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. l, Summary

The use of pronbability theory to determine the effects of
turbulent fluctuations ¢on reaction rates in turbulent combustion
systems is briefly reviewed. Results are presented for the effect
of speries fluctuations in particular. ‘It is found that turbu-
lent fluctuations of species act to reduce the reaction rates, in
contrast with the temperatiye fluctuations previousiy determined
to increase Arrhenius reaction QQte éonstants."s'e'? For the
temperature fluctuations, a criterion is set forth for determi-
ning if, in a givea region of a turbulent flow field, the temper-
ature can be expected to exhibit ramp~like fluctuations. Using
the above-described results, along with results previously ob-
tained4'6'8'9, a model is described for testing the effects of
turbulent fluctuations of temperature and species on reaction
rates in computer programs dealing Jlth turbulent reacting flows.
An alternative model which employs three-variable probablity

density functions (temperature and two species) and is currently

being formulated is discussed as well,
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2. General Theory

2.1 Prokability Density Functions

A parameter x is said to be a continuous random vari-
able if there exists a probability density function, p(x),

which satisfies the following conditions " I1}:

pi(x) > 0 (la)

LMpoax = 1 : (1b)

The pdf may, of course, be defined on an interval other
than (-»,+«), for example (0,1l).: Since the pdf is defined on
a specific interval, the functional value of p(x) is zero
elsewhere. |

Equation (1) must be satisfied by a pdf of a one-
dimensional continuous randoq variable., Probability density
functions may be written for a multi-dimensional continuous
random variable. A two-dimensional continuous random vari-
able, for example, is comprised of two one-dimensional con-
tinuous random variables. A probability density function for
a two-dimensional continuous randbm variable, denoted p(x,y),

is termed a bivariate or joint pdf. For such a pdf, the
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conditions corresponding to equation (1) are:

p(x,y) 2 0 (2a)

L yrax ay = 2 . (2b)
The expected, or mean value of a one-dimensional con-

tinuous random variable, x; is expressed as:
4
ue = B(x) = [ x p(x)dx (3)

Equation (3) is also termed the first moment about the

th

origin. In general, the k moment about the origin of a

one~dimensional continuous random variable, X, is expressed

as {1}:

= pte k
My, k - Lo xTp(x)ax (4)

where k = 1,2,3,...

For the case of k=1, equation (3) is equal to equation (4).
The variance of one~dimensional continuous random vari-
able, x, is expressed as:

2

® 2
o, = Vix) = _£+ (x - E(x)) p(x)dx (5)
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A useful quantity derived from the variance is the standard
deviation which is the square root of the variance. Equa-
tion (5) is the special case vf the more general expression
for the kth central moment, or moment about the mean, of a

one~-dimensional continuous random variable, x [10]:

Mok T _{,“(x - E(x))¥p(x) ax . (6)

vhere k = 1,2,3,...

Clea;ly, equation (6) indicates that the first central mo-
ment (k=1) is zero. The second central moment (k=2) is

termed the variance. For the casé of k=2, equation (6) is
equal to equation (5). Higher central moﬁ;nts (x>2) are

often used in probability theory to give further descrip-

tions of a particular pdf under consideratién. For example,

the third central moment (k=3), termed the skewness, is used

to describe the symme£ry or skewness of a pdf. The fourth
central moment (k=4), termed the kurtosis or flatness factor,
i; used to measure the "flatness" of a pdf,

The ‘concept of "moments" of a one-dimengional continu=-
ous random variable may be extended to multi-dimensional
continuous random variables. For example, the kth joint
moment about the origin of a two-dimensional continuous

random variable, (x,y), is expressed as ({2]:
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where k = s+r, the order of the moment
- 1'2'3'000
r = 102'3'000

By comparison, equation (7) is seen to be an extension of

equation (4).

$

The kth joint moment about the mean of a two-dimensional

continuous random variable, (x,y), is expressed as [2 ]:

+o 4w - -

Mook = L L =% % (y=¥) p(x,y)ax dy (8)
Y =% =

s+r, the order of the moment

1'2,3'8..

1,2,3,...

where k
s
r

[ |

By comparison, equation (8) is seen to be an extension of
equation (6).

For a specified joint pdf, it is possible to examine the
distribution of any of the one-dimensional components of a
multi-dimensional continuous random variable by considera-
tion of its marginal pdf. For é joint pdf, p(x,y), the

marginal pdf of x, for example, is given by:

h(x) = _;f”p(x,y)dy (9)




The marginal distribution of x may be thought of as the
distribution of x, with the simultaneous behavior of the
other variable(s) suppressed. 1In other words, only the
behavior of x is being examined.

Utilizing the concept of a marginal péf, the kth mo=-
ment about the origin of any of the one-dimensional com-
ponents of a multi-dimensional éontinuous random va;iable
may be expressed. For a two-dimensional continuous ran-
dom variable (x,y), the kth momént about the origin of x,

for example, is given by: :

wo o= 1Y e (x, y)ax ay (10)
x'k -0

where k = 1,2,3,...

Examination of equations (9) and (10) reveals that the kth
moment about the origin of x is expressed as the integral
from -=» to +=, ﬁith respect to x, of the product of x and
its marginal pdf.

Equation'(3) may be extended to functions of a contin-
uous random variable. 1In the case of a function f£(x) of a
one-dimensional random variable having a EAf p(x), the mean

value of f£(x) is:

MIII s - - A ARt oty -




£(x) = [T £(x)p(x) dx (11)

Similarly, in the case of a function g(x,y) of a two-
dimensional random variable, having the joint pdf p(x,y).
the ﬁean value of g(x,y) is:

'

o T 4o’ »
gix,y) = _[ _{,"’ gix,y) p(x,y)dx dy : (12)

The correlation coefficient, Py is a parameter

yl
defined for the two-dimensional continuous random variable

(x,y) as:

Pey = E{[x - E(x)]1[y = E(y)])
Y V(x)V(y) (13)

The correlation coefficient is a measure of the degree of
linearity between x and y. Values of the correlation co-
efficient near +1 or -1 reflect a high degree of linearity,
while values af the correlation coefficient near zero
indicate a lack of linearity. Positive values of the
correlation coefficient indicate tha£ as Qyinéreases, X
' - increases. Negative values of the correlation coefficient
indicate that y increases as % decreases.

{3* ‘ The numerator of equation (13) is defined as the

S
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covariance of x and y. The covariance is denoted by °xy

and expressed as:

0y = XY = {70 rPetyax ay )
By comparison of equation (10) and (8), the covariance is
seen to be 'the second joint moment aobout the mean. The
significance of the covariance can be ascertained by con-
sidering a two-dimensional random variable (x,y). " The x
and y are termed independent random variables if the value
of x has no influence on the valge of y (and likewise, the
value of y has no influence on the value‘Ff x). When x

and y are independent random variables, the covariance is
zero, Hence, the covariance may be considered as a minimum
"eriterion" of statistical dependence. This criterion can
assure, at the very least, that when the covariance is not
zero, the variables are not independent. However, no

statement can be made concerning independence, on this basis

alone, if the covariance is zero [3].
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2.2 Most-Likely Bivariate pdf for Two Spuiles b
A model which accounts for the combined effects of tem=-

perature and species concentration fluctuations on the mean

turbulent reaction rate is reviewed in this section. 1In this

model, the temperature is assumed to be stutistically indepe-

dent of the species concentrations (qodel II, ref. 4, p. 22].
Mathematically, this three-variable pdf for temperature

and species is expressed as:

plt,r yxpi=f(t)glr, ,ry), 0<tz<1l (15)
Oirhﬁl
0 <:Bil
where f(t) = a pdf for temperature

g(rA,rB) = a joint pdf for the concentrations
of A and B species

Equation (15) is a valid pdf since it satifies the following
extension of equations (2a) and (2b) for a three-variable

pdf:

plt,r,,r,) 20 © (1l6a)

1 1.,1 -
of " of oS p(t,rA,rB)dt drA dra 1 (16b)
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..The most-likely bivariate pdf is utilized as the

joint pdf for the concentrations of any two species in

this model, This pdf is selected on the baéis of the excel=-.
len£ agreement between the most=likely bivariate pdf, based
on three moments, and an experimentally-measured pdf of con-
centrations in turbulent non-reacting flow, as discussed in
Reference [5]. The three moments considered are: the first
moment about the origin of each species‘concentration, the
second joint moment about the mean (i.e., the covariance, k=2
in equation (8)), and the third joint moment about the mean
(k=3 in eqguation (8)). 1In addition, this pdf is selected on
the basis of its potential for increased accuracy in the mod-
eling of the joint pdf for species through the incorporation

of higher moments. As an initial step in the utilization of
the most~-likely bivariate pdf for two species, the most-likely
bivariate pdf based on the first moment about the origin of
each species concentration and the covariance of the two con- ;
centrations, is selected. The expression for the chosen form

of the most~likely bivariate pdf for two species is:

girbfrB? = q.exp(A0+X1rh+kzrpfxarhraz (17)

where q = a prdoad probability

ra = dimensionless concentration of A
rg = dimensionless concentration of B

#

10
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The continuous random variables in equation (17) are treated as

passive scalars, With this simplification, the "q" term in equa-
tion (17) is a constant, set equal to unity for convenience in
this study. The value aof this constant "q" ferm is shown in
Appendix C to have no effect on the cdlculated value of the most~

likely bivariate pdf and tha values of the mean quantities calcu-

lated with it,
4

The values of the constant coefficients, AO’AI'Az’Aa' in

equation (17) are obtained from the simultanious solution of the

e

following constraint equations for known values of ;;, ;s and

" gV -
IA!'BS j
!

s f1 g(r_ ,r )dr dr_ =1 (18) :
0" o0 A'"B"T°A B . 2
oty g(r,r.)ar, dr, = ¥ . (19) 3
o o A A’ %A TTB A »i

fl fl r g(r. ,r )dr_ dr_ = r ‘
o0 o B Ar¥p’d¥, SFp B (20) ,
1 .1 - - —— f
of " of " (rpmrp) (xpmrpdglr,,xpddr, dry = rixd (21) .

A typical term in a reaction rate equation for species A
would be
. (1) .
YA = k‘t)(rhch,max)(rucﬁ,max% (22)
For the case of statistical independence between temperature and
species concentration, the expression for the mean, turbulent reac~

tion rate

=(1
wé ) w {-n ofl (k1t+k2)8exp[-TA/(klt+k2)lf(t)dt} (23)

: 1
{CA,mach,max of 7 of " Tarp 9(ry.rp)dr, dr
. fg

11
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The corresponding value of the "laminar" reaction rate is determined

’

by inserting the appropriate values of t, ?A and ;S into equation

22, This yields:

v = - (klt+k2) exP[-TA/‘klt+k2)]chF,maerco,max (24)

The ratio of equations (23) and (24) ‘is

1 B .
{of (k1t+k2) exp[-rh/(klt+k2)1£(t)dt}

t

PR B |
2 = S g/ Trpry 9y ryldr,dry) (25)

[ o B - —
(k1 t+k2) exp[-TA/(klt+k2)l A 'p

This ratio may be expressed as the product of a term which accounts

for the effects of temperature fluctuations, 2 and a term which

t’
accounts for the effects of species concentration fluctuations,

zr. These terms are expressed as follows: "

ofl(k1t+k2)Bexp[-TA/(k1€4k2)]f(t)dt
N , (26)
(k1€+k2)?exp[-mhmk124k2)1

1 1
of  of  Eprpulr,.rgldr, dry ,
z_ = B _ (27)
Ta's
The reaction rate "amplication ratio" Bt has been determined
previously4’6'8’9. The species "unmixedness factor" & was deter-

mined using the numerical methods and considerations described in
Appendices A, B, and C. Results are presented in Figures la thru
1i assuming a correlation coefficient of -0.94. As may be seen,

species unmixedness predominates (low Br) when the mean concentrations

7

12
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of the species are low and turbulent fluctuations are high. This
is to be nncicip;tad on physical grounds; that is, as shown in the
accompanying skatch, lower mean concentrations result in an increas~-
ed probability that one oxr both species will be outside the colli-
sion volume within which reaction is possible (for the same inten-

*

sity of fluctuations).
4
r AW
Inside ¢/ \\Mr[ A\J/ \v’/
(‘o”{;"l{:n:‘luf;e VJV\) VA __l‘ow mean Vd. I“e
A i s
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llision velume

Hish meen va ,QC.
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2
Also as anticipated, increasing fluctuations intensity et leads

to increased unmixedness.

The pdf selected for temperature is eithor the beta pdf
or the temperature ramp-induced gﬁf, based upon the criteria dis-
cussed in Section 3. The complete model, which incorporates the

bivariate pdf feovmulation discussed in this Section, is detailed

in Section 4.

3. Development of a cliffterion for the
Selection of the Beta or Temperature Ramp-Induced PDF

3.1 Experimental results from the literature

The mohiQation for deoveloping a criterion for selecting
either the ramp pdf oxr beta pdf lies in cbserve@'exparimental re-
sults. Temperature fiuctuations that exhibit a ramp-like struc-
ture have been observed experimentalily under certain flow condi-
tions, and more importantly, the flatness factor of these tempera-

ture fluctuations lies within a narrow range.

13
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Fiedlerlo stuydied a heated two-dimensional mixing layer;
i.e,, the higher velocity stream was heated while the external
stream had zero velocity and was at ambient temperature. A tur-
bulent heated jet with a coaxial flowing stream was investigated

by Antonia, Prabhu, and Stephensonll. * LaRue and Libbylz, and

13

Gibson, Chen, and Lin independently studied the turbulent flow

behind a heated cylinder. Ramp-like temperature fluctuations
. '

were observed in all four investigations. Even thoungh these ex-
periments were performed in non-reacting flows, it is assumed in
this study that these results can be generalized to reacting flows
as a result of the wide diversity of flow conditions under which
ramp-like temperature fluctuations were observed, Gibson et al.l3
believe that this type of fluctuation is due to sharp thermal
gradients, with the point of highest temperature- of the ramp
occurring at either the downstream ;r upstream end of the turbu-
lent/irrotational interface, depending upon the sign of the vor-
ticity of the main flow.

Temperature signals obtained in these experiments are repro-
duced in figure 2 from the original paperslo'll’l3. Note the
similarity of the ramp-like structures even though they were

obtainea under different flow situations. The flatness factor

distributions obtained by three of the researchers as they appear-
10,11,12

ed in the original papers, are shown in figure 3

The abscissa n of all graphs in figure 3 is a normalized
radial distance, with each author using a different normalizing

constant.

14



The general trend of these curves is that the flatness factor

has a value of approximately 3 (the Gaussian value) near the center-
line, decreases Lo a value near 2, then sharply increases in the
other region of the flowfield.

This trend led Fielder® to suggest that the value of 2 is
characteristic of the "sawtooth" appearance of the temperature
signal, Antonia et al.ll subsequently agreed with Fiedler's.
conclusion. This suggests that the flatness factor may be 'used

as a criterion for the selection of either the beta or ramp pdf.

4.2 An initial selection procedure

It was pointed out in refe;ences 4 and 6 that the ramp pdf
is only capable of generating flatness factor values between 1.0
and 3,7. Of the four adjustable constants in the ramp pdf, the
flatness factor is most sensitive to variations in o*., Since it
‘is so sensitive, an assumption (to be tested subsequently) will be
to assignh O* & value based upon physical grounds. Antonia and
M:kinson7 indicate that a value of o% = 0,25 yields good agreement
with experimental results. As a consequence of fixing o*%*, varying
@', B, and ¢ over the ranges previously indicated4 generates flat-
ness between 2,0 and ?.6. This suggests that the ramp pdf is
applicable when F falls within this range,

Before proceeding any further, one should ascertain whether
tﬂis‘criterion agrees with experimental results. 'Antonia, Prabhu,
and Stephenson (ref 11, p. 477) state that ramp-like behavior was
observed in the region 0.6 < n < 1,2. The range of flatness factors

suggested by this study, where the ramp pdf is applicable, is 2.0

15
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to 2,6, If the normalized radial) distance éofresbonding to this

range of F is obtained from figure 35, one can see that 0,65 <

n €£1.2. This agrees closely with the range within whick An%onia
et al.ll observed ramp-like temperature fluctuations. This agree~
ment supﬁoits the contention that the ramp pdf is applicable when
2,0 < F £ 2,6, (This implicitly justifies the assumption of con-
stant o*.)

An initial criterion would then be to determine if F, at a
point in the flowfield, lies between 2,0 and 2,6. 1If it does, .
then the ramp pdf is applicable at that point. 1If it does not fall
within that range, the beta pdf is to be used.

However, recall that the beta pdf generates the values 1.66

< ¥ < 8.64. Since the beta pdf is continuous, every intermediate

value can be obtained by the proper selection of t and t'2. This

implies that the beta pdf generates the values 2.0-2.,6 for the
flatness factor (as does the ramp pdf). As a result, the flatness
factor cannot be used as the sole criterion due to this overlapping.

The skewness also overlaps, but it is distincé when 2.0 < F
< 2.6, For the ramp péf; -1.57 < 8 £ -1.25, and for the beta
pdf, -0.82 < S < 40,82 (both when 2,2 < F £ 2,6)., See table 1.

The selection procedure is as follows: 1i the flatness fac-
tor lies outside the range 2.0 to 2.6,-then always select the beta
pdf. If the flatness factor lies within this range, examine the
skewness value, If -1.57 £ s £ ~-1,25, ¢hoose the .ramp pdf; other-

wise select the beta pdf (see figure 5).

16



BETA RAMP
1,66
2o°b 200
F v
2.6 2.6
8.64
-1.57
'
-1025
S
-0082
0.82

Table 1:

Summary of initial criterion between the beta

and ramp pdfs

17
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The skewness alone cannot be used as a primary criterion
because the full ranges generated by the two pdf's are not dis-

tinct.

4.3 An alternative selection process

The selection procedure outlined in the previous section is
inconvenient from the computational point-of~view because of the
difficulty in determining the third and fourth moments at every
point in a flowfield. It would be preferable to use, if possible
the first and second moments (mean and standard deviation) instead.
This can be achieved by using the available experimental data as
follows:

l. On a Fvs. n (axial distance) graph, find the

range of n which corresponds to 2.0 < F < 2,6
2. On a t vs. n graph, find the range of t which
corresponds to the range of n determined ain
step (1),
3. Repeat step (2) for :TE

The same ranges of t and t'z result from three independent

papersll'lz'13 after taking the different normalizing constants

into account. The consensus is that if

0.35 < t < 0.75

and t‘z > 0.08

then the temperature fluctuations exhibit a definite ramp-like

character. Outside this range, the beta pdf is to be used.

It is to be anticipated that t'2 > 0.08 since the ramp pdf

is applicable when the temperature fluctuations are large. It

-

18
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is also to be angicipated that 0.35 < t < 0,75. If t < 6.35, then
the mean temperature is low, indicating & low reaction rate. This
slow rate of reaction will not induce high temperature fluctuations.
If t > 0.75, the mean temperature is high, implying that the magni-
tude of the fluctuations will be a smaller percentage of the mean
than it is at a lower temperature, efﬁectively reducing the effect
of the fluctuations. Hence a pdf which describes low intensity
fluctuations (e.g., the beta pdf) would be applicable.

4. A Model for Determining Reaction Rates in Turbulent Reacting
Flows

In this section, the completed Model II4 is set forth employing

the elements discussed in Sections 2 and 3, as well as those discus~

sed in previous status reportsq'e'a'gr

Consider a general chemical kinetic mechanism, as shown

below:
Ky
A, + A, 2T A+ A
1l 2 ktl 3 4 p
k2
A. + A 27 A + A
1 5 k&2 6 7
i I
fn
A. + M -+ A + A+ M
1 Kin M M

The "laminar" reaction rate expression for species Al (i.e., the

source term in the species transport equation for‘Al would be

c, ¢
17A, A, + k_,C, C

, w = -k
A1, - k.. C. +k .C,C
’ 3 A4 2 Al AS ﬁ2 AG A7

) .
- heem 28
.. knchlc + k_ Con'C (28)

19
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In accordance with the model proposed here, this would be rewritten
for a turbulent reacting flow

J

Yar,t ” ~(B, k,) (Br'l_z Cp Cp ) + (k. /B, k,) (st'3_4 C. C. )m=..,

1 P2 Ry A,

(29)

——7—
where “t - Bt (t, q‘z) is the temperature "amplification ratio"

discussed in references 4, 6, 8, and 9, B8
2

r!
;)

herein, and kc is the gquilibrium constant based upon molar con-

- - 2
rod-3 % Bp,i.g(Fyergerg
) is the species "unmixedness" factor discussed in Section 2

centrations.
In accordance with the criteria set forth in Section 3, the

beta pdf is to be used to determine B, in all regions of the tur-

t
bulent flow field except when

When the conditions of eq. (30) are satisfied, the temperature ramp-

induced pdf is to be used as detailed in ref. 2, p. 6,

’

The species "unmixedness" factor, Br {2t is determined from
=

the values of Ei, E., and 052 obtained from appropriate trans-

¢!
k] i
— -

. i ~ atc., ima f the maxi-
port equations Since r, = ci/ci,max’ etc., estimates o

mum molar concentrations are required., For a reactant species (fuel,

oxidizer), is taken to be the initial moler concentration.

c
i,max

For a principal product species (eg. H_0, CO Sioz), is taken

2 2 ci,max

as the final equilibrium value determined from a preliminary equili-
brium calculation. For an intermediate species (eg, OH, O, H),

i ,max must be estimated from a preliminary "laminar" kinetics
calculation using either the multi-dimensional computer program

*

20
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of interest (eg, CHARNAL, SHIP) or a one-dimensional kinetics
program (eg. ref. 14), Once Fi' ?A,F:IE and :}5 have been
determined, Br,i-j is obtained from cuarve-fits (or table look=-
up) of the "unmixedness" data presented in Section 2 herein,

The akuve~described procedure is: carried out for all of the
terms in eq. (28) and the analogous equations for each species
present. It should be noted that this model indicatesg that the
temperature fluctuations and épecies fluctuations result in
opposing effects on the reaction rates. That is, Bt is always
greater than unity, while Br is always less than unity. The
behavior of these parameters (Figs. la thkru 13 herein and, for
example, Figs, 6 thru 24 of ref, 8 and Figs. 1 thru 10 of ref. 9)
lead to the following conclusion::

1. 1In regions where the principal constituents are

reactant species at relagively low temperature (high ;;,
;3, low ?), the principal effect will b? through the in-
creased Awhenius rate constant (beta pdf) due to the
temperature fluctuations,

2, In regions of intermediate temperature and species

concentrations, the greatly amplified rate constant
due to the temperature fluctuations (ramp pdf) com-
petes with the species "unmixedness," which may be-
come substantial.

3., 1In regions where combustion nears completion (high t

and r for the principal product species), reaction

rates will approach their laminar values.
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5, An Alternative Three-Varxiable Model for Detexmining Reaction
Rates in Turbulent Reacting Flows

' In this section, a full three-variable model (temperature and

two species), currently under development, is discussed, This model

) was previously referred to as Model xxx“. In this model, individual

terms in the reaction rate equations have the form

ey

1 .1 ) . .
w, « C fo fo fo K(t)x1 X, p(tlxl,xz) dt dx, dx

1
(31)

1l,max cz,mnx 2

where the three~variable most~-likely pdf is
p(tl,xl,xz) = q * exp (Ao + Alt + A2N+ A§l+ AthF A5t*ﬁ AGIZSI)

\32)
There are seven constants in this pdf, which can bhe evaluated by

the following seven equations:

U'[ p(x, 1, t) dx, dx, dt =
/f'f ¢, plsan, £) dx, de, dt
/M P, t) X, dx, dt -
ffff p (X, %y, t) dx, dx, dt = ¢

f(f(X.- x;)(!,_-x,_) P(x,’x;, )JK dxtdf = 'x_,-;':,'
[[((Xm-x;)(i f) F(’(O)x;, )dx Jx dt = X,_t

/ff (x,-%,)&-F)p (x,, %, t Jdx, dx,dt = %'t/
)

22
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where X, t are the mean values of species concentration and temp-

erature and Xx't', x'x' are the covariants of the sccond central
moments. Using Newton's method for systems, the seven non-linear
equations can be transformed into seven linear equations and the

constants found by iteraticen. The equations can be rewritten as

follows:

a (Mo My Ne) = f“r(x,,x”t)du,dx dt -1=0

]

b(k., ,,...,)w} SSS%, p(x.,x,_, )clx di,dt =%, = 0
®

¢ (g by M) = § 5% (%.,x;.t)dx,dx@t-%;-o

d(}\o, ‘,...,N) Ssgt p(x,,x“t)dv dx, dt ~ -t =
C(X,,\,,...,\L\’ S

£650-% Y0x, -8, ) p d ik, dx, dt —'ﬁm
f (}"’i)‘t)“w)‘t\’ Sgg(* -X \({ ’( rr.\& dx, dt- TJ'
§

j(?\.,ﬁ.,m,}‘c)' gg(x,-x Y (t- t)-fdx,dx;dt-ﬁ?":o

(34)

The equations to £ind the lambda's using Newton's method for the

three-variable, most-likely pdf are as follows:
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' b. ’ L] ’ ' ’ ' *
- -3 } c. [ ) “3k
'1°H€w \‘OQLD "' ’ L )b 6
0.\. 5¥. O T T R I N
o-}. ' ' ’ ' '
det | + ’ R
.’ ' [} L} L] [} ]
R
q}- -4 c}‘o v 3}.
det |[SMml oo
" '. : » 8 ’ :
G-X' —i Q\ y b \\%k
& . s .
7\\,@“' Voup

det dembni.nd:or absve °

.
[}

M ¢

eke,
(35)

where 3. is the partial derivative of equation a with respect

to Ag, etc.

Each of the entries in the matricies are triple integrals, which
have to be numerically integrated. The determinant of the matricies
can then be evaluated using Gauss elimination, or Gauss-Jordan

reduction.
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It is shown in Appendix C that for the one-variable and two~

variable most~likely pdf's, the turbulent resction rates are inde-
pendent of q. As a resrult, the following two equations for the

one~ and two-variable pdf's can be written:
! 1 ‘
Jo k(t) p(t)at = [ k(t) + g p(t) 4t (36)

SEK(E) ple,rat = S SL K(E) v g (plt,r)) at (37)

Noting that the Arrhenius reaction rate is the same on botg sides
ci equations (36) and (37), if the turbu)ant reaction rate is con~-
stant then the pdf with g=1 must be equal to the pdf with gq=q.
Writing the constratnt equations fox the one~variable most-likely

pdf for g=1 and gm=q alternately, th: following pattern results:

\

( At
e‘\. \e).‘t'k t dt = |
°

- A Lt ~—
et S(t-t) e MEF ML dt = ¢ (38)

v R U R
oMl Ey N L T
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By numerical solution it was shown for the one-variable most-likely
pdf that

Y. W ' I
S R ,*\"\\ ,M’*'\x \ (39)

This solution indicates that the constants in this pdf are changing
in a manner which causes the pdf to remain a 'constant for all values
of q. |

A similar pattexn emerges when the constraint equations for

the two-variable pdf are written with g=1 and g=q alternately:

e\. S‘% e.\.'tw‘-)\,_% v hytx ),'e.‘ts. S‘S* e-)\\t-&)s,,u— }\3#& -

Ldx=X%

dt dx =\

o ° \ o
M, ME & Mk 4Nt e Ml e N A -
e 97T TR g L et TR g

\
e\. SSt RRIANY ksk*égt iy s E :
:“ ' W " "
\° \\ t L .
':L'C‘ SS{Q} 4:+\\,H:\3 *d‘HV\ £ ;
[} \ .
M G4 (e-TIN IR LT

Mo RUR N TS W W 2%
e SR )(x-R)e” ’
0

dbdw =t |
(40)

By numerical solution for the two-variable case, it was shown that

) 1]
\. \Q "W " "
s . »
This solution again shows that the constants are varyirg in a

manner which keeps the value of the pdf a constant for any value

of qg.
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To decrease the computer time required to obtain the constants

in the three-variable pdf, the triple integrals in the augmented
matrix were reduced to double integrals, where the variables are
separable., This enables the use of the sipgle variable Simpson's
Rule program to evaluate the double integrals, since the integral
of one of the variables is a standard function. The augmented ma-
trix used to evaluate the constants in Newton's Method is composed
of 49 triple integrals. Of the 49 integrals, 26 are duplicates,
leaving 23 integrals that must be evaluated for each iteration.,
Becuase of the cross-product terms in the three-variable pdf
equation (32), one change of variables and two Jacobian transforms
were utilized to change the 23 triple integrals to double inte- -

grals of tilie f£following form:
()N &M 4o gy
T e

"where N is an integer between 0 and 5.

(42)

When N=0 in equation 8%, the integral over ¢ is a scaled
version of the bell-sh&bed distribution curve. When N=1l, this
‘integral over g can be evaluated explicitly leaving a single in-
tegral. When N=3, 4 or 5, the integral over o can be evaluated
by parts. The resulting integrals are a function of the Gaussian

distribution. Details will appear in a future status report.

27



1,

10,

11.

12.

13.

14.

REFERENCES

Meyer, P, L,, "Introductory Probability and Statistical
Applications," Second Ed., Mldison-Wesley, Reading, MA,
1972,

"CRC Standard Mathematical Tables," 25th Ed., Beyer, W. H.,
Ed., CRC Press, Boca Raton, FA,'1980,.

Fry, T. C., "Probability and its Engineering Uses," Second
Ed., Van Nostrand, Princeton, NJ, 1965.

Antaki, P. J., Ranan, G., Foy, E. and Chinitz, W,, Semi-
Annual Status Report (No. 3), NASA Grant NAGl-18, 2/1/81-
7/31/81.

Pope, S. B., "Probability Distribution of Scalars in Turbulent
Sheaxr Flow," Proc. 2nd Symp. on Turbulent Shear Flows,
London, 1979, pp. 3.1-3.6.

Foy; E., Renan, G. and Chinitz, W,, Semi-Annual Status Rept,
(no. 4), NASA Grant NAGlL-18, 8/1/81-1/31/82.

Antonia, R. A. and Atkinson, J, D., "A Ramp Model for Tur-
bulent Temperature Fluctuations," Physics of Fluids, vel. 19,
1976, pp. 1273~-1278. .

L]

chinitz, W., Antaki, P. J. and Kassar, G. M., Semi-Annuel
Status Rept. (No. 1), NASA Grant NAGl-18, 2/1/80-7/31/80.

Kassar, G, M. Antaki, P. J. and Chinitz, W,, ‘Semi~Annual Status
Rept. (No. 2), NASA Graut NAGL-18, 8/1/80-1/31/81.

Fiedlexr, H., "Transport of Heat Across a Plane Turbulent Mixing
Layer," Adv. in Geophysies, vol. 19, 1974, pp. 93-109.

Antonia, R. A., Prabhu, A. and Stephenson, S. E., "Conditionally
Sampled Measurements in a Heated Turbulent Jet," J. Fl. Mech,,
wvol., 72, 1975, pp. 1956-1967.

LaRue, J. C. and Libby, P, A., "Temperature Fluctuations in
the Plane Turbulent Wake," Physics of Fluids, vol. 17,
1974, pp. 1956-1967.

*

Gibson, C. H, Chen, C. C. and Lin, S. C., "Measurements of Tur-
bulent Velocity and Temperature Fluctuations in the Wake of
a Sphere," AIAA J., Vol. 6, 1967, pp. 642-649.

McLain, A. G. and Rao, C. S. R., "A Hybrid Computer Program
for Rapidly Solving Flowing or Static Chemical Kinetic
Problems Involving Many Chemical Species," NASA TM X-3403,
July 1976. .

3

28



LIST OF SYMBOLS

molar ¢oncentration of species i
expected value of x ‘

flatness factor (or kurtogis) of a pdf
marginal pdf of x

Arrhenius reaction rate cohstant

a conpstant equal to Tmax - Tmin

a constant equal to Tmin
probability density function (pdf) of x

a priori probability in the most-likely pdf
nermalized molar concentration equal to ci/ci,max
skewness of a pdf

activation temperature equal to activation energy
divided by the gas constant .

/(T -7 )

normalized temperature equal to (T—Tmin max Tmin

variance of x

!

reaction rate of species i (or a term in the reaction
rate expression for species i)

species "unmixedness" factor

Arrhenius reaction rate constant amplification
ratio

constants in the most-likely pdf
correlation coefficient between x and y
Gaussian mean

Gaussian rms fluctuates

normalized axial distance
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Subscripts

L laminar

max ~ maximum value
min minimum value
t turbulent

30




- Appendix A

Al Evaluation of the constant coefficients of the one-
variable most~likely pdf.
lAl.l‘ Numerical Procedure

The one-variable most-likely pdf for temperature is given

by:
p(t) = qrexplAgti;t+r,t2] . (1)

where q is equal to unity, as discussed in Section 3.1. The
constant coefficients of equation (1D), Ag,Ay,Ap, are deter-
mined from the simultaneous solution of the following con-

straint equations for khown values of t and t'Z:

1

of plt)dt =1 (2A)
. _ .

of t p(t)dt = t (3a)
1 -

of (t-t)p(t)dt = t'2 , (43)

G

Since equations (2a), (3a) and (4a) are non-linear, Newton's

Method [1A] for a system of non-linear equations is an

JA, Gerald, E, F., Applied Numerical Analysis, Secoid Edi-
tion, Addison-Wesley Publishing Co., Reading, MA, 1978.
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appropriate technique of solution, This method transposes

the original problem of solving a system of non-linear equa-
tions to that of solving a system of linear equations in terms
of the "unknown" constant coefficients of equation (1D). This
is accomplished as follows: |

Equations (2A), (3RA), and (4A) are re-written as:

1

F(Ag,A1s2p) =P = of p(t)dt = 1 =0 (5n)
1 —

G"'Olr\llxz) =G = o-f t p(t)dt -t=0 (6an)
1 -

H(Ag,A1,hp) = H =. o/ (t-t)2p(t)dt - £'2 = 0 (7a)

Let Ap=xy, A;=%; and A,=X, be the solution for the constant

i
coefficients of equation (la). Let AO-A(I) A,:Afla and

(1)

A;=X,"" be a point "near" the solution, (x,,xX;,%;). It is

possible to expand the functions given by equations (53), (6A)

and (72) as a Taylor series about the point (A(lzkfl)k(l)

(1) (1) (1)

)
terms of (xp-A ),
d 0 0 ' A

Yo (%9=252"") and (x,=A;""). If (A, IZAfl 2 )
is "near enough" to (x,,%;,%;) it is possible to truncate the
Taylor series after the first-derivative terms in order to

obtain an approximate solution. This yields:

) (8a)

(1) |
G .(x.-Ai ) , (95)

e

e
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2
HeH+ ] H (xi-A(‘))

A (10A)

i=0 i .

where FA is the partial derivative of F with respect to Ai.
i

Similarily for G and H. The functions F, G and H, and their
(I)Aflz

associated partial derivatives are evaluated at (Ag" %
Agl)). '
Equation (eh), (9A), and (10A) form a systan of linear
equations. The "unknowns" in these equations are the "im-
provements" in each approximated variable: (xo-agl’),
(xl-Afl)), (xzﬂkél)). These equations may be solved by util=
. izing any appropriate technique for the solution of systems
of linear equations. In the present work, Cramer's Rule is
selected. The application of Cramer's Rule to equations (8Aa),

(9A) and (10A) yields the following expressions for the "im-

provements" in the approximated constants of equation (1A):

' det A,
- A(l) - Jr

i i = det A 0,1,2 (11a)

i+l

X

v
wu

where A = the coefficient matrix of the system
of linear equations given l: egquation
(11n)

4
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A, = the matrix formed by replacing the
) elements of the jtD column of A by
-F, =G, =-H; j = 1,2,3,
det = the determinant of a designated matrix

et

Matrix A is expressed as:

;

iz

. i

B3 F F. !

AO Al }‘2 $

& o |
Ao M Ag
-HAO By, HAZ_

Solving equations (11A) for the xi's yields:

(1) det A,
=t gerEe 0L (12n)
j = i+l

For the case of the one-variable most-likely pdf xg,x;,X, are

(1) (1ZA§1)

unknown quantities., Hence, Mg ,}; are taken as an "ini-
tial guess" for the solution. The resulting values for xXg,Xy,
X, are "improved" solutions. Substitution of x,,x%;,,x, for
the values of xé‘!xf‘lxﬁl) yields "further—impro;ed" solutions.
The solu¥ion process continues in this manner until the de-
sired degree of convergence is achieved.

The expressions for the elements of matrix A are given
in Table Al,, Section Al.2. All integrations are performed
using Simpson's Rule.

*where det A is not equal to zero.
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Al.2 Expressions for the elements in matrix A
The expressions for the elements in matrix A are ob-
tained through the application of Liebniz's Theorem for Dif-

ferentiation of an Integral [2A). These expressions are

given in Table Al,

Table Al. Expressions for the elements of matrix A

Element Expression
. 1
Fio o/ p(t)dt
1
‘ FAI of t p(t)dt
: A 1 y
FM of t? p(t)at
1 .
1
G, of t2 p(t)dt
1
. 1 3
GAz o/ t3 p(t)at
1 -
o HM o/ (t=t)?2p(t)dt

3A. U. 5. Dept. of Commerce, Nat. Bureau of Stand., Eapndbook

of Mathematical Functions with Formulas, Graphs, and
) Mathematical Tables, AMS 55, Ed. by M. Abramowitz and I.
. Stegun, December 1972, p. 1ll.

¥
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Table Al. (continued)

Element Expression
1 -
H, o/ t(t-t)2p(t)dt
)
1 - ,
Hxa o/ t2(t-t)?p(t)dt

Al.3 Mathematical Limitations

If the "initial guess; fqr the constant coefficients in
equation (1A) is "sufficiently close" to the solution, New-
ton's Mathod converges to the solution. 1If the "initial guess”
is not "sufficiently close,”.this method may diverge from the
solution, Difficulty in achieving convergence is frequently
encountered with very high and very low values of dimension-
less mean tempe}ature, t (e.g., Eﬁo.l, 0.9).

A2. Evaluation of the constant coefficients of the
most-likely bivariate pdf :

The discussion in this section considers the most-likely
bivariate for temperature and species. An analogous discus-
sion applies to the most-likely bivariate pdf for two species.
#2.1 Numerical Procedure

The most~likely bivariate pdf for temperature and species

"is expressed as:
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plt,xr) = geexplAg+i i rthytr) (135)

where q is equal to unity, as discussed in Section .2, The

constant coefficients of equation (12A) are determined from

the simultaneous solution of the following constraint equa-

tions for known values of t, r, and t'r': ;
1 |

of of pl(t,xr)dt dr =1 (14')

1 - '

of of t p(t,r)dt dr = t (155)

1 - .

of of ¥ pl(t,r)dt dr = r (16n)

11 - — .

of of (t=t)(r=-r)p(t,r)dt dr = t'x’ (172)

Since eguations (148) through (

178) are non=lineax, Newton's

Method for a system of non-linear equations is utilized in the

manner of Section Al.l:

Equations (14a) through (17a) are re-written as:

Il

J(Ao,ll'xz'ls) = J

K(KO'AI’AZ’AB) =K =

n

L(AO'AI'AZ'AB) = L

37

1 1
of of plt,r)at dr-1 = 0 (18)

1 1 o
o/ of t p(t,r)dt dr-t = 0(19A)

1 1 -
of of r p(t,r)dt dr-r = 0(20n)
S T _
of of (t=%t) (r-T)

p(t,r)dt dr=t'r' = 0 (21A)



Let Ag=xXg, Ay=X;, A,=X,, A3=x; be the solution for the con-

stant coefficients of equation (13a). Let Ao-x(l) A,na(’l

’
Az-x(’z Asixgl) be a point "near" the sqelution (xo,xl,xz,xai.
It is possible to expand the functions given by equations

(18n to (2)A) as a Taylor series about the point (A‘l) (’)

(l)kgl)) in terms of (xo-Agi)), (x;-kfl)). (x,-2 (‘)),

(xa-Ag’)). If (Aél “Zxé‘lxgl)) is "near enough" to
(Xgr%y1s1%Xp,%X3), it is possible to truncate the Taylor series
after the first-derivative terms in order to obtian an approx-

iamate solution., This yields:

3

Jg=J+ ) a, (xi-Af‘)) (22n)
i=0 i .

K = K + ? K, (x,-21)) (23n)
NP WL Rl |
i=0 A
3 (1)

L=1L+]) L, (x;=3;"") (24n)
N b
1=0 i

M=M+ % M, (x,-2(1) (258)
. AL A
i=0 i

where JA is the partial derivative of J with respect to \,,
i
i=20,1,2,3. Similarly for K, L and M. Functions J, K, L, M

and their associated partial derivatives are evaluated at

(A(x) (’)A(‘)A(’>).

38
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Equations (22A), (23K), (24A), and (25A) form a system
of linear eguations. The "unknowns" in these equations are

the "improvements" in each approximated variable: (xo-A{1'),

(x,-xf’)), (xz-zg”). (xa-kg"). These equations are solved
by utilizing Cramer's Rule as in Section X1l.1. The applica-
tion of Cramer's Rule to equations (22R), (23\), (24A) and

(25A) yields the following expressions for the "improvements"

in the approximated constants of equation (13A):

(1) det B
(x ")\. ) = ! i L 0'1'2'3 (26‘)
i i det B¥ 3 = i+l
where B = the coefficient matrix of the system of
linear equations given by (26A)
- B, = the matrix formed by replacing the
J elements of the jth column of B by
"J, "'K' -L' "M; j = 1'2'3,40
det = the determinant of a designated matrix

Matrix B is expressed as:

- —~—
JAO Jkl sz J*a
Ky | Ry, K, Ky,
L*o LAI L*z L*a

LMAO !"1)‘1 M12 MAa

*where det B is not equal to zero,

39
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Solving equations (26A) for the xi's yields:

det B,
X, = kil) + asgjsl ’ i=0o0,1,2,3 (274)
j = i+l

For the case of the most-likely bivariate pdf, x;,X;,X;,X3
are unknown quantities. Hence xé‘le‘lx§‘lx§‘l are taken as
an "initial guess" for the true solution. The resulting
values for x,,%X;,%X;,X3 are “imprerd" solutions. Substitu-
tion of x,,X,,%,,%X; for the values of Aé‘le’!x§‘lxg" yields
"further-improved" solutions. "The solution process continues
in this manner until the desired degree of convergence is
achieved.

The expressions for the elements in matrix B are given
in Table 2A, Section A2,2, These elements are initially ex-~
pressed in terms of double i~*egrals. The large amounts of
computer time required to solve for the constant coefficients
of eguation (13a) by utilizing this numerical procedure and
the double-integral expressions render this solution imprac-
tical. Use of the Monte Carlo integration technique, as op-~
posed to Simpson's Rule, yields no appreciable decrease in

the amounts of computer time required. In order to decrease

this time requirement, the following method, developed during

‘the course of this study, is utilized:
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The double-integral expressions for the elements of ma-
trix B are "reduced" to single integrals by noting, for exam=~

ple, that

1 1
JAO = of Of exp[lo+A1t+12r+A3tr]dt dr (28‘)

may be written as:

1 1 )
J*o = exp(Ag) of exp(it) [(f exp(rr+rztr)drict (29 )

3

Evaluation of the inner integral in eguation (29a) yields:

1 exp(klt)

A [exp(A,+Azt)-1]dt (304)
Similar manipulqtions ars performed with th; remaining ele-
ments of matrix B, Utilization of the single integral ex-
pressions given in Table 3A decreases the amounts of computer
time required and renders this solution practical. All inte-
grations are performed with Simpson's Rule.
D2.2 Expressions for the elements in matrix B

The expressions for the elements in matrix B are obtained
through the application of Liebﬁiz's Theorem for Differgntia-

tion of an Integral [2R]. The double-integral forms of these
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expressions are given in Table 2A. The single-integral forms
of these expressions are given in Table 3A, The following

definitions are utilized in Table 2a.

exp(k2+k3t)-l

1
X; = of plt,r)dr = exp(Ap+r;t) PrTRET (31a)
1
X, = of r p(t,r)dr = exp(ip+a,t)
(Aa+Agt=-1l)exp(A,+Aat)+1 .
' (X +A5t) 2 (323)
= 2 =
. 2 X
. 2 . - - A
EA2+A3t) 2(A+rqt=1) exp(lzﬂgt)] ’ (33a)

Table 2A. Double integral expressions for the
elements for matrix B

Element Expression

1 1

J*o - of of p(t,r)dt dr
1 1

J}‘1 of o/ t p(t,xr)dt dr
1 1

sz Of of r p(t,r)dt dr
1 1

J)\s of of tr p(?:,r)dt dr
1 1

K*o ’ ‘OI o/ t p(t,r)dt ar
| 1

KAI of of t?2 p(t,r)dt dr
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Table 2Aa (continued)

Element Expression .
1 1
K)‘2 o/ of tr p(t,r)dt dr
1 1
K, of of t?r p(t,r)dat dar
3
1 - '
on o/ of r p(t,r)dt dr
1 1
LAl o/ of tr p(t,r)dt dr
1 1 "
LAz o/ o/ rc p(t,r)dat dr
1 1 >
LA3 of of tr p(t,r)dt dr
L .
MA o/ of (t-t) (r-r)p(t,r)dt dr
0 -
I T
MA1 o/ of t(t-t)(r-r)p(t,r)dt ar
1 1 - — ‘
M, o/ of r(t-t)(r-x)p(t,r)dt dr
?
1 ) - -
M, of of tr(t-%t)(r-r)p(t,r)dt dr
3
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Table 3A. Single integral expressions for the
elements in matrix B

Element Expression
f‘
JAo 0 x1 dt
1
JAl of t x1 at
Il
J)‘2 0 x2 dt
1
JAa o/ t x2 dt
x*o equal to JA14
! 2
KA] o/ t X1 dt
sz ' equal to J)\3
! 2
1<Aa o/ t% X, dt
LAO equal to J)‘2
L)\1 equal to FA3
1
LA? o/ x3 dt
R
an o/ t X5 dt
M"o JA3 -r J)\1 -t JJ\2 + tr JA0
MA1 K;\3 -t J)‘3 -r KA1 + ¢t r JA1
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Table 3A. (continued)

Element Expression
- L. ~-rJ, -+ J
sz LAs t A, As tr A,
!l 2 dt t L J
- - +

#2.3 Mathematical Limitations

If the "initial gquess" for the constant coefficients in
equation (133) is "sufficiently close" to the solution, New-
ton's Method converges to the solution. If the "initial
guess" is not "sufficiently close," “his method may diverge
from the solution. In this case, no convergence is achieved.
Additional difficulties with convergence may arise when, in
the denominator of Xl’ X

or X the value of (A,+23t) is

2 3’

close to zero
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Appendix B

The Uniqueness of the Solutions for the Constant Coefficients
of the Most-Likely pdf

TAe utilization of Newton's Method for the solution
of the unknown constant coefficients of the one~variable
most-likely pdf and the most~likely bivariate pdf is
described in detail in Appendix A, These constants

are determined from the sqlution of the system og

- » oM . yaes’

non-linear constraint equations for each pdf. The utilization
of Newton's Method reduces the ‘problem of solving a system of
non-linear equations to that of solving a system of linear
equations. The system of linear equations is solved by util-
izing Cramer's Rule. Thus, the proof of uniqueness of the
solutions obtained by utilizing Cramer's Rule is proof of the
uniqueness of the solutions for the constant coefficients of
the most-likely pdf. For simplicity, the following discussion
demonstrates the uniqueness of the solutions for the constant
coefficients of the one-variable most-likely pdf. An ana-
logous discussion applies to the constant coefficients of the
most-likely bivariate pdf.

As shown in Appendix A, the solution to the following set

"of linear constraint equations
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FoF+] F (xi-k(l>) (8a)

im0 i i
G=G+ ; G, (x,-2{1) (9n)
WAL TF
i=0 i
H=H+ § Ho (x,=2 (1)) ' (10A)
WS :
i=0 i
is given by
(1) det A.' A‘
X; =M “Feta i=0,1,2 (113)
J o= i+l

for the case where det A is not egual Lo zero. Equations

(11a) are the expressions for the "improvements" in the ap-
proximated values of the constant coefficients of the one-variable
pdf. Cramer's Rule states that if "det A" is not equal to

zero, then the system of linear equations given by equations

(8A), (9A), and (10A) has the unigue solution given by equa-
tions (11a). For a formal proof of this statement, the reader

is referred to ﬁeference llga. Thus, the solutions for the
constant coefficients of both the one-variable most-likely pdf

and the most-likely bivariate pdf, obtained with the use of

the numerical procedure outlined in Appendix A , are unique.

- 18, Gerald, C. F,, Applied Numerical Analysis, Second Edition,
Addison-Wesley Publishing Co., Reading, MA, 1978.
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Appendix ¢

Variation of the Mean Turbulent Reaction Rate Constant and
Mean Turbhulent Reaction Rate with the Value of the
a priornd probability, g

The discussion in this appendix utilizes a combination
of analytical and numerical calculations to demonstrate that
the mean turbulent reaction rate constant obtained with the
use of the one-variable most-likely pdf (treating teﬁperature
as a passive scalar) is independent of the value of the a
priond probability, g. An analogous discussion demonstrating
that the mean turbulent reaction rate obtained with the use
of the most-likely bivariate pdf is independent of the value
of the a padord probability follows directly from that given
for the one~variable most-likely pdf. Hence, the former dis~
cussion is not presented.

Let the expression for the one-variable most-likely pdf

wherein "q" is a constant, not equal to unity, be given by:
£(t) = grexplAg+r t+r,t?) (1¢)
Equation (lf) is utilized in Case I of this .discussion. Let

the expression for the one-variable most-likely pdf wherein gq

is a constant, equal to unity, be given by:
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(] ]
p(t) = explAg+h,t+i,t?] (2¢)

Equation (2c¢) is utilized in Case II of this discussion. The

corresponding constraint equations for Cases I and II are

given by the following:

Case I
1 r,
of £(t)at =1 « (3c)
1 - .
of t £(t)dt = ¢ (4¢)
) R _
of (t=t)2f(t)at = £'2 (5¢)
Case Il
1
of P(t)dt =1 (6e)
S - :
i — f
o/ (t=t)?p(t)at = t'2 (8¢c)

The following comparison of Case I and Case II is made, utiliz-
ing the same values for t and t'2 for both cases, in order to
demonstrate that the one-variable most-likely pdf, the mean
turbulent reaction rate constants and, hence, the reaction
rate constant amplification ratios determiqed for each case
are the same. Thus: |

In order for equations (36), (4c), and (5C) to be valid

49




simultaneously with equations (6¢c), (7¢) and (8c), then

f£(t) = p(t) (Sc)

Equation (9C) is verified by the numerical results obtained
with the computer program written for the procedure described
in Appendix C¢. Moreover, equation (9¢) demonstrates that the
values of the mean turbulent reaction rate constant determined
for Cases I and II are identical since both cases utilize
identical expressions for the one-variable most-likely pdf.
The numerical results of this same computer program indicate
that this is so. .

The relationships betweén the constant coefficients of
equations (1€) and (2¢) may be ascertained from th: following:

Equation (9¢) indicates that
qeexplAgti t+r,t?] = exp[Aé+A;t+A;t2] (10¢)
If A1=A;'and A2=A;, then
geexp(Ag)exp(A;t)exp(A,t?) =

' t
exp (A ) exp (A t) exp (A, t2) (110)
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Cancellation of "like terms" in equation (llc¢) yields:

asexp(iy) = exp(lé) (12¢)

Solving equation (12 ) for ), yields:
f ]
Ap = Ap ~ 1n(q) y (13c)

Equation (13¢) as well as the fact that A,=A; and A2=A; are
verified by the numerical results obtained with the computer
program written for the procedure outlined in Appendix a.
Thus, knowledge of the value of the, constant a padord
probibility for the most-li%ely pdf of a passive scalar(s) is
not required since the values of both the'pdf and the mean

quantities calculated with it's use are independent of "g",

where "q" is a non-zero constant.
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