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THE ELASTICITY PROBLEM FOR 
A THICK-WALLED CYLINDER CONTAINING A 

CIRCUMFERENTIAL CRACK* 

H.f. Nied and F. Erdogan 
Lehigh University, Bethlehem, PA 18015 

ABSTRACT 

The elasticity problem for a long hollow circular cylinder contain
ing an ax;'symmetric circumferential crack subjected to general nonaxisym
metric external loads is considered. The problem is formulated ,in terms 
of a system of singular integral equations with the Fourier coefficients 
of the derivative of the ,crack surface displacement as density functions. ' 
The stress intensity facto~s and the crack opening .displacement are c~l
culated for a cylinder under uniform tension, bending by end couples, and 
self-equilibrating residual stresses. 

1. Introduction 

The elasticity problem for a cylindrical structure such as a pressure 
vessel or. a pipe which contains a part-through surface crack appears to be 
analytically intractable. Such problems are generally treated either 
numerically by using the technique of the finite e,'ements [l,2] or the 
boundary integral equations [3], or, in relatively thin-walled cylinders, 
approximately by using the line spring model in conjunction with the shell 
theory [4,5]. The limiting cases of some of these problems can also be 
solved analytically which provide very useful results, for example, regard
ing the bounds ,of stress intensity factors. The plane strain problem of 
a hollow cylinder containing a crack in a radial plane which constitutes 
the limiting case of a cylinder with an axial part-through crack is one 
such problem. Another problem is that of a long thick-walled cylinder 
which contains an axisymmetric radial crack. In this paper the 'latter 

{*} This work was supported by NSF under the Grant CME-78-09737, by 
NASA-Langley under the Grant NGR 39-007-011 and by DOT under the 
contract DOT-RC-82007. . 
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problem is considered ·for arbitrary .non~x.isynmetric loading conditions. 
The related prob1en for an elastic solid cylinder containing a penny
shaped crack isconsideredin [6-8], and that for a hollow cylinder under· 
axisymmetric loading conditions in [9]. 

2. Formulation of the Problem 

The problem under consideration is described in Fig. 1. The external 
loads may be decomposed in such a way that the problem may be expressed 
as the superposition of a problem which is symmetric and that which is 
anti-symmetric'with respect to the z=o plane. In this paper, only the 
symmetric problem is treated. Clearly, it is sufficient to· consider one 
half (e.g., z>o) O·f the medium only. Furthermore, for the given external 
loads the quasistatic prob1en for the cylinder without the crack is 
assumed to have been solved. Thus, the information regarding the stress 
intensity factors may be obtained ·by considering the perturbation .prob-
1em in which the crack surface tractions are the only external loads. 
Following are then the boundary and continuity conditions of the problem: 

arr(a,a,z) = Lrz(a,a,z) = .Tra(a,a,z) = 0, O<a<21T, O<z<co , (1) 

arr(b,a,z) = Lrz(b,a,z) = Lra(b,a,z) = 0, 0.::.a<21T, 0<a<21T, (2) 

Lzr(r,a,o) = Lza(r,a,o) - 0 - , a<r<b, 0<a<21T , (3) 

azz(r,a,o) = p(r,e) " c<r<d , 0<a<21T , (4a) 

(4b) 

where the dimensions of the cylinder and the crack are given in Fig. 1 
and p{r,a) is a known function. Also, the stresses must vanish as z~. 

Referring to [10], [11], and [8] the solution of the problem may 
be expressed in terms ofa system of five harmonic functions as follows: 
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where 

_ ( . ) 1 at!. z a2 t!. . 
211U - 1-2v - ~ + - ~+ 211U· e.. r -ao r aeaz e2 

at!. a2cb .211U = -2(1-v) ~ + z ~ + 211u z az . az .. z2 

. _ a2 c!> z a3p z ~ a2 c!> 
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" " aB" 
2pur2= (3-4v)[Blcose + B2sine] - r[ a~ cose 

aB" "a~ " 
+ _2 sine] _ -2. + £.l!i!. 

ar ar r ae (15) " 

(16) 

( 17) 

The harmonic functi on cjl is associ"ated with the formulation of the 
problem for an infinite elastic space fo~ which z=O is" a plane of symmetry 
[10]. The functions Bo' B1, B2 and ~ are equivalent to Papkovich-Neuber 
potentials in cylindrical coordinates [11,8]. With an important application 
of the bending of the cylinder in mind, if we restrict the considerations 
to external loads which are symmetric in e, that is, if p(r,e} = p(r,-e}, 
then the functions p and cjl may be" expressed as 

co 

p(r,e} = L 0n(r) cos ne , 
0 

(18 ) 

co 

co 

f A~(a}Jn(ar)ae-az da, cjl(r,e,z) = L cos ne 
0 

(19) 

0 

where the functions An' (n=O,l, ••• ) are unknown and 

~ ~ 

1 J 2 J " 0o{r) = ~ p(r,e)de, 0n(r) =; "p(r,e)cos nede, (n=1,2, ••. ) • 
o o 

(20) 

For the "symmetric loading under consideration from (5)-(17) it may" 
be s"een that Bo and Bl are even and B2 and ~ are odd in e. Taking also 
into account the symmetry with respect to the z=O plane, these harmonic 
functions may be written in the following form: 
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... 
Bl = n~o cos[(n+1 )a] ; f [Cln (s)In+l (sr) + C2n (s ) Kn+l (sr}]cos(sz)ds,. 

o 

co 

B2 =n~o s;·n[(n+1 )a] ; f [Cln(s)In+l (sr)+C2n(s)~+1(sr}]cos(s.z)dS , 
o . 

(22) 
co 

Bo =n·~o cos(na) ; t [C3Js)In(sr}f-C4n(sl~(sr)]cos(sz)ds, (23) 

co . 

1/1 = E sin(ne)'?" f [C5n (s) In(sr)+C6Js ) Kn(sO]cos(sz)ds .'. (24) 
n=O 1T 0 

where In and Kn are modified Bessel functions and the functions Cin' 
(i=1, ••• ,6; n=O,l, ••• ) are as yet unknown. 

From the formulation of the problem as stated, it may be verified that 
the conditions (3) are identically satisfied. The seven sets of unknown 
functions An' Cln , .•• , C6n , n=O,l, .•• ~re then obtained from the sev~n 
conditions (1), (2), and (4) by observing that these conditions are in the' 
form of sine or cosine series, and hence, by writing the coefficients of 
sin ne or cos ne equal to zero for each n. Thus, for each n the homogeneous 
conditions (1) and (2) are used to eliminate six of the unknowns and the 
mixed boundary condition (4) is used to determine the remaining unknown 
function. The integral. equati on of the problem may be obta ine.d directly 
by expressing 

co 

uz(r,e,O).=E cjln(r)cos ne,a<r<b, 0<e<21T, 
o 

where from (4b) it follows that 

cjln(r) = 0, a<r<c, d<r<b,.(n=O,l, ••. .) 
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From (7), (19) and (21)-(~6) it follows that 
d 

An(eL) = l~v ~" J <Pn"(t)Jn(eLt)tdt • 
c 

(27) 

By using the conditions (1) and (2), the unknown functions C1n , •.• , 
""C 6n may be obtained in terms of <Pn in the following form: 

d 
6 J . C·n(S) = - ~ .E miJ·(s) t<pn(t)GJ.(s,t)dt, (i=1, •.• ,6; n=O,l, •. ~) 

1 v J=l " " 
" "" c" (28) 

where the functions mij and Gj , (i,j=l, ••• ,6) are given in Appendix A. 
Finally, from (4a) and (18), it follows that 

00 

lim f (") ( ) 3 -eLZ z~ [ -(l+eLz)An eL In eLr eL e deL 

o 

where 

(30) 

Substituting now from (27) into (29), through an asymptotic analysis 
separating the singular part of the kernel, and by integrating by parts 
we obtain 
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= l~v crn(r), c<r<d, n=O,l, ••• (31) 

where the kernels L1 and L2 are given by 

1 1 (f~-r~)2. fa) ". 
L1(t,r) = - iTzr log [ t-r ] -+ 0 {at[n In(at)So~n_1(at) 

-In_1(at)Sl,n(at}]Jn(ar) 2 ; ';; [sina(t-r} - (l)ncosa(t+r)] 

- 1 [C(rat)(sin(ar)+(-l)ncos(ar» - S(rat)(COs(ar) 
121Tra . 

+ (_l)n sin(ar»]}da • (32) 

00 

" 2 J 4 6 " L (t,r) = -. L oL miJo(s)Ni(s,r)vJo(s,t)s· ds. 
2 "1T i=l J=l 

o 

The function S ez) which appears in (29) is the Lomme1's function 
1l,V 

[12,13], and C(x) and Sex} are the Fres"ne1 integrals defined by [14] 

x2 x2 
C(x} = _1_ J "cos t dt , Sex) = _1_ J sin t dt ." 

" .ff.rr 0 If I2iT 0 . If . 

(33) 

(34) 

The functions vj(s,t) appearing in (33) are given in Appendix B •. A conven
ient numerical technique for the evaluation of Lorranel's functions of real 
and imaginary arguments is described in Appendices C and B. 

-7-



The infinite integrals which appear in (32) converge rather slowly for 
nearly all values of rand t. The reason for ·this is that, c·onsidered 
tenn by tenn, all integrals in (32) are dive~gent. However.!. it can be 
shown that the -asymptotic behavior of the terms for large values of a is 
identical but opposite in sign to the trigonometric terms in the integrand 
and the sum leads to a convergent integral. The realted asymPtotic analy
sis and the numerical eva1u~tion of these ~ntegra1s are described in Appen
dix D. 

3. The Stress Intensity Factors 

The Mode I stress intensity factors along the crack borders r=.c and 
r=d are defined by 

k(c) = lim l2(c-r) crzz(r;e,O) , 
r-+e . 

k(d} =lim 12{r-d} crzz(r,e,O) , 
r-+d 

(35) 

(36) 

and, in tenns of the crack surface displacement, may be expressed as 

k(c) =._1.1_ lim 12(r-c) ddr uz(r,e,o} 1-\1 r-+e 
co 

= -L lim 12( r-c) L <1>' (r) cos 1-\1 r-+e o n 

k(d} = - l~ lim 12(d-r) adr. uz(r,e,O) 
\I r-+d 

ne· 

= - ~ lim 12(d-r} E <1>1 (r)cos· ne • 
\I r-+<i 0 n . 

(37) 

(38) 

The fonnulation given in the previous section is valid provided the 
external load p(r,e} is such that the crack surface displacement u ·(r,e,O) z . 
is positive everywhere in (c<r<d, O£e£2~~~---In-th1s case, the stress inten-
sity factors k(c) and ked) would be positiv·e for all values of e. 
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4. The Embedded Crack 

Referring to Fig. 1, if c>a and d<b the crack is embedded and the crack 
surface displacement is zero at r=c and r=d. From (25) it then follows 
that IPn(c) = 0 = IPn(d), the integrated terms on the left-hand side of th~ 
integral equation (31) vanish and the integral equations must b~ solved 
under the following conditions (see (26): 

d 

f ~~(t)dt = 0, n = 0,1,... (39) 
c 

The solution of the singular integral equation (31) is of the form 

q,~(t) = fn(t}[(t-c}(d-t}]-! , c < t < d , (40) 

where fn{t) is a bounded function. After normalizing the interval (c,d) by 
defining 

t = diC T + d;C , r = dic p + ~ , fn{t) = Fn(-r), (41 ) 

The functions Fn(T), n=O,l, .•• may be obtained from (31) by using a Gauss
Chebyshev type quadrature formula [15]. 

5. The Edge Cracks 

If the crack is a surface or an edge crack, then the crack surface 
displacement will be zero only at one tip and consequently the conditions 
(39) will no longer be valid. In this case (the Fourier coefficie"nts of) 
the crack opening d1sp1acement on the cylinder surface may be expressed as 

d 

a = c < d < b: tn(d) = 0 , tn(c) = -J t~(t}dt , (42) 
c 

d 

a < c < d =b: q,n(c) = 0 , ~n(d} = J q,~{t)dt , 
c 
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for the inner and the outer edge cracks, respectively. For these crack 
configurations, even though the integral equation (31) is still val id, the 
integrated terms on the left-hand side are not ~ro and by using (42) 
and (43), (31) may be expressed as 

f~ 1 ttl s t 1 . 
{; [(r) t-r - (r) s-r] + L1(t,r) - Ll(s,r) 

c 

. I (. 1-\1 + L2(t,r)-L2(s,r)}~ t)dt = ---- 0n(r), c<r<d, n=O,l, •.. 
. p . 

(44 ) 

where s = c = a<d<b for the internal edge crack and s = d = b>c>a for· 
the external edge crack •.. 

For the edge cracks even though the. kernel L2(t,r) contains addi
tional singular terms (in the form of generalized Cauchy singularities) 
which become unbounded as t and r go to the end point s simultaneously, as 
seen from (44) for (t,r) ~ s the entire kernel in (44) vanishes. As 
shown in [16], the consequence of this is that the derivative of the 
crack surface displacement at r=s (i .e., on the cylinder surface) is 
bounded. This point is rather important in the numerical solution of 
the integral equation. For the embedded crack, in the Gaussian integration, 
referring to (41) the unknowns and the collocation points are FnC:ri } and 
Pj' respectively where 

( i -1) .i = cos 1T m-l ,i = ·l, ... ,m , (45) 

( 2j-l) 
Pj = cos 1T 2m-2' j = 1, ••• ,m-1 (46) 

The additional equation to solve for m unknowns Fn(Li)' (i=l, ... ,m) is 
provided by (39). However, in the edge crack problem (39) is not valid 
and consequently there are only m-l algebraic equations. In this case 
since the column in the 'coefficient matrix obtained from (44) which cor
responds to t=s, i.e., .=1 or .=-1, is identically zero, the system of 
algebraic equations involve m-l unknowns only and hence gives a unique 
solution. 
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After obtaining ~~ the 'str~ss in'tensity,factor at the crack tip may 
again be obtained by using (37) 'or (38). In the edge crack ,problem 
another quantity of some interest is the crack opening displacement at the' 
cylinder surface which, ,referring to (25), (42), and {43}, may be 
obtained from 

d 

5 ='uz(a,a,+O) ,- uz(a,a,-o) = -2~ cos na J ~~(t)dt 
a 

b 

5 = uz(b,a~+O) - uz(b,a,-O) = 2~ cos na I .~(t)dt. 
c 

6. Results 

(46) 

(47) 

The numerical results given in this section are obtained for three 
different loading conditions, namely the uniform axial stress, the bending 
of the cylinder by end couples, and the self-equilibrating residual stress. 
For these three loading conditions the crack surface tractions in -the' per
turbation problem are respectively given by (see (4a) and (18» 

(48) 

(49) 

P(r,a) = ao(r) = -a [6(r-a)(b-r) - 1] 
s (b-a)2 (50) 

where Pco is the axial force, M ,is the bending moment, and as is the mag-' 
nitude of the compressive stress on the surfaces of the cylinder. In 
the resi'dual stress problem the axial stress O'z(r,a,O) is assumed to be 
independent of a, parabolic in r,'compressive on and near the surfaces, 
tensile in the interior region of the cylinder wall, and statically self
equilibrating. Unless otherwise stated, in all examples the Poisson's 
ratio is assumed to be 0.3. 
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For a ring-shaped crack in an infinite solid (i.e., for a=O, ·b=";) 
the calculated stress intensity factors are shown in Figure 2. Here (10 

is the unifonn crack surface pressure, for n=l-the crack surface traction 
is defined.by 

. . r 
p(r,e) = cr1(r)cose = -cr1 (d}cose , (51) 

and 
(52) 

is the stress intensity factor along the crack edges s=c and s=d .. Note 
that as cld approaches 1 and 0, respectively, the plane strain and the 
penny-shaped crack results are recovered. 

For hollow cylinders u~der tension or bending the results are given 
in Tables 1-17 •. Tables 1-3 show the stress intensity factors for a sym
metrically located· imbedded crack (i.e., for b-d = c-a, Figure 1). Here 
the normalizing stresses cro and cr1 are define.d by (48) and (49). As 

(a/b) + 1 the curvature effect disappears and the stress intensity factors· 
approach those obtained from the plane strain solu~ion of a strip contain
ing a center crack. 

Tables 4-15.show the stress intensity factors and the crack opening 
displacements for an internal or an external surface crack .. Here l 

is the total crack depth (l = d-a for c = a and l = b-c for d=b), h = 
b-a is the wall thickness (Figure 1), and the crack opening displacement 
o is defined by (46) and (47). For a very small crack depth (i.e., for 
l/h = 0.01) the effect of alb on k is shown in Figure 3. In this case 
the stress intensity factors for a half plane, for a strip and for a 
solid cylinder are practically the same (i.e., k/crof.t = 1.121}. It is 
seen that for the int~r·na1 edge crack as alb approaches. 0 and 1. k/croll 
approaches respectively 2/n and 1.121 which are the values for a penny
shaped crack and for a strip. For the external edge crack, on the other 
hand the influence of alb on k is hardly noticeable. 

The limiting values of k and 0 for (a/b) + 1 shown in the tables 
are obtained from the plane strain solution of a strip containing an 
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edge crack. The stress intensity factor for an internal edge crack seems 
to be a monotonously increasing function of alb for all crack depths. On 

the other hand, for an external edge crack k a1ways __ seems to .. go through 
a minimUm as alb goes from 0 to 1. 

For one crack-cylinder geometry, namely for a=c<d<b, (~/b) = 0.5 and 
(llh) = 0.3 the effect of Poisson's ratio on k and 0 is shown in Tables 
16 and 17. It may be seen that both k and 0 increase monotonous 1y but 
very slightly with increasing Poisson's ratio.' 

For the residual stress problem the crack geometry and the stress 
profile are shown in Figure 4. It is clear that if the crack is suffi
c'ient1y shallow so that it 1 ies in the. compressive zones near the surfaces, 
then the crack surfaces would remain closed and k would be zero. In the 
example u~der consideration by letting O"o(ri ) = 0 (i = 1,2) in (50) we 
find 

r -a +-a = 0.211 
r -a , ;-a = 0.789 (53) 

where r1<r<r2 is the tensile region. If ro defines the crack tip as shown 
in Figure 4, for ro>rl in the ~nneredge crack and for ro<r2 in the outer 
edge crack case the crack tip will be in the tensile zone of the cylinder 
and k will be positive. However, in this case the crack surfaces will 
stf1l be partially closed and, hence, the problem is a crack-contact prob
lem with the depth e of the contact zone being an unknown constant. The 
physical condition which accounts for this unknown is the smooth closure 
condition of the crack surfaces at r=a+e or r=b-€ •. Thus, the problem may 
now be treated as an embedded crack problem with the crack. surface trac
tion p as given by (50) and c=a+e:, d=ro' (ro>r1) for inner edge crack, and 
c=ro' (ro<r2), d=b-€ for o'uter edge crack case. In eac~ case, the smooth 
closure condition to accoun't for the unknown constant e: may then be 
expressed as 

(54) 

For two cylinders with thickness ratios alb = 0.7 and 0.9, Figure 5 

shows the stress inten~ity factor k(ro)' Note that k is positive for 
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r1<ro<b in the inner edge crack case and for a<ro<r2 in. the outer edge 
crack case where r1 and r2 are gi~en ,by (53). Also note· that initially as . 
the crack length l increases (Figure 4) k increases, goes through a maxi- . 
mum and tends to zero as the crack traverses the entire cylinder wall. 
Similar results have been observed for flat plates [18]. 

For alb = 0.9 the 1 ength E of the contact regi on is shown in 
Figure 6. For example, in the case of the internal edge crack E=l, 
that is the crack is fully closed for l<r1-a where (rl-a)/(b~a)=.0.21l. 
For l>rl-a, E decreases monotonously and tends to zero (asymptotically) 
as l ~ b-a. 
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Table 1. Stress intensity factors for a syrtmetric embedded 
crack in a thick-walled cylinder subjected to axial 
tension and pure bending. «d~c)/(b-a)=O. 1, 00 = 
P=l[~(b2-a2)], a1=4Mb/[~(b4-a4)]). 

a d-c c 
b b b 

o. 1 0.09 0.505 
0.2 0.08 0.56 
0.3 0.07 0.615 
0.4 0.06 0.67 
0.5 0.05 0.725 
0.6 0.04 0.78 
0.7 0.03 0.835 
0.8 0.02 0.89" 
0.9 0.01 0.945 

-+-1.0 -+0 "-+-1 

1. 028 " O. 989 
1.024 
1.020 
1.017 
1.014 
1.012 
1.010 
1.009 
1.007 

0.991 
0.994 
0.996 
0.998 
1.000 
1.002 
1.003 
1.005 

kecl 

0.538 
0.590 
0.643 
0.695 
0.747 
0.799 
o. "851" 
0.903 
0.954 

-+-1.006 ~1.006 -+-1.006 

kJdT 
01 Jd2C" cose 

0.562 
0.612 
0.662 
0.711 
0.761 
0.810 
0.859 
0.908 
0~957 

-+-1.006 

Table 2. Stress intensity factors for a symmetric embedded 
crack in a thick-walled cylinder subjected to axial 
tension and pure bending. «d-c)/(b-a)=0.5, 00= 
Pa:"[~(b2-a2)], 01=4Mb/[~(b4-a4)]). 

a d-c c k(c) k( d) k(c) k1dl 
b -b- b if 

0
0

" 

01Jd2C cose 0l~d2.c cose 00 2 

0.1 0.45 0.325 1.383 1.117 0.506 0.671 

0.2 0.40 0.40 1.330. 1.124 0.593 0.733 
0.3 0.35 0.475 . 1.294 .1.131 0.677 0.795 
0.4 0.30 0.55 1.268 1.139 0.758 0.856 
0.5 0.25 0.625 1.247 1.147 0.836 0.914 
0.6 0.20 0.70 1.231 1.155 0.911 0.971 
0.7 0.15 0.775 1.217 1.162 0.984 1.026 

0.8 0.10 0.85 ·1.206 1.170 1.054 1.080 
0.9 0.05 0.925 1.196 1.178 1.121 1.133 

-+-1.0 -+-0 -+-1 -+-1. 187 -+-1.187 -+-1. 187 -+-1. 187 
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Table 3. ·Stress intensity factors for a synmetric embedded 
crack in a thick-:walled cylinder subjected to axial 
tension. «d-c)/(b-a)=0.9, ao=P~[rr(b4-a4)]). 

a d-c c k(c} k(d) 
b 0- n aoY ao~ 

0.1 0.81 0.145 3.740 2.412 
0.2 0.72 0.24 3.300 2.404 
0.3 0.63 ·0.335 3~081 2.410 
0.4 0.54 .0.43 2.945 2.422 
0.5 0.45 0.52·5 2.850 2.437 . 
0.6 ·0.36 0.62 2.778 2.456 
0.7 0.27 0.715 2.720 2.479 
0.8 0.18 0.81 2.671 2.506 
0.9 0.09 0.905 2.627 2.536 

+1.0 -+0 +1 ~.585 ~.585 

Table 4. Stress intensity factors and crack opening displace
ments for an internal edge crack in a thick-walled. 
cylinder subjected to axial tension and pure bending. 
(~/h=O.l, h=b-a; ao=P~[rr(b2-a2)], a1=4Mb/[rr(b4-a 4 )]). 

a kldl k(d) -1L~ ....L o(c) 
D. ao.fi a1.fi .cose l~v ao 1-v ha1cosa 

0 0.637 . 0.042 0.128 0 
0.1 0.842 0.123 0.212 0.021 
0.2 0.940 0.225 0.244 0.050 
0.3 . 1.000 0.334 0.261 0.080 
0.4 1.042 0.447 0.272 0.111 
0.5 1.073 0.563 0.281 0.142 
0.6 1.097 0.680 0.287 0.174 
0.7 1.119 0.800 0.292 0.206 
0.8 1.138 0.922 0.297 0.239 
0.9 1.158 1.048 0.302 0.273 

+1.0 +1.189 +1.189. +0.310 +0.310 
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Table 5. Stress intensity factors and crack opening displace
ments for an external edge crack in a thick-walled 
cylinder subjected to axial tension and' pure bending. 
(R./h=O. 1, h=b-a,ao =Pco/[1T(b2-a2 )], a1 =4Mb/[1T(b~-a'+}]). 

a ~ k(c) f-v~ r-v IS( d) 
b aolC ~lfi cose .- -v h ao -v he1 cose 

0 1.181 1.166 0.302 0.308 
O. 1 1.176 1.159 0.302 0.306 
.0.2 1.172 1.153 0.302 0.304 
0.3 1.170 .1.149 0.302 0.303 
0.4 1.168 1.147 0.302 0.302 
0.5 1.167 1 ~ 147 0.302 0.301 
0.6 . 1. 167 1.149 0.303 0.301 
0.7 1.168 1.152 0.303 0.302. 
0.8 1.169 1.158 0.304 0.303 
0.9 1.173 1.166 0.306 0.305 

+1;0 +1.189 +1.189 ~.310 ~.310 

Table 6. Stress intensity factors and crack opening displace
ments for an internal edge crack in a thick-walled 
cylinder subjected to aXial tension and pure bending. 
(R./h=0.2, h=b-a, ao=P='[1T(b2-a2 )], a1=4Mb/[1T(b'+-a'+)]). 

a ~ ked) II olcl ..JL o{C) 

0 aoir alii cose 1-v ~ 1-v hal cos 

0 0.644 0.085 0.258 0 
0.1 0.775 0.153 0.373 0.036 
0.2 0.869 0.241 0.441 0.089 
0.3 0.942 0.342 0.488 0.148 
0.4 1.003 0.452 0.524 0.212 
0.5 1.055 0.571 0.555 0.280 
0.6 1.104 0.699 0.582 Q.353 
0.7 1.150 0.833 0.608 0.429 
0.8 1.198 0.978 0.635 0.511 
0.9 1.253 1.139 0.666 0.602 

+1.0 +1.367 +1.367 ~.732 ~.732 
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Table 7. Stress intensity factors and crack opening displace
ments for an .externa1 edge crack in a thtck-walled 
cylinder subjected to axial tension and pure bending. 
(R./h=0.2, h=b-a, ao=Pa/[1T{b2-a2 )], a1=4Mb/[1T(blf.-alf.)J}.-

·a ~ k(c) u~ -L oed) 
b aolf all[ cose 1-',1 ao 1-',1 hal cose 

0 1.260 1.314 0.625 0.705 
0.1 -1.244 1.279 0.622 0.685 
0.2 1.235 1.253 0.623 0.669 
0.3 1.231 . 1.234 0.626 0.658 
0.4 1.230 1.222 0.630 0.651 
0.5 L232 1.217 0.635 0.647 
0.6 1·.238 1.218 0.643 0.648 
0.7 1.247 1.226 0.652 0.652 
0.8 1.261 1.243 0.663 0.661 
0.9 1.285 . 1.274 0.680 0.677 

-+1.0 -+1~367 -+1.367 -+0.732 -+0.732 

Tab1 e 8. Stress intensity factors and crack opening di splace
ments for an internal edge crack ina thick-walled 
cylinder subjected to axial tension and pure bending. 
(R./h=0.3, h=b-a, ao=Pa/[1T(b2-a2 )], a1=4Mb/[1T(blf.-alf.}]} •.. 

a llliU: ked) .....lL $J.fl .....lL o(c} 
0 alE a11E cose 1-',1 h aa 1-',1 hal case a 
0 0.651 0.127 0.390 - 0 

O. 1 0.753 0.188 0.526 0.050 
0.2 0.840 0.266 0.626 0.123 
0.3 0.918 0.359 0.707 0.210 
0.4 0.991 0.466 0.776 0.308 
0.5 1.060 . 0.587 0.841 0.419 
0.6 1.130 0.724 . 0.906 0.543 
0.7 . 1.203 0.876 0.973 0.681 
0.8 1.286 1.053 1.050 0.841 
0.9 1.392 1.267 1.150 1.038 

-+1.0 -+1.660 -+-1.660 -+-1.410 -+-1.410 
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Table 9. Stress intensity factors and crack opening displace
ments for an exterria 1 edge crack in a thi ck-wa 11 ed 
cylinder subjected, to a'xial tension and pure bending. 

, (i/h=0.3, h=b-a, ao=P~[~(b2-a2)],al=4Mb/[~(b~-a~)]). 

a K(c) k.(c) lJ ~ r-v algI 
b aoli alII" cose 1-" h ao -\I na1 cose 

0 1.388 1.592 0.987 1.307 
O. 1 1.350 1.450 0.976 1.225 
0.2 1.328 1.431 0.975 1.165 
0.3 1.316 1.381 0.983 1.122 
0.4 1.313 ' 1.347 0.996 1.093 
0.5 1.317 1.327 1.015 1.078 
0.6 1.329 1.323 1.040 . 1.077 
0.7 1.350 1.334 1.073 1.089 
0.8 1.384 1.365 1. 117 1.120 
0.9 1.442 1.428 1.185 1.181 

+1.0 +1.660 +1.660 +1.410 +1.410 

Table 10. Stress intensity factors and crack opening displace
ments for an internal edge crack in a thick-walled 
cylinder subjected to axial tension and pure bending. 
(i/h=O. 4. h=b-a, ao =POC)/[~(b2-a2)], a1=,4Mb/[~(b~-a~)]) • 

a .!illU: k(d) .JL~ ....lL a(cl 
b ao/i CTlhcose 1-\1 h CT

O 
1-\1 hCT1 cose 

0 0.665 0.171 0.531 0 
0.1 0.754 0.226 0.686 0.062 ' 

" 

0.2 0.838 0.296 0.817 0.155 
0.3 ' 0.920 0.383 0.935 0.269 
0.4 1.001 ' 0.487 . 1.046 0.404 
0.5 1.085 0.611 1.158 0.563 
0.6 ' 1. 174 0.757 1.277 0.752 
0.7 1.275 0.928 1.412 0.973 
0.8 1.397 1.141 1.580 1.254 
0.9 1.568 1.426 1.821 1.638 

+1.0 '-+2.112 -+2.112 -+2.614 -+2.614 

-21-



Table 11. Stress intensity factors and crack opening displace
ments for an external edge crack in a thick-walled 
cylinder subjected to axial tension and pure bending. 
(t/h=0.4, h=b-a, 00=P~([w(b2-a2)], 01=4Mb/[w(b4-a4 )J). 

a .lli4: IelC} f-v~ r-v c5ld) 
b °o.fi 01 / ! cose -v h 00 -v hOl cose 

0 1.5Q3 2.077 1.422 2.337 
0.1 1.513 1.865· 1.388 2.078 
0.2 1.465 1. 715 1.381 1.899 
0.3 1.437 1.606 1.392 1.774 
0.4 1.425 1.531 1.419 1. 692· 
0.5 1.427 1 •. 486 1.459 1.646 . 
0.6 1.443 1.467 . 1.516 1.633 
.0.7 1.475 1.476 1.594 1.658 
0.8 1.533 1.520 1.706 1.730 

.0.9 1.641 1.626 1.891 1.890 
~1.0 ~2. 112 ~2.112 ~2.614 ~2.614 

Table 12. Stress intensity factors and crack opening displace
ments for an internal edge crack in a thick-walled 
cylinder subjected to axial tension and·pure bending. 
(t/h=O.5, h=b-a, 00=Poo/[w(b2-a2)], 01=4Mb/[w(b4 - al+)]). 

a ~ k{d) 
~~ -1L c5(c) 

0 ao.fi . alii case 1-\1 hal cose 

0 0.691 0.217 0.689 0 
0.1 0.775 0.267 0.864 0.074 

0.2 0.859 0.333 1.029 0.187 
0.3 0.945 0.415 1.189 0.329 
0.4 1.035 0.517 1.351 0.503 
0.5 1.131 0.643 1.523 0.718 
0.6 1.239 0.799 1.718 0.985 
0.7 1.366 0.989 1.954 1.318 
0.8 1.529 1.243 2.267 1.775 
0.9 1.779 1.612 2.765 2.472 

~1.0 -..2.826 ~2.826 ~.950 ~.950 
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Table 13. Stress intensity factors and crack opening displace
ments for an external edge crack in a thick-walled 
cylinder subjected to axial tension and' pure bending. 
(t/h=0.5, h=b-a, ao=PcJ['II{b2 -a2 )], .al-4Mb/['I1{b4-a4)]). 

a ~ k{c) II .gJ& II old) 
b aoli alII" cose l-v h ao 'j":V h'11 cose 

0 1.922 2.929 1.989 4.291 
0.1 1.762 2.468 1.901 3.548 
0.2 1.667 2. 163 1.873 3.076 
0.3 1.610 1.946 1.884 2.753 
0.4 1.580 1.780 1.924 . 2.546 
0.5 1.572 1.707 1.994 2.426 
0.6 1.586 1.660 2.097 2.382 
0.7 1.627 1.658 .2.248 2.417 
0.8 1.709 1. 712 2.478 2.558 
0.9 1.878 1.867 2.888 . 2.904· 

+1.0 +2.826 +2.826 +4.950 +4.950 

Table 14. Stress intensity factors and crack open'ing displace
ments for an internal edge crack in a thick-walled 
cylinder subjected to axial tension and pure bending. 
(t/h=0.6, h=b:-a, ao=Poo/[ 'II'(b2 -a2 )], a1=4Mb/['II'(b 4-a4 )]) • 

a .!ili!l .k(dJ -1L $Jtl II o(c) 
b aolf alit cos e 1-v h ao I-V hal cose 

0 0.736 0.265 0.877 0 
0.1 0.820 0.314 ·1.077 0.087 
0.2 0.908 0.378 1.283 0.222 
0.3 1.000 0.459 1.493 0.393 
0.4 1.099 0.561 1.716 0.611 
0.5 1.208 0.691 1.966 0.890 
0.6 1.333 0.856 2.261 1.253 
0.7 1.484 1.066 2.636 1.729 
0.8 1.688 1.359 3.166 2.431 
0.9 2.025 1~24 4.091 3.623 

+1.0 +4.035 +4.035 +9.965 +9.965 
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Tab'le 15. Stress intensity factors and crack opening displace
ments for an external edge crack in a thick-walled 
cylinder subjected to axial tension and pure bending. 
(R./h=0.6, h=b-a, ao=Pa/['II'(b2 -a2 )], .d'1=~b/['II'(b4-a4)]) • 

a Js.kb k( c} ...JL~ f-v tSl d) 

b aog a1/f cose 1-v h a -v hal cose 
0 

0 2.478 4.579 2.798 8.542 
0.1 2. 159 3.527 2.589 6.365 
0.2 1.977 2.880 2.510. 5.095 
0.3 1.866 2.460 2.506 4.307 
0.4 1.802 2.194 2.557 3.833 
0.5 1.n3 2.021 2.661 3.550 
0.6 1.776 1.923 2.826 . 3.424 
0.7 1.818 1.895 3.080 3.455 
0.8 1.918 1.949 3A91 3.692 
0.9 2. 153 2.155 4.289 4.354 

+1.0 ~.035 ~.035 +9.965 +9.965 
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Tabl e 16. The effect of Poi sson' s rati 0 on stress intensity 
factors and a(c) when loading is uniform tension 
.(a/b=0.5, 1/h=0.3, 00=PoJ['Ir(b 2-a2 )], h=b-a). 

v=O v=O.l v=0.2 v=0.3 v=0.4 v=0.5 

~ 
°o/r 1.048 1.051 1.055 1.060 1.067 1.076 

~~ r-v ao 
·0.814 0.821 0.831 0.841 0.854 0~870 

Table 17. The effect of Poisson's ratio on stress intensity 
factors and a(c) when 10adin9 is eure bending . 
(a/b=0.5, 1/h=0.3, 01=4Mb/['Ir(b4-a )]~ h=b-a}. . 

, 
v=O ,,=O~ 1 v=0.2 v=0.3 v=0.4 v=0.5 

K(d) 0.574 0.577 0.582 0.587 0.594 0.602 01/1 cose 
~ o(c) 0.395 0.402· 0.410 0.419 0.430 0.443 l-v halcose 
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. APPENDIX A 

The functions_Cines) which appear in {28} (mij(s}) = M(s) = F-
1
.(s}, 

F(s) = (fij(S», (i~j) = 1, .•• ,6. ~~~coefficients'fij of the matrix Fare 

(A-1) 

fi2 = -[rs ~(sr) + (2-2v+n) ~+l(sr)] (A-2) 

(A-3) 

(A-4) 

fos = - ~ I (sr) 
1 r n 

(A-5) 

f06 = - ~ K (sr) , i = 1,2 
1 r n 

, (A-6) 

for i = 1, r = a and for i = 2, r = b. 

f (n+1) ( ( i1 = - r 4-4v+n) 1n+1 sr) + (2-2v~n)s 1n(sr) (A-7) 

. (n+1) . 
fi2 = - r (4-4v+n)Kn+1(sr).- (2-2v+n)s Kn(sr) 

. ·sn ( n 
f i 4 = - r Kn+ 1 s r) + rz (n -1) ~ (5 r ) 

f i5 = - (~ (n-l)+s2)In(sr) + 2: In+1(sr) 

f'
6 

= - (~(n-1}+s2)K(sr) - 2s K (sr) 
1 r- n r n+1 
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(A-8) 

(A-g) 

(A-10) 

(A-ll) 

(A-12) 



for i = 3,4; when i = 3, r =a and when i = 4, r = b. 

fil = (3-2,,)s In(S~) - [(n;1) (4-4,,~nl + rs2]In+1 (sr) 

(A-13) 

fi2= -' {(3-2,,)s I), (sr). + [(n;l) (4-4,,+n) + rs 2 ]1),+1(sr)} 

f i3 = - {[n(~21) + s2]In(sr) - ~ In+1(sr)} 

fi4 = -' {[n(~21) + s2]Kn(sr) + ~ Kn+1(sr)} 

f. = 2n [(n-1) I (sr) + s I "(sr)] 
15 r r n.· n+1 

f.- = 2n [(n-1) K (sr) -'s K (sr)] 
16 r r n '11+1 

for i = 5,6; when i = 5, r = a and when i = 6, r = b. 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

The terms Gj (s, t) in (28) are obtained by eva1 uating the Bessel 

integral s which result from the' s~bstitution of (27) into equa-

tions (8), (11), (12), (14) and (21 )-(24). These definite Bessel 

integrals are evaluated by differentiating a related integral 

given in [17], that is, by using 

oct 

J a,,-p+2n+1 (s2+a2)-lJ (aa)J (ta)da = (_1)nsv-p+2n I (as)K (ts) 
p " p " 

o 

a > 0, Re s >0, a < t < oct, 

Re p - 2n+1 > Re ,,> -n-1 , n = integer • (A-19) 

. -27-



· Taking the· derivative with respect to s o.n both sides, the 

integral becomes, 

a > 0 ,Re S > 0, a < t < ~, (A-20) 

Re ~-2n+4 >Re v > -n-1 

Thus, . the terms Gj (s, t) (j=1,6) are expressed as: 

G1(s,t) = ~(st){2n(~+1) In(as) + (4+3n}s I n+1(as) 

+ S2 a I n+2(as)}.- t Kn+1(str{nas In(as) + S2 In+1(as)} 

(A-21) 

+ s2 b.Kn+2(bs)} +t I n+1(st) {n~ Kn(bs} - s2Kn+1(bs)} 

(A-22.) 

G3(s,t) =~. {Kn(st)[2(n-1l(v+n} In(as) + s(2v+3n+1)I
n
+

1
(as) 

(A-23) 
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G4(s,t) = % {In(st)[2(n-~)(v+n) -Kn(bs) - s(2\1+3n+1)Kn+1(bs) 

+s2.b Kn+2(bs)] + t In;l(st)[S(~-l) ~(bs) - s2.~+l(bs)]} 

(A-24) 

GS(s,t) = ~(st){_[2n(n;!)(n+v) + 2(n+1)s2.]In(sa) 

0+[: (-n2.+3n+2(v+1»-s3a]In+1(sa) + s2.In+2(sa)} 

-t ~+l(st){-[n~~-l) o+s2.]s In(as) + sa2. In+1(as)} (A-2S) 

G6(s,t) = In(st){_[2n(n-~~(n+\I) + 2(n+1)s2.]~(bs) 

+ [% (n2.-3n-2(\I+1» + s3b]~+1(bs) + S2.~+2(bs)} 

+ t In+1(st){-[~ + s2.]s ~(bs) - Sb2. Kn+1(bs)} (A-26) 
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APPENDIX B 

The functions vj(s,t) which appear in (30) 

Vj = YjK QK ,for j = 1,3,5 , K = 1,2 

For example, 

V1 = Y11 Ql + Y12Q2 

v2' = Y21 Q3 + Y22Q4 

v3 = Y31 Ql + Y32Q2 ' etc. 

(B-1) 

ns . 
Y12 = -a- In(as) + s2In+1(as) (B-4) 

Y21 = 2n~n+1) Kn(bs) ~ (4+3n)s Kn+1(bs) + s2b Kn+2(bs} (B-5) 

Y22 = ~s Kn(bs} - s2Kn+1(bs} (B-6) 

Y31 = ~ [2(n-1l(v+n) In(as) + s(2v+3n+1)In+l (as) + s2a In~2(as)] 

_ n [s(n~l) () 2 
Y32 - a a In as + s In+l(as}] 

(B-7) 

(B-8) 

Y41 = ~ [2(n-l)(v+n) Kn(bs) '- s(2v+3n+l}~+1(bs} + s2b ~+2(bs)] 

(B-9) 

-30-



(B-10) 

- s3a]In+1(sa) + s2In+2(sa) (B-11 )" 

Y· = _[n(n-1) + S2]S I (as) + ~ I (as) 
52 a2 n a n+1 (B-12) 

.+ s3b]Kn+1{bs) + S2Kn+2(bsj (B-13) 

Y62 = _[n(gil) + S2]s ~(bs). - sb
2 ~+1 (bs)" (B-14) 

The tenns in (B-1) and (B-2) denoted bY'QK are defined as, 

Q1(s,t) = -! [nt Kn(st)So,n_1(ist) - it ~_l(st)Sl,'n(ist)] 
(B-15) 

Q2(s, t) ~ tz [(n+2)t ~+1 (st)Sl,n (ist) - it Kn (S1:)S2 ,n+1 (ist)'] 

(B-16) 

Q3(s,t) = - ! [nt I ntst)So,n_1(ist) + it In_1(st)Sl,n(ist)] . 

(B-17) 

Q4(s,t) = -.~ [(n+2)t I n+1(st)Sl,n{ist) + it In(st)S2,n+1(ist)]. 

(B-18) 

The Lamme1 functions of imaginary argument.which are 'encountered 

in QK are not in a fonn which is convenient for numerical 
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computation, but with the aid of certain identities involving 

the Struve function _ QK may be expressed _in 

terms of real functions with real arguments. The terms QK 
K=1, ••• ,4 for five hannonics n=0, •.• ,4 are given below. 

n=O 

Ql (s, t) = ~t Kl (st) 

2t t2. 
Q2(s,t) = sz Kl(st) + s; Ko(st) 

Q3(s,t) = ; Il(st) 

- -2t - t2. 
Q4(s,t) = - sz- Il(st) + s; Io(st) 

_ 1 

let:_ uo(z) =zJ e-zp (l-p2.)-% dp 
:0 

- 1 
ul(z) = J e-zp O-P2.)% dp 

o 

- 1 -
u2(z)- = z2. J e-~P (l_p2)o/2 dp, 

o 

then for n=l: 

Ql(s,t) = ~t [K1(st)uo(st) + Ko(st)u1(st)] 

Q2(s,t) = ~ [3~(st)ul(st) + Kl (st)u2(st)] 
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(B-19)

(B-20) 

(B-21) 

(B-22) 

(B-23) 

(B-24) 

(B-25) 

(B-26) 

(B-27) 



Q3{s,t).= : [1o(st)u1(st) - 11(st)uO(st)] 

Q4 (s, t) = # [312(st}u1 (st) -11 {st)u2 (st)] 

n=2 
-2 . t 4 

. Q1 (s, t) = ST Kz(st)- s [~ - (st)2]K1 (st) 
.. 

(B-28) 

(B-29) . 

(B-30) 

_ 4t [4 t 8 64 Q2(s, t) - ST 1 - (st)2]K3(st) + ST [st -. st + (stP]~(st) 

(B-31) 

(B-32) 

_ -4t . 4' . t . 8 64 . . 
Q4(s,t) - ~ [1 - (st)2]I3(st) + ST [st - st + (st)3]I2(st) 

(B-33) 

n=3 

Q1(s,t) = ;' {K3(st)[3uo(st) - S6t u1(st)] + ~(st)[3u1(st)- s~ u2(st)]} 

(B-34) 

Q3(S,t) = ;' {I3(st)[3 uo(st) - :t u1(st)] 

- I2(st)[3u1{st)·- s~ u2(st)]} 

Q4(s,t) = ~ {I4(st)[;~ u2(st) - 15U1(st)] 

(B-36) 

( ) .( 120 120 + 13 st [-st+15uo st) - st u1(st) + (st)2 u2{st)]1 (B-37) 

-33::-. 



n=4 

4t 1 8" t 16" 
Q1 (s, t) = s (- st + (stp]K4 (st) - 5 [1 -" (st)2 

(B-38) 

6t 16 192 t " 24 
Q2 (s, t) = ST [1- {st)2 + (st)4]K5(st) + ST Est - st 

576 9216 " 
+ (st)3 - (st)s]K4(st) (B~39) 

Q3(s,t) = ~t[_ ;t +(S~)3]I4(st) +! [1 - (~~)2 

(B-40) 

-6t 16 192 
Q4(s,t) = ~ [1 - (st)2 + (st)4]I5(st) 

t 24 576 9216 
+ ST Est - st + (stP - (st)S]I 4(st) (B-41) " 
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APPENDIX C 

Evaluation of Lomnel·s Functions 

In the problem considered, Lomme1's, functions 5~,,, arise from the 
indefinite integrals of the form 

f ZllJ,,(z)dz = (1l+v-1)z JV<Z)5~_1."_1(z)- z J"_1(z)5
11

,,,(z) 

(C .. 1) 

5 (z) = zll-l [1 (}1-112-,,2 + [(1l-1 )2-,,21 [(1l-3)2-,,2] _ 
ll," z~ zrl: ••• ] 

(C-2) 

Referring to [12] it can be shown that t'he Lanrne1's functions of real 
argument may be expressed as 

n = 0 51,o(Z) = 1 (C-3 ) 

co If.. f - 2 -zt (C-4) j 5o,o(Z) = o(1+t2) e dt 
n :: 1 

l r 1J2t 51,1(z) = z (1+t2) e-z , dt (C-5 ) 
0 

-1 . (C-6 ) { 50•1(Z) • Z 
n = 2 

5 (z),= 1 + 4z-2 (C-7 ) 
1,2 . 
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n=3 
( So,2(z) = 2z-1 Sl, 1 (z) - So,o(z) (C- 8) 

< . 

l Sl,3(z) =4 + (24z-2-3)Sl,1(z)-12Z-1So,o(z) 

(C-9 ) 

n=4 
r So,3(z) = z-l + 8z-3 

< 

l Sl 4(z) = 1 + 16~-2 ~ 192z-4 
, . 

(C- 10) 

(C-ll ) 

, 

n=5 

. So,4(z) = az-1+(48z-3-az-1)Sl,1(z)+(1-24z-2)So,o(z) 

j ..' . . (C-12) 

l 51,5(z) = -4+320z -2+(1920z -4 -360z -2+5)51, 1 (z) 

(C-13) 

The details for evaluating S asymptotically for small and large argu-
ll, v . 

ments may be found in [19]. 
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APPENDIX D 

Evaluation of the Integral in (32) 

As noted i"n Section"2., fa evaluate the integral in .(32) it is neces.;. 

sary to ana"lyze the integrand asymptotically. By uSing "the as,}'l1tptotic 

expansions for In(z), Sll,)z), Sex), and C(x) as given by [12-14] and by 

evaluating the integral in A<a<m asymptotically, (32) may be expressed as 

" " ~ ~ 2 
L (t,r) =.:l 1 log [ (t -r ) ] _ 1 [ _1_ 

1. 1r 2r It~rl 1r t-r 

(0-:-1) 

where A i"s a "large" number and Al , A2, and A3 are gi yen by 

~" " 

A1 = ~ (;) {-Ci(A(t-r» + (_l)n[~ -" Si(A(t+r»] 

+ [4n2-1 _1 _ (4n2-1)~4n2-9) (1 + 1)] * 
8 tr 12 F" rz 

* [COs2~~t-r) + (_l)n sin2~~t+r) _ (ti r ) sin ~(t-r) 

+ (_l}n (t2r) cos ~(t+r) + (t2r)2 Ci (A(t-r)) 

_ (_l)n"(t+r)2 [1r ~ Si{A(t+r)}]] + 4n2-1 (l_l)* 
2 2 - 8 r-t 

*[ sin ~(-t-r) +"(_l)n cos ~(t+r) _ (t-r)Ci(A(t-r)) 
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(-l)"(t+r) [2 - Si(A(t+r»)]]} (0- 2) 

- (t-r)C.i(A(t-r» - (_1)" cosAlt+r) + (-1)"(t+r)(2' 

- Si(A(t+r»))] + 4("-AF -1 t-1 [-Ci(A(t-r» 

+ (_1)" (r -, Si(A(t+r»)]+ 4"~-1 r-1 [Ci(A(t-r» 

+ (-1)"(2 - Si(A(t+r»)] + (4"2-1)(:in-1)2-1) (rt)-l* 

*[Si" ~(t-r) _ (t-'r)Ci(A(t-r» + (_l)n cos '~(t+r) 

-C-1)"(t+r}(2 - Si(A(t+r»)]} (0-3) 

l-(-l)n . 1 -~ 
A3 = - 2r [C( IJ\r) - S(IAr)] - 2'11" (rt) * 

. : 1 -~~% 
*[(-1)n[2 - Si(A(t+r»] - Ci(A.(t-r»] - 4'11" r t * 

*[- sin 2(t-r) + (t-r)Ci(A(t-r» + (_1)" cos 2(t+r) . 
. . 

- (_1)" (t+r)(2 - Si(A(t+r»)], n = 0,1,2, .•• , (0-4) 

The definite integral in (0-1) is evaluated by using Gauss-Legendre 

quadrature with the upper limit A = 200. 
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Fig. 1 Geometry of a thick-walled cylinder containing 
an axisynmetric circumferential crack. 
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Fig. 2 Stress intensity factors for concentric ring 
shaped cracks in an infinite medium subjected 
to axial extension (n=O) and pure bending (n=l). 
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Fig •. 3 Stress intensity factors for edge cracks in a 
thick-walled cYlinder subjected to axial tension • 

. 1/h = 0.01. 
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Fig. 4 Geometry of edge cracks in a cylinder wall sub
jected to residual stresses. 
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Stress intensity factors for edge cracks in a hollow 
cylinder ~ubjected to residual-stresses. alb = 0.9, 
alb = 0.7. . 
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Fig. 6 Crack contact length € for a hollow cylinder under 
residual stresses with either internal or external 
circumferential edge crack'. alb = 0.9. 
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