NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

UNIVERSITY OF MINNESOTA INSTITUTE OF TECHNDLOGY DEPARTMENT OF AEROSPACE ENGINEERING AND MECHANICS
 MINNEAPOLIS, MINNESOTA 55455

Seni-innual Progrese Report Oct 1. 1981 to March 31. 1982 NASA Research Grant NAO-1-217 EIGENSPACE TECHNIQUES FOR ACTIVE SLUTTER SUPPRESSION W. L. farrard
Department of Aeroapace Engineering :techanice University of Minnesota
Minneapolis, MN 55455

Semi-Annual Progress Report
Oct 1, 1981 to March 31, 1982
NASA Research Grant NAG-1-217
gLGENSPACE TECHNIQUES FOR ACTIVE FLUTTER SUPPRESSION
W. L. Garrard

Department of Aerospace Engineering \& Mechanics
University of Minnesota
Minneapolis, MN 5.5455

I. Introduction

The first six months of the contract were spent in developing the mathematical models to be used lathe control system design. A major task that was completed was the development of a computer program which takes aerodynamic and structural data supplied by NASA for the ARW-2 aircraft and converts these data into state space models suitable for use in modern control synthesis procedures. This program has the ability to generate reduced order models by eliminating selected modes. Reduced order models of inboard and outhoard control surface actuator dynamics and a second order vertical wind gust model was developed. In addition, an analysis of the rigid body motion of the ARW-2 was conducted, and it was shown that the deletion of the aerodynamic lag states in the rigid body modes resulted in more accurate values for the eigenvalues associated with the plunge and pitch modes than were ubtainable if the lag states were retained.

The remainder of the report consists of a summary of results in each of the areas outlined above. The details are given in Working Papers contained in the Appendix.
II. Actuator/Control Surface Models (Working Papers $1 \& j$)
A. Elevator (Working Paper 1) The elevator transfer function to be
used ia a simple first-order lag

The allowable control surface activity levels of Mach 0.86 and 15000 ft. are $+7^{\circ}$ and -12° deflection and $\pm 80^{\circ} / \mathrm{s}$ for a $12 \mathrm{ft} / \mathrm{s}$ vertical gust. The bandwidth of the elevator is much less than the lowest flexural frequency ($118 \mathrm{rad} / \mathrm{sec}$), and the gain of the elevator at this frequency is 0.167 (-15.54 Db); therefore, it appears that the elevator will not be effective for flute: suppression.
B. Inboard Aileron (Working Paper l). An eleventh-order model with third-order numerator dynamics was given for the inboard aileron. The first, fourth, and sixth flexure modes appear to be the most important in modeling flutter. (See Section on Results.) The frequency of the sixth mode 18218 rads. In this range of frequencies, fourth-order approximation of the actual inboard aileron transfer function exhibits maximum error of 0.25 Db In gain and -9° in phase angle. It is proposed to use the fourth order approximation given as

$$
u_{i} / u_{u_{c}}=1.6 i 4 \times 10^{11}\left(s^{2}+671 s+2.28 \times 10^{5} 2 s^{2}+322 s+7.71 \times 10^{5}\right)
$$

Page 3

The activity for the inboard aileron le limited to 20° down and 10° up deflection and $130^{\circ} / \mathrm{s}$ deflection rate for at $12 \mathrm{ft} / \mathrm{s}$ gut at the flutter condition.
C. Outboard Aileron (Working Paper 5) The modified transfer function for the outboard aileron ts given in Working Paper 5. (Nuts the ilscuesion on the Outboard Aileron given in Working Paper lie based on earlier model of the aileron and should be ignored.) The exact transfer function is event order with second order numerator dynamics. A third-order approximation gives the same response characteristics as the exact model up to frequencies of 300 rad/a. This third order model is

$$
u_{u_{0}}=\frac{1.774 \times 10^{7}}{(5+180)\left(s^{2}+251 s+(314)^{2}\right)}
$$

The outboard aileron has a maximum deflection of $\pm 15^{\circ}$ and deflection rate of $740^{\circ} / \mathrm{sec}$ for a $12 \mathrm{ft} / \mathrm{s} \mathrm{ms}$ gust at the flutter condition.
III. Wind Gust Model (Working Paper 2) A second-order vertical wind gust model given below is to be used

$$
\left.\frac{w(s)}{M(s)}=(1+\sqrt{3} L / v s) /(v / v)_{s}+1\right)^{2}
$$

where

$$
W \text { = vertical gust velocity }
$$

L - characteristic lens th (2500 ft)
V - the forward velocity

- n - white noise input with intensity, $\left(\frac{L}{V}\right) \sigma^{2}$
$\sigma=$ mme gust velocity
At the flutter condition of Mach 0.86 and 15000 feet, $\sigma=12 \mathrm{ft} / \mathrm{s}$. At the gust test condition of Mach 0.7 and 15000 feet σ, $59 \mathrm{ft} / \mathrm{sec}$. The control. system should renuce bending moments 30 to 40% at all stations at the gust teat condition.
IV. State Space Model (Working Paper 3)

Modern control design techniques require that the system be modeled in state space form as

$$
\dot{z}=A z+B u_{c}+\Gamma \eta
$$

where

$$
\begin{aligned}
& 2=\text { state vector } \\
& U_{c}=\text { control vector } \\
& \eta \text { = white noise input }
\end{aligned}
$$

The equations of motion for the flexible aircraft are given in the form

$$
\begin{aligned}
& {\left[M s^{2}+C s+K\right] x+q\left[A_{0}+A_{1}\left(\frac{C s}{2 V}\right)+A_{2}\left(\frac{C S}{2 V}\right)^{2}\right.} \\
& \left.+\sum_{n_{1}=1}^{n} \frac{D_{m s}}{5+\frac{2 V}{C} \bar{K}_{n}}\right]\left[\begin{array}{l}
x \\
U \\
w
\end{array}\right]
\end{aligned}
$$

where

```
    X - the rigid body (plunge snd plich) and elavtlcmode
        deflections
        U = control surface deflectione
        W verticel wind gust velocit,
```

 (See next Section and Wroking Paper 4 for detaile of this model.)
 Incorporating the tranefer funcions for the control surfaces and the vertical wing gust with the alrcraft model results in ataterer, 2 , consisting of (1) rigid body deflection and rates, (2) flexural displacements and rates, (3) elevator angular deflection, (4) inboard aileron angular deflection, deflection rate, and acceleration, (5) outboard ailaron angular defiection a deflection rata, (6) wind gust velocity and an astociated variable (see Working Paper 2), and (7) lag states associated with the unstea'y aerodynamics. The control vector, U_{e}, consists of the comanded inputa to the elevator, the inboard aileron, and the outboard alleron. The white noise input is the forcing term for the wind gust model.

Since there are 10 flexural degrees of freedom, two rigid body degrees of freedom, a lag state for each degree of freedom and each reduced frequency included in the unsteady aerodynamic model, afirstorder elevator morel, fourth and third order alleron models, and a second order gust model, the dimensionality of the state vector is 46 even $1 f$ only one lag state is assumed. Thus it is necesaary to computerize the manipulations required to construct the state space model. Such a program has been written and is running on the University of Minnesota Computer System. This program allows rigid body and flexure modes to be delected in order to genarate a lower order model if required. Results obtained from use of this model are described later.
V. Unsteady Aerodynamic Model (WorkIng paper 4)

The flexible aircraft is modeled as

$$
\left[M s^{2}+C s+k\right] x+q Q(s)\left[\begin{array}{l}
x \\
u \\
w
\end{array}\right]=0
$$

where
$M=$ generalized mats matrix
$C=$ generalized structural damping matrix
$K=$ generalized stiffness matrix
$Q=$ dynamic pressure
$Q=$ matrix of aerodynamic coefficients
W, X, U are defined in Section 4.

The matrix of aerodynamic influence coefficients, $Q\left(s=j \frac{2 V}{C} k\right.$), was provided by NASA for a range of reduced frequencies. The aerodynamic influence coefficient matrix was approximated by

$$
Q_{A}(s)=A_{0}+A_{1}\left(\frac{C s}{2 V}\right)+A_{2}\left(\frac{C s}{2 v}\right)^{2}+\sum_{m=1}^{n}-\frac{D_{m}(s)}{s+\frac{2 v}{C} \bar{k}_{m}}
$$

The error matrix $E(s)$ is defined as

$$
E(s)=Q(s)-Q_{A}(s)
$$

Determination of matrices A_{0}, A_{1}, A_{2}, and D_{n} which give the best least equares fit to the data is a relatively etraightforward problen (see Working Paper 4). The first column of the matrix A o must be set equal to the first colunn of $Q(0)($ which 1 e zero) in order to reflect the fact that nerodynamic forces due to the plunge displacement are zero. The remaining matricea can be determined to give the best least squares fit to the data once the \bar{k}_{m} s are specified. The selection of \bar{k}_{n} ' which result in a "beat" fit is not so straightforward. (See Dowell, E. H. "A Simple Method for Converting Frequency Domain Aerodynamics to the Tine Domain" NASA Tech. Memorandun 81844, Oct 1980.) An approach to the selection of the \bar{k}_{m}^{\prime} 's was developed as part of this s :udy and appears to yield good results with miniaal computational effort. This approach depends upon the fact that the spectral norm of a matrix equals its maximum singular value. Thus the maximura singular value of $E(s)$, defined as $O(E)$ equals $E(a)$ and is measure of the size of the error in the approximat on of $Q(s)$. The prosedure $1 s$ to (1) arbitrarily select values for the $\bar{k}_{m}^{\prime} s$, (2) let the first colunir of A_{0} equal the first column of Q (i) (which is zero), (3) determine the remaining values of A_{0}, A_{1}, A_{2}, and $J_{m}, m=1, \ldots n$ which give the best least squares fit to the data, (4) calculate the maximum singular value of the error matrix $E(s)$, (5) vary the \bar{k}_{m} 's and repeat the process until chis singular value achieves a minimum. Since only a few values of \bar{k}_{m} are comonly used, a relatively simple search procedure can be used to determine the optimum values for the $\bar{k}_{m}^{\prime} s$.
VI. Results
A. Rigid Body Modes (Working Paper 4)

The procedure described above was used to generate a mathematical model of the ARW-2 at the flutter condition of Mach 0.86 and 15000 feet. A single aerodynamic lag state was used. The value of \bar{k}_{1} was varied until the maximum
aingular value of the error matrix was ainimized for reduced frequency of zero. The mininization was accomplished at zero frequency because it was falt that the approximation should be best at low frequencies ince rigid body modes were to be etudied. The resulting value of \bar{k}_{1} wes 0.13 which is very close to the reduced flutes frequency of 0.15 . The elemente of the \boldsymbol{A} matrix supplied by NASA were plotted in polar form and were compared with polar plots of the elements of the Q_{A} matix resulting from the appromimetemodel. Aa can be seen in Working Paper 4, tnese plote are almot identical, indicating that the approximation is extremely good.

A1 flexure modes were naglected, ard the eigenvalues aseociaced with the plunge and pitch modes were calculatea as follows:

$$
\begin{array}{ll}
\text { plunge } & 6.1146,1.828 \times 10^{-7} \\
\text { piech } & -5.1767+j 7.5543
\end{array}
$$

If the lag terma were neglected when the eigenvalues were calculated, the plunge and pitch eigenvalues were

$$
\begin{array}{ll}
\text { plunge } & 3.391 \times 10^{-2}, 7.588 \times 10^{-7} \\
\text { pitch } & -1.1188 \pm j 3.5572
\end{array}
$$

These are not too different from the values given by Boeing of

$$
\begin{array}{ll}
\text { plunge } & -0.0092 \pm \mathrm{J} .0437 \\
\text { pitch } & -1.4274 \pm \mathrm{y} 2.422
\end{array}
$$

It appears that inclusion of the aerodynamic lag terme degrades the accuracy of the calculation of the rigid body eigenvalues and that eliminaticn of the lag states associated with the rigid body modes improves the accuracy of the model. It is difficult at present to explain why this is so. The aerodynamic las terms represent unsteady aerodynamic erfect and since use of quasi-steady aerodynamics usuaily allows the accurate prediction of rigid body eigenvalues, it is not surprising that the eigenvalues calculated by neglecting the lag terms are near those given by Boelng. What is surprising is that the

Inclusion of the lag terme has such an effect on the elgenvalues. The time constante associated with the ungtudy aerodynanice are less than . 0 : ar while the time conetant associsted with che short period mode is of the order of 0.5 sec and that of the plunge mode is approximately 125 dec.

B. Flexure Modes

An examination of the 10 flexure moden indicated that modes 2 and 5 were primarily fuselege bending modes, and mode 7 wes exclusively a tall mode. Therefore, these three modes were not considered further in the analyais. Modo 1 was the first wing bending mode, mode 2 was the second wing bending mode, and mode 6 was the firat wing torsior mode. These modes were obviously important and were retained. Modes 3 and 8 included wing tip bending and t was felt that thes modas should also be analyzed further. Mode 9 was primarily wiag bensing and mode 10 was primarily wing torsion, and these modes were also retained. Thus seven flexure modes, the lat, $3 \mathrm{rd}, 4 \mathrm{th}, 6 \mathrm{th}, 8 \mathrm{th}$, $9 t h$, and loth, were used in the flutter inalysis. A single lag term with reduced frequency of 0.13 was used. The loci of the elgenvalues of those modes as velocity ti varied are shown in Pig 1 . The data from which Fig. is constructed is given in Table 1 . It can be seen that the lst mode flutters at a speed of approximately $9500 \mathrm{in} / \mathrm{s}$ at a frequency of approximately $120 \mathrm{rad} / \mathrm{s}$. The results are based o: aerodynamic data for a Mach number of 0.86 ; therefore, the values of the eigenvalues at low velocities are suspect, however, 9500 in/s corresponds to a Mach number of 0.75 which is reasonably close to 0.86 . 181 presents results which are very similar to those given by NASA; therefore, it is felt that the mathenatical modeling has been done correctly. It should be noted that modes 3 and 8 are very insensitive to velocity, indicating that they are primarily vibrational modes not affected by aerodynamics. Modes 9 and 10 do however very considerably with velocity.

Eigenvalues were calculated using models in which various modes were
deleted. (See Table 2.) It can be seen that even though the lat mode flutcers, a three mode model which contains the let, $4 t h$, and 6 th modes is required to accurateiy pradict flutter. Thie ie not surprising since claseical flutter raquires both bending and a torion mode. Both the let and fith sodes are bending and the $6 t h$ is torsion. It is interesting to note that at Mach 0.6 , the 4 th mode flutere. Deletion of the 3 rd and 8 th modes has almot no affect on the eigenvalues of the other modes, and the 9 th and loth modee have very little affect on the lower modes.
VII. Conclusions and Future Plans

It is felt that we now have valid mocinl of the aircraft to be used in our flutter control atudies. Since the elevator has such a low bandwidth compared with the flutter frequencies, flutter control will be eccomplished using the inboard and outboard aileronn. A model consisting of the let, $4 t h$, and 6th modes will be used for control eyster design and a model containing the lst, $4 t h, 6 t h, 9 t r$, and $10 t h$ modes will be used for evaluation. A aingle aerodynanic lag tate is proposed to be used in both the design and evaluation models. Currently a program to perform eigenepace design is being written ae is a progras to interface the aircraft model with an existing evaluation progran for deternining ris responses to stochastic wind gusts.

ORIGINAL PAGE IS
OF POOR QUALITY

Table 1．Variation of Eigenvalues with Velocity at 15000 Feet

Dyn，Pressure（Psi）	Velocity（in／s）	Mode No．	Eigenva	
0.0036	1000	¿0	$-4.6 \pm j$	499.3
		9	$-2.8 \pm$ J	421.5
		8	-2.3 ± 1	395.8
		6	$-4.1 \pm j$	267.3
		4	$-2.3 \pm \mathrm{j}$	191.3
		3	-0.7 ± 1	136.7
		1	-1.6 ± 1	50.7
0.144	2000	10	$-6.7 \pm j$	498.2
		9	-3.6 ± 1	421.6
		8	-2.5 ± 1	395.8
		6	$-6.8 \pm j$	264.9
		4	－3．7土 j	191.2
		3	$-0.7 \pm j$	136.7
		1	-3.0 ± 1	51.6
0.325	3000	10	-8.9 ± 1	496.4
		b）	$-4.3 \pm \mathrm{j}$	421.7
		8	－2．8 ± 1	34－9 9
		6	－9．5 土 J	260.9
		4	$-5.1 \pm j$	191.1
		3	－0．7 $\pm \mathrm{j}$	136.7
		1	－4．5 $\pm \mathrm{j}$	53.3
0.577	4000	10	$-11.0 \pm j$	493.8
		9	－5．1 $\pm \mathrm{J}$	42：，9
		8	$-3.1 \pm j$	396.0
		6	$-12.0 \pm j$	255.4
		4	$-6.6 \pm j$	190.3
		3	$-0.8 \pm \mathrm{j}$	136.7
		1	$-6.0 \pm j$	55.9
0.902	5000	10	$-13.1 \pm \mathrm{j}$	490.5
		9	$-5.9 \pm \mathrm{j}$	422.2
		8	$-3.3 \pm \mathrm{j}$	396.2
		6	$-14.3 \pm \mathrm{j}$	248.2
		4	－8．4 \pm j	190.0
		3	$-0.8 \pm j$	136.7
		1	$-7.7 \pm \mathrm{j}$	59.4
1.3	6000	10	－15．1 $\pm \mathrm{j}$	486.3
		9	－6．7士 J	422.5
		8	－ $3.5 \pm \mathrm{j}$	396.4
		6	－16．12士 J	239.7
		4	$-10.7 \pm \mathrm{j}$	188.0
		3	$-0.8 \pm j$	136.8
		1	$-9.5 \pm \mathrm{J}$	64.4

Table 1. Variation of Eigenvalues with Velocity at 15000 Feet

1.77	7000	10 9 8 6 4 3 1	$\begin{aligned} & -17.16 \pm j \\ & -7.5 \pm j \\ & -3.7 \pm j \\ & -16.9 \pm j \\ & -13.9 \pm j \\ & -0.8 \pm j \\ & -11.7 \pm j \end{aligned}$	$\begin{array}{r} 481.3 \\ 422.9 \\ 396.5 \\ 230.5 \\ 183.2 \\ 136.8 \\ 71.6 \end{array}$
2.31	8000	10 9 8 6 4 3 1	$\begin{aligned} & -19.1 \pm j \\ & -8.4 \pm j \\ & -3.9 \pm j \\ & -16.4 \pm j \\ & -18.3 \pm j \\ & -0.9 \pm j \\ & -14.2 \pm j \end{aligned}$	$\begin{array}{r} 475.5 \\ 423.3 \\ 396.8 \\ 223.0 \\ 171.5 \\ 136.9 \\ 82.9 \end{array}$
2.92	9000	10 9 8 6 4 3 1	$\begin{aligned} & -21.2 \pm j \\ & -9.2 \pm j \\ & -4.0 \pm j \\ & -15.7 \pm j \\ & -24.0 \pm j \\ & -0.6 \pm j \\ & -16.2 \pm j \end{aligned}$	$\begin{aligned} & 468.9 \\ & 423.8 \\ & 397.0 \\ & 218.8 \\ & 140.1 \\ & 137.4 \\ & 108.6 \end{aligned}$
3.61	10000	10 9 8 6 4 3 1	$\begin{array}{r} -23.0 \pm j \\ -10.1 \pm j \\ -4.1 \pm j \\ -16.0 \pm j \\ -68.9 \pm j \\ -0.5 \pm j \\ +21.2 \pm j \end{array}$	$\begin{aligned} & 461.2 \\ & 424.4 \\ & 397.2 \\ & 217.6 \\ & 117.9 \\ & 136.6 \\ & 121.9 \end{aligned}$
4.37	11000	10 9 8 6 4 3 1	$\begin{array}{r} -24.8 \pm j \\ -11.0 \pm j \\ -4.1 \pm j \\ -16.9 \pm j \\ -97.1 \pm j \\ -0.7 \pm j \\ +41.6 \pm j \end{array}$	$\begin{aligned} & 452.5 \\ & 425.0 \\ & 397.4 \\ & 218.3 \\ & 108.4 \\ & 1.36 .6 \\ & 118.1 \end{aligned}$

Tajle 2. Eigenvalues for Combinations of Flexure Moden

Mode No.

1 Mode Model
1

4
1
2 Mode Mode:

3 Mode Model

3 Mode Model

4 Mode Model

5 Mode Model

5 Mode Model

6 Mode Model

7 Mode Mode 1

Eigenvalue

$$
\begin{aligned}
& -13.6 \pm j 78.6 \\
& -14.7 \pm j 180.2 \\
& -15.0 \pm j 86.6
\end{aligned}
$$

$$
\begin{array}{r}
+14.9 \pm j 134.2 \\
-65.0 \pm j 121.7 \\
-14.7 \pm j 180.2 \\
-0.9 \pm j 136.8 \\
-15.0 \pm j 136.5
\end{array}
$$

$$
\begin{aligned}
& -15.7 \pm j 216.1 \\
& -94.3 \pm j 106.4 \\
& +39.9 \pm j 118.0
\end{aligned}
$$

$$
-15.7 \pm 1216.1
$$

$$
-94.2 \pm j 106.6
$$

$$
-0.7 \pm j 136.6
$$

$$
+39.7 \pm j 118.0
$$

$$
-4.9 \pm j 397.2
$$

$$
-15.7 \pm j 216.1
$$

$$
-94.1 \pm j 106.7
$$

$$
-0.7 \pm j 136.6
$$

$$
+39.6 \pm j 118.7
$$

$$
-24.3 \pm j 453.6
$$

$$
-10.2 \pm \text { j } 425.0
$$

$$
-16.6 \pm j 218.3
$$

$$
-94.2 \pm j 108.7
$$

$$
+39.8 \pm 118.2
$$

$$
-10.9 \pm j 424.9
$$

$$
-4.2 \pm J 397.4
$$

$$
-15.7 \pm j 216.1
$$

$$
-93.7 \pm \mathrm{J} 107.2
$$

$$
-0.7 \pm j 136.6
$$

$$
+39.3 \pm j 118.2
$$

$$
-24.8 \pm j 452.5
$$

$$
-11.0 \pm 1425.0
$$

$$
-4.1 \pm \pm 397.4
$$

$$
-16.9 \pm j 218.3
$$

$$
-97.1 \pm j 108.4
$$

$$
-0.7 \pm j 136.6
$$

$$
+41.6 \pm j 118.1
$$

Appendix

Working Papers 1 - 5

Working Paper No. 1
Actuator Models for
Flutter Control Study

W.L. Garrard

Dept. of Aerospace Engineering and Mechanics
University of Minnesota
Minneapolis, MN

Introduction

The CAST-2 vehicle has three independent control surfaces available for flutter and pitch control. These are an elevator, an inborad actuator, and an outboard actuator. This paper gives the transfer functions for these actuators and suggests some lower order model approximations for the ailerons.

Elevator
The elevator transfer function is a simple first order lag

$$
\begin{equation*}
u^{u_{e_{c}}}=\frac{20}{5+20} \tag{1}
\end{equation*}
$$

Bode plots for this transfer finction are given in figs. 1 and 2. The allowable rms control surface activity levels are $+7^{\circ}$ and -12° deflection and $\pm 80^{\circ} / \mathrm{sec}$ for a $12 \mathrm{ft} / \mathrm{s}$ vertical gust at the flutter condition of Mach 0.86 and 15000 ft . altitude.

Inboard Aileron

The transfer function for the inboard aileron is

$$
\begin{aligned}
\text { 化, } u_{6}= & 7.239 \times 10^{24}(5+610)\left(s^{2}+29005+3.126 \times 10^{6}\right) \\
& \left(s^{2}+6715+2.28 \times 10^{5}\right)\left(s^{2}+3225+455.5\right) \\
& \left(s^{2}+258.35+8.227 \times 10^{2}\right)\left(s^{2}+2945.55+30731.33 \times 106\right) \\
& \left(s^{2}+665.35+7.171 \times 10^{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
u_{i} / u_{u_{c}}= & 7.239 \times 10^{24}(s+610)(s+1400 \pm j 1079.8) /(s+455.5)(s+335.5 \pm \\
& (5+161 \pm j 8 i 5.8)(s+144 \pm j 895.5)(s+142+5 \pm j 1074.2) \\
& (s+332.7 \pm j s+61.6)
\end{aligned}
$$

Bode plots for this transfer function are shown in Figs. 3 and 4. The terms $s^{2}+2800 s+3.126 \times 10^{6}$ in the numerator and $s^{2}+2848.9 s+3.183 \times 10^{6}$ can effectively be canceled. The two high frequency factors in the denominator $(s+1424.5 \pm$ j 1074.2) and ($s+332.7 \pm j 8461.6$) have little effect on the dynamic response over the frequency range of interest in the control problem of 1 to $500 \mathrm{rad} / \mathrm{s}$. Also the $\mathrm{s}+610$ term in the numerator comes airy close to canceling the $s+455.5$ term in the denominator and if there are no numerator dynamics the state space representation is simplified somewhat. All of these assumptions result in a sixth order model

$$
\left.u_{v} / u_{u_{c}}=1.3705 \times 10^{11} / s+335.5 \pm j 339.8\right)(s+161 \pm j 825.8)(s+144 \pm j 895.5)
$$

The Bode plots over the frequency range from 10 to $1000 \mathrm{rad} / \mathrm{s}$ are given in Figs. 5 and 6. It can be seen that the frequency response for the exact transfer function and the sixth order approximation are very close over this range of frequencies. The comparison is presented in detail in Table 1. The flutter frequency is about $150 \mathrm{rad} / \mathrm{s}$ and the correspondence between the sixth order and exact transfer function is very good near this frequency. At very high frequencies the exact transfer function has a phase shift of -180° and a slope of $40 \mathrm{DB} /$ Decade greater than the sixth order approximation.

A fourth order approximation can be generated by viiinoting the dynamics associated with the factor $s+144 \pm j 895.5$. This is somewhat difficult to justify as we retain the factor $s+161 \pm j 825.8$ which is about the same frequency. The resulting fourth order transfer function is

$$
u_{i} / u_{u_{c}}=1.614 \times 10^{11} /(5+335.5 \pm j 339.8)(s+161 \pm j 825.3)
$$

Bode plots for this transfer function are given in Figs. 7 and 8. The fourth-order model gives a reasonably good approxmation of the exact transfer function up to about $300 \mathrm{rad} / \mathrm{sec}$ but deteriorates rapidly at higher frequencies. The numerical details of the comparison are given in Table 1.

The final approximation considered is second order and is given as

$$
u_{i} / u_{v c}=2280, \prime^{\prime}(5+335.5 \pm j 339.8)
$$

As can be seen from Figs. 9 and 10 and from Table l, the occurlacy of this model deteriorates fairly rapidly for frequencies above about $175 \mathrm{rad} / \mathrm{s}$.

The activity for the inboard aileron is limited to -10° and $+20^{\circ}$ deflection and to $130^{\circ} / \mathrm{sec}$ deflection rate for a $12 \mathrm{ft} / \mathrm{s}$ vertical gust at the flutter condition.

Outboard Aileron
The transfer function for the outboard aileron is

$$
\begin{aligned}
\mu_{0} / \mu_{o_{c}}= & 3.5398 \times 10^{24} /\left(s^{2}+1043.7 s+3.78 .5 \times 10^{5}\right)\left(s^{2}+477 . i s+4.098 \times 10^{5}\right) \\
& \left(s^{2}+1484.2 s+4.234 \times 10^{0}\right)\left(s^{2}+11+7.4 s+5.39 \times 10^{6}\right)
\end{aligned}
$$

or in factored form

$$
\begin{aligned}
& \mu_{0} / \mu_{0}=3.5398 \times 10^{i 4} /(s+521.9 \pm j 325.8)(s+238.6 \pm j 594)(5+742.1 \pm j 1919) \\
& (5+573.7 \pm j 2249.6)
\end{aligned}
$$

Bode plots for this transfer function are given in Figs. 11 and il for frequencies from 0.1 to $1000 \mathrm{rad} / \mathrm{s}$ and in Figs. 13 and 14 for frequencies from 10 to $1000 \mathrm{rad} / \mathrm{s}$. If we consider only irequencies of the same order as the structural frequencies, a fourth order model results. This is given by

$$
\left.u_{0}=1.551 \times 10^{11} / \frac{1}{u_{o_{c}}}+521.9 \pm j 325.3\right)(s+238.6 \pm j 594 ;
$$

Bode plots for this transfer function are given in rigs. 15 and 16 . It can be seell that this gives a very good approximation of the exact transfer function over the frequency range of interest although at very high frequencies the exact model will exhioit a phase shift of -360 and a slope of - 80 DB/Decade greater than the fourtin order model.

A second order model given as

$$
u_{0} / u_{0_{c}}=\frac{3755}{\left(5^{2}+521.55+j 325.8\right)}
$$

was also examined and Bode plots for this model are shown in Figs. 17 and 18. The approximation resulting from use of this model is considerably worse than given by the fourth order model.

The outboard aileron has a rms deflection limit of $\pm 15^{\circ}$ and a deflection rate limit of $710^{\circ} / \mathrm{sec}$ for a $12 \mathrm{ft} / \mathrm{sec}$ vertical gust at the flutter flight condition.

Conclusions and Recommendations
Initial controller designs will incorporate rigid body and first, fourth, and sixth elastic modes. Since the sixth mode has a frequency of $225 \mathrm{rad} / \mathrm{s}$ at the flutter condition, it is felt that the fourth order approximation of the inboard actuator whould be adequate even though the sixth order gives a considerably better approximation of the actuator dynamics for Erequencies greater than $350 \mathrm{rad} / \mathrm{sec}$. The fourth order model of the outboard actuator gives a very good approximation of the exact transfer function over the frequency range of interest.

Table 1: Comparison of Exact Transfer Function for Inboard Aileron and Various Lower Order Approxima ᄂions

	Freq (rad/s)	Gain(Db)	Phase (deg)	$\Delta \mathrm{Gain}(\mathrm{Db})$	\wedge Phase (Deg)
Exact	100	0	-27	--	--
	178	0.5	-45	--	--
	316	0.75	-81	-.	--
	562	2.0	-162	--	--
	1000	0	-396	--	--
	830	6.6 (peak)	-	--	--
2nd Order Approx.	100	0	-18	0	-9
	178	0	-27	. 5	-18
	316	-. 075	-54	1.5	-27
	562	-4.5	-108	6.5	-54
	1000	-13.0	-135	13.0	-261
4th Order Approx.	100	0	-18	0	-9
	178	0.25	-36	0.25	-9
	316	0.5	-62	0.25	-19
	562	-0.5	-135	2.5	-27
	1000	-7.5	-270	7.5	-126
	298	0.5 (peak)	--	6.1	-
6th Order Approx.	100	0.25	-23	-. 25	-6
	178	0.5	-40	0	-5
	316	1.25	-72	-. 5	-9
	562	3.0	-145	-2.0	-23
	1000	4.5	-300	-4.5	-36
	830	8.3 (peak)	--	-1.7	--

Table 2: Comparison of Exact Transfer Function for Outboard Aileron and Various Lower Order Approximations

	Freq ($\mathrm{rad} / \mathrm{s}$)	Gain(Db)	Phase (veg)	$\Delta G a i n(D b)$	$\Delta \mathrm{Freq}$ (Deg)
Exact	100	0	-27	--	--
	178	0.25	-45	--	-
	316	0.5	-90	--	--
	562	0.25	-180	--	--
	2000	-12.5	-306	--	--
	433	0.9 (peak)	--	--	--
2nd Order Approx.	100	0.0	-18	0	-9
	178	-0.5	-27	0.75	-18
	315	-1.0	-45	1.5	-45
	562	-4.0	-81	4.?5	-99
	1000	-10.0	-108	-2.5	-198
4th order Approx.	100	0	-23	0	-6
	178	0	-38	0.25	-7
	316	0.5	-72	0	-8
	562	-1.0	-162	1.25	-18
	1000	-15.0	-252	-2.5	-54
	376	0.4 (peak)	--	0.5	--

PHASE RESPONSE ELEVATOR

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Fig 4

$$
\cdots
$$

ORIGNML :
OF POOK Qun:T.

RESPONSE
INBD AILERON APPROX

1.500
PHASE RESPONSE
INBD GILERON APPRÚX

(9Э0) 3 SH Hd

PHASE RESPONSE
alleron approx

orichan pace "
uf poct quritit

$$
\begin{aligned}
& \text { PHASE RESPONSE } \\
& \text { INBD AILERON APFROX } \\
& \text { and D.s.. }
\end{aligned}
$$

（9コロ） 3 SHHd

> U FI FRGE IS
> of HOC.R QUALITY

ORIGINAL PARE IS
OF POOR QUALITY

17
$F_{i g}$

ORIGINAL PAGE IS OF POOR QUALITY
PHASE RESPONSE
लUTBD AILERON APPROX

(9ヨ0) 35 HHd

ORIGINAL PAG: IS OF POOR QUALITY

PHASE RESPONSE

and o.le.

$$
.000 \quad 1.500
$$

Gust Model for

Flutter Control Study

W.L. Gerard
Dept. of Aerospace Engineering and Mechanics University of Minnesota
Minneapolis, MN

Introduction

A second order vertical wind gust model is described. The vertical gust is to have a $12 \mathrm{ft} / \mathrm{sec}$ rms value at the flutter condition of Mach 0.86 and 15000 feet and a $59 \mathrm{ft} / \mathrm{sec}$ rms value. for the gust test condition of Mach 0.7 and 15000 ft . A 30 to 40 percent reduction in bending moment at all stations is desired at this condition compared with the uncontrolled aircraft.

Gust Transfer Function

The transfer function for a second order gust model is given as

$$
\frac{\delta_{(s)}}{\|(s)}=\frac{(1+\sqrt{3} \underline{L})}{\left(\left(\frac{b}{v}\right) s+1\right)^{2}}=G_{7}(s)
$$

where $\delta=$ the vertical gust velocity
$\ell=$ the characteristic length (2500 ft in this case)
$v=$ the forward velocity
$\eta=$ a white noise input

dens ty

If we assume s_{η} is the spectral of the white noise the expected value of δ^{2} is given as

$$
E\left[\delta^{2}\right]=\int_{-\infty}^{\infty} G_{7}(j \omega) G_{(-j \omega)} S_{n} d \omega
$$

If s_{n} is constant, this integral can be evaluated from standard tables [1] as

$$
E\left[\delta^{2}\right]=2 s_{n} \pi\left(\frac{v}{l}\right)
$$

Now we want $E\left[\delta^{2}\right]$ to equal σ^{2}, the specified rms value of the gust; therefore,

$$
s_{x}=\frac{\sigma^{2}}{2 \pi}(\Omega,)
$$

Now

$$
S_{x}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} R_{x}(\tau) e^{-j \omega \tau} d \tau
$$

where $R_{\eta}(\tau)$ is the autocorrelation function of η and since η is white noise

$$
R_{n}(\tau)=-L \delta(\tau)
$$

where δ is the Dirac delta function. Then

$$
s_{x}=\frac{L}{2 \pi}=\frac{\sigma^{2}}{2 \pi}\left(\frac{l}{V}\right)
$$

therefore the intensity of the white noise is

$$
L=\left(\frac{l}{v}\right) \sigma^{2}
$$

At flutter, Mach $=0.86, h=15000 \mathrm{ft}, v=908.8 \mathrm{ft} / \mathrm{s}, \ell / v=2.75$

$$
\delta(s) / 11(s)=(1+4.76 s) / \frac{12.75 s+1)^{2}}{}
$$

and

$$
\Lambda=396.00
$$

At the gust test condition, $v=739.7 \mathrm{ft} / \mathrm{s}, \ell / v=3.38$

$$
\delta(s) / \sim(s)=(1+5.85 s) /(3.33 s+1)^{2}
$$

and

$$
\Lambda=11765.78
$$

Both transfer functions represent critically damped systems. The natural frequency at the flutter condition is

$$
\omega_{n}=0.363 \mathrm{rad} / \mathrm{sec} \text { (flutter condition) }
$$

and at the gust test condition is

$$
\omega_{n}=0.296 \mathrm{rad} / \mathrm{sec} \text { (gust test condition) }
$$

Bode plots for the flutter condition are shown in Figs. 1 and 2 and for the gust test condition in Figs. 3 and 4 .

State Space Representation

Since the gust models contain numerator dynamics a little extra work is required to put them in state variable form. We can accomplish this by using the block diagram shown in Fig. 5. The transfer function is

$$
\left.\frac{\delta(s)}{\partial y(s)}=\left(\frac{h_{2}}{h_{L}^{2 v}+1}{ }_{2}\right)\left(\frac{h_{1}}{h_{1} \frac{2 v}{2}}\right) s+1\right)
$$

By inspection

$$
h_{1}=-.703 \mathrm{l} / \mathrm{J}
$$

and

$$
n_{2}=-.406\left(\frac{v}{l}\right)^{2}
$$

Now from the block diagram we have the equations of motion in state space form as

$$
\begin{aligned}
& \dot{\delta}=z+0.285\left(\frac{V}{l}\right) n \\
& \dot{z}=-2\left(\frac{V}{l}\right) z-\left(\frac{V}{l}\right)^{2} \delta-0.400\left(\frac{V}{l}\right)^{2} n
\end{aligned}
$$

For $M=0.86$ and 15000 feet

$$
\begin{aligned}
& \dot{\delta}=z+0.104 x \\
& \dot{z}=-0.727 z-0.132 \delta-0.0563 \psi
\end{aligned}
$$

and for $M=0.7$ and 15000 feet

$$
\begin{aligned}
& \delta=z+0.084 n \\
& z=-0.529 z-0.0875 \delta-0.0355 n
\end{aligned}
$$

Reference

1. Crandall, S.H. and Mark, W.D., "Random Vibration", Academic Press, 1963, page 72.

ORIGINAL FAGR: IS OF POOR QUALITY

1HIGNAL PAGE IS .)F POOR QUALITY
PHASE RESFONSE
GUST. $M=.86$

ORICINAL PAGE is
OF POOR QU:ALITY

0.00

PHASE RESPGNSE
GUST. $M=.7$

(931]) 35 HHg

Working Paper No. 3
State Space Models for Flutter Cortrol Study

Working Paper No. 3
State space Models for Flutter Control Study
B. S. Liebst
Department of Aerospace Engineering and Mechanics University of Minnesota

Introduction

The structural, aerodynamic, and actuator models proposed for use in the analysis of the DAST-2 vehicle have earlier been presented in the frequency domain (see working papers No. 1 and No. 2). This paper gives the corresponding state space representation of these models for use in the modal control system design.

Second order State Equation

The following is the proposed second order form of the state equations of motion relating vertical gusts and control surface deflections to the structural response of the vehicle.
$\bar{x}=$ modal coordinates and rigid body modes
$\hat{u}=$ control surface deflections
$\delta=$ vertical gust velocity
$V=$ forward velocity
$\bar{q}=\frac{1}{2} p v^{2}$
$\bar{c}=$ mean aerodynamic chord

$$
\begin{aligned}
{\left[M_{x x}\right.} & \left.+\bar{q} A_{2}^{x}\left(\frac{\bar{c}}{2 v}\right)^{-}\right] \ddot{\bar{x}}+\left[C_{s}+\bar{q} A_{1}^{x}\left(\frac{\bar{c}}{2 v}\right)\right] \dot{\bar{x}} \\
& +\left[x_{3}+q A_{0}^{x}\right] \bar{x}+\sum_{i=1}^{L} y_{i} \\
+\left[M_{x_{u}}\right. & \left.+\bar{q} A_{2}^{4}\left(\frac{\bar{c}}{2 v}\right)^{2}\right] \ddot{\hat{u}}+\bar{q} A_{1}^{4}\left(\frac{\bar{c}}{2 v}\right) \dot{\hat{u}} \\
& +\bar{q} A_{0}^{4} \hat{u}+\bar{q} A_{2}^{\delta}\left(\frac{\bar{c}}{2 v}\right)^{2} \dot{\delta} \\
& +\bar{q} A_{1}^{\delta} \dot{\delta}+\bar{q} A_{0}^{0} \delta=0
\end{aligned}
$$

and

$$
\dot{y}_{i}=-I\left(\frac{2 v}{z}\right) K_{i} y_{i}+D_{i}^{x} \dot{\bar{x}}+D_{i}^{u} \dot{\hat{u}}+D_{i}^{\delta} \dot{\delta}
$$

or

$$
\begin{aligned}
& M \ddot{\bar{x}}+C \dot{\bar{x}}+k \bar{x}+\sum_{i=1}^{L} y_{i}+ \\
& P \ddot{\hat{u}}+Q \dot{\hat{u}}+R \hat{u}+ \\
& S \ddot{\delta}+T \dot{\delta}+U \delta=0
\end{aligned}
$$

and

$$
\dot{y}_{i}=-I\left(\frac{2 v}{\varepsilon}\right) k_{i} y_{i}+D i \dot{\bar{x}}+E i \dot{\hat{u}}+F_{i} \dot{\delta}
$$

where

$$
\begin{aligned}
& M=M_{x x}+\bar{q} A_{2}^{x}\left(\frac{\bar{c}}{2 \bar{v}}\right)^{2} \\
& C=C_{s}+\bar{q} A_{1}^{x}\left(\frac{\bar{c}}{2 V}\right) \\
& K=K_{s}+\bar{q} A_{0}^{x} \\
& r=M_{x u}+\bar{q} A_{2}^{u}\left(\frac{\bar{c}}{2 v}\right)^{2} \\
& Q=\bar{q} A_{1}^{u}\left(\frac{\bar{c}}{2 v}\right) \\
& R=\bar{q} A_{0}^{u} \\
& S=\bar{q} A_{2}^{\delta}\left(\frac{\bar{c}}{2 v}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}=\overline{\mathrm{q}} \mathrm{~A}_{1}^{\delta} \\
& \mathrm{U}=\overline{\mathrm{q}} \mathrm{~A}_{0}^{\delta} \\
& \mathrm{Di}=\mathrm{D}_{\mathrm{i}}^{\mathrm{x}} \\
& \mathrm{Ei}=\mathrm{D}_{\mathrm{i}}^{\mathrm{u}} \\
& \mathrm{Fi}=\mathrm{D}_{\mathrm{i}}^{\delta}
\end{aligned}
$$

Actuator Model
The following is proposed frequency and corresponding state space models for the three actuators of the vehicle. See working paper No. 1 for details of the transfer function representations.
I. Elevator

$$
\frac{\overline{u e}(s)}{u_{e}(s)}=\frac{20}{s+20}
$$

therefore,

$$
\dot{\bar{u}}+20 \bar{u}_{e}=20 u_{e}
$$

II. Inboard Aileron

$$
\frac{\bar{u}_{i}(s)}{u_{i}(s)}=\frac{1.614 \times 10^{11}}{(s+335.5 \pm j 339.8)(s+161 \pm j 825.8)}
$$

therefore,

$$
\begin{aligned}
\frac{\cdots}{u_{i}} & +993.0 \frac{\cdots}{u_{i}}+1.152 \times 10^{6} \ddot{u}_{i}+5.484 \times 10^{8} \frac{\bar{u}_{i}}{} \\
& +1.614 \times 10^{11} \bar{u}_{i}=1.614 \times 10^{11} u_{i}
\end{aligned}
$$

III. Outboard Aileron

$$
\frac{\bar{u}_{0}(s)}{u_{0}(s)}=\frac{1.774 \times 10^{7}}{(s+180)(s+125.5 \pm j 287.8)}
$$

therefore,

$$
\begin{aligned}
& \ddot{u}_{0}+431.0 \ddot{\bar{u}}_{0}+1.438 \times 10^{5} \dot{\bar{u}}_{0} \\
+ & 1.774 \times 10^{7} \bar{u}_{0}=1.774 \times 10^{7} u_{0}
\end{aligned}
$$

Gust Model
The following is the white noise model for the vertical gust state. See working paper No. 2 for details of this derivation.

$$
\begin{array}{lr}
\dot{z}=-\left(\frac{V}{l}\right)^{2} \delta-2\left(\frac{v}{l}\right) z-.406\left(\frac{V}{l}\right)^{2} \eta \\
\dot{\delta}= & z+.285\left(\frac{V}{l}\right) \eta
\end{array}
$$

where

$$
\begin{aligned}
& \delta=\text { vertical gust velocity } \\
& z=\text { intermediate gust state } \\
& \eta=\text { zero mean white gaussian noise }
\end{aligned}
$$

$$
\overline{n\left(t_{1}\right) n\left(t_{2}\right)}=\left(\frac{l}{V}\right) \sigma^{2}=\Lambda
$$

$\ell=$ characteristic gust length
$\sigma^{2}=$ rms value of the gust

First Order State Equation
Now that the striactural, actuator, and gust models have been developed in the state space, they can all be adjoined to form one first order state equation. Neglecting the $s \ddot{\delta}$ and $p \ddot{\hat{u}}$ terms of the second order equations of motion the resulting first order state equation is

$$
\dot{x}=A x+B u+w
$$

W
111
where

$$
x=\left\{\begin{array}{c}
\bar{x} \\
\dot{x} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{L} \\
\bar{u} \\
\delta \\
z
\end{array}\right\}
$$

$$
w=\left\{\begin{array}{c}
0 \\
-M^{-1} T(.285)\left(\frac{v}{l}\right) \\
F 1(.285)\left(\frac{v}{l}\right) \\
F 2(.285)\left(\frac{v}{e}\right) \\
\vdots \\
F L(.285)\left(\frac{v}{e}\right) \\
0 \\
(.285)\left(\frac{v}{e}\right) \\
\left.(.-406)!\frac{v}{e}\right)^{2}
\end{array}\right\} ?
$$

ORIGINAL PAGE IS
OF POOR QUALITY
and

$$
w\left(t_{1}\right) w^{T}\left(t_{2}\right)=W W I_{L}=N
$$

and

OPICNBLL FAES is of POOR QUALITY

$$
B=\left\{\begin{array}{c}
0 \\
-M^{-1} Q J H \\
E 1(J H) \\
E Z(J H) \\
\vdots \\
E L(J H) \\
H \\
0 \\
0
\end{array}\right\}
$$

Working Paper 4
Unsteady Acrodynamic Model and
Rigid Body Analysis
S. J. Garg

Page

I. Incroduction 1
II. Model for Unsteady Aerodynamics 2
III. Modification i=r Rigid Body Analysis 5
IV. Model for DAST ARW-2 6
V. Rigid Body Anaiysis for DAST AkW-2 23
VI. Conclusion 25
VII. References 26
VIII. Appendix 27

NOMENCLATURE:

M̃: Generalized mass matrixk: Generalized stiffness matrix
C: Generalized damping matrix
x: Vector of generalized coordinates for rigid and elastic modea and control surface deflections
x_{G} : Vector of generalized coordinates for gust inputs
$Q(s): \quad U n s t e a d y$ aerodynamic influence coefficient uatrix
ω : frequency in radians per second
c: referance chord length
$v: \quad v e l o c i t y$ of the vehicle
$\bar{q}: \quad$ dynamic pressure
$\rho: \quad$ density of air
M: Mach number
H: Altitude
\& : laplace operator
$\bar{\sigma}[A]: \quad m a x i m u m e i n g u l a r ~ v a l u e ~ o f ~ m a t r i x ~ A ~$

For the design of active control systems for che suppresion of acrodynamic flutter, it is necessary to first obtain the state-space representation of the equations of motion for the flexible vehicle. This is so because at present all modern control design techniques are based on the avallability of a state-space model.

In the study of flexible vehiclea, the unsteady aerodynamic forces and moments are evaluated at various reduced frequencies by the use of some type of finite element computational procedure. Our objective is to obtain a model of the unsteady aerodynamic forces and moments in a form which can be incorporated into the structural equations of motion for the aircraft so as to get a suitable state-apace representation of the vehicle dynamics.

This paper discusses the procedure for obtaining such a model. The following discussion presents an approximation of the unsteady aerodynamics by a rational polynomial and is based on the approximation first suggested by R.T. Jones [1]. The details of obtaining such an approximation using a least squares f it over the range of frequencies available is then presented.

A model for the unsteady aerodynamics of the DAST ARW-2 aircraft, the data for which was provided by NASA, was developed using the procedure discussed herein. Using this model, the rigid body motion of the aircraft was studied and the results compared with those obtained by NASA.

The programs developed to obtain the least squares approximation and do the rigid body analysis are appended for thoroughness.

MODEL FOR UNSTEADY AERODYNAMICS:

The general equations of motion for a flexible vehicle at a given Mach number are [2]:

$$
\begin{equation*}
\left[\tilde{M} s^{2}+c s+k\right] \underline{x}+\bar{q} Q(s)\left[\frac{x}{x_{G}}\right]=0 \tag{1}
\end{equation*}
$$

If a simple haxmonic motion is assumed, the matrix of aerodynamic influence coefficients $Q\left(\mathcal{A}=\dot{d} \frac{2 v}{c} k\right)$, where k is the reduced frequency given by $k=\frac{\omega c}{2 v}$, is calculated using finite difference procedures at a finite number of reduced frequencies $k_{i}, 1=1,2 \ldots n$. This complex matrix can be approximated by a polynomial in δ as:

$$
\begin{equation*}
Q(s)=A_{0}+A_{1}\left(\frac{c s}{2 V}\right)+A_{2}\left(\frac{c s}{2 V}\right)^{2}+\sum_{m=1}^{\frac{R}{2}} \frac{D_{m} s}{\left(s+\frac{2 V}{c} \hat{k}_{m}\right)} \tag{2}
\end{equation*}
$$

This form of approximating Q was first suggested by R.T. Jones [1] for the case of two-dimensional flow. The matrix A_{0} can be looked upon as representing aerodynamic stiffness while A_{1} represents aerodynamic damping
 is an approximation for the time delays inherent in the unsteady aerodynamics and the values of \hat{k}_{m} are chosen frow the range of reduced frequencies for which $Q(k)$ has been computed so as to minimize the error in this approximation.

Define the error matrix $\mathrm{E}(\beta)$ as:

$$
\begin{equation*}
E(s)=Q(s)-\left\{A_{0}+A_{1}\left(\frac{c s}{2 V}\right)+A_{2}\left(\frac{C s}{2 V}\right)^{2}+\sum_{m=1}^{\ell} \frac{D_{m} s}{\left(s+\frac{2 V}{c} \hat{k}_{m}\right)}\right\} \tag{a}
\end{equation*}
$$

Then the matrices $A_{0}, A_{1}, A_{2} ; D_{m, m}=1, \ldots h$ are computed $s s$ as to minimize the spectral norm of $E(S)\left(\|E(S)\|_{2}\right)$. The spectral norm of a matrix equals its maximum singular value [6]; i.e., $\|E(b)\|_{2}=\bar{\sigma}[E(\delta)]$. Therefore the maximum singular value of $E(S)$ is a measure of the size of the error in our approximation of $Q(\delta)$ and we must choose the values of $\hat{k}_{\text {II }}$ such that the corresponding $\bar{\sigma}[E(S)]$ is the smallest possible.

The matrices A_{0}, A_{1}, A_{2}, and $D_{m}, m=1, \ldots \ell$ are real and are computed by a least square fit of the aerodynamic data. This is carried out as follows [3]:

Constaer the (\uparrow, q) element of the matrices, then for this element we can witite (2) as:

Substituting for $\mathcal{S}=j k_{i}$ where $j=\sqrt{-1}$ we get:

Writing out equations like (4) for every $k_{1}, 1=1, \ldots n$ and then commining in a matrix form we get:

Since we want the least square solution to (5) to be real valued we can write (5) as:

$$
\left[\begin{array}{l}
A_{R} \tag{6}\\
A_{S}
\end{array}\right] \underline{\xi}=\left[\begin{array}{l}
y_{R} \\
y_{g}
\end{array}\right]
$$

where:

$$
A_{k}=\left[\begin{array}{ccccc}
1 & 0 & -k_{1}^{2} & \frac{k_{1}{ }^{2}}{k_{1}^{2}+\hat{k}_{1}^{2}} & \cdots \\
1 & 0 & -k_{2}^{2} & \frac{k_{3}}{k_{2}^{2}+\hat{k}_{1}} & \cdots \\
\vdots & & & \frac{k_{1}^{2}}{k_{1}^{2}+k_{2}^{2}} \\
\vdots & 0 & -k_{n}^{2}+k_{2}^{2} \\
1 & \frac{k_{n}^{2}}{k_{n}^{2}+\hat{k}_{1}^{2}} & \cdots & \frac{k_{n}^{2}}{k_{n}^{2}+\hat{k}_{l}^{2}}
\end{array}\right]
$$

$$
A_{g}=\left[\begin{array}{cccccc}
0 & k_{1} & 0 & \frac{k_{1} \hat{k}_{1}}{k_{1}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \cdot \frac{k_{1} \hat{k}_{2}}{k_{1}^{2}+\hat{k}_{2}^{2}} \\
0 & k_{2} & 0 & \frac{k_{2} \hat{k}_{1}}{k_{2}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \\
\vdots & & & \frac{k_{2} \hat{k}_{2}}{k_{2}^{2}+\hat{k}_{2}^{2}} \\
0 & k_{n} & 0 & \frac{k_{n}^{2}+\hat{k}_{1}^{2}}{k_{n}^{2}} & \cdots & \cdots \frac{k_{n} \hat{k}_{\ell}}{k_{n}^{2}+\hat{k}_{l}^{2}}
\end{array}\right]
$$

$$
\xi=\left[\begin{array}{c}
A_{1}+, 2 \\
A_{1}+, 2 \\
A_{2}+, 2 \\
D_{1}+, 2 \\
\vdots \\
D_{2+1,2}
\end{array}\right] ; \quad y_{R}=\operatorname{Real}\left[\begin{array}{c}
Q_{h, i}\left(x_{1}\right) \\
Q_{A, 2}\left(x_{2}\right) \\
\vdots \\
\vdots \\
Q_{h, 2}\left(x_{n}\right)
\end{array}\right]
$$

$$
; y_{g}=g_{\text {mAG }} .\left[\begin{array}{c}
a_{x, 2}\left(k_{1}\right) \\
a_{x_{1},}\left(x_{2}\right) \\
\vdots \\
\vdots \\
a_{k, 2}\left(x_{n}\right)
\end{array}\right]
$$

G: Avi r as is
of POOR Q:MAITY

The least squares solution to (6) can be obtained using any one of the many standard techniques. The program used for the purposes of this report is SNVDEC, developed by NASA [5] which uses singular value decomposition to get the least squares solution. An explanation of this procedure for solving the least squares problem can be found in [6]. Once we have computed $A_{0}, A_{1}, A_{2}, D_{m}, m=1, \ldots l$ as the solution to (6), substituting for $Q(S)$ from (2) in (1) we get the equations of motion to ie:

From this we can now obtain a state-space model using any of the miniwal realization techniques as

$$
\dot{\underline{x}}=A \underline{x}+B \underline{\underline{u}}+\Gamma \underline{\eta}
$$

```
whene x - stace vector
    u - control vectur
    2-gunt vector
```

CRIGINAL Fine is OF POOR QUALITY

MODIFICATION FOR RIGID BODY ANALYSIS:

Since the frequencies for the rigid body motion of the vehicle are small compared to that of the flexure modes, it is important to get a good fit for $Q(d)$ at low frequencies in order to analyze the rigid body motion.

One modification in the above procedure, which would achieve this, is to set $A_{0}-Q_{R}(0)$ so that we now need to obtain a best least squares fit for only $A_{1}, A_{2}, D_{m}, m=1, \ldots, f$.

Using this approximation for A_{0}, equation (6) is modified as:

$$
\left[\begin{array}{l}
A_{R}^{\prime} \\
A_{y}^{\prime}
\end{array}\right] \underline{E}^{\prime}=\left[\begin{array}{l}
y_{R}^{\prime} \\
y_{g}^{\prime}
\end{array}\right]
$$

$$
A_{9}^{\prime}=\left[\begin{array}{lllll}
k_{2} & 0 & \frac{k_{2} \hat{k}_{1}}{k_{2}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \\
k_{3} & 0 & \frac{k_{3} \hat{k}_{1}}{k_{2}^{2}+\hat{k}_{2}^{2}} \\
k_{3}^{2}+\hat{k}_{1}^{2} & \cdots & \cdots & \frac{k_{3} \hat{k}_{2}}{k_{3}^{2}+\hat{k}_{l}^{2}} \\
k_{n} & 0 & \frac{k_{n} \hat{k}_{1}}{k_{n}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \\
k_{n}^{2}+\hat{k}_{2}
\end{array}\right]
$$

$$
\xi^{\prime}=\left[\begin{array}{c}
A_{1}, \frac{1}{} \\
A_{2}+, 2 \\
D_{1}, 2 \\
\vdots \\
D_{2, t, 2}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { where } k_{1}=0 \text { which implies that } Q_{2}(0)=0 \\
& A_{R}^{\prime}=\left[\begin{array}{ccccc}
0 & -k_{2}^{2} & \frac{k_{2}^{2}}{k_{2}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \\
0 & -k_{3}^{2} & \frac{k_{3}^{2}}{k_{3}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots \\
\vdots & & & k_{2}^{3}+\hat{k}_{2}^{2} \\
\vdots & & & & \\
\vdots & -k_{3}^{2}+\hat{k}_{2}^{2} & \frac{k_{n}^{2}}{k_{n}^{2}+\hat{k}_{1}^{2}} & \cdots & \cdots
\end{array}\right]
\end{aligned}
$$

$$
y_{R}^{\prime}=R E A L\left[\begin{array}{c}
Q_{x, 2}\left(k_{2}\right)-Q_{x_{2}, 2}\left(k_{1}\right) \\
Q_{x, l}\left(k_{g}\right)-Q_{x, q}\left(k_{1}\right) \\
\vdots \\
\vdots \\
Q_{x, 2}\left(k_{n}\right)-Q_{x, q}\left(k_{1}\right)
\end{array}\right] ; y_{g}=\operatorname{smAG}\left[\begin{array}{c}
Q_{x_{, 2}}\left(k_{2}\right) \\
Q_{n, l}\left(k_{2}\right) \\
\vdots \\
\vdots \\
Q_{\lambda, 2}\left(k_{n}\right)
\end{array}\right]
$$

The fit for $A_{1}, A_{2}, D_{m}, m=1, \ldots \&$ then obtained will give a good approximation for the rigid body dynamics of the aircraft.

MODEL FOR DAST ARW-2:

The DAST (Drones for Aerodynamic and Structural Testing) ARW-2 (Aeroelastic Research Wing - Number 2) has a high aspect ratio (10.3) supercritical wing with a 25 degree sweep at midchord mounted on afrebee drone fuselage.

The unstady aerodynami: influence coefficient matrix for DAST ARW-2 at a flight condition of $M=0.86, K=15000 \mathrm{ft}$ wes provided by NASA the model consisted of two rigid body modes (plunge and pitch), 10 symetrir elastic modes, three control surfaces (stabilizer, outboard alleron, inboard alleron) and one gust atate.

The aerodynamic forces were computed using an aerodynamic/structural interface and a doublet lattice aerodynamic code, contained in the ISAC program, for twelve reduced frequencies ($0.0,0.05,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,1.0$, and 1.2).

The elements of the aerodynamic coefficient matrix were plotted on polar plots with the magnitude in decibels veraus the p e. Several of these plots which are typical of the first column of $Q(\not)$ (the force due to plunge) are attached in Fig. 1. Plots typical of forcea due to the other modes and the control surface deflections are shown in Fig. 2.

From the plots in Fig. 1 it was seen that the forces due to plunge are very small at low frequencies compared to the forces at higher frequencies. Therefore the fit for the first column of $Q(\triangleleft)$ was obtained using the riyid body modifications described in the earlier section, i.e., the first column of A_{0} (see Eq. (2)) was forced co be equal to the first column of $Q\left(A^{\prime}\right)$ at $k=0$.

ORMEN: ry
OF poor Qu diy

)
oprary:
() P POOR © \therefore

(c) ELEMENT $(6,1)$
 OF POOR QUALITY

ORICINA: ri: \quad :
OF POOR Q AIf: i

om":
Or buas quatior

(d) element $(5,6)$

बBNNILNOT C'by

(e) ELEMENT (6,2)
ons

JF PricR (Unciry
-
 OF POOR QUALITY

$$
\begin{aligned}
& \text { (c) EIEMENT (b, 1) }
\end{aligned}
$$

origits fic: is
Of poor qualing

OREN:
OF POOR QUALITY

(d) ELEMENT $(5,6)$

Fig. 4 continued

CH心家
OF POOR Q:hini:

(e) ELEMENT $(6,2)$

Fig. 4 continued

The fits for $Q(J)$ ware obtained for different values of \hat{k}_{m} and a comparison of the maximum singular values of the difference between the actual values of $Q(\phi)$ and the approximations for different \hat{k}_{m} showed that using $\hat{k}=0.13$ gives the best approximation. The following table lists the values of the maximum singular value at zero reduced frequency for some values of \hat{k}.

SN.	k	$\bar{\sigma}[\mathrm{E}(0)]$
1	0.1	214.4
2	0.125	138.2
3	0.13	137.0
4	0.135	147.0
5	0.15	162.8

The approximations of the aerodynamic forces using this value of \hat{k} for the elements plotted in Figs. 1 and 2 are shown in Figs. 3 and 4 respectively. These plots show that the approximated values follow the actual values very closely. Also from these plots we notice that it is not worthwhile to use more than one value of k as that would not improve the fit much and would only lead to an increase in the number of states in the state space realization of the model.

A listing of the program written to obtain the desired fit is attached in the appendix. The matrices A_{0}, A_{1}, A_{2}, and D_{1} corresponding to this fit are also listed. Finally an explanation of the parameters of the subroutine SNVDEC which was used to obtain these fits is listed.

RIGID BODY ANALYSIS FUR DAST ARW-2

At low frequencies the forces due to the flexure of the aircraft are sal and the equations for the rigid body motion (with the controls fixed) can be written as:

$$
\begin{equation*}
\left[\frac{\hat{M}}{\hat{q}} s^{2}+A_{1}+A_{1}\left(\frac{C S}{2 v}\right)+A_{2}\left(\frac{C s}{2 v}\right)^{2}+D_{1} \frac{s}{s+\frac{2 v}{c} \hat{k}_{1}}\right] \underline{x}=0 \tag{8}
\end{equation*}
$$

where $\tilde{M}, A_{0}, A_{1}, A_{2}, D_{1}$ are 2×2 matrices corresponding to the $r \leq g i d$ body modes x_{1} and x_{2} (plunge and pitch).

Defining lag state y as $y(s)=\frac{\delta}{\delta+\frac{2 v_{k_{1}}}{c}} \underline{x}(\Delta)$
we have

$$
\dot{y}=-\frac{2 v}{c} \hat{k}_{1} \underline{y}+\dot{\dot{x}}
$$

Let $\quad p=\frac{\tilde{m}}{q}+A_{2}\left(\frac{c}{2 v}\right)^{2}$

Then a state space representation of (8) is given as:

$$
\left[\begin{array}{c}
\ddot{x} \tag{9}\\
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ccc}
-P^{-1} A_{1} \frac{c}{2 V} & -P^{-1} A_{1} & -P^{-1} D_{1} \\
g_{2 \times 2} & 0 & 0 \\
g_{2 \times 2} & 0 & -\frac{2 V}{c} \hat{k}_{1} g_{2 \times 2}
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\underline{x} \\
\underline{y}
\end{array}\right]
$$

For the DAST ARW-2 at a flight condition of $M=0.86$, $\mathrm{H}=15000 \mathrm{ft}$ we have

$$
\begin{aligned}
c & =23.47 \mathrm{in} \\
\bar{q} & =4.29 \mathrm{psi} \\
v & =908.79 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

From the data provided by NASA and the fits obtained, the matrices $\tilde{M}, A_{0}, A_{1}, A_{2}$, and L_{1} for $k_{1}=0.13$ are as follows:
$\tilde{m}=\left[\begin{array}{cc}3.044099 & 0 \\ 0 & 0.509142\end{array}\right] ; \quad A_{0}=\left[\begin{array}{cc}0.3760334 \times 10^{-6} & 0.13225 \times 10^{3} \\ -0.18475 \times 10^{-7} & 1.53134\end{array}\right]$
$A_{1}=\left[\begin{array}{cc}0.10757 \times 10^{9} & 0.130911 \times 10^{3} \\ 0.12736 \times 10^{2} & 0.63416 \times 10^{2}\end{array}\right] ; A_{2}=\left[\begin{array}{cc}0.780027 \times 10^{3} & -0.8879 \times 10^{2} \\ -0.131119 \times 10^{2} & 0.84112 \times 10^{2}\end{array}\right]$ $D_{1}=\left[\begin{array}{ll}0.145607 \times 10^{3} & -0.14302 \times 10^{2} \\ 0.404408 \times 10^{2} & 0.47338 \times 10^{1}\end{array}\right]$

Using these values, a state space realization as in (9) was obiained for the DAST ARW-2.

The roots of the system for this realization were found to be $6.1146,1.828 \times 10^{-7},-5.1767 \pm 17.5443,-1.1977 \times 10^{2} \pm 10.17228$.

The last two roots correspond to the lag terms and the other complex pair to the short period motion of the aircraft.

Neglecting the lag terms, i.e., taking only the top left 4×4 part of the matrix in (9), the roots of the system were found to be 3.391×10^{-2}, $7.5875 \times 10^{-5},-1.1188 \pm j 3.5572$.

A possible explanation for the discrepancy between the roots for the rigid body motion with and without the lag terms is that the lag terms become important only at high frequencies and at those frequencies the flexure of the aircraft is large and we cannot neglect the forces due to the flexure modes.

CONCLUSION

A procedure for modeliing unsteady aerndynamics of a flexible vehicle for co -ol system design was developed. Using this procedure a model for DAST-ARW-2 was obtained and this model was found to epproximate the actual unsteady aerodynamic forces very closely.

Using this model the eigenvalusis for the rigid body motion of the aircraft were calculated and these were found to have good correspondence with those calculated by NASA.

This model can now be used for designing active flutter suppression control systems for the DAST ARW-2.

REFERENCES

1. Jones, R.T., "The Unsteady Lift of a Wing of Finite Aspect Ratio", NACA Report 681, 1940.
2. Sevart, F.D., "Development of Active Flutter Suppression Wind Tunnel Testing Technology', AFFDL-TR-74-126, 1975.
3. J.R. Mahesh, C.R. Stone, W.L. Garrard, and P.D. Hausman, 'Active Flutter Control for Flexible Vehicles", NASA CR-159160, Nov. 1979.
4. Adams: William M., Jr. and Tiffany, Sherwcod H., "An Updated Comparison of $\backslash A S A / B o e i n g ~ P r e d i c t i o n s ~ o f ~ t h e ~ O p e n ~ L o o p, ~ S y m e t r i c ~ F l u t t e r ~ C h a r a c t e r-~$ istics of the DAST ARW $\mathbf{- 2}^{\circ \prime}$, Technical Memorandum to files, ACPO TM 81-1, Jan. 1981, Active Controle Profect Office, NASA Langley Research Center.
5. NASA, LRC, Analysis and Computation Division Subprogram Library with modifications by E.S. Armstrong.
6. Ben Noble, James W. Daniel, "Arrlied Linear Algebra", 2nd edition, Prentice Hall Inc., 1977, (sec. 9.6, 11.6).

OF POOR QUALIYY

APTENBIX I


```
DO:Dice.e
```



```
00:04C***
```



```
OU120. A1(15,16),A2(15,16),D1(15,16), U2(15,16),RK(12),Vi24,41,N(4),
OU130+ APLUS(24,24),ADUN(24,4),(1)N1(12),DUN2(12)
ON140 REAL KHAT(2)
NO150 DATA(RK(I), [a1,12)/0.0,.005,.0.5,.1,.2,.3,.4,.5,.6,.7,.8,1.0/
00:00 P,ALL GETPF(5NTAPEI,JHUAT15,N,0)
00170 ij 2 K=1,12
00180 D0 2 J=1,16
00170 DO 2 i=1,15
00200 READ(I,100) ORII,J,K),Oİi,J,K)
002:0 2COHTINIJE
00220 DO 101 [a1,12
00230 AO(I,1)בURII,1,1)
00240 INICONTINUE
00250 100 FORMAT(2F16.8)
00260 KNATiliz.13
00270 00 10 ]a1,12
00280 J=I+12
00290 A(I,1)=0
00300 A(J,1)=RK(I)
00310 A(I,2)=-RK(i):AK(I)
00320 (J, J,2)=0
```



```
00340 A(I,3)=\tilde{RN(I)&RK(I)/OUKi(i)}
OC350 A(j,\Xi)=KHAT(i):RK(I)/DUMI(I)
00360 i0 COnTinuE
00370 i0P=3
00380 N0=24
n039n ND=24
00400 N=24
00410 Na3
00420 NOS=1
004300 1AC=10
00440 DO 20 I= 1,12
00450 DO 30 K=1,12
00460 B(K,1).4RK(I, 1,K)-AO(I,1)
OUd70 KPLUS=R+I2
N0480 B(KPL`j,1)=0I(I,I,K)
~0490 30CONTIMIEE
00500 00 40 j=1,24
00510 DO 40 kal,3
00520}\mathrm{ ADUN(J,K,ZAIJ,K)
10530 4OCONTTMUS
```



```
00j+ii
```

ORIGINAL f：GE：is

OF POOR QUALITY

```
0心.a己
vj343%.
DNSJO PRINT,IFAR
005s0 ai(!, 1)=ब(1,1)
00:70 A2, (,ils8(?,1)
#0580 {li!,il=k(3,i)
0ug90 20 BONTINMIF
BNOUO DI 102 imi,24
00610 A(I,4)=A[7,3;
00620 A(I,J)=A(I,2)
O06jO A(i,z)=A(i,1)
00640 IF (I.GT.12) GO 10 103
00650 A(I,1)=1
00660 GO TO 102
00670 103 A(1,1)=0
00680 102 BONTTNUE
00090 N=4
10700 NOSa15
00710 DO 104 [a1,12
00720 00 105 J=?,16
00730 JJJ= J-1
00740 00 105 K=1,12
00750 G(K,JJjaDR(I,J,K)
00760 KPLUSS=K+12
00770 8(KPLUS,JJ)=0T(T,J,K)
00:80 105 CONTIMUE
02770 j0 100 J=1,24
00800 [\) 106 n=1,4
00810 AüUn(J,K)=A(J,K)
00820 106 CONTINUE
OO830 CALL SNUDECIIOF,HD,NU,M,N,ADINN,NUS,N,IAC,ITEST,O,V,IRANK,APLLSS,IERNA,
00840 PRINT,IERKK
0U850 DO i04 J=2,:6
00860 JJ=J-1
00870 AO(I,J)=B(!,JJ)
00880 A\II,J)=B(2.JJ)
00890 A2(I,J)=B(3,JJ)
00900 D1(I,J)=B(4,JJ)
00919 104 CONTINUE
00920 REWINO 1
04930 DO 50 Ja!,16
00940 D0 50 i=1,12
00950 WRITE(I,200) AO(I,J),AI(I,j),A2(I,j),D1(I,J)
00960 50 CONTINIE
00970 200 FGRAMT, \E (b.B)
```



```
0,2790 5%.3P
1):000 EN0
うこうごC****
```



```
の10u゙JC&***
```

:

4
THE NATRICES AO,AN, HÉ,OI WRE URITTË COLLUNUISE
:

-
00
：

－
$.37603340 E-06$
$-.18475110 E-07$
$.96467900 E-07$
$-.30699260 E-07$
$. .50542910 E-08$
$-. .97841290 E-07$
$.11895980 E-07$
$.25987840 E-06$
$-.54181130 E-08$
$-.66935820 E-09$
$.20949430 E-07$
$.31524370 E-06$
$.107574628+04$
．12736757E．02
$.18504107 E+03$
$-.75823772 E+02$
－．1171．877E－02
$-.18181098 E+03$
－．14245807E－02
$.50 .580 \cup 07$－ 02
．1877537シEャ02 $.53028117 E+02$ $.67536730 E+02$
$.41467740 E+02$
$.78002760^{\circ} E+03$ $-.13: 1972 E+02$
． $40504833 E+02$
．47343358E＋01
－． $27789210 E+01$
$-.23706107 E+02$
－． $18748114 E+00$
－． 27785720 E＋ப́s
．42889030E＋02
$-.31890206 E+02$
．i9904798E＋02
－． $17380298 \mathrm{E}+\mathrm{u} 3$
$.14560723 E+03$
$.40440853 E+02$
$.30102076 E+02$
$.91573321 E+01$
$-.1191064 .3 E+\mathbf{U} 1$
－． $34526697 E+02$
－．18259528E＋02
$.19215422 E+03$
．12i94857̄̄＋02
－． $83022992 \bar{z}+01$
$.93052076 E+00$
$.24897784 E+03$
＊
 ＊

$$
\begin{aligned}
& .13225484 E+03
\end{aligned}
$$

$$
\begin{aligned}
& \text {.28868541E+02 } \\
& -.90996486 E+\text { Uj } \\
& -.15011085 E+11 \\
& -.30549514 E+122 \\
& .15231603 E+00 \\
& .77573963 E+12 \\
& .13792468 E+01 \\
& .19491097 E+01 \\
& .67076209 E+01 \\
& .104146105+03
\end{aligned}
$$

＊
＊＊＊＊＊＊＊＊＊＊＊ $3 R 0$
＊
$.50145298 E+0 ゙ 2$
. $45088540 \mathrm{E}+0$:
. 17 i18642E+02
$-.59063481 E+100$
$-.08474597 E+00$
$-.15028135 E+{ }^{2} 2$
$-.94639767 E+00$
. 41534050 ét +12
$.31626343 E+00$
$-.78163239 E+00$
-: $5357373 \mathrm{E}+02$
.:89:8474É+02

－． $889744862 E+02$
$.84112276 E+02$
$.27670570 \mathrm{E}+01$
$.62050510 \mathrm{DE}+01$
$-.77819454 E+00$
－． $369028905+01$
－． 37 F95927E +02
$-.14333518 E+0$ ？
$.74224375 E+01$ ．222d2056E－02 －． $1577 \times 407 E+01$ $.58070410 E+02$
$-.14301898 E+02$
$.47338357 E+01$
$-.12680094 E+02$
$.48961975 E+01$
$.63988320 E+00$
$.12244909 E+02$
$-.41788734 E+01$
$-.43152991 E+02$
$.24919249 E+01$
$.76436235 E+00$
$. .99377887 E+00$
$-.87819664 E+02$
-. $12680094 E+02$
$.48961975 E+01$
$.6 .3998320 E+00$
.$: 2244909 E+02$
$-.41788734 E E+0$ 1
. $4.31 .52991 E+02$
$.76436235 E+00$
$-.87819664 E+02$

$$
\begin{array}{rr}
.37241762 E+02 & -.25 .384225 E+01 \\
.63733845 E+01 & -.87639639 E+00 \\
.19658645 E+02 & .28169529 E+01 \\
.31106636 E+11 & .76300480 E+01 \\
-.20445611 E+01 & .32054130 E+00 \\
.35593508 E+U 1 & -.26178152 E+01 \\
-.39872221 E+01 & .84832407 E+U 0 \\
.13773330 E+0 . & .47473009 E+\dot{U} 2 \\
.53712168 E+00 & -.54990 .329 E+00 \\
-.27464875 E+0 i & .1474780 i E+00 \\
-.27511042 E+00 & -.11227352 E+01 \\
. i .7784330 E+02 & -.10609228 E+02
\end{array}
$$

-.25.384225E+01
-.25.384225E+01
-.87639.630E+00
-.87639.630E+00
.281d0529E+01
.281d0529E+01
.76300480E+N0
.76300480E+N0
.32054130E+00
.32054130E+00
-.26178152E+01
-.26178152E+01
.84832407E+Úú
.84832407E+Úú
.474750095+v2
.474750095+v2
-.54990.329E+00
-.54990.329E+00
.1474780iE+00
.1474780iE+00
-.11227352E+0:
-.11227352E+0:
-.10609228E+1)2
-.10609228E+1)2

ORIGIRAL PAGE 13
OF POOR QUALTY

$.10722179 E+02$
－0juágzeroz
．251326ごごャい1
－．300日之52dE＋00
－．423う303FE＋01
－． 520 idaziE＋01 $.34048268 \mathrm{E}+02$
$.45707989 E+01$
$-.64880535 E+50$
－． $02414013 E+00$
．43876296E＋01 ：
 ＊

$$
\begin{aligned}
& -.53773186 E+01 \\
& -.1427176 E E+01 \\
& -.595355552 E+01 \\
& -.24611257 E+01 \\
& -.17040921 E+00 \\
& -.26725373 E+01 \\
& -.87203099 E+00 \\
& -.18045067 E+02 \\
& -55296736 E-01 \\
& -.31100176 E+00 \\
& -10064323 E+01 \\
& .19465868 E+02
\end{aligned}
$$

－．R10日5770E＋il？

$.19496020 E+02$
． $53426721 E+122$
－iJ2sjdũerio
－ 3852 ＋037E＋02
－．222884 3 JE +02
． $53506302 E+02$
．119630：9E＋02
$-.12628(1 \mathrm{JE}+1)_{\mathrm{E}}$
－． $21429574 E$＋02
$-.26039819 E+02$

$$
\begin{aligned}
& -.12101467 E+07 \\
& -.1110154 E+01 \\
& -.67333046 E+0: \\
& -.12052686 E+0: \\
& .14019724 E+01 \\
& -.41849697 E+0 \\
& -.16098149 E+01 \\
& .71422044 E+0 \\
& .70958641 E-01 \\
& -.55738538 E+01 \\
& -.66357812 E+01 \\
& -.14758503 E+02
\end{aligned}
$$

 －． 13 isoda $78 E$－viz .13500 －+01 .135506 cuèrúa －．jこ222221E＋NO －i：シ20円11E＋1）2 ． $35+8270+$ Ér 01
－．6160238Eごロ1
$-.27589119 E+01$
$-.13106352 E+02$
－． 14799135 E゙＋U1
． 37607648 É＋02
$-.40995243 E+102$
-.506 ．129E＋01
－．S1A75ANOE＋U1

.521 .50 .320 áto 0
．73573：41E＋0．
.22709958 EVO
$-.21483 \operatorname{SHO}^{2} \mathrm{CE}+02$
－． $33 \dot{3} 35.301 E+01$
．23y．508．53E＋61
－．23\％o6525itu
－． $68715534 E E+02$
：

＊

$$
\begin{array}{r}
.12202583 E+03 \\
.20227065 E+02 \\
.72806972 E+02 \\
.17317503 E+02 \\
-.17452666 E+01 \\
-.11542483 E+02 \\
-.34736115 E+00 \\
-22833730 E+03 \\
.1088704 E+01 \\
-.54713902 E+01 \\
-.11340863 E+02 \\
-.68680294 E+02
\end{array}
$$

－．427．1725E＋01
－．909351J0E＋N0 －．：298：327E＋01 $-.137461285+00$ $.24658315 E+10$ ．25317641E－01 $.30934953 E+00$ $-.46051542 \mathrm{~F}+00$ －． $23382628 \mathrm{E}+00$ －． $22099767 E+01$ －．2213：644 +01 ．86：25680E＋01
－．12396789E＋U1
－． $17082499 E-02$
$.12145231 E+00$ $.14724615 E+00$ －．3．3047309E－0
$-.4 .5620 \subset 83 E+00$
－． $23300059 E+00$
－． $63822558 E+0 i$
－． $08403414 E-01$
$.16332294 E-01$
．25323577E＊00
$-.24642279 E+01$
*
 －

$$
\begin{array}{r}
-.17204305 E+03 \\
.72519137 E+01 \\
-.4167155 E+02 \\
.25437322 E+02 \\
.21893965 E+01 \\
.48035780 E+02 \\
-.90825259 E+01 \\
-.10402285 E+03 \\
-27803696+01 \\
-.4 i b 11160 E+01 \\
-.95314037 E+01 \\
-.1516412 i E+103
\end{array}
$$

$-.69440 .34 E+02$
－． $16207627 E+$ ن̇2
$.13739247 E+01$
． $76214005 E+01$
－．72857382E－J1 $.21468949 E+02$ $.17769754 E-02$ $.16380999 E+03$ －． $62416985 E+01$ $.17260606 E+01$ ． 183690 Ö́ +0 ： $.88493571 E+12$
－．782880゙ラ．3E＋02
－． $119,5522 E+02$
$-.16724347 E+02$
．71585227E＋OO
． $10237855 E+01$
－ 10 ósi4829E＋02
． 43.363816 E＋01
$-.10496115 E+03$
－．398h2077E＋01
－． $59539084 E+01$
－． $74033502 \mathrm{E}+01$
－．79574790E＋02

ORICINAL PACE ：S
OF POOR QUALITY

－

－． $16803138 \mathrm{E}+04$
－． 48031484 i 113
$-.51976995 E+$ V2
－． $28354535 E+\dot{\text { vi？}}$

．171931．36Ë＋144 －137540．57：
$.35075323 E+13$
－．106h0239E＋03
$.52364066 E+02 \quad .56583672 E+02$
．28589871E＋02
$-.20596652 \varepsilon+02$
－．17890377E＋02
$.81482059 E+03$
－．1N0さ0055E－03
$.177261365+4.3$
－．4070850 5 ＋03
$.42216013 E-02$
$-.47136664 E+04$
$-.13334993 E+02$
$.72853603 E+02$ ． $76665898 \mathrm{E}+02$
－． $38868544 E+03$
$.11538341 E+05$
$.51845309 E+04$
$-.18397642 \mathrm{E}+02$ $.12700411 E+13$
$.41431220 E+02$
$-.30498458 \mathrm{E}+00$
－． $40199848 E+02$
$.156372575+04$
．23s54573E＋02
． $46593: 82 E+02$
$.11488501 E+03$
$.12842351 E+04$

＊

＊
$.27692233 E+02$
$.13733530 E+02$
$.38350133 E+01$
$.66545770 E+01$
$-.8042 R 128 E-01$
$.36660767 E+02$
$.21202309 E+02$
$.79327935 E+00$
$-.75826032 E+009$
.1161605 ića $^{2} 122$
．12278581E＋12
-.717 A月987E +01

$$
.14605419 E+02
$$ $.06418737 E+0$. $.17357146 E+01$

$$
-.105 \dot{v} 2884 \overline{+}+01
$$

$-.47478079 E+11$
$+$

：
－． $38910153 E+02$
－． 17995251 E＋02
－． $60790091 E+02$
$-.21239520 \varepsilon+02$
-.59960100 É +00
$.12264141 E+02$
．75608829E＋01
$-.15107780 E+03$ $.33815139 F+01$ ．243：1046E＋02 ． $29737743 E+02$ $.123 \operatorname{Hin} 3345+10.3$
． $28841946 E+122$ $-.11889935 E+02$
$-.3 t 227792 E+02$
$-.41544933 E+02$
－． $11316257 E+011$
－． 95017800 E +00
$.16081519 E+0 \pm 2$
$.11477528 E+03$
． 522683 2 2 －0：
． $00963753 E+i .3$
－A7917207F－i？
$-.2 \dot{9} 785000 \mathrm{E}+\dot{\mathrm{c}} 3$

． $33814467 \mathrm{E}+02$	2
． $37586917 E+02$	． $25978897 E+02$
44718792E＋01	． $25894374 E+01$
80777870¢＋01	． 60879348
－．29864587E＋	－． 19682938
．15226491E＋02	－． $61492002 E+01$
－． $22781553 \mathrm{E}+02$	－． $14805945 E+02$
－．30500976E＋00	． $701670065+01$
．162803：万̈E＋02	． 114972 2RE＋02
$42895604 E+02$	． $227: 58 \mathrm{i}$（E＋01
． $20577575 \mathrm{E}+10$	
．49580823E＋1）？	0617

ORIGINAL PAQE IS OF POOR QUALITY


```
:
    -.11012275E-03
    -.27976115E+02
    -.515743775-02
    -.13102100E+02
    -.53200030E+00
        .40335668E+02
        .177090.30E+02
    -.13048656E+03
    -.69212951E+01
        .23.154270E+02
        .21059073E+02
    -.26987510E+02
*
*****E*** I2TM COLUNM ************
*
```

$-.31357376 E+04$ $.62486716 E+02$
-. 26266162 E +U3 $.6352835 J E+03$. $31843534 E+02$. 12056312E+04 . $66866582 E+02$
-. $50968063 E+13$ $.18597452 E+02$
-. 1:9230:3E+63
-. $37906331 E+0$ 3
-. 455437 IDÉVA
$-.67569187 E+0.5$
-. 70633899E+O1
$.34020166 E+122$ $.24700296 E \subset+03$ -. $30560110 E+02$. $50600490 \mathrm{E}+03$ $.19609647 E+03$. 15065603E+04 . 19033667E+02 $-.66238346 E+02$ $.17965865 E+02$ $.4+929386 E^{24}-\because .15214206 E+04$
-.
-.23712536 Ē+03
$-.14 i 88059 E+0.3$ $.63265645 E+01$
$-.10859810 E+03$
$.15416602 \mathrm{E}+02$
-. 17270217 Ē+03 $.59595304 E+01$
-. 10077723E+04
$-.73811618 E+02$
$-.: 2413786 E+03$
.77931421E402
. $24939749 E+02$
. $3.3367: 547+01$
. $3320727: 5 \cdot 01$
-. 155027 ROE + 00
$-.73408613 E+01$
$-.13095167 E+02$
-40572982E+02

- $10006550 E+02$
$.47494069 E+01$
.20601090E+01 $.47739782 E+02$

$-.18845993 E+04$
$-.10842930 E+04$
$.29368863 E+02$
$-.44202105 E+03$
$-.2826799: E+00$
$-.23088933 E+02$
$.60982894 E+03$
$-.22516553 E+03$
$-.40330527 E+03$
$.3141996 E+02$
$-.26931512 E+02$
$-.14309772 E+02$
$-.10977619 E+04$
$-.70616891 E+03$. 20677163E+02 $-.34624457 E+03$
$-.16790885 E+00$
-. 10618481E+02
. 326:070.56+03
$-.16199764 E+03$
-. $38286761 E+03$
$-.14708760 E+03$ $.23459523 E+02$
$-.5248669 B E+01$
. $17555697 E+03$. $82154747 E+02$ -. $68302980 E+00$ $.93395017 E+01$.26752528E-01 . 33002*37E+00 $-.28336319 E+02$ -. $12618812 E+02$ $-.93898564 E+02$ -. $15267053 E+03$ $.41464628 E+02$ $.4263061 .5 \mathrm{E}+01$
$.34378743 E+03$ $.17813149 E+03$. 30544404E+01 $.65747918 E+02$ $-.32716014 E+00$
$-.27295776 E+01$
-. $10662332 E+03$
. $51522570 E+02$
. $68729162 E+02$
-. $92767777 E+00$
. $47591287 E+01$
$.11258372 E+02$

ORICINAL PRGE IS OF POOR QUALITY


```
:
```

$-.30319860 E+0.3$

－．53327414E．03
－．15293520E－03 ． 35746 P1 AE ＋02
$-.16742955 E+03$
－． $164082305 \mathrm{E}+02$ ．77967507E＋03 －．75729487E＋01 ． $39937051 E+02$ ．98022359E402
$-.231730316+03$ －

：
$-.34263+14 E+04$ ． $42876299 E+02$
$-.44766602 E+03$ $.71373299 E+03$ －43870632E～O2 ． $88884450 E+03$ －B0864417E＋02 ．10703024E＋04 ．12022881E＋03
－． $03676027 E+03$
$-.03554346 \mathrm{~F}+03$ ．21sट1952E＋04
$.901403305 \cdot 0 \%$
． $10620434 \mathrm{E} \cdot 0 \mathrm{Va}$
．82175819E＋02 ．29707500E－012 －．30807333E＋01 ． $32056963 E+02$ ．18780049E＋02 ． 36258590 ・ベ3 －．10492608E＋01 $.16470247 E+02$ -.111 4599E＋0：

．4570704（É＋0）1－．77673169E＋0．3
$.14349737 E+03 \quad-.42511360 E+03$ $-.81892384 E \cdot 02 \quad .66928514 E+02$ ．48255247E＋02－．83442720E＋02 $-.52737737 E+00$ ．26125：66E＋01 $-.44541735 E+01$ ．94650541E＋02 $-.13372557 E+03 \quad .32579667 E+6.3$ $-.85343600 E+65 \quad .12539709 E+04$ $.66683395 E+02-.18041885 E+03$ $.61074691 E+02-.15617811 E+03$ $.35825296 E+02-.96518896 E+\dot{0}$ i －．96695108Ẽ＋CJ ．16156101E＋04
$-.10291: 3025+0.3$
 －．1） $598601 E+03$ －．S2219400E＋02 $.12340567 E+01$ $-.25651467 E+02$
$-.1473412 E+02$ $-.25543621 E+03$ ． $42284541 E+01$ ． $18011640 E+02$ ． $13931740 \mathrm{E}+02$ $.32097025 E+0.3$
$.282475025+0.3$

 ． 9 F51：252E＋01 $.14671329 E+01$
$-.793490 .585+02$
－．174．10964E＋02
． $47847363 E+03$ $.67999519 E+0:$ $-.16443330 \mathrm{E}+02$ $-.22113728 E+02$ $-.1017102 .3 E+03$

``` 4
```

```
*****:**** 16TN COLUMN *************
```

*****:**** 16TN COLUMN *************
*

```
\(.222455485+05\)
\(.44581880 E+03\) \(.49999777 E+04\)
－． \(18118220 E+04\)
\(-.26538508 E+03\)
\(-.51619089 E+04\) ． \(10007252 \mathrm{E}+03\) \(.12832804 E+05\) ．16250237E＋03 ．43534588E＋0 \(.11120970 E+04\) \(.15803302 E+05\) ． 1503302 ＋03
．22398753E＋04
\(-.28771905 E+03\) ．47403i12E＋03 \(-.51730802 E+0.3\) －． \(30826033 E+02\) －．63721607E＋03 ．19923．505F．03 －10607 70FETO4 －． 199671 ＇́óE +03 ． \(44259015 に+02\)
 ．22539710E＋04
```

$\therefore .264146525+0.5$ $-.1140 .5029 E+04$
$-.72382524 E+04$
$.12919006 E+04$ $.311715455+03$ ． $59384235 E+04$.6142281 GE＋02 －．200869ウj5＋0．5 $-.21807537 E+03$

```


```

$\begin{aligned} & .29787903 E+04 \\ & .80575622 E+03 \end{aligned}$	$\begin{aligned} & -.32096934 E+03 \\ & -.76644810 E+03 \end{aligned}$
．22343841E＋04	－． $177539945+04$
． $742851835+13$	－． $134118595+04$
－26770333E＋02	－． $53317474 E+00$
－． $39317212 E+03$	－． $989727385+03$
－． $160937995+03$	－． $39785667 \mathrm{~F}+02$
． $747416065+04$	－． $.83088389 E+44$
． $50114671 E+02$	－． $69180067 E+02$
－．52978949 +03	． $48303703 \mathrm{E}+03$
． $64786105 \mathrm{E}+03$	． 7 5824105E＋133
11823527E＋04	．53．7？．03JE＋V4

－．16．6ิ2349F＋1）5

```

Desoription: The purpose of SNVDEC is to oompute the singular-value deoomposition (ref. 2) of a real \(m \times n( \pm 2 n)\) matrix \(A\) by performing the factorization,
\(A=\) UQV'
where \(U\) is an \(m n\) matrix whose columne are \(n\) orthonormalized elgenvectors associated with the \(n\) largest eigenvalues of \(M{ }^{\prime}, V\) is an \(n \times n\) matrix whose columes are the orthonormalized eigenvectors assooiated with the \(n\) eisenvalues of \(A^{\prime} A\), and
\[
Q=\operatorname{dias}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)
\]
where \(\sigma_{1}(1=1,2, \ldots, n)\) are the nonnegative square roots of the elgenvalues of \(A^{\prime} A\), called the singular values of \(A\). Options are provided for the computation of rank \(A\), singular valuas of \(A\), an orthonormal basis for the null apace of \(A\), the pacudoinverse of \(A\), and the least equares solution to
\[
d x=8
\]

Both A and B are stored ae varlable-dinensioned two-dimenalonal arrays. The oomputational procedure is desoribed in reference 2 on pages 135-151. Bagicaliy, Houscholder transformatione are applied to reduce a to bidiagonal form aftar which a on algorithe is used to find the singular vaiues of the reduced matrix. Combining reaulta gives the required construction.

Source of coftmere: LaRC Analyais and Computation Division aubprogram libiary with modirications by Ernest S. Armotrong, Lail

\author{
Calling aquence: CALL SNVDEC(IOP ,MD, ND, \(M, N, A, H O S, B, I A C\), ZTEST, \(Q, V\), IRANX, APLOS, IE Hi )
}

\section*{Input arguents:}

IOP Option code:
1 The rank and alngular values of a will be returned.
2 The matrices \(U\) and \(V\) will be returned in addition to tho Information for \(I O P=1\).
3 In addition to the information for IOP \(=2\), the least gquares solution to \(A X=B\) will be returned.
4 The pacudoinverse of \(A\) will be returned in addition to the information for IOP \(=2\).
5 The least squares solution will be returned in addition to the information for \(I O P=4\).

MD The maximum rirst dimension of the array \(A\) as given in the DIMENS ION statement of the calling program

ND Maximum first dimension of the array \(V\)
\(M \quad\) The number of rows of \(A\)
\(N \quad\) The number of columns of \(A\)
A Matrix stored as a variable-dimensioned two-dimensional array. Input A is destroyed.

NCS The number of column vectors of the matrix B
: Two-dimensional array that must have row dimension at least NOS in the oalling program. B contains the right sides of the equation to be solved for \(I O P=3\) or \(I O P=5\). \(B\) need not be input fur other options but must appear in the calling sequence.

IAC The number of decimal digits of accuracy in the elements of the matrix A. This parameter is used in the test to determine zero singular values and thereby the rank of \(A\).

Output argunents:
A On normal return, A contains the orthogonal matrix \(U\) except when \(I O P=1\).

B On normal return, \(B\) contains the least squares solution for IOP \(=3\) or IOP \(=5\).

2TEST The zero test computed as \(\|A\| \times 10\)-(IAC) using the matrix Euclidean norm except when \(N=1\). When \(N=1\),

ZTEST \(=10^{-(I A C)}\)

Q A one-dimensional array of dimension at least \(N\) which upon return contains the singular values in descending order
- A two-dimensional array that must have first dimension ND and sucond dimension at least \(N\). Upon normal return, this array contains the orthogonal matrix \(V\) except when IOP \(=1\). The last \(N\) - IRANK columns of \(V\) form a basis for the null space of A .

IRANK Rank of the matrix if determined as the number of nonzero singular values using 2TEST


COMMON blooks: None
Error messages: None. The user should examine IERR after return.
Field length: 2072 octal words (1082 decimal)
Subroutines employed by SNVDEC: None
Subroutipes employing SNVDEC: FACTOR, CTROL, CSTAB, DE `AB, DISCREG
Comments: SNVDEC may be applied to matrices stored as one-dimensional arrays by setting \(M D=M\) and \(N D=N\) in the calling sequence.

The subroutine is internally restricted to \(N \leq!50\).

Figure 1.- Vertical component of elastic mode shapes.

USDR: FSG: :
of rook quality


OREINS. FNE. :
OF POOR DUAL.ITY


\section*{ORIGINAL PAGE IS OF POOR QUA:ITY}

,
(d) mode 4, frequency \(=31.7 \mathrm{k}: 2\), generalized anss \(=0.0158 \mathrm{lt}-\mathrm{sec}^{2} / \mathrm{in}\)

Figure 1.- Contirued

ORLGiN
OF POOR ? ! !
"

figure 1.- Continued.

OF POOR QUALITY
*

(f) mode 6, frequency \(=44.8 \mathrm{hz}\), generalized ass \(=0.593 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}\)
Figure :.- Continued.


ORIGINAL PAEE I:
OF POOR QUALIIT

\[
\because x
\]
\(\%\)

(i) mude 9, frequency a 71.2 hz , generalized mss \(=0.0286 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}\)
figure 1.- Continucd


Figure 1.- Conciuded.

\title{
Worlking Paper No. 5 \\ Modified Outboard Control \\ Surface Transfer function
}

> W. I. Garrard
> Department of Aerospace
> Engineering and Mechanics
> Uriversity of Minnesota
> Minneapolis, Minnusota

This paper discusses the modified transfer fanction for the outboard aileron. The new transfer function is
\[
\mu_{0} / \mu_{0_{c}}=\frac{4.046 \times 10^{12}\left(s^{2}+28.6 s+(477.5)^{2}\right)}{(s+180)\left(s^{2}+251 s+(3.14)^{2}\right)\left(s^{2}+229 s+(477.5)^{2}\right)\left(s^{2}+286 s+(477.5)^{21}\right)}
\]

Note that the numerator term and two of the denominator terms have the same nondamped natural frequency, the damping factor of the numerator is 0.03 while the damping factors associated with the denominator terms of the same frequency are 0.23 and 0.3. Thus the numerator dynamics effectively cancels the phase shift resulting from the one of the denominator factorn and axcept at near the natural frequency of \(477.5 \mathrm{rad} / \mathrm{sec}\) the numerator dynamics also cancel the \(40 \mathrm{db} /\) decade roll-off resulting from one of the denominator factors. Bode plots for the response of the exact model of the outboard aileror are shown in Figs 1 and 2.

The most obvious approximation is the cancellation \(n f\) the numerator dynamics with the most lightly damped of the quadratic terms of the same frequency in the denominator. This results in the 5 th ord \(=r\) model below
\[
u_{0}=\frac{4.046 \times 10^{12}}{(s+180)\left(s^{2}+251 s+(314)^{2}\right)\left(s^{2}+286 s+(477.5)^{2}\right)}
\]

The Bode plots for this transfer function are given in Figs 3 and 4. Phase is almost the same as for the exact model and gain only differs near \(477.5 \mathrm{rad} / \mathrm{s}\). A 3 rd order approximation results from neglecting the highest frequency term in the denominator. This results in the approximation
\[
\mu_{\mu_{0}}=\frac{1.774 \times 10^{7}}{(s+180)\left(s^{2}+251 s+(314)^{2}\right)}
\]

Bode plots for this transfer function are shown in Figs 5 and 6. Up to approximately \(300 \mathrm{rad} / \mathrm{sec}\) this gain and phase are the same as for the exact model. Since the 6 th structural mode has a frequency of \(225 \mathrm{rad} / \mathrm{s}\) at the flutter frequency it is felt that the 3 rd order actuator model is adequate for initial control studies.

ORTM": \(\therefore\). OF PROR QUA: ! \(\mathrm{T} Y\)
\(F_{19} 1\)
". いur QUALITY


ORICINAL PROE 13 of POUR QUALITY
\begin{tabular}{l} 
Phise respenoe \\
dutbo \\
\hline
\end{tabular}

\(\forall\)
\(4^{5}\)
(970) 35HHA

\[
\begin{aligned}
& \text { Magituder Regremife. } \\
& 3 \\
& \text { ED } \\
& \text { FRFQ RHD'SEC:000 } \\
& \begin{array}{l}
1000 \\
\text { s.600 }
\end{array} \\
& \begin{array}{r}
1.0 \\
-1.00 \% \\
206
\end{array} \\
& \begin{array}{l}
M H X= \\
W_{R}=
\end{array} \\
& \begin{array}{r}
8 \\
-0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \text { (G0) NIH9 }
\end{aligned}
\]

Osicilivit. PAGE IS
OF POOR QUALITY


Fig 6```

