General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

THE USE OF TETHERS
FOR
PAYLOAD OREITAL TRANSFER

CONTINUATION OF
INVESTIGATION OF ELECTRODYNAMIC STABILIZATION AND CONTROL OF LONG ORBITING TETHERS

Contract NAS8-33691

Semiannual Progress Report
For the period 1 September 1981 +hrough 28 February 1982

Volume II

Principal Investigater
Dr. Giuseppe Colombo

Co-Investigators

Dr. Manuel Martinez-Sanchez
Mr. David Arnold

Table of Contents

t
List of Figures i.
List of Tables iil.
1.0 Introduction 1.
2.0 Study Approach to Dynamic Behavior of the Tether. 2.
3.0 Payload Transport Along the Wire. 2.
4.0 Simulation of a Payload Lounch Using an Orbiting Tether facility 21.
Appendix A A-1.The Use of Tethers for Payload Orbital Transfer - Final Reporton Subcontract SV1-52006 submitted to the Smithsonian Astro-physical Observatory by The Space Systems Laboratory of theMassachusetts Institute of Technology.

List of Figures

Figure 1. Motion during the first 500 seconds with a 30 ton payload climbing at $10 \mathrm{~m} / \mathrm{sec}$ starting 1 km from the bottom of a 250 km wire. Part a) is ithe in-plane displacement of each mass vs. time, part b) is the tension and part c) is the radial vs. in-plane configuration at 5 second intervals.

Figure 2. Motion during the first 2400 seconds of a payload climbing the dether. Part a) is the in-plane, part b) is the tension, part c) is the in-plane vs. redial at 25 second intervals plotted at eodal scaie in both axes, and part d) is the in-pla:- vs. radial with the in-plane axis expanded.

Figure 3. Motion during the first 24000 seconds of a payload climbing the tether. Part a) is the in-plane motion. part b) is the tension, part c) is the radial vs. in-plane configuration at equal scale, and part d) is the radial vs. in-plane with the in-p?ane axis expanded.

Figure 4. Last 130 seconds of a payload climbing the tether to an upper launching platform. The motion of the upper platform is shown relative to the payload climbing the wire. Part a) is the radial vs. time, part b) is the in-plane, and part c) is the in-plane vs. radial.

Figure 5. Last 15 seconds of a payload climbing the tether to an upper launching platform. The motion of the upper platform is shown relative to the payload climbing the wire. Part a) is the radial behavior vs. time, part b) is the in-plane behavior vs. time and part c) is the in-plane vs. radial behavior.

Figure 6. Payload climbing the tether to an upper launching platform with an initial out-of-plane displacement. Part a) is the in-plane, part b) the out-of-plane, part c) the in-plane vs. radial, and part d) the out-of-plane vs. radial.

Figure 7. First 2000 seconds of the deployment. Part a) is the tension vs. time, and part b) is the radial vs. in-plane configuration.

Figure 8. Altitude $H(\mathrm{~cm})$ and velocity $V(\mathrm{~cm} / \mathrm{sec})$ of the Shuttle (mass 1) and subsatellite (mass 2) plotted at 500 second intervais during the deployment phase. The period from 18000 to 25000 seconds is a steady state integration after completion of the deployment. a) Shut,tle altitude vs. time, b) subsatellite altitude vs. time; c) shuctle velocity vs. time, d) subsatellite velocity vs. time.

Figure 9. Radial vs. in-ilane configuration for the deployment and steady state phase jus* after deployment.

Figure 10. Tension vs. time and radial vs. in-plane configuration during partial retrieval. Parts a) and b) are after payload release on the forward swing; parts c) and d) are after release on the backward swing.

Figure 11. Altitide (cm) and velocity ($\mathrm{cm} / \mathrm{sec}$) of the orbital cenier during the deployment phase and steady state integration just. after completion of deployment.

List of Tables

Table 1 - Apogee, perigee, and semi-major axis at various itages of the launch sequence. The values are for the orbital centers of the masses listed in the fourth column, namely the Shuttle (80 tons), the lower pallet (6 tons), upper pallet (4 tons), upper pallet plus payload (23.109 tons). Shuttle plus lower pallet (86 tons), and payload (19.109 tons). Run 1 is the deployment, runs 2 and 3 are partial retrieval after release on the forward and backword swings respectively, and runs 4 and 5 are steady state: runs from the end of the retrieval in runs 2 and 3 :"espectively to the next apogee passage.

This report presents the results of a study of "The Use of Tethers for Payload Orbital Transfer" and is Velume II of the Semi-Annual Report required by the contract. This work was carried out under Modification 5 of Contract NAS8-33691 originally titled "Investigation of Electridynamic Stabilization and Control of Long Orbiting Tethers." Dr. Giuseppe Colombo is Principal Investigator on this contract. The Smithsonian Astrophysical Observatory (SAO), studiad the dynamic behavior of the tether and the Messachusetts Instftute of Technology (M.I.T.), under subcontract SVI52006. studied the facilities and systems required for "The Use of Tethers for Payload Orbital Transfer." The results of the M.I.T. study are presented in Appendix A of this report.

The general introduction to the nature and applications of the present work can be found in the initial sections of Appendix A. The body of Appendix A contains detailed technical discussions of varibus tether systams. A numerical verification of some of the crucial dynamical calculations made in Appendix A is contained in the SAO work presented in the first part of this report.

Concurrent with this effort, SAO iso performed, under Modiftcation 4 of the same contract. "The Study of Certain Tether Safety Issues" also with Dr. Colombo as Principal Investigator. The results of that study are given in Volume 1 of this Semi-Annunl Report.

The body of this report has been assembled from the monthly reports submittiad under this contract revised and augmented where necessary for clarity and completeness. This report is intended to stand alone as a surtatary of the work done on "The Use of Tethers for Payload Orbital Transfer."

The author of this report is Mr. David A. Arnold. The author of Appendix A is Dr. Manuel Martinez-Sanchez.

2.0 Study Approach to Dynamic Behavior of the Tether

The SKYHOOK program has been used to do simulations of two cases considered in the M.I.T. study of the use of the tether for paylond orbital transfer. The purpose of using SKYHOOK is to provide more detailed and realistic simulations of the cases considered in the theoretical studies done at M.I.T. In particular, there is the need to study oscillation of the system during the various operations. In the case of transporting a payload along the wire, the radial velocity introduces cortolis forces that could set up transverse oscillations of the system. These could be a problem espectally as the payload approaches the end of the wire.

The use of an orbtting tether system by the Shuttle involves the onerations of deployment anc retrieval which may excite oscillation of the system. The SKYHOOK program has been used to verify the theoretical predictions of the orbits of the Shuttle, tether system, and payload made by M.I.T. and to determine the extent to which the results are influenced by librations of the system.

3.0 Payload Transport Along the Wire

One of the cases considered in the M.I.T. study is the transport of a payload along the tether from a heavy lower platform to an upper launching platform. A simulation has been done using the SKYpank program to study the dynamics of the system as the payload moves along the wire. We assume that the payload has means oi grasping the tether and controlling its speed of trans Since the net force due to the gradient of the gravitational and centripital forces is away from the center of gravity of the system, the payload will have to be dissipating energy for most of the trip from heavy lower platform to the upper launching platform.

The simulation which has been done integrates the motion of three mass points - the base platform, the payload, and the upper launching platform. The mass of the tether is neglected. A constant transport speed of $10 \mathrm{~m} / \mathrm{sec}$ has been used in this first simulation. The mass of the base platform is 300 tons, the payload is 30 tons, and the launching platform at the top is 10 tons. The altitude of the base is 300 km and the wire is 250 km long. The diameter of the wire was set to 2 mm , which is in fact not sufficient to withstand the tension load. The only effect of this assumption in the simulation is to make the wire more elastic than it would be with a thicker tether. For simplicity the integration has been started with the payload 1 km from the bottom moving at $10 \mathrm{~m} / \mathrm{sec}$. The startup phase has been neglected. The radial velocity results in coriolis forces that push the payload to the rear. Runs have been done for $100,500,2400$, and 24000 seconds in order to approach the problem gradually in anticipation of possible instabilities.

The climbing of the payload along the wire has been simulated in the SKYHOOK program by making the natural length of each of the two wire segments a function of time. The infitial lengths of the lower and upper segments of wire are chosen in such a way that they will be 1 and 249 km in length respectively when the system is stretched to equilibrium. At later times the length of the lower segments is computed as $l_{1}+v t$ and the iength of the upper segment is $l_{1}-v t$, where v is the velocity of the payload and l_{1} and l_{2} are the initial lengths.

In the simulation, not too much happens in the first 100 seconds. Figure 1 shows the results for the first 500 sece ds. Part a) is the inplane motion vs. time, part b) is the tension and part c) is the radial vs. in-plane configuration at successive time intervals. Mass 1 is the lower platform, Mass 2 the upper platform, and Mass 3 the moving paylnad. Coriolis forces result in a displacement of the payload to the rear (positive in-plane

Figure 1 Motion during the first 500 seconds with a 30 ton payload climbing at $10 \mathrm{in} / \mathrm{sec}$ starting 1 km from the bottom of a 250 km wire. Pai't a; is the in-plane displacement of each mass vs. time, part b) is the tension and part c) (next page) is the radial vs. inmplane configuration at 5 second intervals.

displacement of Mass 3 in figure 1a). The upper platform is generally moving forward and closer to the lower platform during this time period. In figure ib we see that the tension in the lower segment is initially lower than that in the upper segment. This is because the cencer of gravity is initially about 7.44 km from the lower platform. The tension is greatest at the center of gravity in equilibrium. The payload will initially have to expend energy to get to the center of gravity and will then coast the rest of the way up. As the payload moves up, the center of gravity will shift upward and the payload will be at the center of gravity 8.06 km from the lower platform. The tension in the lower wire segment oscillates with decreasing frequency as the payluad moves up the wire. The natural period for a 30 ton mass at the end of a 1 km Kevlar wire 2 mm in diameter is about 73 seconds. At 5 km the period is about 164 seconds. These numbers agree roughly with the periods seen in the plot. In 500 seconds the payload moves from 1 km to s, m from the lower platform. Figure lc shows the inplane ve. radial configuration at 5 second intervais plotted at equal scale in the two axes. We see the slight bending of the wire to the right as a result of coriolis forces.

Figure 2 shows the behavior during the first 2400 seconds plotted at 25 second intervals. Part a) is the in-plane vs. time, part b) is the ten-
 at successive time intervals. In part a) we see that the upper nuss which nad been moving forward for the first 1000 seconds has moved to the rear and is almost in line with the payload climbing the wire. In part b) we see that the tension is now greatest in the lower section since the payload passes the center of mass of the system at about 700 seconds. The frequency of the tension oscillations is continuing to decrease as the length of the lower section of wire increases. Part c) shows the radial vis. in.plane configurations at 25 second intervals plotted at equal scale in both axes.
(a)

(b)

Figure 2. Motion during the first 2400 seconds of a payload climbing the tether. Part a) is the in-plane, part b) is the tension, part c) is the in-plane vs. radial at 25 second intervals plotted at equal scale in both axes, and part d) is the inplane vs. radial with the in-plane axis expanded.
of roon quanity
E

镸
MASS SYMBOL

Part d) shows the same thing with the in-plane axis expended to show the in-plane movement with better resolution. The features described in part a) can be seen in this plot, especially the swinging of the top mass to the right near the end of the plot.

Figure 3 shows the behavior for the first 24000 seconds plotted ait 250 second intervals. Part a) is the in-plane, part b) the fension, and parts c) and d) show the in-plane vs. radial configuration. The period for in-plane pendulum oscillations of a tethered system is the orbital period divided by the square root of 3 . For 300 km orbit, the orbital pertod is about 5430 seconds and the in-plane period is about 3135 secouds. In 24000 seconds we would expect about 7.6 cycles. This seems to agree roughly with the results seen in part, a). The in-plane period is independent of length, so we do not see a change in period with time. Ir addition to the penoulum motion of the system as a whole we also see transverse oscillations of the payload on the wire and oscillations of the upper platform with respect to the payload. When the payload is close to the lower platform, the period of transverse oscillations of the payload is short, and the period of oscillation of the upper platform is the period for oscillations of the system as whole. As the payload climbs, the period for transverse oscillations of the payload lengthens, and the period of oscillation of the upper platform shortens. Part b) shows the tension vs. time. The tension in the lower segment continues to increase with time as the payload climbs the wire. The lengthening of the wire seen in parts c) and d) is the result of using too small a wire diameter. The computer run balted with the diagnostic that the stepsize was too small as the length of the upper segment approached zero. The last output point was at 23750 seconds and the run ended at 23881 seconds. The last

Figure 3 Motion during the first 24000 seconds of a payload climbing the tether. Part a) is the in-plone motion, part b) is the tension, part c) is the radial vs. in-plane configuration at equal scale, and part d) is the radial vs. in-plane with the in-plane axis expanded.

GBGR:AL ring is OF POOR QUALITY.

玉

130 seconds have been rerun using the last output state vector as the initial state vector as the inftial state vector of the next run. The results are plotted in Figure 4. The payload has been taken as the reference point in the plots so that we see the motion of the upper platform as viewed from the paylnad. Part a) is the radial component, part b) the in-plane, and part c) the in-plane vs. radial configuration. In part a) we see that the upper platform goes below the payload during the last couple of seconds. To give better resolution, the last 15 seconds have been plotted alone in Figure 5. Part a) is the radial, part b) the inplane, and part c) the in.plane vs. radial. Part c) clearly shows the upper platform looping around the payload in the last few seconds. It is remarkable that the behavior is stable for so long. The payload would of course have to decelerate as it reaches the platform. The rate may have to be controlled to eliminate oscillations during the approach to the launching platform.

Since the dynamics of the out-of-plane component is different from that of the in-plane, a run has been done with an initial out-of-plane displacement for the wire. The platform at the top was moved 3 km and the payload 12 meters placing it in a line between the upper and lower platfornis. The wire diameter in this run is 7.5 mm which is sufficient to withstand the tension load. The results for the first 23750 seconds are shown in Figure 6. The time required to reach the upper platform at $10 \mathrm{~m} / \mathrm{sec}$ is 24824.7 seconds. Part a) of the Figure shows the in-piane, part b) the out-of-plane, part c) the in-plane vs. radial, and part d) the out-of-plane vs. radial. The in-plane is similar to the results seen before without the out-of-plane displacement. The out-of-plane behavior is very regular and does not show the transverse oscillation induced by

Figure 4 Last 130 seconds of a payload climbing the tether to an upper launchine platform. The motion of the upper platform is shown relative to che payload climbing the wire. Part a) is the radial vs. time, part b) is the in-plane, and part c) (next page) is the in-plane vs. radial.

Figure 5. Last 15 seconds of a payload climbing the tether to an upper launching platform. The motion of the upper platform is shown relative to the payload climbing the wire. Part a) is the radial behavior vs. time, part b) is the in-plane behavior vs. time and part c) (next page) is the in-plane vs. radial behavior.

Figure 5(c). Last 15 seconds of a payload climbing the tether to an upper launching platform. The motion of the upper platform is shown relative to the payload climbing the wire - inplane vs. radial behavior.
(a)

(b)

Figure 6 . Payload climbing the tether to an upper launching platform wth an initial out-of-plane displacement. Part a) is the in-plane, part b) the out-of-plane, part c) the in-plane vs. radtal, and part d) the out-of-plane vs. radial.

contolis forces in the in-plane component. Transverse osctllations could be produced in the out-of-plane component by having the payload out of line along the wire. The run wes continued another 1070 seconds with output every 10 seconds. At the last output point which is 4.7 seconds from the end of che ascent, the platform is 20 meters above the payload in the radial direction, and 42 meters displaced in the in-plare direction. The behavior seems essentially the same as in the previous rin with no out-ofplane displacement.

In conclusion, the simulations of payload transport along the wire using the SKYHOOK program indicate that the process is quite stable. The radial motion along che wire intraduces coriolis forces that produce transverse oscillations in the in-plane, but not the out-of-plane direction. In the case of a heavy payload approaching the and of the wire at high velocity, unstable behavior would result in the last few seconds. A slowdown phase is obviously required. Additional simulations would be needed to develop an appropriate procedure and determine if the rate needs spectal control at the end to prevent the buildup of oscillations duirng the final approach.

4.0 Simulation of a Payload Launch Using an Orbiting Tether Facility

The M.I.T. section of the final Report for this contract (Appendix A) describes on page 29 a numerical example of the Snuttle launching a payload using an orbiting tether facility. The Shuttle docks with the tether platform, transfers the payload, deploys the tether, releases the payload, retrieves the tether part way such that when the tether system is released its center of gravity will be back at its original altitude, and then undocks from the tether system at apogee. After undocking the tether system continues the retrieval to the original state. The M.I.T. calculations assume the center of gravity of the system remains constant during reeling
processes and neglects the effect of librations that are generated during the reeling. Stmulations have been dons using the SKYHOOK program tu see the influence of these effects neglected in the theoretical calculations.

The deployment subroutine in the SKYHDOK program uses equations and parameters given on page 9 of NASA $7 M-X-64963$, "A tether tension control law for tethered subsatellites deployed along local vertical." The commanded length is givan by the table on page 10 of the report. The parameters on page 9 are computed for a specific subsatellite mass and orbital angular velocity, and the table of commandory lengths is for a specific tether length and deployment sequence. The table of commanded lengths has the undesirable quality of being discontinuous. In order to run the case described above the deployment subroutine has been rewritten in a more general form patterned after the retrievai subroutine. The parameters have been rewritten to use the actual masses and orbital angular velocity. Instead of using a table, the commanded length is computed as a fraction f of the actual length. For retrieval a value of .93 for f gives a slow stable retrieval. For deployment, f is greater than unity. It should be possible for f to be substantiaily greater than unity since deployment is an inherently stable operation in contrast to retrieval which must be done carefully in order to make sure there is no residual anqular momentum that will cause the subsatellite to wrap around the Shuttle during the final stages of the approach to the Shuttle.

The SKYMOOK program has an input parameter the ejection velocity to be used on deployment. This ejection velocity may be large without introducing instabilities. In this way it is possible to quickly arrive at a sufficient discance from the Shuttle to obtain an adequate gravity gradient force for maintaining tension during the rest of the deployment. During
the ini. 11 phase the kinctic energy of ejection can be used to maintain tension. This tension will eventually use up the initial kinetic energy, but by then there is sufficient gravity gradient to continue the deployment under positive tension. The tension control law uses the reel motor to simulate visco-elastic tether tuned to the llbration frequency of the tether system. The viscous part of the contirul law provides the tension needed during the initial phases of the deployment. Test runs have been done with different ejection velcities to determine suitajie value for rurining the simulations of the launcn sequence studied at M.I.T. One undesirable aspect of she dynamics is that the control law ends up slightly retrieving the system after the initial kinetic energy has been exhausted. In one test run, wire mass point hed just been deployed and the slight retrieval caused the wire length to fall slightly below the natural iength of the sire segment. Since the program is not set up to eliminate mass points during deployment, tiere was loss of tension, and the tension control law was unable to noerate properly. In lieu of pursuing a solution to this problem, which would be beyond the scope of this study, the M.I.T. case has been run without tether dynamics, integrating only the motion of the two end masses. More study of the deployment process is necessary to useful optimize the process.

In order to run the deployment, two sets of initial conditions need to be computed. The program uses only the state vector for the shuttle initially. The DUMBBELL program is set up to compute initial conditions for two or more masses. By making some changes in the program to avoid singularities, it was possible to run the program with zero tether length to get the initial conditions for the Shuttle. The parameters of the system when fully deployed must be given for the other masses. Appendix A gives equations for computing the parameters of the system at each siage
of the operation. Since the SKYHOOK runs have no tether mass included, the parameters had to be recomputed with M_{T} set to zero. The equation for $1 / L$ on page 27 of Appendix A is singular for M_{T} equal to zero. The equation has been rederived without M_{T} to get a non-singular expression. The first parameter needed to compute inftial conditions for the deployment phase is the value of x, which becomes 21.18 km with no tether mass. This places the Shuttle at 378.82 km after the deployment is completed with the upper mass at 478.82 km . A tether diameter of .5 cm is sufficient to withstand the tension load, assuming a break strength of 2.7×10^{10} dynes $/ \mathrm{cm}^{2}$ and a safety factor of 4 . Equilibrium parameters for this phase have been computed using the DUMBBELL program and used to do the deployment run with SKYHOOK.

The deployment run has been done using an ejection velocity of 5 meters/ second. Figure 7 shows the results during the first 2000 seconds at 100 second intervals. Part a) is the tensiow vs. time, and part b) is the radial vs. in-plane configuration. Figure $7 b$ uses a new plotting package recently developed in which the direction of motion has been reconciled with the order in which the configurations are plotted. Successive configurations have always been piotted to the right, but in the previous plotting package, the Shuttle motion was to the left. For this and all future plots, the direction of motion of the Shuttle is to the right. This change was implemented by reversing the sign of the horizontal (in-plane) component of each individual configuration. This is equivalent to looking at the orbit from the other side so that the direction of motion is reversed. In part a) the tension is initially high because of the damping term in the control law. The control law halts the outward motion of the subsatellite after about 500 seconds and there is a sligit retrieval during the next few hundred seconds as seen in Figure 7b. The deployment then resumes again.

(b)

First 2000 seconds of the deployment. Part a) is the tension
vs. time, and part b) is the radial vs. in-plane configuration.

One of the parameters of particular interest in this case being studied is the orbital altitude. This information is not contained in the standard SKYHOOK output. It can tu obtained from the state vector printed at each output point. For convenience in restarting runs at a narticular output point, a special version of subroutine DMPZ is used which writes the state vectors on a separate output file. A small program then reads this file to find the time requested and fomats the state vector for input to a new SKYHOOK run. This formatting program has been modified for this study to also compute the radius vector and the magnitude of the velocity from the state vector. The altitude is computed by subtracting the earth radius, and then plotted along with the velocity using the printer page as a graph.

Figure 8 shows a condensed plot of the Shuttle altitude HI, payload altitude H2, Shutile velocity V1, and payload velocity V2 during the deployment. During the firs: 1300 seconds which is roughly one quarter of an orbtt, the Shuttle altitude increases from its initial value of 400.00 km to about 400.75 km . The altitude of the Shuttle should, of course, decrease during deployment. The initial increase in altitude is the result of a slight eccentricity in the orbit introduced by the ejection velocity of 5 $\mathrm{m} / \mathrm{sec}$. This gives the center of mass of the system a radial velocity of about $1.06 \mathrm{~m} / \mathrm{sec}$ which should result in an altitude variation of about . 94 km . Figure 8 s shows the orbital eccentricity during the first revolution superimposed on the decrease in altitude resulting from the deployment. This eccentricity complicates the interpretation of the results. It couid be elfminated by giving the Shuttle the reaction velocity that it would actually acquire during ejection of payload.

Figure 9 shows the in-plane vs. radial behavior for the full deployment run. The deployment is completed at about 1800 seconds. In the SKYHOOK program, the tension at the Shuttle is computed from the control law during

Figure 8. Altitude $H(\mathrm{~cm})$ and velocity $V(\mathrm{~cm} / \mathrm{sec})$ of the Shuttle (mass 1) and subsatellite (mass 2) plotted at 500 second intervals during the deployment phase. The period from 18000 to 25000 seconds is a steady state integration after completion of the deployment. a) Shuttie altitude vs. time, b) subsatellite altitude vs. time; c) (next page) shuttle velocity vs. time, d) subsatellite velocity vs. time.

(d)

Figure 8. (Cont.) c) Shuttle velocity vs. time, d) subsatellite velocity vs. time.

deployment. When thi: tether reaches its full deployed length, the program switches to the steady state mode of integration where the tension is computed from the tether elasticity and damping. In this run, the damping parameter has been set to the value required for critical damping of che longitudinal oscillations of the subsatellite at the end of the tether. In this way, the momentum of the subsatellite is arrested without recoil at the end of the deployment. Although the tether itself has little internal damping, the reel motor could simulate a damper if operated inder an appropriate control law. At the end of the deployment, the in-plane displacement of the tether is about 15 km to the rear, which is an angle of about 8.6 degrees. After completion of the deployment, the system librates as seen at the end of Figure 9 . The libration could be avoined by introducing a control law that terminates the deployment with a slow-dowr ghase where the deployment rate is controlled so that the wire returns to the ver:ical position without overshoot.

The SKYHOOK program terminates the deployment phase at the first output point where the tether length exceeds the natural wire length given on output. The natural length is then recomputed based on the actual length and tension at the output point. In this case, the computed natural length used after completion of the deployment was 100.105 km . At the equilibrium tension of $.6939 \times 10^{9}$ dynes, the actual length of the tether is 100.6 km . Since the system is librating, the tension varies from about . 592 to .836 $\times 10^{9}$ dynes and the length from 100.54 to 100.71 km . The altitude of the Shuttle varies from 376.2 to 378.8 km and the altitude of the payload from 476.3 to 479.0 km . The computed altitudes of the Shuttle and payload fully deployed were 378.8 and 478.8 respectively. Comparison of the compited and actual altitudes is complicated by the fact that the deployed tether length is .6 km too long, the orbit has an eccentricity causing an altitude fluctuation of about .94 km , and the system is librating with an amplitude that
can cause an altitude fluctuation at the ends of about one km . The maximum altitude of the system is about equal to the theoretically computed value, but the average altitude seems to be on the order of one km lower. It might be useful to do more careful analysis of deployment, retrieval, and librations to study possible interactions with the orbital dynamics of the center of mass. The output from the SKYHOOK program contains the information necessary to compute the work done by the reel motor, the gravitational potential, the kinetic energy of the center of mass, and about the center of mass. The orbital angular momentum can also be studied.

In order to see the effects of libration, the rest of the study is divided into two cases. In the first case, the payload was released during the forward swing of the tether at the point where the tether is vertical and has its maximum forward velocity. In the second case the payload is relersed on a backward swing. The orbit of the payload after release requires no numerical integration and can be calculated from the state vector at release. The orbital parameters of interest are the semi-major axis and the eccentricity e. The semi-major axis is given by

$$
a=1 /\left(2 / r-v^{2} / G M\right)
$$

and the eccentricity is given by

$$
e=\sqrt{1-r^{2} v_{1}^{2} / G M a}
$$

where v_{\perp} is the tangential velocity. The program for plotting the radius vector r and the magnitude of the velocity v has been nodified to compute the tangential velocity from the state vector and calcuiste a and e at the time requested on input. The apogee and perigee are giver. by a + ae and a - ae.

The state vector at 18800 seconds has been used to calculate the orbit of the payload released on a forward swing. The payload goes into an orbit with a perigee of 478.4 km and a apogee of 1075.0 km . For the
backward swing the state vector at 20400 seconds has been used. The paylond orbit in this case has a perigee of 476.7 km and an apogee of 896.1 km . The apogee is almost 180 km higher when the payload is released on the forward swing.

The state vectors at 18800 seconds and at 20400 seconds have been used as the initial conditions for the second stage of the operation wich is retrieval of the subsatellite until the center of gravity of the tether system is at the original altitude of 400 km at apogee. With the tether mass included, the tether should be retrieved to a length of 50.56 km . Without the tether mass, using the formula

$$
1 / L=M_{L}\left(M_{L P}+M_{U P}\right)\left(M_{S H}+M_{L P}\right) /\left(M_{T O T} M_{U P} M_{S H}\right)
$$

the system should be retrieved to a length of 47.068 km (the terms in the equation are as defired on page 24 of Appendix A. Figure 10 shows the results of two retrieval runs. Parts a) and b) are the tension and in-plane vs. radial plots after release on the forward swing. Parts c) and d) are the tension and in-plane vs. radial plots after release on a backward swing. The case for the forward swing was run for 7400 seconds until the tether was retrieved to a length of 39.17 km . The case for the backward swing was run for 760 n secorids to a tether length of 39.38 km . Interpolating in the plots of tether length vs. time to obtain the point where the tether is 47.068 km iong gives 5970 seconds for the forward case and 6028 seconds for the backward case. In Figures 10 b and 10 d we see that the initial librations have been damped out and the tether is being retrieved at a steady angle which brings the subsatellite slightly ahead of the Shuttle. An appropriate control law could return the tether to the vertical before ending the retrieval if this were desirable.

Figure 10. (Cont.) Behavior after payioao release on the backward swing.

The SKYHOOK runs have been done with output every 100 seconds. In order to obtain the state vector where the tether length is 47.068 km it is necessary to interpolate in the output. The program described earlier for reading the out.put state vectors and formatting them for input has been modified to interpolate between the output points. As a check, the tether length is also computed for the interpolated state vector. The interpolated state vertors at these times have been used as input to the third stage of the processing which is steady state integration from the end of the retrieval to the next apogee passage where the Shuttle undocks with the tether system. In order to determine the orbit of the tether system after undocking from the Shuitle the program for reading the state vectors has been modified to read the masses of the upper and lower pallets, and compute the state vector for the center of gravity of the tether system. This state vector is then used to calculate the post release semi-major axis and eccentricity of the orbit of the tether system.

The first runs done in the steady state phase were unsatisfactory because of the linear interpolation used to obtain the initial conditions from the output of the retrieval phase. Since both the position and velocity are rotating vectors, the linear interpolation results in a systenatic shortening of the magnitude of the radius vector and velocity, which makes the orbits too low. The perigee is reduced by approximately 7 times the error in the radius vector which was about 10 km in one of the cases. The interpolation has been modified by retaining the same linear interpolation for the direction of the state vectors but obtaining the magnitude of the vectors by linear interpolation between the magnitudes of the output position and velocity vectors. This method should give much better results particularly for a circular or low eccentricity orbit. For each of the two cases (payload release on the forward and backward swings) the orbit of the center of mass
$0 . F$ the tether system after undocking at apogee has been calculated arialytically from the state vector at apogee. The finai retrieval run to put the tether into its original condition has been omitted since it does not appear to be essential judging from analysis of the runs up to this point.

An assumption inherent in the theoretical formulas used to calculate the state of the system at various stages is that the center of mass of the system does not change significantly during deployment and retrieval. In a long system, there is a difference between the center of mass and the "orbital center" of the system defined as the point where the gravitational and centrifugal accelerations are equal. For this case, the orbital center of the whole system fully deployed is at 399.756 km when the center nf mass is at 400 km . That is there is a difference of almost $1 / 4 \mathrm{~km}$ between the two centers of the system. The angular velocity before deployment in a circular orbit at 400 km is $.001131402 \mathrm{rad} / \mathrm{sec}$. When deployed with the center of mass at 400 km in a circular ortit the angular velocity is $.001131463 \mathrm{rad} / \mathrm{sec}$. The program for computing the orbit of the center of mass has been tested on a short equilibrium run in the fully deployed state. The program computed an apogee of 401.46 km and perigee of 400.00 km . The distance from the apogee to the orbital center at 399.757 km is 1.70 km w^{2}-h is 7 times the distance of .243 km between the center of mass and the orbital center. Since it is the orbital center of the system that orbits the same as a free particle, it has been decided to use the orbital center rather than the center of mass as a reference point for studying the motion of the center of the system. The position of the orbisal center of the system \bar{r} is given by the expression

$$
r=\left[\Sigma m_{i} r_{i} /\left(\sum m_{i} / r_{i}^{2}\right)\right]^{1 / 3}
$$

where the r 's are measured from the center of the earth. The program has been modified to compute the state vector at the orbital center and derive the orbital parameters of that state vector.

In order to study the behavior of the center of the system as a function of time, two additional plots giving the altitude and velocity of the orbital center have been added to the program that reads the output state vectors. Figure 11 shows the plots for the deployment phase of the operation. The orbital eccentricity resulting in fluctuations of about .93 km shows clearly at the beginning of the run. There is a decrease in mean altiturle at the end of the run to about 398.5 km . The decrease in altitude is larger than can be attributed to the difference between the center of mass and the orbital center. The decrease of 1.5 km is on the order of other minor effects and has not been studied to understand the underlying reasuns. An approach for studying the problem is discussed earlier in this report. Plot's of the altitude of the center of mass have been done for the other phases also. Since the other phases are all less than two orbits it is difficult to deternine a mean altitude from the plots. Orbital elements have been computed at the beginning and end of each run for the orbital center. In addition, the elements for the tether system and the Shuttle have been calculated from the state vector at the time the Shuttle undocks at apogee.

Table 1 gives the apogee, perigee and semi-major axis (SMA) in km for the times of interest in all the SKYHOOK runs. Run 1 is the deployment of the system out to 100.6 km . Run 2 is the retrieval to 47.068 km after releasing the payload at 18800 secolds on a forward swing of the tether. Run 3 is the retrieval after release on a backward swing at 20400 seconds. Run 4 is a steady state integration starting from the state vector after 5970 seconds of retrieval in run 2. Run 5 is a steady state integration using

Figure 11. Altitude (cm) and velocity ($\mathrm{cm} / \mathrm{sec}$) of the orbital center during the deployment phase and steady state integration just after completion of deployment.

Table !

Line	Run	Time	Masses	Apogee	Perigee	STA
1	1	0	$86+23.109$	400.9365	399.0645	400.0005
2	1	18800	$86+23.109$	390.5903	256.9313	j)8. 2608
3	1	10800	19.109	1075.0220	478.4437	776.7329
4	1	20300	86+23.109	400.2854	397.2581	398.7717
5	1	20400	19.109	896.1484	476.7392	686.4438
6	2	0	$86+4$	382.1875	265.7070	323.9473
7	2	5970	$86+4$	382.5229	266.0826	324.3028
0	3	0	$86+4$	380.6198	301.6923	341. 1561
9	3	6206	$86+4$	380.9478	301.8230	341.3054
10	4	0	$86+4$	382.5229	266.0826	324.3028
11	4	5100	$86+4$	322.5223	266.3773	324.2098
12	4	5100	$6+4$	404.6969	379.3752	392.0361
13	4	5100	80	380.3441	251.5480	315.9460
14	5	0	$8 \varepsilon+4$	320.9478	301.8230	341.3854
15	5	4050	$86+4$	380.8854	301.8820	341.3037
16	5	4850	$6+4$	419.8848	396.5453	402.2153
17	5	4850	80	370.7827	287.4502	333.1355

Apogee, perigee, and semi-major axis at various stages of the launch sequence. The values are for the orbital renters of the masses listed in the fourth column, namely he Shuttle (80 tons), lower pallet (6 tons), upper pallet (4 tons), upper pallet plus payload (23.109 tons), Shuttle pius lower pallet (86 tons), and payload (19.109 tons). Run 1 is the deployment, runs 2 and 3 are partial retrieval after release on the forward and backward swings respectively, and runs 4 and 5 are steady state runs from the end of the retrieval in runs 2 and 3 respectively to the next apogee passage.
as input the state vector after 6.06 seconds of retrieval in run 3 . In run 1, the lower mass is 86 tons and the upper is 23.109. In the other runs, the lower mass is 86 tons and the upper is 4 tons. For runs 4 and 5 the state vector for the orbital center of the tether system alone has been computed at the time of undocking. The mass of the lower pallet is 6 tons and the upper is 4 tons. Finally, the state vector for the shuttle (80 tons) at the apogee of runs 4 and 5 has been used to get the orbit of the Shuttle after undocking from the tether system. The masses listed in the Table indicate which configuration is being computed.

Line 1 in Table 1 is the orbit at the beginning of the deployment. The computed eccentricity agrees with the plots of altitude in Figure 11. Lines 2 to 5 are the orbital parameters at the time of payload release on the forward (18800 sec) and backward (20400 sec) swings. The average semimajor axis of lines 2 and 4 is 398.5 km indicating a drop of 1.5 km during deployment. This agree: with the results seen in the plots of the orbital altitude vs. time. The semi-major axts of the orbital center is about .5 km higher on the backward swing (line 4) than on the forward swing (line 2). Lines 6 and 7 give the orbital parameters at the beginning and end of the partial retrievai after release on the forward swing at 18800 sec . The semi-major axis has increased by .36 km during the retrievs. Lines 8 and 9 are the corresponding results for retrieval after release on a backward swing. The increase in altitude here is .23 km . The semi-major axis is about 17.1 km lower in run 2 than in run 3 as a result of the nreater enarev given to the payload by releasing on the forward swing. Lines 10 and 11 give the orbital parameters at the beginning and end of the steady state run from the end of retrieval to tether system release at apogee for the case of payload release on the forward swing. The semimajor axis is nearly constant. Line 12 is the subsequent orbit of the
tether system after undocking, and line 13 is the final nrbit of the Shuttle. Lines 14 through 17 give the corresponding information for the case of payload release on a backward swing of the tether. Lines 14 and 15 show no change in semi-major axis. The average semi-major axis of the tether system after undocking obtained from 1 ines 12 and 16 is 400.1 km . This is within. 1 km of the theoretically calculated altitude of 400 km . The orbit of the tether system is 8 km higher than predicted for the case of payload release on a forward swing and 8 km lower on the backward swing. The tether system orbits are eccentric by 12.7 and 11.7 km for the forward and backward cases respectively. The average perigee of the Shuttle after undocking from the tether obtained from lines 13 and 17 is 269.5 km . This agrees within . 1 km with the theoretically calculated value of $\mathbf{~} 69.4 \mathrm{~km}$. The final Shuttle perigee is 13 km lower or higher depending on whether the payload is released on the forward or backward swing.

In conclusion, the simulations done with the SKYHOOK program give good agreement with the theoretically calculated results from the M.I.T. study and indicate the order of magnitude of the perturbing effect of librations not considered in the theoretical study. The results indicate some altitude changes during reeling operations, and fluctuations within the libration cycle. These effects are about an order of magnitude smaller than the impact of releasing the payload on the forward or backward swing.

Appendix A

The Use of Tethers for Payload Orbital Transfer

Final Report on Subcontract SVI-52006
Submitted to the Smithsonian Astrophysical Observatory
by the Space Systems Laboratory of the
Massachusitts Institute of Technology

Prepared by

Manuel Martinez-Sanchez

March 22, 1982
Page

1. General Introduction 1
2. Tethers Shuttie Facilities 7
2.1 Calculation of the Shuttle Mission Envelope with an On-Board Tether System 9
3. Space-Based Low Mage Tether Syatem: Preliminary Considerations 18
3.1 System Deacription 18
3.2 Space-Based Low Mass Tether Systems for Orbital Transfer Aseist 22
3.3 Performance Analysis 24
3.4 Numerical Example 28
3.5 Estimation of Pallet Masses for the 100 Km Case 31
3.6 Estimatad Economic Performance 33
4. Platform-Based Intermediate Tether Sy日tems 35
4.1 Introduction 35
4.2 Tether-Assisted Insertion Into GEO Transfer Orbit 35
4.3 The Platform Propulaion System 38A
4.4 The Ferry Drive System 47
4.5 Dynamics of the Tether System during Ferry Transfer 51
5. Large-Scale Tether Sybtams for LEO-GEO Transfer 54
Orbital Perturbations of the LEO Platform 68
Appendix 1. Tether Properties and Tether Mass 72
6. Calculation of Tether Mans 72
7. Properties of Tether Materials 76
Appendix 2. Platform Orbit Recovery Using Impulsive Thrust 85
Appendix 3. Platform Orbit Recovery Using Low Thrust 88
8. Orbital Perturbations of the Platforms 88
9. Low Thrust Steering Law 90
10. Propellant Consumption 93
Appendix 4. Dymamics of the Tether System During Ferry Transfer 95
11. Formulation of the Problem 95
12. The WKB Solution (Ferry Not Near the Ends) 99
13. Boundary Conditions. Behavior When the Ferry is Near One End. 107
14. Discuasion of the Reaults 112
15. Some Numerical Estimates 113

Rocket propulsion is a well eatablished method for moving payloads in apace, and has thus far enjoyed a virtual monopoly in auch applications. This preaminence is likely to continue for the foreaemble future, but with the advent of new and more flexible tools for acceas to space, such as the Space Shuttle, and with the constant atruggle for more payload per unit cost, we are ilkely to witness the development of alternatives and supplements that will achieve the aame mission with leas mass (and cost) expenditure. Planetar; gravity assist can be regarded ac one such alternative, in practical use today; other concepts, auch as gamagnetic propulsion, interplanetary ramjets, etc., have been proponed es future developments.

In this report, we explore a relatively simple concept for enhancing interorbital transfar capabilities. It is well known that in an extended orbiting body only certain points (those on the Earth-centered circle through the body's orbital center) are in centrifugal-gravitational equiibrium. Other points in the body undergo a nat resultant force (the gravity gradient force), which, for elongeted bodies, tends to align them along the local vertical. Thus, if astellite is joined to larger spacecraft in circular orbit by means of a long, lightweight cable (tether), its equilibrium position would be directly above or directly below that epacecraft, along the local vertical. A certain point (close to the system center of masa), intermadiate between satelilite and spacecraft, would be in true orbital equilibrium, while the cwo aris mases would be pulling on the tether. If the masses of the two bodies are m_{i} and m_{2}, the cable length
is L and the orbital angular velocity is Ω, the cable tension in

$$
F=3 \Omega^{2} L m_{12} \quad ; \quad m_{12}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { (reduced mass) }
$$

which can he recognized as the local weight of body of mass man (close to the smaller of the two masese), times a factor $3 \mathrm{~L} / \mathrm{R}_{\mathrm{ORBIT}}$. This force arises because the innear velocity of the (outer) mass (inner)
is (greater) than that required for orbital equisibrium at ite (smaller)
location. Therefore, if the cable is cut, the upper body will entur an elliptical orbit whose perigee is the initial altitude of that body in the compound structure; simultaneously, the lower body enters another elliptical Grbit, this one with its apogee at the initial altitude of this body.

We can now imagine the lower body to be either an orbiting Space Shuttle or an orbiting apace platform, and the upper body to be a relatively light satellite; if the tether is long, the satellite will go into a high elliptical orbit, while the platform will enter an orbit with a slightly lowered perigee. If we want the system to be reuseable, some thrust must be applied to the platform to raise it to its original orbit. We will see in what follows that the total impulse required to do this is at least equal to that which would be required to place the satellite in its high ultimate crbit using thrust instead of the tether. However, and this is the crucial point of the system, the platform can be raised using high specific impulse, low thrust, electric rockets in the period betseen missions, while in each mission the satellite is Anserted in its orbit in a rapid, quaid-impulsive manner by the tether.

Alternatively, in the case where the Shuttle is the lower epacecraft, we may choose to reenter after releasing the payload, with no naed to reestablish the orbit. Scme operational complications arime in this case, as will be discussed in the text, but the maneuver is faeible within certain limits. The net effect in either case can be large overall propellant savings in the upper stage, or, equivalently, the ability to transfer significantly larger payloads with a given amount of propellant.

In the present study we have identified and aesesaed variety of ways to implement these concepta. Given the limited scope of the effort, the study has been restricted to conceptualizing each eystem, performing first order orbital calculations to determine payload gains, and, at least for a few of the most attractive systems, carrying out conceptual deaigns that allow estimates of mass and power to be made. In addition, detailed tether dynamical studies were made for one case where apparently no prior work existed (see Appendix 4), and very limited cost estimations were made for some of the systems in order to gain insight on return-oninvestment times.

For the purposes of this final report we have chosen to present the material in what sems to be the most logical order, namely, from the simpler and most clearly feasible systems to those whose implementation offers difficulties, but which, by the same token, offer the greatest potential promise in terms of performence. This is not the order in which the work evolved chronologicaliy, and some unevenness of detail may be unavoidable as a consequence.

For the sake of clarity, we present here a brief description of each of the systens studied, with some coments on their salient features. A
detailed djecussion of each of then is to be found in the body of the report:
(a) Techers as Shuttle facilitias. The simplest implementation of the tether concept is when the tether system is permanentiy attached to the Shuttle and is flown into and out of space in each miseion. Clearly, this displaces some Shuttle payload, and its utility must be restricted. We found, however, that for high energy Shuttle missions, such as polar orbits, where payload is not limited by structural considerarions, the Shuttle flight envelope can be appreciably extended by a short, rewindable on-board tether. For 28.5° ortits, no advantage was found using tethers.
(b) Space-based, low mass tether systems. Another promising system is one where the tether and its associated hardware are left in space after each reuse. For tether lengths not exceeding anme $100-150 \mathrm{~km}$, depending on payload, the lower mass can be provided by the Shuttle itself, docked to the rewinding end of the tether. Payloads are brought up by the Shuttle, each attached to its Orbital Transfer Vehicle; they are mounted on the tether end, the tether is deplcyed and the payload is released, after which the OTV fires to place the payload in its transfer orbit. The Shuttle now enters a lower elliptical orbit, but not low enough to force reentry; the tether is partially rewound and released at a condition such that, after autonomous completion of rewinding, it is back in its original orbit. The Shuttle now reenters.

For the lengths indicated for this and the previous system, the tether mass is fairly small, and winding-unwinding operations, using rate controls that have been studied elsewhere (Ref. 1.1), should present little problem. Payload increases of some 13% are indicat for a Centaur OTV used from LEO to GEO with a 100 Km tetker. Deep space igaions can also be significantly enhanced.
(c) Platform-based intermediate tether systems. Higher perfomance can be obtained with longer tethers. At this point, however, a lower platform more massive than one empty Shutile becomes neceseary to prevent reantry after release of the paylood. Orbiting space stations of the kind envisioned for the 1990's are natural candidates, Now, the platform orbit must be restored by application of low level, long duration, high apecific impulae thrust. This, in turn, establiehes fairly high requirements for electical power on the space station, which may become the factor limiting , achievable tether length. In addition, the tether itself becomes too maseive to be conveniently rewound after each mission; an alternative concept that was evolved consists of a "ferry" or elevator which travels the length of the thet (up to some 250-300 Km) to deliver the payload=OTV combination and return. The dynamics of this travelling ferry was studied in some detall, and no real problems were encountered, although, as in other systams, climbing rate must be carefully controlled. For Centaur transfers from LEO to GEO, a 250 Km tether of this sort allows some 38% payload increase, but requires about 400 kw of electrical power in the space station (for orbit recovery in 14 days).
(d) Large-scale tether bystems for LEO-GEO transfer. We also studied more ambitious systems involving two permanent tethers, one in LEO (radially out) and one in GEO (radially in). The payload-OTV is released by the lower tether and a first impulse is applied by the OTV to enter a Hohmann orbit. At its apogee, a second impulse matches speed with the lower end of the GEO tether, and, after capture by it, the payload travels along the tether to GEO orbit. By proper choice of paremeters, the rendeavous can be attempted again after an integer number of orbits. This syatem can in principle be pushed to the limit where no propulsion is needed on the payload, if the

```
Initial LEO orbit is equatorial; however, this requires tethere with lengths
of the order of 1200 Kin in LEO and 10,000 Km in GEO, and of great mass.
Intermediate solutions are possible using nonzero impulses in LEO and GEO;
for instance, a 430 Km LEO tether (weighing 7.5 times the OTV mass) and a
5900 Km GEO tether (of mass 10 times that of the OTV) can be combined to
obtain a factor of 2.8 in payload capacity for a Centaur vehicie.
```

Ref. 1.1 Charles C. Rupp. NASA TM x-64963 "A tether tension control
law for tethered subsatellites deploye along the local
vertical."
2. Tethers as Shuttle Facilities

Use of a tether system as a permanent facility of the Shuttle does not appear justified for missions that fall within the operational envelope of the orbiter with its integral OMS tanks. This is because, even though the tether allows deployment of the payload from a lower Shuttie orbit (typically an elliptir one), the payload cannot be increased due to other constraints, such as payload bay structural integrity and $c . g$. location. The only savings are then in the use of less OMS fuel, but thee cannot balance the loss of revelue from the payload displaced by the tether itself. An example is shown in Table 2.1: a 47 Km :ather allows payload to se placed in a $500 / 500 \mathrm{~km}$ orbit from a Shuttle in a $185 / 453 \mathrm{Km}$ orbit, with an OMS fuel savings of $\$ 33,000$. However, the mass and length of the tether facility dieplaces payload worth $\$ 2.80 \mathrm{M}$. Similar results are shown for a polar orbit.

There are some possible scenarios where a Shuttle based tether could be cost-effective. These refer to low Earth orbits high enough (particularly for polar orbits) that payload is limited by OMS fuel capacity, including extension kits. A trade-off study is next presented to determine how far the operating envelope can be extended by a permanent Shuttle tether.

If the OMS fuel extension kits are not available to the Space Transportation system, then the relevant comparison is between the basic Shuttle with only the integral OMS tanks and the Shuttle with the on-board tether system. The advantages of the tether system are then apparent, resulting In a flight envelope comparable to that afforded by the fuel kits.

TABLE 2.1

COST TO LOW ENERCiY MISSION**

	Space Telescope	Polar Orbit
	Orbit $500 \mathrm{Km} / 28.8^{\circ}$	$1000 \mathrm{KJ} / 97^{\circ}$
Weight of Payloar: ; kg,	11,000	3,000
Length of Pavl sad (m)	13.1	9.0
Diameter of Payload (m)	4.26	
Cost to current Shuttle (SM)	20.20	23.07
```Cos: to Shuttle + Orbiter based tether system ($M)```	23.00	29.8
Lost revenue from displaced payload (\$M)	-2.80	-6.73
OMS fuel savings (\$M)	(0.033)	(0.083)
Benefit of using tether system (\$M)	-2.77	$-6.647$
**		
1) Cost per Shuttle flight $=\$ 27.3$ at ETR		
\$46.9 at WTR		
2) Elliptic Shurtle orbit + tether tra perigee altitude $=185 \mathrm{~km}$	fer	

We adopt as a prototype mission one where payload is to be delivered to a circular orbit by releasing it from a tether which is attached $: 0$ a reeling device carried on board the Shuttle, and which is subsequently retrieved by it. The Shuttle itself flies an elliptic orbit with its apogee lower than the payload orbit (by an amount equal to the tether length). It is injected into this orbit by a velocity increment applied by the OMS at some point in a standard 185 Km circular parking orbit. After release of the payload, the Shuttle entars a new elliptic orbit with perigee lower than the original 185 km , and then de-orbits by application of an additional $\Delta V$ (such as to give a theoretical perigee of 0 Km ). For calculations, one further OMS firing of $30.5 \mathrm{~m} / \mathrm{sec}(106.7 \mathrm{~m} / \mathrm{sec}$ for WTR launch) is sesumed for insertion of the loaded Shuttle into the parking orbit, and a $12.8 \mathrm{~m} / \mathrm{sec}$ $\Delta V$ reserve is assumed.

An example launch sequence (for an intended payload orbit of 600 Kn altitude and $28.5^{\circ}$ inclination) is shown in Table 2.2.

Starting from the parking orbit at radius $R_{p}$ (equal to the perigee length of the transier orbit), the Shuttle enters the transfer orbit of apogee $R_{A}$ by an OMS firing having a $\Delta V$ of

$$
\begin{equation*}
\Delta V_{\text {insertion }}=\sqrt{\frac{\mu}{R_{p}}}-\frac{\sqrt{2 R_{A}}}{\frac{R_{A}+R_{p}}{}}-1 \tag{1}
\end{equation*}
$$

The angular velocity at apogee can be expressed as $V_{A} / R_{A}$, and must be equal to that in a circular orbit at the final payload radius $R_{f}=R_{A}+L_{T}$, where $L_{T}$ is the tether length. This gives

$$
\begin{equation*}
\frac{\mu}{R_{A}^{3}} \frac{2 R_{p}}{R_{A}+R_{p}}=\sqrt{R_{f}^{3}} \tag{2}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{2 R_{p}}{R_{f}+R_{p}-L_{T}}=\frac{\left(R_{f}-L_{T}\right)^{3}}{R_{f}^{3}} \tag{3}
\end{equation*}
$$

This equation is to be soived for the tether length $L_{T}$ in terme of the parking orbit radius and the final orbital radius. $\Delta V_{1 n s}$ then follows trom Eq. (1), using $R_{A}-R_{f}-L_{T}$.

# Table 2.2. Typical sequence of mission events STS/on-board tether system <br> From tir to $28.5^{\circ} 600 \mathrm{~km}$ circular orbit 

Event	$\begin{gathered} \text { delta-V (OMS) } \\ \mathrm{m} / \mathrm{sec} \end{gathered}$	Resultan: $h_{B} / h_{p}, k m$
Shuttle insertion	30.5	185/185
Injection burn	100.4	534.3/185
Payload release or		600/600
Shuttle after P.L		516.2/68.8
Shuttle deorbit	55.1	516.2/0

The tension $T$ in the tether is constant if $1 t s$ own mars can be ignored relative to '. satellite mass. If we further assume that the satellite mass is small compared to that of the Shuttle (a conservative aseumption), and that the tension at perigee can be estimated as if the orbit were circular with $R=R_{p}$, we can write (Ref. 2.1)

$$
\begin{equation*}
T=M_{L} \frac{v_{p}^{2}}{R_{p}} \lambda \frac{3}{1+\lambda}+\frac{\lambda}{1+\lambda} 1^{2} \tag{4}
\end{equation*}
$$

where $M_{L}$ is the payload mass and $\lambda=L_{T} / R_{P}$.

For a Kevlar Aramid cable of 0.9 mm diameter the mass is $\mathrm{m}=0.59 \mathrm{Kg} / \mathrm{Km}$, and the minimum break strength is ${ }^{\mathrm{c}} \mathrm{Br} .=90 \mathrm{Kg}=882 \mathrm{Nt}{ }^{*}$. Allowing a safetv factor $f_{s}\left(f_{s}=5\right.$ was used in calculations), the number of strands is $\frac{T . f}{T_{B r}}$, and the tether mass is

$$
\begin{equation*}
M_{T}=\frac{T \cdot f s^{m}}{T_{B r}} L_{T} \tag{5}
\end{equation*}
$$

The mass of the reeling and other devices is expected to be proportional to the tether mass. Based on Ref. (2.1), we estimate for the total tether system

$$
\begin{equation*}
M_{T s}=4.7 \mathrm{M}_{\mathrm{T}} \tag{6}
\end{equation*}
$$

Notice that, to this approximation, $M_{\text {rs }}$ is proportional to $M_{2}$, the

Ref. 2.1 NASA CR-132780, Appendix D, p. 222.

[^0]payload mass; the quantly
\[

$$
\begin{equation*}
m_{T \mathrm{~T}}=\frac{\mathrm{M}_{\mathrm{Ts}}}{\mathrm{M}_{\mathrm{L}}} \tag{7}
\end{equation*}
$$

\]

is therefore a function of the orbital parameters, but not of $M$.

The mass of the orbiter at ME burncut is

$$
\begin{equation*}
M_{o}=M_{C e}+M_{L}+M_{T s}+M_{p} \tag{8}
\end{equation*}
$$

where $M_{o e}$ is the empty mass and $M_{p}$ the mass of OMS fuel carried (either that in the integral OMS, or including an integer number of OMS kits as well). The fuel required for insertion into the parking orbit plus injection into the transfer orbit (total velocity increment $=\Delta V_{1}$ ) is $M_{0}\left(1-\mu_{1}\right)$ where

$$
\begin{equation*}
\mu_{1}=e^{-\Delta V_{1} / g I_{\Delta p}} \tag{9}
\end{equation*}
$$

The mass after releasing the payload is then $M_{0} \mu_{1}-M_{L}$, and after the deorbiting burn $\left(\Delta V_{2}\right)$, the mass is

$$
\begin{align*}
& \left(M_{0} \mu_{1}-M_{L}\right) \mu_{2}, \text { with } \\
& \mu_{2}=e^{-\Delta V_{2} / g I_{s p}} \tag{10}
\end{align*}
$$

This mass is to be equated to $M_{o e}$ : $M_{s}$, since, by assumption, all the OMS fuel has been used up:

$$
\begin{equation*}
\left[\left(M_{o e}+M_{L}+M_{T s}+M_{p}\right) \mu_{1}-M_{L}\right] \mu_{2}=M_{o e}+M_{T s} \tag{11}
\end{equation*}
$$

ard using $M_{T s}=M_{L} m_{T s}$,

$$
\begin{equation*}
M_{L}=\frac{M_{p_{1} H_{2}-M_{\mathrm{oe}}\left(1-\mu_{1} \mu_{2}\right)}^{m_{\mathrm{TS}}\left(1-\mu_{1} \mu_{2}\right)+\mu_{2}\left(1-\mu_{1}\right)}}{\text { (1) }} \tag{12}
\end{equation*}
$$

This equation allows calculation of the maximum payload capability of a Shuttle-tether system combination for a given payload orbit and a given oMS option. An additional limitation was used, namely, that the sum of the pavload, tether system and OMS kits should not exceed 29500 Kg , the full load capability of the Orbiter.

The results of these calculations are displayed in Fig. 2.1 (for ETR launch into a $28.5^{\circ}$ inclination orbit) and Fig. 2.2 (for WTR launch into a $104^{\circ}$ orbit). The basic Shuttle envelopes shown for reference were calculated from the same basic equations, modified to allow variable parking orbit" altitudes and no tether.

Fig. 2.1 shows that the combination Integral-OMS-plus-tether has substantially more payload capacity than the basic Integral OMS Shuttle for a $28.5^{\prime \prime}$ orbit; $1 t$ allows,for instance, 21 Ton payloads to a 700 km orbit without any extension kit. The same is true when OMS kits are added to both systems (without and with tether). When we consider the envelope of the curves for the tether system with varying numbers of extension fuel kits, we find that it does not excead the corresponding envelope without tethers. Thus, if extension kits were available, the usefulness of the on-board tether would be marginal.

For the polar orbit case, Fig. 2.2 shows the same, and even more pronounced, gains in payload-altitude performance for polar orbits. In fact, even the envelope is now extended: i.e., certain miesions which are simply not accessible to the Shuttle with any number of extension
kits now become feasible. This is the case for orbits between 500 and 700 Km , for which payload extension of some 2 tons become possible using the integral $O M S$ tanks plus a tether system. An example of the use of this extended capacity would be the possibility of placing the 11 ton Space Telescope in a 600 Km polar orbit. Similarly, while no payload can be delivered by the Shuttle to orbits higher than 960 km (even with two extra fuel kits), the tether system with one single kit allows some 4.4 tons to be placed in 1000 Km orbit (2 tons with the tether and no kit).
Payload mass (Kg)
$m$

Payload mass (Kg)
$M$
ORICNAL PRGE IS OF POOR QUALITY.
Figure 2.2
Ferformance of STS/on board tether systen.
Ferformance of STS/on board tether system.
(STS from WTR to $104^{\circ}$ orbit).
17

3. Space-Based, Low Mass Tether System.

Preliminary Considerations.

The concept of leaving the tether in orbit for reuse was introduced early in our study, and validated by simple orbital dynamics calculations, which showed marked increases in payload capability both for orbit transfers and for deep space missions. In these initial calculations, the reaction mass attached to the tether base was assumed large for simplicity, and no account was taken of tether mase (although the tether length was restricted to less than 400 Km to keep its mass within reasonable limits. see Appendix 1).

Table 3.1 shows some results of these calculations, assuming a twostage IUS vehicle is attached to the payload and used for the initial and circularization firings in LEO-GEO transfer. The tether is attached to a massive LEO base. Payload increases of roughly $20 \%$ per 100 Km of tether are predicted.

Similar results for deep space mibsions are shown in Table 3.2 , this time in conjunction with a Centaur vehicle. The value of $c_{3}=80 \mathrm{Km} / \mathrm{sec}^{2}$ is typical of direct Galileo orbits, and, as shown, an $8 \%$ payload increase is predicted per 100 Km tether length. For other excess hyperbolic velocities, the results are given in Fig. 3.1.

### 3.1 System description.

While these calculations clearly show the desirability of such tether systems, they ignore the complications due to the finite masis of the lower platform. In particular, these can be important if thie platform is siaply the Space Shuttle, plus possibly a lighter station at the lower tether end.

## Table 3.1 <br> TAYIOAD BEWPEIT ION GLOEYNCHRONOUS OREIT TRANSFER*

```
Tethov Irro,th
 (1.a.)
Payload toight
 (kg)
```


## Payload increaze

 (\%)0
2465

3122
3675
4326
5100 93
*Calculation conditions:

1. SHUTLLE + 'Two stage ..... I.IS
Stage ..... 1. ..... 2
Isp (sec) $291.9 \quad 289.7$
f stru. ..... 946 ..... 933
WT prop. (kg) ..... 9707 ..... (2722)
2. Parling srbit: $300 / 300$ km
3. Tether system dock with shuttle in parking orbit.

## Table 3.2

PAYLSAD BGNEFIT FOR SOLYR SYSTLM EXILORATJON**


$$
\begin{aligned}
& \text { CRUEMAN floE } \\
& \text { OF POCR QuALITY }
\end{aligned}
$$

$$
\begin{array}{ccc}
x 10 \\
\text { mass (kg) } \\
\text { matected }
\end{array}
$$

This combination is quite attractive in that it reduces to a minimum the needs for elaborate and costly space platforms, and is therefore amenable to an early implementation. In the remainder of this section we deacribe and analyze a reuseable, low mass tether system for use in conjunction with the present Space Transportation System.

### 3.2 Space-based, low mass tether fistems for orbjtal transfer agsist.

The core of this system is a pair oi relatively light space platiorms connected by a tether of up to about $100 / 200 \mathrm{~km}$ length. The lower platform can be quite similar to the pallets used as Airlucre Support Equipment. (ASE) for mating the IUS rocket vehicle to the Shuttle pryload bay. It would be designed to house the wind/unwind mechanism and controls, to house the fully wound tether during initial launch and between missiors, and to dock and interfac with the Shuttle for subsequent missions.

The second, or upper platform, has p.s its mission to receive the OTV/ payload package from each loaded Shutcle after its docking with the lower platform, to hold this package during tether unwinding, and to release it after stabilization at the fully extended position. Due to the low gravity gradient forces involved in this system, this upper pallet can be considerably lighter than the aforementioned ASE.

After releasing the OTV, the tether would be rewound in stages as discussed below, and the whole system would be left in orbit for reuse. Since its total mass is of the order of 15 Tons, the systom can be delivered by one aingle initial Shuttle flight. Its reuseability is in principle only limited by tether wear.

Following is a step-by-step description of the typical mission for this system:

Stage 0: Shuttle flight delivers tether system to orbit (brtween $300-400 \mathrm{Km})$. System consists of a lower pallet, designed to dock with subsequent Shuttles and to wind-unwind the tether, a length of tether $(100-200 \mathrm{~km}$, depending on payload), and an upper pallet, or teleoperator, designed to hold the OTV and payload.

Stage 1: Later, another Shutcle flight docks with tether system. OTV + payload is transferred to upper pallet. Tether is unwound slowly, at controlled rate. After stabilization, OTV is released.

Stage 2: OTV fires, places payload on transfer ellipse. At GEO. OrV circularizes.

Stage 3: Shuttle, docked to pallet and with extended tether enters an elilptic orbit, with perigee above sensible atmosphere. While in this configuration, tether is partially rewound, until its c.g. coincides at apogee with original c.g. altitude.

Stage 4: Snuttle releases (at one apogee passage) tether system, which graya in original circular $t$. After release, pallet completes tether rewinding. Shucte itself goes into siightly modifiud elliptic orbit, from whichit reenters as desired. Tether system is ready for reuse.

### 3.3 Performance analysis.

Nomenclature:


Before payload release (but after tether deployment), the overal cog. (G) is at a distance $x$ from the Shuttle-mated lower pallet:

$$
x=\frac{M_{L}+M_{u p}+M_{T} / 2}{M_{T O T}} L
$$



After $M$ separates, the new $c . g$. (G') is at


Point $G^{\prime}$ now enters an elliptic orbit with apogee
$R_{\text {LEO }} R_{a}^{\text {ax }} R_{\text {LEO }}-\left(x-x^{\prime}\right)$
and apogee velocity

$$
v_{a}=\sqrt{\frac{\mu_{R E O}^{3}}{}}\left[R_{L E O}-\left(x-x^{*}\right)\right]
$$

Using

$$
v_{a}^{2}=\frac{\mu}{R_{a}} \frac{2 R_{p}}{R_{a}+R_{p}} \text {, and expanding }
$$

to $1^{8 t}$ order in $\left(x-x^{*}\right) / 2_{E O}$, we find from the above

$$
k_{p}=R_{L E O}-7\left(x-x^{\prime}\right)
$$

Next, we slowly rewind, while $G$ ' stays in the same elliptic orbit. When che new tether length is $\ell$, the distance between $G$ ' and che Shuttle is

$$
\tilde{x}^{\prime}=\frac{M_{u_{P}}+\tilde{M}_{T} / 2}{M_{T O T} M_{L}} \ell
$$


where $\tilde{M}_{T}=M_{T} \ell / L$
and $\quad M_{L P}=M_{L P}+\left(1-\frac{\ell}{L}\right) M_{T}$
so that $M_{T}+M_{L P}=M_{T}+M_{L P}$

Also, the distance to the cig. $\left(G_{T S}\right)$ of the tether system alone is

$$
\tilde{x}_{T S}=\frac{M_{u p}+Q_{T} / 2}{M_{L P}+M_{T}+X_{u p}}
$$

The orbital eccentricity $e=\frac{R_{a}-R_{p}}{R_{a}+R_{p}} \simeq 6 \frac{x-x^{\prime}}{R_{L E O}}$ forces in-plane oscillations of the tether at the orbital frequency and with amplitude e. It can be shown readily that their effect Goff second order in $\frac{x-x}{R_{\text {LEO }}}$, and will not be included in this analysis (although they should be assessed In a more careful study).

The forward speed of $\mathrm{G}_{\mathrm{TS}}$ at apogee is therefore

$$
v_{G T S} \simeq v_{a}+\left(\tilde{x}_{T S}-\tilde{x}^{\prime}\right) \frac{v_{a_{1}}}{F_{n}}
$$

We want to stop rowinding and release the IJTV at apogee when $\mathbf{v}_{\text {GTS }}$ coincides with the orbital speed at the locatisn of $G_{T S}$. 1.e., at

$$
R_{G T S}=R_{G}{ }^{\prime}+\tilde{x}_{T S}-\tilde{x}^{\prime}=R_{L E O}+\tilde{x}_{T S}-\tilde{x}^{\prime}-x+x^{\prime}
$$

This leads to the condition
$\left.\sqrt{\frac{\mu}{R_{L E O}{ }^{+x_{T S}}{ }^{-x}+x^{\prime}-x^{\prime}}}=\sqrt{\frac{\mu}{R_{L E O}^{3}}\left[R_{L E O}\right.}\left(x-x^{\prime}\right)\right]+\sqrt{\frac{\mu}{R_{L E O}^{3}}}\left(\tilde{x}_{T S}-\tilde{x}^{\prime}\right)$
or, after expansion and simplification,

$$
\tilde{x}_{T S}-\tilde{x}^{\prime}=x-x^{\prime}
$$

In words, the $c . g$. of the tethei system alone must be made to coincide with the original overall c.g. If this condition is satisfied at the instant the Shuttle detaches from the partially rewound tether system, the latter (its c.g.) will remain in the original circular orbit. Final rewinding after this time will not affect this result, and so the fully retracted tether system is ready for reuse.

Using the formulas derived for $x, x^{\prime}, \tilde{x}_{T S}$ and $\bar{x}^{\prime}$, we can now calculate the required partial rewinding length:

$$
\frac{M_{u p}+\frac{M_{T}}{2} \frac{\ell}{L}}{M_{T O T}-M_{L}-M_{S H}} \ell-\frac{M_{u p}+\frac{M_{T}}{2} \frac{\ell}{L}}{M_{T O T}-M_{L}} \ell=\frac{M_{L}+M_{u p}+M_{T} / 2}{M_{T O T}} L-\frac{M_{u p}+M_{T} / 2}{M_{T O T}-M_{L}} L
$$

or, after simplification

$$
\frac{\ell}{L}=-\frac{M_{U P}}{M_{T}}+\sqrt{\left(\frac{M_{U P}}{M_{T}}\right)^{2}+2 \frac{M_{L}}{M_{T O T}} \frac{M_{T S}}{M_{T}} \frac{M_{S H}+M_{L P}+M_{T} / 2}{M_{S H}}}
$$

where

$$
M_{T S}=M_{L P}+M_{T}+M_{u p} \text { (tether syctem wass). }
$$

After releasing the tether system, the Shuttle itself enters a new elliptic orbit with apogee ac

$$
R_{a}=R_{G},-\tilde{x}^{\prime}=R_{L E O}-x+x^{\prime}-\tilde{x}^{\prime}
$$

with apogee velocity

$$
\mathbf{v}_{a}=-\sqrt{\frac{\mu}{R_{L E O}^{3}}} R_{a}
$$

Hence its new perigee is at

$$
R_{p, S H}=R_{L E O}-7\left(x-x^{\prime}+\tilde{x}^{\prime}\right)
$$

This may in some cases be actually higher than the altitude of the Shuttle in the first perigee passage after payload release, but before any rewinding.

$h_{M I N, S H}=R_{p, G},-x^{\prime}-R_{E}=h_{L E O}-7 x+6 x^{\circ}$
$\therefore \quad$ Numerical Example.
Consider the case where the system is orbited at $R_{L E O}=R_{E}+400 \mathrm{Km}$, the tether length is 100 Km and the loaded Centaur mass is $19,109 \mathrm{Kg}$.

Of this mass. 5009 Kg are payload.
For these conditions the tether mass is (See Appendix 1).

$$
M_{T}=0.140 \times 19,109=2675 \mathrm{Kg}
$$

## PRECEDING PAGE BL ANK NOT FILMED

We find for this example $\Delta V_{p}=2235 \mathrm{~m} / \mathrm{sec}, \Delta V_{\mathrm{a}}=1448 \mathrm{~m} / \mathrm{sec}$ Using the Centaur data $M_{p}=10870 \mathrm{Kg}, M_{a}-3230 \mathrm{Kg}, I_{s p}=444$ see, the payload mass then is

$$
M_{\text {pay }}=4935 \mathrm{Kg}
$$

and the loaded OTV mass is

$$
M_{L}=18,992 \mathrm{Kg}
$$

These are indeed close to the assumed values. For comparison, if the tether were not used, one would need $\Delta V_{a}=2398 \mathrm{~m} / \mathrm{sec}, \Delta V_{p}=1456 \mathrm{~m} / \mathrm{sec}$, giving $M_{p a y}=4356 \mathrm{Kg}$. Thus, the tether system allows a $13.3 \%$ increase in payload to GEO.

The same calculation was repeated for $L=150 \mathrm{Km}, \mathrm{M}_{\mathrm{L}}=19.412 \mathrm{Kg}$ of which 5312 Kg are payload), $M_{T}=0.711 M_{L}=6910 \mathrm{Kg}$ and, on account of the higher tether mass to be rewound and stored, $M_{L P}=13,000 \mathrm{Kg}$. The results are now

\[

\]

Thus, 150 Km is still feasible with f full Centaur payload, allowing a payload increase of $20.5 \%$ over the unassisted Centaur. However, the tether system is now bulky and heavy enough that rewinding operations may begin to be cumbersome.

### 3.5 Estimation of Pallet Masses for the 100 Km Case.

From the masses and c.g. locations of the previous exmples, the tether tension can be cilculated. After payload release, but before significant rewinding, we find

$$
\mathrm{F}=980 \mathrm{Nt}
$$

whereas immediately after Shutcle detachment,
$F=530 \mathrm{Nt}$

A rewinding velocity of $1 \mathrm{~m} / \mathrm{sec}$ is assumed. This should cause librations of no more than $2-4^{\circ}$ amplitude, provided appropriate damping and terminal tension control is exerted, and implies sone 14 hrs . for each of the two rewinding phases (under Shuttle power and own puser respectively).

With these data, the power required on board the lower pallet for the autonomous rewinding phase is 530 watt. Allowing for mechanical losses and some maneuvering margin, a 1 Kw power supply is adequate. This can be provided in a variety of ways; perhaps the most compact for this application would be a $\mathrm{H}_{2} \mathrm{OO}_{2}$ fuel cell similar to those in the Shuttle itself. The mass and volume of cryogenic fuel needed is minimal, and the length of time when cryogenics must be stored on the pallet is only the duration of the rewinding phase. The mass of the 1 Kw fuel cell can be about 10 Kg , plus about 5 Kg for reactants and tankage.

The rewinding motor itself must also be on the lower pallet. It must also be used as a generator to absorb the mechanical power generated during the deployment of the tether with the OTV and payload at its end. Since
this operation is done while the pallet is mated to the Shuttle, the generated power (about 5 XW peak), can be used to supplement the Shuttle's own power supply, or can be radiated from a resistor benk. Allowing for losses, an 8 kW DC motor-generator seems adequate; at a conservative $25 \mathrm{Kg} / \mathrm{KW}$, this implies a mass of 200 Kg , to which we should add another 200 Kg for gearing to the low RPM required. Additional mass items for the lowe pallet include the reel drum and supporting structure. The volume of the lully rewound tether is about $2.1 \mathrm{~m}^{3}$; an aluminum drum 1.2 m . 10 an with a core djameter of 0.4 m and end plates of 1.6 m , using 2 cm Al . thicknesu has a mass of 200 Kg . A similar mass can be assumed for the drum suppocts.

Tre main scructure of the pallet itself, including its Shuttle interfaces, can conservatively be likened to the Airborne Support Equipment for the IUS vehicle, which has a mass of 4160 kg . After addirg the items just distussed (power, motor-generator, reel and reel aupport), the lower pallet mass cotnes to 4975 Kg . Thus, even allowing for $10 \%$ growth, the 6000 Kg used in the calculations sems conservative. Regarding the upper pallet, its iain features may dgain be likened to those of the ASE, except that, since launch loads need not be absorbed (only the approximately $1 / 20$ $g$ gravity gradient force), it must be possible to lighten its structure considerably. Some attitude control propulsion should be added, mainly for control of rotation about the tether line and of out-of-plane oscillations; no estimate of these needs is avallable, but it is unlikely thai the required thrusters and fuel would exceed 500 Kg . Altogether, the figure of 400 Kg for the upper pallet appears reasonable.

### 3.6 Estimated Economic Percormance.

It is clear that a detailed assessment of the conomies of adopting the scheme under discusision would require a much more thorough design and systems study. However, some preliminary considerations can be advanced at this point.

First, the initial development and deployment of the tether system requires some up-front investment. Since oniy medium level of technology is involved, an $R \& D$ and procurement cost of $\$ 40 \mathrm{M}$ can be estimated. Tc this we mest add the initial launch cost; assuming the Shuttle filght can be shared, the $13,000 \mathrm{~kg}$ tether systam would displace cargo revenue of aboust $\$ 18 \mathrm{M}$.

Let $c_{0}$ be the cost per Kg for tramportation to LEO ( $\$ 1000 / \mathrm{Kg}$ for the Shuttle) and $C_{\text {otv }}$ the procurement cos: of the OTV (estimated at $\$ 50 \mathrm{M}$ for the Centeur). Let also Motv , Mpay, 0 and Mpay be the OTV mass, payload mass with no tether used and payload mass with the tether eystem.

Then, the costs per Kg of payload to GSO without and with techer are

$$
\begin{aligned}
& c_{w / 0}=c_{0}\left(1+\frac{M_{\text {OTV }}}{M_{\text {pay }, 0}}\right)+\frac{c_{\text {OTV }}}{M_{\text {pay,0 }}} \\
& c_{w}=c_{0}\left(1+\frac{M_{\text {OTV }}}{M_{\text {pay }}}\right)+\frac{c_{\text {orv }}}{M_{\text {pay }}}
\end{aligned}
$$

The cost saved per flight due to the extra payload allowed by the tether is then

$$
\left(c_{w / 0}-c_{w}\right) M_{\text {pay }}=\left(c_{0} M_{O T V}+c_{O T V}\right)\left(\frac{M_{\text {pay }}}{M_{\text {pay,0 }}}-1\right)
$$

and, denoting by $C_{\text {cap. }}$. the initial capital investment, the number of flights required to pay back that investment is

$$
\begin{aligned}
& N=\frac{c_{\text {cet }}}{\left(c_{0} M_{O T v}+C_{O T V}\right)\left(\frac{M_{\text {pay }}}{M_{\text {pay,0 }}}-1\right)} \\
& \text { Using } C_{c a p}=40+18=50 \mathrm{MS}, c_{0}=\$ 1000 / \mathrm{K}_{\mathrm{B}}, \mathrm{M}_{\mathrm{OTV}}=15,000 \mathrm{~KB} \text {, } \\
& C_{\text {OTV }}=\$ 50 \mathrm{M} \text { and a } 13.3 \% \text { payload increase, we find }
\end{aligned}
$$

$$
N=6.9
$$

which indicates a very rapid payback, and fustifics ignoring discourting considerations at this stage. Other issues that nead a deeper examination are the possible increase in missice support costs due to the added compiexity of the transfer maneuver, and the impact of this maneuver on the overall Shuttle flight costs. Some compensation may occur due to the reduced deorbiting $\Delta V$ needed after the tether release.

## 4. Platform-Based Intermediate Tether Sustems

### 4.1 Introduction

```
as shown in Appendix 1 , the mass of a tether with a given mase at its end increases about quadratically with the tether length up to some 250 Km , after which, even with an optimally tapered cross-section, the mass increases much faster. The numerical examplea of sec. 3 showed that, for payloads consisting of a fully loaded OTV of the Centaur or IUS type, a free-flying, re-windable tether that uses the Shutte as reaction mass, is limited to about 150 km in length. Beyond this length, a larger reaction mass is necessary, with a means of restoring its orbit after a launch, and rewinding becomes undesirabie. In this bection we consider systems of this type, anchored to an orbiting Space Station. Ingertion of payloads into a LEO-GEO trar ser orbit is the mission studied in detail; however, other missions may be possible for a Space Station-based permanent tether facility, including capture and release of higher near-Earth satellites for inspection and repair.
```


## 4. 2 Tether-Assisted Insertion into GEO Transfer Orbit

The system to be considered can be summarized as follows:
a) A Low Earth Orbit space station is assumed to have a radial outward tether deployed as a permanent facility. It must also have some electric thrusting capability (over and above that required for drag make-up).
b) This tether is restricted to lengths below 300 km , in order to keep the tether mass from becoming dominant for its own tension. This length also provides a reasonable extrapolation of already planned tether technology ( $\sim 100 \mathrm{~km}$ ).
c) Payloads (attached to an OTV vehicle, such as Centaur or IUS) are delivered by Shuttle flights to the space station, and are attached to a sliding "ferry" for transportation to the other end of the tether. The ferry must have a braking system, a radiator for disposing of the brake heat, controls for speed and some power generation capacity for return.
d) After release from the tether and, the OTV engines are fired to supplement the velocity up to that required for insertion in a Hohmann ellipse leading to GEO altitude. warcularization in GEO is made with a second OTV firing.
Let $L$ be the tether length, $M^{\prime} P_{L}$ the mass of the combination space platform-deployed tether and $R_{\text {LEO }}$ the orbital radius of the platform before payload deployment. After deployment, the payload is at a radius $R_{p}=R_{L E O}+$ $L \frac{M^{\prime} P L}{M_{P L}^{\prime}+m}$, where $m$ is the mass of payload, OTV and ferry, while the plat.. form sinks to $R_{P L}=R_{L E O}-L \frac{m}{M_{P I}^{\prime}+m}$. The velocity of the payload just after release is $\sqrt{\frac{H}{R_{L E O}}} \frac{R_{P}}{R_{L E O}}$ and after adding a perigee impulse $\Delta V_{P}$, it becomes the perigee velocity of the transfer ellipse, with apogee at $R_{G E O}$, namely

$$
\sqrt{\frac{\mu}{R_{p}} \frac{2 R_{G E O}}{R_{p}+R_{C E O}}} .
$$

Thus

$$
\Delta V_{p}=\sqrt{\frac{\mu}{R_{P}} \frac{2 R_{G E O}}{R_{P}+R_{G E O}}}-\sqrt{\frac{\mu}{R_{L E O}}} \frac{R_{p}}{R_{L E O}}
$$

or, in dimensionless form,

$$
\begin{equation*}
\frac{\Delta v_{p}}{v_{C, L E O}}=\sqrt{\frac{2 p}{f(f+p)}}-f \tag{1}
\end{equation*}
$$

where $v_{C, L E O}=\frac{\bar{\mu}}{R_{\text {LEO }}}, p=\frac{R_{G E O}}{R_{\text {LEO }}}$, and $f=1+\frac{\lambda}{1+v}$, with $\lambda=\frac{L}{R_{\text {LEO }}}$,
$=\frac{m}{M_{\mathrm{PL}}^{\prime}}$

The usual expression for the Hohmann transfer is recovered for $=1$. At the apogee, the circularization impulse must be

$$
\Delta v_{a}=v_{C, G E O}-\frac{\mu}{R_{G E O}} \frac{2 R_{p}}{R_{p}+R_{G E O}} \text {, where } v_{C_{v} G E O}=\frac{\frac{\mu}{R_{D E U}}}{}
$$

or

$$
\begin{equation*}
\frac{\Delta v_{a}}{v_{C, G E O}}=1-\frac{2 f}{f+\rho} \tag{2}
\end{equation*}
$$

The platform mass must be large enough to prevent too low a platform perigee after release; as shown in Section 3, this perigee is $B t$

$$
\begin{equation*}
R_{P, F l}=\frac{\left(1-\frac{\lambda \nu}{1+\nu}\right)^{4}}{2-\left(1-\frac{\lambda \nu}{1+\nu}\right)^{3}} R_{L E O}=\left(1-i \frac{\lambda \nu}{1+\nu}\right) R_{L E O} \tag{3}
\end{equation*}
$$

Ar example of calculations for this system is shown in Table 4.1. The space staclor is taken to be in a 400 km orbit ( $\mathrm{R}_{\mathrm{LEO}}=6770 \mathrm{~km}$ ), while $R_{G E O}=42200 \mathrm{~km}$. The values of $V_{M A X}$ shorm are those that would gjve a 350 km platform perigee; a reduction by $1 / 1.5$ is assumed for safety, and is given as the $v$ adopted (heavier platform). The tether mass is calculateo for tapered Kevlar Aranid $\left(\rho=3.44 \mathrm{~g} / \mathrm{cm}^{3}, \sigma=1.397 \times 10^{9} \mathrm{NT} / \mathrm{m}^{2}\right.$, safety factor $=4$ ). The payloads and inicial OTV loaded masses are for an assumed Centaur vehicle (structural mass $=3230 \mathrm{~kg}$, propellant mass $=$ 10870 kg , exhaust welc ity $=4355 \mathrm{~m} / \mathrm{sec}$ ). No orbital plane change was
considered. As the table stows, there is a $20 \%$ gain in payload for a 150 km tether, and a $38 \%$ gain for a 250 km tether. The mass of the wire itself varies from 0.14 to 1.27 of the maxisum end mass. Since this mass is of $t$.. rder of 25 ton in this example, the maximum tether mass (for 250 km ) is about 32 tor. The platform mass varies from 5.3 t. 14.7 times the end mass (as a minimum); i.e., from 130 to 370 ton; presumably, this would include the empty Shuttle attached to it. All these figures are reasonable, and appear to be within the scale of the contemplated Space Operations Center, or expansions of it.


Table 4.1 Performance of tether-assisted LEO-GEO system.
$R_{\text {LEO }}=400+6370 \mathrm{~km}$.


38 A

### 4.3 The Platform Propulsion System.

The climbout of the ferry would lower the platform c.g., and the release of the payload/OTV wouid send the platform into an elliptic orbit with perigee well above the atmosphere. A propulsion system is required on board the platform to restore its orbit before the next launch. The thrust can be applied either after or during the ferry excursinn.
:ercury bombardment ion engines have been developed to the poir.t where confideilt performance and mass estimations can be made. Byers (Ref.4.1) presented a mechodology based on excrapolations from exiscing thrusters which can serve as the basis for our analysis. Specific impulses ( $\mathrm{I}_{\mathrm{sp}}$ ) from belnw 2000 sec to over 4000 sec are possible by adjustment of voltages. Very low values of $I_{s p}$ lead to high propellant resupply retes, as well as to low efficiency of the thrusters. On the other hand, very high $I_{s p}$ implies high power requirements, with attendant mass increases. We present next a study to determine the appropriate specific impulse for our application.

The input power to a batery of ion engines operating at exhaust velocity $c$, with propulsive efficiency $r^{i} p$ and thrust $F$ is

$$
\begin{equation*}
P=F c / 2 r_{p} \tag{4}
\end{equation*}
$$

and in tems of the velocity increment $\therefore V$ to be imparted to a mass $\because$ in a time $t_{b}$,

$$
\begin{equation*}
P=M c \hat{L} V / 2 r_{p}^{t} b \tag{5}
\end{equation*}
$$

In Appendix 3, an expression (Eq. (28) of that Appendix) is derived for the $\therefore V$ required to re-establish the orbit of a space station at $K_{\text {LEO }}$ after release of a payload from the end of a tether line of length $L$ :

$$
\begin{equation*}
-V=2.352 v_{c}\left(\frac{L}{R}_{\text {LEO }}\right)\left({\frac{\mathbb{m}^{\prime}}{M}}_{\text {Total }}\right) \tag{6}
\end{equation*}
$$

where $m^{\prime}$ is the mass released (OTV + payload), L is the tether length, and $v_{c}$ is the circular velocity in LEO. If the engines operate after paylad release, the mass to be accelerated is $M=M_{T_{0 T}} m^{\prime}$. Also, Eq. (5) gives the average power during ortit recovery, but, as shown in Appendix 3 , the thrust must be applied in a modulated fashion,

$$
\begin{equation*}
F=F_{0}\left(1-\frac{3}{2} \cos \theta\right) \tag{7}
\end{equation*}
$$

where e is orbital arimuth from perigec. This leads to a ratio

$$
\begin{equation*}
\frac{P_{\max }}{\langle D\rangle}=\frac{|F|_{\max }}{\langle | F| \rangle}=\frac{5 / 2}{1.176} \tag{8}
\end{equation*}
$$

Therefore the peak power required is

$$
\begin{equation*}
P_{\text {max }}=\frac{5}{2} \frac{c}{\eta_{P}} n^{\prime}\left(1-\frac{m^{\prime}}{M_{T O T}}\right)\left(\frac{L}{R_{L E O}}\right) \frac{v_{c}}{t_{b}} \tag{9}
\end{equation*}
$$

Some modification is needed if platforn thrust is also applied during the ferry climbour phase, but since $\frac{m^{\prime \prime}}{M_{T O T}}$ is typicaliy $\sim 0.1$, the impact on $P_{\text {max }}$ is minimal. Nutice the small sensitivity of $P_{\text {max }}$ to Mplatform, and the proportionality with tether length.

The amount of propeliant ( $\mathrm{Hf}_{\mathrm{g}}$ ) used foilows from Eq. (6) :

$$
\begin{equation*}
M_{H}=\frac{M \Delta V}{c}=2.352 \mathrm{~m}^{\prime}\left(1-\frac{m^{\prime}}{M_{\mathrm{TOT}}}\right)\left(\frac{L}{R_{\text {LEO }}}\right) \frac{v_{c}}{c} \tag{10}
\end{equation*}
$$

The propulsive officiency of ion engines increases as the specific impulse at which they operate is increased.

In g, neral one can write

$$
\begin{equation*}
\eta_{p}=\frac{\eta_{c D}}{1+\left(\frac{2 e V_{L O S S}}{m_{i} c^{2}}\right)} \tag{11}
\end{equation*}
$$

where $n_{c D}$ is the power conditioning and distribution efficiency, $\mathrm{V}_{\text {LOSS }}$ is the thruster power loss per ampere beam current and e and $m_{i}$ are the ion charge and mass respectively. From the detailed analysis of Byers (Ref.4.1) one can use for existing and near temn mercury ion engines at 0.95 propellant utilization fraction the values

$$
\eta_{c_{D}}=0.752, v_{\text {LOSS }}=133 \text { Volts }
$$

this gives

$$
\begin{equation*}
\eta_{p}=\frac{0.752}{1+1.282 \times 10^{8} / c^{2}} \tag{12}
\end{equation*}
$$

(an almost equally good fit can be obtained for the more physical value $V_{\text {LOSS }}=1.50$ Volts if $\eta_{c_{D}}$ is raised to 0.765 ).

The cosi per missifon includes some components that are sensitive to the choice of cxit velocity $c$ for the ion engines. These are
(n) A. recurxinQ cost $\mathrm{c}_{H_{G}} \mathrm{M}_{H_{G}}$, where $\mathrm{C}_{H_{G}}$ is the cost of mercury per ke (in orbit)
(b) Nonvecurring costs, mainiy the cost $C_{P_{s}} M_{P_{s}}$ of the power system, where $M_{p_{s}}=\alpha P_{\max }$ and $\alpha$ is the specific mass of the power system ( $K_{g} /$ watt). Other non-recurring costs that may depend on $c$ are those associated with the ion engine hardware; higher specific impulse implies smaller fuel tanks and other fuel-related components, but larger power conditioning and power-related components. Overall, Ref. 4.1 concludes that the engine system mass is insensitive to specific impulse, so we omit this from our discussion.

We are thus led to choose the engine specific impulse $c / g$ by minimizing the partial cost

$$
\begin{equation*}
\phi=c_{H_{g}} M_{H_{g}}+\frac{C_{p s}}{N} \alpha P_{\max } \tag{13}
\end{equation*}
$$

where N is the number of reuses of the power system. ising Eqs. (9; , (1U) and (11) this can be rewritten as

$$
\begin{equation*}
\phi=1.063 \frac{\alpha c_{p s}}{N t_{b} n_{c}}\left(c+\frac{c_{\ell}^{2}+c_{\alpha}^{2}}{c}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
c_{2}^{2} & =\frac{2 e v_{L O S S}}{m_{1}}  \tag{15}\\
c_{\alpha}^{2} & =\frac{1}{1.003} \frac{c_{H g}}{c_{p s}} N \frac{t_{b} \eta_{c}}{a} \tag{16}
\end{align*}
$$

Differcntiation gives

$$
\begin{equation*}
c_{O P T}=\sqrt{c_{\ell}^{2}+c_{\alpha}^{2}} \tag{17}
\end{equation*}
$$

i.e., $c_{\text {ORT }}: c_{\ell}$ for no reusability, but $c_{O P} \sim \sqrt{N}$ for many reuses.

An estimate of the cost of a multi-hundred F , solar array can be obtained from Ref. 4.2 , where detailed design and costing is performed for several types of arrays in the 400-600 kw power range. The lownst cost (for low concentration ratio GaAs cells) was found to be 326 \$/Avg. Watt, of which about 90 \$/Watt corresponds to launch costs. The array specific mass was also found to be about $10 \mathrm{Kg} / \mathrm{Kw}$ (BOL). For an assumed ratio of average to BOL power of 0.85 , this leads to $27,70(\mathrm{~s} / \mathrm{Kg}$ array cost (7630 $\mathrm{s} / \mathrm{Kg}$ for launch).

The high array launch cost just mentioned is related to the special arrangements for pressurized Shuttie 3 sy stowage and self-deployment. By comparison, supply of mercury propellant to the space station is likely to be a simple operation: we assume a cost of merccry in orbit of $\mathrm{c}_{\mathrm{H}}=2000 \mathrm{~S} / \mathrm{Kw}$ (including a comparatively minor allowance for purchase price).

The power system specific mass $\alpha$ includes not only che array itself, but also other componente, such as gimbals, regulators and battery system for eclipses. For the first two items we follow Ref. 4.3 and assume the following masses:

Gimballing system	$4 \mathrm{Kg} / \mathrm{Kw}$
Regulators	$5 \mathrm{Kg} / \mathrm{Kw}$

For the battories, we assume $\mathrm{N}_{\mathrm{i}} \mathrm{H}_{2}$ type, with energy density 17. att hr/ke and charge-discharge cificicncy of 0.77 (Ref. 4.3). The total energy storage needed can be calculated using the thrust profile of liq. (7) if the eclipse time is specificd. The worst caso for shatlowing, occurs when the sun lies in the orbital plane, and gives a shariow time

$$
\begin{equation*}
t_{s h}=2 \sqrt{\frac{R^{3}}{\mu}} \sin ^{-1}\left(\frac{R_{E O}}{R_{L E O}}\right) \tag{18}
\end{equation*}
$$

where $F_{E}$ is the Earth radius.
An additional consideration to be made pcrtains to the relative location of the eclipse zone and the orbital perjgee; this is important, since, according to $\mathrm{Eq} .(7)$, the perigee power demand is only $1 / 5$ of the peak demand (at apocec). Apogee for the perturbed platform orbit occurs at the location of payload release, and one can in principle place it at orbital noon to minimize energy storage. Since the fuel cost of moving the payload within a GEO orbit is small, it seems reascnable to assume such a releasc strategy. With this assumption, the mean power demand during eclipse is given by

$$
\begin{equation*}
\frac{\left\langle P_{s h}\right.}{P_{\max }}=\frac{2}{\theta_{s h}} \int_{0}^{\theta} \frac{\lfloor 2-3 \cos \theta \mid}{5} d \theta=\frac{2}{5}+\frac{0.2216-0.6 \dot{R}_{E} / R_{L E O}}{\sin ^{-1}\left(\frac{R_{E}}{R_{L E O}}\right)} \tag{19}
\end{equation*}
$$

where $\theta_{s h}=2 \sin ^{-1} R_{E} / R_{\text {LEO }}$ is the orbital arc in shadow. A similar calculation can be made for the rapacity excess during the sunlit phase of an orbit for an array dimensioncd for peak power.

Some results of these calculations are shown in Table 4.2.

Table 4.2

Orlij ajeicude (ids)	100	200	300	400	500	600
Nas. Shasw time (mimutes)	38.37	37.26	36.56	36.08	35.73	35.46
$<\mathrm{P}_{\text {shi }}{ }^{\prime} / \mathrm{P}_{\mathrm{naax}}$	0.1353	0.1279	0.1232	0.1201	0.1181	0.1166
$\frac{\text { Idcal storage reg'd }}{\mathrm{m}_{\max }} \text { (Kwh/k:) }$	0.08652	0.07943	0.07507	0.07222	$\therefore: 7033$	16891
$\frac{\text { Excess canacity durjng sunli }}{\text { storage required }}$	ht $2 .<23$	3.009	3.516	3.976	4.402	4.799

The last row of Table 4.2 shows that no extra array area is required for hattery charging. The storage required is only weakly dependent on orbital altiturle. Using the value 0.07222 (for 400 Km urbits), and including a battery efficiency of 0.77 , the battery mass needed is
$\frac{\text { Pattery mass }}{\text { Peak power }}=\frac{0.07222 \times 1000(\text { Watt } \mathrm{hr} / \mathrm{Kw})}{0.77 \times 17}($ Watt $\mathrm{hr} / \mathrm{Kg}) \quad=5.52 \mathrm{Kg} / \mathrm{Kw}$

Thus, including the array, gimballing, regulators and battery system, we arrive at a power source specific mass

$$
\begin{equation*}
\alpha=\frac{(10+4)}{0.85}+5+5.5=27.0 \mathrm{Kg} / \text { (Kw to engines) } \tag{20}
\end{equation*}
$$

where the factor of 0.85 accounts for the extra BOL array area required to accommodate cell degradation.

For the case where the Cei:rur OTV is used, the mass released is of the order of $20,000 \mathrm{Kg}$ (See Sec. 3), varying slightly with LEO altitude and tether length. For power estimation purposes, the ratio $\mathrm{m} / \mathrm{M}_{\text {ror }}$ will be assumed to be 0.06 ; this is compatible with a safe platform perigee height, and in any case, is an insensitive parameter (Eqs. (9), (10)). Finally, we choose a total ion engine fixing time of 14 days; as we will see below, this is about twice the ferry roundtrip time adopted in this study, and should therefore set the maximum mission frequency for the tether system.

With theso parameters, Eqs. (17), (9) and (10) read

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{OPT}}=\sqrt{1.282 \times 10^{8}+2.289 \times 10^{6} \mathrm{~N}} \\
& \mathrm{P}_{\mathrm{MAX}}^{(\mathrm{BOL})}=\frac{3.854 \times 10^{-2}}{0.85} \frac{\mathrm{c}}{\eta_{\mathrm{P}}} \mathrm{v}_{\mathrm{c}} \quad\left(\frac{\mathrm{~L}}{\mathrm{~K}_{L E O}}\right) \\
& \mathrm{M}_{\mathrm{H}}=44200 \frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{LEO}}} \frac{\mathrm{v}_{\mathrm{C}}}{\mathrm{c}}
\end{aligned}
$$

Table 4.3 shows calculated results for a 250 Km tether

N		1	10	30	100	300
$\mathrm{c}_{\mathrm{OPT}}(\mathrm{m} / \mathrm{sec})$		11,420	12,290	14,030	18,900	28,550
$\left(\mathrm{I}_{\text {SP }}\right)_{\text {OPT }}(\mathrm{sec})$		1,160́	1,254	1,432	1,928	2,913
at ${ }^{C} \mathrm{OPY}$	${ }^{n}$	0.380	0.407	0.455	0.5533	0.6498
	$P_{\text {max }}(\mathrm{KW})(\mathrm{EOL} / \mathrm{BOL})$	$\frac{331}{389}$	$\frac{332.3}{390.9}$	$\frac{338.8}{398.6}$	$\frac{345.5}{441.8}$	$\frac{483}{568.2}$
	$\mathrm{MH}_{\mathrm{g}}$ ( $\mathrm{K} / \mathrm{/mission}$ )	1,095	1,018	891.9	662.2	438.4

Table 4.3 Optimized propulsion systen parameters as a function of number of reuses, for a 250 kn tether and a 400 km LEO orbit.
and a 400 km platform orbit. These results are insensitive to orbital. height, while $P_{\text {MAX }}$ and $M_{H_{g}}$ scale in proportion to tether length. As shown, the range of specific impulses from 1500 to 3000 sec is optjmum, depending on reusability. The tradeoff between power and propellant mass is apparent from the last two rows of Table 4.3. If we adopt $I_{s p}=2000 \mathrm{sec}$ (optimum for about 115 reuses), Byers' analysis (Ref. 4.1) can be rather directly applied. The accelerating voltage and net voltage (including the decel electrode) are 2000 and 443 Volts respectively. The individual thruster diameter was selected at 50 cm . The results are sumarized in Table 4.4 (for a 250 Km tether).

## Table 4.4 Platform propulsion system characteristics

Type	Hg ion bombardment
Diameter per thruster	50 cm
Specific impulsc	2000 sec
Thrusting timc	14 days
Thrust per unit	0.546 Nt
Thrust power per unit (including distribution losscs)	9.56 Kw
No. of thrusters required	41 (+ 4 extras)
Mercury mass per mission	632 Kg
Solar array power ([OL/BOL)	$384.2 / 452 \mathrm{Kw}$
Thrust. systen mass (thrusters, thermal rontrol, power supplies, interface module structure, etc.)	5464 Kg
Solar array mass	4520 Kg
Solar array gimballing mass	$1808 \mathrm{~K}{ }_{6}$
Sular array regulators mass	2260 Kg
Battery system mass	2113 Kg
Total propulsion related mass	16,165 Kg

4.4 Jherergy Dijue Systum.

In this: suction he calculate the required power gencration and pober dissifation cipacities of the ferry vehicle that transports the payload and orv to the enc of lhe lether line.

Let in be the outbound travelling, mass, made up of the OTV, the payload and the returnable ferry

$$
\begin{equation*}
m=\mathrm{m}^{\prime}+\mathrm{N}_{\mathrm{F}} \tag{21}
\end{equation*}
$$

where in' $=\mathrm{M}_{\mathrm{O}} \mathrm{OL}+\mathrm{M}_{\mathrm{LOAD}}$ and $\mathrm{M}_{\mathrm{F}}=$ ferry mass. When the ferry is at a distance $y$ from the lower platform, its distance from the (moving) overall center of mass js $y-y_{c g}=(1-V) y-V_{T} L$, where

$$
\begin{equation*}
\nu=\frac{m}{M_{p}+m+M_{T}} \quad, \quad v_{T}=\frac{M_{T}}{M_{p}+m+M_{T}} \quad, \quad \nu_{p}=\frac{M_{p}}{M_{p}+m+M_{T}} \tag{22}
\end{equation*}
$$

and $H_{p}$ and $M_{T}$ are the lower and upper platform masses respectively. Hence, the mechanical power being gencrated when the upward velocity $j: \frac{d y}{d t}$ is

$$
\begin{equation*}
P_{u p}=3 \Omega^{2} m\left(\frac{d y}{d t}\right)\left[(1-v) y-\nu_{T} L\right] \tag{23}
\end{equation*}
$$

Notice $P_{u p}<0$ when $y<\frac{V_{T}}{1-V} L ;$ i.e., external power must be supplied to reach this point (at which time the ferry is at the overall $c \cdot g$.$) . For y>\frac{V_{T}}{1-V} L$, power is being generated.

A similar expression applies for the return trip, when the travelling mass is the ferry alone:

OF FOUR QUALTK

$$
\begin{equation*}
P_{d O 1,21}=3: 2^{2} M_{F}\left(\frac{d v}{d i}\right)\left[\left(1-v^{F}\right) y-v_{T}^{r} L\right] \tag{24}
\end{equation*}
$$

where ${ }^{F}$ and $\stackrel{F}{T}$ are analogous to $v, v_{T}$, but with $M_{F}$ replacing $m$. Hore, sinco $\frac{d y}{d t}<0$, Jorm is negntive (external power needed)
Whenever $y>\frac{V_{T}^{F}}{1-V^{F}}$, i.c., most of the time.
The first question arising is the disposition of the mechanical power available during most of the ascent phase; this power can be convenimnty ard controllably converted to electrical form by driving a D motoz-guncrator in the generator mode from the (non-sliding) guidiug pulleys which engage the tether line. Three options will be considered here:
(a) Storage of enough energy for the return trip, radiation of the remininder.
(b) Use of the generated energy to power ion engines on the ferry, thus contributing to the orbital recovery of the plat form.
(c) Radiation of all the generated energy.

Regarding option (a), we nntice that it would allow elimination of a separate power source for the return trip, such as a solar panel (supplemented b; batteries for eclipse times). Thus, the option can be assessed by comparing the required battery mass needed to that of the disfiaced power supply.

For the power supply, if one is used, the BOL array power required, assuming $85 \%$ degradation at EOL, $75 \%$ DC motor efficiency, $77 \%$ battery
efi.ciency and 36.1 win. shadow time/ 56.4 min . sun time ( 400 Km orbit), must be

$$
\begin{equation*}
P_{s a, B O L}=\frac{P_{\text {down,max }}}{0.75}\left(\frac{1}{0.85}: \frac{36.1}{0.77 \times 56.4}\right)=2.68 \mathrm{P}_{\text {down,max }} \tag{25}
\end{equation*}
$$

The mass of this power systern is then

$$
\begin{equation*}
M_{p s}=\alpha_{s a} P_{s a, B O L}+\frac{E_{B a t t}}{\beta} \tag{26}
\end{equation*}
$$

where, following Ref. $4.3, \alpha_{s a}=12 \mathrm{Kg} / \mathrm{Kw}$ (blanket) $+5 \mathrm{~K} / \mathrm{Kw}$ (regulators) $+4 \mathrm{Kg} / \mathrm{Kw}$ (E(mballing) $=21 \mathrm{Kg} / \mathrm{Kw}$.

Also, Ebatt is the energy to be stored in the batteries for the eclipse time, and $B=17$ Watt $h / K g$ is the energy density of the assumed $\mathrm{N}_{1}-\mathrm{H}_{2}$ batteries, so that

$$
\begin{equation*}
\frac{E_{\text {batt }}}{R}=\frac{P_{\text {down,max }}}{0.75 \times 0.77} \times \frac{3 \epsilon .1}{60} \frac{1}{0.017}=61.3 \mathrm{P}_{\text {down, max }} \tag{27}
\end{equation*}
$$

Altogether, then,

$$
\begin{equation*}
\frac{\mathrm{M}_{\mathrm{Ps}}}{\mathrm{P}_{\text {down, max }}}=118 \mathrm{Kg} / \mathrm{Kw} \tag{28}
\end{equation*}
$$

The mectanical energy needed for feriy return can be calculated by integration of Eq. (24). This leads to a battery mass estimate of

$$
\begin{equation*}
M_{\text {batt }}=\frac{3 \Omega^{2} L^{2} M_{F}\left(\frac{1-\nu^{\prime}}{2}-V_{T}^{\prime}\right)}{0.77 \times 0.75 B} \tag{29}
\end{equation*}
$$

and comparing to Eq. (24),

$$
\begin{equation*}
\frac{M_{\text {batt }}}{P_{\text {down }, \max }}=\frac{L}{v} \frac{1}{0.77 \times 0.75 B} \frac{\frac{1-v^{\prime}}{2}-v_{T}^{\prime}}{1-\nu^{\prime}-v_{T}^{\prime}} \tag{3}
\end{equation*}
$$

For a constant velocity return, $L / v$ is the return time. Using $B=17$ Watth $/ \mathrm{Kg}, V^{\prime}=0.02 ; V_{T}^{\prime}=0.01$, we obtain

$$
\begin{equation*}
\frac{M_{b a t t}}{P_{\text {down, max }}}=1.20 t \text { (days) }\left(\mathrm{K}_{g} / \mathrm{Kw}\right) \tag{31}
\end{equation*}
$$

Comparison of (28) and (31) shows clearly that, except for unreasonably fast returns, storage of power requires much more mass then direct generation via an on-board solar array system.

Regarding option (b) (propuisive use -1 power generated), a simple calculation will show that the contribution to the required $\Delta V$ for recovery of orbital platform is too small to be worth considering. The thrust that can be generated with a power $P$ is $F=2 \eta_{p} P i=$. Also,

$$
\Delta \mathrm{V}=\frac{1}{\mathrm{M}_{\mathrm{TOT}}} \int_{0}^{\mathrm{T}} \mathrm{Fdt}
$$

Thus, using for the power $P=0.75 \mathrm{P}_{\text {down }}$ and using Eq. (24), we obtain

$$
\begin{equation*}
\Delta V=2.25 \eta_{p} V^{\prime} \frac{\Omega^{2} L^{2}}{c}\left[\left(\frac{M_{F}}{m^{\prime}}+\frac{1}{2}\right) v_{p}^{\prime}-\frac{\xi}{2} v_{T}^{\prime}\right] \tag{32}
\end{equation*}
$$

For values of the variables comparable to those used in other parts of this report, this $\Delta V$ amounts to less than $1 \mathrm{~m} / \mathrm{sec}$. For comparison, typical required $\Delta V$ values for piatform orbit recovery amount to $50-100 \mathrm{~m} / \mathrm{sec}$. Therefore, it does not seem adyisable to include electric thrusters in the ferry for primary propulsion. On the other hand, one can expect a need for attitude control and out-of-plane libration control of the ferry; these

$$
\ll
$$

needs have not been quantified yet, but the rady availability of the brake electric power may make it attractive to perform thame tamk with ion thrusters.

Following the above argumente, only option (c) (radiation of all (or most) of the brake power) remains. This would appear to pose no special problems, ance the power is in aloctrical form and can be radiated from resistive loads whoze design temperature can be quite high.

Consistent with thin design concept, a solar prray power mpply is noeded for the return trip, with mass/power ratio of $113 \mathrm{Kg} / \mathrm{Kw}$ (Eq. (28) ). The peak power needed depends directly on the mane of the forry, which has not yet bean determined precleely. For an OTV-payload combination of $20,000 \mathrm{Kg}$ mase, preliminary estimate is M - 3060 Kg (DC motor-generator, controls, guiding pulleys, OTV attachante, trussing). Following Eq. (24), for a techer length of 250 km , and ferry apead of $1 \mathrm{~m} / \mathrm{sec}$ (return time - 2.89 days), this givas pak mechanical power requirement of 5.6 Kw , and therefore moler array-battary yincom mas of 670 kg . This can be easily reduced, however, by operating the ferry at a lower apeed near the and of the cether, where the gravity gradient force is largest.

### 4.5 Dynnmics of the tather system during ferry transfer.

When the tether system is permanently deployed and payloads, with their orbital transfer vehicles, have co travel along the cable, new dynamic effecta may arise which have not been dealt with in the literature. For instance, the ascent velocity $v$ of ferry of mas m gives rise to a backward Coriolis force $2 m$ fiv, which laade to oacillatory inmpane motion
of both, the asconding mass and the two end masses (the main platform below and a small terminal pletform above). At least some of the modes of oscillation have the feature of rapidly increasing frequency as the distance between two of the masses approaches zero; there is therefore the potential for a wrap-around type of instablilty when the ferry approaches the end of the tether. Similar effects can arise due to the tether elastic'ty, and tere the risk is that of greaty enhanced tension due to dynamic nffects.

Two lines of attack lave been followed in this problem. On the one hand, an analytical theory with some simplifications was worked out, first for the in plane oscillations (Appendix 4), and then for the stretch o cillattons (Ref. 4.4). This separation of the problem into two individual problems is allowable because, due to the linearization used, the two types of motion decouple to the order retained. Independently, the same problem was treat d at the Smithsonian Astrophysical Observatory (SAO) using munerical methods which bypas: the need for many of the approximations used in the analyais; these $S A O$ calculations will be reported separately. Both studies reached very similer conclusions: for a tip mass of the order of $10 \%$ of the platform mass, enough tengion exists in the tether to prevent instabilities and maintain ascillations within fairly small bounds for climbing speeds of the order of $1 \mathrm{~m} / \mathrm{sec}$. The only time when a divergence may occur is the terminal approach phase; and even there, caraful speed control in that phase can ensure a smooth maneuver. The detailed analysis for the in-plane case is given in Appendix 4 ; a WKB approximation was used, together with an inner-outer matching process near each end of the climb.

## References

4.1 Byers, D.C., "Characteristics of Primary Electric Propulsion Systems," AIAA paper 79-2041 (1979).
4. 2 Woodcock, W.G., and Mann, J.A., "Multi-Hundred Kw Solar Arrays for Space." AIAA paper 80-9271 (1980).
4.3 "Space Operations Center, a Concept Analysis." A presentation by the Johnson Space Center (paper JEc-16277), Nov. 29, 1979.
4.4 Kolota, L., SM Thesis; to be submitced In March 1982 to the Department of Aeronnutics/Astronautics, MIT.

## 5. Lerse-scale Thethar syoteme for Leo-gio tranefor.

The principal intereat in orbital tranmfar relates to low-romeowytechronous cases. We conctiared the poseibility of parforming auch tranefere without any transfer propulation, or with amall $\Delta V{ }^{\prime}$ at ant. This requires a tether to be attachad to alow Earth oxtheing platform for release into the tranafer alipse, and enother tisther ateached to a geonynghronous platform, to acquixe the payload and circularise ite orbzt.


Figure 5.1. Genmetry for a twomethex system.

The Innoth 11 of the uper tether denmie only upon the periou $l_{2}$ choeen fin the owtit of the myloid (aftw andiontion of an anogeu velocity inckemone lio. Thas is monuse two o? ments of that orbite are pruseribed,




$$
\begin{equation*}
p_{2}=\frac{2 \pi}{\sqrt{4}}\left(-r_{2}+r_{0}, 3 / 2\right. \tag{1}
\end{equation*}
$$

 or bas:ay and

 to give
 Sollows bion irm

$$
\begin{equation*}
h=R_{G S}-k_{2} \tag{a}
\end{equation*}
$$

and the porigh it $\mathrm{K}_{2}$ from

$$
\begin{equation*}
k_{2}=\frac{k_{S}^{4}}{2 x_{6 s}^{3}-k_{0}^{3}} \tag{5}
\end{equation*}
$$


 apogec veleritly iss

$$
\begin{equation*}
v\left(\text { iupog: } \%_{1}\right)-v(a p \sin ) \cdot \Delta v_{Q}: v_{C S} \frac{R_{Q}}{R_{G S}}-\Delta v_{Q} \tag{6}
\end{equation*}
$$

 anceat: orbit:



$$
\begin{equation*}
v_{P_{1}}=\frac{K_{Q}}{R_{p_{1}}} v\left(a_{1} 0.1\right)=\frac{R_{\Omega_{1}}}{R_{p_{1}}}\left(v_{G S} \frac{R_{Q}}{R_{G S}}-\Delta v_{Q}\right) \tag{8}
\end{equation*}
$$

This volocity conteina, in ganeral, é promulejon-derjved incacment
 end of the low -rirth tenther is tharefowe

$$
\begin{equation*}
v_{\substack{\text { tether } \\ \text { end }}}=v_{p_{1}}-\Delta v_{p} \tag{9}
\end{equation*}
$$


 je: the roco:
 herot:h is

$$
\begin{equation*}
h:: H_{p_{2}}-R_{L L} \tag{.11}
\end{equation*}
$$

Fis. 5.2 and Table 5.1 thow calculated nemulte for the case of $\Delta V_{P}=\Delta V_{Q}=0$. If we imose the requisment that, in caes of docking fallure, the paslond and the lown platfore of the Gro tether thould rendorvoul ethin ofter an tintegor muber of orbite, thom the pariod $\mathrm{P}_{2}$


 Ae thom ta Fig. 5.2, perted of $1 / 3$ day tupliat an upper cether Iangth of over $10,000 \mathrm{~m}$, and lower tethar langeh of tbout 1200 In from 1ow tarth orblt at 1200 tin an wall. Incrensing the pertod to $1 / 2$ day lowere the langth of the upper tother se bout 6000 Tm, but it alco requires the $10 w$ Each orbit to be at some 900 In altitude. with a 1630 tn tether.

## original pace is OF POOR QUALITY





		＇1：	10．3967	119：	1564，30\％	11.80	6102．35\％
$1!$	909，000	1	30.3 atit	111：	150．0．0．3	11．1E： 11	Opo．g．
in＊	7，0000	T\％	10.816	Hil：	14．0．7．79\％	H11．：19	\％ns7．0
114	7860．900	1	10．04tere	H1：	1：1\％ 3 ，00	HILEO：	1006．0\％：
11：		\％	\％．81\％3ij	1110	1496．904	H1EO	A5， $4.7 \%$ $40000 \%$
11.	arabosou	$1 \cdot$	\％．6．690．	111：－	1460， 100	111．0\％	4080． 36
16	0，iov．cos	$1:$		$111:$	1404．936	III． c ：	3287.29
14.	\％360．80\％	1.	5，1\％\％78	M1：	13\％ 4.486	Hi．EES	240\％．88
11.	9000．060	\％	c．	Mi．	1346， 331	Itinelue	asad． 0 an
$\mathrm{H}=$	F\％50．00心	$1:$	$9.7 \%$	H1：	y Ba＇．Bid	HILEEO－－	2iga，oj
H	9600． 100	10	8.16 \％ra	！ 11	1207． 163	111．FIT：	
11.	9\％60．000	10	$3.37 \% 1.3$	111.	125\％．314	H1．LO	1532．03：
$1{ }^{\text {P }}$	10000．510	$1=$	6． 217616	13）：	122\％．390	HLETE	1309．6\％
H＂	10230.60	1 F	E．042as	H11	1197 ，143	HLIEO．	931．0．9
H：	10：60．00	T：	7.671 .68	111：	1167.5	HLEOO	
11：	10750．00	「：\％	$7.706 .48 \%$	141：\％	$113 \% \cdot 78$	H1．E0：	62\％asan
1	11000.00	1＊＊	$7 \cdot 614660$	Hir．	1103.060	11．．8\％	
14：	11259000	T：	$7 \cdot 386090$	111：－	$10 \% 6$	Iticeo	－ 18.6 .100
16：	111．00．00	10	7.31200	111 ：－	10．95， 3 j	H1． 1.00	－ $0^{6}$
$\mathrm{H}^{\text {d }}$	11290．06	1 \％	7．0．27	in？	10\％0，3\％3		－630．8玉乐
H：	1\％000．00	$j$	6．93ぃ\％\％	H3：${ }^{\text {e }}$	1040．3．．．		

NODT： 111 in equivalent to 1 ，whith har proviourly leen used．

The vary los tethase requirel for thic comeop: are, materaliy paite beevy, and will hove to be permanetiy ingloged. Thare is a etrems iscen-
 partial inpulatwe threot at the ente of the tramafor.

The tetiver meen calculation is ceatained in Appeadix i. It is of Introgast that the moch longar G50 tether is of about the came mag.

The affect of tatroducting boch partuee and apugen firtinge ( $A_{p}$ and $\Delta\rangle_{\hat{Q}}$ reapectivaly) wae ment imvugticated. The romile for a wide range of parmacose are 11ated is rablea 5.2 through 5.5. For the cases of the $1 / 3$ and $1 / 2$ day partod, the reaulte are aiso dioplayed graphicalis in Fige. 5.3 and 5.4. The affecte are gancilly an follows:
 and derxeneon the sownt tethot 3enghi, $h$.



 ted by either $A V_{p}$ or $\Delta V_{Q}$, but is renseod if bece parion is zillown to incresise.


 a minimun $\Delta V_{p}$ for the saver reasen,
(e) Tin lometh of the Jew w whem can be sednced to zeco hy inemeaning $\Delta v_{p}$ firn winl $t v_{y}$. The affuet of $\Delta v_{Q}$ on $h$ is minor.






 that for this jower: tother length, itw nass ean bo of the ordes of the paylond minc.
0
Sable si.







## 





 of tho post- galerso :Thtije poricec. In thif ewtion wo comajdar this effact, while citil ansuming a mansive GRO platiforai.

Whe intw gechotrioul wrimgoriont fer the lower teithos is shown in T3.5.5. Whe oxbitial conte: is at $H_{c}$. given by (het.5.1)


There 5.5. ccometry for a rinite lower plationm mass.

[^1] OF POOR QUALITY
\[

$$
\begin{equation*}
R_{c}={\frac{\Sigma r_{i} m_{1}}{\sum m_{1} / x_{1}^{2}} 1 / 3}_{1 / 3} \tag{17}
\end{equation*}
$$

\]

and le located at a diatance $h^{\prime}=R_{P_{1}}-R_{c}$ from the transfer orbit periges. Thus, $h^{\prime}$ replaces $h$ and $R_{c}$ replaces $R_{L E}$ in our provious analysis (Eqs. (10), (12)). The now Rem mat be obtained from the explicit foxm of Eq. (17); for example, accounting only for two end masces $M_{1}, M_{2}$ (Fig. 5.5), we have

$$
\begin{equation*}
R_{c}=\frac{/ R_{L E O} M_{1}+R_{P_{1}} M_{2}}{M_{180}+R^{2} / R_{p_{1}}^{2}} \tag{18}
\end{equation*}
$$

which can be solved for R LeO

The perigee of the post-release platform orbit can be calculated from Eq. (6) of Ref. 5.1, which for our case reads

$$
\begin{equation*}
S_{2}=-R_{L E O}+2 /\left(2 / R_{L E O}-R_{L E O}^{2} / R_{c}^{3}\right) \tag{19}
\end{equation*}
$$

The effect of this modification is to require a longer lower tether and to make high $\Delta V_{Q}$ values unfeastble (negative perigee). As an example, Tables 5.6 and 5.7 thow a comparison (for $1 / 3$ day period) of two ceses, one with a massive LID platform ( $M_{1}=5000$ Tonne for $M_{2}=10$ Tonne). In the first case, where only a slight perturbation is introduced to the orbit, a tather leagth $h=998 \mathrm{~km}$ can be used from a 521 Km orbit, which becomes a $521 / 531$ orbit after release. Velocity increments $\Delta V_{p}=300$ m/sec. $\Delta V_{Q}=100 \mathrm{~m} / \mathrm{sec}$ are required. In the case with the inght platform, the $\Delta V_{Q}=100$ is not sliowable, and sc, for $\Delta V_{P}=300 \mathrm{~m} / \mathrm{sec}$, only $\Delta V_{Q}=0$ is possible. The result is a longer tether (1155 km) and a higher orbit (1291/656).

## OKtGINAL PAGE IS OF POOR QUALITY

M1 5,000,020 la (platrorm)
M2 = $10,009 \mathrm{hg}$ (matcilde)
$1=1 / 3$ day $\quad 11=10,390 \mathrm{~lm}$


Entries are
h in km apogee altitude
(kmi)
perigee ultitude (ku)

## OF POOR QUALITY

## TABLE 5.7. SHUTME 3N T EM

```
M1 * 80,000 kg (alutile)
M2 m 3.0,000 kg. (satcelj.fte)
```

$P=1 / 3$ day
$\mathrm{n}=\mathbf{3 0 , 3 9 0 \mathrm { km }}$


Entries are
$h$ in km apogee altitude (km) perigee altitude (km)

## Appendix 1

## Tather Proparties and Tather Mane

## 1. Calculation of Tether Maee

For a radially deployed constant strese tether (atreas - $\sigma$, dencity = $\rho$ ) the crose asction $A(r)$ must baximum at the orbital conter (approximately the c.g.) of the orbitimg ascembly. Let $A_{\max }$ be this maximum section and $R_{\text {Lso }}$ the orbical redius out to the c.g. We can then abily find from atatics that

$$
\begin{equation*}
A(x)=A_{\max } \exp \left[\frac{\mu_{e}^{\rho}}{0}\left(\frac{3}{2 R_{L E O}}-\frac{r^{2}}{2 R_{L E O}}-\frac{1}{r}\right)\right] \tag{3}
\end{equation*}
$$

Expanding and retaining only quadratic terms (or, alternativaly, atart1ng from a constant gravity gradient approximation),

$$
\begin{equation*}
A(r)=A_{\max } \exp \left[-\frac{3}{2} \frac{\mu_{e} p}{\sigma R_{L E O}}\left(\frac{r-R_{L E O}}{R_{L E O}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

At the upper and lower end of the tether, the raspective concentrated masees $M_{T I P}$ and $M_{P L}$ mast be in force equilibrium between tether tension and gravity graddent force:

$$
\begin{align*}
& 3 \frac{\mu_{e}}{R_{L E O}^{3}} M_{t i p}\left(L-x_{c g}\right)=\sigma A_{\max } \exp \left[-\frac{3}{2} \frac{\mu_{e^{\rho}}}{\sigma R_{L E O}}\left(\frac{L-x_{c g}}{R_{L E O}}\right)^{2}\right]  \tag{3}\\
& 3 \frac{\mu_{e}}{R_{L E O}^{3}} H_{P L} x_{c g}=\sigma A_{\max } \exp \left[-\frac{3}{2} \frac{\mu_{e}}{\sigma R_{L E O}} \quad\left(\frac{x_{c g}}{R_{L E O}}{ }^{2}\right]\right. \tag{4}
\end{align*}
$$

where $L$ is the atretched tether length and $x_{c g}$ is the distance from the lower platform to the overall c.g. of the oystem.

Equations (3) and (4) can be colved for $A_{\max }$ and $x_{c g}$. Unfortunately, axcept for limiting cases, this solution cannot be obteined in cloeed form. To facilitate discuasion, let

$$
\begin{align*}
& r=\frac{L}{R_{L E O}}-j \frac{3}{2} \frac{\mu_{e}^{\rho}}{\sigma R_{L E O}}  \tag{5}\\
& v=\frac{M_{E L P}}{M_{P L}} ; \xi=\frac{x_{c \Omega}}{L}
\end{align*}
$$

Then, by division of (3) by (4), and after eimplification, one obtains an equation for $\xi$ (c.g. position):

$$
\begin{equation*}
v\left(\frac{1}{\xi}-1\right)=e^{-\gamma^{2}(1-25)} \tag{7}
\end{equation*}
$$

For short tethere ( $\gamma \ll$. ), this has the approximate solution

$$
\begin{equation*}
\xi \simeq \frac{v}{1+\nu} \tag{8}
\end{equation*}
$$

For other conditions, Table 1 11ste values of $\xi$ obtained from Eq. (7):

	$V=0$	0.05	0.1	0.15	0.2
$\gamma=0$	0	0.04761	0.09091	0.13043	0.16667
0.5	0	0.05869	0.10843	0.15150	0.18937
1	0	0.10011	0.16380	0.21097	0.24823
1.5	0	0.17659	0.24201	0.28396	0.31499
2	0	0.25775	0.31139	0.34371	0.36697
3	0	0.37446	0.39562	0.41393	0.42694
4	0	0.41687	0.43608	0.44732	0.45531

The mase $M_{T}$ of the tether can be obtained by integration of Iq. (2):

$$
\begin{equation*}
M_{T}=\rho A_{\max } \int_{-x_{c g}}^{L-x_{c g}} \operatorname{axp}\left[-\gamma^{2}\left(\frac{y}{L}\right)^{2}\right] d y=\rho A_{\max } \frac{\bar{\pi}}{2 \gamma}[\operatorname{erf}(\gamma \xi)+\operatorname{erf}(\gamma(1-\xi))] \tag{8}
\end{equation*}
$$

where $y-r-R_{\text {LEO }}$. The value of $A_{\text {max }}$ is obtained from Eq. (3).
After some rearrangement, we obtaln

$$
\begin{equation*}
\frac{M_{T}}{M_{t i p}}=\cdots \gamma(1-\xi) e^{\gamma^{2}(1-\xi)^{2}}\{\operatorname{erf}(\gamma \xi)+\operatorname{erf}(\gamma(1-\xi))] \tag{9}
\end{equation*}
$$

For mall $\gamma$ (short techere), Eq. (8) cen be ueed approsimatley for $\xi$, with the result

$$
\begin{gather*}
\frac{M_{T}}{M_{t i p}} \simeq \cdot \pi \frac{\gamma}{1+\nu} e^{\left(\frac{\gamma}{1+v}\right)^{2}}\left[\operatorname{erf}\left(\frac{\gamma v}{1+v}\right)+\operatorname{erf}\left(\frac{\gamma}{1+v}\right)\right]  \tag{10}\\
 \tag{11}\\
\simeq 2 \frac{\gamma^{2}}{1+v} e^{\left(\frac{\gamma}{1+v}\right)^{2}}
\end{gather*}
$$

The lest form, valid roughly when $\frac{\gamma}{1+\nu}<0.3$, indicetes a qumdratic dependence of mass on length for short tethers, where the tip mase dominates clearly ovar the tether mass. Whan $\gamma$ approachas unity, this changés to a much stronger exponential dependence, as the mase of the tether Itself becomes dominant in determining its crose-section.

Table 2 liste valuen of $M_{T} / M_{t i p}$ for more gemeral conditione (from Eq. (9), uaing Eq. (7) for $\xi$ ).

	$v=0$	0.05	0.1	0.15	0.2
$\mathrm{r}=0$	0	0	0	0	0
0.5	$\begin{gathered} 0.5923 \\ (0.5923) \end{gathered}$	$\begin{gathered} 0.5491 \\ (0.5570) \end{gathered}$	$\begin{gathered} 0.5135 \\ (0.5259) \end{gathered}$	0.4834	$\begin{gathered} 0.4573 \\ (0.4315) \end{gathered}$
1	$\begin{gathered} 4.0602 \\ (4.0602) \end{gathered}$	$\begin{gathered} 3.2700 \\ (4.3256) \end{gathered}$	$\begin{gathered} 2.8218 \\ (3.6496) \end{gathered}$	2.5485	2.3136
1.5	24.370	12.195	9.4296	7.9975	7.0652
2	192.640	35.713	25.530	20.920	18.140
3	43.090	239.68	163.17	130.85	112.10
4	$6.30 \times 10^{7}$	2888.5	1286.2	1032.2	884.7
Table 2. Values of M tether ${ }^{(M i p}$					

The figures in parentheeis in Table 2 are calculated according to Eq. (10), for comparison. These results are presented graphicaliy in Fig. 1 (for $\gamma<1.1$ ) and Fig. 2 (for higher $\gamma$ ).

For purposes of calibration, let us assume the following proparties (appropriate for Keviar tethers):

$$
\begin{aligned}
& \rho=1.44 \mathrm{~g} / \mathrm{cm}^{3}=1440 \mathrm{Kg} / \mathrm{m}^{3} \\
& \sigma=1 / 4 \quad 140 \mathrm{Kg} / \mathrm{mm}^{3}=1 / 4 \quad 1.4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

and also $R_{L E O}=R_{E}+400 \mathrm{Km}=6.77 \times 10^{6} \mathrm{~m}$. We then calculate

$$
\gamma=19.5 \frac{\mathrm{~L}}{R_{\text {LEO }}}=\frac{L\left(\mathrm{~K}_{\mathrm{m}}\right)}{347}
$$

## ORIEINAL PAGE IS OF POOR QUALITY



From Fig. 1 wa eee now that the tather mase incrases like $L^{2}$ for L 〔 $200-300 \mathrm{~km}$; for longer rethers in LEO, the maes eacelaten repidly, as shown in Fig. 2. For $L \approx 1200 \mathrm{~km}$, as required for no-propuletion transfer to GEO, wa eee that $M / M_{\text {tip }}=200$, while if chis length is reduced to 600 km by use of partial propulsion, then $\mathrm{M} / \mathrm{M}_{\mathrm{tip}} \simeq 15$. A aimilar reduction occure if the working atrength could be doubled (see discuseion below).

If $R_{\text {LEO }}$ is replaced by $R_{G E O}=42200 \mathrm{Km}$, then

$$
\gamma_{G E O}=\frac{L(\mathrm{Km})}{5500}
$$

showing that much longer tathers can be deployed in GEO orbits.

## Properties of Tether Materials.

The single most important property of a deairable material for our application is a high specific stress ( $\sigma / \rho$ ). Fig. 3 compares the $\sigma / \rho$ dste of many high-strength materials, including steel, fiberglass, boron and graphite fibers and the fibers known under the trade name of Kevlar 29 and Kevlar 49 (Dupont). The latter are clearly the best candidates, unleas high modulus is important to minimize stretch (in which case boron or graphite fibers are ouperior). A similar comparison, this time in terms of the direct strese-strain curves for geveral fibers, is shown in Fig. 4. Values of $\sigma$ up to $3.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ are shown for Kavlar in the form of impregnated atrands ( $360 \mathrm{Kg} / \operatorname{sen}^{2}$ ).

Physically, these strands are made if a bundle of very thin fibers (diamater $\sim 12 \mu \mathrm{~m})$, and the values quoted refer to tests made on aamples of a few inches in length. Clearly, the probability of a flaw increases with


ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 4. STRESS - STRAIN BEHAVIOR OF REINFORCING FIBERS
the laagth of the fiber, and this is reflected in a lowar expacted strangth for longar tethera. Some data for a limited range of $\mathrm{L} / \mathrm{D}$ fiber values are shown in Fig. 5. For Kevlar 49, the data can be raprenented as

$$
0=340\left(\frac{0.06}{\mathrm{~L}(\mathrm{~m})}\right)^{0.051}
$$

and if we tentatively extrapolate to the very long lengthe contemplated, we calculate the reculta shown in Table 3:

| $\mathrm{L}(\mathrm{m})$ | 0.06 | 1 | 10 | 100 | 1 Km | 10 Km | 100 Km | 1000 Km |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\sigma_{\mathrm{nl}}\left(\mathrm{Kg} / \mathrm{mm}^{2}\right)$ | 340 | 295 | 262 | 233 | 207 | 184 | 164 | 146 |

Table 3. Extrapolated Fiber Strength for Kevlar-49

Clearly, the extrapolation used is questionable, and much more exparience with long tethers is required before afirm deaign atrength value can be identified. For most of the calculations in this raport we have adoptad $140 \mathrm{Kg} / \mathrm{mm}^{2}$ as the ultimate (break) strength, and used a factor of safaty of 4 .

Other relevant proparties of Kevlar-49 are listed in Tablea 4 a and 4b. Note in particular the relatively amall elongation ( $2.5 \%$ to break, or about $0.6 \%$ at the design strength used here).

Finally, one area of some concern is the observed UV degradation of Kevlar-49 fibers. Here, again, the data are inadequate. Table 5 shows a faw examples. The data for the $1 / 2^{\prime \prime}$ rope indicate partial selfscreening, with the outer layers protacting the inner ones from the uv radiation. This also hints at the possibility of protective layers, which could also serve as a matrix for onhancing inter-fiber friction.

By contrast, electron radiation damage if minimal.

## FIGURE 5. TENSILE STRENGTH UNIFORMITY OF REINFOFCING FIEERS

 OF POOR QUALITY


	PROPERTY	VALUE	REF.	
	KNOT STRENGTH   FLEXURAL FATIGUE RESISTANCE   CREEP, $90 \%$ ULTIMATE TENSILE STRENGTH   COEFFICIENT OF FRICTION   YARN-YARN   YARN-METAL	35\% TENSILE STRENGTH   200 CYCLES AT 56,000   PSI OVER 3 MIL DIA.   PIN   ( $386 \mathrm{MPA} ; 0.08 \mathrm{MM}$ )   $0.0011 \mathrm{IN} / \mathrm{IN}$, INITIAL   0, SECONDARY   0.46   0.41	11-7	
	FABRIC   STRIP TENSILE   tongue tear   TRAPEZOIDAL TEAR	DEPENDENT ON FABRIC STYLE	11-8	

TABLE 4b.
0
original page is OF POOR QUALITY

## ULTRAVIOLET STABILITY OF "KEVLAR" 49

MATERIAL	EXPOSURE	BREAK I.OAD (LB)	STRENGTH LOSS (\%)
770 DENIER   TWISTED CORD (530 FILAMENTS)	CONTROL FADEOMETER 100 HRS 200 HRS   WEATHEROMETER 100 HRS DRY 100 HRS WET 200 HRS DRY 200 HRS WET	37.8   22.2   20.1   21.3   22.2   18.1   18.3	$\begin{aligned} & \\ & 41 \\ & 47 \\ & \\ & 44 \\ & 41 \\ & 52 \\ & 51 \end{aligned}$
$\begin{aligned} & 1 / 8^{\prime \prime} \text { DIAMETER } \\ & \text { CABLE" } \end{aligned}$	CONTROL WEATHEROMETER 100 HRS DRY	$\begin{aligned} & 1322 \\ & 1030 \end{aligned}$	$22$
1/2" DIAMETER   3-STRAND ROPE*	CONTROL WEATHEROHETER 200 HRS DRY	$\begin{aligned} & 11,400 \\ & 10,600 \end{aligned}$	$7$
	$\begin{aligned} & \text { FLURIDA SUN } \\ & 6 \text { MONTHS } \\ & 12 \text { MONTHS } \end{aligned}$	$\begin{array}{r} 10,260 \\ 9,240 \end{array}$	$\begin{aligned} & 10 \\ & 19 \end{aligned}$

TABLE 5.

WEATHERCMETER EXPOSURE - SUNSHINE CARBON ARC
FADEOMETER EXPOSURE - XENON LAMP
FLORIDA EXPOSURE - HIALEAH

[^2](REV. 12/74)

## Appendix 2

## Pletform Orbit Recovery Uning Impulaive Thrust

Consider a platform of mass $M$ carrying a satellite of mase m, both of them in an orbit at $R_{L}$ (orbital speed $v_{L}=\frac{\mu_{e}}{R_{L}}$ ). If the satellite 1s deployed on a light tether of length $L$, the plutform deacende to

$$
R_{Q}=R_{L}\left(1-\lambda_{P}\right) ; \quad \lambda_{p}=\frac{L}{R_{L}} \frac{m}{m+M}
$$

and it travels there at

$$
v_{\mathrm{a}}=v_{L}\left(1-\lambda_{\mathrm{p}}\right)
$$

If the payload is now released, $R_{a}$ and $V_{a}$ become the apogee radius and apeed for the platform in its new elliptic orbit. Since the apogee velocity is

$$
v_{a}=\frac{\mu_{e}}{R_{a}} \frac{2 R_{p}}{R_{e}+R_{p}}
$$

we can now solve for the perigee radius $R_{p}$. To first order in $\lambda_{p}$, we $f$ ind $R_{p} \simeq 1-7 \lambda_{p}$. The velocity at this perigee is

$$
v_{p}=v_{a} \frac{R_{a}}{R_{p}}=v_{L}\left(1+5 \lambda_{p}\right)
$$

In order to return the platform to its original orbit using impulsive thrust, we apply first a perigee impulse

$$
\Delta v_{p}=v_{p},-v_{p}
$$

where $V_{p}^{\prime}=\frac{\mu_{e}}{R_{p}} \frac{2 R_{L}}{R_{L}+R_{p}^{\prime}}$ is the speed at the perigee of the new (transfer) orbit that will reach apogee at the intended radius $R=R_{L}$.

Approximately, then, $V_{p}^{\prime} \simeq V_{L}\left(1+\frac{21}{4} \lambda_{p}\right)$, and

$$
\Delta v_{p}=\frac{1}{4} v_{L} \lambda_{p}
$$

When the platform reaches apogee at $R_{L_{R}}$ a circulariastion impulse $\Delta V_{a}=V_{L}-V_{a^{\prime}}$ is needed, where $V_{a^{\prime}}=V_{p}, \frac{R_{p}}{R_{L}}$. We find

$$
\Delta v_{a} \simeq \frac{7}{4} v_{L} \lambda_{p}
$$

The total $\Delta V$ required is cherefore

$$
\Delta V=2 v_{L} \lambda_{P}=2 V_{L} \frac{L}{R_{L}} \frac{m}{m+M}
$$

and the total impulse is

$$
M \Delta V=2 v_{L} \frac{L}{R_{L}} \frac{M m}{M+m}
$$

It is of interest to compare this impulse to that which would be required to place the atellite in its post-reiease orbit with no tether assist. Such an orbit has as its perigee the release radius

$$
R_{p}=R_{L}\left(1+\lambda_{s}\right) ; \lambda_{s}=\frac{L}{R_{L}} \frac{M}{M+m}
$$

and as its perigee velocity, $v_{p}=V_{L}\left(1+\lambda_{s}\right)$.
In order to raise the satellite impulsively from $\mathcal{R}_{\mathcal{L}}, \mathbf{V}_{\mathbf{L}}$ to this elliptic orbit, the optimum impulsive maneuver consists of twe firings, the first one applied at the point in the circular orbit opposite the eventual perigee, and such as to produce a transfer orbit tangent to the final orbit at that perigee (which is itself the transfer orbit apogee)..

This firing is found to be

$$
\Delta v_{p}=\frac{1}{4} v_{L} \lambda_{s}
$$

The second firing is applied at the point of tangency of transfer and final orbite; it is found to be

$$
\Delta v_{a}=\frac{7}{4} v_{L} \lambda_{s}
$$

for a total $\Delta V$ of $2 V_{L} \lambda_{s}$, and a total impulae

$$
m \Delta V=\frac{L}{R_{L}} \frac{M m}{M+m}
$$

This is exactly the same value found for the impulse apent in re-establishing the platform orbit after satellite releame, a result perhaps not unexpected on the basis of along-the-orbit overall momentum conservation.

## Appondix 3

## Platform Orblt Renowery Ustna Low Thrugt

In this appendix we axamine the orbital dynamice of platform orbital restoration by means of high spacific impulse, low thruat engines. The reculte will be of use fin calculatione of power and propellent requirements for these platforma.

1. Orbital Perturbations of the Platforme. For the LEO platforw releasing a payioad/angine coubination, the eequence of operations can be as follows:
(a) The Shuttle docks with an orbiting platform which has a radial outward tother deployed. Payload and OTV are tranaferred to the platform (including Hg for the upper platform).
(b) The payload/engine combination travals along the tather to its top. Travelling rate must be controlled to ensure radial position at the and and to minimize oscillations. The platform loes altitude, but, to first order, the system c.g. ramains in the original orbit.
(c) The payload/engine combination is released. The platform (plus tether), enter a perturbed elilptic orbit with apogee at the release point. The platform mase must be sufficient to prevent reentering at the perigae.
(d) Low thrust angines on the platiorm are activated to alowly raise and circularize the platform orbit to ite original coniguration.

Let $R_{a}$ be the apogee of the platform parturbed orbit; $h$ the tether langth and $M$ and $m$ the platform and paylead/engine masses. The radius of the original (and eventual) platform orbit is then

$$
\begin{equation*}
a_{1}=R_{a}+\frac{m}{w+M} h=R_{a}\left(1+\frac{\lambda \nu}{1+v}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{h}{R_{a}} \quad, \quad v=\frac{m}{\bar{z}} \tag{2}
\end{equation*}
$$

Some simple dynamical calculations show that, for mall $\lambda$, the perigee $R_{p}$ of the perturbed orbit is given by

$$
\begin{equation*}
\frac{R_{p}}{R_{a}+R_{p}}=\frac{1}{2}-\frac{3}{2} \frac{\lambda \nu}{1+v} \tag{3}
\end{equation*}
$$

Thus, the eccentricity is

$$
\begin{equation*}
e=\frac{R_{e}-R_{p}}{R_{e}+R_{p}}=\frac{3 \lambda \nu}{1+\nu} \tag{4}
\end{equation*}
$$

and the semimajor axis is

$$
a_{0}-\frac{R_{a}+R_{P}}{2}=R_{a}\left(1-\frac{3 \lambda v}{1+v}\right)
$$

or, combiniug wâtia (1),

$$
\begin{equation*}
\frac{a_{1}}{a_{0}}=1+4 \frac{\lambda v}{I+v} \tag{5}
\end{equation*}
$$ 90

A very similix developmont can be made for tive upper (GEO) cether manauvars. The sequence is now
(a) The tetion with a radially inward doployed tather is initially in GEO orbit. The payload (after separation from the OIV last stage) docks with the teshar lowar end.
(b) The c.g. of the i.jetem is now in an elliptic orbit with apoges somewhat below GEO (by $\frac{\pi}{m+M} H$, where $H$ is the tether langth). The payload is made to climb along the tether at a controlled rate. At the end of the climb, both, the payload and the platform are in the same arbit occupied by the c.g. after docking (to lst order).
(c) Low thrust enginer on the platform are activated to raise and circularige the platform-payload combination to GEO.

It ean be shown that equations (4) and (5) still seacribe the perturbed orbit in this cace, with the obvicus redefinitions

$$
\lambda=\frac{R}{R_{G E O}} \quad, \quad v=\frac{m(\text { pay1oad ) }}{M(G E O \text { platform) }}
$$

2. Low Thrust Steering Law. Since the action of the platform engines is quite gradual, we will describe their effect using the orbital perturbation equations (Ref. 1). If $f_{t}$ is the applied tangential acceleration and no nozmal acceleration is applied, the rates of change of semimajor axis $a$, eccentricity e and periapsis azimuth w are

$$
\begin{align*}
& \frac{d a}{d t}=f_{t} v \frac{2 a^{2}}{\mu}  \tag{7}\\
& \frac{d e}{d t}=\frac{2 f_{t}}{v}(e+\cos \theta)  \tag{8}\\
& \frac{d w}{d t}=\frac{2 f_{t}}{e v} \sin \theta \tag{9}
\end{align*}
$$

Ref. 1 Modern Spacecraft Dynamics and Conerol, by M.H. Kaplan, J. WILey 8 Sons (1976), Ch. 8 .
whare $\theta$ is agimuth from pariapsis. The vehicie is in a elowly avolving elliptical path dencribed inatantaneously by

$$
\begin{equation*}
\frac{1}{x}=\frac{1+e \cos \theta}{a\left(1-e^{2}\right)} \tag{10}
\end{equation*}
$$

and such that - :

$$
\begin{equation*}
r^{2} \frac{d \theta}{d t}-\sqrt{\mu a\left(1-a^{2}\right)} \tag{11}
\end{equation*}
$$

For amall eccentricity 0 , we can use (11) to eliminate time from (7). (8) and (9):

$$
\begin{align*}
& \frac{d a}{d \theta}=\frac{2 a^{3}}{\mu} f_{t}(1-\theta \cos \theta)  \tag{12}\\
& \frac{d e}{d \theta} \equiv \frac{2 a^{2}}{\mu} f_{t}\left[\cos \theta+e\left(1-3 \cos ^{2} \theta\right)\right]  \tag{13}\\
& \frac{d v}{d \theta}=\frac{2 a^{2}}{\mu} f_{t} \operatorname{ain} \theta(1-\theta \cos \theta) \tag{14}
\end{align*}
$$

The aimplat stearing law allowing ajmaltanaous control of eccentricity and orbital enargy is a modulated accoleration law of the form

$$
\begin{equation*}
f_{t}=f_{c}+f_{1} \cos \left(\theta-\theta_{0}\right) \tag{15}
\end{equation*}
$$

Sabstituting into (12) to (14) and avaraging over one pariod of $\theta$, we obtain (for long times, neglecting products of $e$ and $f_{0}$ or $f_{1}$ ):

$$
\begin{align*}
& \frac{d a}{d \theta}=\frac{2 a^{3} f_{0}}{\mu}  \tag{16}\\
& \frac{d e}{d \theta}=\frac{a^{2} f_{1} \cos \theta_{0}}{\mu}  \tag{17}\\
& \frac{d w}{d \theta}=\frac{a^{2}}{\partial \mu} f_{1} \theta \sin \theta_{0} \tag{18}
\end{align*}
$$

Por fantest reduction of eccentricity, and in ordar to avosd periapais rotation, we chose $\theta_{0}=0$. Eqs. (16) and (17) integrate imadiataly to

$$
\begin{gather*}
a=\frac{\theta_{0}}{\sqrt{1-\frac{4 E_{0} a_{0}^{2}}{\mu}} \theta}  \tag{19}\\
\cdots=e_{0}+\frac{f_{1}}{4 f_{0}} \ln \left(\frac{1}{1-\frac{4 \xi_{0} a_{0}^{2}}{\mu} \theta}\right) \tag{20}
\end{gather*}
$$

If at a certain azimuth $\theta$, we impose both $* a_{1}$ and $0=0$, we obtain the condition

$$
\begin{equation*}
\frac{\varepsilon_{1}}{f_{0}}=\frac{-2 e_{0}}{\ln \left(\frac{e_{1}}{a_{0}}\right)} \tag{21}
\end{equation*}
$$

So that, using equations (4) and (5) for $e_{0}$ and $a_{2} / a_{0}$, we find to let order

$$
\frac{f_{1}}{\varepsilon_{0}}=-\frac{3}{2}
$$

and 80 , the acceleration law is

$$
\begin{equation*}
f_{t}=f_{0}\left(1-\frac{3}{2} \cos \theta\right) \tag{22}
\end{equation*}
$$

This indicates retrofiring at perigee ( $f_{t}=-\frac{1}{2} f_{0}$ ) and maximum forvard thrust at apogee ( $f_{t}=\frac{5}{2} f_{0}$ ).
3. Epopeliant Conoumption. The uaual lew

$$
\frac{m_{\text {inal }}}{m_{\text {inttal }}}=-\frac{\Delta V}{c}
$$

applise, with

$$
\begin{equation*}
-\int_{0}^{t_{f i n a l}}\left|f_{t}\right| d t \tag{23}
\end{equation*}
$$

whare the absolute value of the applied acceleration is used, since propallat: conaumption is indapendent of thrust orientation. Eq. (1i) is used again to eliminate dt in favor of do. To first order in e, the valocity increment per turn is then found to be

$$
\begin{align*}
\Delta \nabla_{1} & \left.=£_{0} \sqrt{\frac{a^{3}}{\mu}}\left(2 \sqrt{5}+2 \pi-4 \cos ^{-1} \frac{2}{3}\right)+e\left(\frac{4}{3} \sqrt{5}+3 \pi-6 \cos ^{-1} \frac{2}{3}\right)\right] \\
& =£_{0} \sqrt{\frac{a^{3}}{\mu}}(7.381+7.360 e) \tag{24}
\end{align*}
$$

Also, to the loweet order in $e$, the number of turns in time $t$ is $N=\frac{1}{2 \pi} \sqrt{\frac{\mu}{e^{3}}} t$, so that, to that oxder

$$
\begin{equation*}
\Delta V=1.176 \mathrm{f}_{0} t \tag{25}
\end{equation*}
$$

The product $\boldsymbol{f}_{0} t$ can be relatad to the miasion characteristics by integration of the time equation (Eqs. (.1) and (10), combined with Eq. (19) for a). Igroring the cyclic part and retaining only the secular term, we obtain:

$$
\frac{d t}{d \theta}=\frac{a_{0}^{3 / 2}}{\sqrt{\mu\left(1-\frac{4 f_{0} e_{0}^{2}}{\mu} \theta\right)^{3 / 4}}}
$$

which integrates to

$$
\begin{equation*}
f_{0} t=\sqrt{\frac{1}{a_{0}}}\left[1-\left(1-\frac{4 \varepsilon_{0} a_{0}^{2}}{\mu} \theta\right)^{1 / 4}\right]=\sqrt{\frac{\mu}{a_{0}}}\left[1-\sqrt{\frac{a_{0}}{a}}\right] \tag{26}
\end{equation*}
$$

whare (19) has been used once more. Thus, if trefors to the final time, when $a=a$ (and $e=0$ ), we obtain

$$
\begin{equation*}
f_{0} t=\sqrt{\frac{p}{a_{0}}}\left(1-\sqrt{\frac{a_{0}}{a_{1}}}\right)=v_{c_{0}}-v_{c_{1}} \tag{27}
\end{equation*}
$$

where $v_{c_{1}}$ is the final orbital velocity, while $v_{c_{0}}$ would be the velocity in a circular orbit with the ame enargy as the initial (alliptic) orbit. Using now Eq. (5) for $\frac{a_{0}}{a_{1}}$, we obtain finally (tio: lowest order in e)

$$
\begin{equation*}
\Delta V=1.176 v_{c_{1}} \frac{2 \lambda v}{1+v} \tag{28}
\end{equation*}
$$

It can be seen by comparison to the results of Appendix 2 that the dV required with low thrust is 1.176 times that required with the optimal sombination of impulaive firings. However, since the specific impulse can be quite high using ion or other electric thrustors, the propellant use can still be significant.

## APPENDIX 4

## 

1. Fompulation of the proble:

We consider in thes acetion the dyamical offects that occur durjne ancout of a lcander fory which translates along a tether line deployed from an orbiting platform. A terninal handing facility is also assumed to crist at the upper end of the tether; this upper platforn also serves to provide tension for the tether, due to the gravity gradient force acting on f.t.

The system to be sturlied is show in Fig. 1. We will assume small angular deflections from the vertical, and ignore the mass of the tether


FIG. 1 itself. The latter assumption implies tether lengths below some 200 km , while the small deflection assumption will be well satisfied for sufficiently smali ferry velocity (v), provided no dynamical instability is encountered. These are precisely the issues to be clarified by the analysis.

The gravity gradient forces on the three masses depend on orbital angular speed, $\Omega$ and distance to the overall center of mass CM.
With the origin of coordinates fixed at the lower platform, as shown, these distances are

$$
\begin{align*}
& x_{c m}=v x+v_{T} x_{T} ; y_{c m}=v y+v_{T} L  \tag{1}\\
& x-x_{c m}=(1-v) x-v_{T} x_{T} ; y-y_{c m}=(1-v) y-v_{T} L  \tag{2}\\
& x_{T}-x_{c m}=\left(1-v_{T}\right) x_{T}-v_{x} ; L-y_{c m}=\left(1-v_{T}\right) L-v y \tag{3}
\end{align*}
$$

where

$$
v \equiv \frac{M}{M+M_{P}+M_{T}} \quad, \quad v_{T} \equiv \frac{M_{T}}{M_{P}+M_{T}+M_{T}}
$$

and

$$
\begin{equation*}
\nu_{p} \equiv J-v-v_{1}=\frac{M_{1}}{M_{1}+L_{p}+N_{T}} \tag{5}
\end{equation*}
$$

The eravity eradicnt forces are then (positive upwords)

$$
\begin{align*}
& F_{p}^{G G}=-3 \Omega^{2} M_{p} y_{c m}  \tag{6}\\
& F_{m}^{G G}=3 \Omega^{2} M\left(y-y_{c m}\right)  \tag{7}\\
& F_{T}^{G G}=3 \Omega^{2} M_{T}\left(L-y_{c m}\right) \tag{8}
\end{align*}
$$

In addition to these forces, the Coriolis forces must le considered, since the axes rotate at. speed $\Omega$. When the ferry is travelling upwards at specd $\dot{y}$ relative to the platform, since the center of mass must remain (to first order) at a fixed altitude, the other masses (and the tether) mast travel downards to compensate. The absolute velocities are then ( $1-v$ ) $\dot{y}$ (ferry) and $-v \dot{y}$ (upper and lower platioms). The correspondIng Coriolis forces are then (positive back:wards)

$$
\begin{align*}
& \mathbf{F}_{\mathbf{p}}^{\mathbf{c}}=-2 \Omega \mathrm{M}_{\mathrm{p}} v \dot{\mathrm{y}}  \tag{9}\\
& \mathbf{F}_{\mathrm{m}}^{\mathbf{c}}=2 \Omega \mathrm{M}(1-v) \dot{\mathrm{y}}  \tag{10}\\
& \mathbf{F}_{\mathbf{T}}^{\mathbf{c}}=-2 \Omega \mathrm{M}_{\mathrm{T}} \dot{v} \dot{\mathrm{y}} \tag{11}
\end{align*}
$$

We will assume the vertical accelerations are small enough that the tensions $T_{\text {upper }}$ and $T_{\text {lower }}$ of the upper and lower tether segments respectively are equal to their quasi-static values:

$$
\begin{aligned}
& T_{\text {upper }}=F_{T}^{G G} \\
& T_{\text {1ower }}=-F_{p}^{G G}
\end{aligned}
$$

With the small-angle assumptions

$$
\begin{aligned}
& \sin \alpha \simeq \alpha \simeq x / y \quad ; \cos \alpha \simeq 1 \\
& \sin \beta \simeq \beta=\frac{x_{T}-x}{L-y} ; \cos \beta=1
\end{aligned}
$$

the horizontal components of these tensions contribute forces

$$
\begin{align*}
& F_{P}^{T}=-F_{p}^{G G} \frac{x}{y}  \tag{12}\\
& F_{m}^{T}=F_{p}^{G G} \frac{x}{y}+F_{T}^{C G} \frac{x_{T}-x}{L-y}  \tag{13}\\
& F_{T}^{T}=V_{T}^{C G} \frac{x_{r}-x}{L-y} \tag{14}
\end{align*}
$$

Whe equations of motion for the threc masses are then
$M_{p}\left(v \ddot{x}+v_{T} \ddot{x}_{T}\right)=-3 \Omega^{2}\left\{M\left[(1-v) y-v_{T} L\right]+M_{T}\left[\left(1-v_{T}\right) L-i v y\right] \frac{x}{y}-2 S 2 \mathscr{P}_{p} v \dot{y}\right.$
$\left.M\left[(1-v) \ddot{x}-v_{T} \ddot{x}_{T}\right]=-3 \Omega^{2}\left\{M[1-v) y-v_{T} L\right]+M_{T}\left[\left(1-v_{T}\right) L-v y\right]\right\} \frac{x}{y}+3 \Omega^{2} M_{T}\left[\left(1-v_{T}\right) L-v y\right] \frac{x_{T}-x}{L_{1}-y}$

It must be noticed that only two of chese equations are independent, since the linear combination representing the motion of the $C M$ sust be satis.fied. The motions of ferry and upper mass relative to the J.ower platform can be extracted by the combinations (16)/M - (15)/Mp anc (17) $/ M_{T}-(1.5) / M_{p}$ respectively. After simplification,

$$
\begin{align*}
& \ddot{x}=-3 \Omega^{2} \frac{1-v_{T}}{v}\left(v y+v_{T} L\right) \frac{x}{y}+3 \Omega^{2} \frac{v_{T}}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{x_{T}-x}{L-y}-2 S \dot{y}  \tag{18}\\
& \ddot{x}_{T}=-3 \Omega^{2}\left(v y+v_{T} L\right) \frac{x}{y}-3 \Omega^{2}\left[\left(1-v_{T}\right) L-v y\right] \frac{x_{T}-x}{L-y} \tag{19}
\end{align*}
$$

A useful variation is obtained by difference of these equations. Defining

$$
\begin{equation*}
\delta=x_{T}-x \tag{20}
\end{equation*}
$$

this equation is

$$
\begin{equation*}
\ddot{\delta}=3 \Omega^{2} \frac{v_{p}}{v}\left(v_{y}+v_{T} 1\right) \frac{x}{y}-3 \Omega^{2} \frac{1-v_{p}}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{\delta}{L-y} \tag{21}
\end{equation*}
$$

There are at least two characteristic times involved in thic problem: the fir:f is the triasit time $T$ of the ferry; the sceond is $1 / \Omega$, the inverse of the orbita) angular velecity (of the seme order as the period of the gravity gradient oscillations). Typicaly, in the sttuatiou befag, considered, $Y$ ~ $1-3$ days, wilice $1 / \Omega \approx=14$ min. Hence, the non-djmansional parnmetcr

$$
\begin{equation*}
\varepsilon=\frac{1}{\Omega T} \tag{22}
\end{equation*}
$$

is vo $y$ smali, and can be used as an expansion paramerer for an aproximate solution. Ne :ake this parameter ceplicit by introducino dimencionless time

$$
\begin{equation*}
\theta=\frac{t}{T} \tag{23}
\end{equation*}
$$

and rewriting Eqs. (18) and (21) as
$\varepsilon^{2} \frac{d^{2} x}{d \theta^{2}}=-3 \frac{1-v_{T}}{v}\left(v y+v_{T} L\right) \frac{x}{y}+3 \frac{v_{T}}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{\delta}{L-y}+2 \varepsilon \frac{d y}{d \theta}$
$\varepsilon^{2} \frac{d^{2} \delta}{d \theta^{2}}=3 \frac{v_{p}}{v}\left(v y+v_{T} L\right) \frac{x}{y}-3 \frac{1-v_{p}}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{\delta}{L_{1}-y}-2 \varepsilon \frac{d y}{d \theta}$
In addition to the two widely different time scales, which indicates the likelihood of a slowly modulated gravity gradicnt oscillation, Eqs. (24) and (25) contain the factors $\frac{1}{y}$ and $\frac{1}{1-y}$. These will cause singularities near the initial and final times. Physically, such singularitias arise because of the high frequency of relative oscillation when two of the masses come close to cach other; for the condition $\mathrm{y} \rightarrow \mathrm{L}$, there is the possibility of a divergence of $\delta$ as the farry approaches the upper platform.

Although Eqs. (24) and (25) are linear in ( $x, \delta$ ), their complex structure (particularly aince $y(t)$ is arbitrary), indicates the necessity of approximate methods of solution. The plan of attack will be to use a WKI colution away from ymo and yml, and to match it asymptotically tc "inner" solutions valid near each end.
2. The Whit solulion (fary not neat the ondri).

Except for the very last oscillations near the enda of the trip, ve anticipate the solition to consist of slowly modulited (on a scale $\theta$. 1) fravity gradient oscillations (of peifod ~e). There ghould be actually wo gravity friadfont "modes," roughy corrcepondins to a collective, nera straight-line oscillation of the three messus, and a "hending" obcilijution with $x$ opposing $x_{p}$ and $x_{T}$. The Whi method is well suited to this linent problein; we represent the homnemeous approzimbte solutions as exponemials of truncated beries in $c$, the leadiag terin (of order $1 / \varepsilon$ ) being imaginary to represent the oscillatory behavior:

$$
\begin{align*}
& x=e^{\left[1 \frac{K(\theta)}{\varepsilon}+\Lambda(\theta)+\varepsilon C(0)+\ldots\right]}  \tag{26}\\
& \delta=e^{\left[1 \frac{K(\theta)}{\varepsilon}+B(\theta)+\varepsilon D(\theta)+\ldots\right]} \tag{27}
\end{align*}
$$

where the functions $K, A, B, C, D$ are presumed to be amooth on the scale of 0 . Differentiating and substituting into Eqs. (24), (25) we obtain $\varepsilon^{2}\left[-\frac{\dot{\mathrm{k}}^{2}}{\varepsilon^{2}}+21 \frac{\dot{\mathrm{k}}}{\varepsilon}(\dot{A}+\varepsilon \dot{C}+\ldots)+i \frac{\underline{K}}{\varepsilon}+\ddot{X}+c \dot{C}+\ldots+(\dot{A}+\varepsilon \dot{C}+\ldots)^{2}\right]=$

$$
\begin{equation*}
=-3 \frac{1-v_{T}}{v}\left(v y+v_{T} L\right) \frac{1}{y}+3 \frac{\nu_{T}}{v} \frac{\left(1-v_{T}\right) L-v y}{L-y} e^{B-A} e^{(B-C) \varepsilon \ldots} \tag{28}
\end{equation*}
$$

$\varepsilon^{2}\left[-\frac{\dot{\mathcal{K}}^{2}}{\varepsilon^{2}}+2 i \frac{\dot{\varepsilon}}{\varepsilon}(\dot{B}+\varepsilon \dot{D}+\ldots)+i \frac{\ddot{R}}{\varepsilon}+\ddot{B}+\ddot{\bar{D}}+\ldots+(\dot{B}+\varepsilon \dot{D}+\ldots)^{2}\right]=$

$$
\begin{equation*}
=3 \frac{\nu_{p}}{\nu} \frac{\nu y+\nu_{T} L}{y} e^{A-B} e^{(C-B) \varepsilon \cdots-3} \frac{-1-\nu_{p}}{\nu} \frac{\left(1-v_{p}\right) L-v y}{L-y} \tag{29}
\end{equation*}
$$

Where the inhomogencous terms $\pm 2 \varepsilon \frac{d y}{d \theta}$ have been omitted, in the understanding that a particular solution will have to be added later in order to obtain the general solution. Here a dot is meant to represent $\mathrm{d} / \mathrm{d} 0$.

We first observe that these two equations can be compatible to order $\varepsilon^{0}$ only if the two right hand sides are identical (with the $\exp ((C-B) \varepsilon)$ terms omitted). This condition leads to a second order algebraic equation for $X \equiv e^{A-B}$ :

Which has the two solutions

$$
\begin{align*}
& x^{+}=e^{A^{+}-B^{-1}}=\frac{y}{L-y}  \tag{31}\\
& x^{-} \equiv e^{A^{-}-B^{-}}=\frac{-v_{\eta}}{v_{p}} \frac{\left(1-v_{T}\right) L_{-}-v y}{v_{T} L+v y} \tag{32}
\end{align*}
$$

If this condition is satiafiad, the zero'th order part of, for instance, Eq. (29), reduces to

$$
\begin{equation*}
\dot{R}^{2}=-3 \frac{v_{p}}{v} \frac{v y+v_{R} L}{y} e^{A-y}-3 \frac{1-\nu_{L}}{v} \frac{\left(1-v_{T}\right) L-v y}{L-y} \tag{33}
\end{equation*}
$$

Substitution of either Eq. (31) or Eq. (32) here, leads to the two possible instantaneous frequencies:

$$
\begin{align*}
& \dot{R}^{+}= \pm \sqrt{3}  \tag{34}\\
& \hat{K}^{-}= \pm \sqrt{\frac{3}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{v y+v_{T}{ }^{2}}{y(L-y)}} \tag{35}
\end{align*}
$$

These expressions are valid for arbitrary climbout laws. The phases $\mathrm{K}^{+}, \mathrm{K}^{-}$are obtained by time integration, and depend, therefore, on the particular choice of climbing law:

$$
\begin{align*}
& \mathrm{K}^{+}= \pm \sqrt{3} \theta  \tag{36}\\
& \mathrm{x}^{-}=\int_{0}^{\theta} \sqrt{\frac{3}{v}\left[\left(1-v_{T}\right) L-v y\right] \frac{v y+v_{T} L}{y(L-y)}} d \theta
\end{align*}
$$

The firet of these modes is recognizable as the ordinary gravity gradient osciliation, at frequency $\sqrt{3} \Omega$; we expect both $X$ and $X_{T}$ to
be fin phase thithis mode. The ercond ane has: a more complex atructure, with frequoncy increasine as $\frac{1}{\sqrt{y}}$ near $y=0$ and as $\frac{1}{\sqrt{2}-y}$ near $y=L$; an will be scen in the ucst section, these "inner jinite" of the "outer solution" inded natch the outer jiadts of the fmer aolutions near each extrome. This tucond wode, therefore, can be expected to be the bendjeg thode, and $X$ and $\&$ should be in counterphase.

To conefinue the solution, we write down the order-e parts of Eqs. (28) and (29):

$$
\begin{align*}
& 21 \dot{K} \dot{A}+1 K=3 \frac{v_{T}}{v} \frac{\left(1-v_{T}\right) L-v y}{L-y} e^{B-A}(B-C)  \tag{38}\\
& 21 \dot{K} \dot{B}+1 \ddot{K}=3 \frac{v_{D}}{v} \frac{v y+v_{T} L}{y} e^{A-B}(C-B) \tag{39}
\end{align*}
$$

By division, we can eliminate ( $\mathrm{D}-\mathrm{C}$ ) and ohtain the required comection between $A$ and $B$ :

$$
\begin{equation*}
\frac{2 \dot{K} \dot{B}+\ddot{K}}{2 \dot{K} \dot{K} \dot{A}+\ddot{K}}=-\frac{\nu_{p}}{\nu_{T}} \frac{L-Y}{y^{\prime}} \frac{\nu y+V_{T} L}{\left(1-\nu_{T}\right) L-\nu y} c^{2(A-B)} \tag{40}
\end{equation*}
$$

For the collective $(t)$ mode, $\ddot{\mathrm{K}}^{+}=0$ (see Eq. (34)), and $\mathrm{e}^{\mathrm{A}-\mathrm{B}}$ is given by Eq. (31), from which

$$
\begin{equation*}
\ddot{A}^{+}=\dot{b}^{+}+\frac{\ddot{\zeta}}{y(L-y)} \tag{41}
\end{equation*}
$$

subetituting in (40), we can solve for $\frac{d B^{+}}{d y}$ (affer cancelling $d t$ ) as

$$
\begin{equation*}
\frac{d B^{+}}{d y}=-v_{p} \frac{\left(v y+v_{T}\right)}{(L-y) S(y)} ; s(y) \equiv v_{T}\left(1-v_{T}\right) L^{2}-2 v_{T} \nu L y+v(1-v) y^{2} \tag{42}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
e^{B^{+}}=(L-y) \sqrt{\frac{v_{T}\left(1-v_{T}\right)}{S(y)}} \tag{43}
\end{equation*}
$$

and, after Eq. (31),

$$
\begin{equation*}
e^{A^{+}}=y \sqrt{\frac{v_{T}\left(1-v_{T}\right)}{S(y)}} \tag{44}
\end{equation*}
$$

## OF POOR QUALITY

This showe that in the collective gravity gradient mode, the amplitude of the oscillations of $X$ increases nearly linearly with $y$ ( a amplitude about conatant), while those of $X_{T}-X$ fecrease in amplitude about linearly in l-y ( $B$ about constant). The $X$-amplitude approaches a finite limit as $y \rightarrow L$, and aince $X(y \times 0)=0, \delta$ approaches the amme limit ae $y \rightarrow 0, X$ and $X_{T}-X$ oscillate in phase.

For the "bending" (-) mode, for which $\dot{X}^{-}$is given by Eq. (35) and $\ddot{\mathrm{X}}$ - does not vanish, a somewhat more elaborate procedure is required. Notice that the left hand aide of Eq. (40) can be written as

$$
\begin{align*}
& \frac{2 \dot{K} \dot{B}+\ddot{X}}{2 \dot{K} \dot{A}+\ddot{K}}=\frac{2 \dot{R}^{2} \dot{B}+\dot{\dot{K}} \dot{K}}{2 \dot{K}^{2} \dot{A}+\dot{R} \dot{K}}=\frac{2 \dot{B}+\frac{2 d \ln }{2 d \dot{G}} \dot{K}^{2}}{2 \dot{A}+\frac{1 d \ln }{2 d \theta} \dot{K}^{2}}=\frac{\frac{d}{d y}(2 B+\ln |\dot{K}|)}{\frac{d}{d y}(2 A+\ln |\dot{K}|)} \\
& 2 A^{-}+\ln \left|\dot{K}^{-}\right|=F \quad ; \quad 2 B^{-}+\ln \left|\dot{K}^{-}\right|=G \tag{45}
\end{align*}
$$

so that we have, from Eqs. (40) and (32)

$$
\begin{equation*}
\left(\frac{d G}{d y}\right) /\left(\frac{d F}{d y}\right)=-\frac{v_{T}}{v_{P}} \frac{L-y}{y} \frac{\left(1-v_{T}\right) L-v y}{v_{T} L+v y} \tag{45}
\end{equation*}
$$

and, from (32) and (45)

$$
\begin{align*}
& F-G+2\left(A^{-}-B^{-}\right)=2 \ln \left[-\frac{\nu_{T}}{\nu_{p}} \frac{\left(1-v_{T}\right) L-v y}{\nu_{T} L+v y}\right] \\
& \frac{d F}{d y}-\frac{d G}{d y}=\frac{-2 v L}{\left[\left(1-V_{T}\right) L-v y\right]\left(\nu_{T} L+v y\right)} \tag{47}
\end{align*}
$$

Equations (46) and (47) can be solved for $\frac{d F}{d y}$ and $\frac{d G}{d y}$, which can then be integrated to obtain $F$ and $G . A^{-}$and $B^{-}$ahen follow from Eq. (45), using (35) for $\left|\hat{K}^{-}\right|$. The result of this calculation is

$$
\begin{align*}
& c^{A^{-}}=+\left(\frac{\nu}{3}\right)^{1 . / 4} \frac{\left[\left(1-v_{T}\right) 1,-\nu y\right]^{3 / 4} y^{1 / 4}(1,-y)^{3 / 4}}{\left(v_{q} 1+\nu y\right)^{3 / 4} \cdot \sqrt{S(y)}} .  \tag{48}\\
& e^{B^{-}}=-\frac{\nu_{p}}{n}\left(\frac{v}{3}\right)^{3 / 4} \frac{\left(\nu_{q} L+v_{y}\right)^{3 / 4} y^{1 / 4}(L-y)^{1 / 4}}{\left[\left(1-\nu_{q}\right) 1,-\nu y\right]^{1 / 4} \sqrt{s(y)}} \tag{49}
\end{align*}
$$

Where $S(y)$ to as defined in Eq. (4?). These formulae show that $x$ and $\mathrm{X}_{\mathrm{r}}-\mathrm{X}$ indeed osciliate in counterphase ("bending" mode). Both variables have amplitades varying rouginy as $[y(L-y)]^{1 / 4}$, which indicate augular amplitude for a like $1 / y^{3 / 4}$ (ucar $y=0$ ) and for $\varepsilon$ like $1 /(L-y)^{3 / 4}$ (near $y=L$ ). Although this looks like a divergent behavior, matching to the near-end solutions will show that at least one finite angle solution exists at each end.

Having determined $e^{A}, e^{B}$ and $e^{i K / E}$ for each of the two gravity gradiunt modes, we have a good approximation to the homogeneous nolution and can truncate the exparision in powers of $e$. The remaining task is to generate a particular solution of the complete equations; none can be identified by inspection, and so, the nethod of varistion of parancters mast be resorted to. To this end, let us represent the homogencous solution in the form

$$
\begin{align*}
& X=C_{1} f_{1}+C_{2} f_{2}+C_{3} f_{3}+C_{4} f_{4}  \tag{50}\\
& f=g_{1}+C_{2} g_{2}+C_{3} g_{3}+C_{4} g_{4} \tag{51}
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}=e^{A^{+}+i \frac{K_{+}}{\varepsilon}} ; f_{2}=e^{A^{+}-i \frac{K^{+}}{\varepsilon}} ; f_{3}=e^{A^{-}+i \frac{K^{-}}{\varepsilon}} ; f_{4}=e^{A^{-}-i \frac{R^{-}}{\varepsilon}}  \tag{52}\\
& g_{1}=e^{B^{+}+1 \frac{X^{+}}{\varepsilon}} ; g_{2}=e^{E^{+}-i \frac{R^{+}}{\varepsilon}} ; g_{3}=e^{B^{-}+1 \frac{K^{-}}{\varepsilon}} ; g_{4}=e^{B^{-}-i \frac{K^{-}}{\varepsilon}} \tag{53}
\end{align*}
$$






$$
\begin{align*}
& \mathrm{H}_{1} \dot{C}_{1}+12 \dot{C}_{3}+\dot{B}_{1} \dot{C}_{3}+\dot{C}_{14} \dot{C}_{4}=0  \tag{54}\\
& \dot{r}_{1} \dot{C}_{1}+\dot{r}_{3} \dot{C}_{2}+\dot{r}_{3} \dot{C}_{3}+\dot{r}_{4} \dot{C}_{4}=\dot{y}_{\dot{C}} \\
& \dot{B}_{1} \dot{C}_{1}+\dot{\mathrm{C}}_{2} \dot{C}_{2}+\dot{a}_{3} \dot{C}_{3}+\dot{B}_{4} \dot{C}_{4}=-2 \frac{\dot{\mathrm{I}}}{\mathbf{E}}
\end{align*}
$$

Notice, from figs. (52), (53) thai $g_{1} / i_{1}=82 / f_{2} \times e^{B^{+}-A^{+}}$, and
 (bi) wdratit the single solution

$$
\left.\begin{align*}
& f_{1} \dot{C}_{1}+r_{2} \dot{C}_{2}=0  \tag{55}\\
& r_{3} \dot{C}_{3}+r_{4}{\dot{C_{4}}}_{4}=0
\end{align*} \right\rvert\,
$$

Elimination of $\dot{C}_{2}$ and $\dot{C}_{4}$ between these equation and the bottom two equations of ( 54 ) then gives

Noting that
and, similarly,

$$
\left(\frac{B_{3}}{f_{3}}-\frac{\operatorname{R}_{4}}{f_{4}}\right)=\left(\frac{\dot{E}_{3}}{\dot{L}_{4}}-\frac{\dot{f}_{4}}{f_{4}}\right) e^{8^{-}-A^{-}}
$$

Eqs. (50) can lic solved to

$$
\begin{align*}
& \dot{c}_{1}=\frac{-2}{\varepsilon} \dot{y}-\frac{1-1 / x^{-}}{f_{1}\left(\frac{\left.d \sin \frac{1}{d} / \frac{1}{d}\right)\left(\frac{1}{-1}-\frac{1}{x}\right.}{x^{-}}\right)}  \tag{57}\\
& \dot{c}_{3}=\frac{2}{E} \dot{y} \frac{1 / x^{+}-1}{f_{3}\left(\frac{d}{\ln \frac{1}{3}}-\frac{1}{2}\right)\left(\frac{1}{x^{+}}-\frac{1}{x^{-}}\right)} \tag{58}
\end{align*}
$$

whare $\mathrm{X}^{+}, \mathrm{X}^{-}$are as in Eqs. (31), (32). Also, then

$$
\begin{equation*}
\dot{c}_{2}=-\frac{f_{1}}{f_{2}} \dot{C}_{1} \quad ; \quad \dot{c}_{4}=-\frac{f_{3}}{f_{4}} \dot{C}_{4} \tag{59}
\end{equation*}
$$

From Eqs. (52), (53) it follows that $\frac{d \ln f_{1} / f_{2}}{d \theta}=\frac{21}{\varepsilon} \mathrm{~K}^{+}$
and $\frac{d \ln f_{3} / f_{4}}{d \theta}=\frac{2 i}{\varepsilon} \dot{X}^{-}$. Also, $f_{2}$ is the complex conjugate of $f_{1}$. and, similarly, $f_{4}-f_{3}{ }^{*} \mathrm{f}_{2}=\mathrm{f}_{1}{ }^{*}{ }^{*}$ Therefore, Eqs. (57) and (59) imply
and, similerly, $\dot{C}_{4}=C_{3}{ }^{*} C_{2}=C_{1}^{*}$

Using the expressions found before for $X, K$, etc., one can now calcul.ate

$$
\begin{equation*}
c_{1}=K_{1}+\frac{i v}{\sqrt{3 v_{T}\left(1-v_{T}\right)}} \int_{0}^{y} e^{-i \frac{3}{\varepsilon} \theta \frac{v_{T} L-(1-v) y}{\sqrt{S(y)}}} d y \tag{62}
\end{equation*}
$$

where $K_{1}$ is an arbitrary (complex) constant and $\theta$ is to be regarded for integration as a function of $y$, which implies specification of

$$
\begin{align*}
& \text { A particular climbout law. Sjminarly, } \\
& c_{3}=K_{3}-i v_{1} L \int_{0}^{y}-i \frac{\left|K^{-}(0)\right|}{\varepsilon}\left[\frac{\nu}{3} \frac{y(1-y)}{\left(v_{T} I+v y\right)\left[\left(1-v_{r}\right) 1,-v_{y}\right]}\right]^{1 / 4} \frac{d y}{\sqrt{S(y)}} \tag{63}
\end{align*}
$$

where $\mathcal{K}^{-}(0)$ is given by Eq. (37).

$$
\begin{align*}
\text { Finally, since } C_{2} f_{2} & =\left(C_{1} f_{2}\right)^{*} \text { and } C_{4} f_{4}=\left(C_{3} f_{3}\right)^{*}, \\
x & =2 R_{e}\left(C_{1} f_{1}\right)+2 R_{e}\left(C_{3} f_{3}\right)  \tag{64}\\
\delta & =\frac{2 R_{e}\left(C_{1} f_{1}\right)}{x^{+}}+\frac{2 R_{e}\left(C_{3} f_{3}\right)}{x^{-}} \tag{65}
\end{align*}
$$

or, after some reduction,

$$
\begin{align*}
& x=\frac{2 y}{\sqrt{S(y)}} \cdot\left\{P \cos \left(\frac{\sqrt{3}}{\varepsilon} \theta+\phi\right)+\frac{\nu L}{\sqrt{3}} \int_{0}^{y} \sin \frac{\sqrt{3}}{\varepsilon}\left(\theta^{\prime} \theta\right) \frac{L-Q\left(y^{\prime}\right)}{\sqrt{S\left(y^{\prime}\right)}} d y^{\prime}\right\}+ \\
& +2 \frac{(L-Q(y))^{3 / 4}}{\sqrt{S(y)}}\left[\frac{\nu}{3} \frac{y(L-y)}{Q(y)}\right]^{1 / 4}\left\{R \cos \left(\frac{K^{-}(\theta)}{E}+\psi\right)-v_{T} \int_{0}^{y} \sin ^{y}\left(\frac{L^{-}\left(\theta^{0}\right)-K^{-}(\theta)}{E}\right) x\right. \\
& \left.x\left[\frac{v}{3} \frac{y^{\prime}\left(L-y^{\prime}\right)}{Q\left(y^{\prime}\right)\left(L-Q\left(y^{\prime}\right)\right)}\right]^{1 / 4} \frac{d y^{\prime}}{\sqrt{S\left(y^{9}\right)}}\right\}  \tag{66}\\
& \delta=\frac{2(L-y)}{\sqrt{S(y)}}\left\{P \cos \left(\frac{\sqrt{3}}{\varepsilon} \theta \phi\right)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right\}- \\
& -2 \frac{\nu_{p}(Q(y))^{3 / 4}}{\nu_{T}}\left[\frac{v}{\sqrt{S(y)}} \frac{y(L-y)}{L-Q(y)}\right]^{1 / 4}\{R \cos (\quad) \ldots \ldots \ldots \ldots \ldots \ldots \tag{67}
\end{align*}
$$

Herc we have defjued

## ORIGINAL PAGE IS

 OF POOR QUALITY$$
\begin{equation*}
Q(y)=v_{1} l+v y \tag{G8}
\end{equation*}
$$

find $P, R, \phi$ and $\psi$ aro a now set of arbjtrary (:cal) constants, to be found by imposing the correct boundary condjujons.
3. Boundary conditions. Behavior when the forry is near one end.

For our problem, we will assume the tother is initinliy deployed nlong the radial direction, and that the ferry starts out from the lower platform with a relative velocity $\dot{y}(0)=v_{0}$, in a direction moking an angle $\alpha_{0}=\lim _{t \rightarrow 0}\left(\frac{x}{y}\right)$ th the local vertical. Thus, the initial conditions are

$$
\begin{array}{ll}
x(0)=0 & \frac{d}{d t}(0)=\alpha_{0} v_{0} \\
\delta(0)=0 & \frac{d \delta}{d t}(0)=-\alpha_{0} v_{0} \tag{68b}
\end{array}
$$

We first notice that, from Eq. (67), for $\delta(0)=0$ we need $\dot{P} \cos \phi=0$, and since $P \nmid 0$ is required for later matching, we take

$$
\begin{equation*}
\phi=-\frac{\pi}{2} \tag{69}
\end{equation*}
$$

such that $\cos \left(\frac{\sqrt{3}}{\varepsilon} \theta+\phi\right)=\sin \left(\frac{\sqrt{3}}{\varepsilon} \theta\right)$. The limiting behavior of the solution for small $\theta$ is then

$$
x=\frac{2 y}{\sqrt{v_{T}\left(1-v_{T}\right)}}\left\{\frac{P}{L} \sin \frac{\sqrt{3}}{\varepsilon} \theta+\frac{v}{\sqrt{3}} \sqrt{\frac{1-v_{T}}{v_{T}}} \int_{0}^{y} \sin \frac{\sqrt{3}}{\varepsilon}\left(\theta^{\prime}-\theta\right) d y^{\prime}\right\}+
$$

# ORIGINAL PAGE IS OF POOR QUALITY 

$$
\begin{align*}
& +\frac{2}{v_{\eta}} 3 / 4\left[\frac{v}{3}\left(\frac{1-v_{\eta}}{L}\right)\right]^{1 / 4} y^{1 / 4}\left\{R \cos \left(\frac{K^{-}(0)}{3}+4\right)-\right. \\
& \left.-\frac{\left(\frac{\nu \nu_{T}}{3 L}\right)^{1 / 4}}{\left[1-\nu_{T}\right\}^{3 / 4}} \int_{0}^{y}\left(y^{\prime}\right)^{1 / 4} \sin \frac{K^{-}\left(\theta^{\prime}\right)-K^{-}(\theta)}{\varepsilon} d y^{\prime}\right\}  \tag{69~h}\\
& \delta \simeq \frac{2 L}{\sqrt{\nu_{T}\left(1-\nu_{T}\right)}} \quad\{\cdots \ldots \ldots \ldots \ldots \ldots \ldots\}- \\
& -2 \frac{v_{P}}{v_{T}{ }^{3 / 4}\left(1-v_{T}\right)^{3 / 4}}\left(\frac{v_{3}}{3}\right)^{1 / 4}\left(\frac{y}{L}\right)^{1 / 4}\{\ldots \ldots . . . \ldots \ldots \ldots \ldots\} \tag{70}
\end{align*}
$$

Here, the limiting form of $\mathrm{K}^{-}(e)$ can be found from Eq. (37) as

$$
\begin{equation*}
\mathbb{V}_{\theta \rightarrow 0}^{-} 2 \sqrt{\frac{3}{v} v_{T}\left(1-v_{T}\right)\left(\frac{L}{v_{0} T}\right)} \sqrt{\theta} \tag{71}
\end{equation*}
$$

The integral in the first bracket is simply $-v_{0} T \frac{\varepsilon}{\sqrt{3}}\left(1-\cos \frac{\sqrt{3}}{\varepsilon} \theta\right)$, and vanishes iike $\theta^{2}$ for small $\theta$. Thus the whole first $\sqrt{3}$ tern in the expression for $x$ (the collective mode) is at least of order $\theta^{2}$, and does not contribute either to $x$ or to $\frac{d x}{d t}$ near $\theta=0$. The integral in the second bracket is more involved. As suggested by Eq. (71), we can define a time scale for the fast "bending" oscillations near $y=0$ as

$$
\begin{equation*}
\tau_{0}=\frac{\nu}{3 v_{T}\left(1-v_{T}\right)} \frac{v_{0}}{\Omega^{2} L} \tag{72}
\end{equation*}
$$

Such that $\frac{x^{-}(0)}{\varepsilon}=2 \sqrt{\frac{t}{\tau_{0}}}=2 \sqrt{\frac{y}{v_{0} T_{0}}}$. The Integral is then

$$
\begin{equation*}
I=\int_{0}^{7}\left(y^{\prime}\right)^{1 / 4} \sin \left[\frac{2}{\sqrt{v_{0} \tau_{0}}}\left(\sqrt{y^{\prime}}-\sqrt{y}\right)\right] d y^{\prime} \tag{73}
\end{equation*}
$$

The time $T_{0}$ is much shorter than even the "fast" gravity gradient Line $\sim 1 / s$, since, from (72), $\Omega r_{0}=\frac{\nu}{3 \nu_{\eta}\left(1-\nu_{\eta}\right)}\left(\frac{0}{L}-\right) \varepsilon \sim \varepsilon$. Therefore, all intermediate tinie scale exist:s such that $\frac{t}{\tau_{0}}+\infty$ but $\operatorname{stalll} 0 \mathrm{~m} \frac{\mathrm{t}}{\mathrm{T}} \rightarrow 0$. We are thins justifies fin cvaluating (73) in an asymptotic form, for: large values of $\eta=\frac{y}{v_{0} T_{0}}$ :

$$
\begin{align*}
I & =\left(v_{0} \tau_{0}\right)^{5 / 4} \int_{0}^{n}\left(\eta^{\prime}\right)^{1 / 4} \sin \left(2 \sqrt{n^{\prime}}-2 \sqrt{\eta}\right) d y^{\prime} \underset{n \rightarrow \infty}{ }-\left(v_{0} \tau_{0}\right)^{5 / 4} n^{3 / 4}= \\
& =-v_{0}^{5 / 4} \tau_{0}^{1 / 2} t^{3 / 4} \tag{74}
\end{align*}
$$

## We thus obtain

$x \underset{t \rightarrow 0}{ } \frac{2}{v_{T}^{3 / 4}}\left[\frac{\nu}{3}\left(1-v_{T}\right) \frac{v_{0}}{L}\right]^{1 / 4} \mathrm{Rt}^{1 / 4} \cos \left(2 \sqrt{\frac{t}{\tau_{0}}}+\psi\right)+2 \frac{\nu}{3 v_{T}\left(1-V_{T}\right)} \frac{v_{0}^{2}}{\Omega \mathrm{~L}} \mathrm{t}$
and

$$
\begin{align*}
& \delta_{t \rightarrow 0} \frac{2 P}{-v_{T}\left(1-V_{T}\right)} \sin \sqrt{3} \Omega t+\frac{2 V L}{3 v_{T} \Omega T}\left(1-\operatorname{cosi} \overline{3}^{-} \Omega t\right)- \\
& -\frac{2 \nu_{P}}{\left[\nu_{T}\left(1-\nu_{T}\right]^{3 / 4}\right.}\left(\frac{\nu}{3} \frac{v_{0}}{L}\right)^{1 / 4}{ }_{t}^{1 / 4} R \cos \left(2 \sqrt{\frac{t}{\tau_{0}}}+\psi\right)-\frac{2 \nu_{D} \nu}{3 \nu_{T}\left(1-\nu_{T}\right)^{2}} \frac{v_{0}^{2} t}{\Omega L} \tag{76}
\end{align*}
$$

Now, to complete the determination of constants, we need to examine the behavior on the very short time scale $\tau_{0} \sim \varepsilon^{2} T$, where our WKB approximation must fail. For this purpose, we go back to the basic equations (24) and (25). In (24), for very short time after the start of the climb, we can replace $\delta \approx 0, \frac{d y}{d \theta} \simeq \frac{0}{T}, y \approx 0$ :

$$
\begin{equation*}
\varepsilon^{2} \frac{d^{2} x}{d 0^{2}}+3 \frac{V_{T}\left(1-v_{T}\right)}{V} \frac{x}{v_{0} T}=2 \varepsilon \frac{v_{0}}{T} \tag{77}
\end{equation*}
$$

The homecneous part of (77) is n ficssel aquation in the variable $\sqrt{0}$. A particular solution is obtained by anspection, with $x-0$. ajtowether, then, one ohtains the solution

$$
\begin{equation*}
x=2 S 2 v_{0} \tau_{0}^{t}+D \cdot \sqrt{t} J_{1}\left(2 \cdot \frac{\bar{t}^{\prime}}{\tau_{0}}\right)+E \cdot \sqrt{t} x_{1}\left(2 \cdot \frac{\sqrt{t}}{\tau_{0}}\right) \tag{78}
\end{equation*}
$$

Where $T_{0}$ is as defincd in Eq. (72) "Near the origin,
$\sqrt{\mathrm{L}} \therefore\left(2 \sqrt{\frac{t}{\tau_{0}}}\right)+\frac{1}{\pi} \sqrt{\tau_{0}}$, while $\cdot \vec{t}_{\mathrm{T}_{1}}\left(2 \sqrt{\frac{t}{t_{0}}}\right)+\frac{\mathrm{t}}{\sqrt{\tau_{0}}}$. Thus, to ensure $\%=0$ at $t=0$, E must be zero, and we have

$$
\begin{equation*}
x=2 \Omega v_{0} \tau_{0} t+D_{1} \Gamma_{t} J_{1}\left(2 \cdot \frac{\sqrt{t}}{\tau_{0}}\right) \rightarrow\left(2 \Omega v_{0} \tau_{c}+\frac{D}{\sqrt{\tau_{0}}}\right) t \tag{79}
\end{equation*}
$$

Equating the coefficient of $t$ in Eq. (79) to $v_{0} \alpha_{0}$ (See Eq. (68)) gives

$$
\begin{equation*}
D=\sqrt{\tau_{0}} v_{0}\left(\alpha_{0}-2 \Omega \tau_{0}\right) \tag{80}
\end{equation*}
$$

Now, in the intermediate limit $\frac{t}{\tau_{0}} \rightarrow \infty$ (but, still $\frac{t}{T}+0$ ), valid for very small $\varepsilon$, we can use the known asymptotic expansion of che Bessel function $J_{1}$ to obtain from Eq. (79)

$$
\begin{equation*}
\dot{x / \tau_{0}} \Rightarrow \infty{ }^{2 \int v_{0} \tau_{0} t+\frac{D}{\sqrt{\pi}}\left(t \tau_{0}\right)^{1 / 4} \cos \left(2 \sqrt{\frac{t}{\tau_{0}}}-\frac{3 \pi}{4}\right), ~(2)} \tag{81}
\end{equation*}
$$

This is the outer limit of the inner solution (Eq. (79)), and it must coincide with the inner limit (Eq. (75)) of the outer solution. It can be seen that the term linear in $t$ is already matched; matching of the oscillatory term requires the two condicions

$$
\begin{equation*}
\psi=-\frac{3 \pi}{4} \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\frac{D}{2 \sqrt{\pi \Omega}} \sqrt{\frac{V_{T}}{1-V_{T}}} \tag{83}
\end{equation*}
$$

or, using Eqs. (80) and (72).

## ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
\left.R=-\frac{1}{\sqrt{12 \pi}}=\frac{\sqrt{v}}{1-v_{T}}\left(\frac{v_{0}}{31}\right)^{3 / \pi}\left(n_{0}-\frac{2}{3}-\frac{v}{v_{\mathrm{f}}\left(1-v_{T}\right.}\right) \frac{v_{0}}{\sqrt{2 L}}\right) \tag{84}
\end{equation*}
$$

Only the constant $P$ remains to be determined, and chis must be done using the re nining initial condition $\frac{d \delta(0)}{d t}=-\alpha_{0} v_{0}$. Starting fron Eq. (76) onc can follow a matching procedure similar to that which led to (84). The result, after sone algebri, is

$$
\begin{equation*}
\mathbf{P}=\frac{\nu}{2 \sqrt{3}} \sqrt{\frac{\nu_{T}}{1-\nu_{T}}}-\frac{v_{0} \alpha_{0}}{\Omega} \tag{85}
\end{equation*}
$$

The final expressions for $x$ and $\delta=x_{T}-x$ are therefore

$$
\begin{align*}
& x=\frac{\nu L}{\sqrt{3}} \frac{y}{\sqrt{S(y)}}\left\{-\sqrt{\frac{\nu_{T}}{1-\nu_{T}}} \frac{v_{0} \alpha_{0}}{\Omega L} \sin (\sqrt{3} \Omega t)+2 \int_{0}^{y} \sin \left[\sqrt{3} \Omega\left(t^{\prime}-t\right) \frac{L^{-}-Q\left(y^{\prime}\right)}{S\left(y^{\prime}\right)} d y^{\prime}\right\}+\right. \\
& +v_{T} L \frac{[1-Q(y)]^{3 / 4}}{\sqrt{S(y)}}\left[\frac{v}{3} \frac{y(L-y)}{Q(y)}\right]^{1 / 4} x \\
& \left.\times\left\{\frac{1}{\sqrt{3 \pi}} \frac{\sqrt{\nu}}{v_{T}\left(1-v_{T}\right)}\right)^{v_{0}}\right)^{3 / 2}\left(\alpha_{0}-\frac{2}{3} \frac{v}{v_{T}\left(1-v_{T}\right)} \frac{v_{0}}{\Omega L}\right) \cos \left(\Omega T^{-}(\theta)-\frac{3 \pi}{4}\right)- \\
& \left.\left.-2 \int_{0}^{y} \sin \left[8 \pi\left(K^{-}\left(0^{\prime}\right)-K^{-}(0)\right)\right]\left[\frac{\nu}{3} \frac{y^{\prime}\left(L-y^{\prime}\right)}{Q\left(y^{\prime}\right)\left(1,-Q\left(y^{\prime}\right)\right)}\right]\right]^{1 / 4} \frac{d y^{\prime}}{\sqrt{S\left(y^{\prime}\right)}}\right\}  \tag{86}\\
& \delta=\kappa_{T}-x=\frac{\nu_{L}}{\sqrt{3}} \frac{L-y}{\sqrt{S(y)}}\left\{-\sqrt{\frac{\nu_{T}}{1-V_{T}}} \ldots \ldots \ldots \ldots \ldots \ldots . .\right\}- \\
& -v_{p} L \frac{(Q(y))^{3 / 4}}{\sqrt{S(y)}}\left[\frac{v}{3} \frac{y(L-y)}{L-Q(y)}\right]^{1 / 4}\left\{\frac{1}{\sqrt{3 \pi}} \ldots \ldots . . . . . . . . . .\right\} \tag{87}
\end{align*}
$$

4. Dincussivinothoresthe.
dixamination of these expressions for $y$ appronching $L$ shows that
(a) the lad $x$ of the ferty aproachen nome finfle 1 dmf , with pravity gradient collective oscillations, alsn of finito mplitude. The "bending" wouc oscillations decny as: $(1,-y)^{1 / 4}$.
 ponding to gravity gradient oscillations which tend to a constant angular ( $($ ) auplituic. It also has: a "bending" mode oscillation which decays In ariplitude as ( $1 \cdot y)^{1 / 4}$; as we have found from the similar analysis near $y=0$, these constitule the asymptotic "tail" of a near-end behavior characterized by cilher a $J_{1} D_{:}$a $Y_{i}$ Bessel function.

While near $y=0$ the $Y_{1}$ component was absent duc to the finite initial conditions, there is no guarante of a similar absence near $y=L$. A detailed analysis shows solutions of the same sort as near $y=0$, i.e.,

$$
\begin{equation*}
\delta=\left(\frac{X_{T}}{L} V_{T}-2 \Omega V_{T} \tau_{T}\right)(T-t)+F \sqrt{T-t} J_{1}\left(2 \cdot \sqrt{\frac{T-t}{\tau_{T}}}\right)+G \sqrt{T-t} Y_{1}\left(2 \sqrt{\frac{T-t}{\tau_{T}}}\right) \tag{88}
\end{equation*}
$$

where $x_{T}$ and $V_{T}$ are the values approached by $x$ and $\frac{d y}{d t}$ near $y=L$, and, similar to the definition of $\tau_{0}$, the fast local time scele is

$$
\begin{equation*}
\tau_{T}=\frac{\nu}{3 \nu_{p}\left(1-\nu_{p}\right)} \frac{v_{q}}{\Omega^{2} L} \tag{89}
\end{equation*}
$$

The values of the constant $F$ and $G$ would now be entirely determined by asymptotic matching to the known solution given by Eqs. (86) and (87), and would therefore depend on the climbout law $y(t)$ adopted. While the $J_{1}$ part leads to oscillations of finite angular amplitude, the $Y_{1}$ part would give a finite limit for the amplitude of $\delta$ oscillations, and hence an angular divergence. The object of speed control in the terminal phase of ascent should be to ensure the absence of this divergence. We can easily match (87) and (88) in their common region of validity, by noting that

 the phuse sit $x^{-}(\%)$ must approuch an jutcger number of cycles:

$$
\begin{equation*}
\Omega \ell T V^{\bullet \prime}(\Omega)=2 \pi n \tag{50}
\end{equation*}
$$

or

$$
\begin{equation*}
\Omega \int_{0}^{T} \sqrt{\frac{3}{v} \frac{(1-Q(y)]}{(L-y) y} \underline{y}(y)} d t=2 \pi n \tag{91}
\end{equation*}
$$

Since this phare is varying rapidly noar the end, fine control of $y(t)$ in that phase should be sufficient to ensure this condition, and hence to prevent mraparound.

It may also be noted that even the bounded fast oscillations may be avolded altogether near both ends if the angle of departure, $\alpha_{0}$, and of arrival $\beta_{T}$ are related in the appropriate way to the corresponiing velocities $v_{0}$ and $v_{i n}$ For the departure phase, this is obvious by inapection of Eq. (80); the condicion for mooth take-off is

$$
\begin{equation*}
\alpha_{0}=2 \Omega \tau_{0}=\frac{2}{3} \frac{v}{\nu_{T}\left(1-v_{T}\right)} \frac{v_{0}}{\Omega L} \tag{92}
\end{equation*}
$$

For the arrival phase, a similar simple expression can be arrived at: fast teminal occillations axe avoided if

$$
\begin{equation*}
B_{T}=\frac{X_{T}}{L}-\frac{\eta_{1}}{3} \frac{v}{v_{p}\left(1-v_{p}\right)} \frac{v_{T}}{\Omega L} \tag{93}
\end{equation*}
$$

5. Some numerical estimates.

The order of magnitude of the various quantities involved nan best be appreciated by means of a representative numerical example. Consider the fellowing case:
$\mathrm{L}=200 \mathrm{~km}$
$\Omega=1.158: 10^{-3}$ ratisice (300 Km orbit).
$\nu=v_{1}=0.1, \quad v_{p}=0 . \varepsilon$
$T=2.59 \% \times 10^{5} \sec (3$ days)
$\varepsilon=\frac{1}{\Omega T}=3.332 \times 10^{-3}$
then ascent velocity $\quad \overline{\mathrm{V}}=0.7716 \mathrm{~m} / \mathrm{sec}$
Ane $a_{0}$ for smooth starting (at $\bar{v}$ ) : $\alpha_{0}=2.468 \times 10^{-3}$ rad $=0.141^{\circ}$
Fast initial tine scale $T_{0}$ (at $\left.\bar{V}\right): \quad T_{0}=1.066 \mathrm{sec}$
Gravity gradient period $\frac{2 \pi}{\sqrt{3 \Omega}}=3133 \mathrm{sec}=52.2 \mathrm{~min}$


[^0]:    * Note that somewhat different values of the working stress have bean used in other sections of this report. The value used in each case has been clearly identified, however. For a discussion of the uncertainties in an estimate of this parameter, see Appendix 1.

[^1]:     by Givsoppe colomion. Finaz kepont on grant Nac-8008, from the saco to hish, Fob. 1001.

[^2]:    Tcata indicates self-screening influence of outer layers of "Kevlar" 49

