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ABSTRACT

A brief review is presented of various problems which are con-
fronted in the development of an unsteady finite difference poten-

tial code. Thisreviewis conductedmainlyin thecontextof what
is donefor a typicalsmalldisturbanceand fullpotentialmethod.
The issuesdiscussedincludechoiceof equations,llnearizatlonand
conservation,differencingschemes,and algorithmdevelopment.A
numberof applications,includingunsteadythree-dimenslonalrotor
calculatlons,are demonstrated.





ONE OF THE MOST IMPORTANT REALIZATIONS in fluid mechanics research was

that transonic flow, for all its apparent complexity, is largely
describable by potential theory. This fact was clouded by a thicket of

problems concerning tunnel turbulence, wall and scaling effects, and sepa-

ration. We now know that many of these problems are magnified by the

inherent susceptibility of the inviscid transonic flow to unsteadiness.

Of course, basic flow researchers were undoubtedly prejudiced in favor of

potential theory from the outset because the inviscid, irrotational

approximation is a tremendous simplification. Nevertheless, real progress
did not occur until the explosive development of finite difference methods
which occurred in the 1970's.

Spurred on by the promise of more cruise-efflclent transport air-

craft, our greatest progress has been in steady flow prediction. However,
unsteady transonic flows are important because the aircraft structural

response can induce large and heretofore unpredictable shock excursions.

The flow on helicopter rotor tips is an even more interesting example of

unsteady transonic flow. In this case, unsteadiness is not only forced by

structural deformation but also by a free-stream flow which rapidly varies

in speed and direction and contains large wake disturbances from previous

blades. And so, unsteady transonic flow remains a rich mine of important

problems waiting to be solved. Potential methods will probably play a
dominant role in this process -- not only because of validity but also

because it promises to be the most efficient method.

Efficiency is a more important matter for unsteady computations than

for the steady case. This is because we require the resolution of physical
time and do not have the benefit of acceleration methods that are used in

steady problems. In general, however, the unsteady and steady methods are
much the same. At present, the most versatile and efficient unsteady
methods are two- and three-dimensional small disturbance codes, but full

potential methods are currently under rapid development. The following

discussion will review many of the important algorithm and code develop-

ment issues in the context of small disturbance and full potential methods.

FORMULATIONS OF THE PROBLEM

The starting point for the various potential formulations is the

mass conservation and Bernoulli's equation (shown here for an inertial
reference frame)

0t+ V • (0V )= 0 (i)

i

These equations have the advantage (when combined) that only one flow vari-

able, #, need be solved for. However, these equations are only an approxi-

mation to the exact inviscid equations because they assert that mass,

energy and entropy are conserved throughout the flow field. The component
of momentum normal to any shock is not conserved in this approximation
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(1,2)*. This is a notable difference from the Ranklne-Hugoniot equations
where shock drag comes about through the change in entropy across the

shock. The error thus induced is generally not excessive until shock

strengths are attained that involve separation and the necessity to abandon

the inviscld approximation. Conservative formulations are required to
closely approximate Rankine-Hugoniot results. Nevertheless, nonconserva-

rive formulations are still actively employed, due to the happy accident

that errors of conservation frequently have an effect similar to boundary-
layer corrections on shock location.

In attacking a given problem it is first necessary to express Eqs. (i)

and (2) in the relevant body-fixed coordinate system for the problem to be
solved. The transformation (3) which encompasses both wings or rotors in

edgewise motion is

(3)
t I = t

where r' = (x',y',z') and r = (x,y,z) are the inertial and body-fixed

coordinates (see Fig. I), respectively, and R(t) is the rotation matrix

L °Sat -sin a tR(t) = _in0_ t cos _ t0

(Note that for no rotation, _ = O, Eq. (3) reduces to the usual Galilean
transformation.) Under this transformation, Eqs. (I) and (2) become

Pt
1

P_ c_ t + g (V2 - a2 (5)

where a = U (i cos_t - j sinai) - _ x r is the undisturbed free-stream
velocity seen by an observer in body-flxed coordinates and

V = a + V_ (6)

is the flow velocity seen in the moving coordinates. A common misunder-

standing concerns the validity of potential theory where rotary motion is

involved. In fact, the motion of the coordinates, -_, has no bearing on
whether or not a potential exists. However, since a need not be an
irrotational function, V is not generally expressible as the gradient of

a full potential. Rather, _ defines a disturbance about a, as seen in

Eq. (6).

*Numbers in parentheses designate References at end of paper.



Equations (4) and (5) are here written for a generalized, moving coor-

dinate system _,n,_,T where

= _ (x',y',z',t)
q = q (x',y',z',t)

= _ (x',y',z',t)
T=t

giving

@T(p/J) + @_(pU/J) + @q(pV/J) + _(pW/J) = 0 (4a)

where

v = nt + Vn• + ¢nVn+ €

W = St + V_ • (@ V_ + @nVn+ € v_)

are here the contravariantvelocitycomponentsand have the form of Eq. (6),
J is the Jacobian l_(_,q,_)/_(x',y',z')Iand V is the cartesian
gradientoperator. In the same manner,Bernoulli'sequationbecomesin
these coordinates

p = {1 (y-l)2[2(€T+ _t¢_ + qtCq + _t_ ) + (_x¢_+ qx¢" + _x¢_)2

I (Sa)

where we use the nondimensionalizatlons_ . p/p_, x . x/£, 9 . Y/£,
£ . z/£, _ . €/£c , and T . tc,/£,and the tilda is suppressed. Here, £ is
a referencelengthsuch as the airfoilchord.

SMALL DISTURBANCEEQUATIONS--Theclassicalsmall disturbancederiva-
tion involvessubstitutingEq. (5) into Eq. (4) to eliminate p. The
resultingequationis nondimensionalized,scaled,and higherorder terms
are eliminated,subjectto the limit processthat (I-M2)/62/3= 0(i) as
M . 1 and 6 . 0. The resultingequationtakes the form,

A¢tt + BCxt = Fx + @zz + CCyy + D¢xy (7)
: where

€ . 0/Uc£62/3

= frequency of unsteady motion (the rota-
tion rate for a rotor)

M = Uc/C_, a characterlstlcMach number

U = characteristicspeed (V for a wing,
c _R for a rotor)

AR= R/£, aspect ratio



k = _£/Uc, reduced frequency (for a rotor
k = I/AR)

= blade thickness ratio

A = M2k2/62/3

B = 2M2kf/62/3

C = I/AR262/3

D = Bg

f = y + _cos t (for rotor), or i (for a wing)

l-f2M 2 _ M2[(2/_) + (y-l)k_tl_ xF = 62/3 #x f_x

g = x + sin t (rotor), or 1 (wing)

= _R/V , rotor advance ratio

t = _t'

x --x'/2

y = y'/R (R is either a rotor radius or the

wing span of a fixed wing)

Z'61/3
Z =

£

£ = chord

Equation (7) is not unique and an assortment of modifications and

additions have been made to improve its ability to handle oblique shocks
(see Ref. 4). Nevertheless, they all have the same general form and have

essentially identical unsteady terms.

The pressure coefficient in the small disturbance approximation is
given by

p - p

= _ = - 2f_2/3 (_x + k_r) (8)Cp 1
0Uc2

The body surfaceboundaryconditionis the familiarslope condition
appliedat a mean surface, t

_z = f(kbt+ bx) (9)

where the body surface is described by z = _b(x,y,t).
There is an additional boundary condition that pressure be continuous

across the stagnation streamline behind and on the trailing edge of an

airfoil (Kutta condition). Using Eq. (8), this condition is expressed as
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F + kF = 0 where r £ H@H (i0)X t

This equationexpressesthe downstreamconvectionof vorticity(or the
potentialdiscontinuity). It happensthat __ is also discontinuousin
the airfoilwake. This is seen by applyingE_ (7) (in linearizedform)
across the wake and substitutingEq. (I0) to obtain

X = z = - + _ - rxx yy

where
- i -f2M2

62/3

This quantity, X, is zero only in steady two-dimenslonal flow or steady
nonliftlng three-dlmensional flow.

Finally, finite difference methods require far-fleld boundary condi-

tions. Typically, one specifies some combination of _ = 0, @n = 0, or
Cp = 0 on the outer boundaries and subsequently relies upon a large
boundary distance (often over i00£) to dissipate the ensuing wave reflec-
tions. However, it has been shown that good approximate nonreflecting
boundary conditions can be constructed (5-8). For example, consider
Eq. (7) in its two-dlmenslonal, linearized form

A_tt + B_xt = _@xx + _zz

The wave informationfor a plane wave, $ = ei(_t+_x+_z),must satisfy

A_2 + B_ = C_2 + _2

A conditionwhich preventsreflectionof upstream-movlngwaves at the
front grid boundary is

-B_+ V(B2+4Aai_z - 4An2
_= 2A

This expressiondoes not transformback to a simplelocal differential
operator. However, in the limit n/_ . 0 (forwavefrontsparallelto the

: upstreamboundary)we obtain the expression

whose inverse Fourier transformation yields

_B2+4Au- B
_t = 2A #x (12)

Similarexpressionscan be obtainedfor all boundaryfaces.
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Although its limitations are many and well known, the small distur-

bance approximation (with Judicious use) often gives excellent results and
remains in active use. Perhaps the greatest importance of small distur-

bance theory is that it contains (in simplified form) all the important

issues contained in the full equations and hence constitutes a good test-
ing ground for future techniques. There is, perhaps, one exception to this
statement. It concerns the fact that when Eqs. (4) and (5) are combined to

produce a single equation for @, a nonconservative formulation results.

This problem does not occur in classical small disturbance theory.

FULL POTENTIAL EQUATIONS-For computational efficiency, we usually

seek to formulate the potential equations so that we need only one depen-
dent variable. This is easily done, since Eq. (4) can be rewritten as

+ + Cx --+€ --+€ ----=o@@ Bt _ @z2/ Be Bx y @€ @y z @€ Bz
where

Bp = _p2-y + Cx _'x + € + € (13)_€ y_y z

is a noncommuting differential operator. For this equation we assume the

nonllnearlzations pertaining to Eq. (5) (for the previous and following
equations we assume pure translational motion). On applying the isen-

•tropic relations we obtain the familiar textbook form of the potential
equation

¢tt+ 2U¢xt+ 2V¢yt& (c2-u2)¢xx+ (c2-v2)¢yy + (c2-w2)¢zz - 2¢xCy¢xy

- 2€ € € - 2¢ € € (14)
x z xz y z yz

The problem arises, however, that equation (14) cannot be brought back

into conservation law form with _ retained as the dependent variable.

In examining Eq. (4) we see that p presents no problem In the

spaclal derivative terms because it can be evaluated from the previous

time step (that is, it is taken as the leading term in a Taylor series in

time). The required implicit spaclal terms involving € then come about

through 7. What ls required is a way to obtaln a conservative temporal

function of € from the Pt te_n. Thls can be accomplished through the
following llnearizatlon,

(Io@-'P-(€-€o) (15)P = Po + Be

where the subscript, o, denotes a nearby known state or solution. Wlth

thls expansion the density time derivative becomes

.-- +
Pt _t o- o ¢ (16)

which provides a conservative time-dlfferenced function of ¢ (9,10).



The above linearizationcan be avoidedfor a conservativeformulation
only if one is willingto retain two dependentvariables. This approach
ht*._ t,',', i.;Ik_', by Chll,nan and Jameson (11) who Holve tilt' llr_r-order

lly_lll'll! r(DIIrllt_Llll}J. IJl Ll,' II1:1!|}1 c(lll_lt:rwl[|Oll _.(lU.'iLiOll /3ll{l IIt.rnou]l.i's e(lU.'j-
tion rewritten in the form

#t + h(p,V#,co=) --0

SPACIALDIFFERENCING

The primary stability issue in transonic finlte difference problems

(steady or unsteady) concerns proper spacial differencing in the subsonic

and supersonic flow regions. Consider first the simple steady two-

dimensional model problem

(I-M-2) ¢xx + *yy = 0 (171

and let the difference operators Vx,Ax,V, y, and by be defined as
Vx# = (@i + #i-i )/Ax' Ax# = (#i+l - #i)/Ax' etc. It is well known that the
following difference schemes

(I-M 2) VxAx_ + V A,_ = 0 M < i (18a)yy '

(I-M2)_ VxVx_ + v A _ = 0 , M > i (18b)
yy

are, respectively, suitable for the above model elliptic and hyperbolic

problems. The differencing equation (Eq. 18b) is divergent if M_ < i

while (Eq. 18a) is convergent for M_ > i only if IAx/[(I-M_2) Ay] I < i,

an impractical restriction as M,. i. Murman and Cole (12), aware o[

these constraints, introduced type-dependent differencing for the transonic

small disturbance equation. In this approach the streamwlse spatial dif-

ference operator is either central or backward, depending on the local
Mach number.

In order to obtain a stable conservative streamwise difference opera-

tor for Eq. (7), it is first necessary to time-linearize the nonlinear

flux term F. One way to do so (13) is

Fn+l = Fn + /aF_n /n+l n_ (aF_n /n+l n

This time-linearizedflux is differencedand definedat each midcellof
the computationalgrid as

_n+l n l aF%n n+l n (a_tJn= Ax(_ -_ ) + Vt(_n+l-_n)Fi+½ Fi+½ + \BCx/



where

(@) rl nFi+_n = aAxCn _ M2 fAxCn + k(y_l)Vt € Ax€

_(_n = _ - M2 i7+l) fAx¢n + k(y_l) Vtcn]

and

_F_ n

_-_t] = -M2(y-l)kAxOn

For this flux operator Murman's conservative switching scheme (14) is

.DF= i [_ ]Fx x _x i(Fi_-Fi-_ ) + (l-_i-l)(Fi-½-Fi-3/2) (19)

where

si = {_ , Mi > 0, Mi<O
and

Mi = c - M2(y+l)Ox- M2(y-l)kOt

Note that for greater time accuracy, the Crank-Nicolson time averaging of

spacial operators_S@ often applied. For instance, we could define the
flux term F = (F_ ±+ Fn)/2 and subsequently apply the above lineariza-
tion and switching scheme.

The nonconservative fullpotential equation (Eq. 14) can be type-
differenced in a manner very similar to that of the small disturbance
equation. Equation (14) can be rearranged in the cannonical form (15,16)

Ctt + 2qCst = (c2-qZ)¢ss + C2¢nn (20)

where s is a coordinate locally aligned to the stream direction and n
is a normal coordinate. For the two-dimensional case

i

_nn = _ (V2_xx+2UV_xy_2_yy)

1

_SS = 7 (U2_xx+2UV_+V2_yy)
and

2qCst = 2U_x t + 2V_yt

It is seen that the steady part of Eq. (20) has the same form as Eq. (18).

Therefore a stable scheme results when cnn is always central-differenced

and Css is type-differenced based on the sign of c2 _ q2.
This assertion of stability, by analogy to known stable methods, can

be applied to the full potential equation. For this case we require the
following difference scheme for the model equation, Eq. (17).



V A _ - M2 + V & _ = 0 (21)
x x _ VxVx_ y y

This scheme,thoughless accuratethan Eq. (18a),is stablefor the
entireMach number range with no need to switchdifferenceoperators.

Now considerthe spatialderivativeterm _xP_x of Eq. (4). A
local linearlzatlonof this term gives

_x0_x = _x [_'X)o + (*x_+O _o ('-*o_ (22)

which upon substitution of Eq. (13) and assumption of steady small distur-

bance flow yields the approximateexpression,

_x(P@x) & _x(Po_x) - _x[(_ _ I (23)L\cZIo xl

If we furtherassume Po and (u/c)° to be spaciallyconstantwe have

_x(P_x) "=p[_xx-M2,xx] (24)

which demonstratesan approximateequivalencebetweenthe full potential
equationand the model Eq. (17). The importanceof Eq. (24) is that the
origin of the second #xx on the right-handside is in the evaluationof
p from Bernoulli'sequation. Therefore,the differencingschemeof
Eq. (21)is significantbecauseit is roughlyequivalentto evaluating
BxP_x with a centeredschemeemployingan upstreambiased p. The sta-
bility of this densitybiasinghas been demonstratedin Refs. (17-19).
This densitybiasingwill be expandedupon in the followingsection.

NUMERICAL ALGORITHMS

The final step in a finite difference solution scheme is the effi-

cient solution of the system of algebraic equations which result from

the various discretizatlons. Because these systems are all too large to

be solved efficiently (in spite of their sparseness), it is necessary to

reduce them to a more manageable form. All the unsteady schemes today

use some sort of approximatefactorlzation.That is, the systemmatrix
is replaced by a product of easily solved submatrices. In general, this
productis not equal to the originalsystemmatrix. However, it is pos-
sible to keep the discrepancieswithin the boundsof the discretization
error.

SMALL DISTURBANCEEQUATION--Thegerm of the approximatefactorlzation
idea is quite old, havingbeen first expressedin the ADI method. A
typicalADI schemefor Eq. (7) is

• o.:}(~ n IVY on

Step i. _ Vx _-_ ) = DxF($) + CVyAy_n + VzAz_n+ DVxl_y_n ,' D >
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I :}Vy¢ , D <

Step 2. _ = n = DxF(_) + CV A cn + V A Cn + DVxlAy
At Vx(_-¢ ) y y z z _ D >

n+l BVt_x_n+l _ VzA _n+lStep 3. AVtVt¢ + = DxF(¢) + CVyAyv + z

+DVxAy$ D >

Note that the cross derivative term is treated implicitly and is always

an upwind difference (20,21). The advantage of this ADI scheme is that

each step involves a simple matrix inversion (steps 2 and 3 require a

tridlagonal and step i requires a quadradlagonal inversion). Note also

that these steps are written so as to maximize their similarity to Eq. (7).

However, they are never actually solved in this form. It is more effici-

ent to subtract steps i and 2 from steps 2 and 3, respectively, and solve

the resulting equations. The insertion of the eft discretizatlon in

the above algorithm is very convenient and was first introduced by
Rizetta and Chen (22).

It can be shown that the above ADI scheme constitutes a product of

terms which are a good approximation to the original difference equation.

This scheme was originally devised with the idea that each step should be

a consistent approximation of the original difference equation. However,
if this constraint is relaxed there are a number of factorizatlons which

can be found. To see how this is done, consider the model equation

Cxt = BCxx+ Cyy
which is differenced as

VtVx_n+l n+l On+l= BVxAx¢ + V A (for 8 > O)YY
and then rearranged as

(Vx_gVxAx_VyAy)¢n+l " n= Vx¢

The left-hand side of this equation can be approximated by the product

(I-BAx) (Vx-VvA v) if the error term 8VxAyVy is eliminated. This elimi-
nation is easily accomplished using the known information at step n.

And so, an appropriate approximate factorization (commonly called the AF2
scheme) is

n+l (Vx+SAxVyAy)¢n(l-8Vx)(Vx-VyAy) € =

This gives rise to a two-step procedure -- one step being a bi-diagonal

and the other a tri-diagonal inversion. A further simplification is to

solve for (€n+I _ cn) rather than cn+l in order to simplify the evalua-

tion of the right-hand side.
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CONSERVATIVEFULL POTENTIALMETHOD--Theabove factorizationapproach
will now be appliedto the unsteadyfull potentialequation. We will
flrst derivea simplifiedform of the equationfor two dimensions. Con-
sider Eqs. (4) and (5) in their two-dimenslonalform subjectto the
mapping _ = _(x),q= n(x) and assume a steadyfree-streammotion allow-
ing _ to be expressedas # .Mx + #. This gives

_t(plJ)+ _--i-*_+ _n_-T-*n=0 (25a)

1

p = I - (7-1) _ +_ _.. Y Cy .

On applicationof the linearlzationof Eq. (15),Eq. (25a) is differenced
as

2 -_ n 26 n+1-

(26)

+ _n(_nn_6n#n+l) + Vt0n

where 8 _ p2-y, ^ impliesdivisionby J, and the referencestate 0 is
now taken to be the previoustime step n. The spaclaloperatorsin
Eq. (26)are definedas

( )i+l- ( )i-I
6_ = 2 (27a)

( )i+1 - ( )i-1
6 = (27b)n 2

I_) I Pi+l+ Pi_(_x2_) = 1-_i+_)i+1 2

(l+8)Pi+ (i-8)0i-iJ]($i+i+ vi+l 2 _i)

(27c)

Pl 2Pi-I(i-_i)

(l+8)Pi_1 + (I-8)Pi_2](,ij+ vi 2 -_i_i)
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_n(_rl_rl$) =/nzZ / Pj+l + Pj
J _j_ 2 ('3+I-*j)

(Z7d)

_ (nz2_ Pj + Pj-i (,j_,j i)
\ J /j_½ 2

Here, A_ = An --1 and only the varying indices are indicated. The param-

eter 0 = 1 or 2 for first- or second-order spatial accuracy in super-
sonic regions. The switching parameter v is defined in a way similar to
(17)as

= [i - i <_c< lO

- 0 if v < 0 (i.e., subsonic) I (28)
v - 1 if 9 > i (i.e., supersonic)

where p* is density evaluated at sonic conditions.

The parameter _ can be set to 1 throughout, but accuracy will be

impaired unless 8 is also set to 2. The operators in Eqs. (27a) and

(27b) assume that the flow will be supersonic only in the positive

x-direction. The density is found from the Bernoulli equation with
(A_ : An : i):

. €i+iS €i-i€_Ii : a_€i

& Cj+l - _j-II

Cnlj 2 : an_J

n+l . (_n+l_ cn) n+l_T : _t : _T_

The metrics _x and qz are obtained from

2

_x xi+ I - xi_ l

2

qy = zj+I - zj_I ,,

while the term (_x2/J)i_ in Eq. (26) is formed either as



13

or

I_) (_x/J) i+i + (_x/J) i (29b)i+_ 2(xi+1-xi)

The terms (_xZ/J)i_i/2,(nzZ/J)j+i/2,and (qz2/j)j_i/2receivesimilar
treatment. If Eq _19a) is used, it is essentialto add -6 (p=_2/j)_¢_• _ x
to the rlght-handside of Eq. (16)to subtractout a numericaltruncation

: error due to incompletemetric cancellation.
Eq. 26 is now rearrangedintodelta form; it is now to be solved for

A_ = _n+l _ _n. For example,the term _(_x2 _n)_@n+l can be rearranged
as

_(_ _n)_(A¢)+ _(_x2_n)_,n

When the equation is put into delta form all the unknown terms are

arranged together, resulting in

((sn/jn+l)[6T + (_x2)n+l _n6_ + (ny) _+I _nn6q]- h_(_2/J) n+l on6_

- h_n(ny/j)n+1pngn)(¢n+1- €5

n-l 2 n n-1 n (30)_-(Bn-_/jn)[6+(_)n,_S_+ (ny)% _n](,_,n-_)

+ (_n _ Bn-l) + h(_ 2 n+l(_x/j) pn_n

+ _o(rly/j)n+l Pn6n#n)

which can be approximately factored into the form

{I + At(ny)n+lo_n6 - At(jn+I/gn)h6n(nyz/J)n+lpn_n}x

2 n+l (¢n+l{I + &t(_x2)n+l_n _ _ At(jn+llsn)h_(_x/j) pn_} _ _n)

-- [1 + (_n'l/sn) (jn+l/jn)] (¢n_ €n-l) _ (Hn-1/sn)(jn+l/jn) (¢n-1 _ €n-2)
. (3z)

+ at(Sn.1/Bn) (jn+l/..in) [(_:x2)n €_n-1(S_ + (qy2-) n cn-l(Snrlj] ((I)n - (Fn-1)

+ At(jn+l/t_n ) {(_n _ _n-1) + h_.F(_;_x/a)n+lpn_:¢n

+ h_n(nZ/j)n+Ipn_ cn}Y n
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This equation has the form

LBL_(_n+I _ _n) = R
(28)

and is implementedas an algorithmas

L _* = R (29)
n

= a¢_
L_A_ n

_n+l = _n + A_n 0

This algorithm requires only a series of scalar tridiagonal inversions
and it is therefore very efficiently implemented, Computer storage equiv-
alent to four levels of _ have to be supplied with p computed from the
Bernoulli equation as needed.

RESULTS AND APPLICATIONS

Although the various finite difference issues are very similar for

the unsteady small disturbance and full potential methods, there is a

large difference in the extent to which these methods have been developed

and applied. Naturally, this difference reflects the relative complexity
of the two methods.

One of the most interesting test computations demonstrating the use
of unsteady potential finite difference methods concerns the flow about

a pulsating airfoil (that is, one having a tlme-varylng thickness).

Although the idea of a pulsating airfoil seems farfetched, it can be

shown by considering the two-dlmenslonal small disturbance equation to

emulate a time-varylng free-streamMach number. And free-stream Mach

number-variation does occur for an advancing helicopter rotor. Now con-
sider a parabolic arc airfoil whose mld-chord thickness varies as

O.l[I0 -t + 6(t/15)2](t/15)3 , O! t ! 15

T(t).= 0.i 0 15 + 6 , 15 < t < 30

_0 , t > 30

where t = t'U=/£ and is nondimensionallzed by chord lengths traveled.
Since the variation takes place over many chords of travel it is suitable

to invoke the low frequency approximation for the small disturbance equa-

tion -- that is, all time derivatives except _xt are ignored in Eq. (7).
(Physically, ignoring _tt in Eq. (7) amounts to assuming an infinite
downstream propagation rate.) Figures 2 and 3 show a comparison of the

resulting flow computed by the full potential method (Goorjian, Ref. 9)

and the low frequency small disturbance equation (Ballhaus and Steger,
Ref. 23). When the airfoil is thinning it becomes subcrltlcal by propa-

gating the shock upstream from the leading edge. The two approaches
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give essentially the same result. The most significant difference between

the two computationsis perhapsthe greaterdissipationof the forward
propagating shock for the full potentialcase. This can be controlled by

the choice of upstream density biasing function. For this case, density

switching was employed. Recall that it is possible to use an unswitched

upstreamdensityas long as a higherorder differenceis used to maintain
accuracy. This is demonstrated in Fig. 4 which comparesswitchedand
unswitched density biasing for the computation of the steady flow on a
biconvexprofile.

The previouslymentionedshockmotion is so differentfrom our
previousexperiencethat itdemands some kind of experimentalstudy. By
coincidence,sucha studywas performedby Tijdemanand his associates
(24,25)at NLR, the Netherlands,at the same time that the first of these
computationswas being done. They acquireddetailedflow visualization
and loadingdata for a NACA64A006airfoilwith an oscillatingflap. They
delineatedthree basic types of shockmotion caused by the oscillating
flap. These are:

i. Type A. The shockmoves nearly slnusoidally(only the lowest
harmonicwas measured)with a phase shift relativeto the flap
motion. The shock strengthvaries,being a minimumwhile moving
downstreamand a maximumwhile moving upstream.

2. Type B. This case is similarto Type A except that the shock
strengthvariationdisappearsduring the downstreammoving
portionof its cycle.

3. Type C. At slightlysupercrltlcalconditionsthere is no super-
sonic region for a large portionof the flap cycle. In this
case the airfoilbecomessubcrltlcalby propagatingthe shock
upstreamoff of the leadingedge. There is no downstreamshock
motion.

The abilityof potentialmethods to computethese shock motionswas
demonstratedby Ballhausand GoorJlan (26). In this work, two-dlmenslonal
finitedifferencesolutionsof the low frequencysmall disturbanceequa-
tion were obtainedby the ADI approach(program,LTRAN2). The computed
Type B motion is shown in Fig. 5. The shock-motlondisappearanceand
reappearanceare shown here for LTRAN2 and the Magnus-Yoshlharacode (an
isentropicEuler code). Type C motion is illustratedin Fig. 6. In the
successionof plots shown, the shock is seen to form at mld-chordand
move upstreamuntil it disappearsat the leadingedge. The shock is seen
to disappearhere rather thanvisiblypropagateupstreamas in Fig. 3,
probablydue to numericaldissipation. It is interestingthat the condi-
tlons for which thesevarioustypes of shock motion were computeddo not
comparewell with the actual experimentalconditions. It is generally
feltnow (on the basis of comparingdifferentcodes and of computations
of wall effects)that the discrepancyis due to tunnel-walland possibly
viscouseffectsrather than numericalproblems. Nevertheless,the fact
that experimentand computationproducethe same kinds of phenomena
greatlyincreasesthe significanceof both.

A primaryapplicationof unsteadytransonicpotentialmethods is in
the predictionof loads on helicopterrotors in forwardflight. Although
aeroelastlceffectsare important,in this case the main source of
unsteadinessis in the flow itself. The most notabledistinctionbetween
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the fixed and rotary wing is that for the latter the free stream (in body-

fixed coordinates) is constantly accelerating and decelerating. That is,

the rotor "sees" the free-stream Mach number to be periodically varying.
The reduced frequency of this variation is the inverse of the blade

aspect ratio. Since aspect ratio is of the order of i0 for a rotor, it is

possible to invoke the low frequency approximation. The effectiveness of

the small disturbance potential methods has been demonstrated by comparison

of computed flows with measured surface pressure on a nonlifting rotor

blade. Figures 7 and 8 demonstrate this comparison at two blade azimuths,

= 6_ and 120° , respectively (see Fig. 7 for definition of azimuth

angle). Measurements and computations are in excellent agreement. The

effects of unsteadiness are evident in this figure because for the two

azimuths shown the chordwise Mach numbers are identical. Yet the pres-

sures are quite different. There are no shocks seen at _ = 6_, but they

are evident at 12_ . This azimuthal shock asymmetry is not explainable
by cross-flow effects, because the inboard station is too far from the

tip. Furthermore, the inboard results can be readily obtained by two-

dimensional computations (27). Very often, the shock motion in these

rotor computations appears to be Type C, the upstream propagating type.

This is seen in Fig. 9 (27) which shows a low frequency small disturbance
two-dimensional computation of a lifting rotor flow. In this case the

blade is oscillating and also sees a varying free-stream Mach number.
The flow on the bottom surface of the airfoil is seen to return to sub-

critical conditions by propagating the shock upstream.

The most fascinating feature of the above computations is that they

are so easy to perform compared with wind-tunnel testing. Yet they have
often proven to contain most of the essential physics. In the following
discussion we shall demonstrate the use of a potential computation as a

"numerical wind tunnel" to explore a little-studied but possibly very

important problem.

An unusual unsteady flow feature of helicopter rotors is that they

are never very far from the tip vortex of a preceding blade and close
blade/vortex interactions often occur. Under certain conditions a

blade can encounter a vortex which is nearly parallel to itself. Such

encounters are an important noise source and require modeling. An

extremely simple model is provided by a two-dimensional small distur-
bance computation of a near-vortex encounter. The time scale for this

problem (£/U=) is very brief and it is necessary to include all time

derivatives. The vortex is introduced as the edge of a potential dis-

continuity sheet (Fig. i0) which is stepped through the computational

grid. The vortex is moved through the grid in a prescribed straight line
at the undisturbed flow speed. The strength of the vortex is given as

an effective lift coefficient, CLV, of an airfoil having the same circu-

lation as the vortex. Note that while the sheet describing the vortex
in Fig. I0 is horizontal, its direction is irrelevant. The effect of

unsteadiness in these computations is shown in Fig. ii, which compares

blade surface pressure distributions for a fixed and moving vortex (the

vortex, located at mid-chord and 0.96 chords below the blade, has the

strength, CLV = 0. i). There is no apparent disturbance for the unsteady

moving vortex case but a large disturbance for the steady case. This
result undoubtedly reflects the fact that the vortex exerts no force on
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the fluid in the unsteady case. In fact, in order to get a sizeable

effect on the surface pressures (other than the expected angle-of-attack
variation) it is necessary to bring the vortex quite close to the blade

and increase its strength. Figure 12 shows the lift variation for a

blade with a vortex of strength CLV = 0.4 whose path lies 0.25 chords
beneath the blade. As the vortex passes it induces a shock on the bottom

surface. This shock disappears very suddenly with no obvious upstream

propagation. Through all this activity the upper surface seems curiously
unaffected.

The importance of such a computational experiment is difficult to

assess because many liberties have been taken. Nevertheless, it is clear

that the neglect of unsteadiness would be to greatly overestimate the
effects of these phenomena. For sufficiently strong or close vortices,

large and rapid bottom surface disturbances can be computed and these

must have acoustic significance. However, this could be mitigated by

allowing the vortex to move freely rather than follow a fixed path.

Undoubtedly, an assessment of these sorts of computations cannot be made

without some experiments. Thus it seems that the effect of the "numerical

wind tunnel" can be to guide the use of and increase the need for the

physical wind tunnel.

CONCLUDING REMARKS

This paper has made no attempt to treat unsteady potential finite

difference methods exhaustively or in great detail. Rather, a typical
small disturbance method, and a full potential method have been discussed

in parallel in the context of the issues (choice of equations and boundary

conditions, llnearizations, discretizations, and algorithms) which arise

in all code development. One can discuss a typical method because the
choices taken in code development are quite few. For instance, the choice

in the equations centers around whether one wishes to have one or two
dependent variables. Linearizations and discretizations vary little.

All methods employ some sort of upstream biasing and nearly the same time

discretizations. Algorithm development always comes down to some sort of

approximate factorization. In short, although there is much development

work to be done, the general area of potential finite difference methods

is beginning to mature quite nicely. We shall surely see the development

of several practical three-dimensional unsteady full potential codes

within the coming year or two.
There remains one vital issue which has not been covered in this dis-

cussion: the subject of grid generation. On this point finite difference

methods are often more of an art than a science. The problem is not as

much to generate a mesh as to know the effect of this mesh on a particular

problem and solution method. This is especially difficult in the unsteady
case where we may have the _resence of moving flow features (shocks and

vortices) which require resolution. It is ironic that while gridding is
the most fundamental feature of finite difference methods, the topic of

grids remains [o be organized into an organic and systematic entity. The

requirements _or large-scale unsteady computations must certainly change

this situation, because [hey will require fast, automatic, and reliable

grid schemes.
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Fig. 1 - Rotating and translating coordinate system
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