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* I. INTRODUCTION 

This study considers the design of a sensor fault tolerant 

system using analytic redundancy for the TCV (Terminal Configured 

Vehicle) research aircraft (Boeing 737) in a Microwave Landing 

System (MLS) environment. The overall objective of the fault 

tolerant system is to provide reliable estimates for aircraft 

position, velocity, and attitude in the presence of possible 

failures in navigation aid instruments and on-board sensors. The 

estimates r provided by the fault tolerant systern r are used by the 

automated guidance and control system to land the aircraft along a 

prescribed path. Sensor failures are identified by utilizing the 

analytic relationship between the various sensor outputs arising 

from the aircraft equations of motion. 

An aircraft sensor fault tolerant system design methodology is 

developed by formulating the problem in the context of simultaneous 

state estimation and failure identification in discrete time 

nonlinear stochastic systems. The resulting sensor fault tolerant 

system consists of 1) a no-fail estimator which is an extended 

Kalman filter (EKF) based on the assumption of no failures and 

* Use of commercial products or names of manufacturers in this 
report does not constitute official endorsement of such products 
or manufacturers, either expressed or implied, by the National 
Aeronautics and Space Administration. 
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provides estimates for aircraft state variables and normal 

operating sensor biases: 2} a bank of detectors which are first 

order filters for estimating bias jump failures in sensor outputs; 

3} likelihood ratio computers; and 4} a decision function which 

selects the most likely failure mode based on the likelihood 

ratios. 

The operation of the fault tolerant system is as follows: 

First, the EKF computes estimates for aircraft position, velocity, 

attitude, horizontal winds, and normal operating sensor biases on 

the assumption of no sensor failures. The residuals of this EKE" 

drive a bank of detectors each of which estimates a postulated bias 

jump failure for a given sensor. Then, multiple hypothesis testing 

procedure is employed to decide whether the EKF is operating with 

heal thy sensors or under one of the hypothesized failed sensor 

modes. The multiple hypothesis test selects the most likely 

failure mode based on the likelihood ratios which are computed 

using the bias jump failure estimates from the detectors. When a 

failure is declared by the decision logic, the filter-detector 

structure is reconfigured by throwing out the failed sensor, making 

the appropriate changes in the no-fail filter and detectors, and 

initializing the likelihood ratios and a priori probabilities. 

The no-fail filter is implemented in a rectangular coordinate 

system with origin on the runway by using a new separate bias EKF 
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algorithm which has been obtained by extending the known results 

for the linear case to nonlinear systems. The body mounted 

accelerometers and rate gyros form the inputs into the EKF, while 

MLS range, azimuth, elevation measurements, lAS (indicated 

airspeed), and IMU (inertial measurement unit) attitude outputs are 

utilized as measurements by the EKF. If an RSDIMU (dual 

fail-operational two-degree-of-freedom strapdown inertial 

measurement unit) is used instead of the IMU, then the RSDIMU 

accelerometers and rate gyros replace the body mounted 

accelerometers and rate gyros and the RSDIMU attitude outputs 

replace the IMU Euler angle measurements. The function of the 

no-fail filter is similar to that of a navigator coordinatized in a 

local runway frame of reference. While the navigator equations 

usually involve open loop integration of the body accelerations in 

the runway frame with occasional position and velocity fixes, the 

no-fail EKF in our study performs the position, velocity, and 

attitude updates on-line in a closed loop feedback system 

mechanism. 

The proposed filter-detector structure is computationally 

feasible. In contrast to a previous study reported in [22]-[23], 

where the failure detection system requires the implementation of 

M+I high order nonlinear EKF' s (where M is the total number of 

possible sensor failures), the proposed sensor fault tolerant 
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system design requires a single high order EKF (no-fail filter) and 

M first order detectors. The state estimation and failure 

detection performance of the developed sensor fault tolerant system 

is analyzed by using a nonlinear six-degree-of-freedom simulation 

of the TCV research aircraft. 

The simulation software is essentially an integration of the 

NASA supplied TCV and RSDlMU computer simulation programs. 

Aircraft sensor models have been developed and appended into the 

simulation to provide more realistic norma~ operating errors. 

Furthermore, sensor failure models for increased bias, hardover, 

null, scale factor, ramp, and increased noise type sensor 

malfunctions have also been assimilated into the software. 

Preliminary analysis of the simulation results obtained so far 

indicates that the no-fail EKF estimation errors compare favorably 

to those obtained with other types of navigation filters employed 

in the same MLS environment. Sensor failure detection performance 

of the fault tolerant system is excellent for the EKF output 

sensors such as MLS, lAS, lMU measurements, while the failure 

detection speed for input sensors such as accelerometers and rate 

gyros has been found to be slower than that of output sensors. A 

number of technical issues have been identified during the course 

of the study and will be further investigated for possible 

improvement of failure detection performance. 
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The organization of the report is as follows: Chapter 2 

describes the development of the proposed aircraft fault tolerant 

system. Simulation-related work is given in Chapter 3. A 

discussion of the simulation results is provided in Chapter 4. 

Chapter 5 contains a summary of the work done along with an outline 

of issues to be resolved in the second year of the study. 
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II. FILTER-DETECTOR DEVELOPMENT 

In this chapter the analytical structure for an aircraft 

sensor fault tolerant navigation system will be developed. The 

resulting system will be shown to consist of a failure-free 

conditioned (navigation) filter followed by a bank of low-order 

failure detectors and their companion decision logic. Although the 

original formulation outlined in our proposal was based on using a 

linear time-varying model of the aircraft dynamics, it was decided 

to extend the utility of the resulting system by employing a 

detector-estimator structure based on nonlinear aircraft point mass 

equations of motion. This decision necessitated the development of 

nonlinear filter-detector algorithms analogous to those given in 

the proposal for the linear case. While the new algorithms are 

naturally more complex due to the linearizations involved in 

nonlinear filtering, they have the advantage of being independent 

of the flight path and the selected trim condition. 

The outline of Chapter II is as follows. An overall 

description of the fault-tolerant system is given in Section 2.1. 

The aircraft point mass equations of motion and sensor dynamics, on 

which the filter-detector development is based, is then discussed 

in Section 2.2. Section 2.3 outlines the operation of the no-fail 

filter. Failure detector implementation is discussed in Section 

2.4, and in Section 2.5, the operation of the failure decision 

logic is explained. 
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2.1 Fault Tolerant System Overview 

The design problem, in its most generic form, can be stated as 

follows: Given discrete, redundant measurements of the various 

on-board sensors and navigation aid instruments on an aircraft, 

generate estimates for the vehicle states required by the automated 

guidance and control laws such that reliable estimates are produced 

in the presence of possible sensor failures. The desired qualities 

of a fault tolerant system accomplishing these requirements are the 

following: 

fast detection of different types of failures (i. e, 

hardover, null, increased inaccuracy, ramp, etc.) 

- ability to handle various levels of failures for a given 

sensor (i.e., hard, mid and soft) 

utilize inherent analytical redundancy 

minimal complexity 

With these goals in mind, the aircraft sensor fault detection 

design problem was formulated in the context of simultaneous state 

estimation and failure detection in nonlinear discrete time 

stochastic systems. Figure 1 displays the major components of the 

resulting filter-detector structure. 
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As seen in the figure, our filter-detector structure consists 

of 1) a no-fail estimator which is an extended Kalman (EKF) filter 

based on the assumption of no failures and provides estimates for 

Ale state variables and normal operating sensor biases: 2) a bank 

of detectors which are first order filters for estimating bias jump 

failures in sensor outputs: 3) likelihood ratio computers: and 4) a 

decision function which selects the most likely failure mode in the 

Bayesian sense based on the likelihood ratios. Each of these major 

components will be discussed in detail in the ensuing sections. In 

this section, only an overaLL picture of the operation of the 

system is discussed. 

Notice that only one set of the replicated input sensors and 

the average of the replicated output sensors enter into the no-fail 

filter after getting processed in the "selection logic" and "summer 

logic" blocks. The use of these lower order "generic" inputs and 

observations serves to reduce the overall complexity of the no-fail 

filter, without a corresponding loss of generality. The no-fail 

filter functions essentially as a navigator in this system, 

estimating the state of the aircraft and the "normal operating" 

biases on input sensors. However, unlike most navigators, this one 

continuously filters the navigation aid, lAS, and attitude 

measurements, so as to constantly correct the propagated state 

estimates. In addition, it is formulated as a nonlinear extended 
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Kalman filter so that it is independent of flight path and trim 

conditions. 

Following the no-fail filter in Figure 1 is a functional block 

which forms an expanded set of residuals (essentially undoing the 

effects of driving the no-fail filter with averaged measurements) • 

These residuals, in turn, drive a bank of detectors, where each 

detector is cascaded by a likelihood ratio computer. Currently, 

each detector is designed to identify a single sensor failure, and 

compensate the no-fail residuals so as to approximately remove the 

effects of the hypothesized sensor failure. The detectors are 

essentially first order Kalman filters each of which estimate a 

hypothesized bias jump for a given sensor. This simple bias 

failure model was chosen because it is fairly robust in detecting 

many other types of failures [24]. 

Each likelihood ratio computer takes in a residual sequence 

from the no-fail filter or the detectors, and returns a likelihood 

ratio which reflects the a posteriori probability of that residual 

sequence corresponding to the true hypothesis. Likelihood ratios 

from all the likelihood ratio computers then drive a decision 

module. Here a Bayes cost function is minimized and the most 

probable hypothesis along with its fa ilure level estimate and 

posteriori probability is passed to the filter-detector 

reconfiguration logic. Depending on the magnitude of the failure 
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level estimate and the confidence in the selected decision as 

dictated by its a posteriori probability, the reconfiguration logic 

either waits for further failure confirmation or deletes the failed 

sensor, appropriately modifies the filter-detector structure, and 

initializes the likelihood ratio computers. 

2.2 Aircraft Equations of Motion 

The estimator-detector algor i thms will be developed using 

aircraft point mass equations of motion mechanized in a ground 

based, flat earth Cartesian coordinate system (G frame) with its 

origin located on the runway (See Figure 2). For ease of 

presentation, it will be assumed that the G-frame is inertial. 

Since the aircraft position, velocity, and attitude are needed by 

the automated guidance and control system to land the aircraft 

along a prescribed path, these variables along with horizontal wind 

components will be selected as state variables for estimation. 

The sensor package considered here includes three body mounted 

accelerometers, each one aligned along one of the body frame axis 

[3], a similar set of three body mounted rate gyros, along with an 

airspeed indicator, and an IMU platform or a RSDIMU. Only the 

algor i thms for the sensor package containing the IMU will be 

presented. The navigation aid is a ground-based Microwave Landing 

System (MLS) which transmits position information to aircraft 

- 11 -



ELE"p" .. nON 
p"N1'ENNP" 

f.- ----

_ 12 -

RP"NGE p"NO 
p..ZlMU1'H 
P"M1'ENNA 



within its volumetric coverage at discrete time intervals. The MLS 

consists of a Distance Measur ing Equipment (DME) providing aircraft 

range information, an azimuth antenna co-located with the DME 

provides the aircraft's angle relative to the runway, and an 

elevation antenna, located near the glidepath intercept point 

provides the aircraft with its elevation angle relative to the 

local horizon. 

Body mounted accelerometers and rate gyro measurements form 

the inputs into the dynamics, while MLS.,IMU and lAS comprise the 

system dynamics outputs. In the following, unsubscripted variables 

will imply coordinatization in the G-frame. The aircraft state 

will be given by x=[r,r,r,t,t,t ,¢,9, 1jJ ,wx,wy]' where x y z x y z 

(rx,ry,r z ) and (tx,ty,t z ) are the Ale position and velocity with 

respect to the runway frame, (¢,9,1jJ) are the vehicle Euler angles 

[4], and (wx,wy) are the horizontal wind components. Transforming 

the specific force [3] measured by the body mounted accelerometers 

into the G-frame, and integrating this expression along with the 

differential equations for the Euler angles over a sampling 

interval of T seconds [5], the following nonlinear discrete-time 

stochastic difference equation describing the aircraft dynamics are 

obtained: 

x(k+l)=Ax(k) + B(x(k» [u(k)-b (k)] + u + w(k) u g (2.1) 
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A 

where the six dimensional vectors u and bu are composed of 

accelerometer and rate gyro measurements, and their associated 

biases, respectively. u g = [0,0, T2g/2,0,0,T9,0,0,0,0,0]' where g 

is the earth's gravitational constant. The vector ug represents 

the incremental effect of the earth's constant gravitational force 

on the system state. The matrices A and B are defined by 

I T I 0 0 T2/2 TGB(x(k» 0 

0 I 0 0 T TGB(x(k» 0 
= S(x(k) == ·0 0 I 0 0 TTERex(k) ) (2.2) 

0 0 0 eA\vT o : 0 

AW is the 2x2 system matrix associated with the wind dynamics. The 

3x3 matrix TGB is the transformation from the body axes into the G 

frame [4] given by: 

[

i cSclJ; 

c8 slJ;. 

-s8 

s·<t>s8clJ;-c¢slJ; 

s¢s8sljJ+c¢cljJ 

s¢c8 

. c¢seClJ;+S¢Sj1lJ 

c<pses~/-s<pc\jJ 

c¢c9 (2.3) 

where ¢,9,ljJare the Euler angles and c,s, and t are abbreviations 

for cosine, sine and tangent functions, respectively. TER is the 

3x3 matrix relating the body rates to the Euler angles [4] defined 

by: 
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I Q 

TER [g tes¢ tec~ ] = c<p -s<p 
s¢sce c¢sc8 

(2.4) 

The variance, Q, of the white process noise, w (k) , is given by 

3 -r2 -r 
TGB~aTGB 

, 
TGBVaTGB 

, 
0 0 

3" 2" 

2 -r 
TGBVaTGB 

I 
'tTGBVaTGB 

I 0 0 (2.5) 1: = 
0 -rTERVrgTER 

I 0 0 

0 0 0 [:AwSflweA 'wSds 

where V and V are the measurement. noise variances for the a rg 

accelerometers and rate gyros, and Qw is the process noise variance 

associated with the wind dynamics. 

Note that the system matrix A is constant. However, both the 

process noise variance, Q(k), and the system input matrix, B, is 

state dependent due to the nonlinear state dependent transformation 

TGB and TER • Now let us consider the measurement equations for the 

system described by eqs. 2.1-2.5. Let (xM'YM,zM) and (xE'YE,zE) be 

the azimuth and elevation antenna locations in the runway frame. 

Then, for the MLS range (y rn), azimuth (Yaz ) , and elevation (Ye~) 

measurements are defined by: 

Yrn = r az + b + v rn rn 

- 15 -
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(2.7) 

(2.8) 

where (brn,baz,be~) and (vrn,vaz,ve~) are biases and measurement 

noises associated with the MLS and r ,r are the aircraft range az e,R, 

from the azimuth and elevation antennas given by: 

r az = - / (r -x ) 2+ (r -y ) 2 + (r -z ) 2 (2.9) V xM y M z M 

Now consider the air data computer (ADC) outputs. In general, 

the ADC would provide indicated airspeed, angle of attack and 

sideslip angle. In our problem, sideslip measurement is not 

available. In the software provided by NASA, the airspeed 

measurement is converted into two pseudo horizontal wind 

measurements by assuming zero angle of attack, sideslip and pitch. 

While the assumptions on the angle of attack and pi tch can be 

relaxed, we will not use the same approach due to the following 

reasons. First, the pseudo wind measurement noises are correlated 

and state dependent. Secondly, the pseudo wind measurement 

failures would be dependent on each other, resulting in a complex 

failure detection scheme. 

Assuming a zero angle of attack, the airspeed indicator 

output, Ysp' would then be a noisy version of the aircraft velocity 

with respect to the atmosphere given by: 
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(2.11 ) 

where (wx,wy) are the horizontal wind components and bsp and vsp 

are the lAS normal operating bias and white measurement noise. If 

the angle of attack measurement is available, then eq. (2.11) would 

be appropriately modified. 

The IMU platform provides the Euler angle outputs. These roll 

(y¢), pitch (Ye)' and yaw (y~) angle measurements are modelled via 

where 

y ¢ = ¢ + bcj + v rj 

Ye = 9 + be + ve 

y~ = ~ + b~ + v~ 

(2 ... 1.2) 

(2.13) 

(2.14) 

are the biases and white 

measurement noises associated with platform outputs. Defining.the 

measurement vector, yl=[YrnYazyeQ,YspY¢YeY~] I, the system dynamics 

output becomes 

y(k+l) = h(x(k+1» + by + v(k+l) (2.15 ) 

sensor bias vector defined by b l = 
Y 

where by is the output 

[b b b nb b~beb",l I and rn az eN sp l" 'I' 
v is the measurement noise vector defined 

by Vi = [vrnvazveR.vspv¢vev~] I. The nonlinear measurement function 

hex) is defined by eqs. 2.6-2.14. In the next section, the no-fail 

filter which estimates the state variables and the normal operating 

biases of the stochastic nonlinear dynamic system described above 

will be discussed. 
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2.3 No-Fail Filter 

The no-fail filter, to be described in this section, is an 

extended Kalman filter which estimates the aircraft runway position 

and velocity attitude and horizontal winds along with the normal 

operating biases of its inputs and measurements. The estimator 

uses either RSDIMU body rates, or a set of body mounted 

accelerometer and rate gyro measurements as its inputs as discussed 

in the previous section. In the case of replicated inputs, 

redundant accelerometer and rate gyro sensors are kept as standby 

equipment~ MLS range, azimuth and elevation sensors and the TAS 

provide the measurements into the filter. If desired, IMU platform 

outputs, or RSDIMU computed attitudes, can also be included in the 

measurement set. For the case of hardware redundant measurements, 

~he no-fail filter uses an average of the replicated sensor outputs 

as its measurement. In this way, filter size is kept to a minimum, 

without loss of generality. The no-fail filter also estimates the 

normal operating biases of any specified subset of the sensor 

complement. 

The possibility of using one of the two filters NASA supplied 

for the no-fail filter was investigated. Of these filters, the 

first, a set. of three decoupled complementary .filters, was 

discarded because: 1) filter performance under a subsistent MLS 

measurement dropout was severely degraded due to the way the pseudo 
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MLSmeasurements were computed, and 2} any sensor failure resulted 

in coupling the three complementary filters together. It was also 

decided not to use the second filter which was a Kalman filter 

based on the approximate error dynamics arising from the aircraft 

point mass equations of motion. This decision was due to the 

complexity involved in deriving the equations for the propagation 

of sensor errors through the Kalman filter-navigation structure 

utilized. 

In the process of obtaining the EKF used in our study, we have 

extended the separate bias estimation algorithms for linear systems 

to nonlinear systems via the extended Kalman filter framework. Our 

extension yields a numerical decomposition procedure for obtaining 

the extended Kalman filter gains. At each sampling instant, the 

algorithm sequentially computes: l} a bias-free gain: 2} bias 

correction matrix: 3} bias gain: and 4} correction to the bias-free 

gain. Background material on separate bias estimation algorithms 

can be found in Appendix B. 

To understand the operation of the no-fail filter, a signal 

flow diagram is shown in Figure 3. The filter can be sectioned 

into two portions, each of which resembles a linear discrete Kalman 

filter, except for the nonlinear evaluations of Band h, and the 

manner in which Kx and Kb will be determined. The lower portion of 

the diagram can be viewed as a normal-operating bias filter. Its 
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Figure 3. No-Fail Filter Block Diagram 
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input is the residual sequence r(k+l) from the upper portion, and 

its outputs are the estimates by(k+l) and bu (k+l). The upper 

portion, labelled "bias-free" filter, accepts u(k) and ug as its 

inputs (where ug is the incremental effect of earth gravity on the 

filter state), and y(k+l) as its measurement vector. The output of 

the "bias-free" filter is the residual sequence r (k+l), and the 

state estimate, x(k+l). While the diagram clearly shows the 

conceptual decoupling of the "bias-free" and bias filters, it also 

exposes the direct coupling that exists between the two portions. 

For example, notice how the input and output bias estimates feed 

back to effect the state estimator, and how the current value of 

the propagated state estimate, x(k+l/k), affects the residual 

sequence (and therefore the bias estimator) through the nonlinear 

evaluation of h(.). Not shown in the block diagram is the implicit 

functional dependence of the Kalman gains Kx,Kb on several 

quantities to be defined shortly. To implement this filter one 

need only define the functional form of B(.) and h(.) along with an 

algorithm for determining the Kalman filter gains. 

The computational aspects of the EKF algorithm will now be 

derived for the system dynamics described by eqs. 2.1-2.15. First 

combine the input and output bias vectors of the previous section 

to form a composite bias vector b as b'=[b',b']. The system state u y 

and bias initial conditions are assumed to be zero mean Gaussian 
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random variables with variances Px(O) and Pb(O), respectively. In 

addition, it is assumed that the measurement noise {v(k) ,k=1,2, ••• } 

is a zero mean, white Gaussian sequence with variance R(k). 

Furthermore, the plant state and bias initial conditions, 

measurement and process noise sequences are all assumed to be 

mutually uncorrelated. In, Appendix B, it is shown that the EKF* 

equations for the nonlinear system dynamics described by eqs. 

2.1-2.15 will be given by 

x(k+l)=Ax(k)+B(x(k»u(k)+u g+K(k+1,x(k+l/k»r(k+l) (2.16) 

b(k+l)=b(k)+K b (k+1,x(k+1/k»r(k+1) (2.17) 

where the innovations sequence of the no-fail filter, r(k+l), is 

given by: 

'" "-
r(k+l) = y(k+l) - h(x(k+l/k» - Db(k) (2.l7a) 

and the bias compensated input vector, u(k), is given by: 

u(k) = u(k) - Bbb(k) (2.l7b) 

Note that Db (k) = 
matr ices are defined as D 

and Bbb(k)= bu(k); therefore, these 

= [0 I], Bb = [I 0] if all input and 

output biases are estimated. The filter gain partition, Kx' is 

defined by: 

* Reference [6] contains the derivation for the case when the state 
transition matrix is also nonlinear. 
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A A A A 

KX(k+l,x(k+l/k» =KO(k+l,x(k+l/k» + V(k+l,x(k+l/k) ) ~ (k+l,x (k+l/k) ) (2.17c) 

~ ~ ~ 

and Ko(k+l,x(k+l/k»,V(k+l,x(k+l,k» and Kb(k+l,x(k+l/k» are 

computed sequentially using the linearized quantities: 

~ 

a B(x(k) )U(k)i ~ ~ 
ax . x(k) ,u(k) 

(2.18) F(x(k) ,u(k» = A + 

H(x(k+l/k) = ah(X(k+l»1 ~ ax- x (k+l/k) 
(2.19) 

The expressions for the above partials are given in Appendix A. 

Using the terminology associated with the linear case, the 

bias-free filter gain will then be computed by: 

KO(k+l,x(k+l/k» = Po(k+l/k) HI (x(k+l/k) [H(x(k+l/k) 

Po(k+l/k)H ' (;(k+l/k)+R(k+l)]-l (2.20) 

and the bias-free prediction error covariance will be given by 

" " """ Po(k+l/k)=F(x(k),u(k) )Po(k/k)F ' (x(k)u(k» +Q(x(k) ,k) (2.21) 

where eq.(2.21) is initialized with Po(O/O)=Px(O) and the bias-free 

filtering error covariance will be computed by 

~ ~ 

P (k+l/k+l)=[I-K (k+l,x(k+l/k»H(x(k+l/k»]P (k+l/k) o 0 0 
~ ~ 

[I-KO(k+l,x(k+l/k»H(X(k+l/k)] I 
~ ~ 

+Ko(k+l,x(k+l/k»R(k+l)K~(k+l,x(k+l/k» (2.22) 
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Note, the bias-free filter gain and the prediction error 

covariance are computed using H evaluated at x(k+l/k) and F 

evalua ted at x (k) as opposed to the linear case where one would 

evaluate them about the bias-free estimates. 

The bias-correction matrix V is computed recursively as 

V(k+l,x(k+l/k»=[I-KO(k+l,x(k+l/k»H(x(k+l/k»]F(x(k) ,u(k» 
" V (k, x (k/k -1) ) 

+B(x(k) )-Ko(k+l,x(k+l/k) [H(x(k+l/k) )B(x(k) )+D] (2.23) 

where the matrix C is defined by 

C (k+l, x (k+l/k) ) =H (x (k+l/k [F (x (k),u (k) )V (k,x (k/k-l) ) +B (x (k) ) ] +D (2. 24) 

The bias filter gain is expressed as 

Kb(k+l,;(k+l/k»=Pb(k+l/k+l) [H(;(k+l/k»V(k,;(k/k-l»+D] 'R(k+l)-1(2.25) 

The bias filter error covariance, Pb , can be computed recursively 

by propagating the information matrix as 

where 
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The state estimation error covariance Px(k+l/k), bias estimation 

error covariance Pb(k+l/k), and cross covariance of state and bias 

Pxb(k+l/k) together define the prediction error covariance for the 

composite no-fail filter. They are defined by [7],[14]: 

Px(k+l/k)=Po(k+l/k)+[F(x(k) ,u(k»V(k,x(k/k-l»+B(x(k»]Pb(k) 
,..,.. ,.. ,... 

[F(x(k) ,u(k) )V(k,x(k/k-l) )+B(x(k»] I (2.27) 

Pxb(k+l/k)=[F(X(k) ,u(k) )V(k,x(k/k-l) )+B(x(k» ]Pb(k) (2.28) 

Pb (k+l/k) =P b (k) (2.29) 

where P (k+l/k) is the prediction error covariance associated' with o 
the bias-free computations g.iven by eq. (2.22), the bias correction 

matrix V is defined by eq. (2.23), and the bias error covariance is 

computed using eq. (2.26). 

Figure 4 summarizes the computational operations involved in 

this realization of the fail-free filter. The computational 

sequence given above for obtaining the filter gains provides a 

numerical decomposition for the extended Kalman filter gain 

computations and has the following advantages. First, numerical 

accuracy will be improved due to the lower order matrices involved 

in the numerical decomposition. Moreover, finite variance for the 

plant state initial conditions and infinite uncertainty in the a 

priori bias estimates can be handled easily within this framework. 
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In addition, the flexibility introduced by the new filter structure 

can be used to meet other desired design goals. For instance, 

bias-free and bias gain computations can be performed at different 

speeds to reduce computational costs. 

In the next section, the operation of the detectors, which are 

driven by the expanded innovations of the fail-free filter 

described above, will be discussed. 

2.4 Detector Implementation 

In this section, the blocks in Figure 1 labeled, "residual 

computation" and "detectors" will be examined in detail. From an 

input-output point of view it is seen, from Figure 1, that the 

residual computation block receives as inputs, the "raw" sensor 

measurements (replicated) and the "no-fail" filter's best estimate 

of the (unreplica ted) measurements. It gives as its output an 

expanded residual and inverse of the innovations covariance for 

these expanded residuals. * These expanded residuals, in turn, 

drive a bank of low order detectors, where each detector delivers a 

failure corrected residual to the likelihood ratio computers. The 

function of a detector therefore is to track the occurrence and 

* Remember that the no-fail filter receives only the averaged 
measurements; therefore, the residuals for the individual sensors 
have to be further computed in order to be able to distinguish 
failures in like sensors. 
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level of a sensor failure and compensate the residual sequence of 

the no-fail filter such that its effects are removed from the 

residuals. 

The detectors to be defined in this section will be 

conditioned on the occurrence of a single sensor failure. 

Essentially, they estimate the level of a bias jump in a sensor 

output, which is hypothesized to occur at a time kO Furthermore, 

detectors operate over a "window" of the expanded residuals, with 

the initial failure level estimates and uncertainties reset at the 

beginning of each residual window. The start of a new window 

determines the hypothesized time of failure kO' and the maximum 

length of the window determines the time to wait before initiating 

a new hypothesis. In the case considered (single sensor failures) , 

the total number of detectors is equal to the sum of the number of 

input sensors and the number of output (replicated ones included) 

sensors. For instance, in the case of dual sensor failure 

redundancy there would be twenty of these first order detectors: 

three for the body mounted accelerometers, three for the body 

mounted rate gyros, six for the MLS measurements, two for the lAS 

outputs, and six for the IMU measurements. 

In discussing these issues, it is convenient to define sensor 

type to be the generic type of the sensor measurement of interest, 

such as MLS azimuth, or body p gyro output, whereas sensor 
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replication refers to the particular replication of interest (i.e., 

second replication of MLS range). The replication will be noted by 
1 a superscript in the text (i.e., Yaz = first replication of MLS 

azimuth) • 

The residual computation block of Figure 1 has a 

straightforward function~ it serves to generate the residual 

sequence and innovations covariance that would have emerged trom 

the no-fail filter if the individual sensor measurements had been 

presented to it, rather than the averaged measurements. The 

residuals are formed as follows (eliminating the time inde~ for 

clar ity) : 

defining 

rl 
az 
2 

r az 

= 

= 

1 
Yaz 

2 
Yaz 

1 1 
r

lP 
= Y

lP 
2 2 

r = Y 
lP lP 

'" 
Yaz 
'" - Yaz 

- y 
"lP 

- Y 
lP 

the expanded innovations can be written as: 

1 A 1.· " " 
r (k+l) = [Y -.Y] = .[Ylk+l)~~(X(k+l/k)-Db (k)] o 2 " 2 ... . " "Y 

Y -Y . -. Y(k+l)-h(x(k+l/k)-Dbv(k) 
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The innovations variance of the expanded, R{k+l}, is found by 

straightforward substitutions to eq. {2.26a} as: 

R(k+l} = [H {k+l} D]' [P (k+l/k) P b (k+l/k}l [H (k+l) DD]; [RO ROJ 
H(k+l) D ?~b(k+l/ki P:(k+l/k) JH(k+l) 

_ [H(k+l) 01 
[

p (k+l/k) 

P~b(k+lk) 
P xb (k+l/k)] 
Pb(k+l/k) 

(2.34) 

[H(k+l) i5J' + "i~(l(+l). 

(2.34a) 

where R is the measurement noise covar iance for each set of 

replica ted measurements. Eqs. 2.30-2.34 completely define the 

function of the residua~ computation block. 

The function of the detectors is clearly two-fold. First, the 

detectors must keep track of how each hypothesized sensor failure, 

occurr ing at time ko ' propagates through the' system dynamics to 

effect the expanded residual sequence of the no-fail filter, as 

well as track its direct effects on the residuals. Secondly, it 

must estimate the level of the sensor failure so as to eliminate 

its effect on the residuals. The· ensuing outline for the detectors 

will define these functions in that order. A typical (say, i'th) 

input sensor detector estimates a postulated bias jump in the i'th 

input at time ko so that the i'th input sensor detector design is 

based on the following modification of the system dynamics given by 

eq. (2.l) : 
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x(k+l) = Ax(k)+B(x(k» [u(k)-b ]+B. (x(k) )m. (k)+u +w(k) (2.35) u 1 1 g 

m. (k+l)=m. (k) with m. (k )=m. and m
1
. (k)=O for k<k o (2.36) 

1 1 1. 0 1 

where Bi(x(k» is the i'th column of the input matrix B(x(k» and 

mi is the failed bias jump magnitude of the i' th sensor to be 

estimated. On the other hand, the detector for the i'th output 

sensor failure is based on the following modification of the 

measurement equation given by eq. (2.15): 

y(k+l)=h(x(k+l»+b +D.m.(k)+v(k+l) y 1. 1. 
(2.37) 

where mi is the failed bias jump magnitude for the i'th output 

sensor and Di is a column vector with unity entry at the i'th row 

and zeroes elsewhere. It is assumed that the failed bias jump 

magnitudes are unknown nonrandom variables. As mentioned 

previously, the residuals of the no-fail filter serve as 

measurements to the detectors. In Appendix C, it is shown, under 

suitable assumptions, that the residual of the no-fail filter, as 

defined by eq. (2.17a) in the case of i'th failure hypothesis will 

be given by: 

(2.39) 
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where r (k) is the innovations of the no-fail filter under the 

no-fail hypothesis. Therefore, r (k) is a zero mean white noise 

sequence with variance R(k+l) defined by eq. (2.34). Referring 

back to eq. (2.39), r(k+l) would then be the measurement noise in 

the i'th detector model and the measurement matrix C.(k+l,x(k+l/k» 
1 

would be given by (see Appendix C for the derivation) : 

B(:(kl] 
(2.40) 

Notice, C. consists of two portions: the left most matrix product 
1 

shows how the failure propagates through the dynamics to affec1: 1:11_ 

residuals; the middle product depicts the direct effects of input 

failures, and the right most matrix illustrates the direct effect 

of output failures. Furthermore, Bi{x(k» is zero in the case of 

output sensor failures and, Di is zero in the case of input sensor 

failures. The matrix Fi(x(k) ,u(k» is defined by: 

F.(x(k),u(k» =F(x(k),u(k»-
1 

aBo (x(k) )m'l A (2.41) 
1 1 

d x(k),m.(k) 
x .1 

where F(x(k) ,u(k» is given by eq. (2.16). Note, for output 

failures F i = F since those failures do not enter through :. the 

input weighting matrix B. 
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The matrix[~~~ is analogous to the bias correction matrix 

given by eq. (2.23) and represents the propagation of a sensor 

failure, occurring at time ko' through the no-fail filter dynamics. 

It is computed using the following recursive relationship: 

[V.(k+l~ J.x _ 

Vib(k+l) -,-
(2.42) 

The state dependency of var iables above has been suppressed for 

ease of presentation. The gains Kx and Kb are given by eqs. (2.l7c) 

and (2.25). Note that eq. (2.42) is similar to the bias correction 

matrix recursive relation given by eq. (2.23). In fact, the formula 

above can be obtained by replacing Ko by Kx ' H by [H D], F by 

[~i ~1 ' B by Bi' and D by Di in eq. (2.23). This is to be expected 

since [~i~ represents·the effect of a sensor bias failure on the 

composite no-fail filter and V(k+l) represents the effect of a 

normal operating bias on the bias free portion of the fail free 

filter. The postulated sensor failure's effect on both state and 

normal operating bias estimates are thus computed •. 

Summarizing, the i'th detector design is based on the 

observation model described by eq. (2.39) and (2.40) and constant 
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failure dynamics. The development up to this point has assumed the 

value of mi is known. In reality, mi is nonrandom, but unknown. 

Therefore, one must continuously estimate its value. 

The i'th detector estimate, mi{k), of the i'th sensor failure 

jump, mi{k), can be computed by the following first order linear 

Kalman filter for the case of output sensor failures, and by a 

first order approximate nonlinear filter in the case of input 

sensor failures: 

mi (k+l) =m i (k) +G i (k+l,x(k+l/k) ) [r (k+l) -Ci (k+l,x(k+l/k) ) mi (k)] (2.43) 

where the detector estimate mi{k) is initialized at the start of a 
A 

residual window with mi(ko)=O. Figure 5 shows the simple operation 

of this filter. The detector gain is computed by: 

G. (k+l,;{k+1/k» =P. (k+l/k+l) C. ' (k+l,; (k+l/k) ) R- l (k+l) (2.44) 
111 

where P.{k+l/k+l) is the error covariance of the i'th detector bias 
1 

jump estimate. The information matrix, Pi-l(k/k), of the i'th 

detector is propagated recursively through: 

P.-l {k+l/k+l)=P.-1 (k/k)+C.' {k+l,;(k+1/k»R-l (k+l)C. (k+l,;{k+1/k» (2.45) 
1 1 1 1 

with 

-1 
P. {k /k )=0 
100 
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ro(k+1) .. rj (k+1) " +~ ~j(k+1) 
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I: .- Gj(k+1) , I: 
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" ~ 
DELAY 

" 
~j(k) 

Cj(k+1) 
~ 

Figure 5. Block· Diagram for i'th Detector 

That is, the failure bias jump at time ko is assumed to be a zero 

mean random var iable with infinite covar iance (or equivalently, 

zero information). In the case of output sensor failures, the 

detector implementation descr ibed by eqs. (2.43) - (2. 45) above is an 

exact linear Kalman filter for the hypothesized failure model 

specified by eqs. (2.37) - (2. 39) • In the case of input sensor 

failures, the detector becomes an approximate nonlinear filter due 
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.. 

to the dependence of Fi in eq. (2.41) on the failure bias magnitude, 

m. , where 
1 

is used in the evaluation of Fi(x(k),u(k». 

Figure 6 summarizes the computational operations required to 

implement each detector, and clearly shows the function of the 

detectors. 

In summary, the detector block consists of a bank of first 

order estimators driven by the expanded innovations of the no-fail 

filter. Each detector corresponds to a different sensor failure 

hypothesis, and, corresponding to each detector, there is an 

associated residual data window length. The bias jump magnitude 

for a given sensor failure, hypothesized to happen at the start of 

the residual window, is estimated by the detector corresponding to 

that sensor. The residuals of the detectors along with the 

residual of the no-fail filter are used in the decision block which 

is discussed in the next section. 

2.5 Decision Logic 

As seen in Figure 2, the failure compensated residuals from 

each of the sensor failure detectors along with the expanded 

innovations sequence of the no-fail filter are used in deciding the 

most likely failure mode. To arr ive at this decision, M-ary 

hypothesis testing, based on a decision residual window, is 

utilized. The problem is viewed as follows: Given M sensor 

failure models, formulate the following M+1 hypotheses: 
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H . o· 

(2.46) 

,i=1,2, ••• ,M 

where r o(k) is the actual expanded innovation sequence of the 

no-fail filter, r (k) is the innovations sequence of the no-fail 

filter under no-fail conditions, and ~ is the length of the 

decision residual data window on which the M-ary hypothesis test is 

based. Recall from the previous section, that r(k) is a zero mean 

white noise sequence with variance R(k) defined by eq. (2.34). The 

length of the decision residual window is, in general, different 

from the estimation residual data windows described in the previous 

section. In summary, an M-ary hypothesis test will be used to 

decide whether the no-fail filter is operating under no failures 

(hypothesis Ho)' or under the i'th sensor bias jump failure 

(hypothesis Ho). 
~ 

The M-ary hypothesis test chosen minimizes [20] the Bayes 

risk, S , given by: 

where 

c .. : 
1J 

PH 0: 
J 

M M. 

8=2:2: 
i=O j=O 

Coo PH 1 p (Y (K) I H 0 ) dY 
~J 0 Y J J 0 

~ 

cost of accepting Hi when Hj is true 

a priori probability of hypothesis Hj being true' 
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Y.: decision region in the observation space such that 
1 

hypothesis Hi is selected if Y(K) is in region Yi • 

Y(K): [r(kd) ,r(kd+l) , ••• ,r(K): kd<K<k d+9,,] observations (in 

our case, innovations sequence of the no-fail filter) on which 

the test is based. 

p(Y(K) \H j ): probability density of the no-fail filter 

residuals conditioned on the j'th hypothesis 

Bayes risk is a weighted cost of making incorrect decisions. As 

shown in [20], tha Bayes risk is minimized by choosing hypothesis 

Hj corresponding to the smallest of M+l possibleffi's 
M 

S . (r(K»= '" PH C .. P (Y(K) \H).) 
1 L...i.. 1) 

J=O ) 
i=O,l, ••• ,M 

defined by: 

(2.48) 

In our case, the conditional probability density above 

(assuming a Gaussian distribution) will be ~iven by: 

, ( K 
P (Y (K ) \H.) = II 

J k=k 
d (2.49) 

with Aj (r (K» defined by 
K 

\ (r (K» =P H. exp{ -1/2 L r j (k) ;-1 (k) r j (k) } 
) k=k 

d 

(2.50) 

where r j (k) is the j' th detector residual sequence (given in 

(2.43» defined by: 
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" " 
rj(k+l) =ro(k+l)-Cj(k+l,x(k+l/k»mj(k) (2.47) 

Since the denominator term in (2.49) is not Hi" or "j" dependent 

and positive, an equivalent decision would be to choose H. 
1. 

corresponding to the smallest 
M 

S1 (r (K» = L: 
j=O 

C .. .1\ • (r (K» 
1J J (2.52) 

1 
In computer implementation, I\. i l s are usually scaled bYAo so 

that they become likelihood ratios. If the costs associated with 

making wrong decisions are all equal and those of making correct 

decision are zero (i.e., Cij=l for iFj and Cii=O), then the optimal 

Bayesian decision would be to choose Hi corresponding to the 

smallest one of the M+l ai'S given by: 

K 

a i (r (K» = +1/2 2: 
k=k 

d 

--1 
r!{k) R {k)r.{k)-1nPH 11. 

1. 

(2.53) 

In this case the decision rule is equivalent to choosing hypothesis 

H. corresponding to the largest a posteriori probability: 
1 

M P (H. 1 Y (K » = 
1. 

l\.i(r(K» 

L .l\j (r (K) ) 

j=O 

(2.54) 

where p(HiIY(K» is the a posteriori probability that Hi is the 

true hypothesis conditioned on the residual window Y{K). 
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III. SIMULATION DESCRIPTION 

The performance of the filter-detector algorithm has been 

analyzed by using a six-degree-of-freedom simulation of the TCV 

Boeing 737 aircraft along with the dual fail-operational 

two-degree-of-freedom strapdown inertial measurement unit (RSDIMU) 

software model. These NASA supplied simulation computer programs 

were first converted from CDC FORTRAN Extended 4 into DEC 

FORTRAN-lO in order to run them on the BBN computer system. In 

single precision (36 bit), the aircraft simulation exhibited 

significant ground track, cross track and glideslope errors. The 

numerical problems were traced down to the algorithms used in 

computing waypoints and guidance parameters in earth centered 

inertial frame. The numerical inaccuracies were alleviated by 

converting the whole program into double precision (64 bit). The 

aircraft simulation and the RSDIMU programs were then integrated to 

permit the use of the RSDIMU as an aircraft sensor. Later, new 

sensor models were developed and appended into the simulation to 

provide more realistic normal operating errors. Finally, sensor 

failure models for increased bias, hardover, null, scale factor, 

ramp and increased noise type sensor malfunctions were assimilated 

into the software. 

In this chapter, the aircraft and sensor dynamics simulation 

model will be discussed. Section 3.1 contains a discussion of the 
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sensor models. Sensor failure models are discussed in Section 3.2. 

3.1 Sensor Models 

During the early phase of the contract, sensor models for the 

aircraft sensor complement were developed in order to provide 

realistic normal operating sensor errors. These models have been 

integrated into the NASA supplied TCV B-7~7 aircraft simulation. 

The generalized sensor models take in true values of measured 

variables from the aircraft simulation and put out sensor outputs 

which account for misalignment, measurement noise, bias drift, 

normal scale factor errors and limits. The model for the rate 

gyros is described below to outline the features of the modified 

sensor models. 

1. Ra te Gyro Misalignment: The true body rates (p,q,r) 

expressed in the orthogonal body axes are first transformed into 

the nonorthogonal measurement axes via a small angle transformation 

to account for rate gyro misalignments: 

[:: 1 [ ~xz 
-6 

6 1 yz zy 
= I -6 

-6 6 
lZX 

xy yx (3.1 ) 

where (Pm,qm' rm) are the body rates after the misalignment and 

(9xy,9yx,9xz,9zX,9yz,9ZY) are six small independent misalignment 

angles expressed in radians. In our simulation, the misalignment 

- 42 -



angles are randomized by specifying the expected standard deviation 

of the misalignment angles. For instance, rate gyro misalignment 

angles in the following simulation runs are randomized with 0.03 0
, 

as seen in Table I. 

2. Measurement Noise: The misaligned quantities are 

corrupted by zero mean white Gaussian noise 

Pn = Pm + ° p x vp 

qn = qm + ° x v (3.2) q q 

r - r + cr x v n m r r 

where (vp'vq,v r ) are zero mean white Gaussian sequences with unit 

variance and (0 p' 0q , ° r) are the standard deviation of the 

measurement noise in the sampled signal given by 

where 

° p 

° q 

° r 
- - -

= 

= 

= 

a ~ pyl:pqr 

a ;jf . 
q pqr 

(j ;c::: -
r· pqr 

(3.3) 

(o ,o ,o ) are the standard deviations of the measurement p q r 

noise. in the continuous (p,q,r) measurements and (fpqr ) is the 

associated sampling frequency. 

3. Bias Drift: The bias drift is associated with calibration 

errors and electronic components of a sensor package and is modeled 

by 
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01:0-
~ 

Table I. Normal Operating pensor Model Parameters 

Sensor Units Misalignment Angle Noise* Bias* Scale Factor 
Std. Dev. deg St.Dev. % 

~. 
Roll Rate Gyro deg/sec 0.03 .02 0.0 .01 

pitch Rate Gyro deg/sec 0.03 .02 0.0 .01 

Yaw Rate Gyro deg/sec 0.03 .02 0.0 .01 

Body Mounted 2 
Accelerometer m/sec 0.03 .01 0.1 .25 

Body Mounted 2 
Accelerometer m/sec 0.03 0.1 -0.05 .25 

Body Mounted 2 
Accelerometer m/sec 0.03 0.1 0.07 .25 

Airspeed 
Indicator m/sec -- -- -- 2 

MLS Azimuth deg -- .05 .037 --

MLS Elevation deg -- .05 .03 --

MLS Range m -- 4.57 30.5 --

IMU Roll 
Attitude deg -- 0.27 0.23 --

IMU Pitch 
Attitude deg -- 0.23 -0.19 --

IMU Yaw 
Attitude deg -- 0.23 0.15 --

--.-.----------~ ~-- -- -- - -

I 

I 

I 



Pb = P n + ° pb x v pb 

qb = qn + ° qb x v qb 

rb=rn+orbxvrb 

(3.4 ) 

where (Opb,Oqb,Orb) are the expected standard deviation of biases 

in the (p,q,r) measurements and (vpb,Vqb,vrb) are zero mean 

Gaussian random variables with unit variance. That is, the bias 

level will vary from one run to another, but stay constant during 

each run. On the other hand, the provisions for providing 

deterministic instead of random biases are also included in the 

program. 

4. Normal Scale Factor Error: Normal scale factor errors are 

simulated according to: 

Ps = (1. + • 01 x ° sp x v sp) x Pb 

qs = (1. + .01 x 0sq x Vsq x qb (3.S) 

r = (1. + .01 xO sr x vsr ) x rb s 

where (Osp,Osq,Osr) are the expected standard deviation of the 

scale factor errors in the (p,q,r) measurements. As before the 

Gaussian random variables (vsp,Vsq,Vsr) provide randomized scale 

factor errors. Similarly, deterministic scale factors can also be 

introduced in the program. As can be seen in Table I, rate gyro 

scale factor error standard deviation is 0.01%. 
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5. Limits: The computed quantities (ps,qs,r s ) are compared 

with the sensor limits and set to the appropriate limit when these 

thresholds are exceeded. 

The other sensor models are essentially similar. The 

parameter values used for the models are given in Table 1. The 

measurement noise of indicated airspeed (lAS) is multiplicative. 

MLS measurement· noises can be specified as either a white or 

time-correlated Gaussian sequence. MLS sensor models also simulate 

data dropout and filter errors associated with the digital scan 

mechanism of the microwave landing system. Further details on this 

model can be found in [lJ, [18J. 

Two inertial measurement unit models have also been included 

in the simulation. The first one, lMU, is a platform whose Euler 

angle outputs are utilized as measurements in the program. The 

second one, RSDlMU, is a redundant strapdown package consisting of 

four two-degree-of-freedom gyros and eight linear accelerometers in 

a semioctahedron configuration. The RSDlMU model simulates 

quantization errors in addition to additive noise, bias, scale 

factor errors. A detailed description of the RSDlMU model can be 

found in [2]. 

Sensor models were generalized to accommodate redundant sensor· 

configurations. All sensors can now be dual or triple redundant 
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wi th the exception of the RSDIMU which has its own internal 

hardware replication. The software has been written so that any 

selected baseline sensor configuration can be handled. 

3.2 Sensor Failure Models 

The following failure modes have been incorporated into the 

software for each sensor: 

1. Increased Bias Failure: For instance, in the case of roll 

rate bias failure, the normal operating bias of p rate gyro is 

bypassed at time of failure for p gyro bias and the standard 

deviation of the bias level is increased by 

a pb = KPFB x a pb ( 3 • 6 ) 

where KPFB is an integer to be specified. That is, each failure is 

specified by a time of failure and a ratio by which the failure's 

standard deviation exceeds the expected normal bias standard 

deviation. 

2. Hardover Failure: Hardover failures correspond to a 

completely nonoperational sensor status and they are modelled by 

setting the failed sensor output to its limit. For instance, q 

rate gyro hardover failure is simulated by setting the pitch rate 

gyro output to its positive or negative limit at time of failure. 

- 47 -



3. Null Failure: Null failures also correspond to an 

unusable sensor failure mode and they are modelled by zeroing out 

the failed sensor output at time of failure. 

4. Scale Factor Failure: Scale factor failures correspond to 

a severely degraded scale factor error. For instance, in the case 

of yaw rate gyro scale factor failure, the standard deviation of 

the expected scale factor error is increased to 

a sr = a x KRSF sr (3.7) 

at time of failure. The integer KRSF specifies the ratio by which 

the expected failure level exceeds the standard deviation of the 

normal scale factor error. 

5. Increased Noise Failure: These failures are introduced by 

increasing the sensor measurement noise at time of failure. For 

example, roll rate gyro noise failure is simulated by setting 

ap = KPFN x 0p (3.8) 

where KPFN is the specified noise failure level. 

6. Ramp Failure: Provisions for introducing ramp failures 

have also been inc 1uded. The modelling of these failures is 

similar to that of bias failures. 
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Any or all of the above failure modes can be superimposed on 

any of the sensor models detailed in the previous section. 

Currently, the time of failure is deterministic (user specified at 

run time) so that the performance of single simulation runs can be 

compared to one other. However, randomized specification of 

failure times will eventually be programmed so that Monte Carlo 

averaging of the results can be done in an automated fashion. 
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IV. DISCUSSION OF RESULTS 

In this chapter, estimation and failure detection performance 

of the developed aircraft sensor fault tolerant system will be 

discussed by examining some typical simulation runs. Section 4.1 

is concerned with aircraft state and bias estimation performance 

when no failures occur. Whereas Section 4.2 investigates the 

filter performance under failures. Additionally, Section 4.2 is 

concerned with failure detection performance. 

4.1 System Performance - No Failures 

The simulation runs start at the point of transition to MLS 

coverage. The no-fail filter described in Section 2.3 is used to 

estimate aircraft position, velocity, attitude, and horizontal 

winds. In these runs, the body mounted accelerometers and MLS 

range measurement were selected for inclusion in the bias 

estimator. Therefore, the no-fail filter also provides sensor bias 

estimates for the body mounted accelerometers and MLS range 

measurement. 

The six-degree-of-freedom simulation was run approximately 120 

seconds at 20 Hz. Figures 7 and 8 show the Ale ground track and 

bank angle profile. Body rate time histories for roll, pitch, and 

yaw are given in Figure 9. Altitude profile exhibits essentially a 

constant sink rate. These figures indicate the landing path and 

transient maneuvers encountered during approach. 
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Table II shows the values used for filter initialization. 

Initial uncertainty variances, Px(O) and Pb(O) are both diagonal. 

Accelerometer biases are denoted by (b ,b ,b). Actual measurement x y z 

bias levels are given in Table I. Table III contains the 

measurement noise standard deviation values used in the filter 

computations. Actual measurement signals generated in the 

simulation, however, also contain misalignment, normal operating 

bias, and scale factor errors depicted in Table I. Moreover, 

actual lAS noise is multiplicative. All measurement noises are 

uncorrelated with each other. The horizontal wind dynamics used in 

the filter were first order filtered noise with a time constant of 

1000 seconds. 

Figures 10 and 11 show the state estimation performance limit 

of the baseline EKF in which all sensor biases are set to zero. 

That is, position and attitude errors in Figures 10 and 11 are the 

lower limits which can be attained (for the particular run) with 

the selected normal operating error parameters (misalignment, 

noise, scale factor, etc.) even if the sensor biases can be 

perfectly identified. The detectors were also run with this 

baseline EKF and there were no false alarms. 

Notice that although both position and attitude estimation 

errors are quite low, attitude errors display regular, nonrandom 

patterns. These errors can be traced to integration errors in the 
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Table II. Filter Initialization 

Variable Init. Est. Error Init. Uncert. (St.Dev.) units 

r -21. 34 36.58 m 
x 

r 13.72 36.58 m 
y 

r - 4.57 27.43 m z 

· 0.61 2.29 m/sec r 
x 

· 1.52 4.57 m/sec r 
y 

· 0.31 1.07 m/sec r -z 

~ 0.02 0.3 deg 

e - 0.11 0.3 deg 

lJ! - 0.2 0.64 deg 

w - 0.09 0.6 m/sec 
x 

w 0.2 0.6 m/sec 
y 

b 0.1 0.3 m/sec2 
x 

b 0.05 0.3 m/sec 2 -
Y 

b .07 0.3 m/sec 2 
z 

b 30.5 91. 44 m rn 

bcp 0.23 0.8 deg 

be - 0.19 0.8 deg 

b1jJ 0.15 2.4 deq 
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Table III. Filter Process and Measurement Noise Levels 

Measurement st. Dev. Un.i.ts 
--.-::-

x accelerometer 0.1 m/sec 2 

Y accelerometer 0.1 m/sec 2 

accelerometer 0.1 m/sec 2 z 

p rate gyro 0.02 deg/sec 

q rate gyro 0.02 deg/sec 

r rate gyro 0.02 deg/sec 

x wind 0.6 m/sec 

Y wind 0.3 m/sec 

Yaz 0.05 deg 

Ye'X. 0.05 deg 

., 4.57 m .l. rn 

Ysp 0.5 m/sec 

Y<f> .23 deg 

Ye .23 deg 

Y1jJ .23 deg 
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mechanization of the no-fail filter. This is due to the fact that 

the no-fail filter is integrating the body rates too slowly. In 

fact, if one compares Figures 9 and 11, it will be clear that the 

estimation errors are correlated with rate gyro transients. The 

position errors are less effected by this problem since the 

acceleration signals do not have sharp transients and because high 

quality MLS measurements are filtered into the position estimate. 

All of the simulation runs correspond to a dual redundant 

sensor configuration. As discussed in Section 2.4, there are 21 

possible sensor failure modes in this case since redundant input 

sensors (body mounted accelerometers and rate gyros) are kept as 

standby equipment. Table IV describes the 21 hypotheses 

corresponding to various sensor failures. 

In all of the following runs, the a priori probability of the 

no-fail hypothesis was set to 0.9999, while a priori probabilities 

for the remaining hypotheses, corresponding to various sensor 

failures, were all equal to each other. The Bayesian costs in 

Section 2.4 were selected such that there were no costs associated 

with making correct decisions and costs of making incorrect 

decisions were the same. Therefore, the chosen hypothesis 

maximizes the a posteriori probability. 
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Table IV. Failure Modes for Dual Redundant Sensor Configuration 

Hypothesis Failed Sensor 

HI a accelerometer 
x 

H2 a accelerometer y 
H3 a z accelerometer 

H4 p rate gyro 

HS q rate gyro 

H6 r rate gyro 

H7 first MLS azimuth 

HS first MLS elevation 

H9 first MLS range 

HIO first lAS 

HII first IMU roll attitude 

Hl2 first IMU pitch attitude 

Hl3 first IMU yaw attitude 

Hl4 second MLS azimuth 

HIS second MLS elevation 

Hl6 second MLS range 

Hl7 second lAS 

HIS second IMU roll attitude 

Hl9 second IMU pitch attitude 

H2O second IMU yaw attitude 

H21 none that are used by the no-fail filter 
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The next set of Figures, 12-14, show the state estimation and 

the normal operating bias identification performance of the no-fail 

filter. As expected, the normal operating biases degrade the 

estimation performance of the no-fail filter. It is also seen that 

AIC velocity and position estimates improve as the accelerometer 

bias estimates converge. Furthermore, the steady-state position 

errors can be directly attributable to the azimuth and elevation 

bias levels. However, these errors will decrease as the range 

diminishes, thereby eliminating any need to estimate small biases 

on MLS azimuth and elevation. Note that the only coupling that 

exists between the Euler angles and the runway position and 

velocity is through the input partials defined in eq. (2.18). 

Furthermore, the strongest coupling is to the heading angle. This 

coupling produces a slightly larger reduction in the heading angle 

uncertainty compared to bank and pitch angle var iances. The 

simulation results also suggest that the Euler angles can be 

computed separately without substantially lowering estimation 

performance, thus minimizing overall filter complexity. 

Convergence performance of the accelerometer bias estimates 

can be seen in Figure 14. Relatively slower rate of convergence 

for the z-accelerometer bias estimate compared to the other two is 

due to the fact that the lAS essentially measures the velocity 

along the x and y axes. Therefore, z-accelerometer input needs to 
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be integrated twice for a measurement (mostly MLS elevation) 

comparison. The good convergence performance of the accelerometer 

bias estimates are typical of the results from other runs with 

different bias levels. The lower bound of the uncertainty in bias 

estimates (not shown) compares favorably to the actual estimation 

error. 

Further note that the accelerometer bias estimates need not 

exactly converge to the values given in Table I due to misalignment 

and scale factor parameters. For instance, the z-acceleration is 

nearly constant in these runs so that the scale factor error 

associated with the z-accelerometer produces a different bias level 

for the z-accelerometer. Depending on the misalignment angles, the 

z-acceleration would also produce an additional constant bias in 

the x and y accelerometers. It was also observed that horizontal 

wind estimation performance strongly effects the settling time for 

the accelerometer bias estimates. 

The MLS range bias estimation error is depicted in Figure 14. 

The relatively sharp initial change in the estimate compared to the 

input bias estimates was typical of the other runs in which 

elevation and azimuth biases were also estimated. This behavior is 

due to the fact that there is less filtering of the measurement 

residuals in obtaining the output bias estimates. 
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From our exper ience with several runs using different bias 

levels, initial conditions, and initial uncertainties, we have 

found the numerical stability of the no-fail EKF implementation to 

be as good as the L-D factorization formulation [21] of the EKF for 

the augmented system. The overall performance of the filter is 

typical of the EKF applications with the largest estimation errors 

occurring during startup and abrupt dynamic changes (in our case, 

during Ale maneuvers in which the linearity assumptions are most 

severely violated). The following tradeoffs are involved in the 

identification of bias parameters: 

- Rate of convergence for bias parameter estimates can be 

accelerated by increasing the initial bias uncertainties at 

the expense of large transients. 

Too large a value for the initial bias uncertainty, 

especially for the input biases, can severely degrade 

estimation performance by producing large bias filter 

gains. A good rule of thumb is to use approximately 3-5 

times the standard deviation of the expected bias level. 

4.2 System Performance - Failures 

In this section, some typical filter-detector simulation runs 

will be presented to analyze the failure detection capability of 

the proposed sensor fault tolerant system. Figures 15-17 show the 

- 65 -



ultimate failure detection performance of the system. In these 

runs, the baseline EKF (with all sensor biases set to zero) was 

used to drive the detectors. As can be seen from Figures 15 and 

16, the state estimation performance under failures is essentially 

the same as the baseline under no failures with slight expected 

degradation at the failure times. 

In these runs, a sequence of IMU roll, MLS az imu th and 

accelerometer failures are simulated. For the preliminary results, 

only bias failures were considered. First IMU roll measurement is 

failed with a bias jump of 1
0 

at 78 seconds. As seen from the 

first graph in Figure 17, hypothesis 21 (H 21 ) is selected by the 

decision logic up to 75.15 seconds. Recall (from Table IV) that 

H2l signifies the decision that none of the measurements currently 

used by the no-fail filter have failed. At 78.15 seconds, first 

IMU roll attitude failure is identified by selecting hypothesis 

Hll • The. faulty sensor (in this case, the entire first IMU) is 

rejected so that the no-fail filter starts using the attitude 

measurements from the second IMU instead of the average of the two 

IMU's. After the removal of the failed instrument, the decision 

logic reverts to correctly selecting H2l • Second MLS azimuth 

measurement fails with a bias jump of .40 at 90 seconds. This 

failure is detected at 90.25 seconds as indicated by the selection 

of hypothesis 14. Thus, second MLS azimuth sensor is removed from 
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the measurement set and the decision logic returns to correctly 

selecting H21 • Finally, the first x-accelerometer fails with a 

bias jump of Im/sec 2 at 110 seconds. This failure is detected at 

116.85 seconds as indica ted by the selection of HI' At this 

instant, the first x-accelerometer measurement is rejected and 

replaced by the second x-accelerometer in the no-fail filter so 

that the decision logic reverts to correctly selecting H21 after 

the replacement of the faulty sensor. 

Figure 17 also shows the a poster ior i probabilities for 

hypotheses HI4 ,HII , HI and H21 - These probability time histories 

demonstrate that our decision logic is essentially equivalent to 

choosing the hypothesis with the largest posteriori probability. 

For instance, the posteriori probability for Hll corresponding to 

the second IMU roll attitude failure spikes to approximately 0.95 

at 78.15 seconds while the no-fail posteriori probability 

simultaneously decreases to 0.05. 

As can be seen from Figure 17, the detection of output sensor 

failures is much faster than that of input sensor failures. This 

is to be expected since the input sensor failures have to propagate 

through the no-fail filter dynamics in order to get detected. 

Furthermore, soft input failures would naturally take more time for· 

detection compared to hard input failures. 
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The transient effects of filter-detector reconfiguration can 

also be seen in Figures 15-16. Notice at 117 seconds when an x 

accelerometer failure is detected, the errors oscillate and are 

driven back to near zero levels very quickly. Since by design, 

failures corrupt the no-fail filter estimates, it is important that 

the filter is able to recover from the integrated effects of these 

failures once they have been detected. 

The next set of Figures, 18-20, show the failure detection 

performance of the sensor fault tolerant system with the normal 

operating bias fil.ter: in operation. In these- runs, all sensor 

biases are present (see Table I). However, only MLS range and 

accelerometer biases are selected for identification. Again, the 

state estimation performance is similar to the case obtained 

without failures as seen in Figures 18-19. The same sequence of 

IMU roll, MLS azimuth and x-accelerometer failures have been 

simulated. Inclusion of the bias filter does not affect the 

detection of IMU roll and MLS azimuth failures. As can be seen in 

Figure 21, these failures are identified at the same instants as 

before. However, the soft failure in the x-accelerometer did not 

get identified during the course of the simulation. 

As seen in Figure 21, the inclusion of the bias filter does 

increase the false alarm rate due to these phenomena: First, there 

is an interdependence between the normal operating bias filter and 
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those detectors for sensors which are selected for normal operating 

bias identification. If the normal operating biases are estimated 

poorly, then the bias estimation error looks like a failure to the 

corresponding detector. Second, the effect of ignor ing normal 

operating biases essentially produces a similar effect. These 

issues will be investigated during the second year of the study. 

In our runs, we have used a priori probability of 0.9999 for the 

hypothesis Ho to compensate for the expected degradation in the 

no-fail filter due to sensor biases that are ignored. For 

instance, another possibi~ity is the use of different Bayesian cost 

terms instead of the simple case utilized now. 

Another possible improvement would be the use of the average 

of the replicated input sensors (accelerometers and rate gyros) in 

the no-fail filter, since this would effectively reduce the 

measurement noise and normal operating bias level in the averaged 

measurements. Currently, hardware redundant input sensors are kept 

as standby equipment. However, the current input detectors would 

need to be modified since they could not distinguish a failure 

between like inputs in their present form. 

Figures 22-23 indicate the failure detection performance of 

the sensor fault tolerant system with the RSDIMU body accelerations -

and rates replacing the body mounted accelerometer and rate gyro 

measurements. A sequence of IMU roll attitude, MLS azimuth and IMU 
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yaw attitude sensor failures are simulated. The roll attitude of 

the first IMU fails with a bias jump of 1 0 at 78 sec. and is 

quickly identified at 78.15 seconds. The azimuth measurement of 

the second MLS module fails with a bias jump of .4 deg at 90 sec. 

and is identified at 90.25 seconds. The speed of identification is 

the same as the case without the RSDIMU. The yaw attitude failure 

of the second IMU with a bias jump of 1 0 at 110 sec. is identified 

at 110.3 seconds. 

As expected (see Figure 22), position estimation performance 

of the no-fail filter is initially significantly better than the 

case in which body mounted accelerometers are employed. This is 

due to the better accuracy of the navigation quality accelerometers 

and rate gyros in the RSDIMU. The ramp type position estimation 

errors (e.g., ramp error starting in the z-position estimation 

error in Figure 22) can be traced to accelerometer impulse type 

errors due to scale factors. 

The failure detection performance (not shown) with colored MLS 

measurement noise was degraded due to false alarms. This is due 

mainly to the fact that any time correlation in the no-fail filter 

residuals looks like a time varying bias jump to the detectors. 

The sensor fault tolerant system design will be modified in the 

second year of the study in order to remove the effects of colored 

MLS noise. The state estimation performance with colored MLS noise 

was essentially the same as the case with white MLS noise. 
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Further tuning of the noise parameters will help to improve 

both the state estimation and failure detection performance. For 

instance, MLS f il ter noise is not accounted for in the no-fa il 

filter. The effect of this error, due to digital scanning, would 

be an effectively higher MLS measurement noise. 
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v. SUMMARY 

In the preceding chapters, an aircraft sensor fault tolerant 

system design methodology has been presented. The design problem 

is formulated in the context of simultaneous state estimation and 

failure detection in discrete time nonlinear stochastic systems. 

The proposed solution involves the implementation of a no-fail 

extended Kalman filter and a bank of first order detectors. The 

no-fail EKF computes estimates for aircraft states and normal 

operating sensor biases on the assumption of no-failures. A new 

separate bias algorithm has been derived for: the EKF implementation 

by extending the results for the linear case to nonlinear systems. 

The residuals of the no-fail EKF drive a bank of detectors each of 

which estimate a postulated sensor bias jump failure for a given 

sensor. Multiple hypothesis testing procedure is then employed to 

select the most likely failure mode in the Bayesian sense. When a 

failure is declared, the filter-detector structure is reconfigured 

by deleting the faulty sensor. 

The state estimation and sensor failure detection performance 

of the developed aircraft sensor fault tolerant system has been 

analyzed on the nonlinear six-degree-of-freedom simulation of the 

TCV research aircraft. In our experience with several runs using 

different bias levels, initial conditions, and initial 

uncertainties, we have found the numerical stability of the no-fail 
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EKF to be as good as the square root algorithm. The overall 

performance of the filter is typical of the EKF applications with 

largest estimation er rors occurr ing dur ing startup and aircraft 

maneuvers. Estimation errors compare favorably to those obtained 

with other types of navigation filters employed in the same 

environment. Sensor failure detection performance of the fault 

tolerant system is excellent for the no-fail EKF output sensors 

such as MLS, lAS, IMU measurements. The failure detection speed 

for input sensors such as body mounted accelerometers and rate 

gyros is slower than that of output sensors. This is to be 

expected since the input sensor failures have to propagate through 

the no-fail filter dynamics in order to get detected. During the 

course of our study we have determined that the following issues 

should be further investigated for possible improvement of failure 

detection performance: 

- Bias Filter/Detector Interaction: As expected, there is an 

interdependence between the normal operating bias filter and those 

detectors for sensors which are selected for normal operating bias 

identification. The selection of sensors for normal operating bias 

identification could presumably be decided for the optimization of 

failure detection performance. 

- MLS Colored Noise: As discussed in the previous chapter, 

when colored MLS measurement noises are assumed to be white in the 
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filter design, the failure detection performance of the fault 

tolerant system becomes degraded due to false alarms. Various 

possible remedies have already been identified and a suitable 

modification will be incorporated into the design to alleviate this 

problem. 

- Replicated Input Failure Identification: As proposed, the 

fault tolerant system uses one set of replicated body mounted 

accelerometers and rate gyros as input. The hardware redundant 

input sensors are kept as standby equipment. The possibility of 

using the average of these replicated-input sensors should be 

investigated for better estimation performance. However, the 

current input detectors would need to be modified since they could 

not distinguish a failure between like inputs. 

These issues will be resolved in the second year of the study. 

Furthermore, failure detection performance of the fault tolerant 

system will be analyzed under different type failures. Tests for 

healing of a failed sensor will be included. Robustness of the 

overall system will be analyzed under steady state wind conditions 

and different landing paths. A sensor configuration design method 

will be developed so that a sensor complement with a minimum 

replication of sensors could be selected for a given mission 

reliability. 
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APPENDIX A 

EKF INPUT AND MEASUREMENT PARTIALS 

This appendix contains the input· and measurement partials 

which are needed in the implementation of the no-fail filter of 

Section 2.3. 

Input Partials: Let u=[ax,ay,az,p,q,r]' where (ax,ay,az ) and 

(p,q,r) are the input variables associated with the body mounted 

accelerometers and rate gyros. Then, the input partials for the 

EKF will be given by: 

(B(x(k) )u) = (A. I) 

o 

where the matrices TGBP and TERP are the partials associated with 

the transformations TGB and TER • The nonzero elements of TGBP are 

defined by 

A-I 



T
GBP

(I,7) = clay + c 2 a z (A.2) 

T
GBP

(I,8) = (-S8CI/J)ax + (S8 C8CI/J).ay + (c¢cecl/J)a z (A. 3) 

T
GBP 

(1,9) = (-c8sl/J) a + c
3

ay + c a x x z (A. 4) 

T
GBP 

(2, 7) = -c a + c a x y z z (A. 5) 

T
GBP

(2,8) = (-s8 s l/J)a + (s¢c8sl/J)a + (c¢c8sl/J)a x y z (A. 6) 

TGBP (2,9) = (c8cl/J)a - c 2 a y + claz x CA.7) 

T
GBP 

(3,7) = (c¢c8) a - Cs¢cS)az y CA. 8) 

T
GBP

(3,8) = (-cS)a - (s¢s8)a - (c¢s8)a x y z (A. 9) 

where 

C1 = c¢s8StjJ + s¢stjJ (A. 10) 

c 2 = -s<J>ssc1JJ + c¢sl/J (A.II) 

c
3 

= -s¢sssl/J - c¢cljJ (A.12) 

c 4 = -c¢s SSljJ + S ¢Clp (A.13 ) 
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The nonzero elements of TERP are defined by: 

TERP (1, 7) = (e</>te) q - (s</>te) r (A.14) 

TERP (1,8) 
2 2 = (s</> se e) q + (e</> se e) r (A.lS) 

T
ERP

(2,7) = (s</»q - (e</»r (A. 16) 

TERP ( 3 , 7) = (e</> s8 ) q - (s</> s8 ) r (A. 1 7) 

TERP (3,8) = (s</> see te ) q + (e</> see te ) r (A.18) 

Measurement Partials: The nonzero elements of the measurement 

partial H(x(k) = ah(x(k) 
ax 

r -x 
H(l,l) = x H 

r az 

r -YH 
H(1,2) = Y.. . 

raz 

r -z 
H(1,3) 

z M = r az 

H(2,1) = 
(rX-xM) (ry- YM) 

2 r . r az xz 

are defined by: 

(A .19) 

(A.20) 

(A. 21) 

(A.22) 
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where r xz = J(r
x 
-x

M
) 2 + 

-r 
H(2,2) = xz 

-2-
r az 

H(2,3) = 
(ry - YM) (rZ-zM) 

2 
r . r az xz 

H{3,l) = 
(r

x 
-x

E
) (r

z 
-zE) 

2 

H(3,2) 

H(3,3) 

H(4,4) 

ret . r xy 

= (ry - YE ) (rZ-zE ) 

2 
ret . r xy 

-r 
= 2Y 

2 
ret 

r -w 
= x x 

s 

(rz-zMl 
2 

(A. 23) 

(A. 24) 

(A. 25) 

(A.26) 

(A.27) 

(A.28) 
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where 

H(4,5) = 

H(4,6) = 

s = J(r -w )2 + (t -w )2 + t 2 
x x y y z 

:t -w 
:t y 

s 

t 
z -s 

H(4,10) = -H(4,4) 

H(4 r 11) = -H(4,5) 

A-5 

(A. 29) 

(A. 30) 

(A. 31) 

(A.32) 



APPENDIX B 

DERIVATION OF THE SEPARATE BIAS EKF ALGORITHM 

In [7], Friedland has shown that the least mean square state 

estimator for a linear dynamic system augmented with bias states 

can be decomposed into three parts: 1) a bias-free state 

estimator; 2} a bias estimator; and 3) a blender. The bias-free 

state estimator is designed on the assumption of zero biases. The 

innovations of this bias-free filter are then used as measurements 

by the bias estimator. Finally, the bias-correction matrix 

computed in the blender is used to blend the bias estimators with 

the bias-free state estimate to obtain the optimum state estimate. 

Even if this new filter structure is not utilized, these results 

provide numerically advantageous decomposition procedures for 

computing the estimator gains for the composite filter 

corresponding to the system state augmented with the bias 

parameters. 

Several extensions [6]-[15] of the separate bias estimation 

algorithm have appeared in the literature since [7]. The extension 

of the separate-bias estimation algorithm to nonlinear systems is, 

naturally, of practical interest and there has been a number of 

efforts [11]-[13] in this area. In [11], nonlinear system dynamics 

with input biases were considered, but the work was limited to 

B-1 



linear observations with no measurement biases. The EKF for the 

augmented system was implemented by using the decomposition for the 

prediction error covariance derived in [7]. The authors did not 

take advantage of the decomposition for the composite filter gain, 

which involves lower order matrices. Furthermore, it is not clear 

which estimates are used for linearizations needed in the extended 

Kalman filter. Separate bias estimation results have also been 

applied to bias identification using a second order suboptimal 

filter [12]. This work was concerned with state estimation in 

nonlinear continuous systems with discrete measurements; and, only 

sensor biases were considered. 

The special case in which the bias enters linearly into the 

nonlinear system dynamics and observations was treated in [13]. In 

this study, an algor ithm along the lines of the separate-bias 

estimation approach was proposed for the EKF implementation. This 

method required the computation of the bias correction matrix twice 

and thus introduced additional numerical complexity. Furthermore, 

the proposed estimation algorithm is not an equivalent 

implementation of the extended Kalman filter for the composite 

system augmented with the bias states but rather an approximation 

for it. In fact, it is shown in [6] that a separate bias-free 

filter structure is not possible for this class of systems. 
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In [6], discrete-time nonlinear stochastic systems with biases 

both in inputs and outputs is considered. In this work, the bias 

model includes input biases entering nonlinearly into the system 

dynamics so that the class of nonlinear systems considered 

encompasses the earlier studies. Friedland's separate-bias 

estimation algorithm is then generalized to the EKF formulation for 

the class of systems considered. It is shown that a separate 

bias-filter structure, in contrast to the linear case, is no longer 

possible. On the other hand, the computations for the extended 

Kalman filter gains can still be performed using a decomposition 

analogous to that of the linear filtering problem. This 

computational procedure for obtaining the filter gains has the 

following advantages over the EKF algor ithms for the augmented 

systems: First, numerical accuracy is improved due to the lower 

order matrix operations involved. Secondly, zero a priori 

information about the bias state initial conditions can be handled 

by implementing the information filter form of the bias covariance 

equations while using the standard filtering equations for the 

system state covariance. 

We will now outline the derivation of the separate bias EKF 

algor i thm. Expanding the nonlinearitiesin (2.1) about the 
.... 

conditional mean, x(k)=E[x(k) ly(l), ••• Y(k)], and the nonlinearity 

in (2.15) about the single stage prediction, x(k+l/k), and 
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retaining only the first order terms in the Taylor series 

expansion, we obtain 

x{k+l)=F{x{k) ,u{k»x{k)+Bb{x{k»bu{k)+f{k)+w{k) (B .1) 

,., 
y{k+l)=H{x{k+l/k»x{k+l)+b{k+l)+z{k+l)+v{k+l) (B.2) 

where the matrices F and Hare defind by eqs. (2.l8)-{2.19) and in 

Appendix A and the vectors f(k) and z(k+l) are given by 

f(k)=- dB(X)UI'" ,., ;(k) + B(~(k»u{k)+u 
dx x{k) ,u(k) g 

(B. 3) 

z{k+l)=h{x{k+l/k)-H{x{k+l/k)x{k+l/k) (B. 4) 

An EKF [16]-[17] of order n+p (where nand p are the number of 

states and biases, respectively) could be obtained by applying the 

standard Kalman filtering algorithms to the linear system described 

by (B.l) and (B.2) while treating f(k) as a known input and z(k) as 

a known output. Instead, Friedland's bias decomposition algorithm 

[7]will be applied to the linear system described by (2.1)-(2.15), 

while treating f{k) and z(k) as known inputs and outputs. Hence, 

the bias-free state estimate xo(k), which is the conditional mean, 

x{k), obtained with B in B.l, D in B.2, and Pb{O) all set to zero, 

will be given by 

xo{k+l)=F{X{k) ,u(k) )xo(k)+f(k) (B. 5) 

+KO{k+l,x(k+l/k» [y(k+l)-H(x(k+l/k»xo(k+l/k)-z{k+l)] 
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with the filter gain Ko computed by eqs. (2.20}-(2.22). Note that 

the bias-free filter gain and the prediction error covariance are 

computed using H evaluated at x (k+l/k) and F evaluated at x(k} and 
~ ~ ~ 

b(k} as opposed to evaluating them at xo(k+l/k) and xo(k}. This is 

in contrast to the linear case. That is, the bias-free filter gain 

is a function of the total state estimate xo(k) which is given by 

,..,.. "" 
X(k+l}=xo(k+l)+V(k+l,x(k+l/k»b(k+l) (B.6) 

where the bias correction matrix V is computed by using eq. (2.23). 

We shall now investigate how the bias-free filter given by 

equations (B.S)-(B.6) can be implemented. Utilizing the facts that 

xo(k+l/k)=F(X(k) ,u(k) )xo(k}+f(k) (B. 7) 

X(k+l/k)=AX(k)+B(X(k»U(k)+Ug 
(B. 8) 

and substituting these expressions into equations (B.3l)-(B.S) 

employing eq. (B.6), and simplifying, we obtain for the bias-free 

filter 

XO(k+l)=AX(k)+B(X(k»U(k)+Ug-F(X(k},U(k»V(k,X(k/k-l})b(k) 
~ ~ ~ 

+Ko(k+l,x(k+l/k)}{y(k+l)-h(X(k+l/k»+[H(x(k+l/k) 

A. A. ,.. A ,.. 

(F(x(k) ,u(k) )V(k,x(k/k-l} )+B(x(k) ,k» ]b(k)} (B.9) 

From the above, it is clear that the bias-free filter is 

dependent on the bias estimate, whereas it would be independent of 
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it in the linear case. Even when B is not state dependent (the 

class of nonlinear systems considered in [13]), a first order 

expansion about xo(k+l/k) for h(x(k+l/k) ,k+l) would not result in a 

decoupled bias-free filter. For instance, carrying out the 

indicated expansion would result in the following expression for 

the bias-free filter residual: 

" " A ".. " 

Y (k+l) -h (x o (k+l/k) + [H (x (k+l/k) -H (x o (k+l/k) ] [x (k+l/k) -xo (k+l/k) ] 

(B .10) 

Therefore, the bias free filter structure of [131 can be obtained 

only by assuming that H(xo(k+l/k)=H(x(k+l/k). That is, the filter 

algorithm proposed in [13] is not an equivalent implementation of 

the composite EKF for the augmented system but rather an 

approximation to it. Furthermore, a nonlinear state transition 

model with linear observations, as explored in [12], would still 

not result in a decoupled bias-free filter. However, the bias-free 

and bias estimator equations eq. (B • 9 ) and eq • ( 2 • l7), can be 

merged together by substituting them in eq. (B.6) and performing 

the necessary algebraic simplifications to get eqs. (2.16)-(2.17). 
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APPENDIX C 

DERIVATION OF DETECTOR ALGORITHMS 

This appendix contains the derivation of detector algorithms 

as outlined in Section 2.4. The detector equations are derived by 

analyzing the residual sequence of the no-fail filter described by 

eqs. (2.16)-(2.17) under a specific input failure model given by 

eqs. (2.35)-(2.36), or an output failure model given by eqs. 

(2.37)-(2.38). First, define the state and normal operating bias 

estimation errors of the no-fail. filter for hypothesis. Hi by:: 

(C.1 ) 

b i (k) = b(k) - b i (k) (C.2) 

where xi(k) and bi(k) are the state and bias estimates provided by 

the no-fail filter when hypothesis Hi is true. That is, the 
" " 

estimates xi(k) and bi(k) are computed by eqs. (2.16)-(2.17) with 

the input and output sensor models given by eqs. (2.35)-(2.36) and 

(2.37)-(2.38). Expanding the input non1inearities in eq." (2.35) 

about xi(k) and the output nonlinear ties in eq. (2.37), about 

x i (k+1/k) and subtracting the no-fail filter equations from these 

expressions, we obtain the following estimation error dynamics for 

the no-fail filter under hypothesis Hi: 
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+ 

r ~i (k+l)] = fI-
b. (k+l) 

1 

[ ~i(k)] b. (k) 
1 

[K (k+l)] 

LK: (k+l) 

A 

A 

[H (X. (k+ l/k) ) 
1 

J<,-., (J-nS. 1"DJ i ,,, ... 
:"'1<: to L H t~ " ::<\ 

[I [KX (k+l)l [H (xi (k+l/kllDJ] r~k)] [K (k+l) ] -
K: (k+l) 

v(k+l) (c. 3) 
Kb (k+l)J 

\ r (I - l<-x H') - k)'. D \ 
\ 

I (i- kb.D) J L - ~s 14 

where F i (x i (k) , u (k) ) , 
"-

H (x. (k+l/k) 
1 

are defined by eqs. 

(2.41), (2.19), respectively. The filter gains K (k+1,~. (k+1/k» x 1 

and Kb (k+1,x i (k+1/k» are defined by eqs. (2.17c), (2.25). Now 

define the variables xo(k) and boCk) by eq. (C.3) above with ffii set 

to be zero. That is, 

( ~O(k+l)] = [1 
b (k+l) 

o 

[
X (k)] [ [K (k+1)] 
b:(k) + 1 - K:(k+l) 

[H (~i (k+lJk)) DJ] [W(k)] _ [Kx (k+l)] 

o Kb (k+l) 
v(k+l) 

(C. 4) 
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Note that all of the above linearizations are made about ~i (k) 
,.. 

and xi (k+l/k) • The reason for defining xo(k) and boCk) is to show 

that expression C.4 corresponds to the no-fail filter's computed 

estimation error covariance under hypothesis Hi' Subtracting eq. 

(C.4) from (C.3), we get: 

[ ~i OC)J 
b. (k) 

1. . 

= [~o (k)] 
b

o 
(k). [

V. (k)] 
+ 1.X 

Vib(k) 
In. 

1. 

(C. 5) 

where l~~~~~] is defined byeq. (C.S). Using the relationsbip 

above, we obtain for the· residual of the no-fail. filter under 

hypothesis Hi: 

(C.6) 

where r(k+l) is defined by 

r(k+l)=H{x.{k+l/k»x (k+l)+Db (k+l)+v(k+l) 
1 0 0 

(C. 7) 

In the case of output failures, the computed innovations 

statistics of the no-fail filter would be equal to the statistics 

of r (k) defined above. For input sensor failures, the computed 

innovations statistics will be an approximation to the statistics 

of r(k) due to the dependence of Fi in eq. (C.4) on the failure 

level mi' 
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