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FOREWORD

This paper was invited to provide a review of the portion of the registra-
tion process relating to determining relative positions of reference and regis-
trant images at a set of locations within the images and embodiment of those
positions in a reference-to-registrant mapping function. There was an unfor-
tunately short time available between request and conference date, and as a
result the review is not as thorough as the authors would have liked to have
given. We are most familiar with tl:e processing of earth cbservations from
Landsat, and have concentrated our review on the processing of Landsat data by
the Master Data Processor (MDP) at the Goddard Space Flight Center (GSFC), the
registration processor installed at the Johnson Space Center (JSC), the regis-
tration process used in the DAM (detection and mapping) Package in conjunction
with a Corps of Fngineers project to map surface water, the registration process
used by the LACIE processor st GSFC, and the sequential similarity detection
algorithm (SSDA) used by IBM/Houston in the evaluation of the LACIE processor
imagery. Our review slights the body of information available from military
researcli, in which shape recognition and artificial intelligence play a promi-
nent part. In that field, there is iauterest in finding objects that have
changed position with respect to a fixed background, or monitoring changes in
aspect for guidance, and there is often limited interest in spectral develop-
ment. Our own field of concentration invelves images in which considerable
spectral development has taken place (observations are made throughout a crop
vear for agricultural applications), although for the most part the scene's
basic geometrical shape is unchanged. To some extent field boundaries change
{rom year to vear, but this is usually a small enough effect so as not to inter-
fere with the registration process. In the presence of spectral development,
one does not ordinarily correlate beuvween images on the radiance measurement
making up the parent image, but instead relies on a derivative feature (in our
case, edges) that one hopes will be stable despite spectral development. We
defer the discussion of extracted feature selection to other papers being pre-
sented at this workshop, ncoting in passing that we are most familiar with the
edge-detection algorithm implemented in both the MNP and the JSC registration
processor. This paper further concentrates on automated interimage correlation;
the manual techniques involved in the DAM lackage and other systems are a funda-

mentally different technology. First, of course, the points of correspondence
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between images are manually determined. Second, the interpretation 1s normally
done on radiance images transformed into visual presentations. And finally,
the manual techniques are typically done on a point basis with only ceoatextual
involvement of the neighborhood around the point designated as being in
correspondence. In the image comparisons discussed in this paper, measures

of similarity are made over areal extents of subsets of the parent images, as

opposed to points.
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Introductian

Interimage matching is the process of determining the geometric trans-
formation required to conform spatially one image to another. In principle,
the parameters of that transformation are varied until some measure of "differ-
ence"” between the two images is minimized or some measure of 'sameness" (e.g.,
cross-correlation) is maximized. The number of such parameters to vary is
fairly large (six for merely an affine transformation), and it is customary
to attempt an a priori transformation reducing the complexity of the residual
transformation or subdivide the image into small enough match zones (control
points or patches) that a simple transformation (e.g., pure translation) is
applicable, yet large enough to facilitate matching. In the latter case, a
more complex mapping function is fit to the rcsults (e.g., translation offsets)
in all che patches. The methods reviewed have all chosen one or both of the
above options, ranging from an a priori along-line correction for line-dependent
effects (the "high-frequency correction") to a full sensor-to-geobase trans-

formation with subsequent subdivision into a grid of match points.

There is, of course, a correct geometric transformation to apply, but it
is unknown (otherwise, an empirical image matching process would be unnecessary);
thus, some sort of model must be assumed whose parameters can be solved for by
correlation of offset-fitting. Commonly, a portior of the geometric model is
established a priori based on external data such as preflight measurements. If
that portion is incorporated in an a priori transformation, then the demand for
fidelity in the overall model becomes an issue of tradecifs between the a priori
geometric correction and the residual correction to be determined by matching.
For example, if one know the yeometric transformation is affine with an unknown
translation, one might let the image matching function solve for the whole
affine transformation, risking the introduction cof errors into the affine co-
efficients, or apply the affine transformation a priori and solve only for trans-
lation. Thus, in addressing the various parts of image matching in the following
sections, we must also consider their interaction with portions of the overall
geometric correction process which otherwise might be regarded as bevond the
scope of this paper. The utility of an a priori transformation is also mani-
fested in another way. Data gathered from prior registrations can be used to

bias the a priori correction. Such "experience'" data might be gathered by
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analyzing ensembles of prior registrations such as associated acquisitions
(different dates, same scene) or associated geometry (e.g., different subscenes,

same frame). Such experience data are then included in the data base.

The following sections logically divide, according to the above precents,
into (1) a consideration of correlation techniques, (2) examination of other
matching methods, (3) a discussion of determining the translational offset from
the correlation, (4) a consideration of the residual geometric model and how to
determine it, and (5) a summary of techniques going beyond the assumpticn implicit
in the previous sections that match points have been established to allow correla-
tion for translational offsets only. Throughout these discussion:; we make refer-
ence to the registration processor recently installed at JSC, note experimental
results pertaining to that system as appropriate, and note general limitations

and areas deserving further study.

Image Correlation

Suppose that an a priori correction has been applied or patches are defined
small enough that any residual geometric error worthy of consideration is pure
translation. Matching, then, consists of determining the translational offset of
one subimage from another "reference' subimage corresponding to the same scene.
The most common form of matching is some sort of cross-correlation technique.

The "image" referred to is the actual radiance image or a feature-space image
such as an edge or gradient image. In principle the cross-correlaticen of two
acquisitions of the same scene should resemble the autocorrelation displaced by
the same amount as one image from the other. Since the peak of the autoccrrela-
tion function must occur at the origin, the peak of the idealized cross-correlation
then measures the displacement. In practice, the acquisitions differ because u.
instrument, atmosphere, and other environmental noise and because the scenc may
have changed appearance due to seasonal, weather, or cultural changes. Thus,

the cross—-correlation only approximates the autocorrelation, and the peak may

not be well-defined. Another argument for the cross-correlation peak measure

is that it minimizes the sum-square-difference between the two images. This
measurc of cross—correlation can be normalized (to be between -1 .nd 1) by two
techniques summarized in Figure 1. The "template matching"1 alternative utilizes

only the pixel values from the search area, whereas the '"classical" alternative
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utilizes both images. The pixel values indicated are after subtraction of the
image means. For binary edge images, whose pixel values are either O or 1,
rigor fails in the following sense. Strictly speaking, the means of the 0O's
and 1's should be subtracted before summing; however, considerable gain in
computation speed is achieved if the coincidences and numbers of 1's are

summed directly.

The correlation techniques just described are employed in several produc-
tion registration systems. The Master Data Processor (MDP)Z'B, the GSFC baseline
system for Landsats 2 and 3, basically performs the '"classical" cross-correlation
on the radiance image. As a finctional equivalent, Fourier techniques are used;
that is, the reference and search areas are transformed by the standard FFT
algorithm, one of the transforms is multiplied by the complex conjugate of the
other, and the result is inverse-transformed by FFT. A slight variance is
effected in the denominator by subtracting the local mean (mean over portion of
search area overlayed by reference) from the search area's pixels, rather than
the mear of the whole search area. The latter is used in the numerator in con-
formance with the classical formula. The GSFC LACIE Registration ProcessorA
employed the template matching algorithm on birary edge images, and the same
scheme was used in an evaluation of that processor.5 Both classical and template
matching algorithms are provided for binary =dge correlation in the JSC Regis-
tration Processor.6’7 The classical option has been chosen for producticn

processing.

The matching policy discussed above is based on minimizing the sum-square-
difference. The sequential similarity detection algorithm (SSDA)8 is based on
minimizing the sum-absolute-difference. However, rather than summing over all
pixels, the SSDA selects at random a subset of pixels to sum. Summing stops
when a present threshola is reached, and the number of pixels needed for that
sum is noted. Then, the correlation maximum occurs at the same point as the
maximum of the numbers of pixels required (because the sum-absolute-difference
is smallest there requiring the most pixels to reach the threshold). The utility
of the SSDA liec in its reduction in computation by utilizing only partial sums
whose computational rigor is less, the smaller the correlation is. Thus, the
bulk of the computation 1s devoted to correlation samples showing promise with

little effort wasted on low values. The SSDA was also used9 this time on the
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radiance images, in the performance evaluation of the GSFC LACIE Registration
Processor. The correlation was normalized by dividing the pixels of each image
by their standard deviation before correlating.

The design of the SSDA i1llustretes a primary concern in standard cross-
correlation, viz diminishing the number of required computations. 1In general,
methods to address that issue have focused on devoting the bulk of the computa-
tions to the region around the appropriate extremum. Such a method, well-suited
to vinary edge correlation, was used in the GSFC LACIE Registration Processor4
and for coarse acquisition in the JSC Registration Processor. First, cross-
correlation is done only for offsets every fourth row and every eighth column.
The mean and standard deviation of the results are computed, and thrice the
latter is added to the former to generate a rejection threshold. UNext, an
approximate correlation is computed at every offset but with only pixel values
from every third row and third column included in the sums in Figure 1 (thereby
reducing the computation by about a factor of nine). 1If, at a given displace-
ment, the resulting approximate correlation value exceeds the rejection threshold,
the sums are repeated using every pixel value. 1In binary edge correlation the
peak is generally fairly sharp, and only a very small fraction of the correla-
tion samples exceed the threshold, thereby sparing a considerable amount of
computation. 71nis method, used for a segment-level correlation (8 x 10 km por-

tion of a Landsat MSS frame), proved very effective in the GSFC and JSC Processors.

The foregoing discussion assumes the geometric difference between the com-

"~ pared patches is‘pure translation. This assumption may not be valid, which

raises the question of how geometric distortion (other than translation) affects

the cross-correlatior function. The effect has been studied for standard cross-
correlation (i.e., for minimizing the sum square ‘ifference) where one patch is
distcrted linearly (rotation, scale change, shear distortion) from the other.lo’ll’12
The results indicate that linear distortion effectively blurs the cross-correlation
function by applying a running average over the ideai nondistorted counterpart,
where the dimensions of the averaging filter are proportional to the degree of
distortion. This conceptual averaging does not apoly to the noise present, so

that the signal-to-noise ration (SNR) is effectively reduced. Also, the area
around the peak is effectively flattened somewhat, makirg the peak search less

accurate, and the peak-to-background (or peak-to-sidelobe) ratio is distorted
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(these subjects are discussed in a gubsequent section). The magnitude of these
effects is greater, the greater the patch size, because tha geometric distortion
becomes larger. Thus, choosing a smaller patch decreases the effects of geo-
metric distortion, but the SNR is also decreased with fewer pixels. Some

compromise is generally required, as is discussed in a later section.

The effects of geometric distortion on binary edge correlation could be
drastic in certain cases. For example, a scale difference might prevent over-
laying edge features on opposite sides of a patch at the same time. Thus, rather
than smearing the correlation function, as described above, it could divide into
several peaks. This kind of problem has not been identified in typical patch
correlation, but it Las been suspected of degrading the full sample-segaent
correlation used in the GSFC LACIE and JSC Processars. One solution to the
problem (at least for coarse correlation) might be to resample the images to a
coa:rser grid by use of a low-pass or median filter before edge detection. Then,
the geometric distortions are reduced relative to the pixel spacing or, equiva-

lently, effective edge "thickness."

Other Techniques for Tmage Offset Matching

Sever:1 other matching techniques, though not yet implemented in large-
scale registration, deserve mention as potentially applicable. The Cluster
Reward Algorithm (CRA)13 con _tually analyzes the bivariate histcgram of the
two images at each displacement. A measure is established characterizing the
definition of pattern in the histogram, e.g., a measure of clustering. At the
offset denoting an image match the histogram should show a relatively high
image-to-image correlation by exhibiting clusters. The technique has been
applied to several sample-segment-size (about 8 x 10 km) scenes with notable

success.

’

The point-matching techniquel 5, though designed primarily for target
arrays such as star fields, might find application to binary edge images. The
method minimizes a geometric distance measure between points (say, edge pixels
in the two images} rather than minimizing radiometric or feature differences.
A variationlS of the method ascribes weights to the point-pairs according to

how well they associate in the matching. This technique is iterative with first
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a matching, then a comparison of the distance spanned by each point-pair to the

estimated common displacement for assigning a weight, then a weighted match, etc.

The use of normalized cross-correlation for minimization of = um-square-
differences or sum-absolute-differences described in the previous section can
also be viewed as an application of maximum-likelihood classification in which
the measurement sets are distinguished by translatiornal offset (analogous to
pixel number in spectral classification), the channels of information are the
pixels in the search overlay area (analogous to the bands in spectral classifi-
cation), and the classes are Match and Non-match (analogous to classes, e.g.,
crop species, in spectral classification). 1In the spatial case, however, it is
known a priori that only one measurement set should be classified as a Match (if
the match scene is unique) corresponding to the single correct translational off-
set. Analogous to spectral classificatic a Bayes technique has been applied16
to spatial matching. The probability of misacquisition (match lock-on to the
wrong point), expressed as the Bayes risk is minimized by maximizing the a
posteriori probability of a correct match (i.e., the probability that there is
a match at an offset, given the particular pixel values in the overlay region
for that offset). The a posteriori probability is estimatad in principle by
least squares by assuming it is a linear function of the pixel values. 1In fact,
that probability should exceed 1/2 only at the match offset which provides a
direct means for identifying a probable misacquisition (a posteriori probatility
never exceeds 1/2). The method is conveniently implemented by Fourier trans-
tormation techniques. The a posteriori probability, tbough assumed linear in
the pixel vilues above, can be expressed as a linear combination of any funrtions
of the measurements, as deemed appropriate to the application. The case of a
second-order relation has been investigatedl7, and trials on synthesized data
indicate improvement over the maximuw likelihood alternative offzred by cross-

correlation.

The methods described in this section should be considered as new candidates
for iaterimage matching. They must be integrated with the various feature selec-
tion methods (e.g., the Cluster Reward Algorithm makes no sense with binary edge
images, while the polnt pattern matching technique 1s especially suited to such
images). The methods should be tried on a representative set of sensor data and
evaluated for applicability to different sensor types, scene types, season,

sensor-to-sensor differences, etc.



Offset Determination

The cross-correlation tecluiiques for image matching presumes that the posi-
tion of the maximum or minimum cf the correlations or difference functic.. charac-
terizes the translational offset betiween che two images. The true offset might
be in between pixel centers so that the ~orrelation peak lies between ccrrelation
samples. To achicve subpixel accuracy i a given patch, some form of interpola-
tion is needed. Several alternatives have heen deseloped, as we discuss in
this section. These techniques lend tihemselves to estimating the accuracy of
peak location and to evaluating certain measures for establishing pass/fail

status, ard we address this subject also.

As an alternative to peak inte nolation for subpixel accuracy, a nuvmber of
patches can be defin 4, the peak can be determined to the nearest sample, and
the subsequent mapping function fit to the numerous peak offsets car be relied
upon to yield subpixel accuracy. °This approach is predicated on the assumption
that a random position error 1is introduced by choosing a sample position rather
than interpolating. This method was used in matching images produced bv the
GSFC LACIE Processor for the purpose of evaluating the performance of that

5,9
processor

Secondary peaks were also identified and compared t- the primary
peak. A measure of decline away from the peak was established in terms of
averages of correlation samples in concentric rings extending out from the peak.
If the peak was not strong enough relative to the secondaries or the decline was

too shallow, that zone was rejected in the mapping function fit.

A straightforward means of interpnlating for the peak consists of fitting
a surface function to the cross-correlation samples in the vicinity of the neak
and evaluating the peak location analytically. The MDP and JSC Registration

'’ use a bivariate poiynomial (i.e., containing terms xMyN, MN < poly-

Processor
‘nomial order). The MDP uses a fourth-order polynomial on a 5x 5 neighborhood
around the peak and also evaluates the curvature at the peak as a measure of
the breadth of tr2 correlation peak. The smaller the curvature is, the larger
is the uncertainty in locating the peak. The MDP uses the minimum curvature

on the surface and the height of the peak as rejection criteria.
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The JSC Registration Processor allows any order polynomial up to and in-
cluding fourth order, but the latter has been used mainly, with the lower orders
being studiedl8 for applicability. The fit neighborhood size caa also be
variedla, tut a 5x 5 has been used in production. The peak is located by the
use of the MDP algorithm, and the curvature matrix is used, in lieu of the
curvature itself, in a variational approach to express the peak uncertainty
covariance in terms of the covariance of uncertainty in the polynomial fit co-
erficients. Since the bivariate polynomial is fit by least squares, the coeffi-
cient uncertainty covariance can be estimated from the fit residuals. Often,
relatively few points are fit, compared to the numter of coefficients solved
for (25 points for a 5x 5 neighborhood, as compared to 15 coefficients for a
fourth-order polynomial), and little confidence can be placed in the uncertainty
estimate. To circumvent this problem, the user may supply an a priori fit vari-
ance of the fit uncertainty rather than determining it from the residuals. The
a priori variance can be established by tests on representative data, whereby
the a priori variance can be adjusted to make the estimated peak uncertainty
agree with the cbserved peak displacement errors. Preliminary t:ests18 estab-
lished a value for early production in the JSC Registration Processor. A peak-
to-background ratio is also established by subtracting from the correlation peak
value the mean of samples away from the peak and then dividing by the standard
deviation of those samples. The subtraction was included to compensate for the

fact that the edge image means are not subtracted out in binary edge correlation.



Rather than establishing the order of the bivariate pelynomial a priori,
successive orders could be tried and the RMS residuals compared. Wheun that
error falls signi{ficantly and then starts tapering off, wvhatever order has
been used at that point is adopted as the fit. As an attempt to sidestep the
issue that a good modal of the cross-correlation ts not veally at hand, this
approach follows the rationale that a good representation lies somowhere be-
tween g simple model and a fit, with nwo remaining errr, to every point, as a
suffictently high-order polvoomial would do. Choosing an intermediate ovder,
as outlined, attempts to halance a lack of understanding of the general form
of the cross—corvelation fuvnction with the knowledge that errors do exist in
the data which makes forcing a pertect 1it unwatrranted. This problem of model
uncetrtainties is encounterad again {n the section dealing with the mapping

function.

Funct founs other than a bivariate palvaomial can be tit to the cross-
correlation samples. A bivariate gaussian tunction {s an obvious chotce; how-
ever, its usc¢ has not come to our attention, One registration nppl!cationlq
chose an elliptical cone. The orientation of the cone was also a solution
variable. Although surface fitting has been the commonest method of peak
interpolation, it is by no means untverzally accepted. A principal criticism
with that method involves the sensitivity of the intersample peak location o
the particular form of the titting tunction.

As an alternative to surface titting, the peak can he assumed to lice at
the centroid of the correlation nctshborhoodjo. That is, the peak location
is computed as the weighted sum of neighboving sample locations, with the
correlat{on velues serving as weights,  Analogous to the peak uncervtainty orv
surtace curvature ment ioned ecarlierv, a corvespouding weasute of the breadth
of the peak can ba computed 3s the moment ot gyrutiun2 or simply as the
second moment of the correlation distribution (Just as the centreid is the
tirst moment). Utnfortunately, 11itlo mare caun be said about this method at
this time. It would be intevesting to compare the centroid and surface tit

methods tor a representative set of corvelation sample arvavs.



Another method of peak location takes advantage of cross-correlation by
Fourier techniques. The offset in the spatial domain corresponds to a non-
vanishing phase in the frequency domain. In fact, if the cross-correlation
function were symmetric about its peak, the phase function would directly
specify the offset (since phase introduced by non-symmetry would vanish).

One approach22 transforms the phase portion of the correlation transform back
to the spatial domain wherein the peak is located. The spatial result was
noted to resemble closely a delta function so that subpixel peak location

seems viable. The peak location was facilitated by using the inverse transform
operation directly to compute a finer grid of spatial samples around the indi-
cated peak than would normally be obtained from Fast Fourier Transform (FFT)
algorithms. 1If indeed the transformed phase function is consistently nearly

a translated delta function, then in the frequency domain the phase should be
proportional to the spatial displacement. Thus, the phase vs frequency points
can be fit by a straight line forced to pass chrough the origin, and the slope
gives the translational displacement. However, somehow the possibility of non-
symmetry may need to be accounted for. Preliminary resultsl8 have shown that

binary edge correlations, for example, do exhibit nonsymmetry.

This section closes by returning to the issue of estimating peak location
uncertainty or sharpness. The schemes described above can be categorized
basically into curvature at peak, second moment of correlation samples around
peak, and rate of decline away from peak. Any of these sharpness measures can
be used to compare with a rejection threshold or to construct a weight for use
in the mapping function fit. 1In the latter case the weight would be lower, the
broader the peak lobe is. The weight is given directly by a peak uncertainty
estimate (as the inverse of thie uncertainty covariance). As mentioned earlier,
a fixed a priori surface fit variance should probably alwavs be used to estimate
the peak uncertainty when fitting bivariate polynomials so that effectively its
. variance 1is directly related to the curvature. The sharpness measures can
also be computed for the autocorrelation function to give an idea of the intrin-~
sic clarity of the image. This application has been implemented as well in the

JSC Registration Processor.
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Residual Mapping Model

If the approach of the previous sectiors has been adopted, viz. local
translational mismatches are determined at an arrav of control points, some
means is needed to (istribute the corrections for those mismatches over the
regions in between the control points. Toward that end, a geometric transformation
function is to be rurmulated in terms of the measured displacements. The .ature
of that function depends upon one's confidence in the measured mismatches versus
one's understanding of the geometrical or physical processes causing the mismatch.
If the control point translations are expected to centain errors, and the nature
of the geometric distortions 1is well understood, then some sort of error mini-
mization or maximum likelihood estimation technique is utilized. On the other
hand, {f the data are highly trusted and the model is unknown. some form of
"rubber sheeting” technique is emploved (analogous to curve-smoothing in one
dimension). These altermatives are addressed below. The case that the model
is understood is discussed first, with a breakdown into a geometrv-based model
(e.g., platform attitude error, trajectorv error, etc.) and a sensor-based
model (e.g., scan irregularities, band-to-band offsets, etc.). Then, the rubber
sheet approach is considered. If uncertainty is associated with both the measurce-
ments and the model the attack is not so clear. This situation is considered
briefly along with the situation that some measure ot confidence in the modei
is available and the control point data are being used to improve it. It is
well established that cross-correlation will ovccasionallv result in an erroneous
translational offset, and if such an error gues undetected it can ruin the mapping
fit. The section ends with a description of several methods for identifving

and handling such outliers.

Geometric errors are generally modeled as time varving satellite attitude
and altitude errors. The MDP3 assumes for MSS processing that tie Landsat vaw,
pitch, and roll can be modeled as third-order functicas of time over the dimen-
sions e¢f a double frame (about 340 km of downrarge). Similarly, the altitude
variations are modeled as linear in time. The resulting 14 coetticients are
solved for by weighted least squares utilizing both control point offsets and
the less-precise attitude/altitude data available from landsat's attitude
measurement svstem (AMS) and ground tracking. The weights are set up a priori

based on past experience in control point location accuracies and in AMS and
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ground tracking accuracies. Hence, the control point weights are considerably
larger than .ae others so that if many control peint offsets are utilized the
solution is essentially based on them. Yowever, if few or ncne are available
the AMS and ground tracking data do contrabute appropriately to the solution.

To handle the fact that the AMS data are poor for estimating the constant por-
tion of the model (biases), a scheme is implemented to allow devoting the con-
trol point data to estimating the attitude biases, while the other measurements
are utilized for rates and higher-order coefficients. Nominally, this scheme

is employed only if a very few control points are available. Also, the attitude
biases from a good solution (one with control points) are carried over to the
next frame i’ that frame has insufficient control points (nominally, less than
two). A weight associated with that carrv-over is propagated in a manner that
makes it decay with time, in order to model the growth in uncertainty of the
biases as the satellite moves further away from the estimation point. This
whole approach is predicated on the measurement errors being norm.lly-distributed,
an assumption which breaks down if one or several of the control point offsets
are erroneous. To overcome that problem, the MDP has been tested with the
threshold number of control points for triggering the bias estimation scheme
raised to 15 from the nominal value of unit:y.23 Hopefuily, such a large number
of control points will contain enough good offsets to overwhelm anv erroneous

ones. Another approach to eliminating the outliers is discussed later.

A TRW studyza has adopted the same model as the MDP except for assuming a
constant altitude deviation. The coefficients were evaluated by Kalman filter-
ing. ERIM's geometric correction process also models the geometric errors as
yaw, pitch, and roll, with pitch and roll assumed linear and yaw assumed con-

25
stant over the area of interest.

The GSFC LACIE processor models the geometric error {after the more-compli-
cated a priori transformation) as pure translation cver the dimensions of its

8 x 10-km sample segments. Performance evaluation™’

of that system indicated
thai, although specifications were met, there was a residual error that appeared
to be affine. Thus, the JSC Registration Processor has adopted an affine model.

A weighted least squares solution is made in which the weights are the reciprocals
of the peak uncertzinty standard deviations estimated from the correlation surface

fit. At user option, default weights can be substituted if the correllation
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surface fit falls in its estimation process, or weights can be eliminated alto-
gether. A preliminary evaluation26 of the JSC Processor has indicated that an
affine model is adequate; that is, observed residual distortion does not show
any systematic effect acsociated with an incomplete geometrical description.
The success of the affine model lies in the fact that the JSC Registratiou
Processor is only removii g residual distortion left bv the MDP. The a priori
geometric correction has taken care of map projections, sensor geometry, and
sensor line effects as characterized by the MDP data (a priori modeling con-

stants and attitude/altitude solutiom).

Sensor effects can also be modeled and solved for by use of the acquired
scenery. Alternatively, thev can be assumed static, determinad from a priori
data, such 3s Iaboratory or flight tests, and then used in the a priori geometric
correction. Landsat MSS effects include scan nonuniformity, band-to-band offset,
“staircasing" caused by simultaneity of six scan lines, and line-by-line offsets
due to sampling delays and changes in scan speed. The MDP, GSFC LACIE Processor,
and JSC Registration Processor all assume a static model for those effects. All
effects are assumed constant, except for the scan speed and scan nonuniformity.
The latter is modeled as a third-order polvnomial in position with the line (i.e.,
sample number). The coefficients were determined prior to implementation in che
registration systems. The scan speed is assumed to have a fixed relation to the
number of samples actually obtained in a scan line (line length majority). Al-
though this model seems fairly good in normal circumstances, it breaks down for
Landsat 3 when the MSS sample initiation fails (the "late line start") because
the correct line length majority is not available. A model has been installed
in the GSFC processing line to estimate the line length majority from the number
of samrles in the partial line. The resulting line length majority is used by
both the MDP and the JSC Registration Processor. An inaccurate line leagth
majority is manifested as a line jitter over portions of the image, and irJleed
a jitter is sometimes apparent as irregular field boundaries in some Landsat 3
agricultural scenes (especially at lover lattitudes where field boundaries tend
to be parallel to lines and columns of pixels). An errer of one in the line
length majority will result in a misregistration of up to one pixel or about 58 m
in MSS imagerv. The possibility of variations in scan nonuniformity can also not
be ruled out as the cause. These anomalies merit further investigation. Tech-

niques for line-to-line registration to straighten field boundaries should be
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considered, if for no other purpose than clarifying operational scan
characteristics.

The sensor geometrical model for the Landsat RBV is considerably simplified
by the presence of reseau marks on the face of the Vidicon tube. Also, the
satellite attitude model is simplified by the fact that a whole frame is

gathered at one instance, hence, for one value of roll, pitch, and vaw.

The rubber sheet approach to geometrical nodeling assumes the form of the
model is poorly understood. Whatever is the correct model, it should be possi-
ble to express it as a bivariate polynomial (e.g., assume a Taylor series).
Thus, a common rubber sheet technique fits a polynomial to the array of control
point offsets. The JSC Registration Processor and the GSFC Digital Image Recti-
fication System27 can utilize polynomials, the former to fourth order and the
latter to second order. The principal concern is generally what order to use,
although omission of certain terms may also be considered (such as sample-
dependent terms if distortions seem to be from line to line). A sufficiently
high order will fit all control points with dubious resuits in between. If the
points are known rigorously to contain no error, then fitting all the points is
reasonable, and the problem becomes one of seler-ing an interpolating function
with suitable behavior between the points. Generu.l , the control points are
assumed to have errors so that fitting them rigorously at the risk of inter-
point error is not particularly suitable. A compromise is often achieved by
trying a progression of successively higher-order polynomials and tracking the
decrease of the error, expressed as the RMS of fit residuals. Assuming the
idea that lower order is better for inter-point behavior, the fit is chosen for
which the error has dropped substantially from lowest order but for which little

error reduction is apparent at higher orders.

Another rubber sheet approach efiectively spatial-fil*ers the "sampled"
offsets at the control points, thereby distributing the offsets over areas
between the control points. This approach parallels the reconstruction of a
two-dimensional analog signal from its samples by cubic or sinc couvolution.

The filter might be derived from maximum likelihood comsiderations such as a
Kalman filter. This approach might be reduced to any desirable scale by reducing
the size of control points while increasing their density so that a fairly
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high-frequency matching process could be designed. When sensor resolution be-
ccmes good enough, atmospheric turbulence will be discernible as high-frequency
distortion for which such a high-frequency geometry-matching filter would be
appropriate.

Sometimes, the model may be partially known before control point informa-
tion is acquired; that is, a priori values for the model parameters are available
with an associated covariance characterizing the level of confidence. Then, the
control point offsets provide additional information which can be used to improve
the estimates of the model parameter. A Bayes approach is utilized. Simply
stated, a least squares solution is performed on the control point offsets, and
a weighted average of the results with the a priori estimate is computed. The
weights are thes inverses of the respective covariances normalized by matrix pre-
nultiplication by the inverse of the sum of the covariance inverses. This
approach has been implemented in the JSC Registration Processor to account for
the fact that it follows the MDP. Since the MDP has already geometrically
corrected the data, the a priori values for tlie residual mapping function are
zero. The covariance of the MDP's attitude/altitude solution is provided, and,
after transformation to the covariance of a local (8 x 10-km sample segment)
affine geometrical model, it serves as the a priori covariance. The JSC Proc-
essor performs its own least squares solution and utilizes its and the a priori
covariances to average its solution with zero (the MDP's value). The appropri-
ate expressions are summarized in Figure 2. Effectively, the result down-weights
the JSC Processor's solution according to the size of the MDP covariance, with
greater ~ttenuation the smaller the MDP covariance. It must be borne in mind
that all this theory is predicated on the MDP's and JSC Processor's error sources
being normally-distributed. A crude compensation (shrinkage) is provided, as

shown in Figure 2, in case they are not normally-distributec.

Unfo1rlunately, control point correlations tend to either work reasonably
well, or they are very bad. Thus, unless false fix detection is very good,
erroneous control point offsets will be interspersed among the good ones. One
straightforward approach to eliminating the outliers simply comp. ves the residuals
after the least squares fit to a preset thrushold, or a threshold scaled bv the
estimated covariance. This technique was used in the GSFC LACIE Processor eval-

uations’g. Control points with residuals greater than three standard deviatiouns
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were discarded, and the least squares solution was repeated. The new residuals
were again tested, and the procedure was repeated until no more failures were

noted.

Another approach performs a least squares solution with one control point
omitted. Similarly, another solution is made with the first control point re-
turned but a second omitted, and the process is repeated to yield as many solu-
tions as there are control points. The post-solution residual for each omitted
control point may then be examined for rejection, or a weighted combination of
all the solutions may be made, with the weights related to the post-solution

residuals.

Finally, a robust estimation28 technique can be utilized in which the con-
trol point error is assumed to come, not from a normal distribution, but from a
distribution with long tails which characterize the possibility of "outliers."
Just as least squares is a maximum likelihood estimator for a normal distribu-
tion, maximum likelihood estimators can be formed for other longer-tailed
distributions. A number of such solution techniques exist.28 They down-weight
measurements with large errors, while sacrificing a small amount of efficiency
(i.e., not being quite as good as least squares) when the measurement errors
really are normally-distributed. To our knowledge, none of these techniques

have been explored for image matching.

Sizing and Placement of Control Points

The method of inter-image comparisons reviewed here involve the distributing
of 2 number of vatches within each image (the reference image and the registrant
image). The 4/ tches are chosen small enough that the inter-image shifts within
them m:v be considered to be purely translational; that is, scale, skew, and
other interinage distortions have negligible effect when compared to the trans-
lation, viewel on the scale of the patch. Translation we will regard as zeroth
order, amounting to a constant bias in the functions that relate coordinate
values in one image to coordinate values in the other. Similarly, scale, rota-
tion, and skew are first order distortions, and keystoning, etc., are higher
order. In the zeroth order, coordinates x in the reference image and y in the

registrant image are related
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\xi-yi) =b,
while to first order they are related
(xi-yi) = giaijyj +b, .

8o, it is seen that the above description of the order corresponds to the order
of the polynomial in the equations relating the coordinates. The essence of
registration is to specify the mapping between the reference and registrant
images, which is done in either ''rubber-sheeting'" form or by modeling. The
latter uses rigid descriptions of the sensor geometry to permit an economy in
describing the interimage coordinate relationship. Sc, rather than describing
the coordinate relationship in the form above, coefficients are often drawn
that relate the coordinates through platform ephemerides and known sensor
geometries. This section interrelates with the previous one via economic and
accuracy considerations; an optimum mapping method will require the fewest coa-
trol patches to establish the desired degree of accuracy, since there is a high

cost per correlation patch.

Number, location, and size of the patches used for control points is a
very important consideration in the design of a registration system, from both
economic and accuracy standpoints. A large part of the registration computation
load is proportional to the number of the patches and to the second power of the
patch dimension, so it behooves one to minimize the number and individual size
of the patches. At the same time the interaction of the spatial distribution of
the patches with the remapping model will affect the accuracy of the registra-
tion; so the location of the population of patches is a consideration to be com-
bined with their number. One patch gives a single estimation of the translational
correspondence between the images in the vicinity of the patch. If it be assumed
that errors are not systematic in the estimation of that translational corre-
spondence, more patches (in a neighborhood) are better in that the errors will
tend to cancel. However, although there is no conceptual difficulty with having
patches overlap, there is a limit to the number of functionally independent
» itches that can be drawn from any image. That number puts an upper limit to
the tendency for growth to larger number of patches in orider to have statistical

cancellation of errors.



There is a tradeoff in the determination of the optimum size of a correla-
tion patch that is dependent on the accuracy with which the a priori corrections
can account for the encountered misregistration. Consider first a purely trans-
lational misregiciration. As the size of the patch geus larger, there is more
picture structure within it; although the value of the correlation peak is not
affected, at translational locations off the peak there will be (generally)
lower cross~correlation values due to the larger amount of structure within the
window. The result is an enhancement of the peak-to-background ratio (the value
of the peak ccrrelation divided by the correlation in the general vicinity),
enabling increased sensitivity in detecting a peak and perhaps increased accura-

cy in determining the location of the peal.

Now, however, consider the ramifications of first-order departures from the
condition in which there are only translational offsets between the images being
registered (i.e., suppose there are skew and scale differences as well as trans-
lation). 1In the position in which the true centers of the patches being corre-
lated are coincident (that is, the position one would want to find as a result
of the cross-correlation process), picture structure towards the edges of the
patches will be relatively displaced by scale and skew differences. In contrast
to the translation-unly situation, the correlation in this case is reduced as
the size of the image is increased. But the presence of effects other than
translational offsets does not manduate the use of the smallest possible patch--
one pixel!--because the correlation is at its noisiest there. For a binary ex-
tracted feature on which correlation is being done, the correlation takes on
only the values zero or one for the one-pixel patch, and it would be impossible
to locate a peak. So one determines an optimum patch size by considering a
reasonable envelope for the distortions (beyond translational) that one expects,
and works out the spatial range over which they would cause significant displace-

ments for the translationally-correct position.

Where appropriate by necessity of increased registration accuracy, a re-
entrant technique is possible. In that technique, patches of the original
images are extracted and run through the correlation process. The cesulting
remapping for the whole image is then used to reextract the correlation the
correlation patches, which can now be at least first-order corrected for the

modeled distortions. The patches are extracted from tue input imagery by
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resampling onto a grid derived fiom the first registration process, and conse-
quently larger patches, with potential for increased accuracy, may be drawnm.
The cost of such a reentrant technique 1s not necessarily to double the compu-
tation time, inasmuch as a coarser registration job is enabled for the first

pass.

As mentioned earlier, the strategy for location of the correlation patches
is important. In the case of the MDP, there is a scattering of patches amount-
in~ to approximately 0.1% of the scanned area (say 10 patches of 32x 32 pixels
within a frame of 3596 x 2983 pixels). 1In order for this smali a correlated
area to control the overall registration accuracy to an acceptable level, the
patches must be lo. :ted efficiently so as to exercise reasonable control over
the entire image. Further, the modeling of the scanner behavior betweer zontrol
points becomes of paramount importance. In the other extreme, the JSC Registra-
tion Processor actually uses something over 100% of the area of the registrant
image, when it 1is taken into account that the patches overlap slightly (about
7 pixels/line).

The registration of two images logically breaks into two philosophically
different kinds of operations--the determination of the mapping of the coordi-
nate grid of the reference image into the coordinates of the registrant image
onto that remapped grid of the reference image. The mapping process 1is guided
by the selection of patches within which interimage comparisons give the local
estimate of the mapping (typically just the translational characteristics are
determined on an ares small enough that translation is the dominant effect over
the size of the patch). Since considerable computation effort goes into the
interimage comparisons done on the patches, and since the accuracy of the over-
all registration depends linearly on the accuracy with which a single patch is
compared between images, and also since the model, usuallv driven by the trans-
lational offsets determined at the patches, will be more tightly and accurately
determined with a "sufficient" number and distribution uf patches, it is very
important that the following qualities are achieved in the location of the

control patches.

1. The comparison method allows an accuracy of interimage comparison at least
as good as the registration accuracy desired for the whole process. Other-

wise one must use a superfluilty of control patches and hope that they
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contribute independent measurements, with error cancellation, to the re-

mapping model.

2. The model being driven by the control patches is sufficic ..y highly de-
tailed to account for the entire behavior of the relative geometry in

between control points.

3. Th2 locations of the control pcints are chcsen to interact seasitively
with the modeling geometry. For example, if a sinusoidal component to the
interimage geometry is hypothesized, one would not want control pctfats (the
centers of the patches) placed at uniform one-period separations within the
image. If they were, aliasing would have the result of a sinusoidal rela-

tive geometry look the same as a translational offset.

This section discusses some aspects of lecation of control points (taken as the

centers of their control patches).

Let the registration of Image 1 to Image 2 be defined as the mapping of
the coordinates (i,j) in Image 1 to tne coordinates (k,') in Image 2 (i.- , we

1vill do only the geometric portion of the problem),

i > k >
i IMAGE 1 | IMAGE
v 1 ¥ 2
Suppose the "true" relationship is given by F1 and FZ
{=7 (1 3= F,(k,1);

let them be estimated as a result of the interimage correlation and modeiing by

f1 = Fl, f2 = F2

Then the root-mean-square registration error (RMSE) is

Rise =\ [ o 7 1t + e s
image
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where imiée is the integral over the area of the image, and various assumptions

are included regarding orthogonality of the coordinate axes, samene s of scale

1 and f2 to be derived accord-

ing to some sensor/platform model, or ac:ording to other limitations on the con-

on those axes, :tc. Further, suppose the mapping f

plexity such as a mapping of no higher order than affine, and that the mapping
f1 and f2 is determined by a finite number of control pcints within the images.
If the imajes are not initially pathologically misregistered, we nay reasunably
express the mapping by beginning with the simplest of mappings,

fl(k,l) =k, fz(k,l) =1
and then include the deviations 8y»

= ( =
fl(k,l) k + gl\k,l), f2 1+ gz(k,l).

This slightly complicates the expres: ion for RMSE but facilitat-s the analysis
of sensitivity with respect to control point location. Translational offsets

are wr..tten

sl(k,l) = a

|
og

82 (k11) -

affine mappings have the general form

gl(k,l) =a + a.k + azl
gz(k,l) =b +bk+ b21 ;

keystoning is modelable by the inclusion of a cross term,

gl(k,l) =a + alk + 321 + a3kl

gy(k,1) = b_ + bk + bl + bkl

etc.

We concider a control poiat established between the images. Let Eﬂkll)
be the derived estimate of the ‘true" cffset between the images, and let L

be the estimated covariance of the estimate t.



By a method unspecified here (so as co preserve generality), the set of control
points {km, Im, tm, Im} is hen used to generate the mapp<., tunctious g, and g,.

Let us make some simplifying assumptions:

1. 'The method of obtaining gy and g, will work with any number cf coatrol points
(e.g., no con’vol poinis gives 81 and g, identically zero, one control point

allows a translational solution, etc.).
2. The method of obiaining 8y and &y is tractable to linearization.

3. A priori estimates of I are available (they might be in the form

= : 2 2 [y = 2
zap dlag(cl, 02) or c°1 .

4, The a priori estimates of I are independent of location.

5. The a priori estimates of 81 and g, are zero. (Otherwise the image could

be adjusted according to the a priori estimates so that this would be true.)

We are now in position to find the sensitivity of the mapping functions 8, and 89
to the location of a single control point, that sensitivity being a function of
location of control po. at in the reference image and of location in the registrant
image. The sensitivity can be converted into an rms value by integration over
the regictrant image, as will be seen, and thus an ideal location of the first

control point is specified.

Defining y = (;), X = (?), we have used the set {x, t, I} to produce the

(vector) fur.iion g such that

y = g0 + k.
The fact that the variation in, say, the first coordinate of y is given by
g og
e 4 1
Gyl axl le + 3x2 ze

lcads us to the vector variation in ;

Sy = Jox

in which J is the Jacobian matrix



ORIGINAL PAGE IS
OF POOR QUALITY

i Y
Bxl ax2 -y
%, O -
axl sz

The covariance in y is calculated from Sx’ the covariance in x, as follows.
T T
DY = (J & (I8

= et gt

Taking expectation values, and assuming that the expectation of §§_§§T is as

estimated from the considerations of the cross-correlation surface for the point,
r, = By T = J EE @0 )T

T
zy-s izxi

which will be a non-constant function of y inasmuch as the partials forming J

are not constant. The trace of Ey gives, as a function of y, the squared regis-

tration uncerteinty. We can average over the image and take the square root.
¥

RMSE=\/arlea S/ tr I da .
image M

Alternatively the trace can be taken after integration (the operations communite):

-
1
RMSE = \/ o tT (me{ée I, da) .

Note that the RMSE so calculated is a function of x, the location of the first
control point. If a priori values for Zx and t (x) are used (the latter being
zero), we have an a priori estimate of the sensitivity, measured in terms of
coordinates in the image, as a function of location of the first control point.
Fixing the location of the first control point at the location that minimizes
RMSE, then an exactly similar procedure leads to the location of the best place
to position the second control point. The RMSE should monotonically decline as
the number of ontimally-placed control points increases, and the system designer
can quit adding control points when the aaticipated accuracy has gotten to

requirement level.

329



It is true that the placement of n control points by this technique will
(probably) not produce as good accuracy as n points placed optimally as an en-
semble. The algorithm for determining that optimal ensemble position, however,
is a substantially more complicated one. The following relaxation technique is
such an algorithm. The n poinis are placed according to some scheme in the image,
and RMSE is calculated in the general manner as described above. The position
of the first point is permitted to vary about its original location, and RMSE is
observed; the location 1s altered until a minimum of RMSE against first-point-
location is found. Then, the second is allowed to vary, and its minimum location
found. Similarly through the set of n control points, and the procedure is
iterated for all the control points again until each point is at a minimum. But,
even this relaxation technique guarantees only a relative minimum, for small de-
viations of control point location. The sequential technique is likely to require
more points to achieve a given level of anticipated accuracy than the minimum
number me=ting the requirements with the relaxation technique, but the sequential

technique is, as mentioned earlier, more tractable.

This problem, optimizing locations of control points, is analogous to the
statistical problem of selecting a set X at which to evaluate the associated
set ¥y o the combination to drive a regression between x and y. It has proven

more practical to select an oversupply of x,'s and drop members one at a time

i
according to a utility criterion, until the required performance would fail if
any further members were dropped. A practicai scheme for location of control

points could proceed similarly.

All too often, a desired control point location, even with the allowance of
small deviations around it, will not contain picture structure to permit suffi-
ciently accurate cross-correlation. The strategy for control point location
should be robust against failure to find proper structure at a subset of the
ideal control point locations. An iterative scheme is envisioned, in which that

failure would send one back to the image to obtain another set of centrol points.

These techniques seem clearly impractical tor one-shot application. The
amount of time spent in the computations could better have been spent in getting
on with the registration problem by casting an overkill of contrel points into

the image, and just proceeding. The application {or such techniques 1s in a
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production environment, where the fewest control points vith the most advantageous
effect is desired. Using the remapping model and the a priori estimates of the
covariance, a general optimal strategy for control point location is drawn. The
covariance estimation is done either entirely without prejudice (Zap = g%1), or

if a large number of images are to be registered against a single base image (as
in the authors' case, multizemporal agricultural images of certain ground areas),
that base image can be investigated for the estimations of I.

To the authors' knowledge, this sort of cptimal placing of control points
has not been done. The MDP uses hand-picked control points with control in any
given frame of Landsat data coming from not only that frame but from adjacent
frames as well. 1In the LACIE Processor“, there was essentially only a single
point, the entire image; translational registration alone was done, with nearest-
neighbor resampling following translational correlation done on whole-segment
basis. An experiment19 associated with the LACIE Processor utilized five control
points placed at the corners and center of the image. In the DAM PackageBO, manual
control points are selected with admonishments to spread them out well in the image
being registered. in the JSC Registration Processor6’7, the control points are
placed on a uniform grid, the patch size and spacing relating so as to cause
overlap. In the "automatic" registration system31 for the LACIE ground truth
segments, control peints are initially placed on a uniform grid, with small
deviations allowed in order to find a suitable correlation peak. in all the
processors with which the authors are familiar, it has been the practice to
follow one's instincts rather than to code in a sophisticated natch location
algorithm. The success of those processors indicates the eff” - of the less-
elaborate methods, but it remalns possible to make algorithmic . :nrovements to

pemit sufficient accuracy with minimum computation load.

Non-Controi Point Methods

The previous secticns dealt with the step-wise manner of first matching
images within lccal patches or control points and then fitting the full mapping
function to the resultant array of point-shifts. Although the complexity of
straightforward multidimensional correlation (say, in translation, rotation,
scale change, etc.) generally makes it prohibitive, a fortuitous property of

affine distortions under Fourier transformation has given rise to such a method3
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which may show promise. It is chown that even with affine distortiomns (i.e.,
rotation, scale change, and skew or shear distortion, in addition to pure trans-
lation) the translation maps into a pnase facter in the frequency domain, and
the mcdulus of the transform functicn exhibics a similar, affine distortion.
This fact, coupled with the fact that typical agricultural scenery shows con-
siderable spatial structure, facilitcies the use of Fourier transforms for match-
ing in an easier way than with the images themselves. The structure of agricul-
tural scenes generally casts the major portion of the spectral enmergy (i.e.,
transform modulus) along two nearly-perpendicular axes, corresponding to the
presence of rectangular field and road strucrure. In that case the axes of the
two transformed images can be sought out by searching for lines of maxima, and
the matching need only occur over the axes, rather than over the whole domain.
The rotation and skew are determined by rotating corresponding axes into coin-
cidence, and scale changes are determined by matching energy distributions along
the axes. Once the linear portion of the affine transformation has been deter-

mined (wholly from the modulus), the translation is determined from the phase.

The method was used successfully32 to determine rotation and skew distor-
tion in airborne scanmer data. It is not certain that modulus-matching along
the axes for scale change determination is sensitive enough to give a good scale
solution because the modulus probably changes far more slowly along an axis than
traverse to it. This question should be addressed and the method tried on other
data types and scene types before furthc. conclusions are drawn. At present,
the method does seem applicable to agricultural images in which oaly transla-

tion, rotation, and skew are present.

Summary and Conclusions

A number of image correlation, match offset determination, control point
placement, and geometrical modeling techniques are in use today, but there is
still considerable ground to cover. There appears to have been little effort
in interchanging methods, e.g., trying different offset determination techniques
witn each matching technique, etc. DPerhaps the greatest potencial for correla-
tion improvements lies in increased computational efficiency and speed. Several
new matchin, techniques appear to show promise, but they need to b¢ tested oun a

wider range of image data. There is room foi improvement in the rfobustness of
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offset determination schemes. The various schemes need to be compared when used
with representative data. Improved techniques for identifying false fixes with-

out rejecting good fixes are seriously needed.

Methods of modeling sensor anomalies such as late line start parturbations
need further investigation. Is the current MSS scan uonuniformity model adequate,
or does it change with time? More attention to the degrading effects of geometric
distortion on cross-cerrelation 1s needed by evaluating tradeoffs between patch
size and iterative registration. Control point placement techniques need to be
compared in terms of overall performance; particularly, the adaptive placement
scheme described earlier needs to be tested. Robust estimation techniques saould

be investigated for their applicability to registraiion.
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