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AN ADAPTIVE TRACKING OBSERVER FOR FAILURE-DETECTION SYSTEMS

M. Sidar*

NASA Ames Research Center

SUMMARY

The design problem of adaptive observers for failure-detection purposes, applied

to linear, constant and variable parameters, multi-input, multi-output systems is
considered here. It is shown that, in order to keep the observer's (or Kalman filter)

false-alarm rate (FAR) under a certain specified value, it is necessary to have an

acceptable proper matching between the observer (or KF) model and the system param-
eters. An adaptive observer algorithm is introduced here in order to maintain the

desired system-observer model matching, despite initial mismatching and/or system

parameter variations. Only a properly designed adaptive observer is able to detect

abrupt changes in the system (actuator, sensor failures, etc.) with adequate reli-

ability and FAR. Conditions for convergence for the adaptive process are obtained,

leading to a simple adaptive law (algorithm) with the possibility of an a priori
choice of fixed adaptive gains. Simulation results show good tracking performance

with small observer output errors and accurate and fast parameter identification,
in both deterministic and stochastic cases.

I. INTRODUCTION

The use of the analytical redundancy approach for failure detection in complex,

dynamic control systems is by now widely accepted as a viable concept for redundancy

management (refs. 1-5). Besides an appreciable saving in cost, volume, and weight,

the analytical failure-detection systems have to provide at least the same high per-
formances as the classical voting systems based on simple threshold examinations and

some crude decision logic. In aeronautical designs, in particular for flight-control

purposes, figures such as 10-4 to 10-5 for MAP (mission abort probability) per flight
hour, associated with false-alarm rates such as 10-3 to 10-4 , are rather common re-

quirements (ref. i) imposed by the necessity of operational needs.
~

In order to compete successfully with the triple and quadruple redundant systems

based exclusively on voting schemes, the analytical-redundant failure-detection sys-
tems have to exhibit some basic features such as:

a. simplicity and fault-tolerant properties in both the software conception

and the hardware implementation;

° b. high reliability and high probability of failure detection;

c. low false-alarm rates, despite external disturbances such as wind gusts,

abrupt maneuvering (in flight-control systems), instrumentation noise,

and, in some cases, process noise;

d. ability to determine, as precise and rapidly as possible, the failure source,
the extent of the failure, and in some cases, the time of occurrence;

*NRC Senior Research Associate at NASA Ames Research Center, Moffett Field, CA 94035.



e. ability to reorganize and readjust itself after a major failure occurred;

f. in addition to abrupt failures detection (mainly for sensor and actuator

failures), the analytical-redundancy schemes have to handle the problem

of soft-failures detection, such as the detection of biases and/or scale

factor changes in the instrumentation, some degradations in actuator per-

formances, etc.

Two analytical concepts are malnlyused, in particular, in guidance and flight

control, for analytical failure-detection purposes:

a. Linear observers (refs. 1-3)(full- and reduced-order) in which the error

between the measured output and the reconstructed one, e.g., the so-called

residual errors i(t), are tested for failure assessment. The gains of

those observers are determined such that !(t) will reveal the occurrence
of a specific failure.

b. Kalman filters (ref. 3-8) where the innovation sequence _(t) is tested
for (i) unblasedness and (2) whiteness (orthogonallty condition test).

In both cases, research results published in technical papers are based on the

assumption that the dynamic system has fixed and known parameters (refs. i, 2, 3,
9, 10).

Associated with the failure-detection function provided by the observers (or by

Kalman filters), are the decision algorithms which are used, in particular for soft-

failures detection and failures-extent assessment. Most of the decision algorithms,
such as:

a. SLRT (Sequential likelihood ratio test) for mean values and functional

compatibility (refs. 8, Ii, 12, and 13).

b. GLR (generalized likelihood ratio) approach (refs. 4 to 7).

c. Recursive GLR (refs. 7, 8, 12)_ etc.

assume (with the exception of ref. 7) that the dynamic system is known and constant.

In order to be of practical value in applications and to provide reliable sys-

tems, the major concern of failure detection and analytical redundancy theory is to

combine in a judicious manner, the state estimation capability considering noise,

with an adequately high failure-detection capability.

As will be shown later in this report, it is absolutely necessary that, when

using either observers or Kalman filters, those devices be "matched" to the dynamic

system in order to obtain low observer output errors and, therefore, low false-alarm

rates. A good matching will also provide adequate properties to the decision algo-

rithms in order to assess the time, the place, and the extent of the failure without
errors.

At this point it is worth remarking that when the plant parameter variations
are themselves due to some kind of failures, the matching of the observer to the

plant may unintentionally "cover up" these failures. For this reason, it is ex-

pected that a complete failure-detection system would include also some on-line

parameter identification procedure in order to support the failure-detection algo-

rithm. We will not elaborate more on this topic here, since it is beyond the purpose

of this paper.
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A short overview of observers and/or Kalman filters for failure-detection pur-

poses and the effect of "mismatching" conditions is presented in sections II and III

of this paper as an introductory motivation for the adaptive observer design.

In sections IV and V, an algorithm for adaptive and tracking observer design is

presented, together with the appropriate conditions for convergence and stability.
The proof for the necessary conditions for convergence and stability is given in the

Appendix.

Simulation results for deterministic and stochastic multi-input, multi-output,

linear, constant and time-varylng systems, are presented and discussed.

The last section of this report contains concluding remarks and offers some

suggestions for further study and research.

II. FAILURE-DETECTION SYSTEMS (FDS) BASED ON OBSERVERS

As pointed out in the introduction, various analytical redundant schemes for
FDS are based on the utilization of observers of full or reduced order (refs. 1-5,

i0, 13). The present section gives a short presentation of some basic notions re-

lated to the observer theory for the sake of completeness. We shall assume first

the following mathematical model for the linear dynamic system under consideration:

x_(t) = A x_(t) + B_u(t)
(i)

_!(t) = C _(t)

where _(t) is the (n x i) state vector and [(t) is the (m x i) measurement vector,
with m J n. The system is assumed both completely controllable and observable.
The well-known observer model ("matched" case) (ref. 9) is described by equation (2):

_(t) = A _(t) + K[_i(t) - C _(t)] + B._u(t) (2)

where _(t) is the (n x i) estimated (or reconstructed) state vector, and K is a

fixed-gain matrix, (n x m), with constant entries. This model does not take into
consideration various external perturbations andnoises that affect the observer

output and can cause high false-alarm rates. The observer error, _(t) (residual),

is defined by equation (3):

!(t) _ _(t) - _x(t) (3)

and the observer output error (output residual) is defined as:

!(t) _ [(t) - i(t) (4)

The output residual vector !(t) is the quantity used for failure detection (FD)
and assessment. A block-diagram of a FD scheme with an observer is presented in

figure i.
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From equations (i) to (3), the following differential equation is obtained:

_e(t)= (A- KC)e(t) (5)

One method of choosing the gain matrix K is to place the eigenvalues of the

matrix (A-KC) so tha_ all of them have negative real parts (refs. 9,10). Under these

conditions, the observer will be stable and, as t . _, _(t) and i(t) will go to

zero. Therefore, after a short initial transient, the estimated state _(t) will

follow x(t) such that _(t) _ _(t), _t E[t0,_], although the only measurable vector
is _(t). A second method of choosing K is to enhance the observer's probability
of failure detection. After the transient has died out, and if a hard failure of

one of the actuators or sensors occurs at t = T , then a jump in i(t) will be

observed at TO, and the vector _(t) _ O, for all t > TO (see fig. 2).-

In order to better illustrate the second method, let us examine the case of an

actuator failure (i-th actuator), and the possibility to enhance the detection of

this event. From equations (i to 3), one obtains the following result:

e(t) = (A - KC) e + bi • ui (6)

where _i is the i-th column of the tlme-lnvarlant matrix B, and ui is the i-th
control of the system. The solution of equation (6) is given by:

e(t) --exp [(A-KC)(t-T O)] .e(T 0)

t (7)

+ { fexp[(A-KC)(T-T0)]ui(T) dT}5_i •
To

The first term is negligible in both the deterministic and the stochastic cases,

since we assume that the failure occurs at some time TO during the system's operation,
after the initial transient has died-out. Let us assume that the effects of measure-

ment noise and other perturbations on i(t) are small. Therefore, the term
containing the abrupt failure information is the second one. Choosing (for C = I):

i

(A-KC) _ - I • _ (8)

where I is the (n x n) identity matrix and T is a convenient, arbitrarily chosen

time constant (ref. i0), one gets:

t

feT(t) _ b_ exp _ ' ui(t) dt (9)

To

t > TO

Therefore, the error vector e(t) will point in a specific direction in the

En space, e.g., the direction defl--nedby _i' associated with the failure of the



i-th actuator. Since the only access one has to the system is by measuring the vector

!(t), the measured residual will point in the direction of Cbi. Since the matrix C
is known a priori, and, by assuming no-failures in the measurement set-up, one is

thus able to infer from !(t), when rank C = n, what actuator failed.

By a similar treatment one is able to show how sensor failures can be detected,

but, in this case, e(t) lies in a two-dimensional plane. In such a case, it is pro-
posed to use two (or more) observers, so that the detection of the failed sensor

will be feasible, simple, and unique. By processing the information of (at least)

two observers in an optimal way, a failure direction will be determined, even in the

presence of measurement noise. Besides the possibility of enhancing the detectabil-

ity of certain specific failures in a unique way, the analytical redundancy FDS based

on the use of observers leads also to important hardware savings.

As shown schematically in figure 3, a substantial saving in measurement instru-

mentation (a saving of from three up to six sensors in this case) can be obtained by

the use of three simple comparators and only two observers (in software) in this

particular failure-detection system. The logic table from figure 3 show_ that there

is a unique condition for every sensor failure that may occur, and therefore every

failure source is uniquely determined.

When the measurement noise cannot be neglected, it is possible to take for K,

instead of the values obtained from equation (8), the steady-state value of the

Kalman filter optimal gain matrix K*. In this case, given an i-th actuator failure,

for instance, the vector _(t) will not point in the _i direction, but rather will be
contained in a particular subspace, defined a priori, since the matrix (A - K'C) is

given. By measuring the observer's output residual, together with the utilization

of an appropriate decision algorithm, we can also determine the nature of the failure
and the time of occurrence in this case.

If the Kalman optimal gain is used in the Analytical Redundant and Failure-

Detection System and the filter is matched exactly to the dynamic system parameters,

the innovation vector sequence _k is tested for detection of abrupt failures. For
no-failure condition, the following condtions must exist:

E[_.k] = 0 _k = 1,2, . . . (10a)

E[_i_] = 0 _i _ j = 1,2, . . (10b)

An additional test to perform is the test for the "orthogonality" between the

innovation vector and the (optimal) filter estimates. For detection probability en-

hancement, it may be wiser to use another gain matrix instead of K*, but in this

case one cannot use the innovations sequence test in a simple way. Finally, it is

worthwhile to point out again that in principle any matched observer or Kalman filter,

in association with an appropriate decision algorithm, carries the necessary informa-

tion that enables one to detect and infer sensors, actuators, and other system
failures.

In the next paragraph, an analysis is carried out to show the influence of non-

matching conditions on the false-alarm rate of failure-detection systems. This con-
dition occurs when the observer, or KF parameters, do not match or track the dynamic

system parameters but are time varying, as in navigation and flight-control systems.



III. THE "MISMATCHING" EFFECTS OF ANALYTICAL-REDUNDANT FDS

ON THE OBSERVER FALSE-ALARM RATE (FAR)

Various methods presented in many references dealing with analytical redundancy
system (refs. 1-13) are based on the assumption that the observers (or KF) used in

connection with the FD systems are matched to the parameters of the dynamic system.

A notable exception is Willsky's method (ref. 7), wherein an attempt is made to pro-
vide for some adaptive features together with the solution of the failure-detectlon

problem. In aeronautical engineering applications of FDS and analyticalredundancy
concepts there is a particular interest taking into consideration the unavoidable

plant parameter variation caused by large dynamic pressure variations encountered by

flying in different flight conditions. In references 4, 5, and 6, such changes are
indeed taken into account, but the solutions proposed are complex. It will be shown

in the sequel what the effects are on the FAR caused by mismatching •between the ac-
tual plant and the analytic observer (or FK).

First, the mismatched observer case will be treated, and we shall assume that

the analytical implementation of the observer is according to the following observer
model:

^

x(t) = (A + AA) x(t) + K[y(t) - C _(t)]

•' (ii)
+ (B+ AB)u(t)

Accordingly, the observer residual error will be the solution of the following lln-
ear differential equation:

_(t) = (A - KC) _(t) - AA._(t) - AB._(t) (12)

where AA and AB represent the difference between the parameters of the real plant

and those of the observer. It is easy to see that the last two terms in equation (12)
will cause ahigh residual e(t), even after the initial translent dled out. The

large value of £(t) is directly responsible for an unacceptable high FAX. Accept-

able values of FAR will be obtained only for observers that are matched to the plant

dynamics. Using design methods based on the "robust observer" approach will not be

of much use, because this approach will lead to insensitive observers with respect to

failure detection. Therefore, it is easy to see the need for adaptive observers that

can track the plant parameter variations in FDS applications. Also, in the Kalman
filter case, a notable change in the basic characteristics of the innovation se-

quence will be caused by mismatching conditions. Let us define the dynamic system
(plant) equation by:

_(t) = Ax_(t) + B_(t) + r_(t) (13)

where w(t) is the (q x I) noise input vector assumed white and Gaussian. The mea-

surement vector _(t), (n x i), is contaminated by white noise _(t), with E[n] = 0
and E[_(t)n__T(s)] = Ql_(t - s)

[(t) = C.x(t) + n(t) (14)

Assume, for simplification, only plant-parameter variations causing the following
mismatching conditions:
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A_A+AA

(15)
K=AK+AK

where _; K are the matrices used in the Kalman filter implementation. The equation

of the Kalman filter is given by:

_(t) = _._(t) + K[_(t) -C _(t)] (16)

Define _(t) as the best estimate for the ideal matching condition and Ax(t) the
change in the estimate due to mismatching:

_(t) _ _(t) + A_(t) (17)

Denote also _(t) as the innovation vector for the mismatched system and _(t) as the
innovation of the ideal-matched KF-system. Based on linearity property, one can

write:

_(t) _ _(t) + A_(t) (18)

From equations (14), (17), and (18) one obtains:

_(t) = _(t) - C.&x(t) (19)

where A__x_x(t)is the solution of the following differential equation:

ix(t) = (A - KC) Ax(t) + AK • _(t) + AA • _(t) (20)

It is clear from equations (19) and (20), and also shown explicitly in figure 4, that

the stochastic process _(t), which is the actual innovation vector, will be a
colored noise process with E[_(t)] # 0. Therefore, no adequate test can be made on

_(t) in order to detect a failure in a reliable way, e.g., with very low, admissible
FAR.

In conclusion, in order to obtain adequate FAR in a FD system, it is absolutely

mandatory to have a good matching between the observer's (or KF) model parameters and

the parameters of the dynamic, real plant.

IV. AN ADAPTIVE, PARAMETER-TRACKING OBSERVER ALGORITHM

This section develops an algorithm for an adaptive observer design. The adapta-

tion law provides also for parameter identification and tracking. The adaptive ob-

server design problem was treated previously in the technical literature, and a number

of algorithms were proposed. In reference 14, a scheme for simultaneous estimation
of states and parameters for single-input, single-output linear, constant-parameter

systems is presented. The proposed algorithm is based on a particular canonical form
and makes use of Kalman filter equations. But, it can be shown that such canonical

forms cannot be obtained in the general case. In reference 15, an adaptive observer

for single-input, single-output linear systems was discussed. The algorithm intro-
duced in reference 15 makes use of some additional filters and is intended for the

7



constant parameter case. In references 16 to 22, various schemes and algorithms of

adaptive observers were presented. Those algorithms are mainly variations of a cer-

tain integral adaptation law, making use of the solution of sensitivity functions

differential equations and/or the so-called state-variable filters. In addition, a
common feature of those algorithms is the time-varying adaptive gain used in the

adaptive law. Those features lead, necessarily, to a quite complex algorithm and
a large computational effort. In reference 23 an algorithm for parameter identifica-

tion was introduced and in principle, offers also the possibility for the implementa-
tion of an adaptive observer,

The approach presented in this paper is based on a simple, yet effective,

adaptive law (algorithm) for linear, possibly time-varying multi-lnput, multl-output

systems, which makes use of a priori determined adaptive gains and does not require

solution of additional differential equations. Therefore, the computational effort

fits the practical needs and objectives for real-time, on-line simple adaptive ob-
servers for failure-detection systems.

As shown previously in equations (ii) and (12), the model of mismatched•observer

leads to an augmented observer output residual !(t), which is glven by -! = C _(t),
where _(t) will be the solution of the differential equation:

_(t) = (A - KC) _(t) -AA._(t) - AB._(t) (21)

In order to compensate for AA and AB, it is proposed here to change the entries

of the observer matrices A 0 and B0 according to the following •adaptation laws
(algorithm):

AA 0 = M !(t) ___T(t) (22a)

AB 0 = N !(t) u__T(t) (22b)

or, in the discrete case:

AA0(k) = M !(k) _J(k) (23a)

AB 0(k) = N _(k) u_T(k) (23b)

with :

k = 1,2,...n

The algorithm (22) is based on measurable values, such as the observer output

(the estimated state) --_(t), the plant (and the observer) input u(t), and i(t)
the observer output residual vector. The matrices M(n x m) and N(--nx m) are to be

chosen in such a way, that convergence and good tracking are provided. As shown in

the next two paragraphs, the adaptive algorithm introduced here makes possible:

- maintaining a low value of the observer output residual error, in spite of
plant parameter variations

- fast adaptation of the observer parameters to those of the dynamic plant

- tracking of the varying dynamic plant parameters by the adaptive observer
parameters.
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Substituting equation (22) into equation (21), one gets:

^ 2

_(t) = (A - KC) _(t) - lJ_l[MC _(t) *
2 (24)

- ll_llNC _(t)

Equation (24) can be put in the more compact form:

^ 2 2

_(t) = [(A - KC) - lJ_II MC - ll_llNC]_(t) (25)

In order to obtain for the time-varying, nonlinear differential equation an
asymptotically stable in the large (ASIL) solution, several approaches can be taken.

The first approach is a heuristic one; although the matrix included in the square

bracket is time-varying because of the time,dependent positive scalars lixll2 and

Ilull2, it is conjectured here, that by an appropriate choice of M and N, based on a

priori knowledge of _(t) and u(t), the adaptive algorithm (22) can be made asympto-
tically convergent. Loosely speaking, the M and N matrices allow us to locate the

eigenvalues of this square matrix so that all of them will have negative real values,

providing us with the result: e(t) . 0 as t . _. A second way to obtain an ASIL
solution for equation (25) is to make use of a version of Perron's Theorem (refs. 24

and 25) and to determine, accordingly, the entries of the gain matrices M and N. A

more appropriate way to obtain a convergent adaptive law is to determine the gain

matrices M and N by making use of Lyapunov's second method (ref. 26) and this

approach will be presented in the next paragraph.

In figure 5, a schematic block diagram of the adaptive observer is presented,

pointing out the simplicity of the adaptive law and the fact that this algorithm

makes use of only accessible measurable functions. *

If measurement noise is to be taken into account, the filter gain matrix K and

the adaptive gain matrices M and N will have to meet requirements in addition to

those imposed by the appropriate convergency conditions. In this case, a trade-off

is to be made in the choice of M and N, between fast parameter-tracking requirements

and minimal noise susceptibility. Finally, the gain matrices M and N, particularly

the gain matrix K, have to be chosen such that the observer sensitivity for failure

detection will be maximal. This topic which is of considerable importance, is the

subject of further research and is not discussed herein.

To summarize, besides the necessary convergency conditions, the triplet {K,M,N}

is to be judiciously determined by taking into account such considerations as:

(i) minimum parameter alignment time (rate of convergence), (2) fast tracking

capabilities, (3) minimum noise susceptibility for minimal FAR, and (4) maximum

sensitivity for high-probability failures detections.

V. CONDITIONS FOR CONVERGENCE AND STABILITY

In the previous section, a procedure for the choice of M and N matrices based
on a heuristical approach was discussed briefly. Here, a procedure to determine the
matrices M and N, based on Lyapunov's theorem for asymptotic stability, will be
developed. It will be shown that for a system described by a differential equation
such as (25), and having a general form such as equation (26):

9



_(t) = W(-e,t) e(t) (26)

where:

^ 2 2

W(e,t) _A [(A - KC) -llxl; MC -;lull NC] (27)

the solution'is uniformly asymptotically stable in the large, about the zero solution

e(t) = 0, which is the equilibrium point, if the entries of the matrix W(e,t) satis-
fy certain requirements, provided by some inequality conditions. Let's consider the

following positive definite scalar quadratic function V(_e) as a candidate for a
Lyapunov function:

V(e__)= fQe (28)

with Q an arbitrary, constant, diagonal, positive definite matrix, such that:

= 0 if_e= 0

V(e_) (29)

> 0 "e-e # O, _t

In addition, equation (28) provides us with:

lim V(e) =
IIe II. _ (30)

In order to obtain ASIL conditions for the system in equation (26), in addition

to conditions in equations (29) and (30), it is necessary that V _ dV/dt meet the

following condition

V(e__)< 0 , _-e # 0 , _t (31)

We will now proceed to obtain the necessary conditions to be fulfilled by

W(!,t) in order to satisfy conditions in equations (29) to (31). If those conditions

are satisfied, than V(e) from equation (28) will be an adequate Lyapunov function
for the system in equation (26), and the ASIL property will be obtained.

From equations (26) and (28), we get the following expression for V:

= f[QW(-e,t) + wT(-e,t)Q]-e (32)

In order to satisfy the condition in equation (31), the matrix P _ [QW + wTQ]
has to be negative-definite (ref. 26). The symmetric matrix P is a function of

the triplet {K,M,N} and depends also on Q,_(t) and !(t). We shall proceed further

to seek the necessary conditions for the elements Pij of P such that V < 0. By
expanding the quadratic form given in equation (32) the following expression for
V is found:

n n

= Eqiiwiiei2+ (qiiwij+ qjjwji)eiej
i=l j=l

(iCj) (33)

+ qjjwjjej 2]

i0



•" and wi_ are the elements of the matrix Q and W, respectively, and we

where 8 jjtake i $ in t_e crossterms of equation (33).

In order to obtain appropriate conditions for convergence and ASIL stability of

the adaptation algorithm from equation (22), it is necessary that the conditions

established in the following theorem hold.

Theorem

For the time-varying system in equation (27):

W(!,t) = [A - Kc -II_II2 MC -II_II2 NC]

to be asymptotically stable in the large, about the singular stable point _ = 0, the

following conditions are to be satisfied:

V > 0 , _e _ 0 , _t (34a)

qiiwii ! - C < 0 i = 1,2,...n (34b)

qjjwjj _ - C < 0 j = 1,2,...n (34c)

(qiiwij + qjjwji) (34d)
_qiiwiiqjjwjj _ 2

i = 1,2,...n

j = 1,2,...n (i _ j in the crossterms)

If the conditions of the theorem are satisfied, it is guaranteed that the time

derivative of the Lyapunov function will be negative definite everywhere in the

n-dimensional vector space En spanned by _, i.e.,

< 0 , _e # 0 , _t (35)

the function V(e) being, therefore, an admissible Lyapunov function for the system

in equation (27).

The conditions established in (34) are not difficult to meet, since the values

of C, qij, and those of the gains mij and nij (contained in wij) can be arbitrarily
chosen. The proof of the theorem is given in the Appendix; it is also shown that

if the conditions given in (34b), (34c), and (34d) are satisfied, the value of the
function "V will be:

n n

V _ - C _ _ [e_ + e_] < 0 (36)i=ij=i

From equation (36), it is easy to see that, by an appropriate choice of the matrix

Q and of the constant C, it is possible to accelerate the convergence rate of the

adaptation process. But as pointed out before, a trade is to be made between high

convergence rate and susceptibility toward possible existing measurement noise.

ii



It is worthwhileto remarkhere that similarconditionsto those in equa-
tion (34) can be obtainedby applyingSylvester'stheoremfor negativedefiniteness
directlyto the system_atrlx P. This alternativeapproach is not explicitlyshown
in this paper, since the establishmentof the ASIL conditionsfollowingthis approach
is associatedwith a lengthyand tediousalgebraicmanipulation.

Vl. DISCUSSION OF SIMULATION RESULTS

In order to illustrate the utilization of the adaptive observer algorithm intro-

duced in this paper, the resultsof two examplesare shown in the sequel.

(a) First Example: The adaptationprocessof two observerparameters ao and bo is
shown in figure 6. The observerparametersare converging,respectively,toward the
two system parameters an = 1.0 and bn = 2.0, of the following second- order system:

_I = -an Xl + x2

x2 = bn u

with one output measurement:

Y=x 1

The initialvalues of the observerparameterswere ao(O) = 1.5 and bo = 1.5.
The observerpoles were placed at: Sl,2 = -5 ± j5. The input was of a persistently
exciting type:

• 1
u(t) = sin nt + _ cos t

One can see in figure 6 the simultaneoustransients,due to mismatchingin the ob-
server initial conditions [Xl(O)= 1.0; £I(O) = 0.8; x2(o) = 0; x2(o) = 1.0] and to
parametermismatching. The absolutevalue of the observeroutput error becomes less
than 4 x 10-3 after 3.5 sec. The two observerparameters ao and bo convergedto the
true parametervalues an and bn within 95% accuracy,after 8 sec. (160 steps). The
values of m and n, accordingto conditionsin equation (34),were chosen i0 and 5,
respectively.

In figure 7, for the same system as above, the system parameterswere varied
deliberatelyas follows:

1.0 for 0 _ t ! 1 sec

a = 1.0 + 0.2(t - i) for i < t _ 12 sec
n

3.2 for t > 12 sec

2.0 for 0 _ t S 4 sec

b = 2.0 + 0.2(t - 4) for 4 < t _ 12 sec
n

3.6 for t > 12 sec

12



In the tracking of ao and bo, following an(t ) and bn(t) , as shown in figure 7,
we can observe some time lag and a characteristic frequency of the adaptive loop of

about 0.5 Hz. During the tracking phase, the observer output error was less than

2.5 × 10-2 • One second after the end of the parameter variations, the observer output

error was less than 4 × i0-S, and the accuracy of the parameter identification was

better than 90%. The accuracy in parameter identification while in steady state was
of the order of 98-99%.

(b) Second Example: In figure 8 the simultaneous adaptation process of three

observer parameters ao, bo, and co is shown. Those three parameters converge,
respectively, toward the nominal system parameters values: an = 1.0, bn = 1.0, and

cn = 3.0, of the thlrd-order system:

_i = -a x I + x2n

x2 = xs - Cn Xl

x =b u
S n

with two output measurements:

Yl = Xl

Y2 = x2

The starting values of the observer'parameters were: ao(O) = 0.5, bo(o) = 0.5,

Co(0 ) = 2.0. The observer poles were placed at sI = -i0 and s2, 3 = -8 ± j8. The
following mismatching conditions in the initial values were used:

^

xl(o) = 1.0 xl(o) = 0.5

^

x2(o)= 0 x2(o)= 1.0

^

x3(o) = 0 x3(o) = 1.0

The norm of the observer output error vector dropped to less than 5 x 10-2 ,
after 2.75 sec. The norm of the error vector in the parameter identification was

less than 10%, after i0 sec. The values of the adaptation gains were all chosen as

unity. Observe in figure 8 that after a very short observer transient, one can see

a smooth and uniform convergence of the triplet (ao, bo, co) to the (an , bn, cn)

values. In figure 9 the adaptive tracking of parameters ao and bo, following rapid

variations in an and bn, as in the first example, is shown. After t = 12 sec, when
the variations of an and bn stopped, the norm of the error vector in the observer

parameter identification (with respect to the corresponding system parameters)
dropped to less than 10%, within 2.5 sec. The observer output error norm was less
than 10-2 within 1.4 sec, and during the tracking period the error norm was less than

2 × 10-2 , this fact being the dominant property that one asks for in the application
of observers in failure-detection systems.

The same adaptive observer was Simulated under various output measurement noises.

In figure i0, the effect of 10%, white, output measurement noise in Yl is

13



represented. Although the noise value was chosen deliberately(unpractically)high,
the effect on the adaptationprocesswas ratherminor. It is clear from figure 10
that the same adaptlve algorlthmcould be used in adaptiveKalman filters in a more
efficientand simpleway than other proposedmethods.

CONCLUSIONS

It is shown in this paper that for a useful and proper utilizationof observers
and/or Kalman filtersfor the purposeof the failuredetectionsin linear systems,it
is necessaryto adapt the observer (or the Kalman filter) to the parametersof the
dynamic system. If this is not done, it is shown that the mismatchingconditionsmay
cause prohibitivefalse-alarmrates.

An algorithm for a tracking-adaptive observer for multi-input, multi-output

linear systems is introduced, and conditions for convergence and asymptotic stability

were developed. Those conditions are established on an a priori base, such that the

use of the algorithm is simple and effective. In the examples shown, in both deter-

ministic and stochastic cases, the adaptive law exhibited satisfactory accuracy and

tracking capabilities by maintaining a very low observer output error and, simultane-

ously, identifying the system paramters in an accurate manner.

An importanttopic for additionalresearchis the developmentof an adequate
synthesistechniquefor the optimalchoice of the matrices K, M, and N in order to
maintain low false-alarmrates associatedwith high sensitivityof failuredetection
in a stochasticenvironment.

Another topic for further research is the possible reorganization of the adaptive

observer (or KF) after a major failure has occurred. An alternate way is to design

robust adaptive observers for failure-detection systems which are able, without

structural change, to survive an abrupt and major failure in the system, but still

exhibit high sensitviity and sufficiently low false-alarm rate.
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APPENDIX

Proofof StabilityT_eorem '

In this appendix,a proof of the theoremstated in paragraphV, where the con-
ditionsin equation (34) for ASIL are established,is given.

From equation (33), the followingexpressionfor V is obtained:

n n

= _ _ liwllei + (qliwlj + qjjwjl)e.e.
i=l j=l i 3

(i_j)

2] (AI)+ qjjwjjej

where qlj and wij are the elements of the matrices Q and W, respectively, and
i # j is to be taken in the crossterms of (AI).

For V to be negative definite, at a first glance it seems that a good choice
will be to take:

qiiwii S - C < 0

(A2)

qjjwjj < - C < 0

and try to get the rest of the right part of equation (AI) to form a square. The

constant C in equation (A2) is an arbitrary, positive constant. We shall examine,

in the sequel, three different cases (I - III).

Case I: We can choose to satisfy the following conditions:

i (A3a) :
_qiiqjjwiiwjj = _(qiiwlj + qjjwji)

together with:

qiiwii = - C < 0

(A3b)

qjjwjj = - C < 0

for :

i -- 1,2,...n

j = 1,2,...n (i # j in the crossterms)

_e(t) and _t .

In this case, equation (AI) becomes:
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D n

2 e2.)
VI = _ _ (- C e. + 2C eie j - Ci 3

i=l j=l

(i_j)
(A4)

n n

i=l j=l

Since VI is, in this ease, a negative, semi-definite function (VI <-0), the Lyapunov

stability conditions for ASIL are not met and, therefore, conditions in equation (A3)

are not satisfactory. Despite this fact, it is indicated to use conditions in equa-

tion (A3) as an initial, starting condition, in order to obtain a better feeling for

the choice of the gains mij and nij.

Case II: Here, one may choose the conditions

, i (A5a)
_iiqjjwiiwjj > _(qiiqij + qjjwji)

or:

1

_qiiqjjwiiwjj = _(qiiwij + qjjwji) + y2 (A5b)

for:

i = 1,2,...n

j = 1,2,...n (i _ j in the crossterms)

_(t) and _t

together with conditions in equation (A3b), whereas y is an arbitrary constant.

Substituting, in equation (AI), one gets:

n n

E E[ 2 2]= - C e. - 2(y 2 - C)eie j - C ej
VII i=l j=l l

(i#j)

If the following choice is made:

2
y = C (A7)

so that the following equality holds:

qiiwij + qjjwji = 0 (A8)

one obtains for VII the following expression:

16



n n

= 2 2+if -c (%+ <0 (A9)
i=l j=l ej)

This time, VII is an absolute negative definite function and, therefore, conditions
in equations (A3b) and (A8)will ensure asymptotic stability in the large.

Case III: In this case, we obtain a set of conditions for ASIL that are easier

to fulfill, and, in the same time, we can fix an a priori, upper bound for V, in-

creasing the convergence rate of the adaptive algorithm (up to a certain limit,
because of the stochastic measurement noise susceptibility problem). Let us choose:

qiiwii _ - C < 0

(AI0)

qjjwjj ! - C < 0

Instead of equation (AI0), one writes:

qiiwii = - C - C1

qjjwjj = - C - C2 (All)

i = 1,2,...n ; j = 1,2,...n

where: C > 0, C1 > 0, C2 > 0, are arbitrarily chosen constants. Making use of

equation (All), one obtains:

n n

VIII _= _ _ [-(C + C 2 + i)e.e.i=l j=l l)ei+ (qiiwij qjjwj 1 3

(i#j) (AI2)

- (C+ C2)e_]

or:

n n

2 2

VIII = - C_'_ (ei +
i=l j=l ej)

n n

-i_l'=j_l= [Cle2- (qiiwij + qJjwji)eiej + c2e_] (AI3)

(i_j)

Choosing the following condition:

2

one obtains for VIII' the following value:
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n n

• 2 2

i=I J=1

n n (AI5)

-
(iCj)

By comparing equation (AI5) with equation (A9), we can easily see that:

n n

VIII _<- C_ _[e_ + e_] (Al6a)
i=l j=l

and, therefore:

VIII _ VII < 0 (Al6b)

for _!(t) and _t.

From equation (All) one has:

_qiiwiiqjjwjj :_(C + CI)(C + C2) >_IC2 (AI7)

and, therefore, from equation (AI4):

> (qiiwij + q]jwji) (AI8)
_qiiwiiqjjwjj 2

for: i = 1,2 ....n; j = 1,2 ....n (i _ j). Summing up, the conditions for ASIL,

formerly established, can be enunciated by the following:

Theorem

For the time-varying system in equation (27):

W(!,t) : [A - KC -II_II2 MC -II_II2 NC]

to be asymptotically stable in the large, about the Singular stable point _ = 0,
the following conditions are to be satisfied:

V > 0 , we _ 0 , _t _ (Al9a)

qiiwii _ - C < 0 i = 1,2,...n (Al9b)

qjjwjj S - C < 0 j = 1,2,...n (Al9c)
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(qiiwij + qJjwj i) (Al9d)
_qiiwiiqj jwjj _ 2

i = 1,2,...n

j = 1,2,...n (i # j in the crossterms)

If the conditions of the theorem are satisfied, it is guaranteed that the time deriv-

ative of the Lyapunov function will be negative definite everywhere in the n-

dimensional vector space En spanned by _, i.e.,

VIII < 0 (A20)

for: _(t) and _t, the function V(e) being therefore an admissible Lyapunov func-
tion for the system in equation (27).
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_y(t)

I- ......... • -, -I
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__it) ESTIMATEFAILURE DETECTIONSYSTEM

FAILUREDETECTIONJ

ALGORITHM & LOGIC

Figure i.- Schematic block diagram of failure detection system, including an observer.

OBSERVERPOLESLOCATION: O e31.0
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TIME, sec

Figure 2. Observer errors (residuals) for a thlrd-order system (ex. 2) with actuator
failure at t = 5 sec.
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Figure 3.- Hybrid, voting system with observers for analytic redundancy management.
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Figure 4.- The modeling of the plant-KF "mismatching" effect on the innovation
stochastic process.
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Figure 5.- Failure detection system with adaptive observer.
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Figure 6.- First example: observer output error and parameter adaptation process.
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Figure 7.- First example: parameter-tracking adaptation.
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Figure 8.- Second example: observer output error and parameter adaptation process.
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Figure 9.- Second example: adaptive parameter tracking.
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Figure i0.- Second example: adaptive parameter tracking in stochastic environment.
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