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1.0 INTRODUCTION

Knowledge of sea surface temperatures (SST's) is extremely useful in many
applications including com mercial fishing, weather prediction and military uses. In
the last two decades SST's have been determined from satellite-based radiometers
by a number of authors including Fritz and Winston (1962), Smith et al (1970),
Prabhakara and Dalu (1974), McClair: and Abel (1977) and McClain (1980). Until
recently, thermal infrared measurements in the 10.5 ~ 12.5 um window region were
mainly used for deriving SST's. In this spectral region the ocean surface behaves
like an almost pertect blackbody radiator. The emissivity of the ocean has been
estimated to be in the range of .967 to .997. By assuming it to be unity one can
invert the Planck equation and compute SST.

Two basic problems limit the accuracy of SST's derived from thermal IR
measurements. One is the presence of clouds in the field of view (FOV). Clouds,
being at higher altitudes than the ocean surface, absorb the radiation from the
ocean surface and reemit radiation corresponding to lower temperatures. Because
of this even a small fractional coverage of the FOV will lead to unacceptable
errors in the SST. It is, therefore, necessary to eliminate cloud-contaminated
FOV's from SST computations,

The other problem limiting the accuracy of SST computations is the effect of
the atmospheric constituents on the radiation emitted by the ocean. The
atmosphere attenuates the radiation so that Tg, the sea surface temperature, is
related to Ty, the equivalent temperature at the top of the atmosphere, by

Tg=Tp+ AT ()

where AT is a comrection term due to the atmosphere. This correction term is
dependent mainly on atmospheric water vapor and could be greater than 8K in the
tropical and subtropical arexs. Currently a regression procedure is used in the
NOA A operational SST produ.stion scheme GOSSTCOMP which uses the 10.5 - 11.5
um measurements from the Advanced Very High Resolution Infrared Radiometer
(AVHRR) on the TIROS-N series of NOAA satellites and the water vapor
information from the High Resalution Infrared Sounder (HIRS) for the atmospheric
correction (Walton, et al, 1976). This technique of finding the atmospheric
correction has the drawback that the HIRS data provides relatively crude estimates



of temperature and humidity profiles and has a coarse spatial resalution compared
with the AVHRR spatial resolution (MeClain, 1980).

It is, therefore, necessary to look into the possibility of obtaining the
atmospheric correction to the SST's derived from the thermal IR measurements.
Multispectral IR measurements have been proposed for obtaining this correction by
Anding and Kauth (1970), McMillin (1975), and Prabhakara et al (1974). In the
present study a new method of obtaining the atmospheric correction is examined.

Microwave measurements from the Scanning Multichannel Microwave
Radiometer (SMMR) on board the Nimbus-7 satellite are used to derive the
precipitable water which is then used to obtain the atmaospheric correction for use
with AVHRR thermal IR measurements to obtain SST's, The microwave
measurements are minimally affected by the presence of clouds so that they
provide all-weather capability for the determination of SST and precipitable water.
Thus the atmospheric correction, although at a relatively coarse resalution, is
available over cloudy as well as cloud free areas. In this study, SST's derived from
SMMR measurements are compared with SST's derived from both AVHRR and
SMMR measurements, as well as with the operational AVHRR SST data.




2,0 COMPUTATION OF ATMOSPHERIC CORRECTION
2.1 Atmospheric Effects

As mentioned before, the temperatures observed by a satellite-based
sensor are generally lower than the true surface temperature due to absorption and
reemission by the atmosphere of the surface radiation. The atmsopheric
constituents causing this attenuation are mainly carbon dioxide, ozone, water vapor
and aerosols. Experimental measurements by Burch (1970) show that in the window
region absorption by COp is negligible. The same is true for ozone also. For the
10.5 pm to 12.5 um region absorption and reemission by water vapor greatly exceed
that by any other species except under very dry and hazy conditions (Bignell et al,
1963). The total water vapor absorption coefficient in the 10.5 um - 12,5 um
region can be written as (Prabhakara et al, 1974)

K= Ke(\) 9T) + Kp(V)T) + Kl(\) ’T) (2)

where K¢ and Kp are associated with the water vapor continuum and K; with the
water vapor lines. Experimental measurements by Burch (1970) and Bignell {1970)
show that water vapor absorption depends strongly on the partial pressure of water
vapor. Burch and Bignell have given the temperature variation of the mass
absorption coefficients for water vapor. Their data can be used to compute the
absorption by numerical integration of the equation of radiative transfer, This will
enable us to compute the radiance transmitted from the bottom to the top of the
atmosphere. We can then define the atmospheric correction AT as the difference
between the surface temperature Tg and the equivalent temperature Ty at the top
of the atmosphere for a given slant path through a cloud-free atmosphere,
2.2 Equation of Transfer

The basic equation of radiative transfer for an atmosphere in local
thermodynamic equilibrium is

_g—L.= I, -By (T) (3
Kyp ds
where I, is the radiant energy in the frequency interval (v, v+ dy ), Kv is the
absorption coefficient, p is the density, s the distance variahle and B the Planck
function. The formal solution of equation (3) is (Chandrasekhar, 1960)
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Is = Ip e~ T(8,0) *S‘ B(s,T) e~ T(35") Ro ds (4)
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where T (s,g') is the optical thickness of the material between the points s and s'
given by

< (s8) =§ Kpds Y]
8 !

By using equation (5) and defining dm = pds the general solution to the equation of
radiative transfer becomes

M
I=1,exp (-_S k(m) dm)

M m=o M
+_S k(m) B(m) exp (-_S k(m') dm') dm 6)
m=0 m=o
m is the water vapor mass along the path.
Fallowing Cogan et al (1974) the atmosphere may be assumed to be
made up of sufficiently thin layers in which variations are linear. Then

In = In-1 exp (=kn Mp) + B(1 = expl=kn Mp)) m

where My is the water vapor mass in a calumn of unit cross section in the layer n.
k is the mass absorption coefficient in the 11.5 um window (Bignell, 1970)
consisting of two parts kq and kp. k¢ is modified by changes in atmospheric
pressure P from a standard value of 1000 mb, and ky is altered by changes in

partial pressure e of water vapor from the standard value. k for the nth layer may
be written

kn = K1 Pn_, ko Sn__ @
1000 1000

Bignell (1970) found that absorption by foreign broadening of water vapor lines
(with coefficient k¢) has a positive temperature dependerice of about 0.5% per ©C
and the e-type absorption (with coefficient k) has a strong negative dependence of
about 2% per ©C. Hence equation (8) can be written as

kn = £(T) k1 (EP__)», £2(T) u2< en )
1000 1000



where £(T) = 1 -.005 (303-Tp,) (10)
and £2(T) = 1+ .02 (303"Tn) ()
Tn is the mean temperature in the nth layer,

2.3 Computation of Water Vapor Comrection For The Thermal Window

Channel

It is possible to compute the radiance observed by a satellite-based
sensor at the top of the atmosphere from equation (7) provided temperature and
water vapor pressure are available as a function of atmospheric pressure from the
ocean to the top of the atmosphere. From this radiance the equivalent blackbody
temperature at the top of the atmosphere, T, (equation 1) can be obtained by
inverting the Planck equation. The correction T is then given by the difference
between the surface temperature Tg and the temperature at the top of the
atmosphere Tj.

In this study, the total atmospheric water vapor obtained from SMMR
measurements are used for predicting the atmospheric correction AT,
Temperature and water vapor profiles are not available to evaluate this correction,
Hence, it is necessary to determine the functional relationship between the
correction AT and the total at mospheric water vapor W. Such a relationship can be
obtained if a set of representative profiles of temperature and water vapor are
available to compute both AT and W. For this study, due to the limited resources
available, it was decided to use radiosonde data from ship soundings. These
soundings were available on five tapes and covered the period February 11, 1979
through Mareh 17, 1979. Altogether there were 91 useable soundings covering a
wide range of latitudes and longitudes, These profiles were used to compute both T
and W for a number of slant angles, 0, by using equations (7 and 1). The 91 sets of

AT and W, as well as the temperature for the lowest point of the profile T, were
then input to a multiple regression routine which was used to determine the
coefficients for a number of functional models, Eventually the fallowing model

was chosen on the basis of the multiple correlation coefficient and the sum of the
squares of the residuals,

AT=zag+ay W+ag W2eagWsecd
+ay - Wesec20+ agTe (12)
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The multiple comrelation coefficient for this equation was found to be .98, The
various coefficients in this equation and their standard deviations are given in
Table I Te in equation (12) is consldered to be quite close to the surface
tem perature Tg.

It is now possible to compute the at mospheric correction AT, given the
precipitable water W and surface temperature Tg.



TABLE I

COEFFICIENTS OF EQUATION (12) AND THEIR STANDARD DEVIATIONS

Coefficients: ag aq ap a3 aly ag
Value: -4.315  0.8666 0.05648 ~0,2718 ~0.01603 0.01582
o: 0.440  0.0940 0.00344 0.1216 0.04036 0.00130



3.0 COMPUTATION OF SEA SURFACE TEMPERFURES FROM AVHRR AND
SMMR MEASUREMENTS
3.1 AVHRR Data

The Advanced Very High Resolution Radiometer (AVHRR) is a cross-
track scanning radiometer with the spectral channels shown in Table II. The IFOV
of the sensor is approximately 1.0 km at the sub-satellite point. For this study the
Global Area Coverage (GAC) data at the reduced resolution of 4 km was used. This
data was used in two forms, The first was theraw GAC U km data, from which, for
each pixel, the latitude, longitude, solar zenith angle, angle of observation through
the atmosphere, brightnesses from the visible channels, and the uncorrected 11
micron IR temperature can be figured. The temperature corrections are done
starting with this IR data.

The other form is that of the operational NOAA GOSSTCOMP SST data
derived from the AVHRR and HIRS data. This SST data, which is retrieved from
observations averaged over 50 km target areas and stored on tapes covering seven
day periods, is used in this study only for comparison with the corrected
temperatures obtained from the raw AVHRR data.

3.2 SMMR Data

The Scanning Multichannel Microwave Radiometer (SMMR) (Figure 1)
provides orthogonally polarized antenna temperature measurements at five
microwave frequencies, 6.6 GHz, 10.7 GHz, 18.0 GHz, 21.0 GHz and 37.0 GHz with
an absalute accuracy of less than 20K (rms) at each frequency. The antenna's main
beam is offset 429 from nadir and scans the earth in a conical pattern with a half
angle of about 25° (Figure 2). The SMMR data used for this :tudy was from SMMR
CELL-ALL tapes, a product of the second stage of SMMR processing. Each logical
record contains earth-located SMMR brightness temperatures for a hlock 780 km
by 780 km on the surface of the earth. The antenna temperature measurements
from the SMMR are converted to brightness temperatures and averaged into grids
of various sizes based on the frequency of the observation. Table III shows the grid
size, the number of bands and cells in each grid, and the frequencies of the
observations which apply for each grid.

The SMMR brightness temperature for each cell of the 780 km x 780 km
block have been corrected for the effects of the antenna sidelobe pattern. In
addition the CELL~-ALL tape brightness temperatures have been comrected for the




TABLE II

THE AVHRR CHANNEL SPECTRAL RANGES

CHANNEL SPECTRAL RANGE REGION
1 0055 - 0068 » Vi!lblﬂ

2 0.725 - 1.10 ) Visible/Near Infrared
3 3.55 - 3.93 Infrared
4 10.50 ~ 11.50 Infrared

-~
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R =

GRID
1

2
3
4

TABLE III

FREQUENCY AND CELL SIZE OF OBSERVATIONS ON THE SMMR CELL-ALL TAPE

GRID SIZE (km)

156.0
97.5
60.0
30.0

BANDS X CELLS

CHANNELSINCLUDED IN GRID (GHz)

5x5
8x8
13x13
26 x 26

37.0, 21.0, 18.0, 10.7, 6.6
37.0, 21.0, 18.0, 10.7
37.0, 21.0, 18.0

37.0



effects of polarization mixing between the vertically and horizontally polarized
components of the signal received by the SMMR antenna,

" To retrieve atmospheric water vapor and (SMMR) sea surface
temperatures, the algorithms developed by Wilheit and Chang (1980) may be used
on the cell data. The water vapor algorithm uses the 37.0, 21.0 and 18.0 GHz
channel information, which is available for the 13 x 13 grid whose cell size is 60.0
km on each side as well as for coarser grids, while .the SST algorithm uses
information from all channels, which is only avallable from the 5 x 5 156.0 km
square grid. The 13 x 13 60 km SMMR grid was chosen as the reference grid, into
which AVHRR pixels would be registered, and SMMR SST's interpalated.

Only data from the ascending (daytime) nodes of SMMR were used, so
as to allow the closest time coincidence with the AVHRR ascending (daytime) data.
The local time for an ascending SMMR node is always about noon (12:00 hours), and
the local time for an ascending AVHRR node is always about 3 p.m. (15:00 hours),
It was decided for this study that the resulting 3 hours difference is insignificant
for 60 km square areas for those parameters measured by SMMR.

3.3 Overview of Computation of SST's

Figure 3 gives a gross schematic of the computation of SST's by using
both AVHRR and SMMR data. First, total atmaospheric water vapor W is computed
from SMMR brightness temperatures., The precipitable water is then used to
compute atmospheric correction as explained in Section 2.0. The correction uses
the brightness temperature T, for the 11.5 um channel over clear areas from the
AVHRR GAC data (Section 3.5 regarding cloud filtering). T, has not been
corrected for atmospheric effects. It is used as a first approximation for the
surface temperature. The AT s0 derived is then used to correct Tj and obtain the
first approximation of the comrected surface temperature Tg, This is again input
into equation (12) and AT is computed a second time. This AT is then used to
correct Tp again to obtain a final swface temperature (SSTp) from AVHRR
brightness tem peratures.

Sea suface temperatures are also ccmputed from SMMR brightness
temperatures directly by using the algorithm of Wilheit and Chang (1980) (Section
3.2). These are denoted by SSTg Finally, the corresponding sea surface
temperatures from the NOAA operational product SST, are extracted from the

seven day GOSSTCOMF tapes. The three sets of SST's are then compared and the
statistics of the residuals are computed.
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3.4 Area Selection and Data Handling

Six open ocean areas were initially selected, on the basis of the 20° x
20° open ocean blocks used in Kogut and Hopkins (1980). SMMR CELL-ALL data
covering the time from February 15 to iarch 17, 1979 were used to plot the
approximate locations of the centers of all 780 x 760 km SMMR blocks from each
of the days covered by the tape,

AVHRR visible and infrared imagery was then used to ascertain, out of
all the locations of SMMR hlocks within the initially selected areas, which
locations were relatively clear, A little patchy cloudiness was acceptable, so long
as there were sufficient areas to ensure that at least isolated pixels of infrared
data would reach from the surface over most of where the 780 x 780 km SMMR
block covered., Visible and IR GOES prints were used to supplement this
information where possible.

Based on this information, AVHRR GAC data was ordered for ten
coverages of a region on the earth on a given day. After the selected-coverage
GAC data amrived, both AVHRR visible histogram runs (see Section 3.5) and
temperature estimation runs (fallowing the algorithm of Section 3.3) were made.
In each run, the SMMR tape was scanned first, until an ascending-node (daytime)
block within the given region and day was found. An array representing a grid of
latitude and longitude lines covering the 780 x 780 km SMMR block was then filled
in with information about how far over and how far up on the SMMR hlock each
grid point was. This was done by:

1.  Figuring what the proper rotation and stretching algorithms
would be, were the earth's surface flat, from the
latitude/longitude grid to the mesh of 60 x 60 km cell
centers in the SMMR block, based on the latitudes and/or
longitudes of three cell centers.

2. For each cell, obtaining the residual between its true
latitude/longitude and that computed from the inverse of
the transformation from (1) above.

3. For each point in the latitude/longitude grid,

(a) finding its supposed SMMR hlock position from
the transformation of (1);
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(b) using that position to interpalate what residual
there would be from the inverse transformation
from around that position to latitude and
longitude; and

() adding that residual (calculated minus real
latitude/longitude) to the latitude/longitude of
the latitude/longitude grid point and obtaining (a
reasonably) true SMMR block location by using
the {forward) transformation of (1).

In temperature runs, the SMMR water vapor values were computed
directly from the 60 x 60 km cell data, while the sea surface temperatures were
computed from the 156 x 156 km cell data. A polynomial was then fitted over the
SST's, and was then evaluated at the center of each 60 x 60 km cell.

The AVHRR tape file for the cormresponding region was then read, and
for each AVHRR pixel, the corresponding 60 x 60 km SMMR cell was found by
interpalating the pixel's latitude and longitude on the grid for SMMR block
location. In histogram runs, the visible values were used if the pixel was within the
780 x 780 km hlock at all. In temperature runs, the IR value was added in as part
of an averaging process for every 60 x 60 km cell. For all runs, the final
calculations and printouts were done after the AVHRR tape file had been
completely read.

3.5 Cloud Filtering of AVHRR Data

The identification of cloudy pixels was done py establishing brightness
threshalds for two of the visible "reflectance channels'. The two channels used
were the red (0.725-1.10 um) and green (0.55-0.68 um) of the AVHRR. The
radiances in these channels were normalized by dividing by the cosine of the salar
zenith angle.

Special runs were made to obtain histograms of the radiances in each
channel, which were then plotted on the printer output. A typical pair of
histograms are shown in Figures 4 and 5.

The large peak at the low radiance end of the histogram corresponds to
reflecticn from the ocean surface. Peaks at higher radiances correspond to
reflection from cloud-ocean combinations or from clouds. The cloud-no cloud
threshald was selected to be Ro+ AR where Ro is the radiance corresponding to
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the peak representing reflections from the ocean and A R is determined from the
frequency distribution between this peak and the cutoff of the lower radiance half
of the histogram. AR was chosen conservatively so as to preclude even small
fractions of cloud coverage in the FOVs.

The threshold for each visible channel was then entered as input into
the temperature runs, which would compare the normalized radiance from each
channel for each AVHRR pixel with the comresponding threshald, and use the IR
from the pixel only if each radiance was less than the corresponding threshold.
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4.0 RESULTS

Seven SMMR blocks of 780 x 780 km have been used for analysis in this study
(Figure 6). Tables IV(a) through IV(j) show some of the results for the hlock
centered at 279.9°S latitude, 18.9°W longitude, on February 27, 1979. The 13 x 13
elements of Tables IV(b) through IV(j) refer to the SMMR 60 x 60 km cells over
which the average water vapor is retrieved. Table IV(a) shows the SST's retrieved
from SMMR brightness temperature data over the 5 x 5 756 km grid. Tahle IV(b)
shows the interpalation of this over the 13 x 13 60km grid. The t2mperatures seem
to be very low for latitudes in the order of 2805, Table IV(c) shows the total water
vapor for each 60 km cell. The values range from 2.7 gm/cm2 to 4.7 gm/cm2.
These water vapor values are availahle even for those pixels which are defined as
cloudy by visible threshold, Table IV(d) shows how many AVHRR pixels were used
for each 60 km cell. These numbers show where there are areas of partial
cloudiness and complete overcast.

Tahle IV(e) shows the brightness temperature of the AVHRR thermal channel
for each pixel. These values are, as yet, not corrected for atmospheric water
vapor. They are on the order of 2919K, Table IV(f) shows the final corrected SST
computed by adding the atmospheric carection derived from SMMR data to the
brightness temperatures derived from AVHRR data. It may be observed from
Table IV(f) that the SST values are on the order of 296°K, considerably higher than
the SMMR derived SST's. Table IV(g) shows the SST's from the NOAA operational
product tape which were gridded on the SMMR 60 km grid by the nearest neighbor
approach. It may be seen from Table IV(g) that the values are close to the SST
derived from AVHRR and SMMR. Tables IV(h) through IV()) sum marize residuals
between different methods of deriving the SST, as follows:

Table IV(h): SST(AVHRR & SMMR)-SMMR(AVHRR OPERATIONAL)
Table IV(i): SST(AVHRR & SMMR) - SST(SMMR)
Table IV(): SST(SMMR) - SST(AVHRR OPERATIONAL)

It may be observed that the SST derived from AVHRR and SMMR is at most
about a degree less, on the average, than the NOA A operational AVHRR, while the
SMMR SST is about 21 or 22 degrees less than both of these. This, in combination
with the latitude, would seem to indicate that the AVHRR-SMMR derived nroduct
corresponds at least reasonably well to surface truth, while the SMMR product is at
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TABLE IV(a) SMMR SST's (°K) RETRIEVED OVER. THE 5x5 GRID

273.12 276.57 274.29 277.37 278.47
274,26 275.64 275.10 277.56 276.98
274.26 273.34 276.95 275.35 2717.64
274.56 274.15 275.14 275.13 277.45

274.07 273.55 273.69 274.31 275.23
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least 15 degrees low. This discrepancy in the SMMR data comresponds with the
amount of bias in the SMMR cell tape data which othris have noted.

Table V shows the average results for all seven 780 x 780 km SMMR blocks,
The average of the average residuals is -.149, and the average standard deviation is
1.022. It may be seen that most values derived from the AVHRR and SMMR data
coincide reasonably well with the NO A A operational product tape data.
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5.0 CONCLUSIONS

In this study, microwave measurements from the Nimbus-7 SMMR were used
to derive the atmospheric precipitable water, which was then used to obtain the
atmospheric comrection for use with AVHRR thermal IR measurements to obtain
sea swface temperature. The resulting SST's compared were with the NOAA
operational sea surface temperature measurements, and the two sets of
measurements were found to be in reasonable agreement. For the limited sample
analyzed in this study the average residuals between the two sets of measurements
was .159K with the NOA A operational SST's being slightly greater.

This demonstrates that the use of microwave measurements is a promising
toal for comrecting IR sea surface temperatures for water vapor effects even under
cloudy conditions, This can be done either by using Nimbus-7 SMMR and TIROS-N
or NOAA-6 or NOAA-7 AVHRR measurements and matching them, or by using
instruments from any future satellites where both the scanning IR and microwave
instruments are on board. To further check the accuracy of this algorithm, the
results from it should be compared with actual surface truth such as that from
buoys. Also, since the method of cloud thresholding "by hand" used in this study is
impractical for operational use, the effects on this algorithm of automating the
cloud threshalding procedure should be studied.
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