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1. Summary

The use of probability theory to determine the effects of

turbulent fluctuations can reaction rates in turbulent combustion

systems is briefly rev/sewed. Results are presented for the effect

of species fluctuations in particular. -It is found that turbu-

lent fluctuations of species act to reduce the reaction rates, in

contrast with the temperature fluctuations previously determined

to increase Arrhenius reaction rate constants. 
4,6,8t9 

For the

temperature fluctuations, a criterion is set forth for determi-

ning if, in a given region of a turbulent flow field, the temper-

ature can be expected to exhibit ramp-like fluctuations. Using

the above-described results, along with results previously ob-

tained 4,6,8,9 , a model is described for 'testing the effects of

turbulent fluctuations of temperature and species on reaction

rates in computer programs dealing with turbulent reactihi flows.

An alternative model which employs three-variable probablity

density functions (temperature and two species) and is currently

being formulated is discussed as well.
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2.	 General Theory

, 2.1	 Probability Density Functions

A parameter x is said to be a continuous random vari-

able if there exists a probability density function, p(x), 

which satisfies the following conditions ' l l) :

p(x)	 >	 0	 (la)

p(x)dx = 1	 (lb)

The pdf may, of course, be defined on an interval other

than	 for example (0,1) . ' Since the pdf is defined on

a specific interval, the functional value of p(x) 	 is zero

elsewhere.

Equation (1) must be satisfied by a pdf of a one-

dimensional continuous random variable.	 Probability density

functions may be written for a multi-dimensional continuous

random variable. 	 A two-dimensional continuous random vari-

able, for example, is comprised of two one-dimensional, con-

tinuous random variables. 	 A probability density function for
w

a two-dimensional continuous random variable, denoted p(x,y),

iv termed a bivariate or joint pdf. 	 For such a pdf, the

2
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conditions corresponding to equation (1) are:

P(x •Y) > 0	 (2a)

p (x ► Y)dx dy = 1	 (2b)

The expected, or mean value of a one -dimensional con-

tinuous random variable, x, is expressed as:

u	 E(x)	 l+ax p (x)dx	 (3)x

Equation (3) is also termed the first moment about the

origin. In general, the kth moment about the origin of a

one-dimensional continuous random variable, x, is expressed

as ill:

Nx^k = _l
+oo

xkp(x)dx	 (4)

where k = 1,2,3,...

For the case of k=1, equation (3) is equal to equation (4).

The variance of one-dimensional continuous random vari-

able, x, is expressed as;

ax	 V (x) _ _!+^ (x - E (x)') 2p (x) dx	 (5)



k

y 	
► 	

`	 u,.	 ^^,+,r	 . er e i ,+w+, ' 

r	 r	 .

A useful quantity derived from the variance is the standard

deviation which is the square root of the variance. Equa-

tion (5) is the special case of the more general expression

for the kth central moment, or moment about the mean, of a

one-dimensional continuous random variable, x (10):

Us.	 _1+0 (x	 E (x)) kp (x) dx	 (6)xpk

where k = 1,2,3,...

Clearly, equation (6) indicates that the first central mo-

ment (k=1) is zero. The second central moment (k=2) is

termed the variance. For the case of k=2, equation (6) is

equal to equation (5). Higher central moments W2) are

often used in probability theory to give further descrip-
e

tions of a particular pdf under consideration. For example,

the third central moment ( k=3), termed the skewness, is used

to describe the symmetry or skewness of a pdf. The fourth

central moment (k=4), termed the kurtosis or flatness factor,

is used to measure the "flatness" of a pdf.

The'concept of "moments" of a one-dimensional continu-

ous random variable may be extended to multi-dimensional

continuous random variables. For example, the k th joint

moment about the origin of a two-dimensional continuous

C.	 random variable, (x,y), is expressed as 121;

4



s

t

(9)

l	 !

N	 _! I
+•

!+~srx y p (x , y) dx dy	 (7)
xy,k 

where k s+r, the order of the moment
8	 1,2,3,...
r = 1,2,3,...

By comparison, equation (7) is seen to be an extension of

equation (4).

The kth joint moment about the mean of a two-dimensional

continuous random variable, (x,y), is expressed as (2 j:

Uxytk = _t _1 (x-x) (y-y) P(x rY) dx dy
	

(8)

where k = s+r, the order of the moment
S	 1,2131...
r = 1,2,3,...

By comparison, equation (8) is seen to be an extension of

equation (6).

For a specified joint pdf, it is possible to examine the

distribution of any of the one-dimensional components of a

multi-dimensional continuous random variable by considera-

tion of its marginal pdf. For a joint pdf, p(x,y), the

marginal pdf of x, for example, is given by:

h(x) = _f+=p(x.y)dy

5
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The marginal distribution of x may be thought of as the

distribution of x, with the simultaneous behavior of the

other variable(s) suppressed. In other words, only the

behavior of x is being examined.

Utilizing the concept of a marginal pdf, the k th mo-

ment about the origin of any of the one-dimensional com-

ponents of a multi-dimensional continuous random variable

may be expressed. For a two-dimensional continuous ran-

dour variable (x,y), the kth moment about the origin of x,

for example, is given by:.

r»	 Ux,k	 - l
+0-

f+wxkp(x,y)dx dy	 (10)

where k = 1,2,3,...

Examination of equations (9) and (10) reveals that the kth

moment about the origin of x is expressed as the integral

from -- to +-, with respect to x, of the product of x and

its marginal pdf.

Equation (3) may be extended to functions of a contin-

uous random variable. In the case of a function f(x) of a

one-dimensional random variable having a pdf p(x), the mean

value of f (x) is:

6
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f(x) ' - _»7»f(x)p(x) dx	 (11^

Similarly, in the case of a function g(x,y) of a two-

dimensional random variable, hating the joint pdf p(x,y),

the mean value of g ( x, y) is:

9(	 _j _f g ( x p y ) p (xf y ) dx dy

The correlation coefficient , p xy , is a parameter

defined for the two -dimensional continuous random variable

(x,y) as:

p xy - E( Ix - E(x)I[y - E(Y)I}

v^(y)

The correlation coefficient is a measure of the degree of

linearity between x and y. Values of the correlation co-

efficient near +1 or -1 reflect a high degree of linearity,

while values of the correlation coefficient near zero

indicate a lack of linearity. Positive values of the

correlation coefficient indicate that as y increases, x

increases. Negative values of the correlation coefficient

indicate that y increases as x decreases.

The numerator of equation ( 13) is defined as the

7
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= x'y'	 _t+~_1+^(x-x)(y-y)p(x, y) dx dy	 (14)
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covariance of x and y. The covariance is denoted by oxy

and expressed as%

By comparison of equation ( 10) and (8), the covarianc,e is

seen to be ' the second jo int moment about the, mean. The	 t

significance of the covariance can be ascertained by con-

sidering a two-dimensional random variable (x,y). The x	
^I

and y are termed independent random variables if the value 	
r

of x has no influence on the value of y (and likewise, the

value of y has no influence on the value of x). When x

and y are independent random variables, the covariance irl 	 k

zero. Hence, the covariance may be considered as a minimum

"criterion" of statistical dependence. This criterion can

assure, at the very least, that when the covariance is not

zero, the variables are not independent. However, no

statement can be made concerning independence, on this basis

alone, if the covariance is zero [3 ].

a
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2.2 Most-Likely sivariate pdf for Two Species

A model which accounts for the combined effects of tem-

perature and species concentration fluctuations on the mean

r	turbulent reaction rate is reviewed in this section. In this

model, the temperature is assumed to be statistically indepe-

dent of the species concentrations (Model II, ref. 4, p. 22).

Mathematically, this three-variable pd* for temperature

and species is expressed as:

p (t,rA ,rB ) w fW9(rA ,rB ).r 	 0 < t < 1	 (15)

0 < rA .< 1

0 < r8 < 1

where	 f(t) . a pdf for temperature
9(rA ,rB )	 a joint pdf for the concentrations

of A and B species

Equation (15) is a valid pdf since it satifies the following

extension of equations (2a) and (2b) for a three-variable

pdf:

p(t,rA,r,) > 0	 (16a)

of  of 
1 01 1 p(t,rA ,rB )dt drA dr B = 1	 (16b)

r

9
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..The most-likely bivariate pdf is utilized as the

x	 joint pdf for the concentrations of any two species in

this model. This pdf is selected on the basis of the excel

lent agreement between the most-likely bivariate pdf, based

on three moments, and an experimentally-measured pdf of con-

centrations in turbulent non-reacting flow, as diseuased in

Reference I5)• The three moments considered area the first

moment about the origin of each species concentration, the

second joint moment about the mean (i.e., the covariance, k=2

in equation (8)), and the third joint moment about the mean

(k=3 in equation (8)). in addition, this pdf is selected on

the bas;Ls of its potential for increased accuracy in the mod-

eling of the joint pdf for species through the incorporation

of higher moments. As an initial step in the utilization of

the most-likely bivariate pdf for two species, the most-likely k

bivariate pdf based on the first moment about the origin of

each species concentration and the covariance of the two con-

•	 centrations, is selected. The expression for the chosen form

of the most-likely bivariate pdf for two species is:

g irA ,rB ) .^ q.exp (X o+a l rA+X rB+X r rB )	 (17)
, .

where q - a pnioxi probability
rA w dimensionless concentration of A
rg . dimensionless concentration of B

10 +



The continuous random variables in equation (17) are treated as

passive scalars. With this simplification, the "q" term in *qua-

Lion (17) is a constant, set equal to unity for cony*ni*ncc in

this study. The value of this constant "q" term is shown in

Appendix C to have no effect on the calculated value of the most-

likely bivariate pdf and the values of the mean quantities calcu-

lated with it.
S

The values of the constant coefficients, a 0 ,X 1 ,X 2 ,)1 3 , in

equation (17) are obtained from the simultanious solution of the

following constraint equations for known ve,lues of r A o r B and

rjr8s

0f1 0! 1 g(rA• rB )drA drB Q 1	 (18)

0I1 0!1 r
A g(rA r rB ) d rA drB .^rA	(19)

0r,1 0fl r  g(rA ,rB )drA drB . r8	 (20)

0f1 0f ( rA-rA ) ( rB -rB ) g(r
A
,r,)drA drB w rArB	 (21)

A typical term in a reaction rate equation for species A

would be

r. A 	 k(t) (rAC ,A,max ) (rb ]§Imax1
	

(22)

For the case of statistical independence between temperature and

species concentration, the expression for the mean,turbulent reac-

tion rate

wt 1)	{-A 0j1 (k1t+k2 ) Bexp[ -TA/(k1t+k2) ) f(t)dt)

l	 1	 t
{OA,maxOB , max 0 f Of r A r B g(rA ,rB ) drA dr.

(r3)

11
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The corresponding value of the "laminar" reaction rate is determined

by inserting the appropriate values of t, r. A and r  into equation

22. This yields:

w (l) . -A (k t+k ) Bexp(-T /( k t+k ^]r C '	 Q	 (24)
F F,max

r
 0 o,max

The ratio of equations (23) and ( 24) .is

{0fl(kit+k2 ) Bexp[-TA/(k1t+k2) ) f(t)dt)

ti

1 l{oj 
c^j rArB g(rA,rB ) drAdrB}	 (.25)Z Q

,(k1 E+k 2 ) Bexp(-TA/(k 3 t+k 2 )] r  TB

This ratio may be expressed as the product of a term which accounts

for the effects of temperature fluctuations, Z t , and a term which

accounts for the effects of species concentration fluctuations,

Zr . These terms are expressed as follows:

0 f 1 (k I t+k 2 ) Bexp [ - TA / (k 1 t+k 2 ) ] f (t)dt
Z t̂(?,6)

B(k1t+k2 ) exp[ -TA/(kLt+k2)]

ofl 0f 1 rA rBg ( rA ,r, ) drA drB
Z	 _	 (27)r	 —rArB

The reaction rate "amplication ratio" 0 t has been determined

previously 4,6,SF9 . The species " unmixedness factor" B r was deter-

mined using the numerical methods and considerations described in

Appendices A, B, and C. Results are presented in Figure r la thru

1i assuming a correlation coefficient of -0.9 4 . As may be seen,

species unmixedness predominates (low B r ) when the mean concentrations

12
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of the species are low And turbulent fluctuations are high. This

in to be anticipated on physical grounds ► that is, as shown in the

accompanying .sketch, lower mean concentrations 'result in an increas-

ed probability that one or both species will be outside the colli-

sion volume within which reaction is possible (for the same inten-

sity of .fluctuations).

t-	 14 SA C# y
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toIII'fion Y014+01t
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2
Also as anticipated, increasing fluct:ua4ions intensity rl leads

to increased unmixednoss.

Then pdf selected for temperature is eithor the beta pdf

or tho temperature ramp-induced pdf, based upon the criteria dis-

cussed in Section 3. The complete model,, which incorporates the

bi,variate pdf fo,a mutation discussed in this Section, is detailed

in Section 4.

3. Development of a coterion for the
Selection of the Bette or Temperature Ramp-Induced PDF

3.1, Ex2orimenta l results from the literature

The motivation for developing a criterion for selecting

either the ramp pdf or beta pdf lies in observed' experimental re-

sults. Temperature fluctuations that exhibit a ramp-like struc-

ture have been observed experimentally under certain flow condi-

tions ? and more importantly, the flatness factor of these tempera-

ture fluctuations lies within a narrow range.

13



Fiedler 10 studied a heated two-dimensional mixing layers

i.e., the higher velocity stream was heated while the external

stream had zero velocity and was at ambient temperature. A tur-

bulent heated jet with a coaxial flowing stream was investigated

by Antonia, Prabhu, and Stephenson ll . • LaRue and Libby 12 , and

Gibson, Chen, and Lin 13 independently studied the turbulent flow

behind a heated cylinder. Ramp-like temperature fluctuations

were observed in All four investigations. Even though these ex-

periments were performed in non-reacting flows, it is assumed in

this study that these results can be generalized to reacting flows

as a result of the wide diversity of flow conditions under which

ramp-liket^smperature fluctuations were observed. Gibson et al. 13

believe that this type of fluctuation is due to }sharp thermal

gradients, with the point of highest temperature-of the ramp

occurring at either the downstream or upstream end of the turbu-

lent/irrot• ational interface, depending upon the sign of the vor-•

ticity of the main flow.

Temperature signals obtained in these experiments are repro-

duced in figure 2 from the original papers
10,11,13 . Note the

similarity of the ramp-like structures even though they were

obtained under different flow situations. The flatness factor

distributions obtained by three of the researchers as they appear-

ed in the original papers, are shown in figure 
310,.11,12.

The abscissa' Tj of all graphs in figure 3 is a normalized

radial distance, with each author using a different normalizing

constant.

1 4
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The general trend of these curves is that the flatness factor

has a value of approximately 3 (the Gaussian value) near the center-

line, decreases .o a value near 2, then sharply increases in the

other region of the flowfield.

This trend led Fi'e'lder 
0 to suggest that the value of 2 is

characteristic of the "sawtooth" appearance of the temperature

signal.	 Antonia et al. 
11 subsequently, agreed with Fiedler's.

conclusion. This suggests that the flatness factor may be'used

as a criterion for the selection of either the beta or ramp pdf.

4.2 An initial selection procedure

It was pointed out in references 4 and 6 that the ramp pdf

is only capable of generating flatness factor values between 1.0

and 3.7. Of the four adjustable constants in the ramp pdf, the

flatness factor is most sensitive to variations in a*. since it

is so sensitive, an assumption (to be tested subsequently) will be

to assign a* a value based upon physical grounds. Antonia and

Atkinson ? indicate that a value of a* a 0.25 yields good agreement

with experimental results. As a consequence of fixing a*, varying

a', Or and c over the ranges previously indicated  generates flat-

ness between 2.0 and 2.6. This suggestQ that the ramp pdf is

applicable when F falls within this range.

Before proceeding any further, one should ascertain whether

this criterion agrees with experimental results. Antonia, Prabhu,

and Stephenson (ref 11, p. 477) state that ramp-like behavior was

observed in the region 0.6 < n < 1.2. The range of flatness factors

suggested-by this study, where the ramp pdf is applicable, is 2.0

15
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to 2. 6. If the normalized radial distati.ce corresponding to this

range of 7 is obtained from figure 35, one can see that 0.65 <
Y

n < 1.2. This agrees closely with the range within which Antonia

at al. 	 ramp-like temperature fluctuations. This agree-

ment supports the contention that the ramp pdf is applicable when

2.0 < F < 2.6. (This implicitly justifies the assumption of con-

stant v*.)

An initial criterion would then be to determine if F, at a

point in the flowfield, lies between 2.0 and 2,6. If it does,.

then the ramp pdf is applicable at that point. If it does not fall

within that range, the beta pdf is to be used.

However, recall that the beta pdf generates the values 1.66

< I, < 8.64. Since the beta pdf is continuous, every intermediate

value can be obtained by the proper selection of t and t' 2 . This

implies that the beta pdf generates the values 2.0-2.6 for the

flatness factor (as does the ramp pd'f). As a result, the flatness

factor cannot be used as the sole criterion due to this overlapping.

The skewness also overlaps  but it is distinct when 2.0 < F

< 2:6. For the ramp pdf, -1.57 < S < -1.25, and for the beta

pdf, -0.82 < S < +0.82 (both when 2.: < F 1 2.6). See table 1.

The selection procedure is as follows: l the flatness fac-

tor lies outside the range 2.0 to 2.6, then always select the beta

pdf. If the flatness factor lies within this range, examine the

skewness value. If -1.57 < S < -1.25, choose the.ramp pdf; other-

wise select the beta pdf (see figure 5).

16
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1.66

.

2.0 2.0

F ^,

2.6 2.6

8.64

-1.57

-1.25

S

-0.82

0.82

Table 1: Summary of initial criterion between the beta
and ramp pdfs

17



The skewness. alone cannot be used as a primary criterion

because the full ranges generated by the two pdf's are not dis-

tinct.

4.3 An alternative selection process

The selection procedure outlined in the previous section is

inconvenient from the computational point-of -view because of the

difficulty in determining the third and fourth moments at every

point in a flowfield. It would be preferable to use, if possible

the first and second moments (mean and standard deviation) instead.

This can be achieved by using the available experimental data as

follows:

1. On a F vs. n (axial distance) graph, find the

range of n which corresponds to 2.0 < F < 2.6

2. On a t vs. n graph, find the range of t which

corresponds to the range of n determined in

step (1) .

3. Repeat step ,(2) for t'2.

Thow same ranges of t and t' 2 result from three independent

papers 11,12,13 after taking the different normalizing constants

into account. The consensus is that if

0.35 < t < 0.75

and	 t4,2 > 0.08

then the temperature fluctuations exhibit a definite ramp-like

'	 character. Outside this range, the beta pdf is to be used.

It is to be anticipated that t' 2 > 0.08 since the ramp pdf

is applicable when the temperature fluctuations are larie. It

18
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is also to be anticipated that 0 . 35 < r < 0 . 75. If t < 0.35, then

the mean temperature is low, indicating a low reaction rate. This

slow rate of reaction will not induce high temperature fluctuations.

If t > 0.75, the mean temperature is high, implying that the magni-

tude of the fluctuations will be a smaller percentage of the mean

than it is at a lower temperature, effectively reducing the effect

of the fluctuations. Hence a pdf which describes low intensity

fluctuations (e.g., the beta pdf) would be applicable.

a

4. A Model for Determining Reaction Rates in Turbulent Reacting

In this section, the completed Model I1 4 is set forth employing

the elements discussed in Sections 2 and 3, as well as those discus-

sed in previous status reports4
, 60809.

Consider a general chemical kinetic mechanism, as shown

below:

k
Al + A2 +l A3 i• A4

k-1

k
Al + A5 k

^2
A 6 + A7

.	 t

:

f
Al 

+ M kin AM + A
M + M

The "laminar" reaction rate expression for species A l (i.e., the

source term in the species transport equation for , A 1 would be

'	 wAl,lt	 -k1CA CA + k C C- k C C	 + k C C

	

1 2	 -1 A 3 A4	 2 A l A 5	 ..2 A 6 A7

...-knCA C + k-nCAm2C1

19
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In accordance with the model proposed here, this would be rewritten

For a turbulent reacting flow

wAl,t . -(Bt k1) (ar,l -2 
CA C

A ) + (kc/Bt k1) (Br,3-4 CA CA )-...I	 2	 3 4°

(29)

where B t . 
at 

(t, t 2 ) is the temperature "amplification ratio"

discussed in references 4, 6 0 6, and 9, ar,i_j v 5r,i-j(ri,rj,ri2

rj 2 ) is the species "unmixedness" factor discussed in Section 2

herein, and k  is the gqulibrium constant based upon molar con-

centrations.

In accordance with the criteria set forth in Section 3 0 the

beta pdf is to be used to determine B t in all regions of the tur-

bulent flow field excel when

0.35 < t < 0.75

and	 t12 > 0.08	 (30)

When the conditions of eq. (30) are'sat.is:fied, the temperature ramp-

induced pdf is to be used as detailed in ref. q , p. 6.

The species "unmixedness" factor, B, is determined from

the values of c i , cj, 
e12 and c

2
! obtained from appropriate trans-

port equations. Since ri	 ci/ci,max etc., estimates of the maxi-

mum molar concentrations are required. For a reactant species (fuel,

oxidizer), ci,riax is taken to be the initial molar concentration.

For a principal product species (eg. H 2 O, Co2, Si0 2 ) ' ci,max is taken

as the final equilibrium value determined from a.preliminary equili-

brium calculation. For an intermediate species (eg, OH, O, H),

ci,max must be estimated from a preliminary "laminar" kinetics

calculation using either the multi-dimensional computer program

20
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of interest (eg, , CHARNAL, SHIP) or a one-dimensional kinetics

	

program (.eg. ref. 14), Once xi , ri, r Z and r	 have been

determined, B
r,i-i 

is obtained from carve-fits (or table look-

up) of the "unmixedness" data presented in Section 2 herein.

The ar.,ve-described procedure is-carried out for all of the

terms in eq. (28) and the analogous equations for each species

present. It should be noted that this model indicated that the

temperature fluctuations and species fluctuations ,result in

opposing effects on the reaction rates. That is, S t is always

greater than unity, while S r is always less than unity. The

behavior of these parameters (Figs. la thru 13 herein and, for

example, Figs. 6 thru 24 of ref. B and Figs. 1 thru 10 of ref. 9)

lead to the following conclusion;:

1. In regions where

reactant species

r^ , low t ) , the

creased A+rhenius

the principal
L

at relatively

principal effe

rate constant

constituents are

low temperature (high rip

ct will be through the in-

(beta pdf) due to the

temperature fluctuations.

2. In regions of intermediate temperature and species

concentrations, the greatly amplified rate constant

due to the temperature fluctuations (ramp pdf) com-

petes with the species "unmixedness," which may be-

come substantial.

3. In regions where combustion nears completion (high t

and r for the principal product species), reaction

rates will approach their laminar values.
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S. An Alternative Threa-Variable Modal for Determining Reaction
Rates in Turbulent Reacting Flows

in this section, a full three-variable model (temperature and

f two species), currently under development # is diocussed. This model
was previously referred to as Model III a . to this model, individual

terms in the reaction rate equations have the form

w (l)	 C	 C	 I1 I 1 I 1 K(t)x x p(t x ,x )	 dt dx dx
1	 l,max 2 0max 0 0 0	 1 2	 1 1 2	 1	 2

(31)

where the three-variable most-likely pdf is

p(tl^xl^x2) - q . exp (X	 'Xlt + X 2X 1+ X3 X+ X a t%+ X 5 tX 1+ 1 0 1 231)

132)

There are seven constants in this pdf, which can be evaluated by

the following seven equations:
Iff j p 61)xx i f) dx I dXL at =

f ^f	 Y,

0

O

^J	 x L 	 X1. I 0 eix l dx 1 di	 Xy
(33)

p 011 x ^, ) dx, dX^ 	y f
o+

XL ^. n cx ,, x ^ ) t) dx, dx L d w x,. kL^

dx d,c	 x ^

C

1 fS ( , - x+ )C'^- f) ^r (x „ XL , t ) JX , &K,dt - ,'tr
0	 22
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F

where x, t are the moan values of species concentration and temp-

erature and x't", x l x l are the covariants of the second central
moments. Using Newton's method for systems, the seven non-linear

equations can be transformed into seven line-or equations and the
constants found by iteration. The equations can be rewritten as

follows
1

e
i

6 (A. 1 X ►► o„) ^G^ % SJS XI' p ^1^ ljL) t'd14^c^R^d'C - X, = Q

70 4 Y, 41K At Y. y

^ ^ ^o^ ^! ► ^ „ ► Al.^ -. S S x2,' p ^ x ljK^1t>VECjd ►( L C^ 4 ^'x L *► Q
0 S

=o
o	 i

a

o 	 _ SSS cx _x,.	 - t )^ Ax, AK 1.8t x Lt^

dxCA (1^, ^ _	 Cx, - x ^^ (t t	 ► .1nL	 xdt - ^t lr	 )	 SS	 p

(34)

The equations to find the lambda's using Newton's method for the

three-variable, most-likely pdf are as follows:

23
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QR1^1^^^-
^•QUALITYOF POOR Q —6	 ^^	 ! !	 !	 !

apt 	̂ ! ^•!	 !

^ O NEW	 ^^eo4p +

•

0.

a
det !

!	 •

1 1

aCt ! •

C'. 1► ^	 =^_^.

!!

NEW 	D

`

de^t. dev,a^,iN^►tor abe^^:

cis)

where ax o is the partial derivative of equa t ion a with respect

to ao, etc.

Each of the entries in the matricies are triple integrals, which

have to be numbrically integrated. The determinant of the matricies

can then be evaluated using Gauss elimination, or Gauss-Jordan

reduction.

2 4



it is shown in Appendi

variable moat-likely pdf's

pendent of q. As a repu.l.t,

one and two-variable pdf's

ORIGINAL	 '18

OF POOR QUALITY

x C that for the one -vmriable and two-

the turbulent reertl.on rates arc nde-

the following two equations for the

can be written:

Io k (t) p(t)dt » to k( t)	 q p(t) dt	 (36)

Io k(t) p(L,r)dt w IQI o k(t)	 q ( p ( t rr)) dt	 (37)

Noting that the Arrhenius reaction rate is the same on both sides

ci equations (36) and (37)o if the turbua pmt reaction rate is con-

stant then the pdf with q s l must be equal to the pdf with qwq.
Writing the constritnt equations f°nr the one -variable most -likely

pdf for qw l and qm q alternately, tL. following pattern results:

i

o ^

e  t + 1► L tt 	.
b	

`
it 4• ^ ,tom G► 	 '1'

b

L	 ^ _' e 	dt^^

0

1► ^ '( It - ,^
it 

i- 
.^^tL^ 

t =
j, 16	(38)l

L̀	 Ct- t) 4
0
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By numerical solution it was shown for the one -variable most - likely

pdf that

I

This solution indicates that the constants in this pdf are changing

in a manner which causes the pdf to remain a-consLant for all values

of q.

A similar pattern emerges when the constraint equations for

the two-variable pdf are written with q=1 and q =q alternately:

e
^.	 e^,t - } LX ^ 3 t1C

 At d -	 !'.*^ / Y. e ^
L tC^ ^3 tK	 - —

	

Y,	 aCAY, Y.
t + ^ L x + ^'jt	 _	 ^^'o x ^; t + lax + t%e	 S^	 c AY.

	

-t	 = ^ ^^	 S
ô

i
^^• S )t	 t +

J)

o

e S S Ct - t C X t-	 cat ay.  v x.`

-	 111 t T ^ K ^ ^ N ` ^
CL. e.	 It-t ) Cx- x}e l	 3 at dx

(40)

By numerical solution for the two -variable case, it was shown that

µ	 E'. ^^ 
= end	

^, = t '16 ) ^3 " n 3 ^	 (41)

This solution again shows that the constants are varying in a

manner which keeps the value of the pdf a constant for any value

of q•

26

n



To decrease the computer time required to obtain the constants

in the three-variable pdf, the triple integrals in the augmented

matrix were reduced to double integrals, where the variables are

separable. This enables the use of the single variable Simpson's

Rule program to evaluate the double integrals, since the integral

of one of the variables is a standard function. The augmented ma-

trix used to evaluate the constants in Newton's Method is composed

of 49 triple integrals. Of the 49 integrals, 26 are duplicates,

leaving 23 integrals that must be evaluated for each iteration.,

Becuase of the cross-product terms in the three-variable pdf

equation (32), one change of variables and two Jacobian transforms

were utilized to change the 23 triple integrals to double inte-

grals of the Lollowing form:

'tir
where N is an integer. between 0 and 5.

When N=0 in equation a42, the integral over a is a scaled

version of the bell-shaped distribution curve. When N=1, this

integral over a can be evaluated explicitly leaving a single in-

tegral. When N=3, 4 or 5, the integral over a can be evaluated

by parts. The resulting integrals are a function of the Gaussian

distribution. Details will appear in a future status report.
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LIST OF SYMBOLS

C 
molar concentration of species i

E(x) expected value of x

F flatness factor	 (or kurtosis)	 of a pdf

h(x) marginal pdf of x

k Arrhenius reaction rate constant

k l a constant equal to Tmax	 Tmin

k 2 a constant equal to Tmin

P(x) probability density function	 (pdf)	 of x

q a rp` iori probability in the most-likely pdf

r normalized molar concentration equal to ci/ci,max

S skewness of a pdf

TA activation temperature equal to activation energy
divided by the gas constant

t normalized temperature equal to	 (T-T	 /(T	 -T	 )min max	 min.

V (x) variance of x

wi reaction rate of species i 	 (or a term in the reaction
rate expression for species i)

Sr species "unmixedness" factor

S t Arrhenius reaction rate constant amplification
ratio

^i
constants in the most-likely pdf

Pxy
correlation coefficient between x and y

U Gaussian mean

Cr Gaussian rms fluctuates

n normalized axial distance
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Subscripts

R	 laminar

max	 maximum value

min	 minimum value

t	 turbulent



Append ix_ A

Al Evaluation of the constant coefficients of the one-

variable most -likely pdf.

A1.1 Numerical Procedure

The one-variable most.-likely pdf for temperature is given

by:
,

p(t) = q • exp[ap+a f t+a2t 2 ]	 ( 1 ,A)

where q is equal to unity, as discussed in Section 3.1. The

constant coefficients of equation (1D), ap,X II X 2 , are deter-

mined from the simultaneous solution of the following con-

straint equations for known values of h and —t'-T:

1
of p(t)dt = 1	 (2'A)

of t p(t)dt = t	 (3A)

0 f (t-t)p(t)dt = VT	 (4 A)

Since equations (2A), (3A) and (4A) are non-linear, Newton's-

Method [1A] for a system of non-linear equations is an

IA. Gerald, E. F., Applied Numerical Analysis, Se=id Edi-
tion, ,Addison-Wesley Publishing Co., Reading, MA, 1978.
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^^ p appropriate technique of solution. This method transposes

the original problem of solving a system of non-linear equa-

tions to that of solving a system of linear equations in terms

of the "unknown" constant coefficients of equation (1D). This

is accomplished as follows

Equations ( 2A), (3A), and (0) are re-written as:

1

F(A 0 ,A 1 ,A 2 ) = F = Of p(t)dt - 1 = 0	 (5A)
1

G(A 0 ,1 1 ,A 2 ) = G = of t p(t)dt - t = 0	 (6A)

H(A 0 ,A 1 , A 2 ) = H = '0 f ( t-t) 2p(t)dt - t' = 0	 (7A)

Let A 0 =x 0 , A l =x 1 and A 2=x2 be the solution for the constant

i
coefficients of equation UA). Let A0 =A01^ A1=A11. and

A 2=A2 1 ) be a point " near" the solution, (x 0 ,x l , x 2 ). it is

possible to expand the functions given by equations ( 5A), (6A)

and (7A) as a Taylor series about the point (A(1)A(I)A21)) in

(1)	 (1)	 (1)	 (i)	 (1)terms of (xo- A 0 ), (x l - A 2 ) and (x 2 -A 2 ).	 If (A 0 ,A 
(1)Z ,A 2 )

is "near enough" to (xo , x l ,x 2 ) it is possible to truncate the

Taylor series after the first-derivative terms in order to

obtain an approximate solution. This yields

2
F = F + I F A (x i-A1 1)

)	 (8^)
'	 i=O	 i

2
G = G +	 GA.(xi-All))	 (9A)

i=0	 i.

32
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z
H w H+ 1 1 1 A (x i -X i )

i=o	 i (ion,)

where F X, is the partial derivative of F with respect to Xi.
s.

&imilarily for G and H. The functions F, G and H, and their

associated partial derivatives are evaluated at (XO(1)A,

Equation (eA) , (9A) , and (10A) form a systmll of linear

equations, The "unknowns",in these equations are the "im-

provements" in each approximated variable: (xp-Ap1)),

(1)	 0)	 These equations may be solved b • util-

izing any appropriate technique for the solution of systems

of linear equations. In the present work, Cramer's Rule is

selected. The application of Cramer I s Rule to equations (BA),,

(9A) and (10A) yields the following expressions for the "im-

provements" in the approximated constants of equation (1A):

det A
_ 0) _

	 A.
X. 	 ^	 i -- 001,2

i	 det A j=i+l

where A = the coefficient matrix of the system
of linear equations given by. equation
(11A)

Nrr.
Via»'

(11A)
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the matrix formed by replacing theA^	
elements of the j th column of A by
-F, -G, -H; j s 11203.

det a the determinant of a designated matrix

Matrix A is expressed as:

FX0
FX1

FX2

GX0
GX1

GX01

H X 0
HX

1 HX2

Solving equations (11A) for the x i 's yields:

^l)	
det A.

X
i _ Xi + de— A r ;	 i = 0,11 2	 (12A )

j = i+1

For the case of the one-variable most-likely pdf x 0 ,x l ,x 2 are

unknown quantities. Hence, X WX( l)X21) are taken as an "ini-

tial guess" for the solution. The resulting values for x0,xl,

X2 are "improved" solutions. Substitution of x 0 ,x l ,x 2 for

the values of NO 1XI l;X21) yields "further-improved" solutions.

The solution process continuos in this manner until the de-

sired degree of convergence is achieved.

The expressions for the elements of matrix A are given

in Table Al., Section A1.2. All integrations are performed

using Simpson's Rule.

*where det A is not equal to zero.
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A1.2 Expressions for the elements in matrix A

The expressions for the elements in matrix A are ob-

tained through the application of Liebniz's Theorem for Dif-

ferentiation of an Integral 12A). These expressions are

given in Table Al.

Table Al. Expressions for the elements of matrix A

Element Expression

FXo
of p(t)dt

1
P of t p(t)dt

FX

1
of t 2 p(t)dt

1

GX
of t p(t)dt 

o

G X'
i

of t 2 p(t)dt

GX2 of t3 p(t)dt

HX 0f1 (t-t) 2p(t)dt
0

M U. S. Dept. of Commerce, fiat. Bureau of Stand., Handbook
of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, AMS 55, Ed. by M. Abramowitz and I.
Stegun, December 1972, p. 11.
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Table Al. (continued)

so*

4 `

Element Expression

HA of t(t-t) 2p(t)dt
3

P^ of t 2 (t-j) 2p(t)dt
2

A1.3 Mathematical Limitations

If the "initial guess" for the constant coefficients in

equation (JA) is "sufficiently close" to the solution, New-

ton's MCthod converges to the solution. If the"initial guess"

r -
Y	 is not "sufficiently close," this method may diverge from the

solution. Difficulty in achieving convergence is frequently

encountered with very high and very low values of dimension-

less mean temperature, t (e.g., t=0.1, 0.9).

A2. Evaluation of the constant coefficients of the
most-likely bivariate pdf

The discussion in this section considers the most-likely

bivariate for temperature and species. An analogous discus-

sion applies to the most-likely bivariate pdf for two species.

42.1 Numerical Procedure

The most-likely bivariate pdf for temperature and species

is expressed as;

C
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p(t,r) x q • exp [ A O +Xl t+X 2 r+A 3 tr) 	(13FA)

where q is equal to unity, as discussed in Section .2. Thle

constant coefficients of equation (l?A) are determined from

• a	 the simultaneous solution of the following constraint equa-

tions for known values of t, r, and t'r':

of O f l p(t,r)dt dr = 1	 (141A)

ofloflt p(t,r)dt dr	 t	 (153► )

of l of^r p(t,r)dt dr	 r	 (163+)

r,•9	 of of ( t-t) (r-r ) p ( t ,r) dt dr = t'r'	 (1771)

Since equations (14A) through (17A) are non-linear, Newton's

Method for a sys,.tem of non-Linear equations is utilized in the

manner of Section A 1.1:

Equations (14A) through (17A) are re-written as:

J(ap,Al,a 2 ,X3)
1

= J = of
1

of p(t,r)dt dr - 1 = 0	 (1M)

K(A OI X I , a 2 , X 3 ) x = of l of l t p(t,i)dt dr-t: = 0(19A)

L(aa^^1^^2 , ^► 3) = L = of of r p(t,r ) dt dr-r = 0(20A)
w

M( X O? XI ► a 2, a 3)
1

= M = of
1

of	 (t-t) (r—r).

• p(t,r)dt dr-t'r' = 0	 (21A)
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Let A O =xo,	 A 1 1OxI , a 2 •x 21	 A 3=x3 be the solution for the con-

stant coefficients of equation (I VA) .	 Let a o-A O ^ ; A,-A l

A2-A2WP X 3 -A3W be a point "near" the solution (xp,x1,x2#X3)

Tt is possible to expand the functions given by equations

(IBA	 to (23a) as a Taylor series about the point (Xp 1 AI

A2^OX3^))	 in terms of	 ( x Q -Xp i)
)r	 (xa-A1^ ) )^	 (x2- A2^)),

(x 3 -A3 1) ).	 if	 (X p 1 INi 1 I X 2^ ^ A 3 ^ ) )	 is	 "near enough"	 to

(x O ,xi,x 2 ,x3) 1 	it is possible to truncate the Taylor series

After the first-derivative terms in order to obtian an approx-

!mate solution.	 This yields:

3

i= 0	 i
3

K	 K +	 K	
(xi

-A i i))
	 X (2 W)

,
i=0	 i.

3

L = L	 LA	
(xi-Aid))
	

(24A)

it0	
,

3

M =- M + I	 MA	 (x _X(25N)
a

.

i=0	 a

where J^	 is the partial derivative of J with respect to Al,
i

i = 0,1,2 1 3.	 Similarly for K, L and M. 	 Functions J, K, L, M
r

and their associated partial derivatives are evaluated at

(AO	 )•P A 1	 I X 2	 P X 3

38



Equations ( 22A)

of linear equations.

the "improvements" in

(x1_AiI))I 
(x2-^,21)h

by utilizing Cyamer's

tion of Cramer's Rule

(23h), (24A), and (25A ) form a system

The "unknowns" in these 'equations are

each approximated variable: (xp-Ap1));

(x 3 - k$ 1) ). These equations are solved

Rule as in Section x1.1. The applica 4

-to equations (22A) , (23h) , (24A) and

(25A) yields the following expressions for the "improvements"

in the approximated constants of equation (13A):

) 
(x i Vi i

(
, )	 det B*I r . i	 O, lr 2r 3

3 = i+l

where B = the coefficient matrix of the system of
linear equations given by (26A)

B, = the matrix formed by replacing the
3	 elements of the jth column of B by

-J, -K, -L, -M; j = 102,304.
det = the determinant of a designated matrix

Matrix B is expressed as:

J^^	 Jk1	
Jk2	 Jk3

K
NO	

Kk1	 KA'	 Kk3

Lao	
LXi	

Lk2	
Lk3

MNo	
Mal.	 Mkt	 Mk3

*where det B is not equal to zero.

(26A)



Solving equations (26A) for the xi I s yields:

det 8.
Xi 

Xft) 
+ det H 0 1 = 0,1,2,3

j	 i+1
(27A)

For the case of the most-likely bivariate pdf, Xp,Xl,x2,x3

are unknown quantities. Hence XO 1XI 1ON21 a 3' # are taken as

an "initial guess" for the true solution. The resulting

values for xo,x l , x 2 , x 3 are "improved" solutions. Substitu-

tion of Xp,X I ,X 2 ,X3 for the values of X 0) A 0) X 0) X (0 yields

"further-improved" solutions. The solution process continues

in this manner until the desired degree of convergence is

achieved.

The expressions for the elements in matrix B are given

in Table 2A, Section A2.2: These elements .are initially ex-

pressed in terms of double i-tegrals. The large amounts of

computer time required to sol7e for the constant coefficients

of equation (13A) by utilizing this numerical procedure and

the rouble-integral expressions render this solution imprac-

tical. Use of the Monte Carlo integration technique, as op-

posed to Simpson's Rule .,, yields no appreciable; decrease in

the amounts of computer time required. In order to decrease

this time requirement, the following method, developed during

the course of this study, is utilized:
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1'..
1C,

7

The double-integral expressions for the elements of ma-

trix B are "reduced" to single integrals by noting, for exam-

ple, that

1	 1
JA 0 = O f O f exp[a O +A l t+A 2 r+A 3 trldt dr	 (281)

may be written as:

1	 1	 '
J A = exp(A O ) O f exp(A l,t) [ O f exp( % 2 r+A 3 tr)drlet	 (29 A)

0

Evaluation of the inner integral in equation (29A) yields:

1 exp(Alt)
JAO = exp(AO)Of	

X2 +A3t• (exp(A
2 +A 3 t)-lldt	 (309)

Similar manipulations are , performed with the remaining ele-

ments of matrix B. Utilization of the single integral ex-

pressions given in Table 3A decreases the amounts of computer

time required and renders this solution practical. All inte-

grations are performed with Simpson's Rule.

D2.2 Expressions for the elements in matrix B

The expressions for the elements in matrix B are obtained

through the application of Liebniz's Theorem for Differentia-

tion of an Integral (2A]. The double-integral forms of these
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expressions are given in Table 2A. The single-integral forms

of these expressions are given in Table 3 A. The following

definitions are utilized in Table 2A.
i

X l = of p( t,r)dr	 exp ( ao+alt)	
a2+X3t

I
,X 2 = of r p(t,r)dr	 exp(Xo+alt)

(X2+% 3t-1)eXp(X 2+X 3t) +1

•	 (X2+X3t)

I	 exp (Xo+Xlt+X2+X3t)
X 3	 o! r 2 p(t,r)dt	

(X2+Xgt)

• (X 2 +X 3 t) 2 — 2(X 2 +X 3 t-1) —	
2	

jexp (X 2 +X 3t,

(31A)

(32+)

(33A,)

Table 2A. Double integral expressions for the
elements for matrix B

Element Expression

J X 0
I

of
1

of p(t,r)dt dr

J XI
I

of

I

of t p(t,r)dt dr

l 1

jX2
of of r p(t,r)dt dr

J X

1

of

1

of tr p(t,r)dt dr
3

KXo
l

of
1

of t p(t,r)dt dr

KXI
I

of

1

of t 2 p(t,r)dt dr
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Table 2A (continued)

Element Expression

A 2.
oflofltr p(t,r)dt dr

K A•A3 oflofIt2r p(t,r)dt dr

LA

1

of of
1

r p(t,r)dt dr
0

1 1 	 .
L^ of of tr p(t,r)dt dr

1

L A2 of 
1
of

1

r'2	p(t,r)dt dr

LX3

1

of of

Y

tr 2 p(t,r)dt dr

^
1

MX of of (t-t) (r-r)p(t,r)dt dr
o

MX
of^of^t(t-t) (r-r)p(t,r)dt dr

1

1 1	 '

M

A

of of r(t-t) (r-r)p(t,r)dt dr

M^ oflof^tr(t -°t) (r-r)p(t,r)dt dr
3
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Table 3A,. Single integral expressions for the
elements in matrix B

Element Expression

1

JA Of X1 dt
0

1
JA Of t X1 dt

1

1

JA Of X2 dt
2

1
JA Of t X 2 dt

3

K equal to J

K

1

of t 2 X1 dt

K A2 equal to J^
3

KA

1
of t 2 X2 dt

L
a

equal to J
o a2

L
^l

equal to J
a3

1

LX
Of X3 dt,

2

1
LX t X3 dt

3

M
^0

J	 - r J	 -, t J	 + t r J
X3	 Al	 A2	 X0

M
a l

K	 - t J	 - r K	 + t r J
a3	 a3	 ^l	 A1
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Element Expression
.e

M L	 - t L	 - r J	 + t r J
^3	 7► ^	 ^3	 A2^2

M
A

1
o I t 2 X3 dt - t LA 	- r K X f + t r J

A33 3	 .^

Table 3A_. (continued)

ORIGINAL PAGE IS
Of POOR QUALITY

42.3 Mathematical Limitations

If the " initial guess" for the constant coefficients in
equation (13A) is " suff iciently close" to the solution, New-
ton's Method converges to the solution. If the "initial

guess" is not " sufficiently close," ;:his method may diverge
from the solution. In this case, no convergence is achieved.C	
Additional difficulties with convergence may arise when, in

the denominator of X 1 , X2 or X31 the value of (X 2 +a 3 t) is

close to zero
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1

Appendix A

The Uniqueness of the Solutions for the Cons
of the Most-Likel y pdf

t Coefficients

The utilization of Newtons Method for the solution

of the unknown constant coefficients of the one-variable

most-likely pdf and the most-likely bi.variate pdf is

describer) in detail in Appendix A. These constants

are determined from the solution of the system of

non-linear constraint equations for each pdf. The utilization

of Newton's Method reduces the'problem of solving a system of

non-linear equations to that of solving a system of linear

equations. The system of linear equations is solved by util-

izing Cramer's Rule. Thus, the proof of uniqueness of the

solutions obtained by utilizing Cramer's Rule is proof of the

uniqueness of the solutions for the constant coefficients of

the most-likely pdf. For simplicity, the following discussion

demonstrates the uniqueness of the solutions for the constant

coefficients of the one-variable most-likely pdf. An ana-

logous discussion applies to the constant coefficients of the

most-likely bivariate pdf.

As shown in Appendix A, the solution to the following set

of linear constraint equations
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2	
t1)F = F + I F(xi-A

i	 ii=0 

2
G G + I G (x^ i-Ai11))

i=0 

2
H = H + I H^ 

i

(xi-ail))

i=0 

( BA )

(9A)

UOJQ

is given by

det A ,

x _ 
^^1) = 

det 	 0,1,21	 j - i+l
(11^► )

for the case where det A is not equal L:o zero. Equations

(11A) are the expressions for the "improvements" in the ap-

proximated values of the constant coefficients of the one-variable

pdf.	 Cramer's Rule states that if "det A" is not equal to

zero, then the system of linear equations given by equations

(OA), (9A), and (10A-) has the unique solution given by equa -
tions (11A). For a formal proof of this statement, the reader,

is referred to Reference [101. Thus, the solutions for the

constant coefficients of both the one-variable most-likely pdf

and the most-likely bivariate pdf, obtained with the use of

the numerical procedure outlined in Appendix A , are unique.

1B. Gerald, C. F., Applied Numerical Analysis, Second Edition,
Addison-Wesley Publishing Co., Reading, MA, 1978.
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Appendix d

Variation of the Mean Turbulent Reaction Rate Constant and
Mean Turbulent Reaction Rate with the Value of the
a vA.io&i Probabilit y . a

}

	

	 The discussion in this appendix utilizes a combination

of analytical and numerical calculations to demonstrate that

the mean turbulent reaction rate constant obtained with the

use of the one-variable most-likely pdf (treating temperature

as a passive scalar) is independent of the value of the a

p&ioAi probability, q. An analogous discussion demonstrating

that the mean turbulent reaction rate obtained with the use

of the most-likely bivariate pdf is independent of the value

of the a pAion.i probability follows directly from that given

for the one-variable most-likely pdf.	 Bence, the former dis-

cussion is not presented.

Let the expression for the one-variable most-likely pdf

wherein "q" is a constant, not equal to unity, be given by:

f(t) = q-exp[ap+a l t+X2t 2 l 	d' )

Equation (19) is utilized in Case I of this discussion. Let

the expression for the one-variable most-likely pdf wherein q
T

is a constant, equal to unity, be given by:
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p(t)	 exp[Ap+at+a2t2 ) 	 (2c)

Equation (2c) is utilized in Case IX of this discussion. The

corresponding constraint equations for Cases I and II are

given by the following:

Ca se I
1	 ^

of f(t)dt = 1	 (3c)

of 1 t f ( t)dt = t	 (4E)

of (t-t) 2 f (t)dt t= 	 (50

Cam
1

of p(t)dt = 1	 (GP)

of t p(t)dt = t	 (7c)

of (t-t) 2 p(t)dt = tt	 (Sc)

The following comparison of Case I and Case II is made, utiliz-

ing the same values for h and t: for both cases, in order to

demonstrate that the one-variable most-likely pdf, the mean

turbulent reaction rate constants and, hence, the reaction

rate constant amplification ratios determined for each case

are the same. Thus:

In order for equations (3c), (4c), and ( 5c) to be valid
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simultaneously with equations (60, (70 and (6c) , then

f (t) = p (t)	 (9C )

4

Equation (9c) is verified by the numerical results obtained

with the computer program written for the procedure described

in Appendix C. Moreover, equation (9d) demonstrates that the

values of the mean turbulent reaction rate constant determined

for Cases I and 11 are identical since both cases utilize

identical expressions for the one-variable most-Likely pdf.

The numerical results of this same.computer program indicate

that this is so.

The relationships between the constant coefficients of

equations (1 c) and (2e) may be ascertained from th,a following:

Equation (9e) indicates that

q • exp[X O+a i t+X 2 t 2 ) = exp[X O +A t+X 2 t 2 ]	 ( 10d)

Iwf X 1 =X 1 and X 2 =X , then

q-exp(Xo)exp(X i t)exp(X 2 t 2 ) 7=

exp(Xo)exp(X l t)exp(X 2 t 2 )	 ( llC)
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Cancellation of "like terms" in equation (11c) yields:

a	 q•exp(ao)	 exp(%o)	 (12c)

solving equation (12) for No yields:

ao	 Igo - ln( q )	 (130

^	 r
Equation (13d) as well as the fact that X1`Xl and X 2 - X? are

verified by the numerical results obtained with the computer

program written for the procedure outlined in Appendix A.

Thus, knowledge of the value of the: constant a piL i c),ti

probability for the most-likely pdf of a passive scalar(s) is

not required since the values of both the pdf and the mean

quantities calculated with it's use are independent of "q",

where "q" is a non-zero constant.

. 	 5 l
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