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ABSTRACT

A reliability model is presented for planetary gear trains in which the
ring gear is fixed, the sun gear is the input, and the planet arm is the
output. The input and output shafts are co-axial and the input and output
torques are assumed to be co-axial with these shafts. Thrust and side
loading are neglected. This type of gear train is commonly used in main
rotor transmissions for helicopters and in other applications which require
high reductions in speed. The reliability model is based on the Weibull
distribution of the individual reliabilities of the transmission
components. The transmission's basic dynamic capecity is defined as the
input torque which may be applied for one million input rotations of the sun
gear. Load and life are related by a power law. The load-life exponent and
basic dynamic capacity are developed as functions of the component
capacities.

INTRODUCTION

In recent years, it has been commonly accepted that, in the design of
mechanical components and systems, the fixed load-fixed strength approach
must be complimented with a more realistic approach [1,2,3]*. It is not
prudent to assess a proposed design by calculating a simple factor of
safety. The more realistic approach is offered by the methods of
probablistic design. In probabilistic design, a proposed design is
evaluated in terms of statistically varying load and strength
characteristics which more nearly model the true situation. A statistical
(probabilistic) approach, which requires knowledge of the nominal loads and
strengths as well as the statistical variations in each, allows the designer
to assess the reliability or probability of survival of the mechanical
system [2,3]. This is not possible with the factor of safety approach.

*Numbers ir. hrackets denote references at the end of the paper.
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The utility of a probabilistic approach to design is most apparent in
the design of airborne power transmission systems. The requirements of low
weight, high power densities, ana high speeas must be balanced against
requirements of reliability maintainability, and long mean times between
overhauls (MBTO's). Currently, there is no suitable probabilistic design
methodology for designing lightweight planetary gear trains tor helicopter
applications.

The probabilistic design approach has been applied to machine systems
by Haugen and Smith [2,3] and to the design of epicyclic gear trains by Rao
[4]. These design procedures have been based on the use of the Gaussian
distribution for both the service load a 1 for the component strengths.

Both procedures also assume the existence of an endurance 1imit which is the
limiting stress under which the components and the mechanical system have
infinite lives.

It has been shown by Lundberg and Palmgren [5,6] ana by Coy, Townsend
and Zaretsky [7,8,9] that rolling element bearings ana high strength steel
gear teeth exhibit a finite life under any level of applied stress. The
statistical model for the lives ana capacities of these components follows
the Weilbull distribution [3,5,6,9-11]. The finite life condition of these
components is due to the nature of pitting fatigue to which both gears ana
bearings are subjected. Even in carefully designed gears ana bearings where
adequate lubrication ana no unexpected service conditions exist, pitting
fatigue failure will eventually end the useful lives of both bearings ana
gears [5,6,9]. Therefore, in the present study, pitting fatigue is the mode
of failure on which the reliability of each component is based.

In Rao's treatment cof the epicyclic gear train [4], service load
variation is considered and both tooth bending fatigue and pitting fatigue
types of failure are admitted. However, the effects of the planet bearing
lives on the system are not treated and the parallel planet load paths are
treated as statistically redundant structural load paths which increase the
system reliability. In reality, the planet bearings are critical elements
in the assembly ana broken component debris in a high speed transmission is
sutficient to cause total system failure once a single component has
failed. Thus, a strict series reliability model is required to adeqrately
model a planetary gear train.,

In view of tne above mentioned, the object of the research reportea
herein is to derive a reliability model tor planetary gear trains of the
type used in helicopter main rotor transmissions. Therefore, the particular
kinematic inversion of the gear train treatea herein has the ring gear
fixed, the sun gear as input and the planet carrier as output. It is
assumed that the input and output shafts are co-axial, carrying simple
torque loads. The reliability model is based on the reliabilities of the
individual gears and bearings and is Weibull in nature. The transmission
reliability is presented as a system life for 90 percent probability of
survival of the entire assembly basea on corresponding lives for the
ingividual components. The transmission‘s basic dynamic capacity is defined
as the input torque which may be applied for one million rotations of the
input sun gear with a 90 percent probability of survival. The variation of
life with load for a given reliability is modeled with a power law
relation. When plotted on log-log coordiates the relation becomes a
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straight line. The relationship is treated as being uncoupled from the
Weibull relationship of reliability to life at a given load [5,8,10]. The
load life exponent and basic dynamic capacity are developed as functions of
the component capacities.

KINETICS AND KINEMATICS

The gear train under consideration is shown in figure 1 in its most
general configuration. There are stepped planet gears: an inner planet
gear to mesh with the sun, and an outer planet gear to mesh with the ring.
Each inner and outer planet is locked together as a single rigid body with a
bearing at its center. The centers of these bearing are connected to a
spider which provides the slower output motion. The number of planets may
vary but each planet is assumed to be identical with the others. Each
planet is assumed to carry an equal share of the total load. Figure 2 shows
a single planet in mesh with the sun and the ring and joined to the spider
or arm at its center A with a bearing. The radii of the spider and ring are
related to the sun and planet radii as

R, = R. + RpS (1)

a " Rpg = Rg * Rog * Rpp (2)

The forces acting on the planet gears are shown in figure 3. The force
components acting tangent to the pitch circles, Fg and FR, in terms of
the input torque, Tj, are

T
Fo = —— (3)
S nRS
-
R R T.
PS PS| i
Foo= Fo = 2| =~ (4)
R ( TPE> S~ Rpg | "Ry
The tangential component of the bearing force is
Ry, + R T.
PR PS i :
F, =Fc *+F, = (5)
t S R ( RPR ) nRS

The total bearing load also includes a radial component due to the
radgial components of the gear tooth loads.

Fp=Fgptanep - F_ tan o (6)
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The total bearing loaa is thus

Fg= ¥Ffy * Fp (7)

It should be noted that this analysis assumes that the planet forces
are contained in a radial plane of .he transmission so no nutating loaas
exist on the planet bearings. This can be achieved in the stepped planet
transmission by constructing the planets as spools with axial symmetry.

A kinematic analysis of this planetary is also required to determine
the relative number of loaa cycles that each component sees as the input sun
rotates. This is needed for the fatigue life analysis. The kinematic
analysis has been derived in reference [12). The results are presented in
table 1, where the rotation of each component 1s given in terms of the
rotation of the sun gear. All rotations are taken in the coordinate frame
of the ring gear which is held fixea. Reading across in the table, for each
of tne components i, one obtains the terms tor the following relative
angular motion expression

8 =8 n" 0y (8)

where A represents the arm or spider.
The itemized angular rotations in this table can be used to relate the

number of load cycles of the various components to the number of input sun
rotations.

PLANET BEARING RELIABILITY AND CAPACITY

The reliability and capacity of the planetary assembly is a function of
the reliabilities and capacities of its components. These quantities have
been well defined for the bearings [5,6,13]. The fatigue life model
proposed in 1947 by Lundberg and Plamgren [5] is still the commonly accepted
theory. The reliability of a single bearing can be expressed in terms of
its probability of survival, S, for a life of & rotations by the
following relation

c By

1
]Og-S-'\: T L ;h (9)

where 1t 1is the critical sheuring stress beneath the surface, z is the
depth under the surface to the location of the critical stress, and V is
stressed volume. The exponents are determined from experimental lite
testing on groups of bearings run under identical conditions. The Weibull

exponent eg is a measure of the scatter in the distribution of bearing
lives.

The above formula for probability of survival reflects the observed
effects of stress, stress field, and stress cycles on reliability. Greater
stress, 1, decreased reliability. A more shallow stress field (smaller z)
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decreases reliability. This is true because it is expected that a
microcrack beginning at a point of maximum stress under the surface requires
some time to propagate to the surface. Therefore, for ziy given number of
stress cycles, there is & higher probability that cracks have propagated to
the surface for the more shallow stress field.

The stressed volume V is also an important factor. Pitting initiation
occurs near any small stress raising imperfection in the material. The
larger the stressed volume, the greater the likelihood of faiiure.

For a given load and geometry of the bearing the expression can be
written in terms of the 118 life, which is the life corresponding to a
0

probability of survival of percent.
e
1 1 [\ B
log= = log =5 |— (10)
S .9 (éBlO)

The relationship between the bearing life and its load for a YU percent
probability of survival is

Cq Pg

where Fg is the load on the bearing, pp is the load-1ife exponent and

C s the basic dynamic capacity of a single bearing. The basic dynamic
capacity is defined as the load which may be endured by 90 percent of the
bearings for one million inner race revolutions under certain operating
conditions.

To facilitate the combination of lives and capacities of all the
transmission components into a single life and capacity for the
transmission, the lives and the dynamic capacities of each of the components
will be expressed in terms of input sun gear rotations and input sun gear
torque.

From table 1, the bearing inner race rotation is given in terms of sun
rotations

' " Ry g 'S 1)
+
ey

Using lower case &t's to designate component lives in terms of
comporient cycles and upper case L's to designate component 1ives in terms of
input sun gear rotations, equation (12) transforms equation (10) into
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]Og 1 ) log 1 RS RR LB B OF POC”Q‘QUALIrY
Sg -9 Ry Rps * Rg Rpg) 2519

For ¢ 90 percent survival rate for a planet bearing, Sy = .9 and Lg =
Lgio sun gear rotatiuns, substitution into equation (1%) yields

R R.. +R. R
k Rps * Rg Rpp
Lg1o = ( R )“310 (14)

S

as expectea from equation (12).

To obtain the load-life relation for the bearing in terms of
transmission input parameters, one Can substitute the expressions for
bearing load in terms of input torque as given by equations (3-7) into
equation (11) and substitute all of this into equation (14)

RR n Re C Pg

ReRps * ReRpp s 'g , (15)

Loin = _ ,
B10 ReRg ; Rpr * Rpof + (Rps tane, - tane 172
it\" R.. R-

PR PR

The dynamic capacity of a planet bearing is now the input torque on the sun
shatt which may be applied with 90 percent of the planetary bearings
surviving for one million sun shaft revolutions. From equation (15) the
planet bearing system dynamic capacity of T; = Dg is obtained when

Lgio = 1.0. The result for the dynamic capacity is

r N
1
o [Resfr * RerRs) Pg "Rty L (26)
g = LR < Roe ¥ RoNZ [Rog TTI7Z
R + R tanQR - tanQS
PR PR
J

..

The relationship between bearing life in millions of sun rotations and
applleg sun shaft torque for which 90 percent o. the bearings will endure is
given by

Dy Pg
Ly =| ==
B0 T\ T, (17)

The fundamental quantities that describe the reliability and life
distribution for single bearings and bearings treated as transmission
components have now been determined. Finally, the probability distribution
tor the reliability of a planet bearing is written as
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5 .9 LBlO

Where Lg is the number of million sun rotations for which the bearing set
has the probability of survival, Sg.

SUN GEAR RELIABILITRY AND CAPACITY

Surface fatigue 1ife and dynamic capacity for a spur gear have been the
subjects of recent research [7,8,9]. This research nas applied the

4

previously mentioned Lundberg-Palmgren reliahbiiity model to spur gears.

Tests have shown that the pitting fatigue life of gears follows this
reliability relationship, but with a aifferent Weibull exponent, eg, than
that for bearings.

e
1og<é = log %g-(%%a) G (19)

where S is the probability of survival of a singlie gear tooth and & is
the number of stress cycles imposed on the gear tooth surface.

The load 1ife relationship for a single tooth for a 90 percent
probability of survival is

C.\P
10 (r£> : (20)

where F 1s the transmitted tangential tooth load and Cy is the basic
dynamic capacity of the tooth which has been developed in raference [9].

C, = 8, f° ol o€ (21)

where f is the active tooth face width, fp is the curvature sum at the
pitch point, & 1is the length of heaviest load contact on the tooth and
the constant By and exponents a, b, ¢ are based on experimental results
from gear life testing. For case hardened AISI 9310 Vacuum Arc Remelt Steel
ears, these constants are: B; = 20832, a = 0.907, b = -1.16, and ¢ =
.093 in the pound-inch system of units.

At this point, this fundamental gear tooth reliability equation is
applied to the sun gear. Since there are n planets, for a number of
rotations of the sun gear relative to the planet carrier, Lg/a, each tooth
on the sun sees n Lg;p load cycles. From table 1, the number of load
cycles, &g, are expressed in terms of sun rotations, s, as:
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Lo (22) |
Re = 2
S~ T+ ReRop

:R PS

The probability of survival for the sun gear, Sg, follows from the :
application of the product law for the number of teeth on the sun gear, Ns.

(23)

Using equations (19), (22) and (23) the expression for the reliability
of the sun gear becomes:

RoR L e
1 1 " "R"ps s L%
108 5= = K 109 75 (RR +RRR><9. ) (23)

R™PS S°P 510

where Lg is the number of million sun revolutions corresponding to the
probabi?ity of survival Sg for the sun gear and 1519 s the number

of million stress cycles that a single tooth on the sun gear may endure with

a Y0 percent probability of survival. Equation (24) is directly parallel to

Equation (13) for the planet bearings. By similar arguments, the 90 percent

life of the sun gear in terms of sun gear rotations is related to the 90 ;
percent life of a single sun gear tooth in terms of tooth load cycles as: f

l/e
L1} %)% Res * Rs Rerl (25)
SUR n Ry Rp 510

As with the planet bearings, one can substitute the single tooth load
life expression (equation 20) into equation (25) and express the transmitted
load in terms of the input transmission torque (equation 3) in order to
obtain the expression for the sun gear dynamic capacity, Dg, in terms of
an individual sun tooth's dynamic capacity, Cg, when Lgjg equals 1
million sun rotations:

. 1
1 o
D = (l_)erG R les SR g (26)
s = \Ng n R Roo s Cs

The relationship for sun gear life and applied sun shaft torque for
which 90 percent of the sun gears will survive is now given by:

i

D \P6
Lsio = (T' (27)
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Finally, the probability distribution for the reliability of the sun gear
can be written as:

1 [ Ls %9
]ogg—_log—g o (28)

where Lg is the number of million sun rotations for which the sun gear has
the probability of survival Sg.

RING GEAR RELIABILITY AND CAPACITY

The reliability and dynamic capacity of the ring gear is developed in a
similar fashion to that of the sun gear. Equations (19), (20) and (21) are
equally valid for the ring gear teeth as they are for the sun gear teeth.
Different values for tooth life and basic dynamic tooth capacity result from
the difference in tooth mesh geometry. With teeth of the same pitch and
face width as those on the sun gear, the ring gear should be considerably
more reliable and should have a higher basic dynamic capacity due to the
conformal contart of the internal gear teeth of the ring with the external
teeth of the planet gear. The relationship between the number of load
cycles on a ring gear tooth, &g, and the number of sun rotations, LR,
taken from table 1 is:

n LR
TR )
1 +
S PR

The probatility of survival for the ring gear, S, follows from a
direct application of the product law for the number of teeth on the ring
gear, Np.

(30)

where S is the prubability of survival of a single tooth on the ring gear.
Combining equation (19) with equations (29) and (30) yields the expression
for the reliability of the ring gear.

L %
] Rs PR R
log log (31)
5_ " 197y TRsR ReRps/tpio

The 90 percent life of the ring gear in terms of sun gear rotations is
related to the ST percent life of a single ring gear tooth in terms of tooth
load cycles by:

P e |
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1
L (_1_) % J*s Ror " Rofpsi (32)
R10 = (W n Ry Roe [ *R10

The basic dynamic capacity, Dg, of the ring gear is the input sun
torque for which the ring gear has a 90 percent probability of surviving t¢-
one million rotations of the sun gear:

1 ]
1 \%6Ps | RsRpr * RpRps | Pg | M ReRpp 1
DR = \33)
R

C
n Rg Rop Ros RJ

The relationship for ring gear life in terms of applied sun shaft
torque for which 90 percent of the ring gears will survive is now qgiven by

D PG
Leio = \ T (34)
b ]

The basic quantities of reliability and life are now also establishea
fo- the ring gear. The probability distribution for the reliability of the
ring gear can be written as

Lo \ 56
1 1 R
10g 5 - log =5 (;EIé) (35)

where Lg is the number of million sun rotations for which the ring gear
has the probability of survival Sg.

PLANET GEAR RELIABILITY AND CAPACITY

The last set of elements in the planetary transmission which possess
finite pitting fatigue lives are the planet gears themselves. These gears
mesh with botiv the sun gear and the ring gear. However, as can be seen in
figures 2 and 3, the loads of the two meshes are carried on the opposite
sides of the planet teeth. Thus, even if the planets are not stepped and
Rps = Rpp, the pitting camage accumulation from each mesh is independent
of the other as long as increased dynamic loading does not occur. It is
assumed in this model that this increased dynamic loading occurs after the
onset of failure, so the two failure accumulations are counted separately.

The number of load cvcles that each planet tooth sees as a function of

the number of sun rotations is taken from table 1 as the relative rotation
of the planet with respect to the arm:

p- RRRRRS:& R (36)
R'PS ~ "S'PR

)

10
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This number of load cycles is the same for the teetn meshing with the
sun gear and the teeth meshing with the ring gear, though the fatigue damage
at the two meshes differ.

The probability of survival for the planet gear, Sp, is the product
of the probabilities at each mesh

N
PS

N
PR

S =S PS PR

p .S

(37)

combining equation (19) tor each mesh with equations (36) and (37) yields
the expression for the reliability of a planet gear:

R R L ] &
1 1 RRs bp
log = Nyc log =5
S, 7 Ps T L9 RRop * ReRosTtpgig
e
R.Re L G

RRs Lp
pr * ReRps)tprio

]
* Nop 109 73 (R R (38)

The 90 percent life of the planet gear in terms of the ©0 percent lives of
its teeth is thus:

ReRog * RoRoc *ps10*PR10 (39)

P10 = RR I7e
+ (Ng) 776

L
1/e
R"S (NPS) G

LpR10 Yps10

The basic dynamic capacity, Dp, of a planet gear is the input sun
torque for which the planet gear has a 90 percent probability of surviving
for one million rotations of the sun gear:

1

ReRop * RaRos | Pg MReRopCsCr (40)

P = RaRs I __%;_
e.P e
66 RopCq * Npg 6 GR

0

N

PS psts )

The relationship for planet gear life in terms of applied sun shaft
torque for which 90 percent of the planet gears will survive is now:

Do\ P
F G
e

The fundamental guantities needed to describe the reliability and life
distribution for all gears in the transmission have now been determined.

11
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Finally, the probability aistribution for the reliability of a planet gear
is written as:

L “5
log %— = loq-%g (%—E—) (42)

SYSTEM RELIABILITY AND CANACITY

The product rule may be used to express the probability of survival of
the total system consisting of the planet bearings, “he sun gear, the planet
gears and the ring gear.

Ne N
Sy = S3S¢SpSy (43)

The probability distribution for the survival of the total transmission
can now be obtained by substituting equations (18), (28), (35) and (42) into

the natural log of the reciprocal of equation (43).

L L L L
1 1 T \e T \e T \e T \e
log 3= l0g 7g "(E;Ié) o (%Eia) ° n(F;IB) o (Lnlé) ° (e

Since all the component lives are counted in the same units of sun
rotations, this count is now identical for all the components and is thus
labeled as Ly in the expression for the probability of survival Sy for
the entire transmission,

Unfortunately, equation (44) is not a strict Weibull relationship
between system life and system reliability. This equation would represent a
true Weibull distribution only if ey = eg which is not the case in
general. The relationship of equation (24) can be plotted on Weibull
coorainates as shown in figure 4.

The examples presented in this plot and the succeeding plots are for
the planetary of figure 1 with 20 teeth on the sun, 85 teeth on the ring, 40
teeth on the three planet gears which mesh with the sun and 25 teeth on the
three planet gears which mesh with the ring. The gears all have a module of
1.59 mm (Pd = 16) and face widths of 9.19 mm (0.375 in.). The gears are
standard 20 degree involute and are all made of AISI 9310 steel. The
transmission is loaded with an input sun torque of 48 N-m (425 pound-
inches). For the cases treated in this study, the bearing Weibull exponent
is 1.2 while the gearing Weibuil exponent is 2.5. For this balanced case
each planet bearing has a basic dynamic capacity of 15,250 N (3425 poundss.

This curve can be approximated by a :traight line using the least
squared error approach over a range such av 0.5 < S7 < 0.95. The slope of
this straighi line approximation is called th=: system Weibull slope ey and
the system life of the straight line approximatior. at 5y = 0.9 is called
the system 90 percent reliability life.

12
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The exact Lyjg life can be ca]culated by setting St = 0.9 in
equation (44) and iterating for LT10 i the simpiified equation:

Loy o\ B fLen\6  /Lran\6 /L) G
L. n(LT10> . (LTIO) . n(Lrlo) . (LTIO) (45)
BLO 510 P10 R10

For the cases studied in this research, the defined Weibull Ly1g life
has not differed from the Ly life calculated rom equation (45) by more
than one percent. Since this error is considerably less than that between
test data for the components and the resulting component Weibull lines, it
is felt that the approximation is justified. When one component is weak
relative to the rest of the transmission, the reliability model of the
entire transmission and the least squares apprcximation will approach ihe
Weibull model of the weak cumponent. This is shown in figure 5 which is a
series of Weibull plots for the planet bearing, sun gear and total
transmission for the case of a transmission with Lgjg = 1.7 million
cycles, 84 3 million cycles and L1jg = 0.68 million cycles. This
examp le a1%9ers from that of figure 4 in %hat the planet bearings are weaker
with a dynamic capacity of 3460 N (800 pounds). In this case, the bearing
life dominates the transmission and the transmission Weibull exponent is 1.2.

If the bearing capacity approaches that of the sun mesh, then the
actual transmission reliability curve deviates the most from the least
squares weibull approximation. This is shown in figure 6 which is a series
of Weibull plots for the planet bearing, sun gear and total transmission for
the case of a transmission with Lgng = 207 million sun rotations, LsjQ =
84.3 million sun rotations and Ly1g = 55.5 million sun rotations. This is
the same case shown in figure 4. For this case, the transmission Weibull
exponent is 1.84.

For this straight line transmission Weibull curve, the reliability of
the transmission is approximated by:

WiAY
]Og-s—— log g _ﬁ (46)

The basic dynamic capacity for the transmission, ,» 1S the sun input
torque required to produce a system 90 percent re11ab111ty life, L1109 of
one million sun rotations. By letting Sy = 0.9 in equation ( (44) ané
substituting equations (17), (27), (34) and (41), one has for Ly1g = 1;

P.e P.e P.e P_.e
D B“B GG D GG D GG
SREIR H A St

The basic dynamic capacity of the transmission can be found by
iterating this expression since the component exponents and capacities are
known. It can also be found from equation (45) by determining a sequence of
LT10's corresponding to a sequence of input sun torques, Ti's, and

13
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p]otting the natural log of Ti versus the natural ]og of L110. The
value of T; corresponding to L110 = 1 miliion sun rotations is the

transmission basic dynamic capacity. A plot of log Ty versus log Ltjg

is shown in figure 7 from the transmission example of figure 6. The slope
of this curve is the negative of the load life exponent Py for the
transmission. The case shown is that of nearly equal lives and capacities
in which the deviation from a straight line relation is maximized. For the
cases studied in this research Pg = 3.3 and Pg = 4.3. For this example
the basic dynamic capacities are: Dg = 242 N-m (2140 pound inches),

Dg = 135 N-m (1190 pound inches), ang Dy = 134 N-m (1180 pound inches).

As for the transmissior Weibull model, an approximate load-life curve is
obtained by a least squares fit over a range of input torques (i.e.,

0.1 D1 < T§ < D). With this approximation the load-life relation for

the system is given by:

i P
Lt10 =(T‘.> (48)

For the example plotted in figure 7, the transmission loaa-life exponent,
P, is 3.8. As for the Weibull model, a weak component will dominate the
transmission dynamic capacity and the system capacity and load-iife factor
will approach that of the weakest component.

SUMMARY

A reliability model for the planetary gear train has been aerived for
use in the probabalistic design of this type of transmission. This gear
train has the ring gear fixed, the sun gear as input and the planet carrier
as output. The input and output shafts are assumed to be co-axial with the
applied torques and each other; no side loading is considered.

The reliability model is based on reliability models of the bearing and
gear mesh components which are two dimensional Weibull distributions of
reliability as a function of life. The transmission's 90 percent
reliability life and basic dynamic capacity are presented in terms of input
sun rotations ana torque. This life and capacity are given as exact
functions of the component lives and capacities. However, due to the
different distributions for the bearing and gearing components, the Weibu'l
wmodel for tte planetary transmission is an approximate model. In this
model, the viransmission's 90 percent reliability life, Weibull exponent,
basic dynamic capacity and load-1ife exponent are presented.

The following results were obtained:

1. A system reliability model for planetary sput gear trains incluaing the
planet bearings and the possibility of stepped planets was formulated;

2. The fact that Weibull reliability distributions with different Weibull

exponents do not follow the law of mathematical clrsure was disclosed;
and,

i4
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3. Straight line Weibull and load-l1ife exponents were formulated for a
system Weibull model containing different types of components,

NOMENCLATURE

basic dynamic component capacity (N)
basic dynamic system capacity (N-m)
Weibull exponent
gear face width (m)
force (N)
life in millions of component load cycles
life in millions of sun gear rotations
number of planets
number of gear teeth
load-1life exponent
gear radius (m)
probability of survival (reliability)
input torque (N-m)
stressed volume (m3)
depth to maximum shear stress (m{
p curvature sum at pitch point (m—4)
angular rotation
maximum shear stress (Pj)
pitch line pressure angle

Subscripts

A planet carrier or arm

B planet bearing

r radial direction

P planet gear

PR planet gear meshing with ing gear
PS  planet gear meshing with sun gear
R ring gear

S sun gear

T transmission

t tangential direction

10 corresponding 90 percent probability of survival
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Figure 1. - Planetary gear train,

Figure 2. - Planetary geometry.
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Fiqure 3. - Planet gear forces.
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Figure 4, - Weibull graph of St versus Ly for a full plane-
tary system,

B

Sbtnrcinnd vae - .-



- At @S . e seh

C.u .Ai\.\c)!".— :'J::\GE ES

OF POOR GUALITY

-]
i
T

PLANETARY SYSTEM

rr1rhtid

S 3B
7T

PLANET BEARING
SUN GEAR

PROBABILITY OF FAILURE, percent
T T

|

Lotoad ol v bt

1
J00.20.5 1 2 5 10 20 50 100 200 500 1000
LIFE (MILLIONS OF SUN ROTATIONS)

Figure 5. - Weibull graphs for sun gear, planet bearing
and transmission for a planetary with a weak planet
bearing.
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? Figure 6, - Weibull graphs for sun gear, planet bearing,
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Figure 7. - Load-life curve for a full planetary system,




