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PRECEDING PAGE BLANK NOT nLMED

SYMBOLS

cm centimeter(s)

CE centerline

dB decibel:	 20 log,„	 pi

P2

DB RE 0.0002 MICROBAR: 20 log 10 p3

0.0002 MICROBAR

ft foot, feet

Hz Hertz (cycles/second)

in inch(es)

P.g kilogram(s)

kHz kilohertz

kn nautical miles/hour

lb pound(s)

m meter(s)

MICROBAR	 sound pressure level equal to 0.1 N/m2 and approximately equal
to one-millionth of normal atmospheric pressure

N	 Newtons

NH	 High pressure compressor RPM

pi	 sound pressure level under evaluation,

any units of pressure

P2	 reference sound pressure level,

same units as p,

P3 sound pressure level 	 under evaluation, MICROBARS

rms root mean square

V velocity, kn

Vmo Velocity, maximum operational

0 degrees Celcius

of degrees Fahrenheit

bf flap angle, degrees	 (see Figure 3)

dch choke angle, degrees (see Figure 3)

do conical nozzle angle, decrees
(see Figure 2)
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STATIC NOISE TESTS ON MODIFIED AUGMENTOR

WING JET STOL RESEARCH AIRCRAFT
s

G. R. Cook and B. F. Lilley*

Ames Research Center

SUMMARY

Noise measurements were made in 1978 at the Ames Research Center on the

U.S./Canadian C-8A Augmentor Wing Jet STOL Research Aircraft (AWJSRA) to

determine if recent modifications made to the bifurcated jetpipe to increase

engine thrust had at the same time reduced the noise level. The noise field

was measured by a 6-microphone array positioned on a 30.5m (100ft) sideline

between 90 and 150 degrees from the left engine inlet. Noise levels were

recorded at three flap angles over a range of engine thrust settings from

flight idle to emergency power and plotted in one-third octave band spectra.

Little attenuation was observed at maximum power, but si gnificant attenuation

was achieved at approach and cruise power levels.

INTRODUCTION

Early flight-tes; activity at the NASA -Ames Research Center indicated

excessive noise from the AWJSRA. Although the noise ag g ravation to local

communities could be significantly reduced by operational chan ges, the two

governments were interested in developing a detailed understanding of the

noise characteristics ti provide a firm technology base to reduce the noise

level of this type of configuration.

Initial noise measurements of the AWJSRA were made in mid -1972

by Boeing at Paine Field, Washington, during the airworthiness flight test

program prior to delivery to Ames. A more detailed series of tests jointly

sponsored by the U.S. National Aeronautics and Space Adminstration (NASA)

and the Canadian Department of Industry Trade and Commerce (DITC), were

conducted at Ames during July and August 1973.

*The deHavilland Aircraft of Canada, Ltd., Downsview, Ontario.
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The AWJSRA is a low cost proof-of-concept research aircraft designed

to demonstrate the augmentor wing concept. The propulsion system

consists of two Rolls Royce turbofan engines, formerly Spey Mk 511,

modified to separate the fan air from the core air and redesignated

Mk 801-SF (split flow). The fan air is ducted to the wing augmentor,

and the core air is exhausted through a bifurcated jetpipe and nozzle

vectoring system taken from a Pegasus (Harrier) engine. The mismatch

between the cross sectional area of the Pegasus and Spey jetpipes was

accommodated by a perforated (colander) plate located between the two.

This effectively protected the engine from any disturbances within the

oversized Pegasus bifurcated jetpipe or nozzle system. However, this

low cost approach resulted :.. a thrust loss of about 10 00' and was suspected

as the source of much of the noise.

The static tests conducted in July and August 1973 investigated the

following areas:

o	 The noise contribution from the colander plate by testing configurations

with and without the plate installed.

o	 The potential for noise reduction by running with over-area nozzles

to reduce the core velocity,

o	 The potential for noise reduction by replacing the existing conical

nozzles with multi-lobed nozzles.

o	 Engine case treatment.

o	 The effect of flap angle on sound directivity.

Tests with the multi-lobed nozzles and over-area nozzles (colander

plate removed) showed some noise reduction but not as much as predicted.

Engine case treatment showed little appreciable change.
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Since these unusual noise-level characteristics are not associated

with civil versions of the Spey engine, it was concluded by Rolls Royce

that they must be associated with the bifurcated jetpipe and could be

-	 either generated internally within the jetpipe or externally as

"modified" jet noise owing to the airflow profile ensuing from the

nozzles. With either case an improved aerodynamic design of the jetpipe

might be beneficial in reducing noise.

The opportunity to redesign the jetpipe came in 1977, when the U.S.

and Canadian governments agreed to an extension program beyond the

original 500 hours planned, requiring an extensive overhaul of the

engines and airframe. A significant growth in the weight of the research

aircraft combined with summer operations in high ambient temperatures

led to the desirability of gaining extra thrust for improved engine

out performance, in addition to reducing the noise level.

DeHavilland designed and built a "floating" nonload-carrying liner

that fitted inside the Pegasus jetpipe and matched the cross sectional

area of tile aft end of the Spey to provide an improved aerodynamic path

that eliminated the need for the colander plate. New nozzles were also

required and they were designed slightly over-area, trading some of the

potential thrust gain for reduced core velocity and reduced noise.

The new hardware was flight-qualified by Rolls Royce in test cell

unning at Montreal, demonstrating a thrust gain of about 7':. The

verhauled engines and modified jetpipes were returned to Ames in

arch 1978.

Acoustic measurements to determine the magnitude of the noise

eduction were made on November 3, 1978, approximately five (5) months

fter the research aircraft resumed its flight-test program.
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AIRCRAFT DESCRIPTION

Configuration

The AWJSRA is a modified version of the high-wing, T-tail Buffalo

turboprop transport manufactured by deHavilland Aircraft of Canada, Ltd.,

modified jointly by the Boeing Commercial Airplane Company and deHavilland.

It is used to study the operational characteristics of a jet STOL

aircraft using turbofan engines to provide both aerodynamic powered

lift from an augmentor wing flap and vectored propulsive lift from

rotatable nozzles. A description of the aircraft is given in table 1

and figure 1. Details of the flight characteristics of the aircraft

are given in references 1 and 2. Several features of its powered lift

and propulsion system are briefly described below, while a more complete

description of the aircraft design features is given in reference 3.

Propulsion System

Two Rolls Royce Spey Mk 801-SF (Split-Flow) turbofan enaines, one

mounted in each nacelle as shown in figure 1, provide thrust for the

aircraft as well as air for the augmentation system. These are hybrid

engines modified by Rolls Royce from the Spey Mk 511-8 specifically for

this application with a 0.6 bypass ratio and a maximum cold flow

pressure ratio of 2.5. The engine hot flow is discharged into a Pegasus

bifurcated jetpipe and out through two vectorable conical nozzles as

shown in Figure 2, while the cold flow is collected and discharged

through two 33 cm (13 in) diameter ducts located at the top of the

engine, which supply the distribution system described below.
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Air Distribution System

The distribution system directs the engine cold flow air to the

augmentor nozzles, to the aileron nozzles and to the fuselage boundary

layer blowing nozzles, a3 shown in figure 3.

A crossover ducting system directs approximately 64 percent of the

bypass mass flow along the front of the wing and across the interior of

the fuselage to the augmentor and aileron nozzles on the opposite side

of the airplane and to half of the fuselage boundary layer blowing

nozzles; the remaining 36 percent of the flow is directed back to the

augmentor nozzles on the same side as the engine. Of the 64 percent

of the engine mass flow carried by the crossover ducting system, approximately

7 percent is used for fuselage blowing, 44 percent by the augmentor

nozzles, and the remaining 13 percent by the aileron boundary layer

control (BLC) nozzles. This flow distribution is summarized in figure 4

for the left-hand engine.

Jetpipe Modification

The 5171 kg (11,4001b) thrust Spey 80?.--SF turbofan engines are

fitted with a bifurcated jetpipe and nozzle vectoring system designed for

the Pegasus (Harrier) engine of nearly twice the thrust. The mismatch

in size between the Spey and Pegasus jetpipes was accommodated by a

perforated (colander) plate located between the two that reduced the

thrust by approximately 10%. In early 1978 (during a 500 hour engine

overhaul), a floating nonload-carrying liner was fitted inside the

Pegasus jetpipe to match the aft end of the Spey and provide a more

ideal aerodynamic path, eliminating the need for the colander plate.

New conical nozzles with an exit area of 1936 cm 2 (300 in 2) per pair

were fitted in place of the original nozzles of 2290 cm 2 (355 in  ).

These were slightly larger than optimum in order to trade some of the

.
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potent4al thrust ce: n for a slightly lower exhaust nas velocity and a

correspooJ i tigly r,..Cr noise level. The resulting thrust levels are

shown in figure 5 a-.d represent approximately a 7`_ thrust qain.

ACOUSTIC TESTS
	 1

The AWJ SRA neat, field noise levels were measured at the Ames

Research Center's :Aatic test site, which is located away from the

Center's in;-i • i buil(.!ngs.

Equipment and Installation

one -Iii-,e data v,.s measured with 6 Gruel and Kjaer 1.27 cm (0.5 in)

diameter type 11,134 condenser microphones and recorded on a Sangamo

5Ao re III tape recorder. The microphones were positioned as shown in

figure 6. All of the microphones were equipped with a windscreen;

however, no appreciable flow was observed over or around them during

the test.

In order to eliminate multi-path effects and to facilitate comparison

with previous test data, a measurement technique developed at Boeing

(reference 4) was used with the microphones placed 1.27 cm (0.5 in)

above a metal plate which was cemented to the concrete pad (figure 7).

By placing the receiver close to the reflecting surface, the difference

in path lengths for the direct and reflected signals becomes negligible

for all frequencies of interest in these tests.

A detailed list of the data acquisition equipment used is presented

in table 2. Each of the microphone cables was the same length, 305 ri

(1000 ft).
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Calibration Procedure

The tape recorder was calibrated for frequency response, signal

to noise ratio, and maximum undistorted signal level in a routine

manner. The microphone amplifiers and associated cables were calibrated

for frequency response by substituting a Hewlett-Packard mod. 204-B

battery-powered oscillator for the microphone of each channel. The

response was checked over the range of 50-10,000 Hz. Each microphone

and associated amplifier was given an overall sensitivity calibration

by means of a Bruel and Kjar pistonphone, before and after the aircraft

acoustic measurements. The pistonphone is a mechanical device with a

chamber into which the microphone is inserted for calibration. It

produces a known, repeatable sound pressure at the microphone diaphram.

Test Procedure

During the test only the left-hand engine was operated. The ground

electrical power and air start carts were removed from the vicinity of

the aircraft after the engine had been started.

Each microphone channel was calibrated just prior to starting the

engine. The engine was started and allowed to run for a few minutes at

ground idle until its operating parameters stabilized and then the speed

was advanced slowly to emergency power. At full engine power the

amplification factor of each microphone amplifier was adjusted, in

1OdB increments, to provide the maximum undistorted output voltage.

Data was taken at seven power settings between flight idle and

emergency power, and at three flap angles. The nozzles were set at

their minimum deflection of 6 degrees below the horizontal. A detailed

r
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list of engine operating parameters is given in Table 3. The engine

was stabilized at each power setting and then data was recorded for

approximately one minute.

Corrections

Deviations from uniform frequency response over the range of

50-10,000 Hz and deviations from constant sensitivity (vs. time) for

the complete system including: microphones, amplifiers, cables,

tape recorder and spectrum analyzer were negligible, so no corrections

were necessary for these factors.

Test limits for weather, as established by Boeing Aircraft for

their 1973 tests (page 31 of reference 6) are shown in figure 8.

Since the attempt of this test was to duplicate the test conditions

of the Boeing 1973 test, this test used the same weather test limits.

Actual conditions were well within the limits and are g iven in Table 4.

No weather-related corrections were made to the sound measurements.

The special microphone-holding fixture described under the previous

"Equipment and Installation" section causes the microphone to have a

response over the frequency range of interest, 50-10,000 hz, which is

6 db greater than it would have at the same position under free field

conditions. To convert to free field levels, it is only necessary to

subtract 6 db from the indicated level at any third octave band of in-

terest. In order to be able to make direct comparisons with similarly

obtained data from the 1973 tests, this 6 dB subtraction for free field

conditions was not performed.

a
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Data Processing

Each measurement was spectrum analyzed by a General Radio 1/3

octave analyzer using 16-second averaging time. The data analysis

•	 equipment that was used is listed in Table S.

Discussion of Results

It should be noted that since the engine hot thrust power settings

were chosen for comparison with earlier acoustic data, and since the

modified engine has some 7% more thrust than before, the individual

data points do not correspond exactly with current operating limits.

The 590 kg (1300 lb) thrust (85" NH) may be considered as flight idle,

2177 kg (4800 lb) thrust (93.8°, NH) is typical of approach power,

2722 kg (6000 lb) thrust (96% NH) maximum continuous and 2948 kg (6500 lb)

thrust (97.2ro NH) is a little below normal takeoff. The single

m.2asurement at 3220 kg (7100 lb) thrust (99 NH) is well below maximum

emergency power.

Only 2 to 3 dB reduction in sound level is evident between the

maximum thrust level measured 3220 kg (7100 lb) and maximum continuous

2722 kg (6000 lb) as may be seen in all of figures 9 through 14. At

lower thrust levels the sound level falls off quite rapidly as may be

seen in all of fiqures 9 through 29.

The maximum sound levels were recorded between 120 and 130 degrees

from the engine inlet, with a fairly sharp fall off in sound level

going from 140 to 150 do?revs on the 30.5 m (100 ft) sideline. Further

9
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reduction in sound level is observed aft of the aircraft by lowering the

flaps to 53 degrees.

The frequency spectrum of maximum sound intensity is shifted downward,

progressing from the 90-degree position to 150 degrees. At 40 degrees it

has a broad plateau between 500 Hz and 3 kHz, whereas at 150 degrees it

is concentrated in the 100 Hz to 500 Hz range depending on flap angle. P

peak (or tone) is frequently but not always present in the 1/3 octave band

centered at 125 Hz.

The maximum sound level recorded in the 1973 tests of the 2290 cm2(355

in 2 ) conical nozzles (reference 6) was at 110 to 120 degrees to the engine

inlet. By comparing data from the 1973 and 1978 tests (Figures 27 throu gh 29)

at 120 degrees which is close to the maximum sound intensity for both the old

and new jetpipe configurations, it is apparent that there is little attentua-

tion at the higher thrust settings but significant attenuation at the 'lower

thrusts.

Conclusions

a. The jetpipe modification, including removal of the colander plate,

the inclusion of a liner to improve the aerodynamic flow in the

Pegasus "trouserpiece", and slight over-area conical nozzles,

have resulted in little noise attenuation at maximum power but

significant attenuation at approach power.

b. The maximum sound levels were recorded at 120-130 degrees from

the engine inlet, which is about 10 degrees further aft than

was found with the earlier jetpipe configuration. This is consistent

r
r_
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Root Chord 3.83 (12.58)

Tip chord 2.36 (1.74)

Mean aerodynamic chord 3.68 (12.1)

Sweepback at 40• chord,

deg 0.0

Dihedral, outer wing

only, deg 5.0
I

NOTE:	 Wing taper and dihedral each start 5.36 m

(17.6 ft) from plane of symmetry

Aspect ratio 7.2
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TABLE 1.- C-8A AUGMENTOR WING JET STOL RESEARCH AIRCRAFT CHARACTERISTICS

Weights	 kg (lb)

Maximum gross 21,800 (48,000)

Maximum (STOL) landing
I

20,500 (45,000)

Operational empty 14,800 (32,600)

Maximum fuel 6,350 (14,000)

Areas, m 2 (ft 2)

I

Wing area 80.36 (865)

Wing Flap area

(including ailerons) 17.38 (187.1)

Horizontal	 tail	 area 21.65 (233)

Vertical	 tail	 area 14.12 (152)

Dimensions and General Data

Wino m (ft)



TABLE 1.- Concluded.

Horizontal tail m (ft)

Root chord	 2.54	 (8.33)

Mean aerodynamic chord 	 1.91	 (6.25)

Sweep of leading edge, deg 4.8

Dihedral, deg	 0.0

Aspect ratio	 4.4

Vertical tail A (ft)

Span	 4.14	 (13.6)

Root Chord	 4.27	 (14.0)

Mean aerodynamic chord 	 3.47	 (11.41)

Sweep of leading edge,deg 22.6

Aspect ratio	 1.2

Overall length (with 16ft

nose boom),(m) ft	 28.44	 (93.32)

Control Surface Deflections 	 Symbol

Flaps	 br	 5.6 ° to 72° (Figure 3)

Conical nozzles	 Sn	 6* to 100 0 from fuselage

waterline (Figure 2)

Ailerons	 -17° about + 35' max droop angle

Spoilers	 -50'

Augmentor choke	 55% choke gap area closure

at 70 • flap deflection

Rudder	 +25'

Elevator	 -15", + 10

14



TABLE 2.- DATA ACQUISITION EQUIPMENT

6 - Bruel and Kjaer microphones, type 4134

6 - Bruel and Kjaer preamps, type 2619

6 - Bruel and Kjaer type 141-B microphone amplifiers and line drivers

6 - Microphone baseplates and wind screens

1 - Bruel and Kjaer model 4220 pistonphone

1 - Datatron time code generator

1 - Sangamo Sabre III instrumentation tape recorder

1 - Hewlett-Packard model 141-A oscilloscope

1 - Hewlett-Packard frequency counter model 5233L

1 - Hewlett-Packard alternating current vacuum tube voltmeter model 4000

1 - Climet wind direction and velocity measuring instrument,

models 011-1 and 014-102

1 - General Eastern remote reading thermometer and humidity indicator,

model 400 CD

•
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TABLE 3.- TEST PARAMETERS

RUN TEST POINT FLAPS
(degrees)

% NH HOT	 THRUST
kg	 (lb)

1 1 5.6 85 590	 (1300)

1 2 5.6 90 1315	 (2900)

1 3 5.6 91.7 1678	 (3700)

1 4 5.6 93.8 2177	 (4800)	 i

1 5 5.6 96 2722	 (6000)

1 6 5.6 97.2 2948	 (6500)

1 7 5.6 99 3220	 (7100)

2 1 30 90 1315	 (2900)

2 2 30 93.8 2177	 (4800)

2 3 30 96 2722	 (6000)

2 4 30 97.2 2948	 (6500)

3 1 53 90 1315	 (2900)

3 2 53 93.8 2177	 (4800)

3 3 53 96 2722	 (6000)

3 4 53 97.2 2948	 (6500)
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TABLE 4.- METEOROLOGICAL DATA

RUN TEST
POINT

WIND
km/hr

SPEE6
kn

WIND
DIRECTION

TEMP PERCENT	 7
RELATIVE HUMIDITY

DEGREES* C
a
F

1 1 7.8-10.4 4.2-5.6 346 18.6 61.8 52.0

1 2 8.9 4.8 353 18.6 61.8 52.0

1 3 8.4 4.5 332 18.8 62.0 52.0

1 4 6.7-9.9 3.6-5.4 345 18.8 62.0 52.0

1 5 7.2' 3.9 5 18.8 62.0 51.4

1 6 10.6 5.7 9 18.4 61.4 51.3

1 7 10.7 5.8 0 18.3 61.2 51.2

2 1 14.1 7.6 332 19.4 63.0 49.8

2 2 13.2 7.2 352 19.4 63.0 49.4

2 3 13.4 7.3 347 18.8 62.0 49.1

2 4 10.3 5.6 345 18.8 62.0 49.0	 i

3 1 11.7 6.3 362 18.9 62.3 46.8

3 2 10.9 5.9 350 18.9 62.3 46.8

3 3 10.9 5.9 351 19.0 62.5 46.1

3 4 9.4 5.1 363 19.1 62.6 46.0

* Aircraft heading was 335

E
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TABLE 5.- DATA ANALYSIS EQUIPMENT

1 - Sangamo Sabre III instrumentation tape recorder

1 - General Radio mod 1921, 112 octave analyzer

1 - Hewlett-Packard mod 141A oscilloscope

1 - Hewlett-Packard mod 5233L frequency counter

1 - Hewlett-Packard mod 400 AC voltmeter

1 - Hewlett-Packard 7046A X-Y plotter
i
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BYPASS AIR	 VECTORABLE SWIVELING
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i	 I	 I
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j
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Figure 2.- AWJSRA propulsion system installation.
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Figure 3.- AWJSRA cold flow air distribution system.
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Figure 4.- Left-hand engine cold flow air distribution.
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Figure 7.- Typical microphone installation.
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120 0 microphone position.	 Flaps 53°.
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