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ABSTRACT

An empirical model has been generated to estimate diversity
gain on earth-space propagation paths as a function of earth terminal
separation distance, link frequency, elevation angle, and angle between
the baseline and the path azimuth, This analysis utilized 34 diversity
experiments which have been conducted in Canada, England, Japan, and
the United States during the past decade. The resulting model repro-
duces the entire experimental data set with an RMS error of 0.73 dB.

The separation distance dominates the dependence of the diversity
gain, The dependence on Tink frequency is small but significant. No
jdentifiable dependence on baseline orientation was found.
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L. INTRODUCTION

{
/!

| Path diversity has been found to be a useful ¢4 ir some cases,
necessary technique to provide acceptable reliabi1ity on earth-space
communication links operating above 10 GHz. This technique takes
advantage of the tendency of rainfall to occur in 1imited spatial re-
gions in order to overcome the deleterious effects of rainfall attenu-
ation. This 1s accomplished by placing two earth terminals such that
the probability of rainfall attenuation occurring simultaneous on both
paths is significantly less than the probability of rainfall attenuation
occurring on either individual path, Although the redundant hardware
normally associated with a single earth terming1 may be removed to the
remote diversity site in order to hold costs down, the costs of the
additional site, the connecting Vink and the switching capability must
be weighed against the vesulting increase in 1ink reliability.

Little progress has been made in the deveélopment of theoretical
models applicable to this method. Therefore, a need still remains to
establish an empirical model which will provide the 1ink desianer with
sufficient information for design purposes. Such a model was developed
earlier [1]; this model was based on the experimental results available
in the early 1970's. This model established the dependence of diversity
gain on the separation distance hetween the earth terminals. However,
the question of the dependence of diversity gain on link frequency
remained. And, furthermore, this early model predicted a fixed diversity
gain for extremely deep fades which has been found to be incorrect in
subsequent experiments.,

The publication of results of a number of diversity experiments
have now made it possible to reexamine and improve this empivical model.
The results of thirty-four experiments were used in this‘studyﬁﬁo
establish the dependence of diversity gain on separavion distane,

Tink frequency, elevation angle, and the angle between the baseline
and theﬁbath azimuth. The dependence on separation distance is strongest

1



with the other dependences being weaker but significant. The medel was
also generalized to remove the constraint that the diversity gain in-
crease as rapidly as the attenuation for deep attenuations.

IT,  DIVERSITY GAIN

Diversity gain, GD’ is a measure of the reduction in attenuation
exceeded for a fixed percentage of time as a result of selecting the
larger of the two received signals at two separated earth terminals on
an instantaneous basis. In order to determine the diversity gain it is
first necessary to find the average single site attenuation associated
with each fixed percentage of time as shown in Figure 1. Diversity gain
is then the difference between the average single site attenuation and
the diversity (joint) attenuation for each fixed percentage of time.
Since the average single site attenuation distribution establishes a
unique relationship betwien attenuation and percentage time, the diversity
gain may be viewed as either a function of average single site attenu-
ation or of percentage time., The former is generally found to b2 more
useful and will be utilized in the following.

Diversity improvement, ID, is another parameter which may be use-
ful for describing diversity performance. It can be defined as the
ratio of the average single site percentage time to the diversity
percentage time for fixed attenuation as shown in Figure 1. However,
this approach suffers from two disadvantages, First, diversity improve-
ment cannot be established for very deep fades, i.e,, small percentages
of times, due to experimental limitations. This is a consequence of
the fact that, for very deep fade levels, the diversity attenuation
distribution usually falls well below the temporal resolving capability
of the experiment. Secondly, this parameter is based on measurements
which occur over markedly different intervals of time. Thus, for
experiments of limited duration, the uncertainties in these levels are
quite different. This property leads to randomness which is not as
evident in the use of diversity gain. Theoretically, of tourse, these
two approaches are equivalent given ideal data sets.
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III. EXPERIMENTAL DATA BASE

The results of thirty-four diversity experiments were utilized
for the analysis presented below. These experiments are tabulated in
Table 1 along with the references from which the data were obtained.
The experiments utilized were restricted to direct satellite beacon
measurements and radiometric emission measurements where no frequency
scaling was utilized. The frequencies associated with these experiments
ranged from 11.6 to 30 GHz, and the earth terminal separation distances
ranged from 1.7 to 46,9 km, The conventional azimuth, a, and elevaiion,
g, angles of the propagation paths are also listed in Table 1 along with
the orientation, y, of the baseline separating the earth terminals.
The orientation of the baseline is measured from true north as is con-
ventional for the azimuth angle of the path. The orientation of the
baseline relative to the propagation path, A, will be defined as the
difference between o and y taken such that

0<a < 90°, (1)
These definitions are shown in Figure 2,

The diversity gains, Gp, associated with these experiments were
extracted for average single site attenuation values of 2, 3, &, ++»
dB up to the highest value available for each experiment. This procedure
yielded 312 values of diversity gain. These values along with the
parameters shown in Table 1 were then stored in a disk file to permit
convenient processing.
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IV,  DATA ANALYSIS

As in the earlier analysis, [1], a nonlinear regression was
performed to find the coefficients, a and b, which provided the least
mean square error fit between the experimental data set and the ana~
lytic form,

6y = a(1-e™d) (2)

where d is expressed i km. This analysis was performed as a function
of average single site attenuation, A, so that two families of cnef-
ficients, a(A) and b(A), were obtained for integer values of A from

2 to 10 dB, The resulting coefficients are shown in Figures 3 and 4.
The coefficients shown in these figures are actually the final result
of the iterative application of the procedure described in this section,
The process was, however, very stable with only minor changes occurring
after the first iteration.

These coefficients were then modeled by the following analytical
expressions:

a = 0.648 - 1.6 (1-e70: 1A . (3)
b = 0.585 (1-e”0:098R) (4)

where A is expressed in dB and the numerical constants were determined
by a regression analysis. These expressions are of the same forms as
those used in the earliyer model except that the leading coefficient

in the expression for a was not forced to be unity. This eliminates
the problem in the earljer model associated with deep fades.

Having found the dependence, Gy, of the diversity gain on single
site fade depth, the experimental data set was normalized to remove

Lo i
i
i "




Figure 3.

ORIGINAL PAGE 1S
QF POOR QUALITY

| L
» 4 6 8 10 12 14

A [dB)
SINGLE SITE FADE DEPTH

Coefficient a versus average single site fade depth, A.



0.5

0.4 -

ORIGINAL
OF POOR

PAGE IS
QUALITY

j"ﬂ.
+/
o= f
or—T7TT1 1T T 1. 1 |
o 2 4 6 8 10 12 I4
A [dB]

SINGLE SITE FADE DEPTH

1

Figure 4, Coefficient b versus average single site fade depth, A.

10



[~

f fatadet 3

40 e e i (T4

its depetdence on separation distance, d, and average single site fade
depth, A, The resuiting values,
G
Gf . ‘G‘% ’ (5)

shown in Figure 5, were then used to establish the coefficients in the
following analytic expression by a regression analysis:

6 = 1,64 ¢0+025F (6)

where f 15 expressed in GHz, This expression shows a moderate frequency
dependence declining with increasing frequency, Equation (6) is plotted
in Figure 5 along with the normalized data.

Next, the frequency dependence was also normalized out of the
original data set and the dependence on @levation angle, #, Was soughtt

GB " E'SG‘F . (7
The values of GB along with the model resulting from a linear rearession
analysis

GB = (,00492 g + 0,834 (8)

are shown in Figure 6. § is expressed in degrees. This regression
indicates a weak increasing dependence on elevation angle,

Finally, this process was repeated seeking the dependence on
the orientation of the baseline relative to the propagation path,

Gy
O " S, -

A very weak increasing linear dependence was found as shown in
Figure 7:

N



ORIGINAL PAGE IS
OF POOR QUALITY

f [GHz]
L'NK FREQUENCY

Figure 5, Normalized diversity gain, Gey Versus
Tink frequency, f.

12



ORIGINAL PAGE IS
OF POOR QUALITY

3':—
+
2--1 +
+
+¢ : -
| = - -—4:* |
¥ v 4
0 T T T 7T 1T
O 10 20 30 40 50 60 “70 80 90

ELEVATION ANGLE, 8 [DEG.]

Figure 6. Normalized diversity gain, G, versus
glevation angle, B.

13



ORIGINAL PAGE 18
OF POOR QUALITY

3-!
* ¥
2" +
G&S EEF + ‘ +
i n
? ¥ +$ *
0

f ] T
0 lo 20 30 40 50 60 70 80 90

ORIENTATION ANSLE, A [DEG,]

Figure 7. Normalized diversity gain, G,, verius orientation A,
of the baseline relative to %he propagation path.

14

AR b by ot

ST T I —me



A

-

GA = 0,00177 A + 0,887 (10)
where 4 is expressed in degrees,

The dependence of the diversity gain on the orientation of the
baseline itself was also examined. However, no discernible dependence
was found,

The entire preceding analysis was performed iteratively., The
changes found during the second iteration were quite small, and those
found during the third iteration were negligible,

Finally, the resulting model,
GD = GdeGBGA (1)

was compared with the original data set. The resulting RMS error was
0.73 dB. This value indicates that the model produces a satisfactory
characterization of diversity gain over a wide range of separation djs-
tances, frequencies, elevation angles, and relative baseline orien-
tations.

V. CONCLUSIONS

Thirty-four diversity experiments were studied to establish an
empirical model for the prediction of diversity gain. The resulting
model characterizes diversity gain as a function of average single
site fade depth, separation distance, 1ink frequency, path elevation
angle, and orientation of the baseline relative to the propagation path.
The model reproduces the original data set with an RMS error of 0,73 dB.
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VI. RECOMMENDATIONS

It 1s recommended that the improved empirical model presented
here be used for the calculation of diversity gain on earth-space
propagation paths.

16
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