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SUMMARY

A comprehensive analytical design procedure for the installation of simple
pendulums on the blades, of a helicopter rotor to suppress the root reactions is
presented. To achieve this goal, a frequency response analysis Is conducted of typical
rotor blades excited by a harmonic variation of spanwise airload distributions as well as
a concentrated load at the tip.

The structural modeling of the blade includes elastic degrees of freedom In flap and
lead-lag bending plus torsion with a hingeless hub constraint. Simple pendulum
absorbers are individually considered for both flap and lead-lag types of motion. The
inertial reaction forces and moments at the pendulum hinge are formulated. On the
basis of a rational ordering; scheme the general nonlinear equations of motion for the
rotor-pendulum system are linearized in the perturbation elastic blade displacements
and pendulum angle. These linearized equations include the effects of spanwise airload
distributions associated with the elastic deformations and the cyclic pitch environment
of forward flight. A quasi-steady aerodynamic representation is utilized in the
formation of these airloads. The solution of the system equations is based on their
representation as a transfer matrix.

The numerical results presented here pertain to both uniform and nonuniform
hingeless rotor blades. These results include the effect of pendulum tuning on the
minimization of the hub reactions. It is found that a properly designed flapping
pendulum attenuates the root out-of-plane force and moment whereas the optimum
designed lead-lag pendulum attenuates the root in-plane reactions. A properly tuned
pendu lum 	

1.	 b +l, v ibratory 11-ne'C by generatin g appropriat e forces at its  can 
at 

«cnua Lc L ^c v̀ A . c w. J ay.+.. ,

attachment point with the blade. These foe .,;es redistribute the loads on the blade so
that only a small portion of the reactions are transmitted to the hub.

For optimum pendulum tuning the parameters to be determined are the pendulum
uncoupled natural frequency, the pendulum spanwise location and its mass. It Is found
that the optimum pendulum frequency is in the vicinity of the excitation frequency. In
the case of an off-tuned pendulum the result can be either a slight-to-moderate
degradation in pendulum absorber effectiveness or a drastic increase in hub reactions.
Although the uncoupled natural frequency of the pendulum is independent of the mass of
the pendulum, a proper choice of the mass is required to generate an optimum force to
attenuate the root reactions.

A pendulum can be tuned and its optimum mass determined by excitation with a
concentrated simpir harmonic load at the tip. However, it is necessary to utilize
distributed airloads to accurately determine the attenuation of the root reactions. The
damping at the pendulum hinge has a small effect on the hub reactions once the
optimum pendulum tuning is established. For the optimum pendulum a parametric study
is conducted. The parameters varied include prepitch, pretwist, precone and pendulum
hinge offset.

INTRODUCTION

Vibration has always been a significant detriment to helicopters which is not
surprising in view of the fact that a major percentage of a helicopter's mass consists of
rotating components such as engines, rotors, gearboxes and drives. These revolve at
different frequencies, though most are multiples or submultiples of the main rotor
frequency, and any out-of-balance forces are easily transmitted to the light airframe.

Y	 There is also the possibility of damaging beat frequencies arising in those few cases
where rotational rates are not synchronous.
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In addition to the inertially induced vibrations, the unsteady air loads on the main
and auxiliary rotors significantly contribute to the vibratory environment. These
unsteady aerodynamic reactions are caused by the local periodic dynamic pressure on
the main rotor blades In forward flight and the cyclic pitch changes imposed by the
rotor head. An response to these unsteady loads the elastic blades are continually
deforming which induces additional unsteady aerodynamic loading.

An increasing demand for the reduction of helicopter vibration has been dictated by
the expansion of flight envelopes coupled with more stringent requirements for crew
and passenger comfort as well as Improved' reliability and maintainability.

The rotor system, which transmits the vibratory airloads to the fuselage through
the rotor shaft, Is one of the most significant contributors to the vibrations of the
helicopter. The rotating blades create vibratory alrloads containing all harmonics of
the rotor rotational frequency. As the loads from the Individual blades combine at the
rotor hub, some harmonics cancel each other while others are additive. The loads that
are additive are passed from the blades to the pylon and then to the cabin through
complicated dynamic load paths. These loads are felt as vibratory forces and moments
whose frequencies are Integer multiples of the blade passage frequency (number of
blades times rotational frequency).

Dynamic systems that reduce the vibration in helicopters may be classified into
five groups:

(l) Excitation reducers 	 (blade aerodynamics)
(2) Attenuators	 (blade dynamics with or

without hub motion)
(3) Absorbers	 (hub dynamics)

,n	 r ..	 ., a...,,--r') Aao la 4^i ►"S	 ^i37 at'iO R %AY 11v u l m al

(5) Cabin Suppressors	 (fuselage dynamics)
These systems are described below and specific examples are given.

Excitation reducers are devices that either reduce aerodynamic forces on the
blades, or alter the hub moments and shears by generating counter-lnfluencin
aerodynamic forces on the blades. Higher harmonic blade pitch control devices (ref. I^
fall Into this category. In reference I a wind tunnel test has been used to evaluate
higher harmonic blade pitch for the reduction of helicopter vibration. The higher
harmonic pitch was obtained by higher harmonic oscillation of the swashplate. The test
results indicated reduction of fuselage vibratory loads.

The attenuators are those dynamic devices that result in low hub shears and
moments while the blades are subjected to specified aerodynamic excitation forces. An
example of this category is a midspan or tip weight that may move the natural
frequency of a mode away from exciting harmonics or reduce the modal forces at the
blade root.

Absorbers are devices that are Incorporated at the hub (or blade root) and absorb a
large portion of the hub shears or moments causing transmittal of only the remaining
forces to the mart. Examples are the simple and bifilar pendulums.

Isolators are generally integral to the pylon assembly and reduce greatly the forces
and moments transmitted to the fuselage with respect to the forces applied on top of
the mast.

Cabin suppressors reduce the vibration in the cabin for prescribed forces and
moments applied by the pylon on the fuselage.

One of the five categories, the pendulum absorber, has proven to be quite
successful as reported in references 2 to 6. Such a technique consists of mounting a
simple or bifilar pendulum on each rotor blade near the hub. The blade-mounted
pendulum absorbers modify the response dynamics of the blades, and reduce the

2
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helicopter vibrational levels. All reported work has consisted of an expensive and time-
consuming flight test program to establish a set of acceptable pendulums parameters.
As the flight tests become more and more expensive, an analytical study Is needed for
pendulum design.

Murthy and Hammond (ref. 7) have studied the effect of a pendulum absorber on
the natural frequencies and mode shapes of a rotor blade. A vibration analysis of rotor
blades undergoing coupled flapwlse bending, chordwise bending, and torsional vibrations
with a spherical pendulum absorber was presented. A portion of the Investigation
Included a reduction of the spherical pendulum to a simple flapping pendulum. It was
shown that the pendulum absorber displaces original blade natural frequencies that are
In the vicinity of the pendulum tuning frequency(les). The spherical pendulum
Introduces two modes between the displaced original modes of the blade, whereas the
simple flapping pendulum introduces one mode. Mode shape results were not presented
In the report. It is worth mentioning that the equations of motion were based on the
linear analysis presented by Hk,,)ubolt and Brooks (ref. 8), and no damping terms were
Included. Also the damping at the pendulum hinge was not considered.

The principal aim of the present study is to establish comprehensive analytical
design procedures and criteria for the Installation of simple pendulums on the blades of
a helicopter rotor to suppress the force and moment reactions at the hub during forward
flight conditions.

The objectives of tho present investigation can be stated as follows:
(1) Develop a mathematicalmodel to represent the blade-pendulum system. A

single nonuniform rotor blade with a hingeless hub restraint undergoing coupled flapwlse
bending, cnorowise bending, and torsional vibrations Is considered. Simple pendulum
absorbers are individually treated for both flap and lead-lag types of motion. The blade
is excited by an azimuthal harmonic variation of spanwise airload distributions
associated with the elastic deformations and the cyclic pitch environment of forward
flight,

(2) Find the dynamic response characteristics of the Hade-pendulum system, using
the transfer matrix method (ref. 9).

(3) Determine the optimum pendulum tuning to suppress the hub reactions. This
entails the minimization of these reactions by appropriate variations of the pendulum
parameters for a given excitation frequency. The pendulum parameters Include the
uncoupled pendulum frequency, hinge spanwise loaction and pendulum mass.

(4) Conduct a parametric study of the optimum tuned configuration. The
parameters to be varied include pendulum hinge offset, preco.ne, prepitch and pretwist.
The intention of this investigation is to document the effects of these parameters on
the optimum configuration previously established and thereby provide useful design
criteria for future installations of pendulum absorbers.

SYMBOLS

a	 airfoil lift-curve slope
reference frame which rotates with speed S2 with

respect to the stationary inertial frame 1
C	 pendulum hinge friction coefficient, equation (35)
CT	rotor thrust coefficient

c	 blade chord

3
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edo airfoil profile drag coefficient
E Young's modulus of elasticitj
e mass centrold offset from elastic axis, gositive when

forward of the elastic axis
Fa aerodynamic loads vector, equation (133)
Fy„ Fz, components of aerodynamic forces per unit length In y',

Y', z' directions

G shear modulus
g acceleration due to gravity
I, 0, K "axed" unit vectors with !^C in directIan of rotation of

f in O, figure A-1
Iy , blade cross-section moment of Inertia about y' axis

blade cross-section moment of inertia about z' axis
i, j, k unit vectors assoccated with undeformed blade coordinate

system, figure A-1

unit vectors associated with deformed blade coordinate
system, figures 1, A-2

torsional rigidity constant

kA radius of gyration of blade cross section
km mass radius of gyration of blade cross section

Is m 1, km2 mass radii of gyration about n and i	 axis, respectively
Lv , 7Lw components of generalized nonconservative (aerodynamic)

forces in y and z directions
R length of pendulum
M mass of the pendulum

Mx, M x, twisting moment about the x and x' axes
M y , My , bending moment about y and y' axes

M z, M z, bending moment about z and z' axes
M generalized nonconservative (aerodynamic) moment about

x axis

M	 mass per unit length of the blade
N	 time independent average normal force on the pendulum

bearing, equation (35)
0	 fixed point inandat the root of the blade, figure A-1

fl A
l

I
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X1  y', z+

{Z(x,t)}

as

Bpc
e

x : y : z

t;

point transfer matrix of the pendulum

length of blade
Inertial reference frame
transfer matrix of the blade from 0 to x

Initial radial blade tension, equation (10)
time
radial, tangential, and perpendicular components of
velocity for blade airfoil section
elastic displacements in the x,y,z directions,
respectively, figure A-2
wind velocity
axial force (tension) In the x, x' directions,

respectively
shear force in the y, y' directions, respectively
shear force In the z, z' directions, respectively
induced downwash velocity at rotor, positive
downward

pendulum weight
inertial axis system with origin at hub centerline and
Z normal to hub plane, figure A-1
mutually perpendicular axis system with x along the
undeformed blade and y toward the leading edge,
figures A-1

a set of Cartesian coordinates with origin at a point
along the deformed blade with x' remaining tangent
to the elastic axis and y' and z' along principal axes
for the cross section, figures 1, A-2
state vector, equation (1)
shaft angle
precone angle, figure A-1
small parameter of the order of the bending slopes,
also airfoil section pitch angle with respect to free-
stream velocity, figure 7
sectional coordinate normal to n axis at elastic axis
(same as z'), figure 1, also damping ratio

C P]
R

ET(x),j
TO

t

UR, UT, Up

u,v,w,

V1

Vx, Vx,

Vy , Vy,
Vz , Vz,

V 

W
X, Y, Z
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A at the pendulum hinge location
F at the pendulum mass location
Superscripts:

L immediate left
12 immediate right
T transpose of matrix

-1 inverse of matrix

Notations:

(	 )' differentiation	 with	 respect	 to	 x,	 also	 deformed
coordinate system

O differentiation with respect to time
(^) amplitude of simple harmonic quantity

b

i
^	

4

r

q sectional coordinate corresponding to major principal

axis for a given point on the elastic axis (same as y'),
figure 1

p pitch angle, equation (125)
8c

collective pitch, equation(125)

lCs 6 1s
cyclic pitch components

9 pt pretwist, equation (126)

n t pretwist per unit span, positive when tip angle Is
larger, equation (126)

X Inflow ratio, positive upward
µ slope of deflection curve In the plane of rotation,

dv/,Jx

o f advance ratio,	 p f 5312 = V 1 cos a s

v slope of deflection curve normal to the plane of
rctation, dw/dx

P mass density of blade, also mass density of air
elastic twist about the elastic axis
blade azimuth angle measured from downwind position
In direction of rotation
rotational speed of the blade

W uncoupled natural frequency of the simple pendulum
p

Subscripts:

41
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BLADE EQUATIONS OR MOTION

The equations of motion which are used to represent the structural dynamic
characteristics of the helicopter blade are based on the development reported by
Hodges and Dowell In reference 10. Tne mathematical model chosen to represent the
rotor blade consists of a straight, slender, variably twisted, nonuniform beam w !- i.ch can
undergo combined flapwise bending, lead-lag bending and torsion. The elastic axis, the
mass axis, and the tension axis (area-c_-ntrold axis) are taken to be noncoincident. The
elastic axis Is Inclined to the plane of rotation at a small angle In order to accommodate
any built-in coning (precone). The use of an actual helicopter rotor blade as a model
would be a more formidable task 'iecause of the nonhomogeneous, anisotroplc
structures found In typical blades.

Several orthogonal coordinate systems and coordinate transformations (Appendix A)
are employed In the derivation of the equations of motion. The beam cross section Is
shown In figure I before and after deformation. The n and ^ axes are the principal axes
of the cross section for the shear center. The cross section is assumed to be symmetric
with respect to the n axis. The deformed beam Is shown In f Igure 2(a) with force and
moment resultants acting on the face of a cross section. The x, y, z coordinate system
Is the preconed undeformed system. At any point along the deformed beam, x' Is
tangent to the deformed elastic axis. The y' and z' are Identical to the n and ^ axes,
respectively, when the beam is deformed.

A mathematical ordering scheme which Is consistent with the assumption of a
slender beam Is adopted for the purpose of systematically discarding elastic and
dynamic terms which are of higher order in the equations of motion. The ordering
scheme is consistent with the small deformation approximation in which the strains are
negligible compared to unity and the dimensionless axial deflection u/R Is generally
taken to be of the same order of magnitude as the square of v/R or w/R and thus is
small with respect to unity. These assumptions can be systemized by introducing e, a
parameter of order v/R or w/R. The ordering scheme associated with the above
consideration is summarized in Table 1. Within the force and moment expressions,
terms of order a are neglected with respect to ur,ty. Thus, If the largest terms of the
force expresslgn are O(s ), then all terms of O( e ) are retained (first-order terns), all
terms of O( E) are retained (second-order terms), and generally terms of O( e) are
discarded.

The blade equations of motion will be written in terms of the state vector { Z }
where

{ Z(xr t) } T = Lv w ^ u v Mx My Mz Vx V  Vzi	 (1)

It may be noted that the above state vector does not Include the axial deflection, u. In
or der to obtain a set of linear equations for the state vector components, u must be
Ilminated. The components of the state vector, { Z}, can be chosen several ways, but

they are chosen here such that they represent the physical quantities of deflectlons,
slopes, moments, and shears. This is not absolutely required but highly preferable for

M	 application of the transfer matrix to obtain the dynamic response characteristics.
The equilibrium of the forces and moments that act on a differential beam element

is now considered. In this consideration the element is formed by slices parallel to the
yz-plane, because this choice leads to rather simple results. The forces that act on such
an element are shown in figure 2(a); the moments, in figure 2(b). The quantities p p ,
p , q , q and q are res-_tltant force and moment loadings. Summation of the mor&nY'
a out the x-, ^, and z-directions lead to the following equilibrium conditions for
moment and shear:

7
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0(

A = 0(

A
w = 0(

^ = 0( e)

0(I)

PC
0(c)

0

kA
=R O(c)

km 
R	

= O(e

R(	 )' O(l)
R 

= O(l)

RY- = O(e) V)= O(l)

I

TABLE 1. - ORDERING SCHEME FOR ROTOR

BLADE PARAMETERS

O(c)



M1  
+ V  v ► _Vy wl + qx	= 0	 ( 2a)

M'y -Vz + V  w' + q 	 = 0	 ( 2b)

M1  
+ V  -Vx v+ +q z 	 0	 C 2c)

V1x+ px 	- 0	 ( 2d)

V1  + P 
	 0	 ( 2e)

V1z+Pz	 0	 (2f)

The applied loads p , p , p , q , q , q due to Inertial and aerodynamic loadings ace
functions of v, w, ^ antra ltng6A1;aNadial deformation u In the x direction. The only
effective aerodynamic loading to be considered In this analysis will be forces In the y
and z directions given by L and L , respectively, and moment about the x axis given
by M The inertia loadings, whi h consist of the forces and moments which oppose
acceltrations of the blade elements, are derived in reference 10 whereas the
aerodynamic loadings L , L , and M are left in this symbolic form. These
aerodynamic loads are X;riv& later I this text. The procedure that follows Is
employed In the derivation of the Inertia loading which Is given In reference 10. The
acceleration of any mass particle on the vibrating, rotating blade Is derived and the
components in the x-, y- and z- directions are obtained. These component accelerations
Include terms for the Corlolis, transverse and centripetal accelerations along with
higher order terms. The Inertia force and moment loadings are then obtained by
integrating over the cross section. By dropping higher order terms In accordance with
the adopted ordering scheme, the following resultant loadings to second order are
obtained:

Px = m(S2 2 x+2a0-m$ PC 'w	 ( 3a)

P  = -m`v + me sin 0 + m92 2 [v + e cos (0 + ^ )]	 ( 3b)

+ 2m SZ($ PC k-0) + 2m a  (v' cos 0 + V sin 0) + L 

Pz = -mw -me ^ cos 0 -m Q 2 $ PCX -2 m S $pcv + L 	 ( 3 c)

qx = me(V sin 8 w cos 0) -m Q2ev sin 0 -m SZ 2e $PCx cos 0	 ( 3d)

-mkt -2 m Q2(k2 -km ) sin 2(0 + ^) + M^
2i

q =Y	 me( S12x sin( 0 + c) + 2 0 sin 0)	 (3 e

qz = -me( S2  x cos(e + ^) + 2 0 cos 0)	 ( 3 f

The underlined higher -order terms could be dropped consistent with the ordering
scheme, but this would eliminate torsional inertia. In the special case of rotor blade

9



configurations of very low torsional rigldlty, these terms may contribute 1,ubstantlally
to the magnitude of the torsiona" natural frequency; hence, they will be retained (ref.
10).

There are now 6 equilibrium equations, equations (2a) - (2f), and 10 unknowns, u, v,
W, c , M , M , M , V , V , and V . In addition, 4 force and moment deformation
relations ire AquAd t6 e4ress M xx M , M , V In terms of u, v, w, ^ . The farce and
moment resultants are expressed In yterX & the deformations by resolving the
distributed stresses Into a resultant force and moment system acting at the elastic axis.
These relations given In reference 10 are written In the deformed body axis system as

^2	 r2
Vx, - EA u' 2 2 kA ®1 +-eA 

P' cos (0 + ^) + w^^ sin (0 + )^ 	 4a)

i2	 a2
Mx, = G0 ^' + EAkA(0 + ^)' (u' +	 + 2 ) + EB* 10'2 '	 ( 4b)

-EB2 0 1(v" Cos 0 + w" sin 0 )

My , =	 Ely , 1v" sin ( 0 + ^) -w" cos (0 + ^)] 	 ( 4c)

Mx, =	 EIz, Ev" cos (e + 0+ w" sin (0 + ^ )1-EAe A (u+	 + 2) -Eq 0' ^'	 ( 4d)
,2	 ,2

where B* and B*,are section constants defined by

B1 ff(n2 + X 2)2 d o dg
A

132 -JJn(n2 +42)dnd4
A

and A is the blade cross-section area effective in carrying tension.
The underlined terms may be neglected according to the ordering scheme.

However, as discussed before, these terms are important fo.^ configurations with low
torsion stiffness. In equations (4a) - (4d), the terms which coke from the warp effect
are omitted due to its relative smallness for closed cross sectionr,..

The force and moment deformation relations, equations (4a) - (4d), can be readily
transformed into the undeformed body axis system using the transformation matrix of
Appendix B. The resultant moments are:

10



Mx GJ + EAk2A (0 + ' " + 22 + 2 )

+ EB1 8'2 V -EB^ 0' (v"' cos 0 + w" sin 0)

v'2 w"2- EAP (u' + 2 + 2) (v' sin 0 -w' cos 0 )

+ (EIz, -Ely) L2 (v'v" -w'w") sin 2 0 + (v'w"

+ w'v") sin  0 ] + EIy , v'W" -EIZ , Ow'

v"2w'2
My = G0 ^'v' + Eft 0' ^' sin 0 + EAeA (u' + 2 + 2 )

sin (0 + ^) -(EIZ" -EIV ,) tw" sin  (0 + )

+ 2 v" sin 2 (0 + ^ )1 -El y , w"

Mz	 w'G0 ^' -EB2 0' ^ I cos , 0 -EAeA(u'

v'2 w'2+ 2 + 2 ) cos (0 + 0 + (EIZ , -Ely,)

2 Cw" sin 2 ( 0 + ^) -v" sin 2(a + )1 + EIZ,v"

( 5a)

( 5b)

( 50

r^^w The resultant axial force in the undeformed body axis system is

h-

	 Vx = Vx, -Vy , Cv' cos ( 0 + 0 + w' sin ( 0 +	 -VZ, [-v'  sin (0 	 + w' cos (0 + ^ )a
/S

11
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t b)

r

For rotor blade applications the second and third terms on the rijIfit: hand sidt
negligible to second order (ref. 10); thu„i,

,2	 ,2
Vx = Vx, = EA u' +	 +	 + kA 0	 -eA [v"cos (0 + ^) + w" sin (0 ^• )

In the above expressions all terms above second order have been neglected. As a final
step the following definitions are Introduced.

V 1 	 p	 ( 7a)

w' M v	 ( 7b)

Equations (2), (5), (6), and (7) represent 12 Independent equations for the 11 state
variables and the elastic elongation, u. In order to obtain a set of linear equations for
the state vector components, a must be elimin^ red. This will be accomplished by
defining the time Independent tension, T o, as

I2
To a 

f 

M 'Q 2x d x

In the process of linearization, the following approximations will be made

sin (0 + ) e^ sin 0 + ^ cos 0

cos (0 +	 a^ cos 0 - ^ sin 0
(

sin 2( 0+ ^)	 !sinn 	 20+^ cos 2 p	
g)

sin 2(0 +	 sin 2 0 + ^ sin 2 0

Equation (6) can be rewritten as

v'2 w'2 Vx	 2Li t + 2 +-2 	 EA ` l< A 8' ^' + eA p' cos 8 + eAv ' sin 6	 (9 )

The left-hand side of equation (9) appears In equations (5) with both constant and linear
coefficients. When the coefficient Is constant it shall be represented as written above
but with a linear coefficient it will be approximated as

,2	 ,2	 T

(u'+ 2 + 2)0FA	 (10`)



In the process of llnearizatlon, all steady-state values are neglected except the
Initial radial tension, and only the linear terms in the state variables are retained.
These steady-state values would correspond to an equilibrium flight condition in hover.
It Is anticipated that these equilibrium hover values would have little effect on the
dynamic response characteristics In the forward flight condition of this study. The set
of linearized first-order differential equations are given below

V, = p	 ( 11)

W, = v	 ( 12)

(G3 + 1<2
A 	+ EB1 0'2)	 - I< 2A 0' Vx + EA(k2A 0')2 ^ I

-EAkA 0'eA ( p' cos 0 + v'sin 0) + EB2 0'( u'cos 0

+v 'sin 0)+e A To ( ji sine -v cos 0)+M x	( 13)

(Erz, cost 0 + EI	 g

	

y- rin0	 M +	 0 '	 0z Eft ;b' cos + eA cos0 Vx

- EAk 22 eA 0' ^' cos 0 + EAe 22 ( u 'Cos 2 
0 + v' sin 0 cos 0)

-eA Tod sin 0 --2(1;1z, -EIy ,)v I sin 20	 ( 14)

v' (Ely, cost 0 + EIz, sin 2 0) _ -My + EB2 0',' sin 0 + e A Vx sin 0

-EAk 22 eA 0 ' ^' sin 0 + EAe 22 ( u'sin 0 cos 0 + v' sin 2 0 )

+ eA To ^ cos 0 - 2 (EIz , -EIy ,) p ' sin 2 0	 (l )

M'x = m Q 2e x(v cos 0 - µ sin 0 ) + (eA To cos 0 )'\) 	 To sine )' p

4	
+ mk2m ^ + me [( S2 2v -V) sin 0 + w cos 0'

+mS22(k 2 - k2 )c cos20 -M^	 ( 16)
M2 m1

M'y = Vz -To v -2 m R ev sin 0 -ma 2 e ^ cos 0	 ( 17)

13
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F r

Mz = To p•Vy + 2 m n6 Cos 0 -mil 2ex ^ sin 0 C1

V 1  = mw + me ^ cos 0 + 2 m RO PC ^ -1.w ( 21)

V = »2 m O
	

( 19)

V1  
a mV -m0 sIn 0 -m n 2v + in n 2 e ^ sin 0 -2 m sisPC w

	 4

•2 m Sle ucos 0 ••2 mSZ e v sin 0 "1'V
	 ( 20)

It may be noted that the three equations for the elastic slopes (eqs. (13), (14), and
(15)) are coupled in their derivatives and must be solved simultaneously. These
equations are decoupled by a straight :forward application of Cramer°s rule to obtain a
set of linear first order differential equations in terms of the state vector so that the
transfer matrix method can be applied as discussed later In this study.

Excitation of the blade Is dub to various simple harmonic atrloads. The solution to
the set of equations will be treated as Individual contributions associated %'tth each
harmonic of the excitation loading. Such a solution for the nth harmonic of the state
vector can be written in complex form as

{ z  (x,t) } = Re 0 fn (x) } e 1 t)	 ( 22)

where { Zn(x)) is the amplitude vector of the nth simple harmonic response, and

w = n Q = the frequency of the excitation loading
I rY-1

The above solution will be discussed in more detail with respect to the aerodynamic
loading. Substituting equation (22) into equations (11) to (21) yields the following matrix
equation for { z}, the nth harmonic,

{ Z (x) I  = [ A (x)] { Z (x) } + ( Fa (x) )

where[ Fa} is the amplitude vector of the aerodynamic loads, defined by

{ Fa T = L 0 0 0 0 0 -^^l , 0 0 0 -1.^ - Lw

14

( 23)



,u^p+
}y

}'J

i'

Note that the matrix, [A], includes complex terms due to retaining the linear rate
terms (Coriolis Intertial forces).

Evauation of the order of magnitude of the individual elements of the c;ormplex
matrix  is made. Consistent with the adopted ordering scheme, only terms of first
and second order are retained. It may be noted that in the process of decoupling eqs.
(13), (14), and (15), terms of higher order are encountered. The resulting nonzero
elements of [A] become

A 14	 1

A25	 1

A34	 EIy,(EIZ,-EAeA) e A To sin 8 /D

A35	 -A34 cot g

A36 =	 EIy,(Elz,-EAeA)/D

A37 -	 Ely, 6'(EAI(A eA -EB2) sin 0 /D

A38 =	 -A37 cot 8

A39 -	 Ely, 6'(EB2 eA -EIz , kA )/D

A43 -	 -G3 e A To (EIz , -EA eA) sin e/D

A46 =	 A38

A47 =	
G3 (EIz, -EIy, - EA eA) sin 6 cos 6 /D

A48	 -A43 sin 8 /(eA To) + G3 Ely , cost 6 /D

A49 -	 GJ EIy , e  cos ® /D

AS3 =	 -A43 cot 0

A56	 -A37

A57 =	
A43 cos 8 cot 8/(e A To) -G3 EIy , sin g 8 /D

A58	 -A47

A59 -	 A49 tan 6
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I6

A61

A62

A63

A64

A65

A7!

A73 =

A75 =

A7111

A$1 =

A83 =

A84 =

A8,10

A91

A92

A10,1 =

A10,2

A1003

A1014 =

A i0p5 =

A il,i =

F_

me 01 2 + w 2) sin 0

-me w 2 cos e

-mkt w 2 + m n2 (km - k2 ) cos :! 6
2	 1

-m S2 2 ex sin 0 -(eA To sine )'

M Q2 ex cos e + (eA To cos 8 )'

-21m S2 w e sin 8

.mSZ 2 ex Cos e

-T0

1

-A71 cot 0

-m St ` ex sin 8

T
0

-1

-2 Im St w

-m w 2 
^ pc

-m (Q 2 +w 2)

-2 im SZ w R Pc

A61

-A81

A71

-A10,2

4

1$

i



A11,2 -	 -mw 2

A 11,3 °	 A62

1

where

D	 GJ EIy , (EIz, -EA e 2

PENDULUM EQUATIONS

The pendulurn configurations considered are of the simple type which are free to
oscillate In the flap and lead-lag modes. The free vibration equations of motion for
simple pendulums In both the xiap and lead-lag degrees of freedom are developed In an
Identical fashion. These equations are formulated by first determining the acceleration
of the pendulum mass In the Inertial system and then transforming It to the deformed
blade system. The absolute acceleration is used to express the Inertial reaction force
and moment at the pendulum hinge. Setting the reaction moment abort the pendulum
hinge to zero yields the equation of motion. These nonlinear equations of motion are
subsequently linearized by assuming small oscillations for the pendulum about the
steady-state condition. By assuming a simple harmonic solution for the linearized
equation of motion of the free pendulum, the deflection of the pendulum is obtained in
terms of the blade deflection. The polet transfer matrix at the pendulum hinge station
on the rotor blade Is derived by simple equilibrium considerations of forces and
moments across the pendulum after linearizing the Inertial forces and moments.

Acceleration Components

The acceleration of the pendulum mass Is determined with respect to an inertial
reference system. This entails appropriate transformations from the inertial to the
rotating system, to the preconed system, and finally to the deformed blade sec
derivation of the acceleration components Is given In Appendix B. Equation;
(B-20) for these acceleration components are reproduced here as

	

ax,	 -252 v - S2 2 (x + ) + 2 52 ^ sine -2 S2 p cos 0

ay, = n +(a 2 xv+w+$1 2 S pc x) sin 0 +(v+2521; -522

+ $12x fir) cos 8 - S't 2 n cos2 0 + 2 $12 C sin 2 0



az, =	 -(v + 2 S2 - S2 v + SZ2 x }^) sin 0 + (Q2 x v + w

+S12 S pcx) cos 0 -n 2 ; sin 20+ 2 1 2n sin 20	 (26)

where (^, n,;) Is a general point relative to the deformed blade coordinate system. It
may be noted that the gravitational contribution to these accelerations has been
neglected.

Flapping Pendulum

The blade-mounted pendulum absorber is shown In figure 3. The pendulum after
deformation is shown in figure 4. The deformed coordinates of the pendulum hinge and
mass can be related from figure 4 and are given by

la
P

=R Cos A

np =	 nA

^ p =	 ^ A + Z sin A

(27)

where

P. E the pendulum arm length

A = rotation about (01 nA, 4A) in the x' z' - plane

z =O(c)	 ;	 A =0(1)

Differentiating equations (27) with respect to time yields

P	
= - Q ^ sin A

p	 = - Q A sin A - SC A 2 cos A

a

(28a)

(28b)



	

n p	o 0	 (28c)

	

n p	 = 0	 ( 28d)

	

^ p	 =	 cos A	 (28e)

of	 , 2

	

P	
= k( A cos A-AsinA) 	 (28f )

Substituting the above expressions into equations (24) to (26), the acceleratlon
components to the first order (second and higher order terms are discarded) for the
flapping pendulum become

ax, - - k A sin A -k A 2 cos A -2S2 v A - S22xA
P

- S22 k cos A+ 2 S2 k A cos A sin 0 A	 ( 2 C)

ayl = ( S22xA vA + WA + 5225 
Pc 

xA) sin 0A
P

+ (VA -2 9 k Asin A . S2 2vA + S2 
2 

X  PA) cos 0 A

- S2 2 nAcos2 OA + 2 $1 2(^ A + k sin A) sin 2 0A

(30)

az, = k 0 cos A- k A2 sin A
P

- (vA -2 S2 k A sin A - Q VA + a 2xA uA) sin OA

+ (SI x v A + wA + S22 
Pc 

xA) cos 0 A

- S2 2(r A + k sin A) sin g 0 A + 2 92 2 A 
sin 2 0A

(31)
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These acceleration components will be used to express the inertial reaction force and
moment at the pendulum hinge.

The total inertial reaction force acting on the pendulum mass, M, can be writtn In
terms of the above acceleration components whose associated unit vectors are I', j ,k' as

+F' = -M (ax , 1' + a , j' + az, k')	 (32)
P	 A	 P

C
The position vector of the pendulum mass with respect to the hinge point Is

i
r = A, (cos All + sin A l)	 (33)

r

and the inertial moment reaction about the hinge point is

M r x^

k'
i

-M Q	 cos A	 0	 sin A

ax l	 a	 azi

A	 yP	 P

or

M	 =	 M k ay, sin Ai
P

+M k (az, cosA-ax, sin A) j'
P	 P

-M iZ ay, cos k'	 (34)
P

n addition to the inertial reaction moment, there is a moment due to damping at
endulum hinge. This damping will be presumed to be of the linear viscous type.
orresponding moment reaction about the hinge can be represented as



P1 _ 	 -

MA = CNAJO	 (35)

where

N steady-state normal force on the bearing due to FAX , and FAy,

C E pendulum hinge friction coefficient

Since the flapping pendulum is free to rotate about the y'-axis, the y' component of
the inertial moment reaction Is In equilibrium with the damping moment. Using
equations (34) and (35), the equilibrium equation can be written as

M k (ax , sin Q -ax, cos A) -CN Q d 0	 (36)
P	 P

Equation (36) provides the pendulum equation of motion. The other two components of
the Inertial moment, the damping moment, and all three components of the force
reaction provide the pendulum reactions which act on the blade at the hinge point as

FAx' _	 -Max, (37)	
j

P

FAy, =	 -May ,
P

(3 8)

FAZ , _	 -MaZ ,p
I

(39)

MAx, Mk ay , sin A
P

(40)

M Ay, -CN (41)
P

MAz' -Way, cos 0 (42)
P
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Substituting for the acceleration components In equation (36), the pendulu
equation can be written as

> Q - (V A-S'2 VA + $1 2 xA µA) sin cos A

(S22 xA vA + wA + St 2 Q p xA) cos 4A cos A
PC

+ a2 9 cost OA cos A sin A

+ (2 n vA + 112 xA) sin A

+ (- S12 A sing 9 A + 2 Q2 '1A sin 2 8 A) cos A = -CN A/M R, (4 3)

It may be noted that In the above equation the rotary Inertia of the pendulum is
neglected. This implies that the pendulum consits of mass, M, which has very small
dimensions (point mass) In comparison with the pendulum arm.

The nonlinear equation of motion given by equation (43) Is linearized for small
angular oscillations, 6, about the steady-state equilibrium angle of the pendulum, 60,
rrhau c

	A =_ 6 + 60	 (44)

Since the perturbation angle, 6, will be fairly small as

62<<1

the .following approximations can be used.

	

cos A = cos So - 6 sin 6 o	 (45)

	

sin 6 =_ sin so + 6 cos 6 0	(46)

The steady state equilibrium angle, 60; is obtained from equation (43) by setting
the acceleration and velocity terms to zero (assuming that the elastic deformations are
zero). This process yields

	

xA tan 60 + Cos t 0A  sIn 110 ;A sing 9A - 1 pA sin 	 2 8A - 
pc x

A cos 8 A	 (47)

In the above equation 8 is the steady-state value of the pitch angle at x A. It may be
noted that the steady eggLllbrium angle, S o, is independent of the rotor speed. This

22
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result Is due to neglecting the gravitational force In equation (36). The effect of the
gravitational force on the steady equilibrium angle and the uncoupled pendulum
frequency Is very small (ref. 7).

Substituting equations (45) and (46) Into equation (43) and subtracting the steady-
state relation, equation (47), from the resulting equation, the following equation of
motion for the perturbation pendulum angle is obtained.

x
8 + MR d Q1 

d (c os 6 + Q cost OA cos2 6 0) + 2 9 vA sin 60
0

+ [( Sx 2xA
 VA w A)  cos 0A - (V A- S22 V A + St 2xA pA)sin a cos 

60

+ 2 M 6cos 60 - 6 C(n 2 xA 'OA + wA) cos O A

	-( vA - S1 2 v  + S1 2 xA "A) sin 8 A I sin 60 0	 (48)

In equation (48) the 6th and 7th terms (underlined terms) are nonlinear. Comparison of
the 7th term with the 5th term Illustrates that this nonlinear term is of order 6 tan o
compared to unity for the linear term. Since both 6 and 6 will be fairly small then
the 7th term can be rationally neglected. Comparison of de nonlinear 6th term with
the linear 4th term Indicates that they are of the same order of magnitude since

tan	 = o (1)

Both of, these terms will be fairly small. In the Interest of linearization and the desire
to retain an explicit damping term, the 6th term will be dropped and the 4th term
retained.

The steady-state normal force on the bearing can be written as

N	 F ,+ F2	 1/2	
(49)^2Ax	 Az'

where F„ and F ,, are the steady-state values of F If and FA ,, respectively. It
may be ^io e d that is generally a time-dependent forL^c-^but is apiroxlmated here by
the steady-state value. Substituting for the acceleration components (eqs. (29) and (31))
in equations (37) and (39) and retaining only the steady-state terms, equation (49)
becomes

N = M SZ 2 (xA + X cos 6 0)	 (50)

23



4

It may be noted that high order terms are neglected. Substituting equation (50) into
equation (48), the linear pendulum equation of motion becomes

	

(XA
 

* Cos 
ao)	 cos 6 * cosh 0 A cosh `^ .)6

0

+ 2 53 v sin 6o + (wA + a 2 xA v A) cos 0 A cos S o

(VA - 532 VA + S3 2 xA PA) sin OA cos 60 r: 0	 (51)

The uncoupled pendulum equation can be obtained from equation (51) by dropping
the blade deflection terms. The resulting equation can be written as

d + 2 ^ W 
p 

S +WP d a 0	 (52)

where

XA

	

W p A SZ `k Cos d + cos2 6o cos2 0A>l/2	 (53)
0

Cfl(XA/z + cos so)

2 R	 x 	 + cws2 ^ s
1
 n A!

	

2 0 1/2
	 (54)  

l>v co0  
o o

It may be noted that the pendulum hinge coefficient, C, In equation (54) can not
normally be specified, but representative values of the damping ratio, , can be
estimated.

The Inertial reaction loads applied to the blade due to the pendulum will be
considered to act at the elastic axis pendulum hinge location, (x A,0,0). These reactions
will be treated as discontinuities in the tension, shear, and bending moment distributik ns
along the blade. The values of these discontinuities can be written in terms of the
component reactions as

24
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.^1

A Mx ' 	= M Ax, + 'A FAz' - C A FAY ' (55)

A My'	 = MAY' + 4 A FAx' (56)

^ Mz'	 = MAz, - rIA FAx' (57)

A Vx, =	 FAx, (58)

A Vy ,	 = FAy' (59)

A Vz , =	 FAz , (60)

Substitution of equations (29) to (31) and equations (37) to (42) into the above equations
yields

A M x ,/M 	= (R, sin A + W [(S22 xA "A+ wA + SZ 2 SpcxA) sin 6A

+ (vA -2 S2 k A sin A - S2 2 V + S22xA } Â) cos 6 A

- S22 nA cos2 6 A + 2 12( A + k sin A) sin 2 6 A

- TIA [ Q 0 cos A- R, 9 sin A-(V A-2 SZ R, A sin A

- S2 2 V + 62 2 xA µA) sin 6 A + ( St 2 xA "A+ wA

+9 2  0 pc xA) cos 6 A - S22 ^A sin  6 A

- S22 k sin Asin 2 6A + 2 62 2 rIA sin 2 @A J	 (61)

k
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A My,/M -	 A C z A sin A + a A2 cos A+ 2Sy Y+ S2 2 xA

,M1 + S2 2 Z cos A -2 S2 k A cos A sin 6 A

^.
-c S2 2 (xA + R, cos A) A	 (62)

A MZ,/M ., - pA C!Z Q sin A+ X A 2cos A+ 2 S2 rA

i`
}	 + S2 2 X + S22 k Cos A -2 S2 Q A cos A sin 6 A]

i

- lCcos A ^( S2 2xA V A + w A + 52 2 pCxA) sin 6A

i
+ (VA -2 S2 R Asin A- S2 2vA + SI x PA) Cos 6A

i

-S22pAcos26A+2522( A +Q sin A) sin 26 A]	 (63)

A Vx ,/M	 = Q A sin A+ k A2 Cos A+ 2 S2 vA

+ S2 2 x A + n Z Cos A-2 S2 Z A Cos A sin 6A
	

(64)
b	 ,

A VY ,/M	 -( Q2 xA V A + w A + Q2 $ 
 

PC 
xA) sin 6 A

l

(vA -? S2 Q A sin A - S22vA + S2 2 xA 
PA) 

Cos 6A	 +'

i
"Y	 2	 2	 1 2

n pA cos 6 A a2 S2 ( A + R sin A) sin 2 6 A
	

(6.5)
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A VZ,/M	 .- - Z'cos A+ Z A Wn A + (V A -2 Sd Z A sin A

- S22 VA + 0 xA PA) sin 6A - ( n2xA ^A + wA

+ SZ 2 a pc xA) cos e A + Q2, A sin  0A

+ S2 2 Z sin Asln2 6A -1S l 2 'IA sin 2 8A

r h^Y.E; 4Ywt

i

(66)

where M is the pendulum mass.
Using the adopted ordering scheme given by Table 1 and equation (28), the orders of

magnitude of the above expressions are as follow

A Mx ,/M	 O(e 2)

AM I/M O(e )
y

A MZI/M O( e)

AVx ,/M 0(1)

A Vy ,/M O(e )

A Vz,/M -	 O(e )

(67)

(68)

For inclusion in the blade equations, the shear and moment reactions must be
transformed into the undeformed x, y, z system using the transformation matrix of
Appendix B. The transformations consistent with the above orders of magnitude are

A Mx/M = (A Mx,/M) - (A My ,/M) ( PA cos OA + \)A sin 6 A)

+ ( AMz,/M) ( uA sin OA - vA cos 8 A)	 (69)

AM 
y 
/M  = (AM 

y '
/M) (cos e  - ^A sin 6 A) - (A Mz,/M) (sin 0A + ^A cos 0A)	 (70)

yy. AM z /M =	 C AMy,/M) (sin A A + `A cos 8 A) + C AMZ,/M) (cos 0A - c A sin 8A) (7 1)
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where only © (e2) terms and larger are retained, Similarly

A VX/M = Q VX ,/M	 (72)

t
r

A V /M = (Q V ,/M) u	 (A Vz ,/M) sin 6	 (73)y	 X	 A	 ^y'	 A	 A

AVz/M	 (d V X,/M) vA + (Q Vy ,/l41) sin 8A (A Vz,/M) cos 6A	 (7 ^^ )

where only 0 (e) terms and larger are retained.
Substituting equations (61) to (66) Into equations (69) to (74) and retaining only the

linear time dependent terms (to be compatible with the completed time dependent
blade equations), the shear and moment reactions in the undeformed preconed system
are obtained after making use of equations (44) to (46),

0 M y/M -	 (!Z sin So + W sin 8A - nA cos 8 A ] W 

+ E(Z sin 60+A) Cos 6 A + nA sin O A1 PA -2St R d sin 60

-S2 2 V A + S2 2 XA ) A + " 2 9, 6 cos 6 0 sin 6AI

+ A 6 cos 60 [ n 2 o pc x  sin 8 A - Q 2 n A cost OA

+ S12( ^A + it sin 60) sin BAcos 6A I nA lZ 6 cos 6o

S2 2- 	 xA ( nA sin 8A + 
^A 

cos 8 A) PA

+!Z sin 60 Q2 xA vA sin OA	 (75)

4 1
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y
i,

1

l
z;

u

AM y/M	 tl (n A sin 6A 	 A cos OA) It a sin So + 2S2 vA

- Sa 2Z 6 sin 6 -2 Sl 6 cos S sin 6o	 R,	 o	 A
F4

1

H R, cos 6 0 sin 6A (S2 2 xA vA wA)sin 6A

+ (VA - 2S Z 6 sin 60 - S12 v  + S2 2 xA 11A) cos 6A

+ $1 2 R, 6 cos 60 sin 6 A cos 6A1 -St 2 Q 6 sin 
60 

sin 6A
Pr
i

[$PC xA sin 6 A - nA Cos2 A+ ( 4A

+ R, sin 60) sin 6A cos 6 A J + n2 xA ( n A cos 6A
w

- A sin OA) `A -C S22 S (xA + k cos o) cos 6A (76)

Q Mz/M	 = (- nA cos 6 A + ^A sin 6A) It S sin 60

+ 2 Q2 A - S12 Q 6 sin 60 -2 SZ R S cos o sin 6A J

- 9, Cos locos 6A I( S12 xA VA + wA) sin 6A

+( 	 -2 St R S sin o - SZ 2 vA + St 2 xA uA) cos 6A

+ S22 R, d cos o sin OA cos 6A

+ R 2 Q 6 sin 60 cos 6A I Opc xA sin 6A

- nA Cos2 OA + ( ^ A + R, sin 6 0) sin 6A cos 6A l

+ R 2 xA ( nA sin 6A + ^A cos 6 A) ^ A

-c Q 2 S(xA + Q cos o) sin 6A (77)
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A Vx/M	 o ZS sin 60 +2 "vA - " 2 Z S sin So - 2 0 P, Scos So sir

A Vy /M	 = "'VA + 2 SZ R assn do + S22 VA

- S1 2 Z S cos a0 sin 0A + R S cos o sin 8 A

A Vz/M	 - 4A k d cos 10 cos 8A	(80)

Since these discontinuous load reactions contain the time dependent pendulum
angle, it must be related to the elastic displacements for Its elimination. This can be
accomplished by using the linearized pendulum equation (eq. (51) . By seeking the
simple harmonic motion of the form

S (t) = S eIw t	 (8 1 )

and corresponding harmonic solutions for the state variables, the pendulum deflection
can be written as

where

S = vA d v + wA $w+ uA S u + vAS^	 (82)

I	
^

,j
I

Sv	 - ^( Sat + w 2) cos d0 sin eA + 2 1 Sl w sin 60 ] /a	 (83)

j

S w	 w 2 cos S0 cos eA/a	 (84)	 !

S u = a xA cos o sin 6A /a	 (85)
f



X

a = R, (w P - w 2) + iC S W (	 + cos So) (87)

where C can be determined from the estimated damping ratio of equation (54) as

f	 x
2 !L 4( !r cos	 + cost d o cost 0A)1 /2

Sl XA R, + cos o

The discontinuous load reactions associated with the presence of the pendulum are
used to relate the bending moment and shear force state variables on the right side
(outboard) of x A to those on the left side (inboard), These state variables are indicated
in figure 5. The state variables are related as

MR = MXx - A M	 VR =V X - AVx

MR = M Y - 0 M y	 VR = Vy	- AVy	(88)

MR = Mzz - A M	 VR =V Z - AVz

All other state variables must be continuous across the point x .
Substituting for the shear and moment reactions, givenNy equations (75)to (80),

with the explicit time dependency, the above relations can be described by

	

1Z RI • fP1 I ZLI	
(89)

where [P] is a"point" transfer matrix. The elements of [P] are all zero except for

Pil	 =	 1	 (i = j)

P61 = M [(Z sin 80 + W cos OA + nA sin OAI ( S2 2 + w 2) - 6  Mx 6

P62 = M [(Q sin o + W sin OA - nA cos OAI W2_ w Mx 6

P64 = -M k sin 8o cos OA a2 xA - 8 
P 

Mx 6

P65 = -1V! rZ sin o sin OA SZ 2 xA - 6 v Mx d
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P71 = -M [( nA sin eA + t A cos 8A) 21w SZ

-R cos so sin 8 A cos 9A (w 2 + S1 2
 - a v MY8

P72 = M w 2 k cos 80 sin  6A - 8W 
MYd

P73 = -M ( nA cos OA 4A sin O A) 2 2 xA

P74 = -M S2 2 xA 9 cos So sin OA cos OA - 8 is MY 8

P75 = -M S2 2 xA R, cos do sin  O A - 6 v MY d

i'81 = -M LP, cos o cost 8A (w 2 + S22)

-( nA cos 6A - ^A sin 6A) 21 w 52 - SvMz S

P82	 -Mw 2k cos 8o cos 6A sin 6A - dW Mz 8

P83	 -M ( nA sin 0  + ^A cos 6A) 02 x 

P84 = M a 2 x  Q cos o cost 6A - 6 u Mz 6

p85	 M n 2 xA Q cos So cos 0  sin 6A - 6  m  d

p91 = -2 M iw S2	 6  V  d

p92 = - 8W v  d

P94 =	 6 U Vx d
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x 6

p
10 1 1'

W2+ S1
2
)- 6 v

-M	 v	 y 6

p lOp2^
-6 

w 
v 
y 6

p 
lOp4^ - 6 p Vy 6

p 
10,5

6 
V 

v 
y 6

p
llpC

6 v
-	 v	 z

p 
11,22'

_MW 
2 

_ 6 
w 

v z

p 
11 14^ - 6 11 Vz 6

p 
lip5 4 - 

6 
v Vz 6

where

m x
	

M I [(Zsln 60+ 
4A)COS O A + 

TlAsln OA I(Slcos %sin e,,,

-iW sin 6 0 ) 2SI Z-Z n 
A 

Cos 6 0 ( S12_w 2

+ Sl 
2 

pcp' XA Cos 10 
sin 

6 Al	
(90)
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MY S	 = -M J( nA sin ®A + 4A cos 9A) R sin So (w 2 + S2 2)

+ [ft sin So + CA) sin 8A - nA cos ®AI

• S2 2 Z sin So sin 
eA 

cos ® A + (xA 0 Pc sin So

- R cos2 Sp cos 8 A) S2 2 R sin? 8A + DA Mn So

+ W cos O
A + nA sin OA  2Iw Q R, cos So sin OA

+ IC St 2w (xA + k cos So) cos 9A 
I	

(91)

Mz S
	

= M 
J( 

nA cos 
O A -  

'A sin 8A) k sin 
So 

(w 2+ SZ 2)

+ [(R, sin So + W sin OA - nA cos 8A

22 Q sin So cos2 8A + (xA S P
C 

sin o

- Z cos2 So cos 6A)
 412 it cos 

6A 
sin 8A + P nA cos OA

- 4A sin OA) sin OA + P, sin So cos2 8A]

• 2 i w Q R, cos So -iCS2 2w (xA + R cos So) sin 0  }
	

(92)
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VX 6	
.. -M It s in do (w 

2 + a 2) + 21 w .$1 Z cos 6. sin gA	 (93)

Vy 8
	

^- -M [Z cos 60 sin 6 A (w 2 * S12) •21w n R, sin d01	 (94)

Vz	= Mw 2Z cos bows gA	 (93)

Lead-Lag Pendulum

The lead-lag pendulum after deformation is shown in figure 6. The equations of
motion for the lead-lag pendulum can be derived by following the procedure used in the
flapping pendulum case. This process yields the following equations for the lead-lag
pendulum:

The relation between the pendulum mass and hinge In deformed coordinates

i; p 	a Z cos A

pp 	_ n A + R, sin A	 (96)

^p	 4A

Pendulum angle

	

A=80+6
	

(97)

where

so ^ steady-state equilibrium angle

8 = time dependent perturbation angle

The equation for determination of the steady-state equilibrium angle, becomes

xA tan s0 + Q, sing 8A sin d0 _ - 2 4 A sin 2 eA + p A cost 6A S Pc 
xA sin 8A (98)

The pendulum deflection in terms of the blade deflections

S = V  6 v + w A dw+ uA 6u+ VA 6 V	 (99)
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where

S v = [ (n l + w 2) cos So cos 
OA 

-21 w n sin 6.]/a	 (100)

S w = w 2 cos 6 0 sin sA/a	 (101)

S P = - $1 2xA cos So cos sA/a	 (102)

S	 = - St 2xA cos 60 sin sA/a	 (103)

a	 a £(w-w 2) +IC S2 2w (
x
R cos do)	 (104)

W p	 ^Q, cos S	 cos` S 0 sin` sA)
	

(105)
0

2 R, (^Co
i 0

A + cost do sing 0 A)1/2

C _	
nZ TX Z + cos S0
	

—(106)  

S	 _	 delwt	 (107)

The nonzero elements of the point transfer matrix become

P
iJ

,	 1	 (I = j)

P61 = M C ^A cos sA + ( nA + P, sin 6 0) sin OA 1	 2 + SZ2) - SvMx S

P62 = M 14A sin OA-( nA + 9 sin S0) cos OA] w 
2_ 

SwMx S

P64 " -M Qsin o sin 0.A S xA - S U Mx S

I

r, J

;f
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P65 = M z sin So Cos 6A S2  x1

P71 = -M [( nA sin OA + 4A c

-sin 6A(w 2 + $1 2)l - Sv MyS

P72 = M.Z Cos SO Cost 8Aw 2_ a  My S

P73	 -M ( nA cos 9A - ^A sin 8A) S12 XA

P74	 M z Cos So cos AA sin 8A S' 2 X - S p My S

P7 5 = -M z cos So Cost 8A SZ 2 X - 6  MY S

P8 i	 -M Cz Cos S o sing 8A( w 2 + 11 2)

-( nA cos 8A - 4A sin 9A) 2iw $1 ] - S v Mz d

P$2 = M w 2 z Cos So sin 8A cos AA - 6  Mz S

P83 = -M ( nA sin eA + 4A cos 8A) S12 xA

P84 = M Sl 2xAZ cos So sing 8 A - S u Mz S

P85 = -M SZ 2 x z cos So sin OA cos 8A - 6  Mz S

P91 = -2Mi w 9 - 6  v  S

P92 " ` Sw vx S

P94 " - S 11 Vx S

p95	 - S v vx S
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p lOtl o -m(w2+ Q2) - S v yY d

P1012 4 - 6  v  d

P lO,4 ' - S µ vy S

P 1015 ^ - dvvY S

Pll,l" - Sv vz S

P iir2 2 -Mw 2- 6  v  S

Flick= S p Vz S

X 11,5° Svvz S

r

where

Mx S = -M 1 14  A cos OA + ( nA + fG sin Sp) $in ®A 3
• (St cos So cos 0 A + iw sin So) 2 S2 k

-y' 
A cos S o (St2 - w 2) + S1 2 0 pc R,xA cos S o Cos OA } (108)

MY S : -M ( IA sin OA + ,A cos 0A) R sin So (w 2 + $12)

+ C- A sin OA + ( nA 4, Z sin 60) cos 0 A ' SZ 2 X sin Sosin OACos OA

+ (xA O pc sin So - 2cos2 80 sin OA) 0 2 R cos2 0 A

- l( n A + Z sin Sa) sin 0 A + CA cos O A] 2i w S2 Z cos So cos O A

- is St 2 w (xA + k cos So) sin 0A 1	 (109)
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Mz d = M I ( nA cos OA - rA sin OA) k sin do (w 2 + a 2)

+ [ gA sin O A -( n A + k sin d o) cos O A l p 2 k sin do s1112 0 A

-(xA 0 pc sin d o -k cost dosin 8A) p 2 ,, cos 0 A sin OA

- B nA cos OA - Cp, sin OA) cos OA - k sin do sin  OA a

I
• 21 w $1 k cos do -iC $I` W (xA + k cos do) cos O A	 (110)

Vx & _ ^•1Vl Ck sin do ( w 2 + St2) -2iw 9 R cos locos O A ^	 (1 1 1 )

Vy 
d 

= M CQ cos do cos OA (w 2 + a2) + 2i w SZ k sin d o ]	 (1 12)

Vz d = M w 2 1, cos o 
sin OA	 (1 1 3 )

AERODYNAMIC FORCES

This section is concerned with the calculation of the aerodynamic loads on a
helicopter rotor blade in forward flight. Due to the complexity of the flow field
involved and the interaction of different effects in the flow, a completely general
solution to the problem has not been obtained. There are a large number of
approximate methods available. These methods range in complexity from simple blade
element representations to lifting surface models with freely distorted vortex wakes,
with associated ranges in computational expense, accuracy and detail of the solution.
Commonly used is an approach based on a combination of simple momentum theory and
the blade element description. This method is adopted for the present study. The
method takes no note of the reverse flow and stall.

The aerodynamic forces are formulated from two-dimensional, incompressible,
quasi-steady, strip theory in which only the velocity components perpendicular to the
spanwise axis of the deformed blade are assumed to influence the aerodynamic loading.
Account is taken of the varying freestream velocity associated with the rotating blade
by employing Greenberg's extension (ref. 11) of Theodorsen's unsteady theory for
determining the aerodynamic lift and pitching moment acting on the blade. The
resulting expressions are specialized to the case of quasi-steady flow by setting
Theodorsen's circulation function to unity. Simple momentum theory is used to
calculate the steady flow induced by the rotor. The expressions for the aerodynamic
loading are based on the analysis reported in reference 12.
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In Theodorsen's theory a two-dimensional airfoil Is assumed to be pivoted about an
axis which may be distinct, In general, from the aerodynamic center. The airfoil Is
pitched at an angle c(t) to the freestream flowing at constant velocity V. The airfoil Is
vertically displaced with velocity h (t) as shown In figure 7. Greenberg (ref. 11) has
extended Theodorsen's theory for a varying free-stream velocity VW. The lift and
moment acting on an element section of the blade may be expressed in terms of the
circulatory and noncirculatory components as

L = L^ + LNC
(114)

M = MC + MNC
Ii
i With the airfoil pivot axis (analogous to the rotor blade elastic axis) at the airfoil

quarter chord (the airfoil aerodynamic center) the relations for the aerodynamic loads
per unit length may be written as (ref. 12).

2SL
LNC = 2 pa 4 

(_0 
p+ 4 F)	 (1 	 1.5a)

LC	=	 p acU (-Up + 2 E)	 115 b)

MNC = -2p ac (2)2  (-Up -U T e + 3$ 'E)	 (115  c )

MC	 = - 1. p ac (µ)22UT	 0 1 5d)

The profile drag force acts parellel to U and is given by

1	 cdo 2D = 2 pac a U	 (,116)

The components of the aerodynamic forces in the deformed coordinate system can
be written as

F y I	 = -LC sin a -D cos a

Fz,	 = LC cos a+ L  C D sin a

where

sin a = Up/U
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cos a = UT/U

U = VTUT7pD

Substituting equations ( 115a), ( 115b) and ( 116) into equations ( 117) yields

^,	 C	
11Fy ,	 2 p ac [Up - 2 Up E - ao 

UTJ

FZ, = 2 p ac {-UpUT 2 UT- 2 Up + (4) 2

From equations ( 115c) and (115d) the pitching moment can be written as

Mx, (=M ^) _ -2 p ac (µ)2 ^. UT a _6 + gC ..I

(118)

019)

where

Up , UT 	relative velocity components in the deformed coordinate system (fig. 7)

e w angular velocity of the blade about the x" - axis

V(t)	 UT + U2

The assumed orders of magnitude of the quantities used in deriving the aerodynamic
loads are

U
—P	 = O(e)UT

Cao 	 O (e 2)

c	 = O(e)R

Vi

92R	 = O(e)

e	 = O(E)
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The aerodynamic forces in the undeformed coordinate system are obtained by using
the transformation given by equation (A-4). To second order, the aerodynamic loads can
be written as

Lv (=Fy) =	 FYI - Fzj (6 + ^ )

L  (=Fz) =	 FY, (6 + ^) + Fz,	 (120)

Mx 	Mx.

In equations (I IS) and (119) the blade aerodynamic loads are expressed In terms of
U T , Up, and s . In order to use the expressions for blade aerodynamic loads in the
blade equations of motion, U T, Up, and s must be expressed in terms of the blade
bending and torsion deflections v, w, and The blade velocity is easily expressed in
the x, y, z coordinate system. The deformed blade coordinate transformation, which
relates the x,y, z and x', y', z' coordinate systems, is given by equation (A-4). This is
used to express the U T and Up velocity components in terms of v, w, and ^ .

The total flow velocity seen by a point on the elastic axis can be written from
reference 12 as

V	 -	 (pfnR Cos ^+nRX 0PC-L+ nv)i

+(nO
pc

w-v-n(x+u)-pf nR sin *)j

+(QRa-P f RRs pc Cos ^-w- nRpcv)k(121)

where

V cos a
of	 -	 n R s

V sin as -vi
=	 n R

and the aerodynamic velocity components are shown in figure 8.
The tangential and perpendicular velocity components, UT and Up, are obtained

from equation (121) using [T] from equation (A-4). To second order in the dependent
variables they have the form
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UT	 -	 pf SIR v' cos ^ + Q x+ pf Q R sin ^ + ' (122)
N

Up	 =	 p f SIR w' cos ^ - p f S2 R v'6 cos

-( u f St R sin ^ + SW (6 + ^) -v 6

+pf nRs pc cos^ -aRa +w+ S20 pcv (123)

It may be noted that the nonlinear terms are neglected.
The angular velocity about the x' axis, e , is now considered. It can be regarded as

being composed of three parts: the first part due to the rigid-body angular velocity of
the hub in space, the second part due to the control inputs, and the third due to the
angular velocity associated with the elastic deformations. The total sectional pitching
velocity can be written as (ref. 12.)

	

e =	 SZ (S PA
+w'+ 6 1C sin-6 Is cos^)+	 (12 4)

It may be noted that the total geometric pitch angle, 6 , is given by

	

0 =	 8 pt+ e -B lc Cos -6 ls sin	 (125)

where 6	 is the built-in twist angle (pretwist), 	 6 is the collective pitch angle
measured 91 the tip, and 61 and 6	 are the first ha► a onic cyclic pitch components.
The built-in twist is a linear5inear fA ction of x and may be written as

6 pt	 6 t (R - x)	 (126)

The induced veloctty, v•, is calculated by equating the integral thrust to the thrust
from momentum theory using the relations

C TSZ R
Vi =	 (127)

4
2 of ^. x2

4 1̀1F
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r

2	 R

b	 1
CT = 2,s 7T 

p S1

2

 R4 	Lwo dxd
(128)

where 
LwV 

Is the steady -state value of L .
Substituting equations 018) and ( I19 into equations ( 120) and using expressions for

U T, U P, and e, given by equations 0 22) to ( 124), the aerodynamic loads to second order
can be written as

Lv = 2 pa c [-(Q x+ µf Q R sln ^ )0 + 2 (p f S2 RS PC cos

- S2 R a)] ^V + 2 p ac 1 -(SI x + P S2 R sinf )

• ( pf OR S pc cos ^- S2 R a )^ + 2 p ac 
L

-( S2 x

+ uf SIR sin* )0 + 2()1 f SZR 0 PC Cos * - QRX )I

• of 92R cos 0 + 
2 pa c [-(Q x + p Q R sin ^)

•(u f S2RS
Pc

 Cos ^ 4Ra)0-cao(S2x

+µf QRsinf )2 +(p f QRs pc Cos ^ - QRX)2]	 (129)
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Lw = 2 p ac -(f

A. 
2 

pac r^ ,.... ,	 -	 -- , .	 z	
Pc

S2 R A )' 'v + 2 p ac 
P

SI  x+ p f Sz R sin 0 w- 4 'w

+ 2 p ac [-( Qx+ p f OR sin* )2

+4 
pf 

S2 2 RCos ^^ +2 pac C4 (Stx

+ p
f 

S2  sin*) I	 + 2 pac 1 2 (SIX

.

+ p f 52R sin	 -(p f S2 RS 
Pc 

cos * -St Ra )^

•(u f SlRcos^) p+2 pac L(S2x

+p f S2Rsin^) pfSZRcos*+pS2(Stx

+p f Q R sin*	 4 
pf 

St 2 R sin ^^ v

+ 2 p ac 
C 
-4 p f 

9 R cos ] v

+ 2 p ac C -( p
f 
R R 

Pc 
cos * - 52 R X ) + ( p f S2 R sin

+S X) 01 Oix+ 
pf 

SZ R sin*)

+2 pac E2(1S Pc +26)(52 x+ pf $2R sin*)

+4 p f Q 2 R Cos ^6 +4 pf S2 2 R g Pc sin' (130)
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M 	 - 2 P ac (c)2 [ -w + of q2 R cos * ^

4.

+2(SZx+ p f QRsIn*) ^ +(SZ 2x+2it f Q2 R sin i,) v

-u f SZ R Cos Wv'

- P ac (4)2 (St x	 p f SZ R sin* )

( St S Pc + 28) + p f a2 R 6 cos

+ P f St 2 R^ pc 
sin ^ J (131)

The above expressions can be rewritten in matrix form as (retaining only time-
dependent terms)

Fa} _	 [B (x, t)] ^ Z (x, t) I + [C (x, t)] {i (x, t) ^ + [D (x, t 	 ^Z (x, t) }

+ ^ [Bc(xl t)] n f Z (x, t)} cos n
n=1

3
+ 

n = 1 
[Cc (x' t) ] n ^ Z (x, t) } cos n

+
n=̂ 1 [13s (x i t)] n { Z (x, t) } sin n

n _ [Cs (x ' t) n Z (x, t) sin n

3
+ E {pc (x) n cos n + t {Fs (x)) sin n	 (132)
n=1	 n=1	 n

46

.y

r



f

J

,i

3f

?	 where Z Is the state vector, defined by equation (1), and

^Pa}T ^ , 0 0 0 0 0 -M^ 0 0 0-Lv ^Lw i	 (133)
t
r	 .

The nonzero elements of the elastic-deformation-independent aerodynamic load
b	 vector, P, are;

For n = 1;

i	 Pc6	 = 2 p ac	 )2 $1 [-2SIx  8 is + p	 SIR ( 8 t + 6 c) ]

i
Pc 10 = - 2 p ac RR 1-2 F5 Pc U f S2 R X 48 t + 8 c) S 

Pc 
U f SI x

+4 s pc o f S2 R 8 is -^ SZ x 81c]

Pc 11 -2 
p ac S2 R C- S Pc µ f Q x+ 2 (8 t + 8 c) p f S2

2- 4C	 (R	 8 is -(^R + ^ u f	 R) 81c

Psd 2 pac (4)2 52 [2RxO C +2SIO1 	 Pcu f R J

i	 Ps10i

c
- Z p ac SIR	 -2 a° P f Rx + (8 t +	 8c) u f QRX

-XS2x81s+µS	 cp2S2R81c]
P

I 	̂

Ps11	 - ^2 pacS2R E 4C^Pc Qp f + XSI ufR
2

+2(8 t + 8 c) u f 62x-fR + 4 p f SIR) 81s

Iryy

4^ 	 ,

,. + 4C S2 (R)	 61C
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For n = 2;

Pc6 =	 z p ac (µ)2 SI ( 2 of OR e lc)

p l p ac OR (^ 1 cdo 2	 1 2	 2
CIO'	 ` 2	 l.2 a t^ f R+2R pcu f 0 R

+ i X u fSIR e ls + Z pc uf0x 01cl

pc 11 "	 " 2 p ac SZ R -Z (0 t + 0 c) l^ f n R+ 0 u f x 0 1 s

"Z of elcl

ps6 =	 I pac (4)2 0(:3  u f SI R O Is

ps10 =	 - 2 pac O R L- 2 (0 t + 0c) ^ pc ui S. R + 2 s pc P # S, x 61s

-2 A p f r4 R elc

psi!	 -2 pacSIRC- 0 Pf SI R-1cp f SZ0 is -0 P fx 01c:1

For n = 3;

pc10 '	 - 2 pac OR (- S pc }i f Q 	 01s)

pcll "	 -2 pacQR(4 of OR elc)

ps10 -	 - 2 p ac SIR (^ Pcu f SI R 01c)

psl 1	 - I pac Q R (1 o f Q 	 01s)
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^$	 1

The first seven terms In equation (132) represent the aerodynamic loads due to
elastic deformations. The coefficients of the corresponding matrices are given In
Appendix C.

The aerodynamic loads as represented by equation (132) are to be included in the
blade equations of motion. It may be recalled thatthe solution to these equations Is
treated as Individual contributions associated with each harmonic of the excitation
loading. Such a solution may be written In a complex form as, equation (22),

	

IZn (x, t)	 = Re ( j Zn (x)^ e iw t)
	 (134)

where

	

w = nSl	 (n=1,2,3)	 (135)

In the aerodynamic loads expres.ion (eq. (132)) the fourth to the seventh terms
contain functions of the azimuth angle (rotational speed). Due to the existence of these
terms, the above solution (eq. (134) can not be applied. Instead, the state vector should
be written as

CO17 (^^ t)^ _ n 4
	 wn (x) In SZ t\	 (! 3 )

n=- 00

In this case the resulting equations must be solved simultaneously for all harmonics.
Even if only three harmonics are considered for the state vector (eq. (136)) obtaining
the corresponding solution is very complicated. An approximate method is used to
determine the aerodynamic forces by neglecting the fourth to the seventh terms in
equation (132). These terms are of lower order than the corresponding terms in the
blade equations of motion and thus may be neglected according to the adopted ordering
scheme. Although the first three terms of equation (132) may also be neglected
according to the ordering scheme, they are retained here. These aeroelastic terms will
be the only representation of coupling between the elastic deformations and the
aerodynamic loading.

With the fourth to the seventh terms In equation (132) neglected the solution given
by equation (134) can be applied. Substituting equation (134) into equation (132) yields
the following complex notation for the nth harmonic of the aerodynamic load.

^ F a ) 	 [A a] ^ ff ^ * ^ F ^
	

(137)

where

Fa}_ amplitude vector of the aerodynamic load

P?_ amplitude vector of the elastic-deformation-independent aerodynamic force
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I F ^ {P,,,1- i jps^

Aa I = 1B (x, w )] + d w Ic (x, w )^	 ^ w 2 [D (x,w )]

From equation (139) and Appendix C, the nonzero elements of [A a J are

Aa62 = p ac (E	w 2

Aa63
p ac ( ^)2 (21w S2 x)

Aa6S 2 p ac ( )2	 2x

Aa10,2- - 2 i pacw[-92x( 6c +	 6 t)+2 Nf SIR Ois-2S2Ra]

Aa10,3 - - 2 pac S2 2 x R X

Aa10,5 _ 2 p ac (2 p2 x of R 81c +	 12 u2 R2 Spc)

Aa11,1 - 2 p ac (-52 2 x ^pc)

-2ipacw1212x(0 C + 8 t)-)jf "R 9 1s + QRXI

Aa 11, 2
1

- 2 pac (-i w S2 x + S w 2)

Aa113 - -2 pac(-Q 2 x2 -Z pf Q 2R2+ 4 1wS2x)

Aa11,4 - - 2 pac (- 922  p f R elc - 2 S2 2 p2 R2 kS pc)

(138)

(139)

r t

h 

and

p hYr ., ['^F,
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The Induced velocity, v , is obtained by substituting the steady-state value of 1'w
from equation (130) into equations (127) and (128). The resulting equation is

an(6 A. +Cn)
Vi	 u f tan^c s -^ =	

p2 *
	 { 140)

f

where

14	
V Cosa s	

(141)
f

1 be a
an = 48 ITR	 (1 4 2 )

Cn = (4 + 6 )3 9c -(1 + 3 uf) 0 R -6 of 81s

+R(3S pc +3 pf 61c)	 (143)

Equation (140) is an algebraic equation in X.

TRANSFER MATRIX METHOD
r

System Equations

The blade equations of motion are given in a matrix form by equation (23) for the
nth harmonic of frequency w as

Z (x) I I = [A(x)] 	 I z (x) I + I F, (x) }	 (144)

The boundary conditions corresponding to a hingeless rotor blade are idealized in this
analysis as being cantilevered at the hub (x = 0) and free at the tip (x = R).
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Hub:	 I Zd (0) 1 
^, 1 0 )
	 (145)

Tip:	 ji,  (R) 
j	

0	 (146)

where

zd (x) T
	

^-	
Lv w	 >a V	 (147)

IZf 
(x) 

IT  : [WX  My Mz Vx Vy Vz 
j
	 (148)

Equation (144) represents a set of 11 11ar first-order ordinary nonhomogeneous
differential equations. It may be noted thatrA Is a complex matrix due to Inclusion
of the linear damping terms. The desired solution Is obtained by the fomulation of a
field transfer matrix which relates the state variables between any two points along the
blade.

Transfer Matrix

The concept of the transfer matrix has been thorouhly discussed by Pestel and
Leckie In reference 13. The backward transfer matrix [T(x2 Is defined by

4 z(x)j w
	 [T(x)] JZ(0)j	 (149)

which relates the state vector at two stations.
It is often possible to determine the transfer matrix by using simple statics. Such

techniques are described in reference 13, These techniques prove satisfactory for
simple lumped parameter or lower order uniform continuous systems, but become
cumbersome when used for nonuniform and higher order systems because of the required
algebraic manipulation. Murthy (ref. 9) has presented a systematic approach which
eliminates much of the algebra and results directly in differential equations for the
element: of the transfer matrix. The state vector usually satisfies the differential
equation

TX, jZ(X)j 	 A (x)] I Z (x)	 (150)

Differentiating equation (149) with respect to x gives

r
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dx [T (x)] _ [ A (x)] CT (x) ] (155)

	

d 
jZ(x)j
	 dx LT (x)]	 Z (0)	 (1 5 1)

From equation (149) It Is obvious that

	

I Z (0) }
	

=[T(x)] -'  j 	 (152)

Substituting 'this into equation (151) the following equation can be obtained

	

c I Z (x) I	 = dx [T (x)	 T (x) yl { Z (x) }	 (153)

Equating equations ( 150) and ( 153) gives

rA (x) 1 _ d rT (,il rT(x)1- 1^ f z (x)l r f o ^	 ( 154)
LL	 J dx L	 J L	 J	 (

Since equation (154) must be satisfied for all values of x and all values of Z it follows
that

A (x)] = dx CT (x)] LT (x)] _1

Then post multiplying both sides by ET (x)] yields

Therefore, the transfer matrix is given directly by the solution to equation (155). By
letting x go to zero in equation ( 149) the initial condition of the transfer matrix

r4	 becomes the identity matrix.

T (0)]	 156)

If equation (155) is solved as a coupled set of first-order differential equations, then
equation (156) provides a sufficient number of initial conditions.

The transfer matrix of the blade without a pendulum can be obtained by integration
of equation (155) together with the initial conditions of equation ( 156). The tension
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coefficient, T, appearing in matrix [A] is given by

R

	

T = SZ 2 f 
nix  

dx l	(157)

When a pendulum Is attached to the blade the transfer matrix at any spanwise
location is obtained as follows. Let x  be the spanwise location of the pendulum hinge:

Case 1.	 0 < x < x A

The transfer matrix in this case is obtained by the direct integration of equation
(155) together with the initial conditions given by equation (156) similar to the case of
the blade without the pendulum, but the tension coefficient is given by the following
equation Instead of the one given by equation (157).

T : S2 2 
f mxI dx I + M $2 2 (xA + Q cos 60) (158)

Case 2.	 x A <_ x < R

Let [T ] be the transfer matrix tJ the blade at x = x L this matrix can be obtained
from Case it as described above. Recall that [ P ] (see eq. (89)) is the point tWnsfer
matrix of the pendulum. Let [T2 (x)] be the transfer matrix of the blade from x to x.
This matrix is obtained by the integration of equation (155) with the initial conAditions
given by equation (156) from x to x. While integrating this equation the tension
coefficient given by equation (I?^) should be used instead of the one given by equation
(158). By the product rule of transfer matrices, the transfer matrix of the system at
any spanwise location for this case is given by

	

[T (x)] _ [T2 (x) I 
[P]  [ 	 -	 (159)

Once the system transfer matrix is obtained, the state vector at any spanwise location
can be determined.

System Dynamic Response

It has been shown how the transfer matrix can be used to solve the homogeneous

54



differential equations. An application of such a solution Is to find the natural
frequencies and mode shapes of an elastic system (ref. 14). Once they are known it is
possible to solve the most general cases of forced undamped vibrations, whether they
are transient or steady-state In character, either for discrete or continuous systems,
through the normal mode approach. On the other hand the steady-state response caused
by a harmonic excitation Is more readily solved with the aid of a particular Integral of
the nonhomogeneous differential equation without making use of the normal modes and
natural frequencies (ref. (13)).

The procedure adopted here for the steady-state response of forced vibrations with
harmonic excitation Is usually called the "exter fed" transfer matrix approach for
undamped systems and the "complex extended" v ansfer matrix approach for damped
systems. The procedure Is valid for any linear damping since normal modes are not
introduced. The restr,ctions are that the response is steady and excitations are
harmonic. With the knowledge of the system's response to harmonic inputs, the
response to any arbitrary input can be computed by synthesizing the arbitrary forcing
function from an aggregate of infinitesimal harmonic forces.

The blade-pendulum equation of motion was given by equation (23) as

I z (x) I	 = [ A (x)] { Z (x) I + I Fa (x)1	 (160)

By definition of the transfer matrix; the solutlon for the homogeneous part of equation
(160) can be written as

I Zh (x)} = [T (x)] If (0) }	 (1 6 1 )

The particular solution of equation (160) can be written as

_	

K
Zp(x)1fx[T (x, s)] 	 (S)} ds	 (162)

0

where [T (x,$)] is the transfer matrix of the system from s to x (in contrast to [T (x)],
the transfer matrix from 0 to x). By the product rule of transfer matrices the following
relation can be written

C T (x)J = CT (x, s)] CT (s)]	 (163)

From equations (162) and (163) the particular solution can be written as

_	 x

^P (x)	
_ [T (x)^	

T (s) -1 a(s)I ds
	 (164)

I 	 0

The complete solution of equation (160) can be obtained by adding equations (161) and
(164).
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_
{ Z (x) } = C T (x)	 Z (0) 1 + [T (x)] f 

X [ 
T (s)] " 1 JF(s) 	 ds	 (16 )

Gcation ,165) gives the amplitude vector of the simple harmonic response. The vector
t (0)	 is not completely known, but It can be determined from the boundary

c nditiond of the system.
To determine the vector Z (0) } , first rewrite equation (165) as

Zd (x)	 T  (x)	 Tb (x) -	 Zd (0)
_ — _ _	 — — +—_ 

Z f (x)	 Tc (x)	 Td (x)	 Z f (0)

	

T  (x) ( T  (x)	 x	 S  (s)	 S  (s)	 rd (s)
+	 f	 --+— --	 —	 ds0

T  (x) I Td (X)-"	 Sc (s) I S  (s)	 F f (s)

(166)
where

f: } T	 Lv w	 u v Jd

{ Zf I T
	

Lax  My Mz vx vy vz j

10 }	 (167)

{Ff} T 	 L-M^ 0 0 0 -Lv -Lw j	 (168)

CS (s)J	 _	 C T (s)] -1	 (169)

The boundary conditions corresponding to a hingeless rotor blade are

{ Zd (0)}	 -	 { 01	 (170)

^Zf (R)}	 _	
1 

0 
1	

(171)

Substituting equations (167) and (170) into equation (166) yields

I^

7}
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Zd (x)	 T  (x)

f, (x)	 Td (x)

Ta (x)	 Tb (x)

Tc (x) 1 Td (x)

I ; (0)}

x	 S  (s)

o	 Sd (s)

	 (S) I ds
	

(172)

j-

From equation (172)

Z (R) =	 T (R)] (0)(0) + [Tc (R) T (R).I fRSb (s) r (s) dsd	 t 	 I d	 5d ^	 f

(173)
Substituting the boundary condition of equation ( 171) into equation (173) yields

(' R S (s)
Z' (0)	 _ - [Td (R)] -1 [Tc (R) ',Td (R)]

 o3 FS ) f rf (s) I ds	 (174)

Equation (172) gives the response state vector of a hingeless rotor blade due to a
simple harmonic load. The hub constraint reactions, 127 (0) 1, which appear in equation
(172) can be obtained from equation ( 174). It may be noised that the transfer matrix and
all state variables are complex due to inclusion of the linear damping terms in the
system equations of motion.

The transfer matrix, by definition, is independent of the boundary conditions.
Having determined the transfer matrix, the boundary conditions can be simply imposed
to determine the response state vector as shown above for the case of a hingeless blade.
So all the problems corresponding to various boundary conditions can be analyzed easily.
Another advantage of the method is that it provides for the continuous integration of
the equations. In the present study the Runge-Kutta procedure is utilized to solve the
differential equations governing the elements of the transfer matrix (eq. (155)). One
distinguishing advantage of the transfer matrix is that the hub constraint reactions are
obtained as a direct result (eq. (174)). The extended transfer matrix approach is valid
for any linear damping since normal modes are not considered. The number of stations
at which the transfer matrix is determined depends only on the step size of the
integration. The incremental step size can be selected arbitrarily and then the result
compared with that obtained for a smaller increment. In this way an optimal value for
the step size is obtained.

RESULTS AND DISCUSSION

The object of this study is to establish a comprehensive analytical design procedure
for the installation of simple pendulums on the blades of a helicopter rotor to suppress
the force and moment reactions at the hub during forward flight conditions. This
procedure will correspond to a process of optimization with the ultimate object of
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minimizing the root shear and moment. The minimization of these reactions will be
accomplished by a systematic variation of the pendulum parameters (bothgeometrical
and inertial). In this section numerical results are presented together with a discussion
of their significance. The numerical results presented pertain to both uniform and
nonuniform hingeless rotor blades. The properties of these blades are given in Appendix
D.

Simple Flapping Pendulum

The first part of this section compares the root reactions from this study with the
results of Murthy (ref. 15) for an undamped analysis. This comparison is made solely to
verify the correctness of the computer program. The remainder of this section
contains: 1) a detailed discussion of the numerical results for a 4/Rev concentrated
load at the tip; and, 2) the results for excitation by a harmonic variation of spanwise
airload in forward flight.

Analysis verification. - By dropping the damping terms in the blade and pendulum
equations of motion the case of undamped dynamic response can be recovered. The
undamped root reactions of a uniform rotor configuration (Appendix D) are presented in
Table 2 together with the results of reference 15. The reactions with a properly tuned
simple pendulum are also shown in Table 2. The excitation force for all these results is
a concentrated out-of-plane simple harmonic load at the tip of the blade with a
frequency equal to 4/Rev. It is apparent from the data presented In Table 2 that the
present analysis provides results which agree with the wort; of reference 15 for a
uniform rotor blade without damping. The computer code has also been verified by
duplicating published data of normal vibration modes for hingeless and articulated rotor
blades (ref. 16).

Concentrated load excitation. - The force vector for a concentrated out-of-plane
load can be written as see eq. 168))

^ Ff ^T = L00000 - i^J	 (175)

where F is the amplitude of the applied load. The concentrated harmonic force at the
tip has tfie following characteristics:

Magnitude ..................2224 N
Frequency ..................4/REV

Both the uniform and nonuniform blades are considered for this particular excitation.
The root reactions of the uniform blade with a flapping simple pendulum are

computed. It may be noted that all state variables are complex due to inclusion of the
linear damping terms. The results for the vertical shear amplitude at the hub are
plotted in figure 9. The pendulum weight is 66.726 N (10% of the blade total weight).
Damping at the pendulum hinge is neglected. The effect of this damping on pendulum
tuning is discussed later in this section.

The tuning of the pendulum is changed by varying the spanwise location of the
pendulum for a fixed value of the uncoupled pendulum frequency. It may be noted from
equation (53) that the uncoupled natural frequency of the pendulum is plainly dependent
on (1) rotational speed of the blade, (2) spanwise location of the pendulum, and (3) its
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TABLE 2. - CORRELATION OF UNDAMPED

ROOT REACTIONS

Source Mx,

Nm

My,

Nm

Mz,

Nm

vy:

N

WZ1

N

No Pendulum Attached

Reference 15

Present

-139

-146

1536

1535

-648

-648

-1054

-1051

3256

3254

With Pendulum Attacheda

Reference 15

Present

-5

-23

58

53

-576

-606

-983

-973

-0.5

-2.8

a wp = 144 rad/s; xA = 1.651 m	 A 0.2032 m
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length. The simple pendulum considered 1V re swings In the flapping plane and hence can
generate significant out-of-pla: ,e shear force and moment at its point of connection
with the blade. These facts can be observed from the results of figure 9. The root
normalized vertical shear ( the shear reaction with the pendulum attached to the blade
divided by that value without the pendulum) Is altered significantly by the pendulum.
For instance, when the pendulum Is located at 15.2% of the span, the root normalized
vertical shear Is attenuated to 2.9% for a pendulum frequency equal to 146 rad/sec
(3.87/Rev), while It is amplified to 2579% for a pendulum frequency equal to 160
rad/sec (4.24/Rev). The latter case shows that an Improperly tuned pendulum might
amplify the root reactions rather than attenuate them, and the system would be better
off without the pendulum.

From the results of figure 9, it can be observed that the pendulum of frequency 146
rad/sec (3.87/Rev) located at 18% of the span Is a proper design because it attenuates
the hub vertical shear to 1.3%. The out-of-plane moment at the hub Is reduced to
14.2%. This choice of pendulum also attenuates the In-plane force and moment at the
hub to 4.2% and 22.8%, respectively.

The effect of pendulum mass oil vertical reaction Is illustrated In figure 10 as a
function of spanwise location. The results are for a simple flapping pendulum of
frequency 146 rad/sec. It can be observed from these results that If the weight of the
pendulum is 66.7% N (at x a 18% span) then the normalized vertical shear of the hub
is 1.3%. If the weight of fie pendulum is reduced by two thirds (located at 18% span)
then the normalized vertical shear at the hub Is 39.3%. This variation of the pendulum
weight will be referred to as the weight ratio, where in this instance the weight ratio is
33%. This -result Indicates that even though the uncoupled natural frequency of the
pendulum is Independent of the mass of the pendulum, a proper choice of the mass is
also required to generate an optimum force to attenuate the root reactions.

It can be observed from figure 9 that the minimum normalized vertical shear for
any pendulum frequency occurs when the pendulum is located near 18% of the span.
These values are replotted for different uncoupled pendulum frequencies in figure 11.
Comparison of the hub vertical shear with pendulum absorber to the hub shear with no
absorber shows the pendulum absorber to be effective in reducing hub out-of-plane
reaction for tunings between 3.82 and 4.00/Rev. It can be recalled that the optimum
tuning is 3.87/Rev. The steep gradient of the hub shear with pendulum tunings beyond
optimum indicates decreasing effectiveness of the pendulum absorber and for tunings
above 4/Rev the pendulum absorber becomes detrimental. Figure I  demonstrates that
in the case of an off-tuned pendulum, it is apparent that the result can be either a
slight-to-moderate degradation in pendulum absorber effectiveness or a drastic Increase
in hub reaction depending upon the direction of tuning variation from the optimum
pendulum natural frequency.

Similar results have been obtained in reference 4. In this reference a semi-
empirical analysis, using in-flight measured flap bending moment data, was developed to
study the pendulum effectiveness In reducing 4/Rev blade root vertical shear. The
Boeing Vertol 347 aircraft was used for the flight test. I •t is a tandem-rotor helicopter
with fully articulated 4 bladed rotors. The vertical 4/Rev pendulum absorbers were
Installed on all blades of both rotors at 16% blade radius. Comparison of the predicted
hub motion with the pendulum absorber showed that the pendulum absorber is effective
for tunings between 3.4 and 4.0/Rev. Test results indicated that a 3.95/Rev is ail
optimum tuning. For this optimum tuning the vertical hub shears were reduced by 80 to
90% on both forward and aft rotors. However, the vibratory blade root chordwise
bending was increased by 25% with the pendulum installed.

The elastic dt Elections and structural load reactions for the present uniform blade
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corresponding to the optimum flapping pendulum (3.87/Rev at 18%) are shown In figure
12 together with values obtained without the pendulum. The chordwise and flapwise
deflections are normalized with respect to the chord (c-0.7m). It may be recalled that
all the deflections %nd forces are complex. The phase angles for the deflections are
found to be either 0 or 180 as presented In ^Igure 12 b However, the phase angles for
the moments and forces are not exactly 0 or 180 at a few blade stations, and
therefore It Is appropriate to plot only the magnitude of these forces and moments.

It can be observed from figure 12 that the pendulum causes a spanwise
redistribution of the structural loads such that the hub reactions are attenuated. Figure
12 shows that the optimum pendulum decreases the loads inboard of the pendulum and
increases the loads outboard of the pendulum. It can also be observed that the maxima
of the deflections, twisting moment, and vertical shear are higher than the
corresponding quantities without the pendulum. This is the penalty one must pay for
achieving the drastic reductions In the root reactions. The vertical shear is
characterized by a large change at the pendulum attachment point due to the vertical
Inertial reaction of the flapping pendulum mass. This vertical reaction, which Is
imposed at the pendulum attachment point, is the basis of the blade-mounted flapping
pendulum concept which has the purpose of attenuating the root force and
moment reactions.

Inggeneral, a properly tuned pendulum can attenuate the vibratory loads In two
ways: (1) by eliminating the resonant responses of the blade by displacing the initial
natural freauencies that are in the vicinity of the excitation frequency, and (2) by
generating appropriate forces at its attachment point with the blade. These forces
redistribute the loads on the blade so that the root forces are attenuated as discussed
above.

Figure 13 shows the hub vertical shear for pendulum tui:ing of the nonuniform
blade. The blade rotor speed and precone angle are equal to 289 rpm and 0.1 rad,
respectively. The pendulum weight Is 133.452 N (13.8% of the blade total weight). The
results Indicate that a pendulum with uncoupled natural frequency of 3.85/Rev located
at 22% of the span is a proper design because it attenuates the hub vertical shear to
2.2% and the out-of-plane moment to 3.4%. This choice of pendulum attenuates the
root in-plane force to 47.6%. However the root in-plane mome!A is amplified by 75%.
This adverse effect can be reduced by offsetting the pendulum hinge ( n A) from the
elastic axis. The effect of the pendulum hinge offset is discussed later in this section.

For the optimum pendulum (w = 3.85/Rev and x A = 22% span) the root forces are
computed for different values of &e pendulum mass. The results are shown in figure
14. It can be observed that a 50% weight ratio (66.72 N) is an optimum choice. For this
weight the normalized vertical shear at the hub is practically zero as compared to 2.2%
with a pendulum of weight 133.452 N. This demonstrates, once again, that a proper
choice of pendulum mass Is required to minimize the root forces.

In the above analysis the damping at the pendulum hinge is neglected. However, it
is necessary to study the effect of the pendulum damping on the root reactions once the
optimum pendulum tuning is established. The hub shears and moments are computed for
different damping ratios, and these results are presented in figure 15. It can be
observed from these results that damping of the pendulum due to friction in the pivot
bearing has a very small effect on the hub reactions.

Once the optimum tuning configuration and mass effectiveness are established, a
parametric study is conducted. The parameters to be varied include prepitch, pretwist,
precone and pendulum hinge offsets. The parametric survey is conducted for the

L '	 nonuniform blade with the optimum tuned pendulum (w = 3.85/Rev and x  = 22%
span). The pendulum mass is 133.452 N for this study. 	 p
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Figure 16 shows the effect of root collective^Itch (prepitch) on the hub reaction:
The pretwlst angle for these results is equal to -9 . The prepitch has a small effect o
the hub vertical shear. It significantly affects the hub In-plane force and momenl
which are both Increased by increasing the root collective pitch. The out_of-plan..
moment Is affected moderately by changing the collective pitch. The effect of
collective pitch on the twisting moment (not shown in figure 16) Is negligible.

The effect of the built-in twist angle (pretwist) on the hub reactions of the blade-
mounted flapping pendulum is shown In figure 17. The root collective pitch for these
results Is equal to 13 . Figure 17 shows that the pretwist has a small effect on the hub
vertical shear. Unlike the effect of the collective pitch, the pretwlst has a significant
effect on the root out-of-plane moment. However, for typical rotor blades (negative
pretwist) the root out-of-plane moment is still attenuated to less than 10%. It can be
observed from figure 17 that the in-plane force and moment are both increased by
decreasing the blade pretwist. The pretwist has negligible effect on the twisting
moment. It can be concluded that the flapping pendulum effectiveness In attenuating
the root out-of-plane moment, and the In-plane force and moment Is reduced by
decreasing the blade pretwist.

The root reactions of the blade are computed for various precone angles, and these
results are presented in figure 18. It can be observed that the blade precone has no
significant influence on the hub reactions. Thus, the flapping pendulum effectiveness in
attenuating the blade root reactions is not affected by changing the precone angle.

The results from varying the pendulum hinge chordwise offset, n A, are shown in
figure 19. It may be recalled that the optimum flapping penduluM. is tuned with its
hinge located at the shear center of the blade cross section'( n = 0, 0). It can be
argued that this is an impractical location since the shear cen er is usZally Inside the
airfoil envelope. The pendulum chordwise hinge offset has a small effect on both the
root out-of-plane force and moment as shown in figure 19. Both the in-plane force and
moment are decreased by Increasing the chordwise offset. The effect of choldwIse
offset on twisting moment at the hub Is negligible.

Figure 20 shows the root forces for different values of the pendulum hinge vertical
offset, z . It can be concluded from figure 20 that the vertical offset, ^ , has only a
slight effAt on the hub reactions. Although not illustrated In figure 20 fts effect on
twisting moment is negligible.

Aerodynamic load excitation. - The dynamic excitation of the rotor blade Is
provided by a quasi-steady representation of the spanwise airload distribution associated
with the cyclic pitch environment of forward flight. As previously discussed the
aerodynamic loads induced by the elastic deformations are also Included. The
aerodynamic load distributions consist of lift, drag, and pitching moment. Values of the
aerodynamic parameters used to calculate the airloads are presented in Table 3.

As previously discussed the unsteady aerodynamic forces which occur in forward
flight are due to time dependent variations in velocity, angle of attack, and elastic
deflections encountered by the rotating blade. The quasi-steady representation provides
1/Rev, 2/Rev, and 3/Rev excitation airloads. The amplitude of the airloads decreases
as the harmonic order increases. For each of the three harmonics, the amplitude of the
vertical force is much larger than the amplitude of the in-plane force.

For airloads which are identical on each rotor blade, the only loads and moments
which the blades may transmit to the rotor hub are those which are integral multiples
(N) of the number of blades (ref. 17). The N/Rev rotor hub loads are the greatest
contributors to helicopter vibration. The source of N/Rev hub loads are N-1, N, N+1
rotor blade airload harmonics. Therefore one solution for reducing N/R.ev vibration is
to cancel or eliminate these harmonics of blade loading. As discussed above, the quasi-
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iR TABLE 3. - VALUES OF AERODYNAMIC PARAMETERS FOR THE
NONUNIFORM BLADE IN FORWARD FLIGHT

Advance ratio, p f	 .	 . . .	 . . .	 •	 .	 .	 0.3

Shaft angle, a s, deg .	 . . .	 . . .	 •	 •	 «	 -5

Cosine cyclic pitch coefficient, ® 1c, deg . . .	 . . . .	 -1 .5

Sine cyclic pitch coefficient, a 1s , deg «	 .	 3.0

Collective pitch, 9c, deg .	 13

Pretwlst, V pt, ve-	_	 . .	 .	 •	 .	 .	 .	 .	 .	 -9

Airfoil lift-curve slope, a, per rad	 . .	 «	 .	 2 it

Profile drag coefficient, c do	 .	 «	 . . .	 0.01

Precone angle, S PC, rad .	 .	 .	 . . .	 0.1

Blade rotational speed, a , rpm . . • • • • . • 	 289
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steady representation of the airloads contains only three harmonics. In the present
analysis, the effectiveness of the flapping pendulum In reducing the blade root forces
due to 2/Rev and 3/Rev airloads Is discussed. Throughout the following, unless stated
otherwise, all numerical results pertain to the nonuniform blade.

The root reactions of the nonuniform blade with a flapping pendulum are computed
for a 2/Rev spanwise airload distribution. The results for the vertical shear at the hub
are plotted In figure 21. The pendulum weight Is 133.452 N. Front the hub reactions It
is observed that the pendulum of uncoupled natural frequency 2.02/Rev located at 22%
of the span Is a proper design because It attenuates the hub vertical shear to 22% and
the out-of-plane moment to 31%. This choice of pendulum attenuates the In-plane
moment by only 4% and amplifies the in-plane force by 66%. However for the 2/Rev
airload the In-plane hub force Is small compared to the hub vertical shear.

For the optimum pendulum tuning ( w = 2.02 /Rev and xA = 22% span) the root
reactions are computed for different valuespof the pendulum mass and the results are
presented in figure 22. It can be observed that a 94.53 N pendulum weight (0.71 weight
ratio) is a proper choice because It attenuates the hub shear to 2.9 %. It also attenuates
the hub out-of-plane moment to 17%.

To establish the importance of representing the excitation as a distributed loading
the responses due to the distributed airload are compared with corresponding responses
associated with a concentrated harmonic force applied at the tip with the same
frequency. Figure 23 shows the results for a 2/Rev concentrated out-of-plane force at
the tip. It can be noticed from figure 23 that the flapping pendulum effect on the hub
vertical shear Is similar to the results obtained for the 2/Rev spanwise airload
distribut ion (fig. 21). For specific; values of the pendulum frequency and spanwiseY L. +V	 O

location, the pendulum attenuates or amplifies the root vertical shear the same way for
both the distributed airload and the concentrated load. It is observed that an optimum
tuning occurs at 22% spanwise location with pendulum frequency equal to 2.02/Rev.
This optimum tuning attenuates the vertical shear and the out-of-plane moment to 17
and 38%, respectively. It amplifies the in-plane force by 63%. It may be recalled that
the optimum pendulum for the 2/Rev distributed airloads also occurs at x A = 22% span,
W = 1.02/Rev, and W = 94.53 N.

p The pendulum mass optimization for the 2/Rev concentrated load is shown In figure
24. It can be observed that a 100.09 N pendulum weight (0.75 weight ratio) Is a proper
choice because It attenuates the hub shear to 8%. It also attenuates the root out-of-
plane moment to 26%.

For the 2/Rev concentrated load at the tip, discussed above, the elastic-
aerodynamic coupling is not included. However, it is important to study the effect of
these terms when the blade is excited by a concentrated load. Figure 25 shows the
results for a 2/Rev concentrated load at the tip with the aerodynamic coupling terms
included, as well as the results without these terms (W = 133.45 N). It can be noted
from figure 25 that for both cases the root vertical shear has the same characteristics.
However, the amount of attenuation is different. Figure 25 shows that, for the case
with aerodynamic coupling the optimum tuning occurs at x A = 26% span and
w = 2.02/Rev. This choice of pendulum attenuates the root out-of-plane shear and
moment to 38% and 84%, respectively. The results of varying the pendulum mass
indicate that the reaction attenuation varies only by 1.0%. The results also show that a
133.45 N is a proper choice. Comparing the pendulum tuning for the 2/Rev distributed
airloads, the 2/Rev concentrated load, and the 2/Rev concentrated load with
aerodynamic coupling, it can be concluded that a pendulum tuned for a concentrated
simple harmonic load acting at the blade tip can serve the purpose of a distributed
simple harmonic loading at the same frequency as far as the pendulum tuning and mass
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optimization Is concerned. However, It Is necessary to utilize appropriate distributed
airloads to accurately determine the attenuation of the root reactions.

Figure 26 shows the effect of pendulum tuning on the root vertical shear for 3/Rev
spanwise alrload distribution. The results of figure 26 Indicate that a flapping pendulum
of frequency 3.10/Rev located at 26% of the span Is an optimum tuning. This choice of
pendulum attenuates the root vertical shear and the out-of-plane moment to 4.2 and
26.8%, respectively. It attenuates the root In-plane moment only to 97%. However, the
In-plane force at the hub Is amplified by 44%. This adverse effect Is the penalty being
paid for achieving the drastic reductions In the root out-of-plane force and moment.

The root reactions are computed for various masses of the optimum pendulum.
Results for the vertical shear are presented In figure 27. These data show that a 155.69
N pendulum weight (1.17 weight ratio) Is a proper choice. For this weight the vertical
shear and out-of-plane moment are attenuated to 3.3 and 25.2%, respectively.

The above results for a simple flapping pendulum on the nonuniform blade are
summarized In Table 4.

Simple Lead-Lag Pendulum

As discussed in the previous section, the simple flapping pendulum can be tuned to
achieve significant reductions in the root out-of-plane forces. To significantly
attenuate the In-plane forces a simple lead-lag pendulum is needed. In this section, the
effect of mounting a lead-lag pendulum on a rotor blade Is discussed. The excitation
loads to be considered are 4/Rev concentrated load at the blade tip and 2/Rev and
3/Rev spanwise distributed airloads. Throughout the following all numerical results
pertain to the nonuniform blade.

Concentrated load excitation. - The root reactions of the nonuniform blade with a
simple lead-lag pendulum are computed. The results for the In-plane force amplitude at
the hub are plotted In figure 28. The study of the effect of the pendulum tuning on the
root In-plane reaction Is of prime Importance since the lead-lag pendulum attenuates
mainly the In-plane forces. The pendulum weight is equal to 133.452 N. From the
results it can be observed that the pendulum of uncoupled natural frequency 3.85/Rev
located at 26% of the span is a proper design because it attenuates the hub In-plane
force to 5% and the in-plane moment to 44.6%. This choice of pendulum also
attenuates the root vertical shear and the out-of-plane moment to 20.6 and 16.8%,
respectively. In principle, It is feasible to design a lead-lag simple pendulum to achieve
significant reductions in the hub in-plane force and moment without producing an
adverse effect on the out-of-plane forces.

For the optimum lead-lag pendulum (w = 3.85/Rev and x A :: 26% span) the root
forces are computed for different values of tie pendulum mass. The results are shown
in figure 29. It can be observed from figure 25, that if the pendulum weight ratio Is
reduced from 1.0 to 0.3, then the normalized in-plane force at the hub increases from
5% to 39%. This result Indicates that even though the uncoupled natural frequency of
the lead-lag pendulum is independent of the mass of the pendulum, a proper choice of
the mass is required to minimize the root forces. It may be recalled that this
conclusion was also observed for the simple flapping pendulum.

It is appropriate, at this stage, to compare the results for the optimum tuned
flapping and lead-lag pendulums. Shown in Table 5 are the optimum pendulum
parameters for both the flap and lead-lag pendulum configurations. Also shown in this
table are the normalized root forces of the nonuniform blade due to a 4/Rev
concentrated load at the tip. From Table 5 it can be observed that for both the flap and
lead-lag pendulums the uncoupled frequencies are the same. Also the uncoupled
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TABLE 5. - ROO'
LEAI

Normalized root reaction,

percent

Flapping

pendulum

Lead - lag

 pendulumb

M 139.0 85.0x

My 5.8 16,8

M 172.0 44.6z

vy 43.6 5.0

v 0.2 20.6Z

0
	

a cup = 3.85/Rev ; xA = 22% span ; W = 65.72 N

y	

b p = 3.85/Rev ; xA = 26% span ; W = 133.45 N
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frequency (3.85/Rev) Is In the vicinity of the external Wad frequency (4/Rev). It may be
concluded that, in general, the optimum pendulum frequency depends mainly on the
excitation frequency. This observation Is due to the fact that the optimum tuned
pendulum attenuates the hub reactions by eliminating the resonant responses of the
blade (in addition to generating an appropriate reaction force at the hinge). The
optimum pendulum eliminates these resonant responses by displacing the natural
frequencies that are in the vicinity of the excitation frequency, and since the pendulum
is more effective In altering the blade frequencies adjacent to the uncoupled pendulum
frequency (ref. 7), then the uncoupled pendulum frequency must be close to the
excitation frequency. As expected, the flapping pendulum significantly attenuates the
hub vertical shear, whereas the lead-lag pendulum reduces the hub In-plane force
drastically as shown in Table 5. Finally, It can be observed from Table 5 that for this
particular blade the flapping pendulum produces an adverse effect on the twisting and
in-plane moments, whereas the lead-lag pendulum attenuates the twisting and out-of-
plane moments.

The spanwise variations of dediections and forces for the nonuniform blade
corresponding to the optimum lead-lag pendulum, which is located at 26% span, are
shown in figure 30 together with the values obtained without the pendulum. The lead-
lag and flapwise deflections are normalized with respect to the chord (c = 0.53 m). Only
the magnitude of the forces and moments are plotted. It can be observed from figure
30 that the lead-lag pendulum redistributes the structural loads of the blade such that
the hub forces are attenuated. The pendulum decreases the loads inboard of its location
and increases the 1:,L.ds outboard. Figure 30 shows that the lead-lag deflection of the
blade-pendulum system is significantly reduced. Also, it can be observed that the in-
plane force, V , is characterized by a large change at the lead-lag pendulum attachment
point due to Ae intertial reaction of the lead-lag pendulum mass. It may be recalled
that the flapping pendulum produces a large change in the vertical shear. These
reactions at the attachment point redistribute the loads on the blades in such a way that
only a sm,111 portion of the shears and moments are transmitted to the hub.

A parametric study is conducted for the optimum lead-lag pendulum
(w = 3.85/Rev and xq - 26% span). The parameters varied include prepitch, pretwist,
prepcone, and pendulum- hinge offsets.

Figure 31 shows the effect of the root collective pi^ch (prepitch) on the hub
reactions. The pretwist angle for these results is equal to -9 . It can be observed from
figure 31 that increasing the prepitch decreases the hub in-plane force to a minimum
value after which it Increases. The in-plane hub moment is increased by increasing the
prepitch (in the normal range). Figure 31 shows that the prepitch has a negligible effect
on both the out-of-plane shear and moment at the hub.

The effect of pretwist on the hub reactions is shown in figure 32. The root
collective pitch for these results is equal to 13 . Figure 32 shows that both the hub in-
plane force and moment are increased by decreasing the blade pretwist. Thus, the lead-
lag pendulum effectiveness in attenuating the root in-plane force and moment is
reduced by decreasing the blade pretwist. It can be observed from figure 32 that the
effect of the pretwist on both the out-of-plane force and moment at the hub is small.

The root reactions as a function of the blade precone angle are computed, and the
results are presented in figure 33. It can be observed that the precone angle has no
significant influence on the hub reactions. It may be recalled that the same conclusion
was observed for the flapping pendulum.

The results from varying the lead-lag pendulum hinge chordwise offset (n ) are
shown in figure 34. It may be noted that the optimum lead-lag pendulum is tune' with
its hinge located at the shear center of the blade cross section ( n A = 0, ;A = 0). It can
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be observed from figure 34 that the pendulum hinge chordwise offset has only a slight
effect on both the hub in-plane force and moment. However, both the hub out-of-plane
force and moment are decreased slgificantly to practically zero, after which they are
increased, by increasing the chordwise offset.

Figure 35 shows the root reactions for different values of the lead-lag pendulum
hinge vertical offset, ^ A. This offset has a small effe r .^n the root In-plane moment.
However, the in-plane force at the hub is Increased by ising the vertical offset as
shown In figure 35. Also, both the root out-of-plane force a ► J moment are increased by
,increasing the lead-lag pendulum hinge offset, ^ A• It can also be noted that both the
chordwise and vertical offsets have a negligible effect on the hub twisting moment
reaction.

Herod nnamic load excitation. - The root reactions of the nonuniform blade with a
lead-lag pendulum are computed for a 3/Rev spanwise airload distribution. The results
for the root in-plane force are shown in figure 36. It can be observed from figure 36
that for this particular load the lead-lag pendulum attenuates the root in-plane force
only by a small amount. However, the root in-plane force is small for all three
harmonics of the spanwise airload distribution. The lead-lag pendulum of uncoupled
frequency 3.10/Rev located at 19% of the span Is a proper choice because it attenuates
the hub in-plane force to 65%. However, it amplifies the other root reactions by 5 to
25%.

The effect of lead-lag pendulum tuning on the root in-plane force for a 2/Rev
spanwise airload distribution and a 2/Rev concentrated out-of-plane load is shown in
figures 37 and 38. It can be observed from these figures that for specific values of the
pendulum frequency and spanwise location, the pendulum attenuates or amplifies the
root in-plane force the same way for both the distributed airload and the concentrated
load. The pendulum of frequency 2.01/Rev located at 9% span attenuates the root in-
plane force to 60% for the distributed airload and 42% for the concentrated load at the
tip. As concluded earlier, for the flapping pendulum, a pendulum can be tuned for a
concentrated simple harmonic load at the tip as well as by a distributed simple
harmonic loading of the same L-equency.

CONCLUDING REMARKS

Comprehensive analytical design procedures for the installation of simple
pendulums on the blades of a helicopter rotor to suppress the root reactions were
developed. To achieve this goal, a frequency response analysis of typical rotor blades
excited by a harmonic variation of spanwise airload distributions as well as a
concentrated load at the tip was conducted. A single nonuniform rotor blade with
hingeless hub restraint undergoing coupled flapwise bending, chordwise bending, and
torsional vibrations was considered. The equations of motion of both flap and lead-lag
pendulums were derived. Expressions for the aerodynamic loads associated with the
elastic deformations and the cyclic pitch environment of forward flight were presented.
The transfer matrix method was used to determine the optimum pendulum tuning and
mass to suppress the hub reactions. Lastly, the effects of various structural dynamic
properties of the blade on the optimum pendulum configuration were established.

The results of the study indicate that the following conclusions can be drawn.
(1) In general, it is feasible to design a simple pendulum to suppress the vibratory

loads at the hub of a rotor blade. Further:
(I) A properly designed flapping plane simple pendulum attenuates the root out-

of-plane force and moment significantly. In principle, the reductions in the root out-of-
plane reactions can be achieved without producing adverse effects on the root in-plane
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forces. However, in some of the cases investigated, the hub In-plane forces are
amplified with the flapping pendulum. This is a design penalty which results from
reducing the out-of-plane reactions.

(11) An optimum lead-lag pendulum design attenuates the root In-plane force and
moment.

(ill) For the cases investigated, the, flapping plane simple pendulum is more
effective in attenuating the root out-of-plane reactions than the lead-lag pendulum in
suppressing the in-plane forces at the hub.

(2) A properly tuned pendulum can attenuate the vibratory loads in two ways: (1)
by eliminating the resonant responses of the blade by displacing the Initial frequencies
that are in the vicinity of the excitation frequency, and (2) by generating appropriate
forces at its attachment point with the blade. These forces redistribute the loads on
the blade so that only a small portion of the shears and moments are transmitted to the
hub.

(3) For optimum tuning, the parameters to be determined are the pendulum
uncoupled natural frequency, the pendulum spanwise location, and its mass. Further:

(i) The pendulum uncoupled natural, frequency is a function of the (a) rotational
speed of the blade, (b) spanwise location of the pendulum, (c) its length, (d) steady-state
deflection of the pendulum, and (e) blade pitch angle at the pendulum hinge location.

(ii) The optimum pendulum frequency is in the vicinity of the excitation
frequency. In general, both the tiapping plane pendulum and the lead-lag pendulum have
the same optimum frequency for the same excitation frequency. In the case of an off-
tuned pendulum the results range from a slight-to-moderate degradation in pendulum
absorber effectiveness to a drastic increase in hub vibration.

(iii) The uncoupled natural frequency of the pendulum is independent of the
mass of the pendulum, and a proper choice of the mass is required to generate an
optimum force to minimise the root reactions.

(4) A pendulum can be tuned and its optimum mass determined by excitation with a
concentrated simple harmonic load at the tip. However, it is necessary to utilize
appropriate distributed airloads to accurately determine the attenuation of the root
reactions.

(5) Damping at the pendulum hinge has a very small effect on the hub reactions
once the optimum pendulum tuning is established.

(6) The parametric study for a 4/Rev flapping plane pendulum and a 4/Rev lead-lag
pendulum indicates:

(I) Glade precone has no significant effect on the hub reactions for both types of
pendulum.

(ii) The effect of collective pitch on the hub vertical shear is small, but has an
appreciable effect on the hub out-of-plane moment for a flapping plane pendulum. For
the lead-lag pendulum the collective pitch has a negligible effect on both the hub out-
of-plane force and moment. Increasing the collective pitch, the hub in-plane force and
moment are significantly raised in the case of the flapping pendulum, whereas they are
lowered to a minimum value after which they are increased in the case of a lead-lag
pendulum.

(iii) The pendulum effectiveness in attenuating the hub in-plane force and
moment is reduced by decreasing the blade pretwist for both types of pendulum. In the
case of the flapping pendulum, pretwist has a significant effect on the hub out-of-plane
moment.

(iv) The pendulum
plane reactions in the ca
pendulum the hub in-plane

hinge chordwise offset has a small effect on the hub out-of-
se of a flapping plane pendulum. Also, for this type of
reactions are slightly decreased by increasing the chordwise
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;ioffset. In the case of a lead-lag pendulum, the hinge chordwise offset has only a slight
effect on the root in-plane reactionsp whereas the out-of-plane forces are significantly
decreased by increasing the chordwise offset.

(v) The pendulum hinge offset normal to the chord has only a slight effect on
the hub reactions for the flapping plane pendulum. In the case of a lead-lag pendulum,
the hub In-plane force and both the out-of-plane force and moment are increased by
increasing the hinge offset. But the hinge offset has only a small effect on the hub in-
plane moment.

(vi) For both the flapping and lead-lag pendulum configurations the pendulum
hinge offset in both the chordwise and normal directions had a negligible effect on the
twisting moment reaction at the hub.
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APPENDIX A

COORDINATE SYSTEMS AND TRANSFORMATIONS

Several coordinate systems are used in deriving the blade and pendulum equations
of motion. Those which are common to both the dynamic and aerodynamic aspects of
the derivation are shown In figures A - 1 n A-2. The orthogonal axes system^C, 'Y, Z
(fig. A-1) and associated unit vectors < are fixed in an inertial fri . It is
assumed that the rotor hub has neither translational nor angular motion. Orthogonal
axes x, y, Z are fixed in a reference frame 0 which rotates with respect to Oat
constant angular velocity Rtt,. Point O, which is common to both the inertial and
rotating frames, is located at the root of the beam. The x axis, which lies along the
elastic axis of the undeformed beam, Is inclined to the plane of rotation (and to the x
axis) by ,th^ Rrecone angleThe orthogonal axes x, y, z and the corresponding uniR
vectors 1, i, k, therefore, are paclso fixed in 0. Beam bending deformations shown in
figure A-2 for 0 = 0 are describe:` by the displacements of the elastic axis u, v, w
parallel to , j, k respectively.

The transformation between the X, Y, Z coordinates of the ineltial reference
frame,' y and the xp, y, Z coordinates of the rotating reference f rame,W, ir• given by

X	 cos a t	 -sin SZ t	 0	 xp

Y	 sin SZ t	 cos Sat	 0	 y	 (A 1)

z	 L	 o	 0	 1.1-Z.1

Rotation of the x , y, Z coordinate system by the precone angle 0 about the y axis
yields the x, y, z p ndeformed coordinate system. These two systems pare related by the
following transformation.

x 
	 cos P pc 0	 -sin $ PC-

yy	 -	 0	 1	 0	 y	 (A 2)
i

Z	 sinpc 0	 cos 0 pc z

For small values of the precone angle equation ( A-2) can be approximated as

'p	 xp	 1	 0	 -0 PC-	 x

7	 =	 0	 1	 0	 y	 (A­ 3)

Z	 pc 0	 1	 z

The relationship between the deformed x', y', z' coordinates and the undeformed x,
y, z coordinates illustrated in figure A-2 has been developed in refertn_qe 10.
transformation matrix, ET ] , which relates their respective unit vectors i', 1 A I and f,
+ t, can be defined as

r
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where the transformation matrix to first order (second and higher order terms are
discarded) is given by

1	 vo	 w'

(T ]	 -v' cos (0 +	 -wl sin (8 +	 cos (0 +	 sin ( 0 + )

	

v' sin (0 +	 -w' cos (0 +	 -sin (0 +	 cos (0 + )
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Figure A-1. - Undeformed coordinate system.
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APPENDIX B

ACCELERATION COMPONENTS

The purpose of this appendix is to formulate the components of absolute
acceleration as measured In the deformed coordinate system for a general point
(x t , y , z ) In the undeformed system. It is desired to use the deformed coordinate
sy^stA since It Is easier to formulate the pendulum equilibrium equations in this system.
These acceleration components are to be described In terms of section coordinates and
the elastic blade displacements and rotations to the first order.

A position vector In the inertial reference system can be written as

r _ X1 + Y1 a . Z1	 (B-1)

and the corresponding acceleration components are

ax = X ; ay - Y I aZ = Z	 (B-2)

The components of acceleration in the rotating, nonpreconed system can be obtained
from the component transformations in equation (A-1) as

axP - X cos S2 t + Y sin $1 t

ay	 Y cos S2 t - X sin S2 t	 (B-3)

a 	 .,	 Z

Substitution of equation (B-3) into equation (A-3) yields the acceleration components in
the undeformed system which is rotating at a small precone angle as illustrated in
figure A-1. These components become

ax = X cos S2 t + Y sin 0 t + Z CPC

ay = Y cos 92 t - X sin S2 t	 (B- 4 )

az = Z - (X Cos 2 t + Y sin Sg t) S PC

The position vector of equation (B-1) can be written for a general point (x 	 ,y
z l ) in the undeformed system by successive applications of equations (A-1) and (AY) ^ a^

4.r = (x 1 Cos S2 t -y 1 sin S2 t -z .i S Pc cos S2 t) T

1

+(x 1 sin S2 t +y 1 cos 9t -z i S
P C 

sin S2 t) i

+(x I S pc + zi)
	

(B-5)
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The second time derivative of the components of equ

X _ 0 x cos SZ t =y i sin SZ t "z1

F

-2 sZ is i sin $It -2 $Z y 1 cos n t + 2 $1 z 1 0 PC sin St t

- S1 2 x1 cos St t + S2 y i sin SZ t + $1 2 z1 SPC cos n t

X =	 x i sin SZt + y 1 cos Q t -'zi b Pc sin SZt	 (B- 7)

+2 $Z x 1 cos S3 t -2 SZ y i sin Qt -2 Sl z 1 O pc cos SZ t

SZ 2 x 1 sin SZ t- SZ 2 y 1 cos SZ t + SZ 2 z 1 P 
c sIn SZ t

Z	 - xi 00c + z i 	 (B- 8)

Substituting these derivatives into the acceleration components of equation (B-4) and
neglecting second degree terms in the precone angle yields

ax = x i -2 SZ y i - S1 2 xi + a z1 Spc

ay - y +2 St x i -2 $Z z 1 s PC - SZ 2 y 1	 (B-9)

az _ x1 +2 SZ Y1 ^Pc + Q xi Spc

In the deformed body, the coordinates x l , y i , z of the general point In the
undeformed coordinate system can be expressed in terms) of the elastic deflections u, v,
w, ^ and the section coordinates , n (same as x', y', z') with the aid of equation (A-
4) as

X1	 'x+ u	 i;

y I	 -	 v	 + ET]T n	 (B-10)

..	 zi	 w

These coordinates become

X 1 = x + u + -v' [ncos(e  + c ) - ^ sin (e + ^) ]

t.^
-w' In sin (e + ^) + ^ cos ( 6 + ^) 	 (e-11)
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(B-12)

(B-13)

y1 =v +V,	 + T,	 cos (Q +fi}- ^ sin (6+ )

z 1 = w + w,	 +	 n stn ( 6 + + ^ cos (6 +	 }

When these coordinates and their time derivatives are substituted Into equation (B-9)
the acceleration components to first order become

ax -	 -2 Sd v - n 2 ( X+ )

+2	 sin (6 *	 -2 $t n cos ( 6 + ^)	 (B-14 )

ay = 'v'+22	 $12v

+( 1 2 - )stn(9 +^)- (Sa2n°") Cos (0 +^)

(i3-15)
az = w +St2 Spc ( x +^ }

+ n sin( 6 + 0 +' cos (8 +	 (B- 16)

In the above acceleration expressions, the coordinates ^, n , 4 are of a general point off
the blade. These acceleration components In the undeformed system can be
transformed into the deformed system components by again applying the transformation
of equation (A-4) as

ax,	 ax

ay ,	 _ FT]  ay	 (B-17 )

az,	 az

The final acceleration components in the deformed system can be further simplified by
applying the trigonometric approximations of equation (8) to yield

ax , 	 -2 Q v - St 2 (x+ F,) +2 Q ^ sin 8

-2 Q t cos 6	 (B-18 )
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r
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i-

ay, : ri+(S1 2 xv+ 'w + n S pc x) sin 0

+(v+2$1t -R 2 v + $1 2 x 0 Cos 0

- $Z 2 t1 cos2 0+ 1/2 Q 2 g sin 2 0

aZ, =	 - (v + 2 Sl ^ - SZ 2y + SZ 
2x 

u) sin 0

+ ( SZ2 x v + w + r22 
0pc 

x) cos 0

- St 2 ^ sin  0 + 1/2 Q 2 rj sin 2 0

(B-19)

(B-20)

I - ' Al ,.
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APPENDIX C

ASR®DYNAMIC C9IJPLINC C 	 1 3

In equation (132) the elastic deformations-dependent aerodynamic loads are
expressed In a matrix form. The nonzero elements of these matrices are

B65	 2 p ac (µ)2 a 2 x

81013	 "2 pac $12xRX

B l p^S	-	 - 2 P I(2 Si 2 x u f R °lc : 12 u f R2 pc)

B I11i	 -	 - 2 pac (- S2 2 x B pc)

F311,3	 -	
-2 p ac(-St 2 x 2 -1uf Q2 R2)

B11,4	 -	 - 2 pac (- St 2 x 1t f R 0 1c - 2 St 2 p f R2 s pc)

B	 =1 pac (- c 9 
2 x)11,5	 - 2	 2

2 p ac (c)2 (2 lax)

-2 pac1SZx(8c+ 0t)+2 P f PR O Is-2aR1

- I pac ^Ux(0 c + t^t)^pf92R els* StRX^

2 p ac (-S2 x)

- 2 pac ( 4 $z x)

- 2 p ac (4)2

2 p ac (4)



For n = 1:

r gc63	
=	 2 p ac (µ)2 11 f SZ 2 R

j`
g 

c10,3=

l pac(-SZ

2 x 11fR aPC)
2

`

^

g	 -
c10,5 -
 21 pac	 - SZ	 x (0 c + 0 t) li f SZ R+ 4 n2 P f R2 0 Is

2	 C

1
SE2	 R2	 J-2	 of

r
i "gc11,3 

=
- l 

p ac (^ u Q2 R)
2	 4	 f

7
t

B	 -
c11,4-

1 pac [2 2Qx(0 c + 0 t)
- 2

pf R `2 S12u2R2 01s

+ St 2 la f R2
i
a

gc 11	 _- p ac (St 2 x p. R)

i Cc65
1	 2

2 p ac (c4)	 µ f QR

C
c10,2

=	 1	 pac (nx 0 1c +2p f
2

n 	 SPC)

Cc11,1
1_	 - 2 pac (-2 n x 0 1c - u f QR S Pc)

► C
c11,5 =	 1 pac (-	 0 U f R)

- 2
i

"	 ~l gs65	 = 2 P'
c (^)2 (2 St2 11 f R)

P ^

E gs10 3=
.. 2 pac (SZ 2

	Pf R2 x

gs10 5 = - 2 pac (4 SZ 2 P f R2 01t)

r
,

gs 11 1 = - 2 p ac (- Q 2 P f R S pc)
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n

7

0s11 3	 = - t pac (-2 S2 2 x R pf)

Bs11 4	 - -2 pac(- 2 SZ 2 p f R2 01c)

Bs11,5 ' 2 p ac (µ	 pf R)

cs63	 ' 2 pac (4)2 (2 pf SZ R)

cs10,2	 = -2 pac 
L 

Ox	 0 1 s-11 f S2R ( 0 c + 0^)^

csll 1	 - - 2 pac 1-2 S2 x	 0 1s + 2 pf S2 R (0 c + Ot)^

cs11,2 ' .2 pac pf S2 R

Cs11 3	 = "2 p ac ( 34 	 pf 12 R)

" E

For n=2 ;

Bc10,5	 - " 2 pac (2 SZ 2 x p f R 8 1c + S2 2 u. # R2 SPC)

Bc11,3	 = " 2 pac (2 p 2 S22 R2)

Bc11 49
- 2 pac (- P.	 x 1t f R	 0 1c - 2 S2 2 pf R2 S pc)

Cc10 2	 - - t p ac (- 1 µ f 62 R 0 Is

cC1121 - 2 pac 	(p	 Q R 0 1 Is

Bs10,3	 - - 2 pac (" 2 S22 pf R2 ^Pc)

Bs10,5	 = " 2 pac ^2 S22 x p f R 0 1s - 2 S22 p f R2 (0 c + 6 t)^

Bsl 1,4	 = " 2 pac 1^ - 922 x p f R	 Ols + S2 2 u f R2 (0 c + 0 A

m

^ tS



Bsl 1 5	 - 2 pac (- 2$1 2 112 R2)

E
"s	 Cs10,2	 - 2 p ac (2 p f Q R Olc)

c	 Csl 1 1	 ' 2 p ac (" ug S2 R 01c)

Forn=3

r	 Bc10,5 ^ 2 pac (^ 4
52 2 p f R2 01s)

w
B c! 1,4 - 2 pac ( 2R2g2	

f 01s)

i
i	 Bs10 5 Z p ac ( 4

S12 p f R2 e lc)

Bs11,4	 - r 2 pac (w2
22,1 2 f R2 01c)

I

k'
^" 1

XY
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APPENDIX D

ROTOR CONFIGURATIONS

Two rotor configurations have been considered in this investigation. The first is a
uniform blade, and the second is typical of an operational blade with nonuniform
properties,

The uniform blade has the following properties:

Radius, in	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 260

Linear twist, deg .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 -10

Weight per unit length, Win . . . . . . . . . . . . . . . 0.5796

Flapwise mass moment of inertia per unit length, lb-in . . . . . . . 0.3476

Chordwise mass moment of inertia per unit length, lb-in . . . . . . . 15.456

Flapwise bending stiffness, lb-in 2	. . .	 .	 0.3x108

Chordwise bending stiffness lb-in 2 .	 . .0. 1xI010

Torsional rigidity, lb-in 2 .	 .	 . 0.2x108

Klass axis offset, in. 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 -0.6

Rotational speed, rpm . . . 	 0	 . .	 0	 360

The nonuniform blade has the properties listed in the following table and
illustrated in figures D-1 through D-6.

Radius. in	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 288

Root cutout, in .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 39

Precone, rad	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.1

Rotational speed, rpm .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 289
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Figure 31. - Root collective pitch effect for 4/Rev concentrated
excitation, nonuniform blade.
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