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MODELING OF THIN-FlUt GaAs GROWTH

By

John 11. Heinbockel*

$	 INTRODUCTION

The Solid-on-Solid MS) model of crystal growth (ref. J.) is repre-

sented by a rectangular array of integers where each integer represents the

number of adatoms in a column perpendicular to some reference frame. Tile

adatoms can represent atoms or molecules that are being stacked. Figure 1

illustrates the surface adatoms that are at the tops of their columns. It

is assumed that 
an 

adatom event of adsorption or desorption can only occur

at the top of a column.

We are concerned with constructing a model of crystal, growth that takes

into account the processes of nucleation on the growing surface as well as

considering tr ►ie processes of surface mligura • ion and desorpti- o- n- of

adatoms.

In the SOS model the columns are constructed upon an M x H-square. array

by randomly placing adatoms upon the array and allowing these randomly

deposited adatoms to either condense, evaporate, or migrate. the SOS model

can he described as an array of interacting columns of varying integer

heights. Tile surface adatoma l being at the tops of columns, are allowed to

migrate, remain stationary, or evaporate as is ! ictated by a set of rules

which will be described presently.*

'Ilia term flepitaxyll means "an arrangement" and is used to denote the

growth of one substance upon the crystal surface of a foreign substance.

The term "autoepitaxy" is the oriented growth of a substance onto itself and

ll hetraepitaxy' l is used for the growth of one material upon tile surface of a

different material. Obviously, hetroepitaxy becomes autoepitaxy after one

layer of adatoms has been deposited over the growing surface. We use the

SOS method to simulate epitaxial growth of crystals.

*Professor, Department of Matiiematical $ciences, Old Dominion University,
Nqrfolk, Virginia 23508.



LIST OF SYMBOLS

site numbers

size of square array

U o in 1) 001j) potential at site: Uj)

' 0 ^ 1 '1' 2 pO potential energy changes

W il	 i "	 I t	 460 1	8 potential energy changes

EU,j) random energy

At time interval

U n U(ij) total energy at site	 (i,j)

Ue evaporation potential

U111
migration potential

E energy

K Boltzmann constant

T temperature

f(E) Boltzmann distribution

(100)	 (110)	 (111) crystal orientations

a2, a 3 scale factors

crystal orientation factor
(2)

U(I) ,	 Uks	 ks kiq^k site potentials

A Hevap heat of evaporation

NONm'Ne fraction of adatoms evaporating, migrating or
remaining localized

r
ij

position factor

POTENTIAL ENERGY OF ADATOMS

The rules by which the columns of the SOS model interacted were gov-

erned by the following ideas relating to the potential energy and potential

energy changes associated with the adsorption, migratioa, or desorption of
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adatoms from an arbitrary row i and column j of an M x M array. Ener-

gies associated with an arbitrary site (i,j) were defined as follows; Uq r

U0 (i,j)--the potential energy at a site because of surface bonding and crys-

tal structure; Vin--the potential energy chaa►ge at site (i,j) because of the

deposition of an adatom (assumed the same for all sites); - Wi(i 	 1 ►
..., 8)--the potential energy changes at neighboring sites when an adatom is

deposited at site (i,j) P(i,j)--the random surface energy associated with

site (i,j) and time interval At; U(i,j) w Uo(i ► j) + g ( x , j )--the total ener-
gy associated with site (i,j) during the time interval At; Ue--the evapo-

ration potential; and Um--the migration potential. All of the above

energies were measured, in electron volts.

We developed a Monte Carlo computer simulation of crystal growth (refs.

2, 3, G, and 5) by developing rules that determined the SOS kinetics of

condensation evaporation or surface migration of adatoms. These rules led

to a consistent and physically reasonable description of the fundamentals

associated with crystal growth. We first considered the adsorption of a

thermally accommodated adatom onto the surface at some general. site where

the potential at this site was changed and, simultaneously, potential energy

changes at all of the neighboring sites occurred. In Table 1 the potential

energy changes are depicted by the mnemonic mask. The center of this mask

is placed over the site (i,j) to illustrate the changes to be made in the

potential at the central site as well as the potential changeu in the sur-

rounding neighboring sites.

The potential changes in the case of desorption of an adatom from the

central site are again depicted with the mask of Table 10 with the opposite

signs on the potential changes, The case of surface migration was treated

as a desorption from a °cite (i,j) followed by an adsorption at a nearest

neighbor location, together with the correct potential mask changes associ-

ated with each process. The nearest neighbor migration site was determined

by a random walk to one of the unoccupied nearest neighbor sites.

3
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Table 1. Potential energy changes associated with central site (i,3)
and neighbor sites clue to deposition of an adatom.

-w7 " -w7 (x-I $ J-1)	 -we It Fwd (i-L,a)	 -w	 _wl U- 1,j+1)

-ws " -w6 (i j-1)
	

$o - + 0( 1 19
	

-W2 - -w'2 (i, J+l)

-w5 . `ws (i+1,J-l)
	 -shl ,. —44 ( i+1 ,,1)
	

"w3 - -w3 (i+1,3+1)

The Monte Carlo simulation of crystal growth involved a random deposi

Lion of thermally accommodated surface adatoms during a time interval At.

These deposited adatoms changed the potential energies at the random surface

sites under consideration. Tile values assigned to the central potential

change ' o and neighboring potential changes -wi, i	 1, tots 8
dictated the now potential energy values when an adatom was deposited or

removed from a sits, In this way each surface site had an energy }carrier to

translation or evaporation, represented by a potential. well. We assumOd

that the thermally accommodated adatoms had a surface energy distribution

described by the Boltzmann distribution

f(E) n 1 exp( - '),E?0
kcr	 Kr	

(1)

which has a mean energy of K""r.

Durltg each time interval. At, the Boltzmann des#° 1bution was used to

assign a random energy EU,3) to each of the surface adatoms. We let

U(i,3) - U o (i,3) + E ( i ,J)	 (2)

denote the total energy possessed by a surface adatom at a site (i,j)

during this time interval. This total energy is the stun of the potential

energy U. due to the lattice structure and a random energy E from the

Boltzmann distribution whaeh characterizes the random surface energy. When

U was less than some material-dependent migration level U m, the adatom

remained stationary at the surface site. It U m c U < Ue, surface

4
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migration by random walk was allowed to occur. If U was greater than the

evaporation potential Ue , the adatom was removed From the site.,'a

a the rate of impingement of adatoms upon the surface was independent of

the surface configuration. The rates associated with the evaporation and

migration of adatoms depended upon the potential barriers Ue and Um

and also upon the values assigned to the potential changes 0 0 and -wi,

(1 . I t ...$ h). These later potential changes had to take into account the

type of crystal structure and orientation of the growth we were trying to

simulate with the SOS model. In Figure 2(a), for growth on the (100) face,

we set up a correspondence between the central site, tie nearest neighbor

potentials, second nearest neighbor potentials $2, and the adatom

potential changes for the mask in Table l (e.g., w l = ^2, w2 In a

similar manner we were able to set up the correspondences illustrated in

Figure 2(b) and (e) for the ( 111) and ( 110) orientations. In Table 2, we

selected the relation between the neighbor potentials ^0, ^l, ^2, 03 in

such a way that when the first level of adatoms covered the surface, the

potential distribution returned to its original value. by simply adding

adatoms to the surface it was readily verified that the potential changes,

assigned to the mask, had to adhere to the rules given in Table 2. In these
rules, a negative sign denotes an attractive potential and after one

complete layer of adatoms is deposited, the potential energy values at each

site will return to their initial values.

We let ^j denote the change in the nearest neighbor potentials due to

the addition of an adatom to the surface and let 02 , ^3 denote the second

and third nearest .neighbor potential changes. We assumed that ^2 = a2$1

and	 a0l, where a2, a3 are scale factors which are less than one.
This allowed us to define the crystal orientation factor 	 as

2 + 2a2 	, (100)
n 3 + a2	 , (111)	 (3)

1 + a2 + 2a3, (110)

i
which takes into account the different crystal orientations. We also defined

fa
the kink site potentials before Uk ) and after Ukg ) and the capture of an

a

adatom as Uks ) = Uo - 0 1 1 Uk^ )	Uo + ¢ 1 . (Note that (D o = 2901.)

5
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Table 2. Potential changes for addition of an adatom to an arbitrary site.

Potential Changes

Crystal. Relation Between for Addition to Distances to
Face Neighbor Potentials Arbitrarx Site I Neighboring Sites

-W7 -W8 - W1

-W6 ^O -W2

-W 5 - wk - w3

- ^ 2 -.	 I - ^2 ap
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_02 -^1 ..h

. 2 .a p .._

2 
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TNT SIMULATION MODEL AND PARAMETERS

A flow chart of the simulation model is illustrated in Figure 3. Th e

model is simple and presents an alternative viewpoint for the interaction of

surface molecules: An assumed impingement rate dictates the number of

adatoms arriving on the surface during a time interval, At. Each of these

rt

	 adatoms are added to the suOace at random sites and the potentials at each

of these sites and neighboring sites are adjusted. If the At time

interval is so small that no adatoms arrive on the surface, then every

surface adatom can still be assigned a random energy from the Boltzmann

distribution and surface interactions can be taken into account. We

continued scanning the surface each At time interval until enough time

accumulated for the addition of another adatom.

The model allows for various assumptions to be made about the

interaction of potentials and assignment of potential values. We let Ue

0 denote the evaporation level, then. AUe a Ue - Uo represented the

desorption energy AKevap. The activation energy for migration: of adatoms

in a flat surface was AUm - Um Uo. The various potentials are

illustrated in the Figure 4. The values assigned to Um and Uo
3.

greatly affected the model behavior. For example, the Aoltloann

distribution is illustrated in Figure 5, where nominal values of AUm and
r

A Ue are illustrated. The number of surface adatoms with a statistical

surface energy less than AUm is. proportional to the area under the
t

probability density curve which is given by N R = 1 - exp(-AUm/KT).

The number of adatoms that escaped from the surface is proportional to

Ne = exp(-AUe /KT) and the number of adatoms that migrated is proportional

f

to the area N 	 1 - N  - N e, Letting a =AU 
m 
/AU e , Figure 6 was con-

structed which illustrates the migration effect as a decreases.

The values of ^0	 ^'1	 ^2	 ^3 which denote the potential energy

`	 changes at a central site (i,j) and nearest neighbor sites can be different

for the substrate and the growing material. For the substrate material we

could use the depth of the surface potentials and migration levels to
i

stimulate a variety of surface morphologies. In this model we envisioned a

le	
flat substrate as a periodic lattice structure 20-x-20 square where each

.G 7
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lattice. is a potential well. The substrate can vary from flat to rough and

the potentials adjusted to reflect various surface preparations. For an

ideally flat substrate we assumed that the depths of the potential wells

were uniform, given by Uos. After one sayer of growing material

covered the surface, the potentials at each site were assumed to convert to

the autoepitaxy potentials	 In order to make this transition we

8

assumed that 0o - I w i + (Uo - Uos)r ij where rij is zero if the
i=l

height hij at position (ij) is greater than or equal to one and

rij is one in the case where hij is zero. Thus, if an adatom was

deposited at a first layer site (i,j) we adjusted the potential at this site

by the relation by Uo - U 
0 

in addition to the mask potential changes as

this produced the desired change that hetroepitaxy produces in the potential

at the surface site.

Nucleation on the substrate was controlled by the values assigned to

AUe  AU MI and ¢o . For large values of AU  there were deep potential

wells that captured all thermally accommodated adatoms. For small AUm

values there was an increase in surface migration and a decrease in the

number of adatoms that remained localized. This increased the probability

of an adatom combining with other adatoms to forma critical cluster. Then

growth was characterized by the lateral motion of adatoms and their addition

to the steps of clusters that produced the lateral growth.

}	 Various potentials were proposed for the addition of an adatom to the

surface (rots. 6 and 7):

Buckingham Potential	 E = He-Br - 
A 0 - Al
r66 re

	a l — r	 6
Modified Buckingham Potential	 E _ a e	 rm r =-6

1 - a

Lennard-Jones (Mie Potential)	 E = an - Am
r n	 rm

Morse Potential	 E - De 2a(r - ro ) - De-(r ro)

Born-Mayer Potential	 E - Ae Br

8
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These potentials reflect the vertical affect of potential change. For

the lateral interaction between potentials and ro4ulcant changes (ref, 8),

we find:

Kiselev Potential	 & = E	 MCf(r)

where EO is interaction at zero coverage, C is diapiersion constant, N

is the number Of nearest neighbors at half a monolayer coverage and r io

mean distance between molecules.

Output from the computer program can be graphic as illustrated in the

Figure 7 or quantitative.

ii
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QUANTITATIVE MEASURES OF CRYSTAL GROWTH AND PARAMETERS OF MODEL

Measures of Crya4,g Growth Parameters of Model

1.	 Growth rate of crystal 1, Deposition rate of adatoms
2.	 Critical clusters 2. rotential changes ^o, ^ I , ^2 , f3

a.	 sire 3. Mean	 Up	 and standard deviation
b.	 shape co	 associated with normal distri-

c.	 density bution	 N(Uo, oo) of surface
vs. time or deposition rate potenti.alc (initially Uo - A)

3.	 Surface diffusion (mobility) 4. Traps in Surface
4.	 Condensation rate 5. Temperature of substrate-.
5.	 Evapovation rate 6. Number of migration scarves (time At)
6.	 Rate of nucleation 7. Crystal orientation
7.	 Other characteristics 8, Substrate and growing potentials can

be different
9. Mean	 Um	and standard deviation

am	 of migration levels assoc iated
with normal distribution 	 N(Um,

10. Initial substrate geometry and
potentials

11. Assumptions in regard to retention
of incident energy

E ,-nnanm	 Errol to.nnnn * EReatanhi-an
(Surface	 (Kinetic
Energy)	 Energy of

Incident
Ad at om)

NOMINAL VALUES FOR POTENTIAL ENERGIES FOR

GERMANIUM IN EV (1 EV . 23 KCAL/MOLE)*

A Hevap . 3.87 ev

A Hads	 .86 ev	 Ge on CaF2 Qd	 .52 ev	 Ge on CaF2
A Hads	 .55 ev	 Ge on graphite Qd	 .32 ev	 Ge on graphite
A Hads . .60 ev	 Ge on carbon Qd	 .35 ev	 Ge on carbon
A Hads	 1.6 ev	 Ge on W Qd	 .75 ev	 Ge on Ge

See ref. 9.

10
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sFigure 2. FCC model and potential changes associated with different
crystal. orientations.
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INITIALIZATION OF SUBSTRATE GEOt1ETRY AND POTENTIALS

IMPINGROIENTOP	 L	 RANDOM ADATOMS DURING TIME INTERVAL
QC,	 UPDATE TINE, (FLUX INDKPENDENT OF TIMEKATURX 	 T)

UNIFORM DISTRIBUTIONt	 GENERATE	 L	 RANDOM SITES AND
DEPOSIT ADATONS AT THESE SITES AND CHANGE POTENTIALS

BY USING APPROPRIATE MASK

DO FOR ALL SURFACE ADATONS AT SITES (i,j)

lIOLTENANN DISTRIBVTIONt	 GENERATE RANDOM SURFACE
ENERGY	 E(i,j)

TEST POTENTIAL AT SITE (i,j)t	 U - UQ(i,j) t E(i,j)

IF U <_ U, THEN ADATOM REMAINS AT SITE

IF U !,u,  THEN EVAPORATION FROM SITE

IF UM < U t U, THEN MIGRATION TO NEW SITE

MIORATIONI	 RANDOM WAIL: FROM SITE (i,j) TO UNOCCUPIED
CONDENSATIONt EVAPORATIONt	 ADATOM

NEAREST NEIGHBOR SITE	 UPDATE POTENTIALS BY EVAPORATING
ADATOM RMAIN5 REMOVED FR011 SURFACE

AT SITE (i,j)	
ADATOM FROM OLD SITE AND DEPOSITING IT AT NEW SITE, D POTENTIALS UPDATED

AGAIN UPDATING POTENTIAL CHANGES.

CONTINUE

CALCUTATEI	 STATTSr'ICAL AVERACE5 of VARIOUS "NEASURES" OF
CRYSTAL GROWTH,	 OUTPUT DATAT

YES	 AGAIN

NO

it

STOP

t'
Figure 3.	 Flow chart of simulation model,,

14i	
. r

^x#

3i

:S

t`i

ji

1

i
i

C6

Y



t	 i^
{

^	
ar ytft

Ri'7 ^ N

O U1-4

S/a

m R
41	 Fr

II

^ N

d ^

( I	 n	 I A P. a^,
b

_

cr 1
w°t aI M

H 0
^q .r{

I I rH-t T$4

^' ^ ^I ^ I	 ^ o A ra

•v
I	 Nc^ 1 41 1

^ o

a
Pd

v 4!

I U W
a .^

04
W

W

1
rte-

^1
.^+ 0 w

'm M

p	 41

^^. H H 2 Z nl n©

0

a ^

H
HO

ij

H
E-4

H W II W' ^G rmI v
44

O P4 ^ 'L7 t/1 E-4
•n

a. IQ c
4

H ^ O

:,I
I

6 w Q II a
I

PQ'4 ^O

H

am+

H ld

I

O N^+

O a)

cs.

y'I

.+ 	
3

H H

W

f

a d x W

O O
LH 4J

,I II II II II II II it II ^ bI

b t^^ o g O'O 4j	 co
cd '0

0w

I
oo

w

z
P4

b^

h
	

cu

d

a

	
1

k'
s

1

^r

rs

A



F (E)

8U M
	

AU
E

Figure 5. Boltzmann distribution.

If	 a

9--

or

16



N	 c+1

v	 O

O
rl

O

44
O

Ol

Al

N

CA

N

N

Fl
O

R7
td

44
O

O
.Fi

td
N

v
O
Hb
I
a

.H

00.9

r
O

1a
W 4
1D

,9'

O

z

-4,

M
O

PLI

O

0
0C14

u

ti

j

i

3.

J
ii

s'

•

ORSICxEttAL P I%r IS

OF POOR QUALITY

N1 FRACTION REMAINING LOCALIZED

O	 00	 u7	 N

'^	
11rr^^	

O	 O	 O	 O

II	 ^

ulI cr?	 N
O O O '	 O

III

of	
^

_•	 `

	

o ,	 \	 o

i	
^4

z°J z z 4	 !
II

z 
^

^ H

	 ,

r  

z°1 z	 z

II

z°=	II	 ii

zf zV

^ Ia
it

0
w

O	 00

^--^	 O

^'	 N	 O
O	 O	 O	 O

m
^HZa^x^zr^ uozs^^x3 = u

17

Y^



ORIGINAL PAGE IS
OF POOR QUAWTY

Figure 7. Graphic display of crystal. growth (100)
orientation.

is


	GeneralDisclaimer.pdf
	1982019283.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf


