ^ A t ^Z )
_	

I	
^	 O

and

	

K	 r

	

y.	 I^ZV)KtYL + b L	 +D^c^

	

YC	 L

t L x +	 x + .^ y^
+	 +
+ Td'	 + ud	 = D

or

x

Pu
SS

and

y^
where

M	 Mxx + q A2 2v) 2

C = Cg + q Ai (-2V)

K = KS + q AD

P - Mxu + q A2 01—) 2

Q	 q A l (2V)

R = q A0

S - q A2 ( 2V) 2

KLy` t ^^x }ELF

ORIGINAL PAGE 15
OF POOR QUALITY



T	 =	 q Ai

U	 =	 q A0

ORIGINAL PAGE 13
OF POOR QUALITY

Di = Di

E i = Di

Fi = Dd
i

Actuator Model

The following is proposed frequency and corresponding state

space models for the three actuators of the vehicle. See working

paper No. 1 for details of the transfer function representations.

I. Elevator

2-O

U e. s )
	

S + 7- 0

therefore,

U c + Z 0 ^G = 2 O l,l L

II. Inboard Aileron

LA L CO =
	

/. G 4 X 1 0

ll^, C^)	 ( S+ 3J S. 5 ± 339.8 )C S+	 i. s• 8

therefore,

LA + 973 .0 4	 + /. 1 52x 10 (A + 5.4f4x 10 (A

f I•i^14	 0	 LA	 0	 fit`



O[:IGMAL PAGE IS
OF POUR QUALITY

III. Outboard Ailero„

mil ° CS)	 /• 77	 X o0

5 + i 80)	 (S	 12 S. 5— j 2-87.8
therefore,

Vt o + 431 0	 "o + ► . 4 38 x l OF o

1.77f. x IO 7 U	 = 1, 774 x 10 7 LA.0

De f ine
^e'

tot
k °

^ O
LA	 =

LlC
= commanded control inputs

J

Ll o cll\	 = ^ u = o! .0 c c 0 O 0 o
Ll

K O	 O o	 0 1. 0 4 0 0

control surface deflections

T Cr + S H F-I
then G- 1

-L0.0	 0 0 0	 O c+	 O O to.o O	 O

O	 p 1.0 O	 O p O 0 0	 0

O	 0 O 1•0	 O O O	 O
7

O 477f00 -141a xto
f

-411,0 O 0 O O o 1.774x10'0

U O	 O O O	 O 1.0	 0 O + O O	 O

O	 O O 0	 0 O	 J.o O O O	 O

0	 0 a 0	 O 0	 C) 0 O O

0	 0 0
►r

0a.W#4 0 -5.4844ro
g	 ^

_1.1Stx,o' .133.0 0 0 U-IfIrlb
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Gust Model

The following is the white noise model for the vertical gust

state. See working paper No. 2 for details of this derivation.
L	

0 (-V

s=
where

d	 vertical gust velocity

z = intermediate gust state

n = zero mean white gaussian noise

Yl ^^,) ^t t L ^	 —
Z = characteristic gust length

c2 = rms value of.the gust

285  ►^.

First Order State Equation

Now that the structural, actuator, and gust models have

been developed in the state space, they can all be adjoined to

form one first order state equation. Neglecting the Sd and Pu

terms of the second order equations of motion the resulting first

order state equation is

x = Ax + Bu + w

Ili
where

X	 O	
r^	 -M ^T C. L85 ^^^

^ ^	 F 1 c .1.65)Ci^

y L	 Ft C. Le s)C^
X -
	

lnr -	
Y'J	 FL<. L85)CID

LA 	 o

r

7
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NOMENCLATURE:

	

M:	 Generalized mass matrix

	

k:	 Generalized stiffness matrix

	

C:	 Generalized damping matrix

	

x:	 Vector of generalized coordinates for rigid and elastic modes and

control surface deflections

	

xG :	 Vector of generalized coordinates for gust inputs

Q(s):	 Unsteady aerodynamic influence coefficient watrix

	

w:	 frequency in radians per second

	

c:	 reference chord length

	

v:	 velocity of the vehicle

	

q:	 dynamic pressure

	

f:	 density of air

	

M:	 Mach number

	

H:	 Altitude

	

,d:	 laplace operator

&[A]: maximum singular value of matrix A

r„

m



INTRODUCTION

For the design of active control systems for the suppression of aero-

dynamic fluter, it is necessary to first obtain the state-space represen-

tation of the equations of motion for the flexible vehicle. This is so

because at present all modern control design techniques are based on the

availability of a state-space model.

In the study of flexible vehicles, the unsteady aerodynamic forces

and moments are evaluated at various reduced frequencies by the use of

some type of finite element computational procedure. Our objective is to

obtain a model of the unsteady aerodynamic forces and moments in a form

which can be incorporated into the structural equations of motion for the

aircraft so as to get a suitable state-space representation of the vehicle

dynamics.

This paper discusses the procedure for obtaining such a model. The

following discussion presents an approximation of the unsteady aerodynamics

by a rational polynomial and is based on the approximation first suggested

by R.T. Jones [1]. The details of obtaining such an approximation using a

least squares fit over the range of frequencies available is then presen-

ted.

A model for the unsteady aerodynamics of the DAST ARW-2 aircraft,

the data for which was provided by NASA, was developed using the proce-

dure discussed herein. Using this model, the rigid body motion of the

aircraft was studied and the results compared with those obtained by

NASA.

The programs developed to obtain the least squares approximation

and do the rigid body analysis are appended for thoroughness.

1



MODEL FOR UNSTEADY AERODYNAMICS: 

The genera l  equations of motion f o r  a f l e x i b l e  veh ic l e  a t  a given 

Mach number a r e  [2]  : 
C d  

I f  a simple harmonic not ion  i s  assumed, t h e  matrix of aerodynamic 

inf luence coe f f i c i en t s  Q(& - &$ k) , where k is t h e  reduced frequency 
W c  i s  ca lcu la ted  using f i n i t e  d i f f e r ence  procedures a t  a given by k = - 2v' 

f i n i t e  riumber of reduced frequencies  ki, i = 1, 2.,.n. This  complex 

matrix can be approximated by a polynomial i n d  as :  

Thih form of approximating Q was f i r s t  suggested by R.T. Jones [ I ]  f o r  

t h e  case of two-dimensional flow. The matrix A. can be looked upon a s  

represent ing aerodynamic s t i f f n e s s  while  represents  aerodynamic damping 
A - 
-urn az.1 A tepresnnts added mass due t o  t h e  aerodynamics. The term ep 

"2 d+ ** s* 
i s  an approximation f o r  t h e  time delays inherent  i n  t h e  unsteady aero- 

A 
dpnamics and t h e  va lues  of km a r e  chosen f rou  t h e  range of reduced f r e -  

quencies f o r  which ~ ( k )  has been computed so a s  t o  minimize t h e  e r r o r  i n  

t h i s  approxjsaation. 

Define t h e  e r r o r  matr ix E()) as:  

Then t h e  mat r ices  Ao, 4, At; % , m  - 1,. . .j a r e  computed S ~ J  a s  t o  

minimize t h e  s p e c t r a l  norm of E V )  ( I}~(1)11 The s p e c t r a l  norm of a 

matrix equals i ts  maximum s ingular  va lue  161; i .e . ,  11 E(&))( =t [ E ( A ~ .  

Therefore t h e  maximum s ingular  va lue  of E@) i s  a measure of t h e  s i z e  o f '  

t h e  e r ro r  i n  our a p p r o x h t i o n  of ~ ( d )  and w e  must choose t h e  values of 

such t h a t  t h e  correeponding5[E(d)3 is t h e  smallest  possible .  

The mat r ices  Ao, Al, A2, and Dm, m = 1, . . .! a r e  r e a l  and a r e  com- 

puted by a l e a s t  square f i t  of t h e  aerodynamic data .  This  is ca r r i ed  

out  a s  fol lows [31: 

Caautder t h e  (b,q) element of t h e  matr ices ,  then f o r  t h i s  element 

w e  can write (21 as: 
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Substituting for d - jki where j = w e  get: 

? j C i  [ I  jKi , . . *  & 1 
jK; + E l  $ ~ ; f  FC 

(41 

pl $4 
d 

3 ~ + # ? ,  

Writing out equations l i k e  (4) for every ki, i = 1 ,  ... n and than com- 

bining in a matrix form w e  get:  

3 i k ,  j k ,  -Ir, , , . . . .  . 2 k,+l', 
-r: & I p 2  I '  , . .  . .  

~ r ,  + t, 

Since w e  want the l e a s t  square solution to ( 5 )  to be real valued we 

can write (5) as: 



KfKX

kA

k*+9A

4

UAM •
	 I

A jz

0

A	
0

0

A.+,(

At fi,ti

AL ^► ,ti

1	 K^1

0
0

Ki;kI

..	 K

k ^	 p	 k1

0
km ILI

k ++	 kN+k^

(KM^

IS

t

K,'♦ k1

It 4b

ki p ^
K `

9Z+ kA

The least squares solution to (6) can be obtained using any one of

the many standard techniques. The program used for the purposes of this

report is SNVDEC, developed by NASA [5] which uses singular value decom-

position to get the least squares solution. An explanation of this pro-

cedure for solving the least squares problem can be found in (61. Once
we have computed A09 Al , A21 Dm , m = 1,...,Q as the solution to (6), Sub-
stituting for Q(,4 from (2) in (1) we get the equations of motion to :)e:

[M.A C +K^-1 + ^, [A. +A^^2V,^*A^l v^ ♦ , T 'Jvi ,^ Cz4 'o (7;

From this we can now obtain a state-space model using any of the mini-

mal realization techniques as

zt Ax +335 +['I
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whet	 x - state vector

u - control vector

7 - gust vector	 C"!G1Nf%! F: iv:; IS
OF POOR QUALITY

MODIFICATION FOR RIGID BODY ANALYSIS:

Since the frequencies for the rigid body motion of the vehicle are

small compared to that of the flexure modes, it is important to get a good

fit for Q(J ) at low frequencies in order to analyze the rigid body motion.

One modification in the above procedure, which would achieve this, is

to set A 0 - Q R ( 0) so that we now need to obtain a best least squares fit

for only A l , A2 , Dm , m - 1,...,Q.

Using this approximation for A 09 equation ( 6)	 is modified as:
r ^

A ! ! j'

where k 	 - 0 which implies that Q ' (0) - 0	 a

-
•	 •0	 k s. k L---^ ki

A R

^ k ►
ki +K^k ^ t k,

low

^ k* kh-^i k^0

Re}cr s
^ 1	

O
ks"' k^ ki K̂ •t

k^	 0
^

k^^r
k

k^

^ it	 t

IC *

k.,1
it
	 4- K^

.,

kr k
-F:

A► ^1► rg
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a*310(0 r if,1'(k.) I	
at,y(ks)

L REAL	 ' = Ip1AG,i
R

a^^ti (KN) ' ^^^5 ^K')	 ^ by (k,,)

The fit for Al , A2 , Dm , m - 1,..4 thus obtained will give a good

approximation for the rigid body dynamics of the aircraft.

MODEL FOR DAST ARW-2:

The DAST ( Drones for Aerodynamic and Structural Testing) ARW-2

(Aeroelastic Research Wing - Number 2) has a high aspect ratio (10.3)

supercritical wing with a 25 degree sweep at midchord mounted on a Fire-

bee drone fuselage.

The unsteady aerodynamic influence coefficient matrix for DAST ARW-2

at a flight condition of H - 0.86, H - 15000 ft was provided by NASA -

the model consisted of two rigid body modes (plunge and pitch), 10 symmetrl-

elastic modes, three control surfaces ( stabilizer, outboard aileron, in-

board aileron) and one gust state.

The aerodynamic forces were computed using an aerodynamic/structural

interface and a doublet lattice aerodynamics code, contained in the ISAC

program, for twelve reduced frequencies ( 0.0, 0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 1.0, and 1.2).

The elements of the aerodynamic coefficient matrix were plotted on

polar plots with the magnitude in decibels versus the p is. Several of

these plots which are typical of the first column of Q(-A) (the force due

to plunge) are attached in Fig. 1. Plots typical of forces due to the

other modes and the control surface deflections are shown in Fi.g. 2.

From the plots in Fig. 1 it was seen that the forces due to plunge

are very small at low frequencies compared to the forces at higher fre-

quencies. Therefore the fit for the first column of Q(s) was obtained

using the rigid body modifications described in the earlier section, i.e.,

the first column of A O ( see Eq. ( 2)) was forced co be equal to the first

column of Q(-I) at k - 0.

_4	 _l
.__
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The fits for Q(J) were obtained for different values of km and a comparison
of the maximum singular values of the difference between the actual values

I	 A
of Q W) and the approximations for different k III showed that using k - 0.13
gives the best approximation. The following table lists the values of the

maximum singular value at zero reduced frequency for some values of k.

S.N.	 k	 Q[E(0)j

1	 0.1	 214.4

2	 0.125 138.2

3	 0.13 137.0

4	 0.135 147.0

5	 0.15	 162.8

The approximations of the aerodynamic forces using this value of 'k

for the elements plotted in Figs. 1 and 2 are shown in Figs. 3 and 4 re-

spectively. These plots show that the approximated values follow the actual

values very closely. Also from these plots we notice that it is not worth-

while to use more than one value of k as that would not improve the fit

much and would only lead to an increase in the number of states in the

state space realization of the model.

A listing of the program written to obtain the desired fit is attached

in the appendix. The matrices A09 Al , A2 , and D 1 corresponding to this fit
are also listed. Finally an explanation of the parameters of the subroutine

SNVDEC which was used to obtain these fits is listed.

RIGID BODY ANALYSIS FOR DAST ARW-2

At low frequencies the forces due to the flexure of the aircraft are

small and the equations for the rigid body motion (with the controls fixed)

can be written as:

^a	
c a)

M^ a ^-Ae ^'a, C w^ tAz ( 1 ^D'etCK, 7r ' o

4,.m	 .... _ .	 r
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where M, A09 All A2 , D1 are 2x2 matrices corresponding to the rigid body

modes x  and x 2 (plunge and pitch).

Defining lag state Y as y(s) -^ 
^d2-v-ic 

x(•+)

c 1

we have	 _ V k, + X
C

ti	 2

	

Let	 'P a =- + A^. (iV)
ti

Then a state space representation of (8) is given as:

 a ^	 - p 'A^	 - p3),	 i

	

z	 av

JUL	
o	 ^	 ?^	 C9)

X	 s

O	
_ Ac 

k ^ ^saa

For the DAST ARW-2 at a flight condition of M - 0 . 86, H - 15000 ft we

have

c - 23.47 in

q - 4.29 psi

v - 908.79 ft/sec

From the data provided by NASA and the fits obtained, the matrices

M, A0 , Al I" A2 , and L 1 for kl - 0.13 are as follows:

3•otia099	 0	 0•'6760334X10	 0• ► 327 5x1^

M=^	 1
a	 0•5011gl I 	 L- 0 • Is g7Sk 16 7

	 t•53134

3  
3

o•1075- 7x104 	0.1301"X 10 	 0•yd Oo27x 10
Ai

Al

p 1736 '	 0 b^16x lo 	 -0.1
,10	

31t14x'o

0 . 1,46607 x 10 3	 - o•01302 X 10'

o. 4o4 go x 10	
a -

a

,wa.ti..^ ,,.,^..,....^..t...^e^.:.^.	 n-,._-,,.:.^ •.^.._.r.:,^_	 -.,,^,^..^wv^c^,,:,e:;a^..^b•^'^3a•^:.;^s8;aza^K•..^s<^c^:. 	 , _....,_...
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Using these values, a state space realization as in (9) was obtained

for the DAST ARW-2.

The roots of the system for this realization were found to be

6.1146, 1.828 x 10 -7 , -5.1767 + j7.5443, -1.1977 x 10 2 + j0.17228.

The last two roots correspond to the lag terms and the other complex

pair to the short period motion of the aircraft.

Neglecting the lag terms, i.e., taking only the top left 4x4 part

of the matrix in (9), the roots of the system were found to be 3.391 x 10-2,

7.5875 x 10 -5 , -1.1188 + J3.5572.

A possible explanation for the discrepancy between the roots for the

rigid body motion with and without the lag terms is that the lag terms be-

come important only at high frequencies and at those frequencies the flex-

ure of the aircraft is large and we cannot neglect the forces due to the

flexure modes.

CONCLUSION

A procedure for modelling unsteady aerodynamics of a flexible vehicle

for cool system design was developed. Using this procedure a model for

DAST-ARW-2 was obtained and this model was found to approximate the actual

unsteady aerodynamic forces very closely.

Using tlIs model the eigenvalucs for the rigid body motion of the

aircraft were calculated and these were found to have good correspondence

with those calculated by NASA.

This model can now be used for designing active flutter suppression

control systems for the DAST ARW-2.

:vv.w...«.•«:.r.nr:.^ 	,,,..... ....	 ,....c .. . ._. . <,.:..^....,.	 ..,.vy ^.sarc . rya:	 .,.	 .:,..:m,:,t uti^.C':az,. ar ;skidl'r.::r.avr r•.c..a;a ^.. 	..	 . .
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ORIGINAL P, % C—T 13
OF DOOR QUALITY

Arrt=_H 31 % =

00100	 P;OGRAM NEUFITi INPUT ,01iii-'q(, 1.4.7 .	 --
00	 C*Oo

00102+. 444 	 T14TS PROG;AM VOMPUT-1 5 T.4E B EAST SQUARE Fj i r0C( TWE I)NSTEADY AERODYNAMIC

00103C	 COEFF;; ;W MATR ( i r6k u.:S7 AR^1 -2 AT A z .96,ri z S0G0: T

G0104f,444

00110	 DIMENSION OR( IS,16,12),0; i15, io,. 21,A(24,4),e(24,161, AO( 15,1/,i,

00120• a1( IS,16), a2c1s,16),Dti15, 161, U2(1^,16^,RKi12),U(24,4^,0iJ),
00130+ APLUSi24,24),ADUM(24,4),Di)ml(12),DUM2(12)

00140 REAL KWAT(2)
110150	 DATA(RK(I),1a1,12)

(10160 CALL GETPF(5kTAPE1,5ADAT15,0,0)

00170 DO 2 01,12
00180 00 2 J n 1,16

001;0 DO 2 1.1,15

00200 READ ( 1,100) OF (I,J,d),OI(i,J,K ►
00210 2CONTI00E

00220 DO 101 Iai,12
00230	 AO(I,1)=ARil,l,l)

00240 101CONTINUE

00250 100 FORMAT(2F_16.8)

00260 KdAI(IJ2.13
00270 00 10 1m1,12

00280 J=1+12	 -
00290 A(1,1)=0
03300	 A(J,1)=R1((I)
00310 A(I,2)a-RK(1)*RK(I)

00320 A(J,2)=0

00330	 DUM 1 ( I ) =.2a (i 1 *RW (1 )+KA,%T 0 );s ► WAT ( I

00340 A(1,3)=R9(I)sRK(1)/DUMi(1)

CCSSO	 A(J,^)=KNATO)sRKtI)/AUrit(j)

00360 10 CONTThUE

00370 10P=3

00380 M0=24

00390 ND=24

00400 M224
00410 Mal

00420 005al

00430 ]A:s10

00446 DO 20 I:(,12

00450 DO 30 K=1,12

00460 B(K, 1) ,OR(I, 1,K)-A0G,1 )
00470 9PLUS=i(+i2

00480 B(KPL5S,0 zQ1 (I,I,K)

00490 3 000NTINi;E

00500 DO 40 jAi,24

00510 DO 40 ki1,3

00520 ADUM (j,Ki=A(J,K)

00530 4000NTI01JE
00540 CALL SNV0EC(IOP, fib, Oti, ii, M, ADUM,ivGi,B,;AC,ZTEST,0,O,IRaNK,APLUS,iERR)

00.i41C

^^ 7

a.i.^.^s, Y.m. w.,w....^e.... ^.... 	 ., ,. ^	 ^y r,..., ?^.. ,. .. ^.v. ..	 .,..:.^ —	 ^3-fYiLrdY ....,. ^:Td5ni+vLW.e ..— 	 ^•itWl^eaiL^9,:.'-^.e4 _:
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43c
60530 PAiNT,iFRR
iJ560	 »1cT,1)=ait,t)

QO'70	 A ar;,t ► xbl^,1J
;,x580	 11 i I, 1 lakl.3, t l

00.94) mil)	 UNT i N i i

k)0000	 DU 102 is1 ,1^
04610	 A(I,4)zAi1,3;

-50620	 Act,3)=a(I,2)
00630	 A( A' 2)ZAi 1,1)
00640 IF (I.GT.12) GO TO 103
00650 A(I,1)st
00660 GO TO 102
00670 103 A(1,1) a0

00680 102 CONTINUE

00690 Na4

00700 NOS= 1 5
00710 DO 104 13 1112

00720 DO 105 Js2,16
00730 JJ3J-1
00740 DO 105 9=1012
00750 8(K,JJ)sAR(I,J,K)
00760 KPLUS=K+12
00770 B(KPL(JS,JJ) 001(I,J,K)	 -

00780 105 CONTINUE
00790 DO 106 .Jxl,24
00800 50 106 n31 ,4

00810 AUUA(J,K)3AiJ,9)
00620 106 CONTINUE
00830 CALL SNVDEC(IOP,MD,1+D,M,r ,ADIJA,N05,3,;AC,ZTEST,O,V,IRAivA,APLIjS,IER«)

00840 PRINT,iN k

04850 DO 104 Ja2,16
00860 JJ aJ -1
00870 AO(I,J)xB(1,JJ)
00880 A1lI,J)aB(2.JJ)
00890 A2(I,J)aB(3,JJ)
00900 D1(I,J)aB(4,JJ)
00910 104 CONTINUE
00920 REUIKD 1

00930 DO 50 J=! ? 16
00940 DO 50 I=1112

00950	 WRITE(1 V 200) 40(I,J),A1(I,J),A2(I,J),D1(I,J)
00960 50 CONTINUE
04970 200 ^QRnA^4E1b.A ►
00 4 80	 C»i_ 1. kfPI.ACEiSNTA ? e1,6+tuh •=:.»010,0)
0,3990 STOP
01000 END
J;001Cisx4

Qi0u2CYSS	 TAE SU;NOUTINI: i^Lu:C S:-"lii_D Bi: ATTACHED AT THIS POINT	 s^s:ra,s 4.t^
Ot0u3C4#s+

11
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:.•+.I^sNHS+^s•.••s•as••i..,a:•:•s:a•:^.••j•aa^..1•a+^iA•+1.43:O^Nt^s^s•^iMSN^i^•^ ►

:IT FOR GiS) BAST A46	 4T n•O.86 , W a sS000 FT
is

THE MATRICES A4,Ai,Mi,61 wRE URIiTio COLUMUIoi
:8
H•^^•••i ♦♦^s^sttsfas•s••i•••• ^•s.• •s••s•a ac.•^+. •+.s:Ia•.s:s^n•s•..^:a•^a•^+^ysNS•^

AO	 At	 A2	 isI

^^s•s••ss••	 IST Cft4a g •.asa• rss.ss

.37603340E-06
-.18475110E-07
.96467900E-01

-.30699260E-07
-.30542910E-OE
-.97841290E-07

.118239811E-07

.25987840E-06
-.54181130E-06
-.66935820E-09
.20949430E-07
.31524370E-06

.10737462E+04

.12736737-E•02

.10504167E+03

-.75823772E+02
-.11717877E+02
-.18161098E+03
-.14245807E+02
.50636047E•02
.1879wj37?E+02
.5302d117E+02
.67556?30E+02
.41467740E+02

.78002766E+03
-.13111972E+02

.40504833E+02

.47363388E+01^
-.27789210E+01
-.23706107E+02
-.18748114E +06
-.27785720E+03
.42889036E+02

-.31890206E+02

9904798E+02
- .7386298E+03

.14560723E+03

.40440853E+02

.ZO1020766.:+02

.91573321E+01
- .11910643E+01
-.34376697E+02

-.18259528E+02
.19215422EiO3
.12194837E+02

-.83022992:+01
.93032076E+00
.24897784E+03

s•sssassssssss 2ND COU104 sssssassss•sssss
a

.13225464E+03

.13313462E+01

.28868641E+02
-.90996486E•O 1
-.13911085E+01

-.30549514E+02
.15231603E+00
.77573063E+^12
.13792468E+0t
.19491097E+01
.670761209E+01
.10414616E+03

.13091121E+03

.63410047E+02

.31391959E+02

.11696861E+02
•.11i38;o:E•O1
- .70937214E+01
.24SS47JOc+02

-.20366603E+02
.17095S69E•02

-.25213003E+00
-.59802550E+01
-.656666951+02

-.68194862E+02
.84112276E+02

.27670570E+01

.62059510E*01
-.77619454E+00
-.36902610E+01
-.3'9439i7E+02
-.14333518E+07

.74224375E+01

.22242056E+02
-.15771407E+01

.58070410E+02

-.#4301898E+02
.47338337E+Oi

-.12680094E+02
.489619751:+J1
.63988320E+40
2244909E+02

-.41998734E+01
-.43182991E+02

.24919249E+01

.76436I33E+00

.99377887E+00
-.87619664E+02

i

ssssssssss•	 3RD COL000 •sss••as•sssssss•
a

.50143298E+02

.45088340E+01

.17618642E+02

-.39063481E+00
-.63474697E+00

-.13626135E+02
-.94639767E+00

.41534059E +42

.31626343E+00
-.78163239E +00

.15337373E+0J

.18918474E+02

.20147569E+03

.24100966E+02

.10955126E+03

.152739A3E#A2
-.46239116E+0
-.2130654oi+42
-.170 1 363;: •"
.^3233t.6E+^^

-.101 29il9c. •47
-.11334580E+02

-.279:7532E*J2

.37241762E+02 -.25384225E+01

.83733845E+01 -.87639639E+00

	

.19658643E+02	 .28149529E+01

	

.31 1 06636E+01	 .76300480E+00
-.20443611E+01• .32054130E-r00

.355935061+01 -.26173132E+01

	

-.34872221E+01	 .84832407E+00

	

,13:73330E+03	 .47473009E+02
.93712168E+0O -.34990329E+00

	

-.27444 75F..01	 .1474780!E+00
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-.53773186E+01
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-.62416883E+01
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.10939333E+03



I

31

ORICINAL P ;;
OF POOR QUAUTY

a^+sssisa 8i.i Ca;-4.'1N saaa^.aa..^

-,-01041471,E+4r
-.447900051+03

-.16843136E+04
-.51976995E+02
.52364066E+02
.81482059E+03
.42216013E+02

-.47136664E+04
-.13334993E+02

.72853603E+02

.76665898E+02
-.38868544E+03

I l 774107: +k14

-.1Ar4137^c+u3
-.r8eSt4A4z•4^
-. 28354533E+J;
.56583612E*02

-.10820058E+03
.11538341E+03
.51845309(+03

-.18397642E+02
.12700411E•03

.41431220E+02
-.237291024+42

.36680767E•O2

.21202309E+03

.79327955E+00

.1161605:c+02
-.14747249E+00

.687909691v44
-. 11914219E•J^
-.71697799E+01
.15450190E+02

.75581170E +01
-.23743339E+01

.63436616E+Ot

.12960872F+42

.45337544E+02

.2dS88871E*02
-.20596652E+02
.17726136E+03

-.304984581+00
-.19845636E+04
..78252601E+00
-.45316515E+02
-.36726805E+01
.268777932+03

.12278581E+02

.52119842E+41
-.36734966E+00
.33521934r+O1
.8988A945z-7 :

-.44631539E+00
-.34145662E+01

.62074872E+J

.52085920E+01

.314o6753E+01
-.90047067EoG O
-.39561057E+01

. t7it3ji.jnr+^14

.1:47549'57:+43

.33975523E+03
-.10640239E+03
-.17890377E+02
-.44704506E+43
-.40199848E+02
.15637237E+04
.Z3654573E+02
.46593!82E+02
.11488361E+03
.12842351ie+04

-.64458731E+01
-.20025983E +J1

-.50343301E+44
- .33346:91E+44
.292531744•-01
.71852124E+04
.: t 331081E+01

-.23061370.01
-.71077039E+00

-.25341349E+00
-.35%21691E+00
-.23671686E+00

.27692233E+02

.13733530E+02

.38530133E+01

.66545770E+01
-.86429124E-01
-.75826032E+00
-.71768987E+01

.14685419E+02
'	 .064 ^ 8757E+J ^

.17557146E+01
-.10542884E+01
-.47478079E+01

yssssss ysass 9TN COlJ4s ssss>rs.•ssssss

s

a
+ssssssasss IOTA CMN4 s+s+.a:aasss.a
:t

-.38910153E+02
-.17995251E+02
-.60790091E+02
-.21239520E+02
-.59960106E+00

.12264141E+02

.75608829E+01
-.13107780E+03
.33915139E+01
,243110460+02
.29737743E+02
.1?3$A374Q+03

:,

.28841946E+02
-.11889935E+02
-.36227792E+02
-.41544933E+02
-.41316257E+01

-.95017800E+00
.16081519E+42
.11477528E+03

.52269312E*O:

.109639:3=++.)

.87917207F ,%)7
,24785j W +03

.338144671++02

.37586917E+02

.44718792E+01

.80777876E+01
-.29664587E+01
.15226491E+02

-.22781353E+02
-.30500976E+00

.16284373E+02

.4289S634E+07

.24577573E+07

.40586823E+02

.74090333E+02

.25978897E+02

.25894374E+01

.608793484+01

-.196829380+00
-.61492002E+01
-.14805945E+02
.70167006E+01

.11497277E+02

.;27^:4^tE +01

. z 7.1 19'531:+ 41

.4177Q, 13$+J1



3Z

ORIGINAL PAGE IS
OF POOR QUALITY

•iiiiiiiiil a S ^ r N i,^^,JNN .+r^siiiiii.iiii
s^

	.1t4i2275E+03	 .69640370E+01	 .92 1 2466 1 ';. #02	 .7793i421F-+02

	

-.27976113E+02 -.22163061E-02	 .20220499E+02	 .24939740E+42

	

-.51374317 -c-02 -.277899611'3-02.257 96582E+61	 .83367•'.+7E+01
	-.13102100E+02 -.23516059(+4:	 .65025021E+G:	 .3326777tZ-Ot

-.55200030E+00 -.69963540E+01 -.22879518E+0t -.43302790E+00

	

.40335668E+02	 .17468929E+01	 .97961292E+OI -.73404613E+41

	

.17709030E+02	 .15157118E+02 -.84201864E+01 -.13095167E+02

	

-.13040656E+03	 .89873443E+02 -.18352327E+32 	 .40572982E+02

	

-.69212951E+01 -.75 1 99442E+01	 .10427959E+02	 .10006550E+02

	

. 23,154270E+02	 .84766624E+02	 .23285854E+02	 .47494069E+01
	.21859073E+02	 .96547568E+02	 .24724367E+02	 .206010908+01

	

-.26987518E+02 -.77839782E+01 -.57638098E+02	 .47739782E+02
N

001...3++• 12TH COLUMN .+..s.4a+r.+•

-.31357376E+04
.62486716E+01,

-.26266162E+03
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.19609647E+03
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.^492o386E^c^^
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-.63721607E+03
.19923345E+03
. 10607 709E+04

-.19967166E+03
.442590151:+02
.2064066E+03
.22539714E+04

:0
:tvvvvsv44v 16TH COLUMN v•vvvv•v^4v•t

.22243348E+05

.44581880-e+03

.49999777E+04

-.18116220E+04

-.26338308E+03
-.31619089E+04
.10007252E+03

.12832804E+03

.162gO237E+03

.43534588E+03

.11124970E+04

.15803302E+03

.29787903E+04

.80575622E+03

.22343841E+04

.74285183E+03
-.26770333E+02
-.39317212E+03
-.16093799E+03

.74741606E+04

.50114671E+02
-.52978949E+03
-.64786103F^43
-.11023527E+04

-.32096934F.+03
-.76644810E+03

-.17753994C+04
-.134118599+44

-.93317474E+00
-.98972738E+03
-.39785669E+42
-.83088389E+04
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Subroutine 3UVDEC

Description: The purpose of 3NVDEC is to compute the singular-value deoomposi-
t on (rer. 2) of a real e x n (m i n) matrix A by performing the factori-
sation,

A . UQV'

where U is an m x n matrix whose columns are n orthonormalized eigen-
vec tors associated with the n largest eigenvalues of AA', V is an
n x n matrix whose colum a are the orthonormalized eigenvectors associated
with the n eigenvalues of A'A, and

Q s ding (01,02,9..,0n)

where of (i n 1 9 2,...,n) are the nonnegative square roots of the eigen-
values o! A'A, called the singular values of A. Options are provided for
the computation of rank A, singular values of A. an orthonormal basis for
the null space of A, the pseudoinverse of A, and the least squares solution
to

AX s B

Both A and B are stored as variable dimensioned two-dimensional arrays.
The computaticcal procedure is described in reference 2 on pages 135-151.
Basically, Householder transformations are applied to reduce A to bidiagonal
form after which a QR algorithm is used to find the singular values of the
reduced matrix. Combining results gives the required construction.

Source of software: LaRC Analysis and Computation Division subprogram library
with modiMa oas by Ernest 3. Armstrong, LaRC

Calling e uence: CALL SNVDEC(IOP, MD,ND,M,N,A,NOS,B,IAC,ZTBST,Q,V,IRANK,
L 

Input arguments:

IOP	 Option code:
1	 The rank and singular values of A will be returned.
2	 The matrices 0 and V will be returned in addition to the

information for IOP . 1.
3	 In addition to the information for IOP s 2 0 the least

squares solution to AX x B will be returned.
4	 The pssudoinverse of A will be returned in addition to the

information for IOP s 2.
5	 The least square* solution will be returned in addition to

the information for IOP : 4.
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MD	 The maximum first dimension of the array A as given in the
DIMENSION statement of the calling program

ND	 Maximum first dimension of the array V
4

M	 The number of rows of A

i
N	 The number of columns of A

I
A	 Matrix stored as a variable-dimensioned two-dimensional array.

Input A is destroyed.

NLA	 The number of column vectors of the matrix B

B	 Two-dimensional array that must have row dimension at least NOS
in the calling program: B contains the right aides of the
equation to he solved for IOP = 3 or IOP = 5. B need not
be input fc,r other options but must appear in the calling
sequence.	 '

IAC	 The number of decimal digits of accuracy in the elements of the
m:.strix A. This parameter is used in the test to determine zero
singular values and thereby the rank of A.

Output arguments:

A	 On normal return, A contains the orthogonal matrix U except
when IOP = 1.

B	 On normal return, B contains the least squares solution for
IOP = 3 or IOP = 5.

ZTEST	 The zero test computed as 11AII x 10-(IAC) using the matrix
Euclidean norm except when N = 1. When N = 1,

ZTEST = 10-(IAC)

Q	 A one-dimensional array of dimension aL least N which upon return
contains the singular values in descending order

V	 A two-dimensional array that must have first dimension ND and
3ocond dimension at least N. Upon normal return, this array
contains the orthogonal matrix V except when IOP = 1. The
last N - IRANK columns of V form a basis for the null space
of A.

Rank of the matrix A determined as the number of nonzero singular
values using ZTES?

.	 OF POOR QUALITY
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I
APLUS	 A 'two-dimensional array of first dimension ND and second dimension

at least M. Upon normal return, this array contains the pseudo-
inverse of the matrix A. If IOP does not equal 4 or 5, this
array need not be dimensioned, but a dummy parameter must appear
in the calling sequence.

IERR	 Error indicator:
?ERR = 0	 A normal return
IERR = K -• 0	 The Kth singular value '.ias not been found after

30 iterations of the QR algorithm procedure.
IEhR = -1	 Using the given IAC, A is close to a matrix

whioh is of lower rank and if the accuracy is
reduced, the rank of the matrix may :silo be
reduced.

COMMON blooks: None

Error messages: None. The user should examine IERR after return.

Field length: 2072 octal words ( 1082 decimal)

Subroutines employed ^z SNVDEC: None

Subroutines employing SNVDEC: FACTOR, CTROL, CSTAB, D 'AB, DISCREC

Comments: SNVDEC may be applied to matrices stored as one-dimensional arrays
by setting MD : M and ND : N in the calling sequence.

The subroutine is internally restricted to N S 150.
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Wo::king Paper No. 5

Modified Outboard Control

Surface Transfar Function

W. L. Garrard

Department of Aerospace

Engineering and Mechanics

Uriversity of Minnesota

Minneapolis, Minnesota

This paper discusses the modified transfer function for the

outboard aileron. The new transfer function is

+0- (. X/0 "4 ( 5'^ + Z8.6 s + +77.5
u o 	 (d t /Bo)(s` + 2S/d (d./^)s,Ys;+ zz9s + ^'^77.5 )',^5^^^6s+^477.5^^

c

Note that the numerator term and two of the denominator terms

have the same nondamped natural frequency, the damping factor of

the numerator is 0.03 while the damping factors associated with

the denominator terms of the same frequency are 0.23 and 0.3.

'*hus the numerator dynamics effectively cancels the phase shift

resulting from the one of the denominator factors and axcept at

near the natural frequency of 477.5 rad/sec the numerator dynamics

also cancel the 40 db/decads roll-off resulting from 	 one of

the denominator factors. Bode plots, for the response of the exact
model of the outboard aileror are shown in Figs 1 and 2.
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The most obvious approximation is the cancellation -f the

numerator dynamics with the most lightly damped of the quadratic

terms of the same frequency in the aanominator. This results in

the 5th order model below

,U 0 _ +044 X/0 'Z

4(3)4)z^+!s 2 2,960 4C+77.5)

The Bode plots for this transfer function are gi • en in Figs 3

tnd 4. Phase is almost the same as for the exact model and gain

only differs near 477.5 rad/s. A 3rd order approLximation results

from neglecting this highest frequency term in the denominator.

This results in the approximation

'U 0	 1.77f X/o 7

AoC. (s+ idol(s t + z5/s +`3^4^2

Bede plots for this transfer function are shown in Figs 5 and 6.

Up to approxi.ma..ely 300 rad/sec this gain and phase are the

same as for the exact model. Since the 6th structural mode has

a frequency of 225 rad/s at the flutter frequency it is felt that

the 3rd order actuator model is adequate for initial control

studies.
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