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l. INTRODUCTION AND SUMMARY

Background

Over the past several years, MIT's Laboratory for Information and
Declsion Systems (LIDS) has been conductiny yasearch for NASA on the
properties of multivariable digital control systems [l]. These types
of systems are becoming increasiagly important as small, powerful, flight-
qualified digital computers take over the burden of control law implemen-
tation in various NASA vehicles and other control system applications.
Examples include the shuttle orbitexr, the HIMAT and F-8C DFBW aircraft,
satellites and space probes such as Viking and Galilea, various proposed
large space systems, and many more.

The overall goal of the research program has been to evolve improved
design methods for multivariable sample-data control laws. Research
effort was concentrated initially on the primary available synthesis tool--
namely the sample-data (discrete~time) Linear-Quadratic (LQ) regulatoxr
problem [Athans, 2]. Various properties of this problem formulation were
studied, and key features of its solution were investigated. In the latter
category, the basic "robustness properties" (e.g. multivariable gain
margins and phase margins) of sample-data LQ solutions received particular
emphasis.

Two major conclusions emerged from these initial studies. First, the
sample-data LQ problem, like other sample-data synthesis formulations
suffers from the over idealized time sequence representation of the control
process. The process is duscribed only "at the sampling instant," with

no information about intersample behavior or intersample control requirements



other than what can be predicted from values of states and controls at

the sampling times [Levis, 3]. The need for devices such as prefilters
(which appear in virtually every practical digital control implementation)
and the potential benefits of higher-order hold devices cannot be addressed
within this pure sample~data framework.

The second major finding concerns the robustness properties of
sample~data LQ control systems. These turn out to be fundamentally inferior
to their continuous-time counterxparts. Recall that the latter enjoy impres-
sive uncertainty tolerances including =6db to + «db gain margin or +60deg
phase margin in all combinations of control‘channels [Safonov and Athans, 4].
These margins are guaranteed for every continuous-time LQ design, inde-
pendent of specific plant or cost function parameter values. In the sample-
data case, the corresponding uncertainty margins are generally less than
the ranges above and are functions of specific plant and cost function values.
Hence, no a-prioril robustness guarantees can be stated for sample-data LQ
control laws [Safonov, 5].

Motivated by these two apparent limitations of the existing LQ
synthesis methodology, the research effort was re-directed toward more
fundamental issues of digitally implemented control systems. The first task
of the redirected effort was to find a mathematical representation which
properly captures both the continuous-tlme (analog) and the discrete-time
(digital) processes which occur simultaneously in a digital control system.
Such a representation was developed and is called the "hybrid operator model"

of the control process. This model provides an analeg inputroutput view. of the



control process which explicitly includes sampling operations, digital
calculations, hold operations, and continuous plant evolutions. The
structure of this operator is summarized briefly in Section 2 below and
in more detail in a Master's thesis by A. Kostovetzky [6].

An immediate application of the hybrid operator is to explain the
common use of prefilters in practical digital control systems. Simple noxm
calculations in [6] show that the hybrid operator has unbounded gain (in
an appropriate function space sense) as the‘sampling process tends towaxd
the ideal impulsive sampling normally assumed in sample-data theoxy.
Physically, this means that it prowvides arbitrarily large amplification
for certain inputs (e.g. noise). Non-impulsive sampling, as obtained with
pre-filters, bounds this amplification.

The second task of the rediracted research made use of the hybrid
operator model to answer the following very basic approximation question:
How well can digitally-implemented contxol laws mimic analog ones? Morxe
specifically, if samplers, holds and digital algorithms are all selected
to best approximate a given linear, time-invariant analog'system, how good
can the approximation be? The answer to this question is elegantly simple:
The digitally-implemented system can exactly duplicate the impulse response
matrix, G(t-8), of the analog system at all points in the ¢t,68-plane
except on a strip of width T (sample time) along the main diagonal (t=8).
Inside this strip, the hybrid system's impulse response must be zero on
various triangular segments. Accordingly, this region of approximation

has been named the "triangle strip." Details of the optimal sampling, hold,
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and digital function for this approximation result are again summarized
in Section 2 and derived in detail in [6]. Its significance is that it
provides a simple and clear picture of the basic limitations inherent in
digitally-implemented controls. Such controls are fundamentally inferior
to their analog counterparts because they cannot utilize all the input
data in the triangle strip. As shown below, this limits bandwidth,
restricts performance, and precludes robustness guarantees such as those

enjoyed by the continuous~-time LQ regulator.

New Research Results

Motivated by the above characterization of hybrid system limitations,
the research effort was continued to explore the gualitative and guantitative
ways in which these limitations manifest themselves in hybrid system design.
The results of this new research are reported here.

The new research examines hybrid operator models from the viewpoint
of "conic sectors theory" [Zames, 7, and Safonov, 5]. This viewpoint
encompasses the approximation results above and provide an effective way to
express their implied limitations in terms of conventional analog control
system concepts (e.g. bandwidths, loop gains, gain and phase margins, etc.).
The basic idea is to approximate hybrid operators (which may be viewed as
periodically time-varying analog systems) by time-invariant linear analog

models. These models form the "centers" of conic sectors, and their modelling
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errors determine the sector "radii". The size of sector radii, in turn,
determine bandwidth limitations, stability robustness reductions, and
performance reductions, in accordance with existing sector-based control
system design technicues [Doyle and Stein, 8, Lehtomaki, 13].

The relevant conlc sector conceapts and their use in analog system
design are briefly developed in Section 3. They are then applied in
Section 4 to hybrid operators. Two expressions are derived which define
sectors radii as functions of the true hybrid operator and its time-
invariant analog approximations. These expression show explicit depen-
dences on the selected sampling rate, the selected sample- and hold filters,
and the selected digital algorithm. These parameters may be chosen to
minimize the radii (in an appropriate function space sense) and, thus, to
minimize the bandwidth, robustness and performance limitations which the
hybrid operator imposes.

The conic sector expressions from Section 4 are illustrated with a
small design example in Section 5. While this example are limited in
scope it serve to illustrate the use of sector-based hybrid system ap-
proximations and point the way to a general control system design philosophy
which incorporates digital implementations under a more general common

umbrella of feedback design for systems with approximation errors.
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2. HYBRID OPERATOR MODELS

We will consider digitally-implemented control systems which can
be represented by the block diagram of Figuxre 1. The three main func-
tions associated with the controller block in this diagram are:

1) The sampling operation which converts M-dimensional

analog inputs u(t) on the interval (&-1)T<t<iTinto
N-dimensional discrete samples Ez, 2=L,2,00 0

2) the digital algorithm which converts the N~dimensional
sequences gz into L-dimensional sequences nk,

k=0,l,'. «.p and

3) the hold operation which converts the L-dimensional
sequences T, into R-dimensional analog functions v(t)

on the interval KkT<t<(k+l)T.

The system's sample time will be designated by the symbol T. These
three functions will be assumed to have the forms

27 LT
gz= f fz(e)u(e)de-: f fo(B-?/r)u(e)de (L)
(2~1) (2=-1)7T
;
n. = ) D& (2)
k =1 k%28
vit) = hk(t)nk = ho(t-k'r)nk (3)

The first of these equations is a simple analog convolution operation
with weighting function (impulse response) fo(A). This could be the
weighting function of an analog prefilter, an approximate impulsive
sample, or various other vector valued input averaging operations.

Some examples are given in [6]. The second equation is a standard
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digital convolution with coefficients Dx%’ The third is a genseralized
output hold operation with weighting function ho(ﬁ). This could be u
simple constant to represent the common "zero-order hold," but in general
it will be selected to achileve broader goals. Some examples are again
given in [6], Nota that the controller is completely characterized hy
the two matrix-valued functions fo(A), ho(k) and by the coefficient

matricaes Dk&'

Hybrid Operator Reprasentation

Given the above description of a digitally-implemented controllex,
it is straight-forward ([6], Section 2) to write its input-output
operator representation, G, in the terms of an impulse response matrix,

G(t’e) . That is;

v=0u (4)
where v and u denote functions on [0,%) related by the convolution

t
y(t) = “/” G(t,0)u(d)as (5)

(o]
with

k
G(t,8) = h_(t=kT) 221 Do, (8-21) (6)

Here k is understood to be the largest integer less than or equal to

t/T. We will refer to this input-output description of the controller as
"the hybrid operator model" or simply as the "hybrid operator". Note that
it is a time-varying linear dynamic system characterized by ho' fo' and

Dk2°
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Optimal Hybrid Approximation

consider now the problem of finding a hybrid operator model
G(ho'fo’nkx) to approximate a continuous-time linear dynamic contxol

law with impulse response matrix

A(h~3)B (7)

a(t;e’) m Ca
where A,B, and C are given system matrices.

Let the approximation criterion be to minimize

T
J = E{J,im % ‘[ Hv(ﬂ - V(t)]lzdt} (8)
T ‘

where v(t) and ¥(t) are the outputs of the hybrid and pure analog
controllers, respectively, when excited by the same white noise input.
Then it is shown in [6], Section 4, that the optimal approximating hybrid

controller has the following sampling function:

£ 00 = My (9)

It's corresponding hold function is

h () = ce™, (10)

and the digital algorithm is

~ AT (k-R)
Dk% e . (11)

Moreover, these parameters cause (6) to duplicate (7) exactly every-

where except on the "triangle strip" of Figure 2. Note that the sampling
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FIGURE 2: Triangle Stxip.
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and hold functions (9)~(10) of this optimal hybrid approximation are
thamselvaes n-th oxder dynamic systems, whers n is the dimension o A,
Hence, the overall hybrid controller can be visualized as shown in
Figure 3.

As indicated earlier, the nsignificance of the above result is not
the optimal structure in Pigure 3 itself (after all, the sampling and hold
functions are quite complex, each literally duplicating the analog system),
but rather the fact that the inherent hybrid system limitations are so
simply and clearly displayed by the triangle strip in Pigure 2. It follows
from this figure that the minimum approximation erxroxr is given by the

error operator

8 = (C-G)u (12)

where G-G has the impulse response rapresentation
t
elt) -_[ 3(t-8)u(6)ds (13)
T

Qualitatively therafore, the hybrid system suffers an inherent time
varying "data lapse" with a maximum duration of T seconds (average T/2),
and with data weighting proporiional to the desired impulse response, G.
Hence, both the nominal function G and the sample time T contribute to
the significance of the error. Small errors are assured 1f G(\) is small
over the whole interval 04747 and u(0) is relatively "smooth." These

observations are given further interpretation below.
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3. CONIC SECTOR CONCEPTS

The key feature of the hybrid operatsr model ¢ is that it represents
an analog input-output view of digitally-implemented controllexrs. That is,
the operator mapg continuous-time input functions, u (1.@, u(t), 0st<w)
into sontinuous-tima output functions, v (Loa. wv(t), 0st<w), ALl intex-
sample behavior such ag limit cycling and aliasing is thus inecluded in the
represaentation., The input-output viewpoint also makos it possible to
utilize cextain function space notlons of approximation == in particular,

tha concept off conic sectoxs.

Conle Sactors [5,7]

In oxder to dlgcugs conic sectors; it is necessaxy Lo review a
numbexr of basic concepts from functional analysis. The £irst of these is

the functlon space, L This is the collection of all n=dimensional

21
vector-valued functions which are square intaegrable on [0,%)., If the

function x belongs to L’z‘, then its noxm is defined by

; 1/2
||x|| = [f t)*c(t)dt] <, (14)

Moreover, the inner product for any twoe functions X X, in L can be
defiined by

<X, 1%, & _[ xf(t)xgmdt. (15)

It follows that

R [<§,§>]l/2 . (16)



The chief limitation of the space Lg fox control system =ialysis
is that it contains no unstable functions (i.e. functions with ||x|[==).
This can be remedied by introdusing the so~called extended space, L;e
This space is the collection of all functions which are square integrable

*

on all finite time intervals, l.e. it contains all functions x which

satisfy

T 1/2
x| & xT(t)x(t)dt <® forallT . (17)
~ T

Functions such as x(t)aet ara included in L;e' for example, while func-
tions such as x(t) = tan t are not.

An operator such as G is a mapping which associates each functions in
its domain (the set of input functions) with exactly one funchtion in its
range (the set of output functions). For our purposes, the domain of G
will be the space Lge and its range will be some subset of Lze. We will
also assume that G is causal and LZG-stable. Causality means that the

output of G at time t=t, does not depend on future inputs, t>t_.

1 L

L2e-stability means that the norms of the input and output functions of G

are related as follows:

[Gall, £ % [lull, . (18)
for scma k<w, all 4 in L?e’ and all T<w

This implies that all bounded input functions produce bhounded oucput func-
tions. Note that the two noxms on the right and left of this expression

are different because they are defined on different
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function spaces (L?é and LZe)' Their ratio is often used to define yet

another norm for the operator itself, namely

[el| = ITI\;TIH;‘O T, (19)

This is the so~called induced operatoxr norm, induced by norms on Lge
and Lge. It is a common abuse of notation in the functional analysis
literature to use the same symbols, ||+||, for function norms and for
induced operator norms. The distinction is made clear by the arguments
used with the symbol.

Given these preliminaries, the operator G can be viewed as a subset
of the crossproduct space Lge X L;e. This is’shown schematically in
Figure 4, where input functions are represented by points along the x-axis,
and the operator is represented by the graph itself. Within this pictorial
framework, a conic sector ls a cone-ghaped subset of L?e X L;e which

contains many potential operator graphs. In mathematical terms, it is the

collection of all operators, H, which satisfy

<Hu- (C+R)u, Hu—(C—R)u>é‘§ 0, for all T<w and all u € Lze

(20)

Herxe <+,*>_  is the inner product on Lze and C and R are causal,

T

LZE-stable operators. C and R define the boundaries of the conic sector

and are calledthe "cone center" and "cone radius", respectively, for obvious

geometric reasons.
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Using elementary manipulations of (20), it is possible to show that
conic sectors provide a way to approximate G by C. This is done as
follows: Suppose (20) is satisfied by H=G [i.e. G is a membexr of Sector

(C,R)]. Then
<Gg ~(C+R)g, Gg -(C-R)g>&
= <(G‘C)E - Rg, (G-C)g + RE>T
= <(6-C)u, (G-E)u> - <R5,R5>T <0
for all T<» and all u € Lge (21)

Hence,
-C)u < 22
[1te-Cral |, < |[Ral], (22)
for all T<o and all u € L’;‘e
This shows that the output of C approximates the output of G within

approximation error bounded by the norm of the radius operator R.

Note from (22) that sector membership also implies that

|1 6-c)] |<[|ro]] (23)

for any operator D.

Sector-Based Feedback Design

In the last several years, the conic sector concept has been
recognized as an important tool in feedback analysis and design
[safonov,5, Zames,7, Doyle and Stein,8, Lehtomaki,l13]. The basic idea

is that very complicated plant operators G (perhaps nonlinear, infinite
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dimensional, time-varying, etc.) can be reliably approximated by simple
cone centers C (usually linear time-invariant finite dimensional systems),
provided that the approximation exror is properly accounted for in the
design process. This "proper accounting" usually means that a design
based on C must be restricted to maintain stability robustness, and its
performance goals must be relaxed to account for inherent degradations.
These restrictions generally increase as the magnitudes of approximation
arrors grow., The basic relationships between design restrictions and conic

sector approximation errors are summarized below.

Stability Robustness Restricticns -~ We will treat the generic feedback

problem whers G is the loop sransfer operators of a unity feedback loop,

as shown in Figure 5. G is assumed to be any causal, L e~stable member of

2
Conic Sector (C,R) for which the feedback loop is "well-posed" [Willems, 9).
This means that (I+G)“l exists and is causal. We will also assume that

the nominal feedback operator (I+C)-l is lbe-stable. Then the loop's errors

in response to disturbances, d, and reference commands, ¢, are given by
~ ~

A

e =

0

4
(146) " (c-a)

I

n

(THOHG-0)1 T (emd)

17 ema) (24)

i

(I+c)'l[1+(G-C)(I+C)"
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FIGURE 5: Generic Feedback Loop.
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All inverses in this expression exist and are causal by assumption,
Moreover, (I+C)"l is stable by assumption. It then follows that e will
be bounded and the feedback loop will be stable in the sense of (18) if
and only 1f the operatog

[z+(G-C) (z+C) "33

is stable. BAs shown in [Sandell, 10}, this stability requirement is

agsured whenever

[]G-C) (z+Q) || < 1 (25)

or, using (23), whenever

R0 ™| < 2 (26)

or equivalently, whenever
R ez« ™| < 2 (27)

and C—l exists.

Equation (27) shows that stability can be achieved for all plants
in the Conic Sector (C,R) if the feedback system's nominal closed loop
responses, C(I+C)-l, are restricted to be small for all inputs which have
large normalized conic sector approximation exrors, RC-l. A frequency

domain interpretation of this restriction is given shortly.

Performance Degradation =~ Looking beyond mere stability, equation (24)

can also be used to show that sector approximation errors impose inherent

degradations in the performance of feedback systems. In accordance with
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our input-output viewpoint, we will evaluate performance in terms of
the error magnitudes generated for some specified subset of disturbance
and/or command frunctions. That is, let S CI.L?e be a spacified set of
functions (say, all sinewaves with frequency less than wo) and let ¢>0

be the smallest scalarxr such that

lelly = 1 @0 e |1, 2 al|e=al |

for all (c-d)e S and all T<w

(28)

Then g will be taken as a quality measure for the feedback system's
performance,

We will assume that the nominal system has quality measure q=q
with q_  designed to be sufficiently small. The question then is to
determine the actual value of g which applies in the presence of sector
approximation exrors. While it is generally difficult to compute this
value exactly, equation {24) can be readily manipulated to obtain a

usefiul upper bound. In particular, from (24)

e = (T40) H(emd) + (140) THhc (29)
with
be = {[13(6-C) (1+0) ™M1 "Ee1} (c-a)
= ~{[T+(6-0) (1+0) 1171 (6-0) (1+0) 1} (c-a) (30)

Since we have already established conditions for the inverse in the last

expression to be stable, it follows that under those same conditions

el s —= IR0 ™ (e-a [, (31)

T -] RO Y|
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and using (31) in (29) we hava

[ ey ™|
1-] R (z+0) "] |

lellg 2 1) e ||, + HRezse) (e-a) ||, .+ (32)

This equation requires careful interpretation. Note that the first term
on the right hand side is simply the performance of the nominal system,

Hence, for inputs restricted to the specified set, (¢c~d)€ S, we have

~1
a0 e [ |, £ 9y le-ally - (33)

The second term on the right hand side has three elements:

Element (1): Il(I+C)~l’|

This is the (global) norm of the nominal
sensitivity operator and will be denoted by s*
Note that s* can never be less than unity with
strictly proper plants since for these there
exist functions d such that Cg is arbitrarily
small. In well designed systems, however, s¥
approaches unity quite closely.

Element (2): 1-||R(z+C)™}|]

This is a (global) stability margin of the feedback
system and will be dencted by m*, From (26), its value
is guaranteed to be positive 1f the system is stable.
Typical values for well designed systems hover around
0.5.

, -1
Element (3): ||R(T+C) (s—d)[lT
This is the function norm of the sector radius operator,

operating on the nominal feedback errors. For inputs
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raestricted to S, let the radius operator satisfy
lIRgll %% llell, (34)

for all e e(I+C)'l S and all T<%, Then
-1
[IRCz+0) (o) ||, < % gay [le-all, (35)

with » necessarily less than unity from (26)

o%o

Putting these elements together allows us to reduce (32) to the following

gimple form: :

ell, < Sz e, [e-all,, (36)
for all (c-d)€ S and all T<w
This show that sector approximation erzors degrade feedback parformance
in a direct and simple way. The nominal quality measure is simply scaled
upward by the factor l+s*r0/m*. The latter increases with increasing
sector approximation errors on the functlon set §, and also with detex~
iorating global sensitivity and stability margin properties of the nominal

design.

Frequency Domain Interpretationg -- If the cone parameters C and R are

stable linear, time-invariant operators, then the norm inequalities in
(26), (27) and (36) can be readily evaluated with classical frequency~-domain
methods. ‘This is done with the following norm identity for linear time

invariant operators [Descer and vidyasagar, 1l]

le]] = max Tlets)d] (37)
" g=3W
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whera C(s) is the (matrix-valued) Laplace transform of the impulse
rasponse, C(t), of the operator C, and G[+], ¢[-] denote its maximum
and minimum singulax valuan*. Using (37), it follews that (26) and

(27) are satisfied if

GIR(JW) 1< GlT+C(3w)]  for all O<u<e (26)

ox

Tire™t (Jw) 1< oletiw) (zre (i) ™ 271

m glree (30 ] for all Ofuée

Nota that (27)' imposes explicit magnitude constraints on the nominal
frequency response. At all frequenciles where the normalized error,
Rc-l(jw), is large (compared with unity), the inverse loop transfer matrix
c—l(jw).must also be large, and hence, tha loop transfer matxix itself
must be small, Since RG> (3u) typically grows at higher fraquencias, this
constraint imposes explicit limitations on achievable crossover frequencies
and on closed loop bandwidths,

Note that conic sectoy approximation exroxrs play identical roles in

the above sense to any other modelling errors already recognized in the

design process.

The performance degradation equation (36) can be similarly interpreted.
We gat

TWe will use the same symbol (C) to denote both the impulse response and
its transfer functions. The differentiation will be made clear by arguments.
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g = max GLTHCUW) ™Y

0guwseo
1 (38)
B oan, gITRetw]
mt = 1 = max GLRC - (Jw)1/g LT+ (Ju) ] (39)
W

and latting S be the set of all sine wavas with fraquency less than

wo,
4o = Min 'cm["fi"c(jw' ¥ (40)
osusw, =
r = min ORGW] . (41)
03w,

When substituted into (36), these equations show that performance
degradation due to sector approximation erzors can be minimized by
designing good nominal sensitivity and stability margin properties over
the entire frequency range (small s*, large m*) and by assuming small

sector approximation errors over w<w, (small ro) .

0
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4. CONIC SECTORS FOR THE HYBRID OPERATOR

Motivated by the above discussion of conic sector concepts in feedback
design, this section proceeds to derive two expressions for radii of conic
sector approximations of the hybrid operator developed in Section 2. The
first expression is based on time-domain analysis and yields a conservative
non-dynamic radius. The second expression is based on f£requency~domain
analysis and yields a sharperdynamic radius operator. Some examples using

the second radius axe given in Section 5.

A Non-Dynamic Radiusg

We found in Section 2 that the hybrid operaﬁor is a linear, time-
varuing convolution operator with impulse response matrix G(t,8) defined
by equation (6). Our objective now is to approximate this operator by a
linear time~invariant convolution with impulse response C(t=6). The ap-
proximation error should be such that it can be bounded by a sector radius
operator as in equation (22).

To achieve the latter objective, consider the convolution operator

for the error, i.e.

¢ & (G-O
with
t
e(t) = f [G(t,0)-C(t-08)]u(0)abd
0
t
= fAG(t,G}u(e)dS ' t>0 (42)

0
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This expression can be bounded as follows:

T

lle-¢||® = su [ eT(t)e(tJdt]
v, |Tul | f

t t

by .
= sup [fdt fde fcn uT(e)AGT<t,e>AG(t,A)umJ
N 0 0

0

T t t
< sup [f at fae faA [u” (8)|51AG (&, 8) 1T [AG (£, A 1 |u(A) |
*t ‘0 p) 0 143)

Now let m(t) be a scalar-valued function such that

ol4G(t,0)] & m(t-6) vt, 0 (44)

The right hand side nf (43) is then bounded by

t t t
su
dt de dA - -
Trlltﬁl;x [of { f w(B)m(t-6)m(t x)mm]

0
2 (45)
= |[M]]

Here M is a scalar convolution operator defined by

<
L}
=

tE

with
t
v(it) = f m(t-0)w(6)de , t>0 . (46)
0
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Using (37), it now follows that a bound on the error operator (42) can

be expressed in terms of the Laplace transform, m(s), cf (46). That is,

|16-C|| < max m(s) 2, (47)

w s=4W
Moreover, since m(t)> O for all t, it can be shown that the maximum

in (47) occurs at w=0 and hence

-]

= fm(mae (48)
5=0 5

r = m(s)

In light of (47), the operator

v = Ru

~

defined by

v(t) = ru(t), t>0 (49)

forms a vallid radius for the sector approximation.

Note however, that the calculation of this radius if formidable.
It requires the following steps:

1) 1Impulse response evaluation
AG(t,8) = G(t,8) - C(t-0)

2) Singular values calculations

SIAG (£,0)] vt,
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3) Function maximization
JlAG(t,0) 1< m(t-0) vt, 0

4) Integration

o

r = /m(t)dt

0

The most difficult of these steps is 3) which requires that we £ind an
integrable buunding function for O[AG] over the entire t,6-plane. This
step is made substantially easier by noting that the error operator is
periodic along the (t+8)-axis whenever the digital convolution coefficients
r . - +

sz in equation (6) satisfy Dkz Dk-k vk,%. We then need to maximize

only over a single period for each value of the time index t-0, as

illustrated in Figure 6.

A Dynamic Radius

In addition to its computational difficulties, the radius operator
(49) suffers from conservatism. Note that its impulse respcnse is a delta
function, and hence, its Laplace transform is constant. It therefore
assigns the same conic sectors error levels to low frequency inputs as it
does to high frequency ones. This is. inconsistent with experience. We
know that a digital controller can approximate signals at w<< %’ with
much greater fidelity than it can approximate signals at 2.%-. This

emperical fact is not captured by (49).
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repeats on each
similarly shaded

square
n(A) = max AG(t,8)
OzpsA £=(uHA) /2
6= (u-1) /2

FIGURE 6: Calculation of m(t).
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An alternate radius which captures this frequency dependance has
been developed by means of the following classical arguments. We start
with the fact that the hybrid operator can be represented in the classical

sample data, block diagram form shown in Figure 7. [Franklin and Powell, 12].

<

Prefilter Sampler Digital Hold
Computer

analog signals
MWW digital sequences

FIGURE 7: The Hybrid Compensator's Sample Data
Block Diagram.

While we cannot find a Laplace or Fourier transform for this operator,

it is possible to find the transforms of the output functions produced by

particular inputs. Namely

vijw) = %H(jw)n(ejm)[ ) F(jm-jwsk)u(jw-jwsk)] (50)

k==co

jwT, | o .
where D(eJ ) is the z-transform of the digital convolution sequence

20
T

evaluated at z=erT, and where the infinite sum with ws =

represents the effect of sampling. The analog signal before the sampler has the
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Fourier transform F(jw)u(jw). After the sampler, the signal ix
mathematically represented by a sequence of impulses whose transform is
the infinite sum. For notational convenience, we will represent this

sum simply by ( 2 Fkuk)’ where F, and u_ are F(jw-jwsk) and u(jw-jwsk),
k

k k
respectively.
Using (50) in Parseval's theorem and assuming that all functions are

in L;,‘we can now write expressions for the hybrid operator's errors:

-]
|](6-Cru||? = &= viiw) - climuliw) | dw
~ 2T
00
~ 2
1 1 |
b HD ( }éb“kuk) - Cul dw
1 £ |2
= -5-1? E Gkuk dw (51)
oo
with
1
= HDF k#0
6 =] °*
g 1 (52)
< HDF -C k=0

Using Schwartz's inequality, (51) can be bounded from above.

H(G—C>3H2 <= :{:(E'G}c’z)(g Iuk|2>dw : (53)



Now adding and subtracting I%-HDFOI in the first sum of (53) and

interchanging the order of integratiocn and summation converts the hound

to
N
1 1 2))2 2 1 2 11 2 2
e E f{,—r-é- {1 “|o| (E'Fkl )+ | wor = -2 1oPy | “ (g [ “aw (54)
00

In each of these integrals we now perform a change of variables,
w=w' + msz. Note that this is a frequency shift by integral numbers

of sample fregquencies, g Hence, the periodic functions

ID]2 and ( 2 |Fk‘2) remain unchanged. We also re-interchange the order

of summation and integration. This gives

”(G-C)uH < 2,n_ f(% l';JC'- H£|2)|D|2 (EIF}J2> Iulzdw'
H,DF ~C |2)|ulzéw'

M!}—'
3

A
L= | |l>—'

8

- o ( | 2w oo, | sl (55)

8

Note that the right hand side of (55) has the form -;'—W- f|RI2|u|2dm,

which according to Parseval's theorem, is equal to the norm ||Rul|
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Comparing this to our sector definition in equation (22) (restricted
to L; functions) then shows that (55) represents a valid sector radius
for our hybrid operator, The center of this sectors can be arbitrary.
However, it is evident from (55) that the choice C* with Fourier

transform
cH(ju) = = K(3W)D (3w F(3w) (56)
generates the smallest radius, R¥*, with Fourier transform
. 2 1 2 2 2 1 21.12 2
[R* G [ %= T2 mo | o[ %0 ] Ire |- 0 1% 1y [%]p] *[r, |
& k 2
1 . 2 Jwt, 2 2
=7 1 l-w-',- [ Guriu_0) | %o | 7| F Gurin k) | (57)
(A1 &

The sector defined by these expressions is explored by a simple example

in the next section.
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5. AN EXAMPLE

The second sector developed in Section 4 is illustrated hexe with
a classical lead~lag compensator example. While this is a very simple
example, it captures the essential isgsues of sector-based approximations

and serves to lllustrate thelr potential utility.

The Analog System

We start with the analog compensator

10(s+.1)

gtl (58)

Ga(s) =

We show how to implement this compensator using a digital computer,
and theg how to compute the center and radius of its Sector {(C,R).

The digital computer is embedded in the hybrid compensator as in
Flgure 7. We arbitrarily choose a sample interxval of T = ,6283 seconds,
which places the sampling frequency at 27/T = 10 radians per second,
which is ten times the frequency of the pole location. The z-transform .
D(z) (used for the digital computer) is computed by the classical pole-
zero mapping technique [12]. The pole at s=-1 maps to a pole at
z = eST = ,5335, and the zero at s=-.l maps to a zero and z=e5T = ,9391.

The constant is chosen so that D(z) at z=] is equal to Ga(s) at s=0, The

result is

2=-,9391

D(z) = 7,660
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The prefiter F(s) is chosen to be a low pass filter with a single pole

at s==7/T, The xresult is

Pis) = =25 . (60)

The hold device is chosen to be a zero-order-hold, which has the
Fourier transform

l—e—jwr
JWT

1

Two Cone Centers

According to equation (56), the cone center C*(jw) is the given by

-juwt Jwt
ot [1me e’ -,9391 5
c* (jw) ["‘"“"“jm ][7'66 ejw'f_,ssas] [jw+5 ] !

Note that this choice of cone center has the special property of being

the "straight through path," formed hy replacing the sampler in Figure 7

with the gain term %- as shown in FPigure 8.

A] -

_.,to(e oy Ll H (o) ),

_I._.‘”"“*’ F (juw) e

FIGURE 8: The Straight Through Path.
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Unfortunately, this choice also has the undesirable property of being
infinite dimensional and difficult to work with in state space realizations.
For this reason, we will also examine an alternate center which approximates

(62) by a low order state space model. This alternate choica is

; 2 10 (+, 1) 5
Cldw) = [jum»z] [ jw+3._] [jun-s‘] (63)

and is obtained by approximating the zero order hold with a first order
Jwt

filter and replacing D(e” ') with Ga(jw).

Cone Radii

Following our previous derivation, the cone radius corresponding to
center ¢C*%(s) is given by equation (57). The zradius for C(s), on the
other hand, requires a slight modification of this equation to account
for difference between ¢ and C*. The appropriate modification is obtained

from (55) and has the form
. 2 1 212 2
sl = 11 1w ol s+ | (50

Both equations (57) and (64) can be evaluated numerically by computing
the infinite sums over k and 2. It can be shown that these sums converge
for all functions H, F, and C-C* which roll off as least as fast as 1l/w
at high frequencies. 1In fact, if the roll-off is l/w exactly, then the
convergence properties of each sum are proportional to

r
3

o=
=

=1,644934 (65)

dr~18

PS8 Lad

2
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We have empirically determined that these infinite sums can be
terminated at plus and minus 20 terms. Thelr genexral convergence pro-

perties, however, still need to be better understood.

Graphical Raesults

The nat results of all these calculations are best viewed as
conventional Bode plots of the various functions involved. We start
with Figures 9a and 9b, which show gain and phase charactexistics of
the zexo mxder hold, *% H, and its first order approximation. Note
that the approximation is good up to about 2.4 rps, or roughly ws/4.

Figures 10a and b show Bode plots of the analog lsad compensator,
Ga(s) and the two centers, C(s) and C*(s). Note that these centexs have
more phase lag than the analog compensator, due to the extra lag added by
the prefilter and hol#, However, C and C* again track closely up to
about 2.5 x/s.

The cocrresponding radii were computed according to equations (57)
and (64). One of the reguired infinite sums is shown in Figure 1ll. We
see that above 27m/T = 10 radians the infinite sum is approximately unity.
The radii themselves are plotted in Figure 12. We see that they agree
clogely for high frequencies (w>l rad/sec) but differ substantially at
lower frequencies. This difference is caused by the ]C£~c£]2 terms in
(64). Note that the sum of these terms alias high frequency differences

between C* and C down to lower frequencies. In particular, the differences
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at, wﬁws = 10 r/s appears as a DC level in the radius corresponding to
C(s). This illustrates that any design advantages offered by a simple
cone centers must be paid for with large radii and with the assoclated

more severe stability robustness restrictions and/or performance degra-

dations discussed in Secgtion 3.

Some Basic Tradeoffs

Whether or not a given sector approximation is useful for feedback
design depends on the relative magnitude of its radius when compared
with the corresponding center. We have already observed this relation-
ship in Section 3. In particular, if a loop transfer operator G is any
member of Sector (C,R), then our stability robustness condition (26)

required that

| |R(J:+C)'l

(e=a) | [, <|e-a] ], (66)
for all inputs (S-§)€ L?e and all T<w

Moreover, to get good performance we required that (:H-C)_l be small

for some specified subset of inputs, i.e.
-1
- < -
[ (x40 " e ||, 2 a Vemal] (67)
for (c~d)€ S and all T<w
If q, <<1l, it follows that

(140 " e-a) = CHe-a) (68)
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and substituting this into (66) we gat

-1
R ¢ e |y, <] le=al ]y, (69)
for all S"'§ € S, all T<ew,

This last expression shows that the sector approximation is useful

for feedback design only if its normalized exror magnitudes are less

than unity for the signal set S. This turns out to be specific
statzment of a very basic truth in feedback control. We cannot close
feedback loops with substantial gain unless the (normalized) loop
uncertainties are less than one.

In the example above, of course, we have computed radii and centers

not for a complete loop transfer operator but for the hybrid lead com~
pensator alone. A complete loop transfer operator using this compensator

will be given by

It

Gloop GP

[C+(G~C)1P (70)

il

for some plant P and some compensator center C. The normalized loop

transfer radius condition (69) then becomes

-1 -1
lIRloopcloop(S_§)||T = | |RP(CP) (S-§)||T

[IRE (o= |1, <[ le-all, (71)

for all (c-d)e S, T<w



=B

This shows that a sector radius for the compensator alone is also
useful for feedback design only if its normalized magnitude is less
than unity for the input set S.

As in Section 3, Condition (71) can be interpreted in the frequency
domain via
g

GIR(JW) C(jw) ~~1<L (71!

for some frequency range wﬁpo.

The Sample Rate Tradeoff -~ Condition (71)' was evaluated for our

second sector approximation of the lead compensator, as defined by

(63) and (64). 'The evaluations were made with several sampling times
ranging from 1=0,628 sec (ms=lo x/s) to T=0,0628 sec (100 r/s). Results
are plotted in Figure 13. They show that Condition (71)' s not
satisfied at any frequency for our baseline value T=0.628. However,

it is satisfled over increasingly larger frequency ranges as T decreases:

T Sampling Rate Frequency Range
.628 sec 10 x/sec none
.314 20 0.03 - 5, r/sec
.125 50 0 - 13.
.0628 100 0 - 30.

This result illustrates the dramatic effect that sample rate selection
has on digital compensator design. Our hybrid implementation of Ga(s),

as modelled by Sector (C,R), does not yield a useful compensator unless

P S e L P P -

o g
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T is less than approximately 0.2 seconds., We note that this conclusion
is quite consistent with clagsical "rule of thumb" fox selecting sample
rates, An old rxule due to Stein, for example, is

",.. 5 to 10 samples per radian of tne highest

significant frequency in the control loop..."
In our example, the highest significant frequency is perhaps 1.0 x/s
(where the centers C & C* stop developing lead). The resulting rule-
of-thumb sample time would therefore be 0.1-0.2 sec.

.

The Discretization Tradeoff -~ In addition to sample time, a second major

design parameter in digital implementation is the discretization technique
used to convert qa(s) to D(z). In our results so far, we have used an
established pole—zexd matching technique as our baseline. Figure 14
compares normalized radii obtained with this technique against the following
alternates, all at T=0.628[12]:
1) +the "forward rectangular rule" (replace s in
G, (s) by (z-1)/1)

2) the "backward rectangular rule" (replace s in
Ga(s) by f(=-1)/zT)

3) the "Tustin rule" with pre-warping about w,

[replace s by (wl/tan wlT/2)(z—l)/(z+l)]. '
The differences between these techniques are seen to be small. None produce

a useful sector approximation for the compensator at this sampling time.
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Wa complete our discussion of the lead compensator axample at this
peint, It is evident that the sxample and its two simple tradeoffs
akove only scratch the surface of the potential utility and range of
application which conlc sector concepts offers for digitally implemented
control system design., It is hoped that these results serve to

motivate the needed additional reseaxch and design studies.
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6. CONCLUSION

This report has presented research results obtained undexr NASA
Grant No, NAGl~2: "Hybrid Oparator Models for Digitally-Implemented
Contxol Systems." The results establish a new method of analysis for
digitally~implemented (hybrid) contrxol systems based on conie sector
concepts from functional analysis. Conic sectors are used to ap-
proximate the true complex time-varying nature of a hybrid compensators
with a simple time-invariant analog system, The erxors of this ap-
proximation are rigorously accounted for in the analysis, both in terms
of their effect on stability robustness and on performance,

Two specific conic gector approximation were developed for general
hybrid systems. One sectoxr produces a conservative non-dynamic radius,
while the other is less conservative and frequency dependent. The latter
sactor has so far been derived only for stable scalar systems. It was
illustrated with a simple lead compensator example. This example confirms
the cemputational feasibility of conic sector analysis and also sexves
to illustrate its potential utility and range of application.

The conic sector concept promises to unify both analog and digital
control design techniques under the more general common umbralla of
feedback design for systems with approximation errors. Much work remains
howevexr to achieve this end. Tighter, less conservative conic sector
approximations for general multi-input multi-output hybrid systems remaln
to be discovered, multi-rate systems remain to be analyzed, and the entire
area of efficient numerical algorithms for conic sector analysis remain to

be explored.
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