General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)


```
DESIGN UF aEbD-SCLGACN ENCOLEbS (Jet
Propulision Lab.) 51 F HC hu4/MF AG1
```


Architecture for VLSI Design of Reed-Solomon Encoders

K. Y. Liu

June 8, 198.1

N/SA

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Architecture for VLSI Design of Reed-Solomon Encoders

K. Y. Liu

Jurie 8, 1981

N/SA

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion Laboratorv, Calitornia Instituie of Technology, under contract with the National Aerr, nautics and Space Administration.

ACKNOWLEDGMENT

This document consolidates one phase of research under the NASA End-to-Fnd Information System iNEEDS) program and the LSI Product Assurance Technology program sponsured by the Chief Engineer's Office at NASA. The author expresses his gratitude to Dr. A. J. Ferrari, J. A. Hunter, Richard B. Miller, and R. H. Nixon for their support which made this publication possible. Also, the author thanks Dr. J. J. Lee, M. Perlman, and R. F. Rice for their comments and suggestions. Finally, the author thanks J. T. Sumida and J. C. Packard for providing the detailed logic design and fabrication, respectively.

In this document, the $\log 1 \mathrm{c}$ structure of a univers..l VISI chip walled the symbol-slice Reed-Solomon (RS) encoder chip is presented. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RS encoder requiring around 40 discrete CMOS IC's may be replaced by an $R S$ encoder consisting of four identical Interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher rellability.

table of CONTENTS

I. INTRODUCTION 1-1
II. BASIC CONCEPTS OF FINITE FIELDS 2-1
III. REED-SOLOMON ENCODING PROCEDURES 3-1
IV. SYMBOL-SLICE VLSI RS ENCODER ARCHITECTURE 4-1
4.1 VLSI RS ENCODER USING THE ROW PARTITIONING TECHNIQUE 4-3
4.1.1 Generator Polynomial Coefficients Table 4-3
4.1.2 Finite Field Multiplier 4-6
4.1.3 Input and Feedback Control Switches 4-6
4.1.4 Input/Output Data Connections 4-9.
4.2 VLSI RS ENCODER USING THE COLUMN PARTITIONING TECINIQUE 4-9
V. PERFORMANCE OF THE VLSI RS ENCODER SYSTEM 5-1
VI. CONCLUSIONS 6-1
REFERENCES R-1
APPENDIX
VLSI REED-SOLOHON ENCODER FOR TIIE PROPOSED NASA/ESA TELEPETRY CHANNEL CODING STANDARD A-1

1 A Block Diagram of a ($\left.2^{J}-1,2^{J}-1-2 E\right)$ RS Encoder Using a Convent Lonal Generator Polynomial 3-2

2 A Block Diagram of a (2J-1, 2J-1-2E) RS Encoder Using a Generator Polynomial With Symmetrical Coefficients 3-5

3 Code Array Structure and order of Symbol Transmission For. Type B Interleaving, where Interleaving level = I 3-6

4 A Block Diagram of a (255,223) RS Encoder With Interleaving level 1 and . 3-8

$$
g(x)=\prod_{1=112}^{143}\left(x-u^{1}\right)
$$

VLSI RS Encoder Chip Logic Structure (Row Partitioning)4-4

VLSI L.S Encoder System Diagram (Row Partitioning) 4-5
Logic Structure of a Serial-parallel Finite Field lultiplier Which Performs $\alpha^{1} * \alpha^{J}$ Modulo $\alpha^{8}+\alpha^{4}$ $+1^{3}+x^{2}+1$. 4-7

VLSI RS Encoder Chip Logic Structure (Column Partitioning) 4-10
Inter-Chip Connection Diagram (Column Partitioning) 4-11
Throughput Improvemert by Multiplexing VLSI RS Encoder Chips (Row Partitioning Version).5-2

Logic strueture of a serial-parallel finite field multiplier which performs $x^{1} * x^{j}$ modulo $x^{8}+x^{7}+x^{2}+x+1$, \quad. 6

1 Exponents versus elemerts in a finite field of(2^{8}) generated by the primitive polynomial $x^{8}+x^{4}+y^{3}+x^{2}+1$. $2-6$

2 Elements versus exponents in a finite field gF(2^{8}) generated by the primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$. $2-7$

3 Generator Polynomial Coefficients for $g(x)=\prod_{1-112}^{143}\left(x-x^{1}\right)$. . . $3-4$
A1 Elements versus exponents in a finite ifeld GF (2^{8}) generated by the primitive polynomial $x^{8}+x^{7}+x^{2}+x+1 . \quad . \quad . \quad . \quad . \quad . \quad$. -4

A2 Generator Polynomial Coefficients for
$g(x)=\prod_{i=112}^{143}\left(x-x^{1 j}\right)$, where $j=1,7,11,13,19,23,37$ and $43 . \ldots . \quad A-5$

SECTION I

INTRODUCTION

Reed-Solomon (RS) codes (Ref. 1) are nonbinary BCH codes. These codes can correct both random and burst errors over a communication channel. Recently concatenated coding systems using RS codes as the outer codes have been proposed for space communication to achieve very low error probabilities (Refs, 2 to 7). Several deep space flight projects such as the Voyager at Uranus encounter, the Galileo, and the International Solar Polar Mission (ISPM) have also considered using the concatenated RS/Viterbi channel coding scheme. Hence RS codes are quite important for space communications.

The complexity of an RS encoder is proportional to the errorcorrecting capability of the code, the speed of the encoding, and the interleaving level used (Ref. 4). For reliable space communication there is a need to use RS codes with large error-co.recting capability and large interleaving leval (Refs. 4, 5, 8, and 9. Hence one is especially interested in minimizing the complexity of RS encoders for space communication applications. In a spacecraft the power, size, and relfability requirements are usually quite severe. Thus there is considerable interest in a VLSI (Very Large Scale Integration) RS encoder which has the potential for significant savings in size, weight, and power while at the same time providing higher reliability over an RS encoder implemented in discrete logic circuits.

This document introduces a symbol-sliced logic structure suitable for a VLSI implementation of RS encoders. By cascading and properly interconnecting a group of such VLSl chips, each consisting of a fixed portion of the encoder, it is possible to ubtain an RS encoder with any desired error-correcting capability
and interleaving level, As a derign example, it is shown that a $(255,223) \mathrm{RS}$ encoder requiring 40 discrete $C M O S$ IC' B may be replaced by an $R S$ encoder congiotint of four identical intercornected VLSI encoder ehips. It is also shown that these VLSI RS encoder chips can be pa:alleled to improve the encoding speed.

BASIC CONCEPTS OF FLNITE FICHDS

A field is a set of clements, including 0 and 1 , any pair of which may be added or multiplied (denoted by + and $*$) to five a unique result in the field. The addition and multipllcation are assoclative and commutative, and multlplication distributes over addition in the usual way, 1.e.,

$$
u *(v+w)-u^{*} v+u^{*} w
$$

Every field element u has a unique negative element -1 in the same field such that

$$
u+(-u) 口 0
$$

Every nonzero field element u has a unique reciprocal field element $1 / \mathrm{u}$, such that

$$
u *(1 / u) \square 1
$$

For every field element u

$$
0+u \square u=1 * u
$$

and

$$
o * u=0
$$

If the number of elements in a field is infinite, then it is called an infinite field. Examples of infinite fields are:
(a) The rational number field.
(b) The real number field.
(c) The complex number field.

If the number of alemento in a field 10 finite, then it in callod a finite field or a Gallog field GF(q), where q io the number of elemento in the fleld. Two axamplot of findte fields are given as follows. The first example io the finite fleid GF (p) which it formed by integert modulo p, where p its a prime. If $p=2$, then the field 18 called GF(2). GF(2) containtionly two elements, 1.e., 0 and 1. The addition and multiplication tables of GF(2) are given as below:

Ardition

Multiplication

The second example is the finite field formed by polynomials modulo and irreducible polynomial of degree m with coefficients in $G F(p)$, where p is a prime. The definition of an irreducible polynomial is given as follows. A polynomial

$$
p(x)=\sum_{1=0}^{m} a_{1} x^{1}
$$

with $a_{i} f G F(p)$ is called irreducible over $G F(p)$ if there exists no polynomials $A(x)$ and $B(x)$ with coefficients from GF (p) such that

$$
p(x)=A(x) B(x)
$$

where

$$
1 \leq \text { Degree of } A(x) \leq m-1
$$

As an example, if p a 2 , then the polynomials

$$
x^{8}+x^{4}+x^{3}+x^{2}+1
$$

and

$$
x^{4}+x+1
$$

are irreducible over GF(2).

Now the multiplicative structure of finite fields will be discussed. If a field contains an element α, then the least positive integer N for which $\alpha^{N}=1$ is called the order of α. In a finite field of q elements, $\operatorname{GF}(q)$, there is a primitive element α, i.e., an element of order q - 1 . Every nonzero element of $G F(q)$ can be expressed as a power of α.

Next the vector space structure of finite fields will be presented. To do it, one needs the following definition of a primitive polynomial. An irreducible polynomial of degree m over $G(q)$ is called primitive if it has a primitive element of $\operatorname{Gr}\left(q^{m}\right)$ as a root. A finite field of $\left\{^{m}\right.$ elements, $\operatorname{GF}\left(q^{m}\right)$, can be considered as an m-dimensional vector space over GF(q). A choice for a basis of $\operatorname{GF}\left(q^{m}\right)$ over $G F(q)$ is the set

$$
\left\{1, \alpha, \alpha^{2}, \cdots, \alpha^{m-1}\right\}
$$

which is called the canonical basis, where α is a root of a primitive polynomial of degree m over $G F(q)$. In vector form

$$
\left\{1, \alpha, \alpha^{2},-\cdots, \alpha^{m-1}\right\}
$$

is represented as

$$
1 \leftrightarrow(0,0,-\cdots, 0,0,1)
$$

$$
\begin{aligned}
& \alpha \leftrightarrow(0,0, \cdots, 0,1,0) \\
& \alpha^{2} \leftrightarrow(0,0, \cdots, 1,0,0) \\
& \alpha^{m-1} \leftrightarrow(1,0, \cdots, 0,0,0)
\end{aligned}
$$

whereas 0 is mapped to $(0,0,-\ldots, 0)$. Thus 111 elements in $G F\left(q^{m}\right)$ except 0 can be formed by linear combinations of tiue canonfcal basis

$$
1, c_{1}, \alpha^{2},---, \alpha^{m-1}
$$

As an example, the Galots fleld of 2^{4} elements, $G f\left(2^{4}\right)$, may be formed as the field of polynomials over GF (2) modules $\left(x^{4}+x+1\right)$, which is a primitive polynomial of degree 4. Let a be a root of $x^{4}+x+1$, i.E.,

$$
\alpha^{4}+\alpha+1=0
$$

Then by the definition of the primitive polynomial, all elements of $G F\left(2^{4}\right)$ except 0 are powers of α. The representation of α^{1} for $4 \leq i \leq 15$ can be determined by the primitive polynomial. In this example α is a root of $x^{4}+x+1$ over GF(2).

Thus

$$
\alpha^{4}+\alpha+1=0
$$

It follows that

$$
\alpha^{4}=-\alpha-1
$$

Since $-1=1$ in $G F(2)$, one has

$$
\alpha^{4}=\alpha+1
$$

The rest of the element ${ }^{1}$ for $5 \leq 1 \leq 15$ can be obtained likewise. The 15 nonzero field elements of $G F\left(2^{4}\right)$ are shown below in both mult. (plicative and vector space forms.

Another example is the finite field $G F\left(2^{8}\right)$ generated by the primitive polynomial

$$
x^{8}+x^{4}+x^{3}+x^{2}+1
$$

The exponents versus elements and elements versus exponents tables for this GF (2^{8}) are shown in Table 1 and Table 2 , respectively.

 N゚~

The addition of two field : wmente in (if $\left(2^{n}\right)$ is performed by componentwise addition in the vector representations of the two elements. For example In GF($\left.2^{8}\right), a^{26}+a^{238}$ is given by

$$
\begin{array}{r}
6 \square(0,0,0,0,0,1,1,0) \\
+11=(0,0,0,0,1,0,1,1)
\end{array} \rightarrow a^{26}+238
$$

The multiplication of two field elements in (of (2^{n}) is performed by a modulo ($2^{n}-1$) addition on the exponents of the two elements. For example in $\operatorname{aF}\left(2^{8}\right), x^{26} * 238$ Is given by

$$
\left.\begin{array}{rl}
6 & =(0,0,0,0,0,1,1,0) \\
*) & \rightarrow a^{26} \\
58 & =(0,0,0,0,1,0,1,1) \rightarrow a^{238} \\
11 & =(0,0,1,1,1,0,1,0)
\end{array} \quad \rightarrow{ }^{(24}+238\right) \mathrm{MOD} 255
$$

An RS code word has ($2^{J}-1$) symbols, where each symbol has J bits. of the $\left(2^{J}-1\right)$ symbols there are $\left(2^{J}-1-2 E\right)$ informat ion symbols and $2 E$ parity-check symbols, where E is the number of symbols an RS code is able to correct. If one treats the $\left(2^{J}-1-2 E\right)$ information synbols as the coefficionts of the polynomial

$$
f(x)=x^{2 E}\left(s_{2} J-1-2 E \quad s_{2}{ }_{2}-2-2 E \quad x+--+s_{2} x^{2^{J}-2-2 E}+s_{1} x^{2^{J}-1-2 E}\right)
$$

where s_{i} is the ith transmitted symbol, then the 2 E parit"-check symbols can be obtained as the coefficients of the remainder of

$$
f(x) / g(x)
$$

where $g(x)$ is the generator polynomial (Ref. 9) of the code. Usually $g(x)$ is defined as

$$
g(x)=\prod_{1=1}^{2 E}\left(x-x^{1}\right)=\sum_{j=0}^{2 E} g_{j} x^{J}
$$

where a is a primitive element of the Galois field $G F\left(2^{J}\right)$, and g_{j} 's are the coefficients of $g(x)$ with $g_{2 E}=1$. The generator polynomial defined above does not have symmetrical coefficients, i.e.,

$$
g_{j} \neq g_{2 \mathrm{E}-j} \text { for } j=0,1,2,---2 \mathrm{E} .
$$

A block diagram of an $R S$ encoder which generates the remainder of $f(x) / g(x)$ is given in Fig. 1. The switches in Fig. 1 are normally in the "ON" position until the last information symbol gets into the encoder. At this

moment all switches are switched to the "OFF" position and the encoder is behaving like a long shift register. The output of the encoder is then taken from the output of the last shift register. Note that in Fig. 1, 2E mulifiplers are needed in the encoder.

To reduce the number of multipliers needed, a special class of the generator polynomial which has symetrical coefficients was proposed by Berlekamp (Ref. 10). This generator polynomial is defined as

$$
g(x)=\prod_{i=2^{J-1}-E}^{2^{J-1}+E-1}\left(x-\alpha^{1}\right)=\sum_{j=0}^{2 E} g_{j} x^{j}
$$

where

$$
g_{j}=g_{2 E-j} \text { and } g_{o}=g_{2 E}=1
$$

Note that since $g_{0}=1$, only E multipliers are needed (see Fig. 2). Thus using this new generator polynominal will reduce the number of maltapliers required by one-half. As an example, the coefficients of all generator, polynomials of the form

$$
g(x)=\prod_{i=112}^{143}\left(x-x^{1 j}\right)
$$

for a 16 -error-correcting RS code with 8-bit per symbol are shown in Table 3 for $a=2,128,232,135,201,90,74,119$, respectively.

There are several schemes for interleaving the RS codes (Ref. 5). One scheme illustrated in Fig. 3 as "Interleave B " requires memory only for the paritycheck symbols in the encoder is described as follows. In this scheme the input bits are grouped into J-bit symbols and transmitted in their natural order. However every $I^{\text {th }}$ symbol belongs to the same code word, where I is the interleaving

depth used. Thuts 1 code worde make up such an interleaved code block. After the fintormat ton symbols are transitted, the parity-check symbols of each interleaved code word are then tranemitted.

If Interleaving is used, then the encoder logic structure the same as shown in Fig. 1, except now each j-bit ohift register is replaced by an $\mathrm{i} x$ J-bit shff regleter. As an example, ablock dagram of a (255,223) RS encoder with interleaving level 1 and generator polynomal

$$
g(x)=\int_{1=112}^{143}(x-1)
$$

where ix $\quad 2$ in $\operatorname{GF}\left(2^{8}\right)$, which 1 g generated by , he primitive polynomial

$$
x^{8}+x^{4}+x^{3}+x^{2}+1
$$

is shown in Figure 4. Note that a generator polynomial with symmetrical coefficients tis used here to save multipliers.

original page is OF POOR QUALITY

Figure 4. A Block Diagram of a $(255,223)$ RS Encoder With Interleaving Level I and

$$
g(x)=\prod_{i=112}^{143}\left(x-x^{i}\right)
$$

SECTION IV

SYMBOL-SLICE VLSI RS ENCODER ARCHITECTURE

A finite field multiplication is a quite complicated operation. There are basically thre techniques for implementing a finite field multiplication. The firat technique for to ue \log and antilog table etored in read-only memories (ROM's) (Ref. 4). The second technique is to use a linear feedback shift register b)e of approach (Ref. lo). The third technique is to ute the property of the Lrace in a finite field to form a smaller ROM lr skop table (Ref. ll). Due to the advent of LSI KOM technology, techniques 1 and 3 are usually used in an RS encoder deaign optimized for discrete IC's. As an example a 400 KHZ (255,233) RS encoder using the Berlekamp's approach (Ref. il) requires only around 40 CMOS IC':

When one is interested in further drastic reduction of the power and size of an ins encres for high speed applications, one has to consider VLSI implementations. An RS encoder design optimized for discrete IC's usually does not have a modular structure. Hence when ane uses such an architecture for ViSI layout, one has the following problems:
(1) The design is too big to be put on one chip.
(2) If a multichip approach is used, then one needs several chip designs, where each chip has an impractical number of input/ output pins.
(3) The design is not modular. Therefore the design is not easy to adapt to other RS code parameters.

Hence there is a need to find a VlSi logic otructure which can alleviate the above pioblems.

The repetitive architecture of the RS encoders shown in $\mathrm{Figs} 1,$.2 , and 4 , suggested that a symbor-silce type of VLSI chips, each one consisting of a fixed portion of thr encoder, may be cascaded to form a complete RS encoder. Also to reduce the VLSI chip size, RS encoders using generator polynomials with symmetrical coofficients are preferred. Hence we will put emphasis on this type of VLSI RS encoder.

As an example, we will design a VLSI encoder chip for a 255-symbol, 8-bit per symbol, 1 -eerror-correcting, $R S$ code with an interleaving level of 5 . The primitive polynomial used is

$$
x^{8}+x^{4}+x^{3}+x^{2}+1
$$

The generator polynomial for this RS code is

$$
g(x)=\prod_{1=112}^{143}\left(x-\alpha^{i}\right)
$$

where $\alpha=2$. The coefficients of this $g(x)$ are given in the first column of Table 3. The encoder logic structure for the above RS code parameter is idintical to the one shown in Fig. 4, except now $I=5$. There are several ways of partitioning the RS encoder into four sections. One way which requires a minimum of input/ output pins is to include four rows of logic shown in Fig. 4 into one section. Each section is then realized by a universal VLSI RS encoder chip. Another way to partition the RS encoder shown in Fig. 4 into four sections is to include 8 rows of logic in each colunn into one section. Bach section is then realized by
a unlvorand VISI RS encodor chip. Those VISI RS encodor conflgurationo are dabcribod as follows.

4.1
 VLSI RS ENCODLER USING ; Bï ROW PARTITIONING TECHNIQUE

Tho logic atructure of the univorad VLs: RS encoder chip uaing the
 which consista of lour idont loal VIsi RS encoder chips cascaded and properly intorconnered togother is shown in Fig. 6. Hach VLSI RS encodor chip has 24 pins. A detalled desergption of the Vhsi RS encoder chip and the entire VLSI RS encoder syatem la describe as follows:

4.1.1 Coblotator Polynomial Coofilelonts Tablo

sinco a gencrator polvamial $g(x)$ with symuetrical cooflactents is

 mintursal, all dist fort coulflelent: excopt 1 ot the generator polynomial are

 outpute ut an lix.-bit table is tad into N, E/N-to-one multiploxots. The outputs of the multiploxor"s are selocted by $\log _{2} N$ input pins called the "chip select" or " ${ }^{\prime}$ soloct" pins. These sutputs are then fed into the inputs of the E/N multipliers. In the dosign example two "G select" pins (pins 22 and 23) and four, four-tomo multiplexors are usod. The 16×8 table and the multiplexors can asily be

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

implemented by four, 4×8 ROM, with G select signals as the address control lines of each ROM. The coefficients of $g(x)$ selected on each chip are shown in Fig. 6 .
4.1.2 Finite Field Multiplier

Next we will discuss the architecture of the finite field multiplier. To connect the multiplier properly between chips and at the same time minimize the number of input/output pins used, a linear feedback shift register type of multiplier (Ref. 9) rather than a ROM table look up type of multiplier (Ref. 4) is adopted. The multiplier used is of a serial-parallel type. The logic structure of the multiplier is shown in Fig. 7. The J-bil generator polynomial coefficient Is read out from the ExJ-bit ROM table and fed into the multiplier J-bit in parallel whereas the other input, generated by the feedback input (pin 2) "ANDed" with the reedback enable (pin l); is fed into the multiplier bit-by-bit in serial.

The output of the multiplier is loaded into an 8-bit shift register in parallel at the end of every 8 th bit clock (1 symbol clock time). The parallel data is serialized by this shift register. The most significant bit (MSB) output of this shift register is added with the $M S B$ of the 40 -bit shift register, which is either on the same chip or on a different chip, and the resulting data is shifted into the least significant bit (LSB) of the next $40-b i t$ shift register. The adder is implemented by a two-input EXCLUSIVE-OR gate (there are eight EXCLUSIVE-OR gates on each chip). Each adder takes an input from a multiplier output which is either on the same chip or on a different chip, depending on the coefficients of the generator polynomial.

4.1.3 Input and Feedback Control Switches

The switch \#l shown in Fig. 4 is implemented by an AND gate on the chip with the bit-serial data input (pin 3) and the feedback enable signal as the
orieinal page is OF POOR QUALITY

two inputs. The toedback enable aignal is provided by an external modul, :55 counter which is driven by a rlock equal to the bit clock divided by ao (see
 Whe it ls lalso. The output of switch 11 ls added with the MsB of the atobit
 (pin j). This sigaal ls redundant in all but tho first chip (soufig. o).

The switeh "I shown in Fig. 4 la implemented by an AND sate on the - hip with the leodback enable and foedback input signals at the two Inputs. The teedback input signals on all chips (pin 2) are commected to the teodback output signal (pin S) on the first VISI chip. The output of switch \#t is fod into all multipliers on the chip bit-by-bit in serial.
4.1.4 \quad lnput/Output Data Connections
\quad There are efght input/output lines on each chip. of these elght lines, four lines (pins 8, $9,11,17$) are input lines and the remaining are output ines (pins $6,7,10,13$). Pin 8 is normally connected to pin 6 on the same chip except for the last chip, where pin 8 is grounded. Pins 7 and 9 are normally ronnected to pins 17 and 13 , respectively on the next chip except for the last chip, where pin 7 is connected to pin 11 on tho same chip and pin 9 is connocted to pin 4 on the first chip. Thus one has a rallroad type of data connections between chips. The reason for connecting pin 4 on the first chip to pin 9 on the last chip is a consequence of an faherent 8 -bit multiplier delay. To replace the multiplier on the x^{0} position by the switch $\# 1$ output, one neods to delay this output also by 8 bit. to line up the bits, For wther chips besides the ifrst chip, the 8-bit register outputs are not used.

The encoder output is taken 8 bits earlier from the MSB of the last 40 -bit shift register on the first chip. This is because when the last bit of the last symbol in the information part of the code is shifted into the encoder, the contents of each multiplier are loaded into the 8 -bit output shift registers waiting to be added with the MSB of the 40 -bit shift registers. These 8-bit symbols in the multiplier output registers actually belong to the fifth code word in the interleaved code array. However the parity-check symbol of the first code word is already befing computed and now sitting 8 bits from the MSBs of each 40-bit shift registers. Hence the $32-b i t$ output (pin 14) of the iast $40-b / t$ shift register on the last chip is the output of the VLSI RS encoder system. This output is taken when the external modulo 255 counter is counting from 224 to 255. Since at these times switches $\| 1$ and $\| 2$ are turned off, the entire VLSI encoder system is behaving $11 k e$ an 1×2 Exj-bit (e.g., $5 \times 32 \times 8$-bit in the design example) shift register. Thus the 5×32, 8-bit parity-check symbols are read out from the VLSI RS encoder bit-by-bit in serial and appended to the 5×223, 8-bit information symbols.

Abstract

4.2 VLSI RS ENCODER USING THE COLUMN PARTITIONING TECHNIQUE

The logic structure of the universal VLSI RS encoder chip using the column partitioning technique is shown in Fig. 8. Note that this chip is very similar to the one shown in Fig. 5 except now one has to provide output pins to all multipliers and input pins 10 all adders on the chip. Hence this chip uses 6 more input/output pins than the one shown in Fig. 5. The entire VLSI RS encoder system using this logic structure is similar to the one snown in Fig. 6 except now the interchip connections between adders and multipliers are of the pyramid type shown in Fig. 9.

original page is OF POOR QUALITY

Figure 9. Inter-Chip Connection Diagram (Column Partitioning).

The 40 -bit shift registers in the above two versions of the VLSI Rs eacoder chips can be replaced by random access memories (RAMs). In this case, a write-after-read operation should be performed during each bit time from the same location just read out from the RAM to simulate the shift register operation. Consequently, this version will not operate as fast as the shift register version. The first advantage of using the RAM approach is that interleaving level control can easily be incorporated into the RAM address control logic. Of course, input pins must be provided to select the interleaving level. Hence a more flexible VLSI RS encoder cilip can be obtained using the RAM approach.

The second advantage of using the RAM approach is that a RAM cell usually occupies a smaller chip area than that of a static shift register. Hence a smaller VLSI RS encoder chip size can be obtained using the RAM approach. It is estimated that it is impossible to put the entire shift register version of the VLSI RS encoder chip design on a 235×235 mils CMOS/bulk VLSI chip using a 7 m f,tandard cell approach on all logic. However, if one uses custom RAM and ROM cells design to implement the 40 -bit static shift registers and the 16×8 table and $7 \mu \mathrm{~m}$ standard cell design for the rest of the logic, then it is possible to have a one-chip design. of course, the entire RS encoder chip design can easily be put on a smaller chip if a VISS technology (say $3 \mu m$ standard cell approach) is used.

SECTION V

PERPORMANCE OF THE VLSI RS

ENCODER SYSTEM

For design verification, both the ohift register vorsion and the RAM version of the VLSI RS encoder chip and VLSI RS encoder ayestem are implemented using discrete CMOS IC's and are now operational. the throughputs of these two versions are 800 K bits/sec for the shift register version and 200 K bita/sec for the RAM version. These throughputs are expected to go much higher if the actual VLSI encoder chipe are used.

One technique to improve the VISI RS eneoding speed is to multiplex the RS encoder chipe. One type of multiplexing is to set the RS encoder chip Interleaving level selection in the RAM approach to 1 (no interleaving) such thiat for a N-level of incerleaving, a N-fold parallelism can be achieved. This scheme
 are used to encode a $R S$ ende word eorresponding t the one shown for eath row ot the code array structure In Fig. 3.

Another type of multiplexing is to use the relat lonship that if

$$
f(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{N}(x)
$$

then

$$
\frac{f(x)}{g(x)}=\frac{f_{1}(x)}{g(x)}+\frac{f_{2}(x)}{g(x)}+\cdots+\frac{f_{N}(x)}{g(x)}
$$

can be realized by implementing $f_{i}(x) / g(x)$ for $i=1,2, \cdots, N$ in parallel and then summing the results from these parallel operations. Thus if one treats each

$f_{1}(x)$ as a polynomial, whote coefficiente are belected from every $N^{t h}$ incoming aymbols starting from the $1^{\text {th }}$ aymbol, where $1-1,2,-\infty, N$, then one can belect the encoder chip interleaving level to 1 and use the logic otructure oimilar to the one shown In Fig. LO to realloe the $f_{1}(x) / g(x)$ operation. The output of each row of encoder chipt in this case needs to be properly delayed and summed to generate the encoder output $f(x) / g(x)$.

Another tochnique to improve the VLSI RS encoding speed 18 to process the J-bit incoming symbole in parallel. Parallel adders and multipliers are needed in this configuration. A throughput improvement of J times can be achieved using this approach. The disadvantages of this technique are:
(1) A lot of input/output pine are needed for the parallel data pathes.
(2) A larger chip aize is required to implement the VLSI RS encoder.

SECTION VI

We have just shown the logic structure of a symbolic-slice VLSI RS encoder chip and the VLSI RS encoder system built by these chips. A design example has been given for a $(255,223)$ VLSI RS encoder chip and VLSI RS encoder system. It has been shown that an $R S$ encoder consisting of four identical CMOS VLSI RS encoder chips connected together may replace around 40 CMOS IC's vequired by an encoder design optimized for discrete IC's. Besidas the size advantage, the VLSI $k S$ encoder also has the potential advantages of requiring less power and having a higher rellability. Finally, it is shown that such chips can easily be multiplexed to improve the encoding sperd. The symbol-sliced logic structure presented in the report could also be applied to design VLSI RS decoders [12]. A separate report on this subject will be provided.

REFERENCES

[1] Reed, I.S., and Solomon, G., "Polynomial Codes Over Certain Finite Fields," J. Soc. Indust. Appl. Math., 8, pp. 300-304.
[2] Forney, G.D., Concatenated Codes, The MIT Press, Cambridge, Mass., 1966.
[3] Odenwalder, J.P., "Opt tmum Decoding of Convolutional Codes," Ph.D. dissertation, Syst. Sci. Dept., Univ. of Calif., Los Angeles, 1970.
[4] Odenwalder, J.P., et al. "Hybrid Coding System Study," submitted to NASA Ames Research Center by Linkabit Co., San Diego, Calif., Final Report, Contract No. NAS-2-6722, Sept. 1972.
[5] Rice, R.F., "Channel Coding and Data Compression System Considerations for Efficient Communication of Planetary Imaging Data," Technical Memorandum 33-695, Jet Propulsion Laboratory, Pasadena, CA., June 1974.
[6] Rice, R.F., "Potential End-to-End Imaging Information Rate Advantages of Various Alternative Communication Systems," JPL Publication 78-52, June 15, 1978.
[7] Hauptschein, A., "Practical, lligh Performance Concatenated Coded Spread Spectrum Channel for JTIDS," NTC '77, pp. 35:4-1 to 4-8.
[8] Liu, K.Y., and Lee, J., "An Experimental Study of the Concatenated ReedSolomon/Viterbi Channel Coding System Performance and its Impact on Space Communications," JPL Pub. 81-58, Pasadena, CA, Aug. 15, 1981; also in Proc. Nat. Telecommun. Conf., 1981.
[9] Liu, K.Y., and Woo, K.T., "The Effects of Receiver Tracking Phase Error on the Performance of the Concatenated Reed-Solomon, Viterbi Channel Coding System," in Proc. Nat. Telecommun. Conf., 1980, pp. 51.5.1-51.5.5; also JPL Pub. 81-62, Pasadena, CA, September 1, 1981.
[10] Petersun, W.W., and Weldon, E.J., Jr., Error Correcting Codes, The MIT Press, 1972.
|l|| Berlokamp, E.R., "Bettor Reod-Solomon Encodors," prosented at Callt. Inst. of Tech. EE Semtnar, Pasadena, (A., Der. 12.1979.

 (in, sopt. 1-4, 1981.

APPENDIX

VLS 1 RELED-SOLOMON ENCODER FOR THE PROPOSEI NASA/ESA

TFLEMETPY (:HANNEL CODING STANDARD

Ator the complethon of the VISI RS oncoder project, the following set ot lis rode paramebors have beon proposed in the NASA/iSA tolematry chamel rodlng: stamdard (liot. Al):
(1) primilfve polynomial

$$
x^{8}+x^{7}+x^{2}+x+1
$$

(?) semerator polynomial

$$
g(x)=\prod_{1=112}^{143}\left[x-\left(1^{11}\right)^{1}\right]
$$

where a sat lisfles the equat ion

$$
x^{8}+x^{7}+x^{2}+x+1=0
$$

(3) Number of bits per symbol (J) $=8$.
(4) Number of symbols per code word $(N)=255$.
(5) Number of correctable symbol arrors (E) $=16$.
(6) Interleaving depth (I) $=5$.

Note that the foregoing RS code parameters are those used in the design example In Section IV with two excoptions. These are the primitive polynomial (1.e., the fleld genorator polynomial over $G F(2)$ and the code generator polynomial. Thest polynomials were selected by Berlekarip in an architecture which minimizes the discrete ICs. Reference A2 provides a detaded riescription of such an architecture. To adapt to lits new set of "s code rarameters, one
needs to use a new field element table as well as a new table of generator polynomial coefficients. These are given in Tables $A 1$ and $A 2$ respectively.

Thus, to design a VLSI RS encoder for the new code parameters, one only needs to replace the generator polynomial coefficienis ROM table shown in Figure 5 by the coefficients given in Table A2 under the heading ${ }^{11}$. Also one needs to replace the finite field multiplier shown in Figure 7 by the multiplier shown in Figure Al.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALTTR.

	g°	
$\begin{gathered} \dot{\Psi} \\ \stackrel{\rightharpoonup}{\tilde{g}} \end{gathered}$	-	
$\begin{aligned} & \hat{\tilde{\sim}} \\ & \underset{\sim}{\tilde{n}} \\ & \underset{\sim}{n} \end{aligned}$	- ${ }_{\sim}^{\square}$	
ت İ In	$\stackrel{\text { ®̈ }}{\sim}$	
-	$m^{\frac{6}{6}}$	
\star	$\frac{\square}{1}$	
\%	$\stackrel{E}{i}$	
	π	
	䂞	

ORIGINAL PAGE IS OF POOR QUALITY

Figure Al. Logic structure of a serial-parallel finite field multiplier which performs $x^{i} * x^{i}$ modulo $x^{8}+x^{7}+x^{2}+a+1$.

REFERENCES

[Al; "Guidelines for Data Communications Standards: Space Telemetry Channel Coding (Issue-3)," prepared by the NASA/ESA Working Group for space data system standardization (NEWG), Jan. 1982.
[A2] Perlman, M. and Lee, J., "Reed-Solomon Encoders - Conventional Versus Berlekamp's Architecture," JPL IoM 3610-81-119 (internal document), July 10,1981 (also to appear as JPL publication).

