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1. INTRODUCTION AND SUMMARY

Background

Over the past several years, MIT's Laboratory for information and

Decision Systems (LIDS) has been conductin;, rosearch for NASA on the

properties of multivariable digital control. systems [17. These types

of systems are becoming increasLigly important as small, powerful, flight-
.

qualified digital computers take over the burden of control law implemen-

tation in various NASA vehicles and other control system applications.

Examples include the shuttle orbiter, the HIMAT and F-BC DFB IR aircraft,

satellites and space probes such as Viking and Galileo, various proposed

large space systems, and many more.

The overall goal of the research program has been to evolve improved

design methods for multivariable sample-data control laws. Research

effort was concentrated initially on the primary available synthesis tool--

namely the sample-data (discrete-time) Linear-Quadratic (LQ) regulator

problem [Athans, 21. Various properties of this problem formulation were

studied, and key features of its solution were investigated. In the latter

category, the basic "robustness properties" (e.g. multivariable gain

margins and phase margins) of sample-data LQ solutions received particular

emphasis.

Two major conclusions emerged from these initial studies. First, the

sample-data LQ problem, like other sample-data synthesis formulations

suffers from the over idealized time sequence representation of the control

process. The process is O.,-,scribed only "at the sampling instant," with

no information about intersample behavior or intersample control requirements
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other than what can be predicted from values of states and controls at

the sampling times [Levis, 31. The need for devices such as prefilters

(which. appear in virtually every practical digital control implementation)

and the potential benefits of higher-order hold devices cannot be addressed

within this pure sample-data framework.

The second major finding concerns the robustness properties of

sample-data LQ control systems. These turn out to be fundamentally inferior

to their continuous-tune counterparts. Recall that the latter enjoy impres-

sive uncertainty tolerances including -Gdb to * «odb gain margin or +60deg

phase margin in all combinations of control channels CSafonov and Athans, 41.

These margins are guaranteed for every continuous-time LQ design, inde-

pendent of specific plant or cost function parameter values. In the sample-

data case, the corresponding uncertainty margins are generally less than

the ranges above and are :functions of specific ,plant and cost function values.

Hence, no a-priori robustness guarantees can be stated for sample-data LQ

control laws CSafonov, 51.

Motivated by these two apparent limitations of the existing LQ

synthesis methodology, the research effort was re-directed toward more

fundamental issues of digitally implemented control systems. The first task

of the redirected effort was to find a mathematical representation which

properly captures both the continuous-tl',me (analog) and the discrete-time

(digital) processes which occur simultaneously in a digital control, system.

Such a representation was developed and is called the "hybrid operator model"

of the control process. This model provides an analog inputroutput yigw•og the
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control process which explicitly includes sampling operations, digital

calculations, hold operations, and continuous plant evolutions. The

structure of this operator is summarized briefly in Section 2 below and

in more detail in a Master's thesis by A. Xostovetzky [f].

An immediate application of the hybrid operator is to explain the

common use of prefilters in practical digital control systems. Simple norm

calculations in [61 show that the hybrid operator has unbounded gain (in

an appropriate function space sense) as the sampling process tends toward

the ideal impulsive sampling normally assumed in sample-data theory.

Physically, this means that it praAdes arbitrarily large amplification

for certain inputs (e.g. noise). Non-impulsive sampling, as obtained with

pre-filters, bounds this amplification.

The second task of the redirected research made use of the hybrid

operator model to answer the following very basic approximation question:

How well can digitally-implemented control laws mimic analog ones? More

specifically, if samplers, holds and digital algorithms are all selected

to best approximate a given linear, tune-invariant analog system, how good

can the approximation be? The answer to this question is elegantly simple;

The digitally-implemented system can exactly duplicate the impulse response

matrix, G(t-8), of the analog system at all points in the t,6-plane

except on a strip of width T (sample time) along the main diagonal (t=e).

Inside this strip, the hybrid system's impulse response must be zero on

various triangular segments. Accordingly, this region of approximation

has been named the "triangle strip." Details of the optimal sampling, hold,



r

-5-	 ORIGINAL PAGE iS
OF POOR QUALITY

and digital function for this approximation result are again summarized

in Section 2 and derived in detail in 161. its significance is that it

provides a simple and clear picture of the basic limitations inherent in

digitally-implemented controls. Such controls are fundamentally inferior

to their analog counterparts because they cannot utilize all the input

data in the triangle strip. As shown below, this limits bandwidth,

restricts performance, and precludes robustness guarantees such as those

enjoyed by the continuous-time LQ regulator.

New Research Results

Motivated by the above characterization of hybrid system limitations,

the research effort was continued to eXplore the qualitative and quantitative

ways in which these limitations manifest themselves in hybrid system design.

The results of this new research are reported here.

The new research examines hybrid operator models from the viewpoint

of "conic sectors theory" [Zanies, 7, and Safonov, 51. This viewpoint

encompasses the approximation results above and provide an effective way to

express their implied limitations in terms of conventional analog control

system concepts (e.g. bandwidths, loop gains, gain and phase margins, etc.).

The basic idea is to approximate hybrid operators (which may be viewed as

periodically time-varying analog systems) by time-invariant linear analog

models. These models form the "centers" of conic sectors, and their modelling
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errors determine the sector "radii". The size of sector radii, in turn,

determine bandwidth limitations, stability robustness reductions, and

performance reductions, in accordance with existing sector-based control

system design technic,,ues [Doyle and Stein, 6, Lehtomaki, 131.

The relevant conic ,sector concepts and their use in analog system

design are briefly developed in Section 3. They are then applied in

Section 4 to hybrid operators. Two expressions are derived which define

sectors radii as functions of the true hybrid operator and its time-

invariant analog approximations. These expression show explicit depen-

dences on the selected sampling rate, the selected sample- and hold filters,

and the selected digital. algorithm. These parameters may be chosen to

minimize the radii (in an appropriate function space sense) and, thus, to

minimize the bandwidth, robustness and performance limitations which the

hybrid operator imposes.

The conic sector expressions from Section a are illustrated with a

small design example in Section 5. While this example are limited in

scope it serve to illustrate the use of sector-based hybrid system ap-

proximations and point the way to a general control system design philosophy

which incorporates digital implementations under a more general common

umbrella of feedback design for systems with approximation errors.
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2. HYBRID OFEMTOR MODELS

We will consider digitally-implemented control systems which can

be represented by the block diagram of Figure 1.	 The three main func-

tions associated with the controller block in this diagram are.

1) The sampling operation which converts M-dimensional
analog inputs u(t)  on the interval (R-1)T<t<kTinto
N-dimensional discrete samples ^ Q , SZ=112,...,

2) the digital algorithm which converts the N-dimensional
sequences g. into L-dimensional sequences nk,

k=0,1,...,	 and

3) the hold operation which converts the L-dimensional
sequences 

q  
into R-dimensional analog functions v(t)

on the interval	 kT<t<(k*1)T.

The system's sample time will be designated by the symbol T.	 These

three functions will be assumed to have the forms

1ZT	 ZT

f( z_ 1)	
f^(6)u(e)de	 fo (64, ,r) u (e)de

(Q-1)T

(')

k
nk =	 'l DkP&

Q=
(2)

V(t) = hk (t)nk = ho(t-kT)nk (3)

The first of these equations is a simple analog convolution operation

with weighting function (impulse response) f o (X). This could be the

weighting function of an analog prefilter, an approximate ` impulsive

sample, or various other vector valued input averaging operations.

Some examples are given in (6]. The second equation is a standard

M
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digital. convolution with coefficients Dk^, The third is a generalized

output hold operation with weighting function ho (X). This could be u

simple constant to represent the common "zero-order hold," but in general

it will be selected to achieve broade,, goals. Some examples are again

given in (6I Note that the controller is completely characterized ty

the two matrix-valued functions 40
(X), ho M and by the coefficient

matrices Dk,.

HrXbrid operator Representation

Given the above description oe a digitally-Implemented controller,

it is straight-forward ([6I, Section 2) to write its input-output

operator representation, G, in the terms of an impulse response matrix,

G(t,6) . That is,

v	 G u	 (4)N

where v and u denote functions on L0,«o) related by the convolution
N	 N

t
v(t)	

f 
G(t,0)u(6)d6
	

(S)

O
with

k
G (t, e) = ho (t-kT) I Dktfo (®-ZT)	 (S)

kul

Here k is understood to be the largest integer l,es:a than or equal to

t/T. We will refer to this input-output description of the controller as

"the hybrid operator model" or simply as the "hybrid operator". Note that

it is a time-varying linear dynamic system characterized by h o , fo, and

DkV
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optimal Xbrid Approximation

Consider now the problem of finding a hybrid operator model

G(ho ,fa,Dm,) to approximate a continuous-time linear dynamic control

law with impulse response matrix

G(t,e) - ceA(t-e)Be	 (' )

where A;B, and C are given system matrices.

Let the approximation criterion be to minimize

T

J w E lim	 I I v (t) - V (t) 11 2dt 	 (e)
VW T 

^

where v(t) and v(t) are the outputs of the hybrid and pure analog

controllers, respectively, when excited by the same white noise input.

Then it is shown in I6), Section 4, that the optimal approximating hybrid

controller has the following sampling function:

fo W = e-AXB	
(g)

It's corresponding hold function is

ho W - CeA 1	 (10)

and the digital algorithm is

11kz 23 

eAT (k-R)	 (ll)

Moreover, these parameters cause (6) to duplicate (7) exactly every-

where except on the "triangle strip" of Figure 2. Note that the sampling
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FIGURE 2: Triangle Strip,
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and hold functions (9) .. (10) of this optimal hybrid approximation are

themselves n-th order dynamic systems, where n is the dimension ct" A.

Hence, the overall hybrid controller can be visualized as shown in

Figure 3.

As indicated earlier, the significance of the above result is not

the optimal structure in Figure 3 itself (after all, the sampling and hold

functions are quite complex, each literally duplicating the analog system),

but rather the fact that the inherent hybrid system limitations are so

simply and clearly displayed by the triangle strip in Figure 2. It .follows

from this figure that the minimum approximation error is given by the

error operator

e a ( C-U) u	 (12)

where C--G has the impulse response representation

t
e(t) _	 U(t-e)u(e)de	 (13)

T

Qualitatively therefore, the hybrid system suffers an inherent time

varying "data lapse" with a maximum duration of T seconds (average T/`),

and with data weighting proportional to the desired impulse response, G.

Hence, both the nominal, function G and the sample time T contribute to

the significance of the error. Small errors are assured if G(a) is small

over the whole interval 0<T<T and u(8) is relatively "smoot.h. These

observations are given further interpretation below.
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3. CONIC SECTOR CONCEPTS

Tile key feature of the hybrid operatw model G is that it represents

an analog input-output view of digitAlly-implemented controllers. That is,

the operator maps continuous- time input functions, u (i.e. u(t), 0,t<00)h

Into continuous-time output functions, v U.e. v(t), Q t ). All Inter-

sample behavior such a4 limit cycling and aliasing is thus included in the

representation. They input-output viewpoint also ma ,̂,js it possible to

utilize certain function space notions of approximation -- in particular,

the concept of conic sectors.

Conic sectors [5 ► 7]

in order to discuss conic sectors, it is necessary to review a

number of basic concepts from functional analysis. The first of these is

the function space, L^.	 This is the collection of all n-dimensional

vector-valued functions which are square integrable on [ 0 1 00). If the

function x belongs to L", then its norm is defined by
04

on

fx"(t).%(t)d	 <	 (14)
`4

t]a
Moreover, the inner pxoduot for any two functions x l ► xZ in Lz can be

defined by	 co

	

<x ,x > f xTWx2 (t)dt ► 	 (l5)

It follows that

c^:^ ► .^^1°2 ,	 (1G)

41
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The chief limitation of the space L2 fox control system -,ialysis

is that it contains no unstable Functions (i.e. functions with 11xII ).N

This can be remedied by introducing the so-called extended space, Lie.
..

This space is the collection of all functions which are square integrable

on all finite time intervals, i.e. it contains all functions: x which

satisfy

Q	 T T	 1/2

I IxI I T 
M ( 

x (t)x(t)dt	 < 00	 for all T	 (1.7)

Functions such as x(t)-et are included in L 
1 e 

r for example, while func-

Lions such as x(t)	 tan t are not.

An operator such as G is a mapping which associates each functions in

its domain (the set of input functions) with exactly one function in its

range (the set of output functions). For our purposes, the domain of G

will be the space L2e and its range will. be some subset of L2e . We will

also assume that G is causal and L 2e-stable. Causality means that the

output of G at time t=tl does not depend on future inputs, t>tl.

L2e-stability means that the norms of the input and output functions of G

are related as follows:

	

I I Gul I T < k 1 Iui I T	 (lg)

for some k<m, all u in L 2e r and all T<-

This implies that all bounded input functions produce bounded output func-

tions. Note that the two norms on the right and left of this expression

are different because they are defined on different
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function spaces (L2^ and LZe) 	 Their ratio is often used to define yet

another norm for the operator itself, namely

II G II ^	 su	
(lcullx

11U N#0 ^u

This is the so-called induced operator norm, induced by norms on LZe

and LZe . It is a common abuse of notation in the functional analysis

literature to use the same symbols, 11.11, for function norms and for

induced operator norms. The distinction is made clear by the arguments

used with the symbol.

Given these preliminaries, the operator G can be viewed as a subset
F

of the crossproduct space L2e x LZe . This is shown schematically in
i

Figure 4, where; input functions are'represented by points along the x-axis,
k

and the operator is represented by the graph itself. Within this pictorial

framework, a conic sector is a cone-shaped subset of L 2e x L2e which

contains many potential operator graphs. In mathematical terms,, it is the

collection of all operators, H, which satisfy

< Hu- (C+R) u, Hu- (C-R) u> < 0 , for all T<oo and all u E L
2eN	 N	 VV	 N T	 NY	 (`0)

Here < • , • >T is the inner product on L2 e and C and R are causal,

L 2e-stable operators. C and R define the boundaries of the conic sector

and are calledthe "cone center" and "cone radius", respectively, for obvious

geometric reasons.

(19)
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FIGURE 4: Conic Sector (C,R)
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Using elementary manipulations of (20), it is possible to show that

conic sectors provide a way to approximate G by C. This is done as

follows: Suppose (20) is satisfied by H-G [i.e. G is a member of Sector

(C,R)]. Then

<Gu - (C+R) u, Gu - (C-R) u>
N	 N	 N	 N

= <(G-C)u - Rue (G-C)u + Ru>
n.	 N	 N	 N 111

= <(G-C) u, (G-E) u> - <Ru, Ru> < 0
N	 N T	 N N 12 —

for all T<oo and all u E L2e	 (21)
N

Hence,

(G-C)ul I T _ I IRul I 	 (22)

for all T<oo and all u 6 Lm
er.

This shows that the output of C approximates the output of G within

approximation error bounded by the norm of the radius operator R.

Note from (22) that sector membership also implies that

I I (G-C)Dl I<l IRDI
	

(23)

for any operator D.

Sector-Based Feedback Design

In the last several years, the conic sector concept has been

recognized as an important tool in feedback analysis and design

(Safonov,5, Zames,7, Doyle and Stein,8, Lehtomaki,13]. The basic idea

is that very complicated plant operators G (perhaps nonlinear, infinite
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dimensional., time-varying, etc.) can be reliably approximated by simple

cone centers C (usually linear time-invariant finite dimensional systems),

provided that the approximation error is properly accounted for in the

design process. This "proper accounting" usually weans that a design

based on C must be restricted to maintain stability robustness, and its

performance goals must be relaxed to account for inherent degradations.

These restrictions generally increase as the magnitudes of approximation

errors grow. The basic relationships between design restrictions and conic

sector approximation errors are summarized below.

Stability Robustness Restrictions -- We will treat the generic feedback

problem where G is the loop ;tire%►3fev} cat^is cast.- a unity fN%cbak loop,

as shown in Figure S. G is assumed to be any causal, L 2e-stable member of

Conic sector (C, P.) for which the feedback loop is "well-posed" [Willems, 97,

This means that (1+G)
-1
 exists and is causal.. We will also assume that

the nominal feedback operator (I+C)-1 is 2e-^stable. 	 Then the Loop's errors

in response to disturbances, d, and reference commands, c, are given by
N	 N

y
N N N

(x+G)-1( C-d)

(I+C+ (G-C) ] -1(c-d)
N N

(1+C)-1[1+(G-C) (I+C)-17-1(c-d)
	

(24)M N
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ii

All inverses in this expression exist and are causal by assumption.

Moreover, (I+C) -1 is stable by assumption. It then follows that e will

be bounded and the feedback loop will be stable in the sense of (19) if

and only if the operator

[1+(G-C) (I+C)^1]-^

is stable. As shown in (Sandell, 103, this stability requ^,xement is

assured whenever

I I (G-C) (I+C)-lI ( < 1	 (25)

or, using (23), whenever

I I R (I+C) -1 1 1 < 1	 (26)

or equivalently, whenever

I I RC-1 tC (TIC) -13 ( I < 1	 (27)

and C-1 exists.

Equation (27) shows that stability can be achieved for all plants

in the Conic Sector (CM if the feedback system's nominal closed loop

responses, C(I+C) -1 , are restricted to be small for all inputs which have

large normalized conic sector approximation errors, RC-1. A frequency

domain interpretation of this restriction is given shortly.

Performance Degradation -- Looking beyond mere stability, equation (24)

can also be used to show that sector approximation errors impose inherent

degradations in the performance of feedback systems. In accordance with
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our input-output viewpoint, we will evaluate performance in terms of

the error magnitudes generated for some specified subset of disturbance

and/or command functions. That is, let S C L 	 be a specified set of

functions (say, all sinewaves with frequency less than wo ) and let qc

be the smallest scalar such that

I IQI I T - 11( I+G )
-1(C-a )1 I T < q l Ic-d1 IT

(28)
for all (c-d) e S and all Too

M n/

Then q will be taken as a quality measure for the feedback system's

performance.

We will assi,te that the nominal system has quality measure q =q ,
0

with q  designed to be sufficiently small,. The question then is to

determine the actual value of q which applies In the presence of sector

approximation errors. While it is generally difficult to compute this

value exactly, equation t24) can be readily manipulated to obtain a

usegul upper bound. In particular, from (24)

e ;& (I+C)-1(c-d) + (I+C)-1Ac
	

(29)
M	 N' N	 N N

with

Ac = { [h} (G-C) (I+C) -1^ -1_I} (
c-d)

= -{ [I+(G-C) (I+C) -^ ] -1 (G-C) (I+C) -1 } (c-d)	 (30)
N N

Since we have already established conditions for the inverse in the last

expression to be stable, it follows that under those same conditions

I l%	
1	 11R(I+C)-1(c-d) I f	 (31)

MN T^ 1
-IIR(x+C)

-111 	 N N	 T



t	 .

and using (31) in (29) we havA

I (81 I T < I I (x+c)"1(c-a) I I T
 + 11( c)	 11
 
	

I IR(X*C)-'(N-a)I IT . (22)
^^II R (x^c)	 I1

This equation requires careful interpretation. Mote that the first term

on the right hand side is simply the performance of the nominal system.

Hence, for inputs restricted to the specified set, (c-d)e S, we haveN N

I I ( +C) ( M-a)

	

	 (33)1 1T < qp 11c-a1 I T .

The second term on the right hand side has three elements:

Element W: I I ( x+C
) -1 ) I

This is the (global.) norm of the nominal

sensitivity operator and will be denoted by s*

Note that s* can never be less than unity with

strictly proper plants since for these there

exist functions d such that Cd is arbitrarily
N

small. xn well designed systems, however, s*

approaches unity quite closely.

Element (2). l- IIR (x+C)"lI I

This is a (global,) stability margin of the feedback

system and will be denoted by m*. From (26), its value

is guaranteed to be positive if the system is stable.

Typical. values for well designed systems hover around

0.5.

Element (3): I IR (I+C) - (c-d) I I rkN N

This is the function norm of the sector radius operator,

operating on the nominal feedback errors. For inputs
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restricted to S,, let the radius operator satisfy

IIRe jI	 rp II II T 	(3a)

for all a e (I+C) ' S and all TOO . "Shen
,.

I IR(z+C)-
1
( d) l l T < r4gO 11c-dj	 (^	 (35)

with r 	 necessarily lose than unity from (26)

Putting these elements together allows us to reduce (32) to the following

simple form:

11^11 T < (l+	 xo)gn l IN-d i I T	 (36)

for all (c-d) e S and all T<(*

This show that sector approximation errors degrade sec%anti pmrormance

in a direct and simple way. The nominal quality measure is simply scaled

upward by the factor 1*s*r 6/m*. The latter increases with increasing

sector approximation errors on the function set S, and also with deter-

iorating global sensitivity and stability margin properties of the nominal

design.

Frequency Domain Interpretations -- If the cone parameters C and Rare

stable linear, time- invariant operators, then the norm inequalities in

(26),(27) and (36) can be readily evaluated with classical frequency-domain

methods. This is done with the following norm identity for Linear time

invariant operators [Desoer and Vidyasagar, 11]

III I	 max F[C(s)]I s=J w	 (37)
W



I

whera C(s) is then (matrix-valued) Laplace transform of the impure

response, C(t), of the operator C, and F[ . y, al.] denote its maximum

And minimum singular values t .	 Using (37), it follows that (26) and

( 7) are satisfied If

aIROW) l< aE7:+CdW) l	 for all O<w<o 	 (26)1

or

ERC-1(JW)ll< O(COW) (z+c(jw))-l]	
(27)'

w atX+C_
l

dw)I 	 for all Q<w<co

Note that (27)' imposes explicit magnitude constraints on the nominal

f'reauency response. At all frequencies where the normalized error,

RC_ 1 (jw), is large (compared with unity), the inverse loop transfer matrix

C- l (jw) must also be large, and hence, the loop transfer matrix, itself

must be small. since RC_ I (jw) typically grows at higher frequencies, this

constraint imposes explicit limitations on achievable crossover frequencies

and on closed loop bandwidths.

Note that conic sector approximation, errors play Identical roles ina

the above sense to any other modelling errors already recognized in the

design process.

The performance degradation equation (36) can be similarly interpreted.
We get

twe will use the Name symbol (C) to denote both the impulse response and
its transfer functions. The differentiation will be made clear by arguments.
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max crkT+C(jw))-13
o<w<V

min	
l	 (38)

a<w<o E EI+c (Jw) )

M*	 . - max C! [RC-I ( Jw)1 /a tX+C71 (Jw) I	 (39)
W

and setting S be the not of All sine waves with frequency leas than
W 0

1
qo

ox  a<W<w a a [I+C (Jw) 7	 (^a)

r  ^+	 min	 crtRQw) 7	 (41)

a<w<wa

When substituted into (36), these equations show that performance

degradation due to sector approximation errors can he minimiZ8d by

designing good nominal sensitivity and stability margin properties over

the entire frequency range (small s*, Large m*) and by assuming small

sector approximation errors over w<w0 (small. ro).
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4. CONIC SECTORS FOR THE HYBRID OPERATOR

Motivated by the above discussion of conic sector concepts in feedback

design, this section proceeds to derive two expressions for radii of conic
t

sector approximations of the hybrid operator developed in Section 2. The

F

	

	 first expression is based anime,;domain analysis and yields a conservative

non-dynamic radius. The second expression is based on frequency-domain

analysis and yields a sharper dynamic radius operator. Some examples using

the second radius are given in Section 5.

A Non-Dynamic Radius

We found in Section 2 that the hybrid operator is a linear, time-

varuing convolution operator with impulse response matrix G(t,e) defined

by equation (6). Our objective now is to approximate this operator by a

linear time-invariant convolution with impulse response C(t-6). The ap-

proximation error should be such that it can be bounded by a sector radius

operator as in equation (22).

To achieve the latter objective, consider the convolution operator

for the error, i.e.

e	 (G-C) u

with
t

e(t) _	 [G(t,6)-C(t-e)]'u(e)de

0

t= f AG(t,e)u(e)de , 	 t>0	 (42)
0

L
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This expression can be bounded as follows;

T

	

I IG-C 1I'	 su	 f QT( t)e(t)dt

	

ToIIuII T. 	 0

	

T	 t	 t

sup	 dt	 d9 f da uT(0)AGT(t,e)AG(tX)u(A)
0	 of	0

	

T	 t	 t

sup f dt fde  f 	 IUT (e)JU CAG(t,6) 1U [AG (to X) I Iu(a) I'
1 '

0
	 n	 0	

(43)

Now let m(t) be a scalar-valued function such that

	

a [AG ( to 0) J	 m(t-@)	 Vt:e	 (44)

The right hand side of (43) is then bounded by

	

t	 t	 t

su l l =1	 dt	 de PA W(9)m(t-8)m(t-X)W(X)
T o I IW T	 0	 0	 0

	

IIMII2	
(45)

Here M is a scalar convolution operator defined by

v=MW

	

N	 M

with

t

	

v(t) _ 	 m(t-0)W(6)d6 ,	 t>0	 (46)

0
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Using (37), it now follows that a bound on the error operator (42) can

be expressed in terms of the Laplace transform, m(s), of (46). That is,

IJG-Cj I < max m(s)	 = r	 147)
W	 ls=jw

Moreover, since m(t)> 0 for all t, it can be shown that the maximum

in (47) occurs at w=0 and hence

00

r = m(s)

1
	 = fm(t)de	 (48)
s=0 

In light of (47), the operator

v=Ru

defined by

v (t) = ru (t) ,	 t>0	 (49)

forms a valid radius for the sector approximation.

Note however, that the calculation of this radius if formidable.

it requires the following steps:

1) Impulse response evaluation

AG(t,e)	 G(t,a)	 C(t-e)

2) Singular values calculations

a[AG(t,e)]	 dt'e
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3) function maximization

F(AG(t,6)]< m(t-6) 	 Vt,6

4) Integration

00

r	 f m(t)dt
0

The most difficult of these steps is 3) which requires that we find an

integrable buunding function for FLAG] over the entire tee-plane. This

step is made substantially easier by noting that the error operator is

periodic along the (t+e)-axis whenever the digital convolution coefficients

Dk2 
in equation (6) satisfy Dkk = 

Dk-Z V 
k,2. We then need to maximize

only over a single period for each value of the time index t-6, as

illustrated in Figure 6.

A Dvnamic Radius

In addition to its computational difficulties, the radius operator

(49) suffers from conservatism. Note that its impulse response is a delta

function, and hence, its Laplace transform is constant. It therefore

assigns the same conic sectors error levels to low frequency inputs as it

does to high frequency ones. This is.inconsistent with experience. We

know that a digital controller can approximate signals at W<< 
T 

with

much greater fidelity than it can approximate signals at W > ,—^ . 	 This

emperical fact is not captured by (49).

i
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n_	 'I_	 A_

v%ISuI— ti%1-vj
repeats on each
similarly shaded
square

m(A) = max AG(t,e)
o<u<^	

t= (u+X) /2

e= (11-X) /2

FIGURE 6: Calculation of m(t).
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An alternate radius which captures this frequency dependance has

been developed by means of the following classical arguments. We start

with the :fact that the hybrid operator can be represented in the classical

sample data, block diagram form shown in Figure 7. (Franklin and Powell, 127•

v	 VU	 p (s)	
,—V	 D(z)	 H (s)T	 I

Prefilter	 Sampler	 Digital	 Hold
Computer

-- analog signals
NV~ digital sequences

FIGURE 7% The Hybrid .Compensator l s Sample Data
Block Diagram.

While we cannot find a Laplace or Fourier transform for this operator,

it is possible to find the transforms of the output functions produced by

particular inputs. Namely

VOW )	 ^T 
,H(^W)D(e^W'C) 

z	 F(jW-jWSk)u(jW-3wSk>	 (50)
[k—oo

where D(e 7 U1T) 
is the z-transform of the digital convolution sequence

	

evaluated at z=ejWT , and where the infinite sum with W	 2

	

s	 T

represents the effect of sampling. The analog signal before the sampler has the
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Fourier transform F(Jw)u(Jw).	 After the sampler, the signal iz

mathematically represented by a sequence of impulses whose transform is

the infinite sum. For notational convenience, we will represent this

sum simply by ( Z F kuk), where F  and 
Ilk 

are F(jw-jwsk) and u(jw-Jwsk),
k

respectively.

Using (50) in Parseval's theorem and assuming that all functions are

in L2, we can now write expressions for the hybrid operator's errors:

00

I I (G--C)ul I 2 	 zn J-0
00l

21t

2
v(jw) - C(jw)u(7w) I dw

2
I.ID ( EFkuk)	 Cu dw

k

1
21t	

oo

11 Gkuk 1

2
 dw	 (51)

co
k

with

Gk
T HDFk 	 k^0

(52)
7 HDF O-C	 k=O

Using Schwartz's inequality, (51) can be bounded from above.

k

j(JIG rr
II(G-C)u11 2 < l 	 I 2	 G i u I2 dw	 (53)

21T 	 k	 Q	 k
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Now adding and subtracting IT HDF0 I in the first sum of (53) and

interchanging the order of integration and summation converts the bound

to

foo

27i 
1 	

'C2 11,  12 I D 12 (k i Fk 12) + I L HnFp c (2- I T HDF0 12 I uZ 12dW
	

(54)

-00	 r

In each of these integrals we now perform a change of variables,

W=W' + W s 
L Note that this is a 'frequency shift by integral numbers

of sample frequencies, Ws .	 Hence, the ,periodic functions

IDI2 and ( G I Fk 1 2 ) remain unchanged. We also re-interchange the order
k

of summation and integration. This gives

00

II(G-C)uII2< lz I H I2)IDI2
	 12)IuI2dwl

2Tf 	(	 T Q /	 ( 11rk
k

+ 2r	 I T EiRDFQ CR 1 2 )I u 1 2 dW j

0

21T f	 I T H
Q I 2 IDI 2 IFQ I 2 I,ui 2dW ,	(55)

-0 Q

Note that the right hand side of (55) has the form 2Tt
 fIR 

12juj2dW,

which according to Parseval's theorem, is equal to the norm IIRuII2.
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Comparing this to our sector definition in equation (22) (restricted

to L  functions) then shows that (55) represents a valid sector radius

for our hybrid operator, The center of this sectors can be arbitrary.

However, it is evident from (55) that the choice C* with Fourier

transform

C*( j W)	 H(jW)A(jW)F(jW)	 (56)

generates the sma ylest radius, R*, with Fourier transform

	

IP,*(jW) I
2

- ( 1 17 HZI
~) 

IDJ'(k ^ F ^ z)_	 ^T 
Q^^ 'D^z^F^la

-1 

k1 
^ 7 1H( jW+ jWS Z) I'ID(eaWT) 121F(jW+jWsk) 

1
2	 (57)

The sector defined by these expressions is explored by a simple example

in the next section.
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5. AN EXAMPXX

The second sector developed in Section 4 is illustrated here with

a classical lead-lag compensator example. While this is a very simple

example, it captures the essential issues of sector-}cased approximations

and serves to illustrates their potential utility.

The Analog System

We start with the analog compensator

G(s)	 10(5 l)*la 

We show how to implement this compensator using a digital computer,

and then how to compute the center and radius of its Sector (C,R).

The digital computer is embedded in the hybrid compensator as in

Figure 7. We arbitrarily choose a sample interval. of T = . G283 seconds,

which places the sampling frequency at 2V/z = 10 radians per second,

which is ten times the frequency of the pole location. The z-transform

D(z) (used for the digital computer) is computed by the classical, pole-

zero mapping technique (12]. The pole at s=--1 maps to a pole at

z = e srt = .5335, and the zero at s=-.1 maps to a zero and z=e sT _ . 9391.

The constant is chosen so that D(z) at z=1 is equal to Ga(s) at s=0. The

result is

z-.9391D(z)	 7.6G0 z-.5335	 (59)

(58)
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The prefilter F(s) is chosen to be a low pass filter with a single pole

at so-V/T The resu,6t is

F (s) - s+5	 1(60)

The hold device is chosen to be a zero-order-hold, which has the

Fourier transform

"JWT
(Gl)

Two Cone Centers

According to equation (56), the cone center C*(Jw) is the given by

-JWT
C* (7W) "	

JWT1-e	 7.66 a	 -.9391	 5	
(62)

JWT	 eJWT-.5335	 J

Note that this choice of cone center has the special property of being

the "straight through path," formed '^y replacing the sampler in Figure 7

with the gain term 
T 

as shown in Figure B.

u(jwl	 F(jw)t 4 T k D (e	 H (jw) I `r(jW)

FIGURE 8: The Straight Through Path.
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Unfort"nately, this choice also has the undesirables property of being

infinite dimensional and difficult to work with in state apace realizations.

For this reason, we will also examine an alternate center which aapproximatss

(62) by a low order state space model. This alternate choice is

C(jWI	
2	 10(^W*.1)	 5	

(63)
jWT;2_—]	 jW*1

and is obtained by approximating the zero order hold with a first order

:filter and replacing D(eJWT ) with Ga(jW)

Cone Radii

Following our previous derivation, the cone radius corresponding to

center c*(s) is given by equation ( 57). The radius for C(s), on the

other hand, requires a slight modification of this equation to account

for difference between C and C *. The appropriate modification is obtained

from (55) and has the form

I R(jw) 1 2	 E	 2 IT HZ 1 2 1D1 2 1 k 1 2 + I CZ_
C*1 2 	

(64)
!Llk#Z

Both equations ( 57) and (64) can be evaluated numerically by computing

the infinite sums over k and Q. It can be shown that these sums converge

for all functions H, F, and C- C* which roll off as least as East as 1/W

at high frequencies. In fact, if the roll-off is 1/W exactly, then the

convergence properties of each sum are proportional to

tTi = 1.644934
^, »l 

Q2	 6
(65)
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We have etgpirically determined that these infinite scans can be

terminated at plus and minus 20 terms. Their general convergence pro-

portion, however, Estill need to be better understood.

Gra2hical Results

The net results of all these calculations arcs beet viewed as

conventional Bode plots of the various functions involved. We start

with Figures 9a and 9b, which show gain and phase characteristics of

the zero rrder hold,	 H, and its first order approximation. Note

that the approximation is good up to about 2.4 rps, or roughly Ws/4.

Figures 10a and b show Bode plots of the analog lead compensator,

Ga (s) and the two centers, C(s) and C*(s). Note that these centers have

more phase lag than the analog compensator, due to the extra lag added by

the prefilter and holot. However, C and C* again track closely up to

about 2.5 r/s.

The corresponding radii were computed according to equations (57)

and (64). one of the required infinite sums 
is shownshown in Figure 11. We

see that above 21ff/T - 10 radians the infinite sure is approximately unity.

The radii themselves are plotted in Figure 12. We see that they agree

closely for high frequencies (W>l rad/sec) but differ substantially at

lower frequencies. This difference is caused by the IC*_CP12 terms in

(64). Note that the sum of these terms alias high frequency differences

between C* and C down to lower frequencies. In particular, the differences
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at W=Ws - 10 r/s appears as a DC level in the radius corresponding to

C(s). This illustrates that any design advantages offered by a simple

cone centers must be paid for with large radii and with the associated

more severe stability robustness restrictions and/or performance degra-

dations discussed in Section 3.

Some Basic Tradeoffs

Whether or not a given sector approximation is useful for feedback

design depends on the relative magnitude of its radius when compared

with the corresponding center. We have already observed this relation-

ship in Section 3. In particular, if a loop transfer operator G is any

member of Sector (C,R), then our stability robustness condition (26)

required that	 y

(IR(I+C)
-1

(c-d)II T <'Ic-d''
T
	(66)

for all inputs (c-d)e L2e and all T<oo

Moreover, to get good performance we .required that (I+C) !l be small

for some specified subset of inputs, i.e.

11(1+C) -1 (c-d)11 T < qo 
11G

-aJ'T	 (67)

for (c-d) 6 S and all T<oo

if qo «l, it follows that

(I+C)-1(c-d) = C-1 (c-d)	 (68)
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and substituting this into (GG) we get

JJ R C-1 (c-a) I I T < (l c-d I I T	 (60)

for all c-d E S, all T<co.
N H

This last expression shows that the sector approximation is useful

for feedback design only if its normalized error magnitudes are less

than unity for the signal set S. This turns out to be specific

statament of a very basic truth in feedback control. We cannot close

feedback loops with substantial gain unless the (normalized) loop

uncertainties are less than one.

In the example above, of course, we have computed radii and centers

not for a complete loop transfer operator but for the hybrid lead com-

pensator alone. A complete loop transfer operator using this compensator

will be given by

Gloop - G P

= [C+ (G-C) ] P	 (70)

for some plant P and some compensator center C. The normalized loop

transfer radius condition (69) then becomes

IIR]oopCloop(c-a)IIT 	 IIRP(CP)-1(c-d)IIT

IIRC- 1(c-d)IIT <IIc-dIIT
	 (71)

for all (c-d)E S, T<w
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This shows that a sector radius for the compensator alone is also

useful for feedback design only if its normalized magnitude is less
than unity for the input set S.

As in Suction 3 1 Condition (71) can be interpreted in the frequency

domain via

O' [R (JW) C (3W) -111
	

(71)'

for soma frequency range W<Wo.

The Sample Rate Tradeoff -- Condition (71) 1 was evaluated for our

second sector approximation of the lead compensator, as defined by

(63) and (64). The evaluations were made with several sampling times

ranging from T=0.G28 sec (Ws=10 r/s) to T=0.0628 sec (100 r/s). Results

are plotted in Figure 13. They show that Condition (71)' ;s not

satisfied at any frequency for our baseline value T=0.628. However,

it is satisfied over increasingly larger frequency ranges as T decreases:

T	 Sampling Rate	 Frequency Range -

.628 sec	 10 r/sec	 none

.314	 20	 0.03	 5. r/sec

.125	 50	 0 - 13.

.0628	 100	 0 - 30.

This result illustrates the dramatic effect that sample rate selection

has on digital compensator design. Our hybrid implementation of Ga(s),

as modelled by Sector (CM, does not yield a useful compensator unless



a

r

-49-

OF pOflV QUALI T YQ^

IN

30n11NOVN 0-1

N
O

O

O	 O
NO

v

O ?-
U

w
d
w
c
LL

cD
O

^- J w
w
0

tn

b
b

w

v

cyi

b
H
w

O

O	 O	 ^O



- so-

T is less than approximately 0.2 seconds. We note that this conclusion

is quite consistent with classical "ruse of thumb" for selecting sample

rates. An old rule due to Stein, for example, is

11 00. 5 to 10 samples per radian of the highest

significant frequency in the control loop..."

In our example, the highest significant frequency is perhaps 1.0 r/s

(where the centers C & C* stop developing lead). The resulting rule-

of-thumb sample time would therefore be 0.1-0.2 sec.

The niscretization Tradeoff -- in addition to sample time, a second major

design parameter in digital implementation is the discretization technique

used to convert Ga (s) to D(z). In our results so far, we have used an

established pole-zero matching technique as our baseline. figure 14

compares normalized radii obtained with this technique against the following

alternates, all at T=0.628[12]:

1) the "forward rectangular rule" (replace s in

Ga (s) by (z-l) /T)

2) the "backward rectangular rule" (replace s in

Ga (s) by (,z--I)/zr)

3) the "Tustin rule" with pre-warping about w1

[replace s by (wl/tan wT/2)(z-l)/(z+l)3.

The differences between these techniques are seen to be small. None produce

a useful sector approximation for the compensator at this sampling time.

4i
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We complete our discussion of the lead compensator example at this

point, It is evident that the example and its two simple tradeoffs
above only scratch, the surface of the potential utility and range of

application which conic sector concepts offers for digitally implemented

control system design, It is hoped that these results serve to

motivate the needed additional, research and design studies.

VL



..g3w

6. CONCLUSION

This report has presented research results obtained under NASA

Grant No, NAGl-2: "Hybrid Operator Models for Digitally-Implemented

Control Systems." The results establish a new method of analysis for

digitally-implemented (hybrid) control aysteme based on conic sector

concepts from functional analysis. Conic sectors are used to ap-

proximate the true complex time-varying nature of a hybrid compensators

with a simples time-invariant analog system. The errors of this ap-

proximation are rigorously accounted for in the analysis, both in terms

of their effect on stability robustness and on performance.

Two specific conic sector approximation were developed for general

hybrid systems. One sector produces a conservative non-dynamic radius,

while the other is less conservative and frequency dependent. The latter

sector has so far been deri."led only for stable scalar systems. It was

illustrated with a simple lead compensator example. This example congirms

the computational feasibility of conic sector analysis and also serves

to illustrate its potential utility and range of application.

The conic sector concept promises to unify both analog and digital

control design techniques under the more general common umbrella of

feedback design for systems with approximation errors. Much work remains

however to achieve this end. 'righter, less conservative conic sector

approximations for general multi.-input multi.-output hybrid systems remain

to be discovered, multi-rate systems remain to be analyzed, and the entire

area of efficient numerical algorithms for conic sector analysis remain to

be explored.

3
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