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TRANSIENT THERMAL STRESS PROBLEM FOR A 
CIRCUMFERENTIALLY CRACKED HOLLOW CYLINDER(*) 

by 

H.F. Nied and F. Erdogan 
Lehigh University, Bethlehem, PA 

ABSTRACT 

In this paper the transient thermal stress prOblem for a hollow 
elastic cylinder containing an internal circumferential edge crack is 
considered. It is assumed that the problem is axisymmetric with regard 
to the crack geometry and the loading, and that the inertia effects are 
negligible. The problem is solved for a cylinder which is suddenly cooled 
from inside. First the transient temperature and stress distributions 
in an uncracked cylinder are calculated. By using the equal and opposite 
of ·this thermal stress as the crack surface traction in the isothermal 
cylinder the crack problem is then solved and the stress intensity factor 
is calculated" The numerical results are obtained as a function of the 
Fourier number tD/b2 representing the time for various inner-to-outer 
radius ratios and relative crack depths, where 0 and b are respectively 
the coefficient of diffusivity and the outer radius of the cylinder. 

INTroDUCTION 

Cracking of brittle solids due to thermal stresses is a well-known 
phenomenon. In the absence of additional external loads, under thermal 
stresses, because of the self-equilibrating nature of the stress state, 
the cracking may not always lead to a through-thickne.ss or catastrophic 
fracture. For example, in [1] it was shown that in a suddenly cooled 
hollow glass cylinder an axial initial flaw penetrated into the cylinder 
wall only partially but propagated axially the entire length of the 
cylinder as a part-through crack. Similarly, one would expect that if 

t*) This work was supported by NSF under the Grant CME-78-08737 and by 
NASA-Langley under the Grant NGR 39-007-011. 
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the initial flaw were .to be circumferential a part-through crack could form 
and propagate along the entire circumference of the cylinder. .In either 
case, the depth of the part-through crack may be estimated'by comparing 
crack arrest fracture toughness of the material with the stress intensity 
factor. This, in turn, requires the calculation of the stress intensity 
factor for the combination of given mechanical, thermal, and residual 
stresses as a function of the crack depth. If the consideration is 
restricted to linearly elastic materials, then for each loading condi-
tion the crack problem may be treated separately. 

In this paper only the transient thermal stress problem is considered. 
. . 

The problem is that of a long hollow circular cylinder containing an 
internal axisymmetric circumferential edge crack which is suddenly cooled 
from inside (Fig. 1, c=a, d<b). It is assumed that the resulting tran­
sient thermal stress problem is quaSi-static; that is, the inertia 
effects are negligible. Previous studies'on dynamic thermoelasticity 
seem to bear out the validity of this assumption which, of course, 
simplify the problem quite considerably (see, for example, [2] and [3]). 
Also, all thermoelastic coupling effects and the possible temperature 
dependence of the thermoelastic constants are neglected. By taking advan­
tage of the linearity of the material the thermal stress problem in the· 
cracked cylinder is considered in two parts •. The first problem is the 
evaluation of transient thermal stresses in a hollow cylinder without the 
crack. The second is the isothermal perturbation problem for the cracked 
cylinder in which the crack surface tractions' equal and opposite to the 
thermal stresses obtained from the first problem are the only external 
loads. The superposition of the two solutions gives results for the 
thermal stress problem for the cracked cylinder. Needless to say, the 
important information with regard to fracture initiation and propagation 
in the cylinder is contained in the second problem. 

THE THERMAL STRESSES 

In the solution of the basic crack problem given in [4] it was 
assumed that the z=O plane is a plane of symmetry with respect to the 
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external loads as well as the crack geometry. Consequently, the crack 
surface traction 0zz(r,e) was the only external load and the crack problem 
was one of Mode I. On the other hand, if z=o is not a plane of symmetry, 

, , 

then the shear tractionsLrz and Lez on the crack surfaces would not be, 
zero, the problem would become one of mixed mode, and extremely compli­
cated. 'Even though any quasi-static tra'nsient therna1 stress problem 
giving 

0zz(r,e,o,t) = f(r,e,t), Lrz(r,e,o,t) = Lez(r,e,o,t) ,= ° (1) 

for the un,cracked cylinder can be solved by using the technique developed 
in [4] (with f, as a known arb'itrary function), in this paper, for sim­
plicity, it is assumed that the thermal stresses are independent of e 
and z. The therna1 stress problem is, therefore, very simple (see, for 
example, [5], [6], [7J). Thus, if To is the initial temperature of the 
cylinder corresponding to zero stress state and T(r,t) is the temperature 
distribution at time t, then defining 

e(r,t) = T(r,t) - To , (2) 

the stress component of primary interest may be expressed as 

b 

oiz(r,t). = 1:~ [bZ:a2 f e(r,t}r dr - e(r,t)] , (3) 

a 

where E, v, and a are respectively the Young's modulus, the Poisson's 
ratio, and the coefficient of thermal expansion of the material. 

The temperature distribution is obtained by solving the diffusion 
equation 

"2e = lli 
v 0 at ' (4) 

under the initial condition e(r,O) = ° and appropriate boundary condi­
tions, where 0 is the coefficient of diffusion (i.e., 0 = k/pc; k, p, c 
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being the coefficient of heat conduction, the mass density and the 
specific heat). A simple· set of boundary conditions which would lead to 
conservative results for many transient cooling problems may be stated as 

a(a,t) = (Too-To)H(t) = aooH(t) , (t>O) , (5) 

aar a(b, t) = 0 , (t>O) (6) 

where H(t) is the Heaviside function and for cooling problems aoo is a 
negative constant. 

Equation (4)rraybesolvedbydefining a =aoo + u(r,t) and by usingthe 
standard technique of separation of variables. However, in this case, for· 
small values of time (which is the period of main practical interest) 
the resulting series converges very slowly. An alternative technique 
much more suitable for our purpose is the use of Laplace transform. In 
this case, adequatley accurate representation of the solution for 
small times may be obtained by approximating the Laplace transform of 
a(r,t) by its asymptotic expansion for large values of the transform 
variable. The temperature distribution may thus be obtained as 

6(r,t) . 4 xn ·· Dt ~ -x~/4Dt 
6

00 
= n~l En erfc[ 2(Dt)~ ] + Fn[2(~) e 

x X 2 X 
-xn eric [ n ~]] + GnD[ (t + 2nD )erfc[ n ~] 

2(Dt) 2(Dt) 

t ~ -xn 2/4Dt 
-x (-) e ] n '11'0 

(7) 

where 

Xl = r-a, x2 = 2b-r-a, x3 = 2b+r-3a, x4 = 4b-4-3a, (8) 
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and the functions En(r}, Fn(r), and Gn(r) (n=' , ••• ,4) are given by 

E, • E2 = -E3 = -E4 = A,/B, , 

F, = (A2B,-A,B2)/B,2 , F2 = -(A,B2+A2B,)/B,2 , 

F3 = (3A,B2-A2B,)/B,2 , F4 = (3A,B2+A2B,}/B,2 , 

G, = (B,A3-A,B3-A2B2}/B,2, G2 = (B,A3-A,B3+AzB2)/B,2., 

G3 = (-B,A3+A,B3+3A2B2}/B12 - 2A,B2
2/B1

3
., 

G4 = (-B,A3+A1B3-3A2B2)/B12 - 2A1B22/B13 , 

Al = (br(! , A2 = ~(3r+b)/[8(br)o/Z] , 

A3 = 3(5r+3b)(b-r)/[128(br)o/Z] , 

B1 = (ba}-t , B2 ·= -(3a+b)/[8(ba)o/Z] , 

B3 = 3(5a+3b)(b-a}/['28(ba)o/Z] • (9) 

substituting from (7) into (3) the axial thermal stress may then 
be calculated. This step is carried out numerically as the evaluation of 
the related integrals in closed form is rather difficult. 

THE CRACK PROBLEM 

The crack problem may be solved by using ~qua1 and opposite of the 
axial stress obtained from (3) as the crack surface traction in the 
cylinder containing a circumferential crack and by treating the problem 
as being isothermal and quasi-static. The details of the formulation 
of the general nonaxisyrrmetric problem is given in [4]. In the solution 
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given in [4] the r, a, and z components of the d~splacement vector are 
expressed in terms of the sum of a harmonic potential associated with an 
infinite elastic space containing a plane of symmetry and a set of four 
harmonic functions which. are equivalent to Papkovich-Neuber potentials 
in cylindrical coordinates [8]. Fourier and Hankel transforms are used 
to formulate the problem. The elasticity problem (which is considered 
only for O~z<m) is subject to the following bo~ndary conditions 

(lO) 

(11 ) 

(l2) 

u (r,O,t) = 0, (d<r<b, O<t<m) z -- - (13) 

The homogeneous conditions (10)-(12) are used to eliminate Some of the 
unknown functions arising from the integration of the differential equa­
tions and the mixed boundary conditions (13) gives an integral equation. 
By defining the derivative of the crack surface displacement as the 
unknown fUnction, namely 

(14) 

after a rather lengthy analysis the integral equation for ~ was found to 
be [4] 

. (a<r<d, O<t<m) , (15) 
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where 11 is the shear modulus and the kernels Ll an'd L2 are given in [4] •. 
Note that in this pro~lem t1me t enters into the analysis through a~z 
only and (15) must be solved for each 'value of t separately. The integral 
equation ·(15) .i s singular and corresponds to an "edge crack ll problem. Its 
nllllerical solution may be 'obtained by usi.ng a Gaussian integration pro­
cedure in a relatively straightforward manner(*) [9]. The solution of 
(15) is of the following form [10]: 

$(r,t) = f(r,t) , (a<r<d) , 
a:r 

where f is a bounded function. 

(6) 

The quantity of primary interest here is in .the stress intensity 
factor k which is the fracture mechanics parameter and is defined by 

k = lim l2(r-d) azz(r,O,t} • 
r-+d 

After solving the integral equation k may be obtained from 

k = lim r'2(d-r} (,~) $ (r,t) • 
r-+d 

RESULTS 

(17) 

(18) 

The numerical results giving the temperature e(r,t), the thermal 
stress a~z(r,t), and the stress intensity factor k(d,t) have been obtained 
for the radius ratios alb = 0;3, 0.5, 0.7, and 0.9 (Fig. 1). Time is 
represented through the dimensionless Fourier number which is defined by 

F = Dt/b2 
o 

(*}See [10] for the treatrrent of an ~dge crack Jlrob}em. 
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Were 0, t, and b are the coefficient of diffusivity", time, and the 
outer radius of the cylinder, respectively. 

The calculated temperature distribution and the corresponding axial 
stress in the'cylinder are shown in Figures 2-9. Note that in the cool­
ing problem the normalizing temperature e~ = T~-To and e = T-To are both 
negative. As time goes to infinity the temperature ratio e/e~ appnoaches 
one and the stress a~z approaches zero. The figures show that these limits 
are approached much faster for the larger values of alb, that is, for 
relatively thinner cylinders. The peak value of the stress which occurs 
at t=O has the expected value of Eaew/(l-v}. This is the thermal stress 
in a fully constrained plate undergoing a sudden uniform temperature 
change em. 

The stress intensity factor obtained from (15) and (18) and nonnalized 
as 

(20) 

is shown in Tables 1-5, where l = d-a is the crack depth (Fig. 1). Note 
that the ·thenna1 stress a~z is statically self-equilibrating. Therefore, 
for l<h = b-a the resultant force on the crack surface is compressive 
and its magnitude decreases with increasing l. Consequently,. at a given 
time t (or for constant Fo> the stress intensity factor ratio kT will 
decrease as l increases. From the tables it may also be observed that 
for a given crack depth l generally kT first. increases, 90es through a 
maximum, and then decreases as Fo increases. This may be explained by 
the change in stress profile with increasing time. 
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Table 1-. Stress intensity factors for internal edge cracks' 
subjected to transient thermal stresses' (kT(d) = 
Jili!1. 1-\1 a F Dt h c. ' } , 

- If Ea900 ' b = 0.1. 0= liZ' =u...a, ,eoo.=Too-To 

R. fU =.0001 fl)=.0005 fa =.001 Fo=.005 Fo=.01 fo =.05 
11 kT~d) kT~d) kT~d) kT~d) kT~dl kTldl 

0.01 0.721 0,885 0.923 0.957 0.945 0.789 
0.1 ' 0.045 0.110 0.169 0.364 0.427 0.414 
0.2 0.014 0.032 0.048 0.135 0.198 0.261 
0.3 0.006 0.015 0.022 0.059 0.095 0.173 
0.4 0.004 0.008 0.012 0.031 0.050 0.114 
0.5 0.002 0.005 0.007 0.018 0.029 0.075 
0.6 0.002 0.003 0.005 0.012 0.018 0.049 

Table 2. Stress intensity factors for internal edge cracks 
subjected to transient thermal stresses. (kr(d) = 

, Jilill. 1-\1 a - a 3 Fa - Dt h-b a e -T T) - If Eaeoo 'b - ., ,- 'fiT' - -, 00- 00- 0 

R. Fa=.OOOl Fo=.0005 Fo=.OOl Fo=.005 Fo=.01 fa= .05 
n KT{d} KT{d} KT{d} KT{d} KT{d} kT{d} 

0.01 0.832 0.961 0.987 0.994 0.972 0.820 

O. 1 0.094 0.235 0.329 0.566, 0.624 0.601 

0.2 0.035 0.080 0.117 0.288 0.373 0.437 
0.3 0.018 0.041 0.059 0.150 0.220 0.318 
0.4 0.011 0.025 0.035 0.086 O. 131 0.231 
0.5 0.007 0.016 0.023 0.054 0.082 0.165 
0.6 0.005 0.012 0.016 0.037 0.054 0.117 
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Table 3. Stress intensity factors for internal edge cracks 
subjected·· to transient thermal stresses·, (kT(d)= 
~ l- \I . a Dt. } - ;r ~ t 0 = 0.5, Fo= 1)T , h=b-a, alD-TID-To 

R. 
Fo=.OOOl Fo=.0005 Fo=.OOl Fo=.005 Fo: ,01 Fo=.05 

11 kT~d} kT(d} .kT~d} kT(d} kTtd} kT(d} 

0.01 0.906 0.988 0.997 0.957 0.907 0.644 
0.1 0.154 0.364 0.485 0.671 0,686 0.525 
0.2 0.064 0.146 0.214 0.435 . 0.495 0.420 
0.3 0.037 0.082 0.117 0.277 0.351 0.334 
0.4 0.024 0.054 0.076' 0.179 0.246 0.262 
0.5 0.018 0.038 0.053 0.121 0.173 0.203 . 
0.6 0.013 0.029 0.040 0.087 0.123 0.154 

Table 4. Stress intensity factors for internal edge cracks 
subjected to transient thermal stresses. (kT(d)= 
J19l 1-\1 a . Dt . - Ii Ea9

co
' 0 = 0.7, Fo= ~ , h=b-a, 9(O=T(O-To) 

R. 
Rl =.0001 Fa =.0005 .Fo=.OOl Fg=.OOS Fo=.01 Fo=.OS 

h KT(d} kr(d) kr{d) kT{d) kTCd' kT{dJ 

0.01 0.968 0.988 0.969 0.844 0.736 0.276 
0.1 0.285 0.S62 0.6S0 0.689 0.622 0.237 
0.2 0.125 0.292 0.399 0.548 0.519 0.202 
0.3 0.079 O. 176· 0.253 0.432 0.431 0.171 
0.4 0.057 0.124 0.175 0.337 0.354 O. 144· 

0.5 0.045 0.095 0.131 0.263 0.288 0.119 
0.6 0.036 0.076 0.104 0.205 0.230 '0.097 
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Table 5. Stress intensity factors for internal ~dge cracks 
subjected .to transient thermaJ stresses. (kT(d)~ 
k ( d \ 1-v a - 0 9 ~ - Dt h-b a 0 -T T) -~ Eaeco ' b - ". rO- fiT' - - , Vco.- 00" 0 

R. 
Fo=.OOOl fo=.oo05 Fo=.OOl Fo=.005 

11 Kr(d) kr(dJ Kr(dJ Kr(d} 

0.01 0.962 0.833 0.724 0.277 
0.·1 0.657 0.701 0.633 0.247 
0.2 0.426 0.589 0.560 0.224 
0.3 0.300 0.501 0.502 0.206 
0.4 0.238 0.432 0.453 0.190 
0.5 0.205 0.378 0.408 0.174 
0.6 0.185 0.334 0.367 0.158 
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Fig. 1 

z 

2d 
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Geometry of a thick-walled cylinder containing 
an axisymmetric circumferential crack. 
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Fig. 2 Transient temperature distribution a/at» in a hollow 
cYlinder due to a sudden temperature change on the 
inner radius. a/b=O.3, h=b-a, Fo=Dt /b2 '-e/et» = 
(T(r,t)-To)/(Tt»-To)· . - -
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Fig. 3 Transient thennal stresses in a hollow cylinder which 
has been suddenly cooled by a temperature Tm on its 
inner radius. a/b=O.3, h=b-a, Fo=Dt /b2 , a* = 
( l-v) T . . - ra azz/Sm. 
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Fig.4 Transient temperature distribution a/em in a hollow 
~linder due to a sudden temperature change on the 
inner radius. a/b=O.5, h=b-a, Fo=Dt /b2 ,e/em = 
(T(r,t)-To)/(Tm-To)' 
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Fig.5 Transient thermal stresses in a hollow cylinder which 
has been suddenly cooled by a temperature Tm on its 
inner radius. alb = 0.5, h=b-a, Fo=Dt Ib2 ,. 0* = 
(1-,,\ T - tal ozz/8oo• 
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~1g. 6 Transient temperature distribution e/e~ in a hollow 
cylinder due to a sudden temperature change on the 
inner radius. a/b=O.7, h=b-a, Fo=Dt /b2,e/e~ = 
(T(r,t)-To)/{T~-To)· . 
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Fig. 8 Transient temperature distribution a/af» in a hollow 
~linder due to a sudden temperature change on the 
inner radius. a/b=0.9, h=b-a, Fo=Dt Ibz,a/ef» = 
(T(r,t)~To)/(Tm-To)· 
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Fig. 9 Transient thenrel stresses in a hollow cylinder which 
has been suddenly cooled by a temperatureT~ on its 
inner radius. alb = 0.9, h=b~a, Fo=Ot Ib2 , 0* = 
(1-\1) T I - :ta. azz e~ • 
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