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INTRODUCTION

Large amounts of sediment and other pollutants are carried annually
1n'the rivers, lakes, estuaries; and coastal waters of the United States.
These sediments and pollutants are major determinates of water quali-y.
Many agencies are investigating the potential of using remote sensing
tachniques to monitor various water quality parameters because of the
ability of remote sensing to provide synoptic views over large areas.

Specific data needs usually vary among different user o gani-
zations (Kuo, 1976b). Generally, the desired usc of remote sensing

data is either identification or quantification of surface sediment

" and pollutants. This study is concerned with data analysis procedures

for quantification of water quality parameters that have ‘already been
identified and are known to exist within the water body. Specifically,
the study deals with the linear multiple-regression technique as a
procedure for defining and calibrating data analysis algorithms for
such instruments as spectrometers and multispectral scanners. The
technique has been used by a number of authors (Johnson, 1975, 1977a,
1977b, 1977c, 1977d, and Rogers, 1975, 1976) with apparent success.
Unfortunately, results have not been completely sat#sfactory in that
(1) analysis of subsets of data from the same exper-iment sometimes
gives different correlations and algorithms (compare Johason, 1§75,
1977a, 1977b); (2) repeatedexperiments over the same water body do

not always allow quantification of the same water quality parameters
(compare Rogers, 1975, 1976); (3) optimum results are not always
obtained by a multiple regression equation with radiance as the

independent variable (Ohlhorst, 1978 and Rogers, 1976); and (4) final
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mapped results do not always agree with results of other types of
analysis (compare Bressette, 1978 and Johnson, 1977b). From these
facts, it is clear that a more complete understanding of the limita-
tions, requirements, and precision of the linear multiple regression
technique is required before it can be applied._by user agencies in an
operational manner.

In an effort to provide improved scientific understanding, an
analytical and laboratory analysis of thea linear multiple regression
technique has been conducted (Whitloc., 1977b). That analysis demon-
strated that the technique is fundamentally sound, and, in principle,
should apply to many environmental situations in which both waier and
atmosphere contain linear and nonlinear optical effects. A number of
limitations (optical, mathematical, and operational) were defined,
however. One problem with that analysis is that field results were
not considered in that study. This invest}gation extends those results
to include actual field data. An analytical investigation of the signal
response equations is conducted, and results from "mixed-brew'" laboratory
experiments are presented. A study of measurement errors and ground-
truth operations from several past field experiments is presented,
and recommendations are made concerning future investigétions from both

aircraft and satellite instruments.

SIGNAL~-RESPONSE EQUATIONS
Reflectance at sea level and upwelled radiance at altitude are

related as follows (Miller, 1977):

L, () = T,00 b, 0) (@ 0 +1L ) +L, W] +L0) D
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where:
Lz(x) = apparent upwelled radiance at altitude z at wavelength A,
Ta(x) = gtmospheric transmission at wavelength A,
pu(k) = inherent upwelled reflectance slightly above water surface
at wavelength A.
Lso(k) = ypwelled radiance slightly above water surface from 100

percent diffuse reflector at wavelength A,

er(l) = ypwelled radiance from specular reflection of diffuse
skylight at wavelength A,

Lrs(k) = upwelled radiance from specular reflection of sunlight
(sun glitter) at wavelength A,

.La(x) = upwelled radiance from light scattered by the atmosphere

(path ;adiance) at wavelength A,

For a remote sensing scene with a specific solar elevation angle,
the inherent component of Ly(A) being contributed by the water column

is Ta(k)[Lu(A)] as follows:
L) = p () (L, (M) (2)
T, () (L, ()] = T, (M) e (W) (L, (M))] ©)

where:

Lu(A) = jnherent upwelled radiance slightly above water surface

at wavelength A,

A signal response model of the water may be assumed in which the

remote sensing signal is expressed as the signal from the background
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water plus the signal change caused by some pollutant. The change
caused by the pollutant may be expressed as a gradient constant times
the pollutant concentration. The inherent signal component for a

simplified three-constituent water mixture may be assumed as follows:

Q
Ta[L“(X)] = A+ BPA + EPB + SPC (&

where:
A = ir erent upwelled radiance component from background water
including loss due to atmospheric transmission.
BP, = inherent upwelled radiance component caused by pollutant A,
EP_ = inherent upwelled radiance component caused by pollutant B.
SPg = inherent upwelled radiance component caused by pollutant C,
(assuméd to vary nonlinearly as power Q).
B,E,S = gradient constants including lpsses due to atmospheric

transmission.

P P . = concentrations of pollutants A, B, and C, respectively.

A’PB’ c
Upwelled radiance components from surface reflection and atmospheric
path radiance effects can be expressed as a value for the baseline

atmosphere of a particular day plus a change caused by a variation

in atmospheric pollutants over the scene as follows:

N
'ra(x)u.td(x) + Lrs(A)] + La(x) = I+ 1X, (5)

where:
I = surface reflection and path radiance components for the

baseline atmosphere over the scene.
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Lx: = change in surface reflection and path radiance components
caused by atmospheric pollution (assumed to vary nonlinearly
as power N).
L = gradient constant.

X, = concentration of atmospheric pollutant xA.

. In most remote sensing experiments, upwelled radiance is not measured
at a specific wavelength, but instead an integrated average of radiance
is measured over a range of wavelengths, To differentiate between
wavelength specific and integrated-average values, the term Rad will
be used to denote integrated-average values for apparent upwelled

radiance at altitude Z over a range or band of wavelengths. Equation

(1) may be rewritten as:

Q N
Rad = A + BPA + EPB + SPC + 14+ LxA (6)

If measurements are made with a remote sensing instrument with bznds

W,X,Y, and 2Z, then the equations for the measured values are:

- Q N
Rady = Ay + DRy + BBy + S0 + Ty + LX)

Radx = Ax + B,P

Q
xPa * ExPp * SyPc t Iy + LxxA

«(7)
Rady = Ay + BP, + E P + S PQ + 1+ LYX§

- Q
Rad, = A, + B,P, + E,Pp + S, Pc + 1, +1L, x

vhere subscripts W,X,Y and Z denote values over the same

wavelength ranges as bands W,X,Y, and Z.
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Equation (7) is » series »  four simultaneous equations which are
linear in tour urknowne (VA,PS,PS, and xﬁ). If the mathematical
operations dascribed in Apyeindix C of reference by Whitlock (1977b)
are follcwed, equation (7) cau bYe solved to produce the following

goluticns for the values of concentration for pollutants A and B.

P, = J + K (Rad)) + K, (Rad,) + X,(Rady) + K;(Rad,) (8)
- ] ] E L L ] ]
PB J' + Kw(Rs.w) + KN\Radx) + KY(RadY) + Kz(Radz) (9)
The i, J' cone.antr vz a function of the A, B, E, S, I, and L

- constants +f the warious hands, and the K, K' constants are a function
of th2 B, L, S, aad L constants. A key element in arriving at the
asbove szlution is that the degree of nonlinearity in the Pc and XA
contributions must be essentially constant over the wavelength range of
bands' W, X, Y, and Z or the changes must be small so that linear
approximations are appropriate.

fquations (8) and (9) represent an exact solution for two con-
stituents which have linear radiance gradients in a remote sensing
scene which (1) contains a water mixture with three constituents
(one of which has a nonlinear radiance gradient), and (2) has nonlinear
variations in surface reflection and path radiance contributions due to
variation in some atmospheric constituent over the scene. While this
model is somewhat simple, additional complications can be selectively
added. Additional water pollutants (beyond pollutant C) and surface-
atmospheric contribution terms can be added to equation (6) to compli-
cate the model. As long cs the degree of nonlinearity is constant

over the wavelength range of interest, a series of lincar algebraic
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equations will result and the exact solution for PA and PB will
be of the same form as equations (8) and (9) except that ndditional
bands of radiance values will be required. A key element of equations
(8) and (9) is the valucs of PA and PB can be calculated without
knowledge of each other or the values of Pc or XA' Knowledge of the
A, B, E, S, I, and L constants of equation (7) is required, however,
to compute values for the J, J', K, and K' constants before Rad
values can be used to compute PA and PB.

In actual field experiments, values for the constants A, B, E,
S, I, and L are seldom known. In fact, the number of water and
atmospheric parameters which have a significant influence con the total
upwelled radiance signal is usually unknown. As a result of this
situation, empirical methods must be used to determine values for the J,
J', K.. and K' constants in ecuations (8) and (9). Fortunately,
equations (8) and (9) are of the same form as the statistician's
traditional multiple-regression equation:

p-1

P=J+ I K, Rad, + ¢ (10)
g=1 4 1

where:
P = depcndent variable.
Rad, = independent variable.
J,K, = coefficients obtained by least squares fitting techniques.

€ = error.

p = total number of J, K coefficients.




In order to evaluate J, K coefficients by umpirical methods,

certain environmental restrictions must apply. All Jats used in the
fitcing process must be from a situation with identical J, K
coefficients. This means that values for the A, B, E, §, I, and L
constants must be equal for each data point. This condition is often
satisfied if one had a single remote sensing scene with multiple
ground-truth points, and atmospheric transmission values do not vary
by a large amount over the scene. (Surface reflections and path
radiance are allowved to vary.) Values for the J, K coefficients
generally will not be equal for each data point if one has the situation
of multiple remote sensing scenes with a data point in each. 1In that
case, each scene has a different solar elevation angle and atmospherir

condition which causes different values for Ta(k). Lso(l). er(k),

Lrs(x). and La(x) in equatijon (1). Thkis means that the A, B, E, S,
I, and L constants in equations (6) and (7) will be different for
each data point. Since A, B, E, S, I, and L determine values for
the J, K coefficients, the J, K coefficients will be different for
each data point. In such a case, it is impossible to obtain an
accurate estimate of the J, K coefficients if radiance and ground-
truth concentration values used in the least-squares multiple regression
process are from different remote sensing scenes. This partly explains
why linearized multiple regression with radiaunce as the independent
variable failed to give a good data-reduction algorithm in Ohlhorst
(1978). In that experiment, the operational technique was m;ltiple

overpasses with a single ground-truth point in each scene.




LEAST-SQUARES AND STATISTICAL METHODS

Estimation of J, K Coefficients - The regression task is to estimate

the J, ¥ coefficients in which Radi is nnuuncd'as the indapendent
Vltilbl;._ In ﬁany observations, the 1ndependdht variables are correlated
with each other as well as with the dependent variable which makes
results difficult to interpret (Snedecor, 1967). For the remote

sensing situation, high correlations between the independent variables
(Radi) should be expected if the pollutant of interest has a broad

- spectral signal over the wavelength range.

As noted previously, least-squares procedurcs are used to estimate
the J, K coefficients using a number of ground-truth points where
radiance-constituent concentration data pairs are available. 1In
performing the process on remote sensing dats, thfee major a2ssumptions
are involved (Daniel, 1971):

1. The correct form of the equation has been chozen (Radi is

linear with concentration for all bands involved).

2. The data are representative of the whole range of
environmental combinations in the remote sensing scene.

3. The observations of the dependent variables (ground-truth
concentration values) are uncorrelated and statistically
independert.

Three minor assumptions are:

1. All observations of *he dependeni variable (concentration)

have the same (but unknown) variance, 02.




2. The distribution of uncontrolled error is normal.
3. All independent variables (Rnd1 values) are known without
error,
One problem is that measuremsnts of the 1ndcponacn: variable (Radi) do
contain errors. Daniel (1971) indicares that errors in the independent
variable cause estimates of the J, K coefficients to ba biased. As
a rule-of-thumb, it is reccmmended that remote sensing experimants
be designed such that the varicnce of radiance about mean values for
the ground truth locations (aindi) be at least 10 times che variance
- of data noise (a: ). This rule~of~thumb may be referred to as Daniel's

i
Criteria. In terms of standard deviatior values:

2
“Rad, > 10.0 o’ (11)
‘ 1
or
o 2 3.16 0 (12)
Rad, N

Equation (12) states that ground-truth locations should be gelected
within the remote sensing scene in such a manner that the standard
deviation of the change in upwelled radiance for the ground-truth points
should be at least 3.16 times the standerd deviation of data noise for

the particular remore sensing instrument being used if least-squares

procedures are to be used in the analysis of data,

Measures of Precision - Before an experiment, it is not known how many

bands (or in what combination) will be required to separate the desired




water-quality parameter from the total mix of factors which contribute
to apparent upwelled radiance. The usual process is one of first
calculating a regression equation for the best single band of radiance
data and then successively defining multiple-regression equations for
the best two bands, three bands, etc. As additional bands are utilized,
a number of statistical parameters may be used as indicators of the
precision of each new multiple-regression equation. A number of factors
must be considered when viewing these parameters to select an optimum
multiple-regression equation.

One popular statistical varameter used as a measure of precision
is the correlation coefficient, r. The proportion of total variation
that is not explained by the regression equation is 1 - r2. (An r
value equal 0.9 means that 19 percent of the signal variation is not
explained by the multiple-regression equatién.) Draper (1966) étated
that r 1is not a good measure of precisioﬁ as the number of estimated
coefficients approach the number of experimental observations. This
implies that either the number of ground-truth observations should
exceed the number of instrument bands by a wide margin or thg number
of bands included in the multiple-regression equation should be limited.

The standard error, o, is a second measure of precision of the
least-squares process for estimating J, K coefficients. The standard
error is assumed to reprecent a value within which 68 percent of all
errors are expected to fall if (1) there is an infinite number of
observations, and (2) there is minimal error in the independent
variables (Radi). Unfortunately, most remote sensing experiments
have only a limited number of ground-truth observations and Ri

measurements do contain errors.
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The F-test is a third metliiod of evaluating the adequacy of the
least-squares process. The calculated value of F must be greater
than a critical vaiue (Fcr) taken from F-distribution tables in order
to be judged significant. If the multiple-regression equation is to
be used -for predictive purposes, calculated F should be at least 4 times
the tabulated critical F value (Draper, 1966). One problem with this
parameter is that a level of confidence must be arbitrarily selected
before F/Fcr can be calculated.

Daniel (1971) recommended the statistic, Cp’ as a measure of

the sum of the squared random errors. Given a multiple-regression

equation with p estimated J, K coefficients, a low value of CP

in combination with a Cp/p ratio < 1.0 is considered to indicate a

good f£it with negligible bias. The regression equation should then

be us2ful for predictive purposes. The Cp/p ratio is the only one of

the above parameters which is indicative of bias in the fitted equation.
For future remote sensing experiments, it is recommendec that

multiple-regression equations be computed for all combinations of bands

for which upwelled radiance values are available. Values for r, o,

F/Fcr’ Cp, and Cp/p should be computed for each equation. The prime

basis for selecting an "optimum" regression equation should be

Cp/p 2 1.0 for minimum bias and F/F__ > 4.0 for predictive

utilization. Values for r should approach 1 and ¢ should approach

zero. Daniel's Criteria (eq. 12) should also be satisfied for all

bands in the regression equation. When all five conditions are met,

the multiple regressién equation with the minimum number of bands should

be selected for calculation of pollutant concentration.




LABORATORY VALIDATION EXPERIMENTS

It is desirable to validate data analysis techniques with actual remote
sensing data under controlled conditions. To achieve this result, tests
were conducted with filtered-deionized tapwater in the Marine Upwelled
Spectral Signature Laboratory at the WASA Langley Research Center. A
sketch-of the laboratory setup is shown in Figure 1. (More complete
descriptions of the system and test procedures can be found in Whitlock
(1977a and 1977b.) Only partial results from one series of tests will

be presented in this paper for reasons of brevity.

It was desirable to test the multiple regression technique with
data from water mixtures which contained constituents with both linear
and non-linear radiance gradients. Single-constituent tests were con-
ducted on a number of materials. From these data, it was concluded
that both Ball Clay and Feldspar suils have near linear radiance
gradients for concentrations between 4 and 173 ppm, Rhodamine WT dye
has a nonlinear gradient for concentrations between 17 and 1052 ppb.
With this knowledge, a series of three-constituent tests were conducted
with 25 different water mixtures. Table I shows the concentrations of
Ball Clay, Feldspar, and Rhodamine WT that were present in the filtered-

deionized tapwater for each test. Also shown are raliance values for

the following 5 wavelength bands:

Band Number Wavelength Range Center Wavelength
(nm) (nm)
, 1 240-500 420
a 4 2 460-620 540
1 3 540-700 620
i 4 620~780 700
5 700-860 780




The radiance values shown are in terms of relative units obtained by
dividing power/bandwidth measurements over the water by gray-card diffuse
reflectance measurements of the input light source. -

A multiple regression analysis was performed for Ball Clay using
12 of the 25 tests in Table I to simulate "ground-truth" values. The
12 "ground-truth" values were tests 1, 3, 5, 6, 8, 10, 13, 15, 18, 20,
21, and 23. The standard deviation of the change in upwelled radiance
;as next calculated for each band for this "ground-truth" data set.
Values are compared with data noise from the laboratory measurements

as follows:

Band Number (4]

o ,
Rad (Whitloc:, 1977b) “Raa°N
1 0.1372 0.0343 4.00
2 0.1125 0.0343 3.23
3 0.1414 0.0343 . 4.12
4 0.1431 0.0343 4.17
5 0.0992 0.0343 2.89

These figures indicate that Daniel's Criteria (eq. (12)) is satisfied
for all bands except number 5., Since the signal-to-noise standard
deviation ratio for band 5 is only slightly below the value of 3.16,

it was Jecided not to exclude that band from the regression analysis

in this particular case. Regression equations for all combinations

of Lands were next calculated for Ball Clay concentration. Estimated
values of the J, K coefficients and various statistical measures of
precision are shown in Table I1. Review of Table II indicates that

the lowest value of total squared error (Cp) is obtained for band
combinations 2, 3, and 4. The regression equation for this combination

is:

P S [ O



Since values for r, o, F/Fcr, and Cp/p are acceptable, it is assumed

i P, = =4.1 + 234.4 (Rad,) - 613.7 (Rad,) + 918.0 (Rad,)

@ statistical estimates of precision for this equation are: %
i

1 | r= 0.99

E 0=6.8 ppm

{3 : (FIF,) g5 = 105.7 %
: C_= 3.0 s
\ d

i; ' Cp/p = 0.8

|

|

that equation (13) has good predictive capability. To test this %
* assumption, the radiance values for bands 2, 3, and 4 from Table I :
: were applied to equation (13). Values for Ball Clay concentration

F (PA) were calculated and are compared with actual values in Figure 2.
E Shaded symbols denote the 12 "ground-truth" points used in the least-

| squares fit, and the open symbols represent calculations for the

[ remaining 13 independent test points. (Some opcen symbols are hidden

under the shaded points.) Since all points fall within + 3.90 of the

true value, it was concluded that equation (13) has good predictive

capability and that linear multiple-regression analysis procedures
have the potential for quantification of constituents with linear
radiance gradients in water mixtures which also contain nonlinear
constituents. A satisfactory linear regression equation was also found
for the concentration of Feldspar soil in these same mixtures (Whitlock,

1977b). :




REVIEW OF FIELD DATA
Analytical analysis and laboratory test cases have been used to
perform a limited validation of linearized multiple-regraession analysis
for quantification of marine constituents. No matter how many controlled
tests are conducted, final validation of the technique must come through
use of field experiments. As noted previously, results from past
experiments have not been completely satisfactory. This section examines
the data and operational conditions of past tests in an attempt to
define problem areas which require increased attention for future

experiments.

Instrument Noise - Unfortunately, remote sensing data always contain

error and random noise. Most operational instruments contain onboard
calibration lamps and black bodies to minimize radiancé error. Noise
has been somewhat more difficult to eliminate because it is caused by
many components in the instrument system. After an experiment, instru-
ment noise can usually be evaluated by calculating the standard dcviation
of calibration lamp and/or black body count values and applying the
appropriate calibration constants to convert to radiance. If onboard
calibration sources are not available, flat or near-constant radiance
portions of the remote sensing scene may be examined. Both of these
procedures have been used to examine noise in the data for the field
¢xperiments described iu Johnson (1977b, 1977¢, 1977d) and Ohlhorst
(1978). Figure 3 presents estimates of noise standard deviation values
for each band for which date were obtained. These data indicate that a

wide range of noise values have been observed in previous experiments.
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The problem of data noise has been ﬁidely recognized, and pixel
averaging is often employed as a method of reducing the error. To
illustrate the effacts of this process, calibration lamp values from
the experiment (Johnson, 1977b) were averaged in a manner to simulate

pixel averaging. New values for noise standard deviation were calculated

and are compared with single-pixel values in ?1gure 4, Large reductions
in instrument noise may be achieved by averaging even small size (4 Ly &
or less) pixel arrays. Use of array sizes larger than 7 by 7 produced i

only small reductions in noise for the data set (Johnson, 1977b).

{ Pixel averaging ~ffectively increases the size of the ground
‘resolution element that is observed by the remote sensing instrument.

) I1f the array size becomes too large, average radiance values of the

| enlarged pixels may not be representative of ground-truth values because
of spaﬁial variability in pollutant concentration. As pixels are

averaged, noise error will bc reduced but new error is introduced bhecause

of scene dynamics or hydraulic changes. Carried to extreme, hydraulic

{ features that depict smaller-scale pollutant transport may be erased
i by the averaging process. Tf averaging is necessary, then the following

criteria should be used to establish credibility of the enlarged pixel

radiance values.

- logyg ). log] (14)

RadPt nxn nxn

where:

(ORad ]mm = gtandard deviation of enlarged pixel about average
pt

radiance value (calculated from indjividual pixel

radiances within n by n array surrounding each ground

trutih point).
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When [o

is much larger than [o one has an indication

] ) en?
Radpt nxn N'nxn
that scene dynamics have introduced large errors into the process that

offset the noise reduction benefits gained by pixel averaging.

Ground Truth Placement - Previous discussion has indicated that ground-

truth points should be located within the remote sensing scene in such
a manner that Daniel's Criteria (eq. 12) is satisfied for all/éands in
the regression equation. To review this aspect of previous éfperiments,
values of Opad have been calculated using radiance values'over each
set of ground-truth points for the field experiments of Johnson (1977b,
1977¢, 1977d) and Ohlhorst {1978). Pixel averaging had been employed
.:o eliminate signal changes caused by the ground-truth boat, time
differences, and location uncertainty as well as to reduce noise in each
data set. New estimates of Oy have been made from calibration lamp
or background water data to simulate the pixel averaging process for
each experiment. Values of oRad/oN have been compute. end are com-
pared with Daniel's Criteria in figure 5. It appears that ground-truth
placement was adequate such that Daniel's Criter.a was satisfied after
pixel averaging for most experiménts. Approximate calculations indicate
that not a single one of these experiments would satisfy Daniel's
Criteria on a 1 by 1 pixel array basis, however. Ground-truth locations
for future rcmote sensing experiments should be selected in such a
manner that Opad has the largest possible value to minimize the
requirement for pixel averaging. Use of past remote sensing images
of the area to estimate relative radiance differences between proposed

locations is probably the best method of selecting a distribution with

maximum standard deviation.
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Physical Consistency - An unwritten assumption in the mulcipli regression

process is that all data used in the correlation are "good" without
physical deficiencies. When remotely monitoring water-qua.ity parameters,
this generally means that a number of criteria should be satisfied
concerning both environmental conditions and physical operations of
the experiment. Only limited discussion justifying physical con-
sistency of the data is available in Johnson (1977b, 1977c, 1977d), Rogers
(1975, 1976) and Oh)lhorst (1978). For that reason, the remainder of this
paper will discuss some of the practical problems experienced by the
authors.

Relative to environmental criteria, two desirable ccnditions
are:

1. Water depth greater than the Secchi depth.

2. Constant vertical concentration gradient within the remote

sensing penetration depth (the depth above which 90 percent of
the upwelled radiance originates.) (Gordun, 1975).

It 1s sometimes assumed that the maximum remote sensing penetration
depth is the same as the Secchi depth. Calculations in McCluney, (1974)
as well as unpublished data from the James River in Virginia indicate
that maximum remote sensing penetration depth may be on the order cf
20 to 50 percent of Secchi depth, depending on absorption and scattering
characteristics of the mixture. Knowledge of the maximum remote sensing
penetration depth is required so that water samples are not ob-ained
below the zone tht is causing the remotely sensed signal. One method
to estimate the maximum remote sensing penetration depth is that of

lowering a flat black plate with less than 1 percent diffuse reflectance

into the water and noting its depth of disappearance (McCluney, 1974).




In terms of operational criteria, & major problem is the time
lapse between overpass of the remote sensor and collection of individual
water samples. Time lapse can cause the ground-truth data to be
hydraulically inappropriate if there are significant wind or tidal
influences on the water body being observed. It may be possible to
correct ground-truth data to account for small time lapses (Kuo, 1976a),
but such procedures have not yet been widely demonstrated in field
experiments. In principle, all data should be synchronous with the
remote sensor overpass, but that has not been achieved in past experi-

ments, as shown below:

Reference Geoz::ghical Number of Maximum Time
Ground Truth Lapse Between
Points in Water Sampling
Fegression and Kemote
Analysis Sensor Overpass
Johnson, 1977b James River in Virginia 21 2.0 hrs
Johnson, 1977c New Jersey Coast 22 3.0 hrs
Johnson, 1977d New York Bight 10 0.3 hr
Rogers, 1975 Saginaw Bay in Michingan 27 8.0 hrs
Rogers, 1976 Saginaw Bay in Michigan 16 8.0 hrs
Ohlhorst, 1978 Delaware Shelf 7 0.5 hr

Some experiments have a small time lapse, but in other cases it has been
assumed that constituents in a water pixel remain constant for 2 to 8

hours. Considering that algae tend to migrate depthwise with changing

light intensity (solar elevation angle), large time lapses should be

Justified with quantitative water sample data even when wind and tidal

effects are such that flow conditions are stable.
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In the operational area, another major problem is often
encountered. Large-scale experiments with aultiple vessels often require
either some water sample analysis onboard ship or laboratory analysis
of the s;mc parameter by different organizations. Consistency of
laboratory results between different laboratories is a longstanding
problem, and variations of certain parameters may ba larger than that
of the remote sensing scene. It is recommended that future experi-

ments maintain consistent handling and laboratory Snalysis procedures.

PRACTICAL APPLICATIONS

An investigation of the linear multiple-regression technique with
remotely sensed radiance as the independent variable has been conducted.
Sigral response equations have been analyzed, and results from "mixed

brew" laberatory tests are presented. Results from these studies

indicate that the technique is fundamentally sound and should apply

in many environmental situations in which both the water and atmosphere
contain linear and nonlinear optical effects. Conditions which limit
application of the tecinique have also been discussed. A review of
previous field experiments has served to emphasize additional limita-
tions which must be considered in future experiments. A summary of
recommended conditions for use of the technique is given in Figurve 6.
From this listing, it is clear that the linearized multiple-regression
analysis should never be applied blindly to a set of data without back-
ground knowledge concerning atmospheric variability over the scene,

the constituent of interest, hydraulics of the water body, typical
Secchi and maximum remote sensing penctration depth values, and measure-

ment uncertainties from various sources. The technique has strong




theoretical foundation and careful application should yield useful
results. It is particularly appropriate ror use in small regions

for single-*ime experiments to validate either mathematical or hydraulic
models of pollutant transport and diffusion. Present cost for

obtairirg multiple ground-truth points within a single remote sensing
scene limits its usafulness for many routine monitoring missions,

however.

CONCLUSIONS
The study described herein is part of a continuing effert to
_define data-reduction techniques s:d their appropriate application so
that increased benefits can be derived from both aircraft and satellite

remote sensing data. The goal of the rresent study was a wore complete
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understanding of limitations, requirements, and precision of the linear
multiple-regression technique with radiance aorthe independent variable.
Environmental a:d optical physics conditions have been defined for
which an exact solution to the signal response equations is of the same
mathematical form as the statistician's traditional multiple-regression
equation. In such a case, use of linearized multiple regression is
merely an empirical correlation to obtain coefficients for the exact
solution to the signal-response equations. Additional analytical .
investigations are desirable to more complately define atmospheric
limitations and to consider the problem of bottom reflection in
optically shallow waters.

One problem with Ehe use of the regression technique is that the

independent variables {upwelled radiences) contain errors and are often




corrzlated vith each other. This requires consideration of s number of

statistical parameters vhen performing the regression analysis.

Raviev of past field experiments indicates that data noise was of |
such magnitude that data smoothing was raquired before Daniel's Criteria
could be satisfied for the least-squares multiple-regzession process.
Improved zilection of ground-truth locations to maximize variance is
recommended to minimize data smoothing requirements and the physical
errors associated with that process.

Tize lapse between remote ssnsor overpass and wvater saaple
collection appears to have been a problem in past experiments. Economic
consideration will zlways result {n cnly a limited number of water samples
obtained synchronously with the ramote sensor overpass. Additional
gtudies to develop and demonstrate techniques for correcting non~

synchronous data for remote sensing use are desirable.
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