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Abstract
We use the facet model to accomplish step edge detection.
The essence of tiue facet model is that any analysis made on the
basis of the pixel values in some neighborhood has its final
authoritative interpretation relative to the underlying grey tone
intensity surface of «which the neighborhood pixel values are
observed noisy samples.

Pixels which are part of regions have simple grey tone
intensity surfaces over their areas. Pizxels which have an edge
in them have <complex grey tomne intensity surfaces over their
areas. Specifically, an edge moves through a pixel if and only
if there is some point in the pixel’s area having a zero crossing
of the second directional derivative tesken in the direction of a
non~-zero gradient at the pixel's center.

‘To determine whether or not a pixel shounld be marked =ns a
step edge pizxel, its underlying grey tome intensity surface must

be estimated on the basis of the pixels in its neighborhood. For
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this, we use a functional form consistingy of a linear combination
of the tensor products of discrete orthogonal polynomials of up
to degree thrse. The appropriate directional derivatives are
easily computed froe this kind of a fumction,

Upon comparing the performance of this zero crossing of
second directional derivative operator with Prewitt gradient
operator and the Marr-Fildreth zero crossing of Laplacian
operator, we find that it is the best performer anmd is followed
by the Prewitt gradient operator. The Marr-Hildreth zero-

¢crossing of Laplacian operator performs the worst.
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I. Introdu an

What :s an edge in a digital image? The first intuitive
notion is that a digital edge occurs on the boundary between two
pixels when the respective brightness values of the two pixels
are asignificantly different. Significantly different may depend
upon the distribution of brightness values around each of the
pixels.

We often point to a region on an image and say this region
is brighter than its surrounding area, meaning that the mess of
the brightness values of pixels inside the region is brighter
than the mean of the brightness values outside the region.
Having noticed this we would then say that an edge exists between
each pair of neighboring pixels where cz¢ pixel is inside the
brighter region and the other is outside the region. Such edges
are referred to as step edges.

Step edges are not the only kind of edge. If we scan
through » region in a left =right manner observing the brightness
values steaiily increasing and then after a certain point observe
that the brig:ttness values are steadily decreasing we are likely
to sav th: . there is an edge at the point of change from
increasing to decreazing brightness values. Such edges are
called roof edges.

It is, therefore, clear from our use of the word edge thst
edge refers to places in the image where there appezrs to be a

jump ir brightness value or a local extrema 1in brightness value
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derivative. Jumps in brightness values are the kinds of edges
originally detected by Roberts (1965)., Relative extrems of first
derivative in a one dimensional form is used by Ehrich and
Schroeder (1981) and in an isotropic two-dimensional suboptimal
form by Marr and Hildreth (1980).

In some sense this summary statement about edges is quite
revealing since in a discrete array of brightaness values thare
are jumps, in the literal sense, between neighboring brightness
values if the ©brightness values are different, even if oanly
slightly different. Perhaps mozre to the heart of ths matter,
there e.ists no definition of derivative for a discrete array of
brightness values. The only way to interpret jumps in value or
local extrema of derivatives when referring to a discrete array
of values is to assume that the discrete array of values comes
about as some kind of sampling of a real-valued function defined
on a bounded and connected subset of the real plane Rz. The
jumps in value or extrema in derivative really must refer to
points of bhigh first derivative of f and to points of relative
extrema in the second derivatives of f. Edge detection must then
involve fitting a function to the sample values. Prewitt (1970),
was the first to suggest the fitting idea. Heuckel (1971, 1973),
Brooks (1978), Haralick (1980), Haralick and VWatson (1981),
Morgenthaler and Rosenfold (1981), Zucker and Hummel (1979), and
Morgenthaler (1981) all use the surface fit concept in

determining edges.
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Edge finders should then regard the digital picture function
as & sampling of the underlying function f, where some kind of
random noise has been added to the true fumction vilues, To do
this, the edge finder must assume some kind of parametric form
for the underlying function f, use the sampled brightness values
of the digi;nl picture function to estimate the parameters, and
finally makxe decisions regarding the locatiors of discontinuities
and the locations of relative extrema of partial derivatives
based on the estimated values of the parameters.

0f course, it is impossible to determine the true locations
of discontinuities in value or relative extrema in derivatives
directly from & sampling of the fumctions, The 1locations are
estimated by function approximation. Sharp discontinuities can
reveal themselves in high values for estimates of first partial
derivativoes. RP.lative extrema in first directiomal derivative
cen reveal themselves as zero-crossings of the second directional
derivative, Thus, if we assume that the first and se~ond partial
derivatives of any possible underlying image functionm have known
bounds, then any estimated first or second order partials which
exceed these known bounds must be due to uiscontinuities in value
or in derivative of the underlying f{unction. This is basis for
the gradient magnitude and Laplaciau wagnitude edge detectors.
However, edges can be weak but well localized. Such edges, as
well as the strong edges just discossed, manifest themselves as

local extrema of the weriva ve taken across the edge. This idea
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for edges is the basis of the odge detector discussed here.

In this paper, we assume that in eack neighborhood of the
image the underlying function f takes the parametric form of a
polynomial in the row and column <coordinates and that the
saxyling producing the digital picture functionm is a «ra3gular
equasl iaterval grid sampling of the square plane vhicJ is the
domain of f. As just mentioned, we place edges not at locations
of high gradient, but at locatioms uiI spatial gradient maxima.
More precisely, a pizxel is marked as an edge pizel if in the
pixel’s immediate area there is a zero <crossing of the second
directional derivative taken in the direction of the gradient,
Thus this kind of edge detector will respond to weak but
spatially peaked gradients.

The wunderlying functions from which the directional
derviatives are computed are easy to represent as linear
comhinations of the polynomials in any polynomial basis set.
That polynomial basis set wvhich permits the independent
estimaticon of each coefficient would be the easiest to use. Such
8 ypolynomial basis set is the discrete orthogonal polynomial
basis set.

Section II discusses the polynomials, In section I1II.1 we
discuss how to construct the onme dimensional family of discrete
orthogonal poiynomials., In section II.2 we discuss how arbitrary
two dimensional opolynomials can be compu‘ed as linear

combinations of the tensor products of o1e ¢ .mensiona. discrete
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orthogonal polynomials. In section II.3, we discuss how the
discretely sampled data values are use’ to estimate the
coefficients of the linear combinations: coefficient estimates

for exactly fitting or estimates for 1least square fitting are

calculated as linear combinatiozs of the sampled data values.

Having used the pixel values in a neighborhood to estimate
the underlying polynomizsl function we can now determine the value
of the partiezl derivatives at any location in the neighborhood
and wusc those values in edge finding. Having to deal with
partials in both the rowv and <column directions makes using these
derivatives a little more <complicated than using the simple
derivatives of one dimensional functions. Section IIX discusses
the directional derivative, how it is relatszd to the row and
column partial derivatives, and how the <coefficients of the
fitted polynomial get used in the edge detector. In section IV
we discuss the statistical <confidence of the estimate of edge
existence and the edge angle. In section V we show resulc
indicating the superiority of the directionsl derivative ze-o
crossing edge operator over the Prewiti jr-dient operator and the

related Marr-Hildre.h zero-crossin, of the Laplacian operator.

IX. Ihe Djscrete Orthogons] Polvpomials

These polynomials are sometimes called the discrete

Chebychev polynomials (Beckmann, 1973). In this section we ¢ . »
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how to c¢onstruct them for one or two variables and how to use

them in fitting data.

II.1 Discrete Orthogonsl Polynomia] Constructicn Tecknigue

Let the index set R be symmetric in the sense that reR
th

implies -r=R. Let Pn(t) be the n order polynomial. We
define the ¢rnstrustion technique for discrete orthogonal
polynomials iteratively.

Define Po(r) = 1.

Suppose P,(zr),..., P ,(r) have been defincd. In general,
Pn(t) = % 4+ ar_lrn_l tooo. foar +oag. Pn(r) ..ust be aorthecgonal
to each polynomial Po(r).....Pn_l(t). Hence, we must L:ve the n
equetiocns
2 n '_l"l = = -

Pk(r)(r toa g MEEERIR AR PR I ao) 0, k=0,...,2-1 (1)
reR
These eqoations are linear equations im the - ak:own B0s ces8 4

and are easily soived by standard techniques.

The first five pclynomial functions formulas are
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Py(r) = 3 = {ug/py)r

wherc

II.2 Two Dimensional Djiscrete Orthogonal P .lynomicls

Two dimensional discrete orthogomal polynomials can be
created frcm two sets of one dimensional discrete wrt‘ogonal
polynomials b; taking temsor products. Let R ani C be index -ets
satisfyin, the symmetry condition rzR inplies -reR and ceC
implie- -ceC. Let {PO(t)""‘PN(‘)} be a set of discrete
polynomials on R, Let (Qo(c),....Qu(c)] be a set of discrete
polynomials on C Ther the set
(Polr)Qple),...,P (r)Qpte) s ., Ey(2)Qu(e)) 43 & zet of discre.e

polynomials on RXC,
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The proof of this fact is easy. Consider whether Pi(:)Qj(c)

is orthogonal to Pn(”Qn(“)‘ when n # i or m # j. Then

Y Y Pi(nQ (IR (r)Q le)

reR ceC

L}
N

P, (r)P_(r) > Q (e)e, (e) .

reR ceC

Since n # i or m # j one or other of the sums must be zero.
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Examples:

Index Set Riscrete Orthogonsl Poiynomial Set
{-1/2, 1/2} {1, r)

(-1, 0, 1) {1, r, 2 - 2/3)

(-2/3, -1/2, 1/2, 3/2) {1, r, £ - S/4, 13 - 41/201}

(-2, -1, 0, 1, 2} (1, r, £2 -2, 3 - 11/s,
et o+ 3:2 4+ 12/35)
{-1 ,0 ,1} x (-1 ,0 ,1} {x ,r ,c ., e? - 2/3 , rc , c2 - 2/3 ,
1(c? - 2/3), o(e? - 2/3),
(r2 - 2/3)(ec? - 2/3))

Figure 1 and 2 show some of the window masks used for the 3 1 3
and 4 x 4 caseos.
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I1.3 Fitting Data With Discrete s)rthogonal Polynomials

Let an index set R with the syametry property reR implies
-reR be given. Let the nomber of elements in R be N. Using
the construction techmique, we may construct the set

{Po(r).....PN_l(r)} of discrete orthogonal polynomials over R.

For each reR, let a data value d(r) be observed. The
exact fitting problem is to determine coefficients Bhseeesy g
such that

The orthogonality property makes the determination of the
coefficients oparticularly easy. To find <the value of some

coefficient, say L multiply both sides of the equation by Pm(t)

and then the sum over sll reR.

N-1
Y P (£)dls) =Ya ) B,
reR n=0 reR

Hence,
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= ) P (n)ale) /Y Rix) (2)

rsk rsk

The avproximate fitting problem is to determine coefficients

‘0:.‘-|‘xa x S N"l anh th‘t

K
o =Y ey - Y ap ()2

reR a=0

is minimized. To find the value of some coefficient, say L
take the partial derivative of both sides of the equation for 02
with respect to a;. Set it to zero and use the orthogonality

property to find that again

2
a_ = ) P _(£)d(r)/ Y pieo (3)

rsR rsR

The exact fitting coefficients and the least squares coefficients

are identical for ma = C¢,....,K.

Fitting the data values; {d(r)lreR) to the polyncmial
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now permits us to interpret Q(r) as a well behaved real-valued

function defined on the real linme. To determine

dQ
-- {z,_)
dr 0

we need only to evaluate

N ar_
} 8, ;--(to)
n=0 r

In this manner, any derivative at any pcint may be obtained.
Similarly for any definite integrals. Beaundet (1978) wuses this
technique for estimating derivatives employed in rotationally
invariant image operators,

It should be noted that the kernel used to estimate a
derivative depends on the neighborhood size, the order of the
fit, and the basis functions used for the fit. Figure 3
illustrates one example of the difference the assumed model
makes. This difference means thst the model used muost be
justified, the justification being that it is a good fit to tke

data. In particular, a not sufficiently good justification for
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using first order models is that first order partial derivatives

are being estimated.
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Assumed Model Eernel Mask for Row Derivative
g(r,c)=a_ +a . r+a..c i itk ettt 5
00 ®10 01
I-1 [-1 |-1 1
tmm b —p———t
1/6 ol ol ol
tmm—p e ——t
P11 1111
b ——t
glr,c)= a_ . +a +a,,¢ bt
0
210:01 ) lol-11 o0
8 + a,,(r%-2/3)+a  1c +a,,(c"-2/3) b m— bt
) ) 1/72 ol ol o
ta,,(r%-2/3)e + 8,,(c"- 2/3)s e .
lofl 11l o0l
b — e ——
Figure 3 illustrates that the assumed model does make a

difference in the kernel mask used to estimate a quantity such as
row derivative.
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IIX. The Directional Derivative Edge Finder

We denote the directional derivative of £ at the point (r,¢)

in the direction a by fu'(r.c). It is defined as

£.(r,6) = lim —mmmmommmmm oo (4)

The direction angle a is the <clockwise angle from the column

axis., It follows directly from this defimition that

fa‘(r.c) =3f(r,c) sina + 3f(r,c) cosa (5)
ir dc

We denote the second directiomal derivative of f at the
[

’
point (r,¢) in the direction a hy fa (r,c¢) and it quickly

f0llows that

. azfsinza + Zazfsina cosa + ézfcosza

f = ——= —-——— -— (6)
@ ar2 drc acz
Taking f to be a cubic polynomiel in r and ¢ which can be

estimated by the discrete orthogonal polynomial fitting

procedure, we can compate the gradient of f and the gradient
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direction angle at the <center of the nyighborhood wused te

estimate f. Letting f be estimated as a two dimensional cubi-

f(r,c) = k1 + kzr + k3c (1)

+ k4t2 + ksrc + k6c2

3 2 2

7% + kst c + k9:c + k10c3

+ k

we obtain a by
. 2
sina kzl(k2 + k

(8)

- 2
cosa k3/(k2 + ks

At any point (r,c), the second directional derivative in the

direction a is given by

'
fa (r,c) = (6k7 sinza + 4k8 sinacosa + 2k9 cwsza)r (9)

+ (Lklo cosza + 4k9 sina cosa + 2kg ;ana)c

+ (2k4 sinzc + 2k5 sina cosa + 2k6 cosza)

We wish to ounly consider points (r,c) on the linme in

direction a. Hence, r=psina and c=pcosa. Then
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’

fa'(p) = 6[k7sin30 + kssinza cosa (10)
*+ kgsina coszc + klocossa]p
+ 2[k4 sinza + kg sina cosa + kg cosza]

= Ap + B

[} [}
If for some p, lpl ¢ Poe fc'(p) = 0 and f_(p) # O we have
discovered a zero-crossing of the second directional derivative
taken in the direction of the gradient and we mark the center

pixel of the neighborhood as an edge pixel.

IV, Statistjcal Analysis

In this section we show how the randomness of the =noise
induces a randomness in the least squares coefficients and then
how the randomness of the 1least squares coefficients induces a
randomness in the estimated gradient value, the estimated angle

of the gradient, and the estimated location of the zero-crossing.

IV.1 General Model

We let P.s n=1,...,N denote the =names of the discrete
orthonormal basis functions, n denote the independent and
identically distributed mnoise, eand g denote the_ gray tone

intensity function. Under this model, the observed image can be
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written as

N
g(r,c) = 2 a_ p (r,c) + n(r,c?
na=]l
0: n*ll
where 2 pylr,c) pplr.c) =
r,c 1 na=m

and the least squares estimates ai,....aﬁ for

coefficients 8,,...,8 are given by

a) = 2 g(r.c) p (1,¢)

t'c

the

(11)

unknown

(12)

Substituting the formula for g(r,c) into the equation

for a; ar.. simplifying reaults in
’ =
al = a ¢+ 2 pylr.c) nir,c)

r,c

clearly showing that t; has a determiristic part aad

(13)

a random

part, the randomness being due to the noise, We assume that the

2

noise is independent normal having mean 0 and variance o°.

Therefore, the estimated coefficient a; das mean

02 and is uncorrelated with every other coefficient:

272
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E [l;] = a,

E [l; a;] = aa ,n # n

E [a;zl = ai+ 02

' 2
v [ln]= a

The zesidnal error e is defined as the difference between
the observed values and fitted values. It too is a random

variable.

N
e{r,c) = g(r,c) - 2 aj pn(r,c) (14)

n=1

N
= 2 (an- né) pn(t.c) + n(r,c)

n=1

It is not difficult to see that at each (r,c), the residual error
has mean zero and 1s uncorrelated with each estimated coefficient
l; since

E ll; e{(r,c)] =0
After some algebraic scbstitutions and nanipulation, the total

tesidual error, Sz, can bhe written as
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N
s? = 2 ez(t.c) = 2 qz(r,c) - 2 (;n- ;;)2 (13)

r,c £,¢ a=]1

Thus, if the noise is assumed normal and there are K pixels ic a

window

2 nz(r.c)/ o2 has Xi,
£,¢

a8 chi-squared variate with K degree of freedom,

N
2 (an-:;)zlcz has X;

n=]1

. 2 2
which maxes } e“(r,c) have xk_N

r£,c

IV.2 Estimating the Figst Partials

If the discrete orthogonal basis functions ars polynomials
then each first partial derivative at (0,0) in the row and column
directions is given as some linear combination of the -stimated
coefficients. Furthermore, tne linear <combination for the row

partial will be orthogonal to the 1linmear <combination in the
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column partial. Letting the <coefficients of the 1linear
combination for the row partial be S{scceasy and the coefficients
of the 1linear combination for the column partial be tl....,tN.

where

N N
2
5 a2 -y elan,
n=]1 a=]
we have,
N

N
Ko = 2 ta 4

n=]

as the true but unknown values of the row and column nartials.

The estimates arc
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N
=2ty %
a=]

and they have mean and variance given by

E [u;] = u,
E [ucl il
Vil = o’k
)
v [Fc] s‘k
E

’ ’ =
(egpll Ry B,

Hence, the estimates for the row and column partial derivatives

are uncorrelated.
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7.3 Bypothesis Testing For Zero Gradient

To see the effect of the randomness on the estimate of
the gradient magnitude, consider testing the bhypothesis that
a, = u, = 0. This hypothesis must be rejected if there is

“o be a zero-crossing of second directicnal derivative. Cnder

‘his hypothesis,

- — - — ————

has a Xg distribution.

The total residual error normalized by the mnoise variance,

2, 2
S“/a”, has a xi_N distribution. Hence

(el w2y
x 82/(K-N)

has a Y2 g-ny distridbution and the hypothesis of Be= B,= 0

would be rejerted for suitably large values.

IV.4 nfidence Interval For Gradient Direction
To see the effect of the randomness on the estimate of the

direction of the gradient, consider the relationships portrayed

'}

in figure The axes are the row and column partials B and

B Tue direction sngle O of the gradient is given by

[}%
~i
~3
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cos € = ur/(ui + uz)ll2
2 2,1/2 (16)
sin © = p_/(n_ + n_)
The center of the circle is at the estimate (u;,ué). Upon
substituting the estimates n; and né for B, and §_, we
obtain the estimated direction angle 6’ by
ccs B! = p,/(",2+ ﬂ,2)1/2
b r c
2 2,1/2 an
3 ' = .
sin © R/ (u'+ w’ )

From a Bayesian point of view, the arca of the <circle
represents the conditional probability that the unknown
(ur.pc) lies within a distance R {from the observed
(u;.né) given that the variance of u; and pé is known
and equal to koz. Assuming a normal distribution for the

2 2
noise, this conditional probability is q = l—e.R /2ka Hence,
if probability q is given, the corresponding radius R is
R =k o [-2 log(1-q31%/2 (18)
To determine confidence interval for 6 of the form
@' - A( 8 (8'+ A, we have from figure 4 that
2
5 X (-2 log(1l-q)}
sin®A = R et St (19)
[ ) &
U O
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Note that the 2A confidence interval 1length depends on the
probability ¢ of the circle confidence region for (ut.pc)

and the unknown noise variance a>. Although~cz is not
known, we do know s? which has a o> XZK-N distribution., We can
handle the ©problem of ths unknown oz by determining a joint

confidence region for (p_,pn ) and 02 (Foutz,1981). Taking
r'Fe

p to be the probability that a chi-squared random variable with

2

i-N degrees of freedom has an observed value greater than X K-N.p

ve have the confidence interval (O, szlsz_N P] for ol having
at least probability »p. Replacing 02 in equatioan (19)
by SZIXZN_K.P we obtsin

x S2(~2 1log(1-q))
$inA = —mmcmmmmce oo (20)

A confidence interval for € having st least probability pq is then

(6’- A, '+ A).,
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Figure 4 illustrates the geometry of the confidence interval
estimation for the edge angle.
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IV.S Edge Hypothesis Testing

In this section we first take the edge direction a to be a
fixed constant, We let oy and Kp be the expected values of
the random variables A and B appearing in equatioa (10). The
null hypothesis is that an edge exists. The null hypothesis is
satisfied if for some p, o ( p £ d, Hap + Hg = 0.

The observed random variables are A, B, and the residual

fitting error Sz. The bivariate random variable

A [ e, k, ©
. . . 217"A
is normal having mean and covariance o
B kg 0 kB
- ]
where kA and kB are known constants. For a window of K pizxels

. . 2, .2 2
and a cubic fit, S°/o“has a XK-IO'

From this it follows that

((A-1,) /K, 1% + ((B=p /kp2)1/2
A A B'"B
Z(ﬂA.uB) = ------E ------------------------
s$“/(K-10)
has an F, K-10 distribution.
We defise R = {(x,y)|for some p, o ( p ( d, xp + y =
0] Then the null hypothesis is rejected at the p significance
level if

mia Z(HA,pB)
(uA.pB)e R

is larger than Fz K-10 1-p-
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An edge strength probability can be defined by q where ¢

satisfies

W e Z{ryoug) = Fy 310 ¢
Hy-kp

Of course the edge direction a is not fixed. But we do
have a confidence interval for it. And for each value of a in

the confidence interval, the random variable A(a) and B(a)

can be computed and the null hypothesis tested. If for all a
in the confidence interval the null hypothesis is rejected, then
the existence of an edge is also rejected.

In practice, we can perform a non-exact hypothesis test
selecting only the left end, middle, and right end values of a
from its confidence interval. If for each of these three values
of a the null hypothesis is rejected, then the existence of an

edge is also rejected.

V. Experimental Results

To understand the performance of the second directional
derivative zero-crossing digital step edge operator we examipe
its behavior on a well structured simulated data set and on a
real aerial image. For the simulated data set, we use a 100x100
pixel image of a checkerboard, the checks being 20x20 pizxels.

The dark checks have gray tome intensity 75 and the light checks
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have gray tome intensity 175. To this perfect checkerboard we
add independent Gaussian noise having mean zero and standard
deviation 50. Defining the signal to noise ratio as 10 times the
logarithm of the range of signal divided by RMS of the noise, the
simulated image has a 3 db signal to noise «ratio. The perfect
and noisy checkerboards are shown in figure 5.

Section V.1 illustrates the performance of the «classic 3x3
edge operators with and without preaveraging compared against the
generalized Prewitt operator. Section V.2 illustrates the
performance of the Marr-Hildreth =zero-crossing of Laplacian
operator, the 11x11 Prewitt operator, and the 11x11 zero-crossing
of second directional derivative operator. The zero-crossing of
second directional derivative surpasses the performance of the
other two on the twofold basis of probability of <correct
assignment and error distance which is defined as the average
distance to closest true edge pixel of pixels which are assigned

non—-edge but which are true edge pixels.

V.1 The Classic Edge Operators

The <classic 3x3 gradient operators all perform badly as
shown in figure 6. Note that the usual definition of the Roberts
operator has been modified in the natursl way so that it uses a
3x3 mask.

Averaging before the application of the gradient operator is

considered to be the cure for such bad pecrformance on mnoisy
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Figu.e 5§ illustrates the noisy checkerboard used in the
experiments, Low intensity is 75 high intensity is 17§5.
Standard deviation of noise is 50.
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Figure 6 iilustrates the 3+3 Roberts, Sobel, Prewitt, and Kirsch
edge operators with a hox filter preaversging of 1x1, 3x3, 5§ §
and 737,




ORIGINAL | JAMEEY
Of POOR QUALITY

images (Rosenfeld and Kak, 1976). Figure 6 also shows the same
operators applied after a box filtering with a 3x3, 5zx5, and 7z7
neighborhood sizes.

An alternative to the preaveraging i3 to define the gradient
operator with a larger v dow, This is easily done with the
Prewitt operator (Prewitt,1970) which fits a quadratic surface in
every window and uses the square root of the sum of the squares
of tb - coefficients of the linear terms to estimate the gradient.
(A linear fit actually yields the same result for the nolynomial
basic function. A cubic fit is the first higher order fit which
would yield a differeant result.) This is illustrated in figure
7. A 3x3 pre-average followed by a 3x3 gradieat operator yields
a resulting neighborhood size of 5x5. Thus in figure 7 we also
show the 3x3 preaverage followed by a 2x3 gradient under the 5x5
Prewitt and we show the 5x5 pre-average followed by the Jx3
gradient under the 7x7 Prewitt. The noise is higher in the pre-
average edge—detector. For comparison purposes thc 5x5 Nevatia
and Babu (1979) compass operator is shown alongside the §:°
Prewitt in figure 8. They give virtually the same result,. The
Prewitt operator has the advantege of =requiring half the
computation.

It is obvious from thcse results that good gradient
operators must have < .rger neighborhood sizes then 3x3.
Untfcrtunately, the larger neighborhood sizes also yield thicker

edges.



Figuce ! illustrates the Prowiit Opersior don~» by wusing s least
sguares guadratic fit in the neighborhond vwversns doing
presveraging and using a smaller fitting neighborhood size, The
n0 preaveraging resnlts show slightly higher contrast,




Figure 8 compares the Nevatia and Babu Compass operator with the
Prewitt operator in a 515 neighborhood,
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To detect edges, the gradient value must be thresholded. In
esch case, we chose a8 thrzshold value which makes the cosditional
probability of assigning am edge given that there is an edge
equal to the conditional probability of there being a trane edge
given that an edge is assigned, True edges are established by
defining them to be the two pixel wide region in which each pizxel
neighbors some pixel having a value differert from it on the
perfect checkerboard. Figure 9 shows the thresholded Prewitt
operator (quadratic fit) for a variety of mneighbarhood sizes.
Notice that because the gradieant is zero at the saddle points
(the corner where tonr checks meet), any operator depending on

the gradient to detect an edge will have troutle there.

V.2 The Second Derivative Zero Crossing Edge Operators

Marr and Eildreth (1980) suggest an edge operator based on

the zero crossing of a2 generalized Lapliciam. In effcect, this 1is
non-directional or 1isotropic second derivative zeruv croessiag
operator, The mask for this generalized Laplacian operator is

given by sampling the kernel

r2+c2 -1/0_53:53
1 - k-—=—3-- “ 2
- [+4
c
at row colum ccordinates (r,c) designating the center of eack

pizel positicn in the neighborhood and then setting the value X

so that the sum of the resulting weights is zero. Edges arc



Fignre 9 illustrates the edges obtained by thresholding the
results of the Prewitt cperator,
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detected at all pixels whose generaiized Laplacian valune is of
one sign and one of whose neighbors has a genmeralized Laplacian
vaelue of the opposite sign. A zero-c¢rossing threshold strength
can be introduzed Lexe by insisting that the difference between
the positive wvalos and the n2zgative valwe must exceed the
threshold value before the pixel is declared to be sz +ue zixel,
Figure 10 illustrates the edge images produced by this technique
for a variety of thresholid values and a8 variety of values for o

for an 11 by 11 window. It 1is apparent that if all edge pixels
are to be detected, there will be many pixels declared to be edge
pixels which are really nct edge pixels. And if there are to be
no pixels which are to be declared edge pixels which are not edg-
pixels, then there will be many edge pixels which are not

detected. Its performance is poorer than the Prewitt operator.

The directional second derivative zero crossing edge
operator introduced :n this paper is shown inr figure 11 for a
variety of gradient threshold values. If the gradieat exceeds

the threshold value and a zero-crossing occurs in a direction of
+ 14.9 degrees of the gradient directionm within a <circle of one
pixel length centered in the pixel, then the pixel is declared to
be arn edge pizxel. This technique performs the worst at the
saddle points, the corner where four checks meet because of these
being a zero gradient there.

Table 1 shows the comparison among the Prewitt operator and

the directional and the Marr-Hildreth nonrn-dizectional second
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Figure 10 1llustrates the «edges obtained by the 11x11 Marr-
Hildreth sevo-crossing of laplacian operator  set for thiee
different zero-crossing thresholds and three different standard
deviations for the associated Mexican hat filter,
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Figure 11 illustrates the directional derivative edge operator
for 4 different thresholds.
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derivative zero crossing edge cperators. The threshold used is,
as before, the one equalizing the comnditionnal probability of
assigned edge given true edge and the conditional probability of
true edge given assigned edge. It is clear that the performance
of the directional derivative operator is better than the 2rewitt
operator and the Marr-Hildreth operator, both on the basis of the
correct assignment probability and the error distance which is
the average distance to closest true edge pixels of pixels which
are assigned aon—edge labels but which are true edge pixels,
Figure 12 shows the corresosonding edge images of the 11x11
Prewitt operator usisnsg a cubic fit rather than a gquadratic fit,
the 11x11 Marr-Hildreth operator, and tlhe 11x11 directiomnal
derivative zero-crossing operator, The thresholds used are the
ones to equalize the conditiona]l] probabilities as given in Table
1. A visual evaluation also leaves the impression that the
directional derivative operator produces better edge continuity

and bhas less noise than the other two.
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Figure 12 Compares the directions] derivative edge ope-ator with
the Marr-Hildreth vedge operator and the Prewitt edge operator.
The thresholds chosen were the best possible ones,
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For the <case of <constant variance additive noise,
thresholding on the basis of the hypothkesis test of sectionm IV.3
yields essentially the same results as simply thiesholding the
gradient value.

Figure 13 illustrates the second directional derivative zero
crossing operator on an aerial image which has been median
filtered and then enhanced by replacing each pixel with the
closer of its 3x3 neighborhood minimum or maximum. The technique
is so good that it is possible to determine region boundaries
essentially by doing a connecteu components on non-edge pixels.
Figure 13b shows the <cleaned edge image which is obtained by
doing a <connected components on te non edge pixels, then
removing all pixels whose region has fewer than 20 pixels. The
resulting boundaries are given as pixels which have a neighbor
with a different label tham its own.

Initial raw edges which leave gaps in a regiom boundary will
in effect make the regions merge in the connected components
step. Thus the small number of missing boundaries is surprising.
To be sure, we are not advocating connected components as an
image segmentation techmique. The fact that it woerks as well as

it does is an indication of the strength of the edge detector.
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Figure 132 illustrates an serial photograph.
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Figure 13b illustrates the directional derivative edpes obtained
from the aprial photograph by first 12" median filterving, Lhen
repiacing each pixel by the closer of its 3x3 neighborbhood sininun
ar maximum, then taking tue dirvectional dervivative sdgesn using 4
Yx window, then doing 8 connected comvonents op the non-edpe
pixels, and removing all regions Having fewer than 20 nigels, and
then dilspluying any pixel neighboring o plzel different than 1t

an an edee plxel.
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Prewitt Marr-Hildreth Directicnal Derivative
Parameters Gradient Zero-crossing Gradient
Threshold = 18.5 Strength = 4.0 Threshold=14.0
= 5.0 p = .5
P(AEITE) .6738 3977 L7207
P(TE|AE) .6872 .4159 L1197
Error Distance 1.79 1.76 1.16

Table 1 compares the performance of three edge operaztors using an
11x11 window on the noisy <checkerbuvard image. Threshclds are chosen
to equalize, as best as possible, P(AE|TE), the <conditional
probability of assigned edge given true edge and the <conditional
probability, P(TE|lAE) of true edge given assigned edge. The error
distance is the average distance to closest true edge pixels of pixels

which are assigned non-edge but which are true edge.
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Vi. Conclusions

We have argued that numeric digital image operations should
be explained in terms of their actions on the underlying gray
tone intensity surface of which the digital image is an observed
noisy sample. We called this model, the fecet model for digital
image processing and showed how the facet model carz be wused to
estimate in each neighbcrhood the wunderlying gray tone intensity
surface.

We described a digital step edge operatoer which detects
edges at all pixels whose estimated second directional derivative
taken in the dizection of the gradient hes a zero crossing within
the pixel’s area. We discusse.] the statistical analysis cf this
techniqune, illustrating how to detsrmine confidence intervals for
the direction of the gradient and how this } « 1L determin s a
confidence interval for the placement of the zerc-crossing

fe have compared the pecformance of the directional
derivative zero crossing edge operator with that oJf the classic
edge operators, the generalized Prewitt ygradient operator, and
the Marr-Hildreth zero crossing edge operator. We fouand that in
both the simulsted and real image data sets the dircvctional
derivative zero crossing edze operator had superior perf{: rmanc..

We have illustrated that for good performance it is
important to use larger neighborhood sizes thanm 313 and  have
shown that hetter <cesults are sachieved by defining the edg=

operator naturally in the large neighborhood rather than pre-
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averaging and then using a smaller aeighborhood edge operator oxn
the averaged image.
There is much work yet tc be done. We need to explore the

relationship of basis fumctiom Xind, (polynomial, trignometric

polynomial etc.), order of fit, and neighborhood size to the
goodness of fit. Evaluation must be made of the confidence
intervais produced by the techmique. The technique needs to be

generalized so that it works on saddle points <c¢created by two
edges crossingf A sujtable edge 1linking method needs to be
developed which wuses these <confidence intervals. Ways of
incorporating semantic information and ways of using wvariable
resolution need to be developed. Arn analogous technique for roof
edges needs to be developed. We hope to cxplore these issues in

future papers.
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