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ABSTRACT

The effect of rolling motion of a wing on the magnitude of
error introduced due to the wing vibration when measuring atmo-
spheric turbulence with a wind probe mounted on the wing tip is
investigated. The wing considered has characteristics similar to
that of a B-57 Cambera aircraft, and Von Karman's cross spectrum
function is used to estimate the cross-correlation of atmospheric
turbulence. Although the error calculated is found to be less than
that calculated when only elastic bendings and vertical motions of
the wing are considered, it is still relatively large in the frequency's
range close to the natural frequencies of the wing. Therefore it
is concluded that accelerometers mounted on the wing tip are needed
to correct for this error, or the atmospheric velocity data must

be appropriately filtered.
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CHAPTER 1
INTRODUCTION

The aim of this study is to determine the relative error in turbu-
lent velocity measurements caused by the vibrations of the wing of a
B-57 Cambera-type airplane when atmospheric turbulence is measured by a
probe mounted on the wing tip. NASA is planning a program to measure
turbulence data using a B-57 airplane. Whether or not accelerometers
should be mounted on the wing tip in order to obtain accurate measure-
ments is relevant to this program. Reference [1] contains a similar
analysis. It uses spectrum analysis to measure the wing tip velocity
spectrum and the error introduced in the turbulence measurement due to
the wing vibration for the same aircraft. In the aforementioned work,
the motion of the airplane was restricted to vertical motion and
vertical bending of the wing. The restriction of the airplane to
vertical motion and vertical bending while ignoring rolling, may cause
an overestimation of the magnitude of the elastic modes. If rolling is
taken into account, the magnitudes of the elastic modes will be less due
to a relaxation of the elastic modes. In other words, the coupling
between the rolling motion and the other types of motion (as will be
seen later, the coupling is between the rolling mode and the antisym-
metric modes only) may cause the wing to vibrate less than the amount

predicted when the airplane is restricted to vertical motion, and hence

*Numbers in brackets correspond to similarly numbered references in
the List of References.
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the relative error in the measured turbulence would be less than that
calculated in [1].

A secondary aim of this work is to more fully document the computer
program that was used in [1] with the modifications for rolling motion
included. The complete computer code with annotations is given in the
appendix.

Before tackling the direct problem, a brief discussion of spectrum
analysis is given. Since Wiener first published his classical monograph
[2] in 1933, spectrum analysis has been increasingly used in wide and
diverse scientific areas. That monograph showed for the first time how
to use the Fourier integral as a link between two otherwise distinct
branches of mathematics--namely, statistics and analysis. The complex
form of the Fourier integral theorem states that if f(t) is absolutely
integrable on the whole t axis and if f(t) is piecewise smooth on every

finite interval, then the following equality holds:

m

F(t) = L f du f F)ele(r-t) 4, (1.1)

The function:
Flw) = —— J £(1)e P | (1.2)

is called the Fourier transform of f(t). If Equation 1.1 holds for

f(t), then we have:

£(t) = Flw)e™ 19%q, (1.3)

—
3
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i.e., f(t) is the (inverse) Fourier transform of F(w). The advantage of
transforming a function from one domain to another (e.g., from time
domain to frequency domain) is that the complicated mathematical opera-
tions on the original function (such as convolution and differentiation)
are reduced to simple algebraic operations on the transformed function.
A brief historiga] account of Fourier analysis can be found in [3].

Reference [4] is a highly readable book on Fourier aha]ysis.



CHAPTER II
ASSUMPTIONS ABOUT TURBULENCE AND AIRPLANE MOTION

To calculate the response of an airplane to atmospheric turbulence,
several elements are needed. These are:

1. The statistical description of the turbulent field (the
input.

2. The calculation of the aerodynamic forces associated with
the turbulent field (the gust forces).

3. The calculation of the transfer functions which relate
the airplane motion (or other quantities of interest)
to the gust forces.

4. The combination of the turbulence description with trans-
fer function to obtain the output.

Steps 2 through 4 depend strongly on the method adopted for
describing the turbulent field in Step 1. The analysis that follows
utilizes the two-point correlation function of the velocity component of
interest. The turbulent field is considered to be homogeneous, isotro-
pic, and momentarily frozen (Taylor's hypothesis).

Another important factor in describing the atmospheric turbulence
is its randomness in the flight path of the airplane. In the case of
what is called one-dimensional gust, the gust field is considered to be
random in the direction of the flight but is assumed uniform in the
spanwise direction as depicted in Figure la. This assumption is satis-
factory as long as the ratio of the span of the airplane to the turbu-
Tence length scale is small (less than one-tenth). However, if this is
large, i.e., the turbulence length scale is small, the gust should also

be considered random in the spanwise direction as depicted in Figure 1b.



(a) One-dimensional gust (b) Two-dimensional gust

Figure 1 Illustration of a one- and two-dimensional gust.

Thus in the case of two-dimensional gusts, the problem of calculat-
ing the response of an airplane is essentially one of determining the
response of a linear system, i.e., the airplane, to a multi-dimensional
stationary random process which in this case is the atmospheric turbu-
lence. The assumptions of linearity and stationarity made in Reference
[1] are also made in this study.

The problem of calculating the response of an airplane to gust
loads in the general case is a formidable one. To simplify the work
required, some assumptions concerning the motion of the airplane are
needed. The airplane is restricted to vertical motion and to distortion
in the first few free-bending modes of the wing. In addition to
vertical motion and vertical bending, the rolling of the wing about its
symmetry axis is taken into consideration. The restriction of the air-
plane to vertical motion and elastic bending of the wing is tantamount
to the assumption that the moment of inertia of the fuselage about the
x-axis (see Figure 2) is infinite. The inclusion of the rolling motion
of the wing and ignoring the rolling motion of the fuselage is

5



Figure 2 Coordinate system.

equivalent to the assumption that the moment of inertia of the fuselage
is negligible. 1In this case the central part of the wing is taken to
have high stiffness so that it can roll but not bend appreciably. The
actual wing vibration is somewhere between these two extreme cases,
i.e., the actual solution is in between that calculated in Reference [1]
and the one calculated in this work. The motions and bendings of the
wing considered are those caused by only the vertical component of the
gust acting on the wing of the airplane.

According to the preceding simplifications, the pitching and yawing
motions of the airplane are ignored. Also, the contribution to roll by
the gust acting on the tail is not included in the analysis.

The airplane considered in this work is one that has wing charac-
teristics similar to that of a B-57 wing. The system of axes employed
is shown in Figure 2 where the spanwise coordinate, y, is the indepen-
dent variable and the vertical displacement, w, is the dépendent vari-
able. The angle of rotation of the wing about the x-axis is denoted by

6



8. The wing is assumed to be a flat plate having stiffness similar to

a B-57 wing, and the aerodynamic forces appearing later are those
calculated from strip theory. The distributions of the mass and that of
the semi-chord across the semi-span are shown in Figures 3 and 4,
respectively. For calculating the atmospheric turbulence power spec-

trum, the von Karman cross spectral function as defined in [5] is

assumed.
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CHAPTER III
SPECTRUM ANALYSIS

3.1 Qutput Spectrum of a Single Input

Consider a random process P(t) and an ensemble member p(t) of this
process. The autocorrelation function of P(t) is defined by:

Rp(t,t+r) = E[P(t)P(t+t)] (3.1)

where E denotes the expected value. In this case the process P(t) is
stationary and the autocorrelation function becomes a function only of
time difference t; that is,

Rp(t,t+T) = Rp('r) (3.2)

Note that in practical situations we are usually forced to work
with only one ensemble member of a process and, consequently, derive
mean value, correlation function, etc. from this member. For this we
assume the ergodic theorem, which allows time averages to be equated to

the corresponding statistical averages, i.e.,

.

E[P(4)] = Jim gy lp(t)dt (3.3)
T

Ry(<) = lim a J p(t)p(t+c)dt (3.4)
T

An even more useful statistical characteristic of a random process

is its power spectrum which is defined as the transform of its

correlation function:



opl) = [ Ro(m)eT Ten (3.5)

If p(t) is the input to a linear time invariant system, the
response of this system is expressed as a convolution integral of p(t)

and an influence function h(t):

co

o(t) = [ pOn(E-1)ds - (3.6)

- 0O

For the analysis represented in the next chapter, p(t) represents the
gust at one station along the wing and h(z,t) is the impulse response

at the right wing tip. The Fourier transform of h(z,t) will be denoted
as H(%2,w) and will be defined as the right wing tip velocity due to a
gust located at a station Y1 along the wing. To simplify notation,
h(2,t) and H(%2,w) will be written as h(t) and H(w) with the under-
standing that they represent the impulse response and the transfer func-
tion at the right wing tip. Now, the autocorrelation function of the
output can be shown [6] to be related to the correlation function of the

input as follows:

R (1) = j J Ry (42303 h(ap)drydi, (3.7)
Taking the Fourier transform of both sides of Equation 3.7 yields:

¢G(w) = J Roe'1wTdr (3.8a)
where



¢c(w) = J h(A]) J h(Az) J Rp(1+k1—kz)e-indeX2dA] o (3.8b)

The change of variable » = © + A - Ay produces:

(o}

¥ iwh SR YY) . -
¢ (w) = f h(A1)e ! J h(xz)e 2 f Rpe"wxdx (3.9)

-0 OO

The first two integrals are recognized as H*(w) and H(w), respectively,

and the third is ¢p(w) as given by Equation 3.5. The preceding equation
can be written:

05(0) = o, (w) [H(w) |2 (3.10)

This equation is the basic equation used in spectrum analysis. The
procedure to calculate the output spectrum, in the case of single input,
is now clear: The transfer function H(w) is calculated first and then
the square of its magnitude is multiplied by the assumed input power
spectrum which, for the purpose of the analysis presented herein, is the

von Karman spectrum function.

3.2 OQutput Spectrum of Multiple Inputs

Consider a linear system having multiple random inputs. In the
case treated here, the wing of an airplane subjected to two-dimensional
turbulence may be considered such a system. The variation of gust
intensity in the spanwise direction produces different influence func-
tions h(r,y,t) at different sections of the wing. The total response
then is the superposition of the response due to disturbances at each
individual section. Hence, the response may be given by the following

equation:
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2
o(t) = f
2

[ ptysrInty,t-0)andy (3.11)

where £ is the half length of the wing and p(y,A) is the input at time A
at a station y with width dy. Also, it is understood that the response
is being computed at 2; hence, & has been omitted from the parenthesis.

An alternative form of Equation 3.11 is:

2
o(t) = j
2

[ n(yrpty,t-n)andy (3.12)

The correlation function of the output is:
RG(T) = g(t)o(t+T)

- T T T T hlyqs29)h(yos20)p(yyst-2y)plyp, tHe-25)

- = =® ax

x dk1dA2dy]dy2 (3.13)

where the overbar denotes the time average. Expressed in terms of the

correlation function, Rp, of the input, Equation 3.74 becomes:

2 2 oo oo
R (1) = J J J f 1y 529 I0(52 IR0 (Y7 5¥p5 4 -2 )0y d vy (3.14)
..)Q -Q -0 =00

Taking the Fourier transform and then using the change of variable A =

TTA]-AZ, Equation 3.14 becomes:

2 2

¢,(w) = J f H*(y1,0)H(y0)ep(¥y5Y5,0)dyydy, (3.15)
-2 =2

where ¢p(y],y2,w) is a cross spectrum function. From the definition of

the cross spectrum, it can be seen [6] that the following relation holds:
11



0 (¥72¥g00) = 6(yp.¥750) | (3.16)
where "*" denotes the complex conjugate. Because of Equation 3.16 and
because of the symmetry of the domain of integration and by changing the
limits of integration, the integrand (with new limits of integration) in
Equation 3.15 can be written as:

0 (Y1 s¥ps0lH(y 0¥ (yg,0) + ¢, (ypsypseli(yyse)H*(yy,0)

P

= ¢p(y1,y2,w)H(y],w)H*(yz,w) + ¢E(Y1’yzaw)[H*(yZ’w)H(y]:w)]*

=4 (y]yZaw)H(y]’w)H*(stw) + [¢p(y]ay29w)H(y]aw)H*(yZaw)]*

p

2Re[¢p(y]astw)H(y]sw)H*(yZaw)] (3-]7)

where Re[ ] is the real part of the quantity [ ]. Therefore, Equation
3.15 becomes:

2 2
0o (0) = | | 2Rels (yy:9p0)H(yy )y 00 Ty, (3.18)

-2y,
By the assumption of isotropy of the atmospheric turbulence, the input
spectrum ¢p(y],y2,m) is a function only of the separation distance n,
i.e., ¢p(y],y2,w) = ¢p(y1-y2,w). By this assumption and by making the
change of variables n = Y1 - Y and y = Yo and by interchanging the
order of integration, Equation 3.18 becomes:

2% 2=n

05() = | sp(nsw)2Rel [ H(y,w)He(yn,)dydn] (3.19)
0 2

This equation relates the output spectrum ¢o(w) to the cross spec-
trum ¢p(n,w) of the inputs. In this study, ¢p(n,w) is the cross spec-

trum of atmospheric turbulence, and H(y,w) is defined as the velocity of

12



the right wing due to a unit sinusoidal gust of frequency w located at y
along the wing. Consequently, o(t), as defined in Equation 3.11,
becomes the root mean square velocity of the right wing tip due to the
gusts acting on the entire wing. Hence, ¢G(w) is the spectrum of the
velocity of the right wing tip caused by the vertical components of the

gust.

13



CHAPTER IV
SPECTRUM OF WING TIP VELOCITY

In the Chapter I, two types of gusts were considered: one- and
two-dimensional gusts. These two cases are illustrated in Figure 1,
page 5. For one-dimensional gusts, the intensity of the gusts is the
same along the span, and hence there is no tendency to roll. But for
two-dimensional gusts, the intensities of the gusts at different points
of the span are different. These variations in gust intensities along
the span give rise to a net rolling moment, which then results in roll-
ing motion.

Whether to consider a gust to be one- or two-dimensional depends on
the relative sizes of the wing and the scale of turbulence. To elabo-
rate on this statement, let us consider the gust to be composed of a
number of sinusoidal gust components. The components with long wave-
length tend to have uniform and small intensity along the span, and
hence they produce no moment. The components with very small wavelength
produce intensities along the wing that tend to cancel each other and
again produce no tendency to roll. Figure 5 illustrates the effect of
the components with long wavelength on the wing, and Fiqure 6 illus-
trates the effect of the components with short wavelength on the wing.

In contrast to the components with very long or very short wave-
lengths, the components with intermediate wavelength are found to be the
major contributors to the rolling motion. These intermediate wave-

lengths are of the order from one to ten times the span of the wing.

14



Figure 5 Effect of gust with Tong wavelength on the wing.

A M O
At 1A /AN

Figure 6 Effect of gust with short wavelength on the wing.
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The effect of a sinusoidal with wavelength equal to that of the span is
illustrated in Figure 7.

The airplane considered in this study is a B-57 Cambera-type air-
plane which has a wing span of 22 = 66 feet. Houbolt [7] recommends a
length scale of atmospheric turbulence of L = 300 feet, which is about
1.8 times the span of the wing; a ratio that falls within the range of
the intermediate components mentioned earlier. Hence, a two-dimensional
spectrum analysis is required and the rolling motion should be taken
into account.

The questions concerning the statistical description of the turbu-
Tence bejng settled (recall the assumptions given in the Chapter I and

the discussion in the last few paragraphs) and following the outline

Figure 7 Effect of gust with wavelength equal to the length of the
wing.
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given in the Chapter I there still remains the task of calculating the
aerodynamic forces associated with the turbulent field, the determina-
tion of the transfer function from the equation of motion, and finally
the calculation of the output spectrum.

Let us first consider the free vibration of a beam. Consider an
element of length dy. This element undergoes a verticai motion and
rotary motion about its center of mass and a shearing deformation. The
free-body diagram and the geometry for the beam element are shown in

Figure 8. The following quantities can be defined:

w = deflection of the centerline of the beam.
dw _ 1 13
dy ~ slope of the centerline.

v = slope due to bending.

Shear Angle

e y —>je dy »|

Figure 8 Free-body diagram of a beam segment.

y
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If there is no shear deformation, the perpendicular to the face of the
cross section will coincide with the centerline of the beam. In case of
shearing deformatibn, these Tines will be distinct and the shéér'angle
will be eqUa] to ¢ - dw/dy. |

From flexure theory [8], we have these two elastic equations for

the beam:
dw _ V
V- 4y T KAS (4.1)
and
s (4.2)

where V is the shear force, M is the bending moment, A is the cross-
sectional area, k' is a factor depending on the shape of the cross
section, G is the modulus of elasticity in shear, and EI is the bending
stiffness. The equations of equilibrium of the moments and of the

forces are given by:

. _ dM
Jy = W - (4.3)
and

L dV
mw = - a—y : (44)

where J and m are the rotary inertia and mass of the beam per unit
Tength, respectively.

Substituting Equations 4.1 and 4.2 into Equations 4.3 and 4.4,

respectively, we get:

_g_. g_"l.}. ! gi - - . =
dy[EI dy] + k AG(dy ] Jy = 0 (4.5)
and

18



mii - é%—{k'AG[gg-- w]} = 0 . (4.6)
which are the coupled equations of free vibration for the beam in the .
general case. Theoretically, these equations can be solved simulta-
neously for arbitrary variations in elastic and inertial properties of
the beam. In practice, closed solutions are difficult to obtain,

except under certain simplifying assumptions. For example, if EI and A

are constant, these two equations can be reduced, after eliminating v,

to a single equation:

32w 32w EIM 32w Jm  oMtw _
El 55z + M 557 - [J * k'AG] 5yZotZ T k'AG at% - O (4.7)

The wing we are dealing with can be considered as a slender beam in
which the cross-sectional dimensions are small in comparison with the
Tength, and for which rotary inertial effects and shear deformations may
be neglected [9]. 1In this case, the equations of motion, Equations 4.5
and 4.6, can be reduced to one equation as follows: Since the shear
angle is zero (equivalently, the shear modulus G is infinite), y should
be equal to dw/dy, also the term J@ in Equation 4.3 is neglected, then

Equations 4.1 and 4.3 can be written as:

= dw
Y= dy (4-8)
and

_ dM :
V = &y (4.9)
Substituting the value of V from Equation 4.9 into Equation 4.4 we get:
d2M _ .
&z " - | (4.10)

The bending moment is related to the curvature by the flexure equation:

19



d3w '
M=EI ¢y_2 (4-]])
Using this relation, Equation 4.10 becomes:
32 32w ..
a—y—z{EI 5‘)72‘] = ~mwW (4-]2)

As indiciated by Timoshinko, et al. [8], the error in calculating
the natural frequencies of a beam with small cross-sectional dimension
in comparison to its length using Equation 4.12 instead of Equations 4.5
and 4.6 is very small. Therefore, Equation 4.12 is adequate for calcu-
lating the natural frequencies of the beam, and it will be used in the
analysis that will follow.

Consider a wing with varying mass and stiffness along its span. If
a sinusoidal gust is acting on a spanwise element of length, A, centered
about a point, Yys then the following equation for the balance of forces

holds:

52 3%w| _ -
W[EI WZ—] = -Mw - FM + FGG(y,y1) (4-]3)

2 EI 32w

3y2 ?yZ

is the force due to beam stiffness and mw is the inertial force as
defined in the preceding discussion. FM is an aerodynamic force due to

the motion of the wing and is given in [10] as:

Fy = mob2W + 2mpVbC{k)w (4.14)

where p is the density of the flight medium, b is the semi-chord of the
wing, V is the mean flight speed, and C(k) is the Theodorsen function.

The Theodorsen function is a function of the reduced frequency

20



(k = wb/V) of the motion. In terms of the Bessel functions, C(k) is:

C=
(J] + yo)z + (Y] - J‘)z

(4.15)

A11 the functions appearing in Equation 4.15 are functions of the
reduced frequency k. FG is the force due to the vertical gust and is

given [9] by:

Fe = zanZb[ ]K(k) | (4.16)

where K(k) is the Kussner function. K(k) can be expressed in terms of
Theodorsen and Bessel functions:

= C(J0 - iJ]) + 1J] (4.17)

The function G(yz,yl) which acts on FG in Equation 4.13 selects the

portion of the wing which is subjected to gust and is zero everywhere

except between yq - A/2 and ¥y + A/2 where its value is unity.
Substituting the forces defined by Equations 4.14 and 4.16 into

Equation 4.13 we obtain the following differential equation:

2 52 .
gyz[EI 53%@ = -mii - mpb%i - 2moVbC(k)W + 2mpV2bK(k) - 8(y.y;) (4.18)

The boundary conditions for a free-body wing are:
w'(2,t) = w" (2,t) = w'(-2,t) = w" (-2,t) =0 (4.19)
These boundary conditions express the fact that there is no shear nor

moment at the wing tips.

Equation 4.18 is a forced-vibration equation for the wing, the

free-vibration equation is:

[ET(w"(y,t)]" = -mi(y,t) (4.20)

21



Assuming that there is a solution for the free-vibration equation of the
form: " |
wiy,t) = ¢(y)T(t) (4.21)

we obtain, after substituting in Equation 4.20,

) d2 . nin
- %’Hf;'= %g [E14"] (4.22)
This equation is valid only if both sides are equal to some constant w?.

Thus, Equation 4.22 is equivalent to the two equations:

2
T+ w2 =0 | (4.23)
[EI4"]" = mw2¢ (4.24)

The initial conditions for Equation 4.23 are:

T(0) = T(0) = 0 (4.25)
The boundary conditions of Equation 4.24 are:

o" (2) = ¢™ (-2) = ¢"(2) = ¢"(-2) = 0 (4.26)
which corresponds to the shear and bending moment being-zero at the
ends, as is the case for free ends.

Physically, ¢ represents the shape of a natural mode and w is the
vibration frequency corresponding to this mode. There is an infinite
number of values of w which satisfies Equation 4.20, and to each one of
these values there corresponds a particular ¢. Thus, the solution of

Equation 4.20 can be expressed as:

Wlyst) = T o ()T5(0) (a.27)

The natural modes, ¢4, are orthogonal [9] because of the choice of the

boundary conditions. The orthogonality condition is given by:
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2 2 Miw$ for i = j
(4.28)

nju — 2 -
J [EI¢1 ] ¢jdy = wg J m¢i¢jdy =
-2 -2

0 for i #

Substituting the value of w(y,t) from Equation 4.27 into Equation
4.18 énd using the orthogonality property of the modes we get a system

of linear differential equations in terms of the natural modes:

. N . N .
2T = _ _ 2 X - 3
meme Mme ﬂpr jZ] Aijj 2prbR (k) jZ]_ijTj
u(yy)
+ anvszK(k) — ¢m(y1)a(y])A (4.29)
where Kﬁj and §ﬁj are aerodynamic cross terms given by:
2
—_— )
Amj f a ¢m¢jdy (4.30)
-2
2 .
ij = f a¢m¢jdy (4.31)
-2

The term a(y) is the semi-chord distribution defined as a(y) = b(y)/bR.
Mm is the generalized mass of the mode L corresponding to natural
frequency w, as defined by Equation 4.28. M] and M2 are the mass and
moment of inertia of the wing, respectively, and they are the general-
ized masses of the rigid-body vertical and rolling motions. These rigid-
body modes have frequencies wy = wy = 0. In [1], the rigid-body rolling
¢, Was not included in the system of linear differential equations
represented by Equation 4.29. As mentioned earlier, the restriction of

the rigid-body motion to vertical motion only may cause an overestima-

tion of the elastic vibrations of the wing. Hence, in the calculations
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that will fb]]ow, ¢ will be included in the system of linear diffential
equations so that the effect of rolling is accounted for in the solution
of the system of equations.

Let us assume that the input and the output are sinusdidal having

the forms:

u = ﬁ'eiks and T =T elks (4.32)

where the variables k and s are defined as follows:

wbR

k = w and S = (4.33)

U<
r

R

Substituting the values of u and Tm into Equation 4.29 and dividing

throughout by mpV2S eiks, we obtain a system of linear algebraic
equations:
) ) N N
= _ 2 T _ . _
woAE: = K2u g+ k jz] Amjgj + 2ikC(k) jZ] ijgj
2bRK(k) _
+ —e— o (y7)alyq)s (4.34)
where
0 = “mPR
m v
Ao DRl
mj S
_ bRij
mj S
o = Mm
m ﬂprS
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The solution Eﬁ of the system of Tinear algebraic equations,

Equation 4.34, represents the amplitude of the modal response of the

deflection of the wing to a sinusoidal gust. If gm'= Eﬁe1ks is differ-

entiated with respect to time, the amplitude of the wing tip velocity of
the modal response is obtained:
d(g ) T

m oo omV _ .
d% 1k$:~1“’
. u

T

(4.35)

E||S

The transfer function, which is the velocity of the right wing tip

velocity due to a sinusoidal gust located at Yi» is then:

Tj (.y'] sw)

Hi~122

H(y],w) = ju (4.36)

J

3 u

The summation in the preceding equation is carried over the bending
modes only since the navigation system in the airplane can subtract the
rigid-body motion from the turbulence data.

The numerical procedure for calculating the velocity spectrum of
the wing tip is outlined in the following paragraphs (for full details
see Reference [1]). The complete computer code with annotations is
given in the appendix.

The numerical procedure is essentially divided into three sub-
routines. The free-vibration problem is solved in the first subroutine.
The forced-vibration problem is solved in the second subroutine.
Finally, the velocity spectrum of the right wing tip is calculated in

the third subroutine.
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The first subroutine solves the free-vibration equation:
[ET¢"]" = mw2¢  for -2 <y <2 (4.37)
with boundary conditions
o™ (&) = ¢™ (-2) = ¢"(2) = ¢"(-2) = 0 . (4.38)
The coefficient m is the mass per unit length and EI is the bending
stiffness of the wing. Both m and EI are a function of y. In [1],
three different distributions of EI were considered. These are classi-
fied as: (1) standard wing, (2) stiff wing, and (3) flexible wing. The
standard wing has a stiffness given by:

El 8

9 x 10 for y < [11]

7

EI = 9x 10 for y > [11] (4.39)
The above values were determined using a static analysis assuming a
maximum loading on the B-57 wing and a load factor of 10 g. The funda-
mental frequency of this wing was found to be about 4 Hz.

The stiff wing has a bending stiffness given by:

El = 3 x 10° for y

1A

[11]

8

EI =3 x 10 [11] (4.40)

for y

v

These values were determined by a trial and error method so that the
fundamental mode would have a frequency close to 7 Hz as determined
from an in-flight experiment with the B-57 at NASA/Langley Research
Center.

The flexible wing was considered for comparison purposes; it has
a bending stiffness:

El 6

9 x 10 for y < |11}

> 111 (4.41)
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The stiff wing is the most representative of a B-57 wing, and
therefore it is used in the numerical calculations of this study. For
comparison purposes, the standard wing is also considered.

EI and m are defined symmetrically in the domain [-2,2] and so the
differential equation is either symmetric or antisymmetric. Because of
this, the problem needs to be solved only for 0 <y < 2. In this case,
the boundary conditions must be defined at the midspan of the wing. The

conditions at the origin for a symmetric function are:

$'(0) = ¢"'(0) =0 (4.42)
and the conditions for an antisymmetric function are:
$(0) = ¢"(0) = 0 (4.43)

An initial value of w is assumed, and then the fourth-order differ-
ential equation is changed to a system of four first-order equations. A
shooting method is used to estimate the complete set of initial condi-
tions, after which a Runge-Kutta scheme is used to determine the solu-
tion of the initial value problem. The value of the solution of the
initial value problem at y = & is compared with the boundary conditions
at y = 2 for the two-point boundary value problem. The estimate of the
complete set of initial conditions is improved. The process is repeated
until the initial value problem has the correct value for the boundary

condition at y = 2. The system of four first-order equations:

) (0 1 0 0 (o)

4o 0 o0 1 0 ||sp|
d - (4.44)
dy |93 0 0 0 1 | le3

¢ M2 -2EI' -EI'||o

S S A a5 oy Y
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has a vector base, {Eﬁ?=1, of its solution. Each solution:

9 = (4.45)

of Equation 4.43 is a linear combination of the base solution, i.e.,
_ g _
¢ = ¥.C.

j2p 1

For {E}}?=] to be a complete base, there should be four linearly inde-
pendent intial conditions. A simple choice of linearly independent

initial conditions is:

(1) (0] (0] (0]

_ o _ W of _ 0

v1(0) = ol ¥,(0) = o} ¥5(0) = N v,(0) = . (4.46)
0) 0 0 )

The boundary conditions are used to determine the constants {Ci}?=].

In the case of the even mode, we have the system of equations:

N\

(032(0)  0p5(0)  35(0)  wy,(0))(Cq] (O]
¥72(0)  95,(0) w5, (0)  w,,(0))C, 0
= (4.47)
¢13(l) ¢23(2) ¢33(2) w43(2) C3 0

01408) 0pa(8) wga () wgg(R)]iCqy  10]

To have a nontrivial solution of the above equation, the determinant of

the coefficient matrix must vanish. This determinant:
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0 1 0 0
0 0 1 0

D) - _ [tis(e) ug5(0) (4.48)
v13(8)  upa(e)  waa(e)  y,4(0) Uya(2)  wgqe(s)

U1a(2) o) wga(2)  wg,(2)

is a function of w, the unspecified parameter of the differential equa-
tion. This characteristic determinant vanishes when the correct values
of the natural frequencies, w5 s of the wing are found.

Now, we summarize the preceding numerical procedure. First, the
eigenvalue is estimated; then the fundamental solutions are determined
by a Runge-Kutta/Fehlberg order seven scheme. The value of the charac-
teristic determinant is calculated from the fundamental solutions. A
search routine checks if the natural frequency is bracketed between the
current estimate and the previous estimate. In this case, the program
is directed to a bisection routine to improve brackets or continues,
taking another step along the frequency domain and using this as its
next estimate of the frequency. After the frequency has been deter-
mined, the natural mode is normalized by a unit displacement at the
right wing tip. The new mode is integrated with previous modes deter-
mined to calculate the aerodynamic cross terms. The program then steps
along the frequency domain for its first and second estimates of the
next frequency.

The second subroutine of the program solves the system of linear
algebraic equations, Equation 4.34. This system is solved by Gaussian
elimination for 38 gust locations evenly spaced along the wing.

The third subroutine calculates the output power spectrum. It

integrates Equation 3.19 numerically using the trapezoidal rule:
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N N-1 N-j
= - l* ] - l*
¢C(j,w) ¢p(0,w) le HJHJ + JZ] ¢P(JA’w)2Re[-z] H1HJ ] (4.49).

where N is the number of gust stations and A is the gust station width.
The spectrum program determines the wing tip_ve]ocity spectrum; there-
fore, Hi must represent the velocity at the right wing tip due to a
sinusoidal gust at station i. The frequency response function is

defined as:

N

H.=.|_l'u

i
u

N~

. TJ. ' (4.50)

J
where NM is the number of elastic modes considered. The summation
includes the response of only the elastic modes because, as mentioned
earlier, the navigation system located at the airplane's center of

gravity allows subtraction of the rigid body motions from the turbulence

data taken at the wing tip.
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CHAPTER V

DISCUSSION AND CONCLUSIONS

In the spectrum analysis section, a mathematical treatment of -
stationary processes was shown. In order to apply these techniques to
problems dealing with atmospheric turbulence, the turbulence was assumed
to be homogeneous. In general, most types of turbulence tend to be
homogeneous, except those at low altitudes which may he influenced by
the configuration of the ground and those in thunderstorms.

The assumption of isotropy simplifies the expressions of two-
dimensional correlation functions because in this case a correlation
function can be expressed as one-dimensional correlation function of the
separation distance. For sufficiently short wavelengths, all turbulence
is isotropic [10], but for long wavelengths it is isotropic only if it
is homogeneous.

Taylor's hypothesis permits time correlation functions to be
expressed as space correlation functions. This is so because the gust
intensities remain the same until the airplane traverses this region of
turbulence. The speed of the airplane plays an important role in
. validating this hypothesis. At very low speeds, Taylor's hypothesis
becomes less valid and the results calculated may be less accurate.

A quantity of great importance is the turbulence length scale L.
Roughly speaking, L is a measure of the minimum separation distance for
which there is no correlation between two velocity components of the
gust. Many factors, such as weather conditions, altitude, and ground

configurations (for low altitudes) play a role in determining L. The
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estimates for L range between a few tens of feet to thousands of feet.
In this study, two turbulence length scales of 132 feet and 2,112 feet
were considered. Figures 9 and 10 show the turbulence spectrum and the
wing tip velocity spectrum of a standard wing and a stiff wing for these
two turbulence scales.

The relative errors in the atmospheric spectrum due to wing tip
vibration are shown in Figures 11 through 14. These were calculated
using the following reasoning: The wind velocity measured at the wing
tip is an apparent velocity since in reality it is the sum of the wing
tip velocity and the true velocity of the wind. This can be expressed
by the equation:

Um =y + Ur (5.1)

p
where Um is the measured velocity, Up is the true velocity of the turbu-
lence, and Ur is the wing tip velocity. From Equation 5.1 the correla-

tion function of the measured velocity can be expressed by the following

equation:
.
|
R (1) = _}_1m 7 ) U (80 (t+o)dt
00 -T
;
- Tim
= lin g RO ETROINCORNNGINCE
M

+ Up(t)UO(t+r)]dt

RO(T) + Rp(T) + ch(T) + RpU(T) (5.2)

iU

Taking the Fourier transform of the above equation we get:
o(@) = o(0) + o) + o (w) + b () (5.3)
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Figure 9 Spectra of wing tip velocity for standard and stiff wings
in atmospheric turbulence having spectrum illustrated

(Tength scale = 132 feet).
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Figure 10 Spectra of wing tip velocity for standard and stiff wings
in atmospheric turbulence having spectrum illustrated
(Tength scale = 2,112 feet).
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Figure 11 Relative error in measuring turbulence with length
scale 132 ft for standard wing.
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Figure 12 Relative error in measuring turbulence with length scale
2,112 ft for standard wing.
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Figure 13 Relative error in measuring turbulence with length scale
132 ft for stiff wing.
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Figure 14 Relative error in measuring turbulence with length scale
2,112 ft for stiff wing.
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Using the relation ¢cp = ¢30, Equation 5.3 becomes:

by = 0yt 0p + Red, (5.4)

P
where ¢p is the turbulence spectrum at the wing tip and ¢ is the power
spectrum of the wing tip velocity. The equation for ¢op can be written
as:

2%

bop = £ ¢p(n)H(£-ﬂ)dn (5.5)

The relative error due to the wing tip velocity can be written as:

lop = ¢
E = ;

pl _ l6g + Reo |
B

p p

(5.6)

Figure 11 shows the relative error as a function of frequency for a
standard wing and turbulence scale of 132 feet for two cases: (1) the
rigid-body motion is restricted to vertical motion and (2) the rigid-
body rolling is taken into account. This wing shows a large relative
error close to its fundamental frequency. This error reaches a maximum
of about 115 percent when the wing is restricted to vertical motion.
This maximum is reduced to about 94 percent when the rolling motion is
taken into account. The true error is believed to 1ie within these
limits (see Chapter II, page 5). The range in which this maximum occurs
falls within the frequency range which contains significant turbulence
energy. For a turbulence length scale equal to 2,112 feet, the maximum
relative error (see Figure 12) for the standard wing is reduced to about
50 percent when rolling is not considered and to about 38 percent when
rolling is added. But, this time the maximum relative error falls
within a range which is out of the frequency range that contributes sig-
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nificant turbulence energy. The stiff wing shows a smaller relative

error than the standard wing and the range of the maximum error is
slightly shifted to higher frequency. The addition of rolling motion
reduces this maximum from about 50 to 36 percent. For smaller turbu-
lence scales, this maximum error is very close to the range of frequen-
cies which contribute significant turbulence energy. But, for larger
scales this error is outside the range of frequencies of interest.

From the preceding discussion it can be seen that a stiff wing is
the best wing to measure turbulence and but even then in order to measure
accurately the whole range of the atmospheric spectrum depending on the

length scale, accelerometers mounted on the wing tips are required.
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APPENDIX

DOCUMENTATION OF THE COMPUTER PROGRAM VIB.FOR

The purpose of this appendix is to document the computer program
VIB.FOR used in [1] and, with modifications, in the text. Flowcharts
j1lustrating the complete computer code are given in [1]. An explana-
tion of the subroutines and parameters appearing in the program will
follow.

VIB.FOR is essentially divided into three subprograms: (1) the
free-vibration subroutine, D1, (2) the forced-vibration subroutine, D2,
and (3) the spectrum-analysis subroutine, D3. Each of D1, D2, and D3

has a number of subroutines and functions arranged in the following order:

I. SUBROUTINE .D1
1. Subroutine SZERO(W,H,N,NC,NN)
Subroutine RUN(W,F,EL,EU,NC,NN)
Subroutine BISEC(X1,F1,X2,F2,NC,NN)

W N

Subroutine FUNEV(K,X,Y,F)

Function SEI(X)

Subroutine SECANT(X1,F1,X2,F2,NC,NN)
Subroutine DMODE(YY,NN)

Function RM(X)

Function SIMP(Y,H,N)

O W N oY »

Subroutine COF(N,YY,W2,NN,IT)
11. Subroutine STRK(NN)
12. Subroutine RK7(NS,NN,EL,EU)
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IT. SUBROUTINE D2
Subroutine DO(NN,N2)
Subroutine COEF(RK,X,DEL ,N2M,NN)
Function RPH(I,Y,N)
Function RA(Y)
Function RY1(X)
Complex Function CC(RK)
Complex Function RKK(RK)
Function RJ1(X)
Function RYO(X)
Subroutine GAUSS (N,N2)
Subroutine BACKS (N1,N2)

III. SUBROUTINE D3
Subroutine SPEC(RK,RR,TL,N2,IC,RP)
Function TSPEC(SS,RNU,U,TL)
Subroutine COEF1
Function BSL1(Z)
Function POLY(A,N,Z)
Function BSL2(Z)
Subroutine COEF2

Subroutine D1

In this subroutine the first four frequencies and elastic modes are

calculated.

vibration is solved.

guess after which the differential equation representing the free

45

Frequencies are calculated by starting with an initial

From this solution the value of the characteristic



determinant is calculated. The first frequency is incremented and the
differential equation is solved for this new va]ué of the frequency.
Then the value of the characteristic deferminant is calculated and is
compared with the previously calculated value. If these twb values
have the same sign, the frequency is incremented again and the differ-
ential equation is solved and the characteristic determinant is calcu-
lated. This process is done repeatedly until the value of the
characteristic determinant changes sign, after which a bisection method
and a secant method are used to approximate the frequency that makes
the characteristic determinant vanish. The mode shape corresponding

to this frequency is calculated, and then the generalized mass and the
aerodynamic cross terms of all previously determined modes are calcu-
lated. The same procedure is used until the first four natural frequen-
cies and the corresponding elastic modes are determined together with
all generalized masses and aerodynamic cross terms.

Parameters. NC is the number of the mode to be calculated (the
first value of NC is two because model number one is considered to be
the rigid body translation mode which has zero frequency and a constant
normalized value equal to unity. Modes number two, three, four, and
five are the first four elastic modes. Mode number six is taken in
this program to be the rigid body rolling mode). H is the step size
in the frequency domain. W is the initial gquess of the natural
frequency. N = 4 is the number of elastic modes to be calculated.

NN = 151 is the number of nodes on a semi-span at which the values of

the modes are calculated.
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A.2 Subroutine SZERO(W,H,N,NC,NN)

Description. This subroutine starts with an initial guess of the
natural frequency and calls subroutine FUN which fixes the initial
values of the differential equation. Then FUN calls subroutine RK7
which solves the differential equation for the given frequency using
Runge-Kutta-Fehlberg method of order seven. After obtaining the solu-
tion of thé differential equation, FUN calculates the value of the
characteristic determinant and returns it to SZERO. Then, SZERO steps
along the frequency domain and repeats the above procedure to calculate
a second value of the characteristic determinant. SZERO checks for a
change in sign of the calculated values of the determinant. If there is

no change of sign, it steps again along the frequency domain and calcu-

lates a new value of the characteristic determinant, and then it checks
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for a change in sign of the last calculated values. If there is a
change in sign, SZERO calls subroutine BISECTION to approximate the
frequency that makes the characteristic determinant vanish. Then, SZERO
calls subroutine SECANT to improve the approxiﬁation found by BISECTION,
after which it calls subroutine DMODE to calculate the normalized values
of the mode at 151 points of the semi-span. Finally, SZERO calls sub-
routine COF to calculate the generalized mass of the mode and the aero-
dynamic cross terms of the mode with the other modes. The frequency
which was calculated last is used as an initial guess for the next
frequency and the whole process is repeated until the first four fre-
quencies are calculated.

Parameters. I is a counter which gives the number of calculated
modes. EL and EU are error bounds for Runge-Kutta method. W1 and W2
are two consecutive values in the frequency domain. F1 and F2 are the

corresponding values of the characteristic determinant.

SUEBROUTINE SZERO(WsHsNyNCyNN)
c THIS SUERROUTINE STEFS ALONG THE FREQUENCY [OMAIN UNTILL
c IT ERACKETS THE NATURAL FREQUENCY AND THEN CALLS A RISECTION
C ROUTINE AND A SECANT ROUTINE TO IMFROVE THE WIDTH OF THE BRACKETS.
C THE SUEROUTINE FINALLY CALLS SUR,,.IMODE _TO DETERMINE THE
Cc MODEy AND THEN CALLS COEF TO SET UF THE INTERGRATIONS OF MODES
Cc AND THEIR FRODUCYS.
Cxx*x EL & EU=ERROR EOUNDS FOR RUNGE KUTTA
CXxxx W1 & W2=BRACKETS FOR FREQUENCY ANI STEFS FOR THE SEARCH ROUTINE
CxX%x% F1 & F2=VALUES OF THE CHARACTERISTIC DETERMINTE FOR Wi & W2
CxXx%xx N=NUMERER OF EIGENVALUES TO RE SEARCHED
CxkxXx W=GUESS FOR EIGEN VALUE
CxxXxx H=STEF SIZE FOR _ SEARCH
Cxxxk NC=NUMEER OF THE FRIST MODE TO CALCULATE
CxXx¥kx NN=NUMEER OF NODIES TO CALCULATE MODRES ON
Cxkxx J=NUMBRER OF MODES CALCULATED' DURING PROCESS
REALX8 WyHsyW1yW2sF1yF25ELsEUsY» X
COMMON/FACT/Y(82151)yX(151) sGM(6)
?IgENSIDN YYC151)sXX(151)
Wi=W
EL=,0001D0
EU=.001D0
103 CALL FUN(W1sFi1sELyEUSNCsNN)
101 W2=W1+H
CALL FUNCW2sF2yELsEUSNCINN)
IF(F1%F2.LT.0.0) GO TO 102
Wi=W2
F1=F2
GO TO 101
102 CONTINUE
CALL RISEC(W1»F1,UW2yF2,NCyNN)
CALL SECANT(W1sF1,W2,F2yNCyNN)
CALL DMODECYYsNN)
I=I+1
WS=W2
CALL COF(NCs»YYsWSsNNsI)
NC=NC+1
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A.3 Subroutine FUN(W,F,EL,EU,NC,NN)

Description. This subroutine estimates the initial conditions for
the even and odd modes and then calls RK7 to solve the differential
equation. Finally, it determines the characteristic determinant-and
returns it to SZERO.

Parameters. EL and EU are error bounds for Runge-Kutta method. NC
is the number of mode being determined. W is the frequency. F is the
value of the characteristic determinant. Y is the matrix of the solu-

tion of the system of differential equations solved in RK7.

SURROUTINE FUN(W»FyELYEUINCsNN)
c THIS SUERROUTINE FIXES THE INITIAL VALUE FOR THE SOLUTION
Cc AND THEN CALLS SUE,,.RK7?(RUNGE KUTTA ROUTINE) TO DETERMINE SOLUTION
c AFTER WHICH THIS SUR CALCULATES THE VALUE OF THE CHARACTERISTIC
C DETERMINANT .
Ckkkx EL & EU =ERROR EOUNDS FOR RUNGE KUTTA
Ckxxx NC=WHICH MODE WORKING ON DETERMING
Ckxx Y=FUNDAMENTAL SOLUTIONS TO DIFFERENTIAL EQN OUTPUT FROM RK?7
Cxxx F=VALUE OF CHARACTERISTIC DETERMINTE
REALX8 RKyWsFsELYEU» Y X
COMMON/FACT/Y(8y1351)+X(151)
gEHGUN/EGNUL/RK
C INITIAL CONDITION TEST FOR EVEN OR ODD MODE
Do 100 I=1,8
100 Y(I,1)=0.D0
IF(NC.EQ.2.0R.NC.EQ,4) GO TO 101
C INITIAL CONDITION FOR ODID MOLE
Y¢(2»1)=1,D0
Y(8y1)=1.D0
60 TO 500
C INITIAL CONDITION FOR EVEN HMODE
101 Y(1,1)=1,D0
Y(7s1)=1.D0
500 CALL RK7(8yNNyEL,EU)
F=YC(3yNNIRY(ByNN)~Y(7sNNIXKY(4»NN)

A.4 Subroutine BISEC(X1,F1,X2,F2,NC,NN)

Description. This subroutine approximates the frequency after

finding an upper and a lower bound.
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Parameters. X1 is the Tower bound of the frequency and X2 is the
upper bound. F1 and F2 are the values of the characteristic determinant.

NC is the mode number of the frequency being determined.

SURROUTINE RISEC(X1yF1yX29sF2sNCyNN)
REALX8 X1sX2sF1sF2:FMsXMsELYEY
CCB=,.01
EU=,00110
EL=,0001D0
102 XM=(X1+X2)/2.D0
CALL FUN(XMsFMsEL>EUsNC»NN)
JF(F1XFM,LE.O.DO) GO TO 100
X1=XM
Fi=FM
GO TO 101
100 X2=XM
F2=FM
101 RE=DARS(X1-X2)
IF(RE.GT.CCB) GO TO 102
RETURN
END

A.5 Subroutine FUNEV(K,X,Y,F)

Description. This subroutine is called by RK7. It describes the
system of differential equations for the different orders of the Taylor
series.

Parameters. K is the order of the Taylor series term. F is the
matrix of the derivative values. Y is the matrix of the fundamental

solution. W is the frequency.

¢ jmeube e
UFFORTS

8 DIFEERENTOUTINE THE RUNGE KUTTA AND DESCRIBES THE
o THIS SUR WILL NEED CHANGING IF SEI I Y
Exx¥x F=DERIVATIVES VALUES S TERHS
Cxx¥x Y=FUNDAMENTAL SOLUTION
CXxxx W=FREQUENCY

REALX8 FsYyNRMNsWISEIX

DIMENSION F(8s13),Y(8)

COMMON/EGNVL/W

F(1,K)=Y(2)

F(2yK)=Y(3)

HERIEL ..

yK)=I FWXk2XY(

F(5:K)=Y(8) 1) /SELEX)

F(67K)=Y(7)

SH et

=q k2%
EEEGRN Y(S)/SEI(X)
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A.6 Function SEI(X)

Description. This function determines the bending stiffness of the
wing at any point of its span. SEI can be changed to fit any kind of
wing.

Parameters. X is the distance from the semi?span.

FUNCTION SEI(X)

Cxxx X=DISTANCE FROM SEMI SPAN
IMPLICIT REALX8 (A-H»0-2Z)
SEI=900000000.0t0

IF(X.GE.11.D0) SEI=90000000.010
RETURN
END

A.7 Subroutine SECANT(X1,F1,X2,F2,NC,NN)

Description. This subroutine improves on the approximation given
by BISECTION by decreasing the error bound on two successive values of
the characteristic determinant.

Parameters. X1 and X2 are two consecutive values in the frequency
domainy F1 and F2 are the corresponding values of the characteristic
determinant. EL and EU are the error bounds on the values of the calcu-

lated solution of RK7.

3 NE SECANT(X1,F13X2sF2sNCsNN)
EggiggTillFlrXZyFZ!XHI!FPIDX!XH!FH:CCS!EU’EL
EL=,0000000010D0
EU=.00000001D0
CCS=,0001D10
XM1=X1
CALL FUN(X1s»F1sELsEUINCHNN)

CALL FUN(X2yF2,ELsEUsNC/NN)
103 FF=(F2-F1)/(X2-X1)

DX=-F1/FP

éH=EI;H§(XH FHyELIEUSNCYNN)

AL ’ » ’ ) ’
IF((DARS(XM-XH1)/XM).,LT,.CCS) GO TO 101
IF(DARS(FH),.LT,CCS) GO TO 101
IF(FMHXF1.LE.0.DO) GO TO 200
X1=XM
Fl=FHM
XM1=XH
60 TO 103

S00 X2=XM
F2=FM
XM1=XH
G0 TO 103

101 X2=XM
F2=FM
RETURN
END
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A.8 Subroutine DMODE(YY,NN)

Description. This subroutine calculates the values of the modes at

151 points of the semi-span. These values are normalized such that the

value of the mode at the wing tip is unity.

Parameters. YY is the matrix of the values of the mode at NN = 151

points of the semi-span.
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A.9 Function DRM(X)

Description. This function gives the mass distribution along the
semi-span as given in Figure 3.

Parameters. X is the distance from the semi-span.

FUNCTION DRM(X)

IHPLIgéTngEAL*B (A-Hsy0-2)

RM=130.

?F(X.LE.4.DO) IIRM=2205.D0
IF(X.LE.11,.D0,AND.X.GE.8.D0) DRM=2600.1:0
RETURN

END

A.10 Function RM(X)

This function is the same as DRM(X).

E.8.) RM=2600,
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A.11 Function SIMP(Y,H,N)

Description. This function is called by COF to integrate the
functions to calculate the generalized masses and the aerodynamic cross
terms of the modes.

Parameters. Y is the mode matrix, H is the distance between two

consecutive nodes, and N is the number of nodes.

FUNCTION SIMP(YsHsN)
DIMENSION Y(N)
T1=0,
J1=N-2
72=0,
DO 100 I=3,J1,2
100 T1=T1+4Y(I)
DO 200 I=2,N:2
200 g%;;(a)+$2
SHX(Y(1)HY(NI+2,.XT144.%T2 .
RETURN /6
END

A.12 Subroutine COF(N,YY,W2,NN,IT)

Description. This subroutine calculates the generalized masses and
the aerodynamic cross terms of the modes. The rigid-body translation
and rolling and the first four elastic modes are taken into account.

Parameters. RP is the array of the six modes dealt with here.
RP(1,1I) represents the rigid-body translation and RP(6,I) represents
the rigid-body rolling. A and B are matrices for the aerodynamic
cross terms. RA is a matrix representing the semi-chord distribution

along the semi-span.

-0

UBROUTINE COF(NsYYsW2,NNs1I1)

c ?HIS SUBROUTINE SETS UP THE FUNCTIONS FOR INTEGRATION

Cxx%x YY=NEW MOLE THEN LATER USED AS SCRATCHED ARRAY

E¥ir NoFREQDENEY MOTES

Cxx =

Cx¥¥x GM=GENERALIZED MASS

CXXx A !u¥:eREEg;NAHHIC CROSS TERMS

Ckxx RA=

Cx*%* N=NUMBER OF MODE BEING WROKED ON

CxxXx NN=NUMBER OF NODES

Cxx¥ 11=N3H9%RT2§A}£2%?5€?F CALLED
OMMON/DA
gOHHON/TRﬁNl/H(é)»GH(é)’RF(61151)9A(6,6)vB(676)
DIMENSION YY(1S1)sXX{151)»RR(151)

Cxxx READ DATA

' H=33.,7/(NN-1)
IF(i1.6T.1) GO TO 500
DO 401 I=1sNN
601 XX(I)=(I-1)%xH
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A.13 Subroutine STRK(NN)

This subroutine sets up all the coefficients needed

Description.

in RK7 to solve the system of differential equations using Runge-Kutta

It also describes the semi-chord distribution

method of order seven.

n

The semi-chord distribution is illustrated

along the semi-span.

Figure 4.

1S a

RA

A, B, and C are the coefficient matrices.

Parameters.

X is

matrix representing the semi-chord distribution at 151 points.

the abscissa matrix of the mode values.
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This program solves the forced vibration program.
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NN is the number of modes at which modes are calcu-

Parameters.

Description.
First, it sets the input data and then it solves. the system of algebraic

calculates the amplitudes of the different modes due to s
at different stations of the wing and for different gust frequencies.
lated and N2 is the number of gust locations.

equations for different gust locations.

A.15 Subroutine D?



SUEROQUTINE D2
c THIS FROGRAM DETERMINES THE AMFLITUDRES OF THE DIFFERENT- -
c MODES TO A SINUSODAL GUST AT THE DIFFERENT STATIONS ALONG
c THE WING. SUE...DD TAKES CARE OF INPUT AND OUTFUT FLUS
c SETS UF THE COEEFICIENTS THAT ARE DRIVING _FREQUENCY INDEFPENDENT.
c SUBROUTINE COEF SET UP THE COEFFICIENT MATRIX FOR EACH LRIVING
[ FREQUENCY. WHILE SUR...GAUSS DIOES HALF OF THE REDUCTION AND
c SUEB...BACKS FINISHES THE REDUCTION ANDI DOES RACK SURSITUTION
c FOR THE DIFFERENT NON-HOMCGENOUS VECTORS CORRESFONDING TO
[ DIFFERENT GUST LOCATIONS.
Cxxkx NN=NUMBRER OF NODIES THE_MODES ARE DETERMINE ON
Ckx%xk N2=NUMBER OF GUST LOCATION
NN=151
N2=20
CALL DOC(NNsN2)
RETURN
END

A.16 Subroutine DO(NN,N2)

Description. This subroutine sets the constants needed later in
calculations of the mode amplitudes. Then it normalizes the generalized
masses and the aerodvnamic cross terms, after which different gust
frequencies are considered. For each of these frequencies, the coeffi-
cient matrix of the unknowns and the nonhomogeneous vectors for 19 gust
stations along the semi-span are calculated by calling subroutine COEF.
Subroutine GAUSS is called to perform reduction of the coefficient's
matrix of the unknowns. Finally, subroutine BACKS is called to perform
reduction on the nonhomogeneous vectors and to perform back substitution.

Parameters. Y is the solution of the system of equations, i.e.,
the amplitudes of modes. RP is the array of the six modes considered.

X is the gust Tocation. A and B were arrays of the aerodynamic cross
terms and now become the arrays of the normalized aerodynamic cross
terms. W is the array of the natural frequencies of modes. GM was the
array of the generalized masses of the modes; these values are normal-
ized and transferred to the array GAMA. OMEG is the reduced natural
frequency; these frequencies are reduced with respect to the semi-root

chord BR and flight speed of the airplane U = 575 ft/sec. RRK(37) is
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RO = 0.0765

the matrix of reduced frequencies of the gust.

denéity. S'= 960 ft° is the wing area.
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The coefficients of the

The nonhomogeneous vector has to be calculated
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This subroutine calculates the matrix of coefficients

Description.
homogeneous system are calculated only once since they do not change for

A.17 Subroutine COEF(RK,X,DEL,N2M,NN)
of the system of linear algebraic equations.
for 38 gust stations along the entire wing.

all the gust locations.
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DEL

f the homogeneous system.
f the gust.
the number of gust

RK is the reduced fre-

ix o
jons o
is

NZM

t matr
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the matrix of locat

1S

C is the coeff
X

the array of the nonhomogeneous vectors.

Parameters.
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A.19 Function RPH(I,Y,N)

Description. This function calculates an average value for the
modes stored in RP at a certain gust location.
Parameters. I is the mode number, Y is the gust location, and N is

the number of modes.

EONNON I TRANL /W) oH(6) »RP
X ’ ’ (69151)2A(696)
DEL=33,/C(N-1) 1622 BLr6)
NN=ABS(Y)/DEL+1
RPHCRPC T A AR TRaH (AR (1, NN RP
= , : »NN#1)~RP(I»NN))/DEL
IF(Y.LT.0.0) GO TO 500
80 TO 600
500 CONTINUE
IF(1.ER.3.0R.I.EQ.5) RPH=—RPH
IF(I.EDQ.6)RPR=-RPH
600 RETURN
END

A.20 Function RA(Y)

Description. This function describes the semi-chord distribution

along the semi-span.

Parameters. Y is the distance from mid-span.

A.21 Function RY1(X)

Description. This function is the Bessel function of the second

kind order one.

Parameters. X is the reduced frequency of the gqust.

FUNCTION RY1(X)

Z=(X/3.)%%x2

RY1=((((((,0027873%Z-,0400976)%72+,.31239513%2-1,3164827)%Z
13'3).(1682709 )XZ+.2212091)%2~-,6366198+.6366198XkXXALAG(X/2.)XRIL(X)

RETURN

END
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A.22 Complex Function RKK(RK)

Description. This funcfion is the Kussner function. It is calcu-
lated from Theodorsen function CC(RK) and Bessel functions RJO and RJ1.

Parameters. RKK(RK) is a function of reduced gust frequency RK.

COMPLEX FUNCTION RKK(RK)

C FUNCTION DBETERMINES THE GUST FORCE FUNCTION
COMFLEX CI,CC
COMPLEX CMPLX
CI=CMFLX(O0.,»1.)
PJ1=RJ1(RK)
RKK=CC(RK)>¥(RJO(RK)-CI¥PJ1)+CIXFJ1

A.23 Function RJI(X)

Description. This function is the Bessel function of first kind
order one.

Parameters. RJ1 is a function of reduced gust frequency RK.

¥Z+.,00443319)%Z2~,03954289)%Z

A.24 Function RJO(X)

Description. This function is the Bessel function of first kind
order zero.

Parameters. RJO is a function of reduced gust frequency RK.

+0039444)5%Z4.0444479)%Z-.3163866)%24+1,2656208) %

A.25 Function RYO(X)

Description. This function is the Bessel function of second kind
of order zero.

Parameters. RYO is a function of reduced gust frequency RK.
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£Z-,04261214)%2+,25300117)%Z
1+.6366198%kRIO(XIXALOGI(X/2,)

16)
36744869

+00024846%Z+4.004279
YXZ+.60936)%Z+.,

A.26 Subroutine GAUSS(N,N2)

This subroutine performs Gaussian elimination on the

escription.

D

coefficients matrix of the homogeneous system.

the number of equations and N2 is the number of

1S

N

Parameters.
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A.27 Subroutine BACKS(N1,N2)

This subroutine performs reduction on all the non-

escription.

D

homogeneous vectors corresponding to the gust locations on the semi-

Then it makes back substitution and calculates the unknowns.

span.
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19 is the number of the nonhomogeneous vectors

n

N1

Parameters.

N2 = 6 is

each corresponding to a qust location along the semi-span.

the dimension of the nonhomogeneous vectors.
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A.28 Subroutine D3

This program calculates the power spectrum of the

Description.

After assigning a turbulence scale it calls subrou-

tip velocity.

wing

tine SPEC to calculate the output spectrum corresponding to this scale.

N2 is the number of gust locations and N is the number

Parameters.

TL is the turbulence length scale.

of gust frequencies.
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.
2

The

RK is the reduced natural

This subroutine determines the output spectrum.

SS is the separation distance nondimensionalized by the turbulence scale
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A.31 Subroutine COEF1

Description. This subroutine is needed in order to calculate the
coefficients of the polynomial that approximates the modified Bessel

function of the second kind of order 5/6.

SUBROUTINE COEF1

§ JiERosURRONTINE SErs ur INE COFEIENETS F0R, THE poLyionIas

] ' L FUNC N OF THE

c SEECOND KIND S5/é ORDER,
gﬂgﬁ?glKlJ/ﬁ(lO)rB(lO)rA2(10)
AC1)=1,0/,%405612296
RO 100 I=1,9

100 ACI+1)=A(I)/I/(F+I)
F=1.,0-F
E€1)=1.0/5.56756615
0o 101 I=1,9

101 ER(I+1)=R(I)/I/(F+1-1,0)
S=4,%X(5./6.)%%2
A2(1)=1,
o 200 I=1,+9

200 A2(I+1)=A2(I)X(S-(2XI-1)%%x2)/8./1I

A.32 Function BSL1(Z)

Description. This function calculates the modified Bessel function
of the second kind of order 5/6.

Parameters. Z is a function of the reduced frequency of the turbu-

lence, z = (SS/1.339)/T + (1.339RNU)Z.
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A.33 Function POLY(A,N,Z)

Description. This function performs polynomial evaluations. These
polynomials are used in BSL1 or BSL2. The coefficients of these poly-

nomials are calculated in COEF1 and COEF2.
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Parameters. A is the matrix of coefficients of the polynomial. N
is the number of terms in the polynomial. Y is either 1/2 or (Z/2)2

depending on whether Z is less than or greater than 2.

FUNCTION POLY(AIN»Z)
[ THIS FUNCTION DOES THE POLYNOMIAL EVALUATIONS

DIMENSION A(N)
T=A(N)XZ
NN=N-2
DO 100 I=1sNN

100 T=(T+A(N-I))*Z
FOLY=T+A(1)
RETURN
END

A.34 Function BSL2(Z)

Description. This function evaluates the modified Bessel function
of the second kind of order 11/6.

Parameters. Z is a function of the reduced frequency of the turbu-

lence, Z = (SS/1.339)/1 + (1.339RNU)Z.

SL2¢2)
¢ THIENELARY1EN EUALU?EES THE MODIFIED BESSEL FUNCTION OF THE
COND KIND 11/6 ORDER,
C BB ON/R23/E(10)16(10),E2¢10)
IF(Z,LE.2) 60 10 100
Fot5ZEaRT (1.5707%Y ) KEXF (~Z) XPOLY(E25105Y)
B IPn. 0)%%2.0
100 REP:(i}Q.O);i(ll;f?i;gngliﬁiio;Z)))
—FOLY(Gs10sY) . /b,
RN LY (1S E IR (1170%3.121/76.0) Sk (RIN-RIF)
RETURN
END

A.35 Subroutine COEF2

Description. This subroutine calculates the coefficients for the
polynomial approximation of the modified Bessel function of the second

kind of order 11/6.

SURROUTINE COEF2
c THIS SUBROUTINE SETS UF THE COEFFICIENTS FOR THE FOLYNOMIAL
c AFPROXIMATIONS OF THE MODIFIED RESSEL FUNCTION OF THE
[ SECOND KIND 11/6 ORDER.
EO??O§£K23/E(10)rG(10)vE2(10)
Cxxkkx ONE OVER THE GAMMA VALUE OF 1+0RDIER XXkXXXX
E(1)=1,0/1.724362254
DO _100 I=1,9
100 E(I+1)=E(I1)/I/(F+I)
C***ttF ?Ng EINUS THE ORDER OF THE MODFIED BESSEL XX
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