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ABSTRACT 

The effect of rolling motion of a wing on the magnitude of 

error introduced due to the wing vibration when measuring atmo- 

spheric turbulence with a wind probe mounted on the wing tip is 

investigated. The wing considered has characteristics similar to 

that of a B-57 Cambera aircraft, and Von Karman's cross spectrum 

function is used to estimate the cross-correlation of atmospheric 

turbulence. Although the error calculated is found to be less than 

that calculated when only elastic bendings and vertical motions of 

the wing are considered, it is still relatively large in the frequency's 

range close to the natural frequencies of the wing. Therefore it 

is concluded that accelerometers mounted on the wing tip are needed 

to correct for this error, or the atmospheric velocity data must 

be appropriately filtered. 
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CHAPTER I 

INTRODUCTION 

The aim of thi,s study is to determine the relative error in turbu- 

lent velocity measurements caused.by the vibrations of the wing of a 

B-57 Cambera-type airplane when atmospheric turbulence is measured by a 

probe mounted on the wing tip. NASA is planning a program to measure 

turbulence data using a B-57 airplane. Whether or not accelerometers 

should be mounted on the wing tip in order to obtain accurate measure- 

ments is relevant to this program. Reference [l] contains a similar 

analysis. It uses spectrum analysis to measure the wing tip velocity 

spectrum and the error introduced in the turbulence measurement due to 

the wing vibration for the same aircraft. In the aforementioned work, 

the motion of the airplane was restricted to vertical motion and 

vertical bending of the wing. The restriction of the airplane to 

vertical motion and vertical bending while ignoring rolling, may cause 

an overestimation of the magnitude of the elastic modes. If rolling is 

taken into account, the magnitudes of the elastic modes will be less due 

to a relaxation of the elastic modes. In other words, the coupling 

between the rolling motion and the other types of motion (as will be 

seen later, the coupling is between the rolling mode and the antisym- 

metric modes only) may cause the wing to vibrate less than the amount 

predicted when the airplane is restricted to vertical motion, and hence 

*Numbers in brackets correspond to similarly numbered references in 
the List of References. 

1 



the relative error in the measured turbulence would be less than that 

calculated in [l]. 

A secondary aim of this work is to more fully document the computer 

program that was used in [1] with the modifications for rolling motion 

included. The complete computer code with annotations is given in the 

appendix. 

Before tackling the direct problem, a brief discussion of spectrum 

analysis is given. Since Wiener first published his classical monograph 

[2] in 1933, spectrum analysis has been increasingly used in wide and 

diverse scientific areas. That monograph showed for the first time how 

to use the Fourier integral as a link between two otherwise distinct 

branches of mathematics--namely, statistics and analysis. The complex 

form of the Fourier integral theorem states that if f(t) is absolutely 

integrable on the whole t axis and if f(t) is piecewise smooth on every 

finite interval, then the following equality holds: 

co co 

f(x)ei"(x-t)dX 

The function: 

03 

F(w) = -!- 
I 

f(x)eiwxdx 
dzY -00 

is called the Fourier transform of f(t). If Equation 1.1 holds for 

f(t), then we have: 

(1.1) 

(1 .a 

co 

f(t) = J- 
f 

F(m)emiwtdm 
Jz;; B-m 

(1.3) 



i.e., f(t) is the (inverse) Fourier transform of F(W). The advantage of 

transforming a function from one domain to another (e.g., from time 

domain to frequency domain) is that the complicated mathematical opera- 

tions on the original function (such as convolution and differentiation) 

are reduced to simple algebraic operations on the transformed function. 

A brief historical account of Fourier analysis can be found in [3]. 

Reference [4] is a highly readable book on Fourier analysis. 



CHAPTER II 

ASSUMPTIONS ABOUT TURBULENCE AND AIRPLANE MOTION 

To calculate the response of an airplane to atmospheric turbulence, 

several elements are needed. These are: 

1. The statistical description of the turbulent field (the 
input. 

2. The calculation of the aerodynamic forces associated with 
the turbulent field (the gust forces). 

3. The calculation of the transfer functions which relate 
the airplane motion (or other quantities of interest) 
to the gust forces. 

4. The combination of the turbulence description with trans- 
fer function to obtain the output. 

Steps 2 through 4 depend strongly on the method adopted for 

describing the turbulent field in Step 1. The analysis that follows 

utilizes the two-point correlation function of the velocity component of 

interest. The turbulent field is considered to be homogeneous, isotro- 

pic, and momentarily frozen (Taylor's hypothesis). 

Another important factor in describing the atmospheric turbulence 

is its randomness in the flight path of the airplane. In the case of 

what is called one-dimensional gust, the gust field is considered to be 

random in the direction of the flight but is assumed uniform in the 

spanwise direction as depicted in Figure la. This assumption is satis- 

factory as long as the ratio of the span of the airplane to the turbu- 

lence length scale is small (less than one-tenth). However, if this is 

large, i.e., the turbulence length scale is small, the gust should also 

be considered random in the spanwise direction as depicted in Figure lb. 
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(a) One-dimensional gust (b) Two-dimensional gust 

Figure 1 Illustration of a one- and two-dimensional gust. 

Thus in the case of two-dimensional gusts, the problem of calculat- 

ing the response of an airplane is essentially one of determining the 

response of a linear system, i.e., the airplane, to a multi-dimensional 

stationary random process which in this case is the atmospheric turbu- 

lence. The assumptions of linearity and stationarity made in Reference 

[1] are also made in this study. 

The problem of calculating the response of an airplane to gust 

loads in the general case is a formidable one. To simplify the work 

required, some assumptions concerning the motion of the airplane are 

needed. The airplane is restricted to vertical motion and to distortion 

in the first few free-bending modes of the wing. In addition to 

vertical motion and vertical bending, the rolling of the wing about its 

symmetry axis is taken into consideration. The restriction of the air- 

plane to vertical motion and elastic bending of the wing is tantamount 

to the assumption that the moment of inertia of the fuselage about the 

x-axis (see Figure 2) is infinite. The inclusion of the rolling motion 

of the wing and ignoring the rolling motion of the fuselage is 
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i 

fly / ,’ &< 
X 

Figure 2 Coordinate system. 

equivalent to the assumption that the moment of inertia of the fuselage 

is negligible. In this case the central part of the wing is taken to 

have high stiffness so that it can roll but not bend appreciably. The 

actual wing vibration is somewhere between these two extreme cases, 

i.e., the actual solution is in between that calculated in Reference [1] 

and the one calculated in this work. The motions and bendings of the 

wing considered are those caused by only the vertical component of the 

gust acting on the wing of the airplane. 

According to the preceding simplifications, the pitching and yawing 

motions of the airplane are ignored. Also, the contribution to roll by 

the gust acting on the tail is not included in the analysis. 

The airplane considered in this work is one that has wing charac- 

teristics similar to that of a B-57 wing. The system of axes employed 

is shown in Figure 2 where the spanwise coordinate, y, is the indepen- 

dent variable and the vertical displacement, w, is the dependent vari- 

able. The angle of rotation of the wing about the x-axis is denoted by 
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8. The wing is assumed to be a flat plate having stiffness similar to 

a B-57 wing, and the aerodynamic forces appearing later are those 

calculated from strip theory. The distributions of the mass and that of 

the semi-chord across the semi-span are shown in Figures 3 and 4, 

respectively. For calculating the atmospheric turbulence power spec- 

trum, the von Karman cross spectral function as defined in [S] is 

assumed. 
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Figure 3 Distribution of mass across the semi-span of the wing. 
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Figure 4 Distribution of semi-chord across the semi-span of the wing. 
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CHAPTER III 

SPECTRUM ANALYSIS 

3.1 Output Spectrum of a Single Input 

Consider a random process P(t) and an ensemble member p(t) of this 

process. The autocorrelation function of P(t) is defined by: 

Rp(Lt+d = E[P(t)P(t+T)] (3.1) 

where E denotes the expected value. In this case the process P(t) is 

stationary and the autocorrelation function becomes a function only of 

time difference T; that is, 

Rp(t,t+T) = Rp(~) (3.2) 

Note that in practical situations we are usually forced to work 

with only one ensemble member of a process and, consequently, derive 

mean value, correlation function, etc. from this member. For this we 

assume the ergodic theorem, which allows time averages to be equated to 

(3.3) 

the corresponding statistical averages, i.e., 

T 

T 

Rp(~) = ;z & p(th(t+ddt (3.4) 
-T 

An even more useful statistical characteristic of a random process 

is its power spectrum which is defined as the transform of its 

correlation function: 
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co 

+,b) = 
f 

Rp(T)emiwrdr (.3.5) 

If p(t) is the input to.a linear time invariant system, the 

response of this system is expressed as a convolution integral of p(t) 

and an influence function h(t): 

OD 

a(t) = 

f 

p(x)h(t-x)dx (3.6) 
-co 

For the analysis represented in the next chapter, p(t) represents the 

gust at one station along the wing and h(a,t) is the impulse response 

at the right wing tip. The Fourier transform of h(a,t) will be denoted 

as H(a,w) and will be defined as the right wing tip velocity due to a 

gust located at a station y, along the wing. To simplify notation, 

h(a,t) and H(a,w) will be written as h(t) and H(U) with the under- 

standing that they represent the impulse response and 

tion at the right wing tip. Now, the autocorrelation 

output can be shown [6] to be related to the correlat 

input as follows: 

the transfer func- 

function of the 

ion function of the 

RubI = I I Rp(~+y$)h(y h(+,d$ 

Taking the Fourier transform of both sides of Equation 3.7 yields: 

(3.7) 

00 

eu(m) = RbemiwrdT 
I 

(3.8a) 
-co 

where 
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$,(w) = i h(A,) i h(x2) i Rp(T+A,-A2)e-iw'dTdX2dA, (3.8b) 
-03 -03 -co 

The change of variable x = T + X, - X2 produces: 

03 

f 

iwA co 
hb,)e ' 

I 

-i&X co 
@$4 = hb2k ' 

f 
Rpe-iUAdA (3.9) 

-co -a, -02 

The first two integrals are recognized as H*(U) and H(w), respectively, 

and the third is e,(w) as given by Equation 3.5. The preceding equation 

can be written: 

4,(w) = @,(w) IH(d 1 2 (3.10) 

This equation is the basic equation used in spectrum analysis. The 

procedure to calculate the output spectrum, in the case of single input, 

is now clear: The transfer function H(U) is calculated first and then 

the square of its magnitude is multiplied by the assumed input power 

spectrum which, for the purpose of the analysis presented herein, is the 

von Karman spectrum function. 

3.2 Output Spectrum of Multiple Inputs 

Consider a linear system having multiple random inputs. In the 

case treated here, the wing of an airplane subjected to two-dimensional 

turbulence may be considered such a system. The variation of gust 

intensity in the spanwise direction produces different influence func- 

tions h(a,y,t) at different sections of the wing. The total response 

then is the superposition of the response due to disturbances at each 

individual section. Hence, the response may be given by the following 

equation: 
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a(t) = 1 J p(yJh(y,t-x)dW (3.11) 

where R is the half length of the wing and p(y,x) is the input at time x 

at a station y with width dy. Also, it is understood that the response 

is being computed at R; hence, R has been omitted from the parenthesis. 

An alternative form of Equation 3.11 is: 

R 00 
a(t) = f I h(y,~)pb,t-~)dW 

-g -0D 

The correlation function of the output is: 

Rub) = a(t)u(t+T) 

h(y, ,A, )h(y2~~2)P(y, J-x, )P(y2J+r-~2) 
-2 -2 -03 -co 

x dX, dx2dY, dy2 

where the overbar denotes the time average. Expressed in terms 

(3.12) 

(3.13) 

of the 

correlation function, R 
P' 

of the input, Equation 3.14 becomes: 

h(y,+)h(y,,~,)R,(y,,~~ ,T+x,-x2)dx,dx2dy,dy2 (3.14) 

Taking the Fourier transform and then using the change of variable X = 

T~X,-~~, Equation 3.14 becomes: 

R R 

e,b.d = 1 1 H*(Y, ,~H(Y~~+~(Y, ~y2,ddqdy2 (3.15) 

where $p(~l ,y2+) is a cross spectrum function. From the definition of 

the cross spectrum, it can be seen [6] that the following relation holds: 
11 



$,(Y,,Yp) = $(Y29Y,'@) (3.16) 

where "*" denotes the complex conjugate. Because of Equation 3.16 and 

because of the syrmletry of the domain of integration and by changing the 

limits of integration, the integrand (with new limits of integration) in 

Equation 3.1-5 can be written as: 

op(y, ,y2,dH(y, ,w)H*(~~,d + $p(~23~, ~H(Y~&*(Y, d 

= ~,(Y,,Y,,~)H(Y,,~)H*(Y~‘~) + ~~(Y,,Y,,W)CH*(Y,,~)H(Y~‘W)~* 

= $p(~,~2&(~, .dH*(~~,d + [@,(Y, ,Y~~H(Y, dH*(~~d1* 

= 2Rd$p(q ,y2,~ )H(Y,'~)H*(Y~,~)I (3.17) 

where Re[ ] is the real part of the quantity [ 1. Therefore, Equation 

3.15 becomes: 

R R 

4$J) = 
f I 

2ReC+p(y1 ,Y~,~H(Y, dH*(y2dldqdy2 (3.18) 

-R Y2 

By the assumption of isotropy of the atmospheric turbulence, the input 

spectrum @,(Y, d2 4~) is a function only of the separation distance n, 

i.e., $,(Y, ,Yp) = 4p(Y,-Yp). By this assumption and by making the 

change of variables 11 = y, - y2 and y = y2 and by interchanging the 

order of integration, Equation 3.18 becomes: 

2a R-n 

O&J) = 1 @ph,d2Re[ 1 Hh-dH*(y+wddydd 
0 -R 

(3.19) 

This equation relates the output spectrum 4,(w) to the cross spec- 

trum @,(T-I,u) of the inputs. In this study, $,(n,~) is the cross spec- 

trum of atmospheric turbulence, and H(y,w) is defined as the velocity of 
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the right wing due to a unit sinusoidal gust of frequency w located at y 

along the wing. Consequently, u(t), as defined in Equation 3.11, 

becomes the root mean square velocity of the right wing tip due to the 

gusts acting on the entire wing. Hence, au(w) is the spectrum of the 

velocity of the right wing tip caused by the vertical components of the 

gust. 

13 



CHAPTER IV 

SPECTRUM OF WING TIP VELOCITY 

In the Chapter I, two types of gusts were considered: one- and 

two-dimensional gusts. These two cases are illustrated in Figure 1,. 

page 5. For one-dimensional gusts, the intensity of the gusts is the 

same along the span, and hence there is no tendency to roll. But for 

two-dimensional gusts, the intensities of the gusts at different points 

of the span are different. These variations in gust intensities along 

the span give rise to a net rolling moment, which then results in roll- 

ing motion. 

Whether to consider a gust to be one- or two-dimensional depends on 

the relative sizes of the wing and the scale of turbulence. To elabo- 

rate on this statement, let us consider the gust to be composed of a 

number of sinusoidal gust components. The components with long wave- 

length tend to have uniform and small intensity along the span, and 

hence they produce no moment. The components with very small wavelength 

produce intensities along the wing that tend to cancel each other and 

again produce no tendency to roll. Figure 5 illustrates the effect of 

the components with long wavelength on the wing, and Figure 6 illus- 

trates the effect of the components with short wavelength on the wing. 

In contrast to the components with very long or very short wave- 

lengths, the components with intermediate wavelength are found to be the 

major contributors to the rolling motion. These intermediate wave- 

lengths are of the order from one to ten times the span of the wing. 
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Figure 5 Effect of gust with long wavelength on the wing. 

Figure 6 Effect of gust with short wavelength on the wing. 
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The effect of a sinusoidal with wavelength equal to that of the span is 

illustrated in Figure 7. 

The airplane considered in this study is a B-57 Cambera-type air- 

plane which has a wing span of 2a = 66 feet. Houbolt [7] recommends a 

length scale of atmospheric turbulence of L = 300 feet, which is about 

1.8 times the span of the wing; a ratio that falls within the range of 

the intermediate components mentioned earlier. Hence, a two-dimensional 

spectrum analysis is required and the rolling motion should be taken 

into account. 

The questions concerning the statistical description of the turbu- 

lence being settled (recall the assumptions given in the Chapter I and 

the discussion in the last few paragraphs) and following the outline 

Figure 7 Effect of gust with wavelength equal to the length of the 
wing. 
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given in the Chapter I there still remains the task of calculating the 

aerodynamic forces associated with the turbulent field, the determina- 

tion of the transfer function from the equation of motion, and finally 

the calculation of the output spectrum. 

Let us first consider the free vibration of a beam. Consider an 

element of length dy. This element undergoes a vertical motion and 

rotary motion about its center of mass and a shearing deformation. The 

free-body diagram and the geometry for the beam element are shown in 

Figure 8. The following quantities can be defined: 

W = deflection of the centerline of the beam. 

dw 
dj; = slope of the centerline. 

dJ= slope due to bending. 

W 

Figure 8 Free-body diagram of a beam segment. 
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If there is no shear deformation, the perpendicular to 

cross section will coincide with the centerline of the 

shearing deformation, these lines will be distinct and 

the face of the 

beam. In case of 

the shear angle 

will be equal to + - Wdy. 

From flexure theory [8], we have these two elastic equations for 

the beam: 

4J 
dw 

-dy =& 

and 

dJI= M 
dy EI 

(4.1) 

(4.2) 

where V is the shear force, M is the bending moment, A is the cross- 

sectional area, k' is a factor depending on the shape of the cross 

section, G is the modulus of elasticity in shear, and EI is the bending 

stiffness. The equations of equilibrium of the moments and of the 

forces are given by: 

J$=$-v 

and 

mi = _ C!. 
dy 

where J and m are the rotary inertia and mass of the beam per unit 

length, respectively. 

Substituting Equations 4.1 and 4.2 into Equations 4.3 and 4.4, 

respectively, we get: 

$[EI z] + k'AG[$ - $1 - J; = 0 

(4.3) 

(4.4) 

(4.5) 

and 
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mti - $ {k'AG[$ - $)> = 0 (4.6) 

which are the coupled equations of free vibration for the beam in the 

general case. Theoretically, these equations can be solved simulta- 

neously for arbitrary variations in elastic and inertial properties of 

the beam. In practice, closed solutions are difficult to obtain, 

except under certain simplifying assumptions. For example, if EI and A 

are constant, these two equations can be reduced, after eliminating JI, 

to a single equation: 

EI a2w -+m$$- (J +s) al$t2 +A$$= 0 
w2 

The wing we are dealing with can be considered as a slender beam in 

which the cross-sectional dimensions are small in comparison with the 

length, and for which rotary inertial effects and shear deformations may 

be neglected [9]. In this case, the equations of motion, Equations 4.5 

and 4.6, can be reduced to one equation as follows: Since the shear 

angle is zero (equivalently, the shear modulus G is infinite), J, should 

be equal to dw/dy, also the term J$ in Equation 4.3 is neglected, then 

Equations 4.1 and 4.3 can be written as: 

(4.8) 

and 

(4.9) 

Substituting the value of V from Equation 4.9 into Equation 4.4 we get: 

(4.10) 

The bending moment is related to the curvature by the flexure equation: 
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M=EIg (4.11) 

Using this relation, Equation 4.10 becomes: 

As indiciated by T imoshinko, et a 1. [8], the error in calculating 

the natural frequencies of a beam with small cross-sectional dimension 

in comparison to its length using Equation 4.12 instead of Equations 4.5 

and 4.6 is very small. Therefore, Equation 4.12 is adequate for calcu- 

lating the natural frequencies of the beam, and it will be used in the 

analysis that will follow. 

(4.12) 

Consider a wing with varying mass and stiffness along its span. If 

a sinusoidal gust is acting on a spanwise element of length, A, centered 

about a point, y,, then the following equation for the balance of forces 

holds: 

FM + F&,Y, ) (4.13) 

where 

is the force due to beam stiffness and ti is the inertial force as 

defined in the preceding discussion. FM is an aerodynamic force due to 

the motion of the wing and is given in [lo] as: 

FM = mpb2ti + 2m,?,'bC(k)rj (4.14) 

where P is the densitv of the flight medium, b is the semi-chord of the 

wing, V is the mean flight speed, and C(k) is the Theodorsen function. 

The Theodorsen function is a function of the reduced frequency 

20 



(k = &b/V) of the motion. In terms of the Bessel functions, C(k) is: 

c = J, (J, + Yo) + Y1 (Yl - Jo) - i (YIYo + JIJo) 
(Jl +yo)2+ (Yl - Jo)2 - (4.15) 

All the functions appearing in Equation 4.15 are functions of the 

reduced frequency k. F8 is the force due to the vertical gust and is 

given [9] by: 

FG = &rpV2b ; K(k) 
(1 

(4.16) 

where K(k) is the Kussner function. K(k) can be expressed in terms of 

Theodorsen and Bessel functions: 

K= C(Jo - iJ1) + iJ, (4.17) 

The function 6(y2,y1) which acts on FG in Equation 4.13 selects the 

portion of the wing which is subjected to gust and is zero everywhere 

except between y1 - A/2 and y1 + A/2 where its value is unity. 

Substituting the forces defined by Equations 4.14 and 4.16 into 

Equation 4.13 we obtain the following differential equation: 

$[EI $1 = -mti - rpb2Q - 2TpVbC(k)r; + 2rpV2bK(k) 1 6(y,yl) (4.18) 

The boundary conditions for a free-body wing are: 

w"(a,t) = w"' (a,t) = wq-a,t) = w"' (-a,t) = 0 (4.19) 

These boundary conditions express the fact that there is no shear nor 

moment at the wing tips. 

Equation 4.18 is a forced-vibration equation for the wing, the 

free-vibration equation is: 

[EI(w"(y,t)]" = -mti(y,t) (4.20) 
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Assuming that there is a solution for the free-vibration equation of the 

form: 

W(Y ,a = @b)T(t) 

we obtain, after substituting in Equation 4.20, 

(4.21) 

l-d2T = w!- [EI$"]" 
'f?F m+ (4.22) 

This equation is valid only if both sides are equal to some constant u2. 

Thus, Equation 4.22 is equivalent to the two equations: 

2 

-+ w2T = 0 it: 
(4.23) 

[EI$"]" = mm24 

The initial conditions for Equation 4.23 are: 

T(O) = i(0) = 0 

The boundary conditions of Equation 4.24 are: 

(4.24) 

(4.25) 

+“I (a) = (p”’ (-2) = q)“( pJ = ($“(-2) = 0 (4.26) 

which corresponds to the shear and bending moment being.zero at the 

ends, as is the case for free ends. 

Physically, 4 represents the shape of a natural mode and w is the 

vibration frequency corresponding to this mode. There is an infinite 

number of values of w which satisfies Equation 4.20, and to each one of 

these values there corresponds a particular I$. Thus, the solution of 

Equation 4.20 can be expressed as: 

W(Y,t) = i!l $i(Y)Ti(t) (4.27) 

The natural modes, pi, are orthogonal [9] because of the choice of the 

boundary conditions. The orthogonality condition is given by: 
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R R 
I 

~EI~~“~“~jd~ = WV 
I 

for i = j 

for i # j (4.28) 
-R -R 

Substituting the value of w(y,t) from Equation 4.27 into Equation 

4.18 and using the orthogonality property of the modes we get a system 

of linear differential equations in terms of the natural modes: 

N . . 
M u2T mmm 

= -Mmym _ 
Tpbfi j& 'mjTj - Pa$.'b$(k) .; Bmjij 

j=l 

U(Y, ) 
+ 2apV2bRK(k) v @,(Y, MY, )A 

where r 
mj 

and B mj are aerodynamic cross terms given by: 

R 
Kmj = 

f a2+m+jdy 
-R 

(4.29) 

(4.30) 

R 
JJ = 

mj f a+m+jdY (4.31) 

-II 

The term a(y) is the semi-chord distribution defined as a(y) = b(y)/bR. 

Mm is the generalized mass of the mode @m corresponding to natural 

frequency urn as defined by Equation 4.28. Ml and M2 are the mass and 

moment of inertia of the wing, respectively, and they are the general- 

ized masses of the rigid-body vertical and rolling motions. These rigid- 

body modes have frequencies W, = w2 = 0. In [1], the rigid-body rolling 

+2 was not included in the system of linear differential equations 

represented by Equation 4.29. As mentioned earlier, the restriction of 

the rigid-body motion to vertical motion only may cause an overestima- 

tion of the elastic vibrations of the wing. Hence, in the calculations 
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that will follow, $2 will be included in the system of linear diffential 

equations so that the effect of rolling is accounted for in the solution 

of the system of equations. 

Let us assume that the input and the output are sinusoidal having 

the forms: 

iks 
IJ =jYe and Tm 

= rrn ,iks 

where the variables k and s are defined as follows: 

tib 
k=+ and S 25 

bR 

(4.32) 

(4.33) 

Substituting the values of I.I and Tm into Equation 4.29 and dividing 

throughout by npV2S e iks , we obtain a system of linear algebraic 

equations: 

?.I n2r = mmm k21+,,F,, + k2 jy, AmjSj 
= 

+ 2ikC(k) F BmjSj 
j=l 

+ 
2bRK(k) 

S @,(Y, WI >A 

where 

@mbR Rm = - V 

A bRKmj 
= - mj S 

- 

B _ bRBmj 
mj S 

(4.34) 

24 



'm V 
sm=y= 

R?J 

The solution srn of the system of linear algebraic equations, 

Equation 4.34, represents the amplitude of the modal response of the 

deflection of the wing to a sinusoidal gust. If 5, = rme iks is differ- 

entiated with respect to time, the amplitude of the wing tip velocity of 

the modal response is obtained: 

(4.35) 

The transfer function, which is the velocity of the right wing tip 

velocity due to a sinusoidal gust located at y,, is then: 

y ‘j(YJ ,w> 
H(Y1 d = it,, L (4.36) 

j=3 G 

The summation in the preceding equation is carried over the bending 

modes only since the navigation system in the airplane can subtract the 

rigid-body motion from the turbulence data. 

The numerical procedure for calculating the velocity spectrum of 

the wing tip is outlined in the following paragraphs (for full details 

see Reference Cl]). The complete computer code with annotations is 

given in the appendix. 

The numerical procedure is essentially divided into three sub- 

routines. The free-vibration problem is solved in the first subroutine. 

The forced-vibration problem is solved in the second subroutine. 

Finally, the velocity spectrum of the right wing tip is calculated in 

the third subroutine. 
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The first subroutine solves the free-vibration equation: 

[EI$“]” = mu24 for -k 2 y 2 R (4.37) 

with boundary conditions 

4"' (d = ($1" (-2) = l)"(a) = ~"(-a) = 0 (4.38) 

The coefficient m is the mass per unit length and EI is the bending 

stiffness of the wing. Both m and EI are a function of y. In [1], 

three different distributions of EI were considered. These are classi- 

fied as: (1) standard wing, (2) stiff wing, and (3) flexible wing. The 

standard wing has a stiffness given by: 

EI = 9 x lo8 for y 2 1111 

EI = 9x lo7 for y 1 1111 (4.39) 

The above values were determined using a static analysis assuming a 

maximum loading on the B-57 wing and a load factor of 10 g. The funda- 

mental frequency of this wing was found to be about 4 Hz. 

The stiff wing has a bending stiffness given by: 

EI = 3 x 10' for y < 111 I 

El = 3 x lo8 for y 1 WI (4.40) 

These values were determined by a trial and error method so that the 

fundamental mode would have a frequency close to 7 Hz as determined 

from an in-flight experiment with the B-57 at NASA/Langley Research 

Center. 

The flexible wing was considered for comparison purposes; it has 

a bending stiffness: 

EI = 9 x lo6 for y 5 1111 

EI = 9 x lo5 foryz 1111 (4.41) 
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The stiff wing is the most representative of a B-57 wing, and 

therefore it is used in the numerical calculations of this study. For 

comparison purposes, the standard wing is also considered. 

EI and m are defined symmetrically in the domain [-a,~] and so the 

differential equation is either symmetric or antisymmetric. Because of 

this, the problem needs to be solved only for 0 2 y 2 R. In this case, 

the boundary conditions must be defined at the midspan of the wing. The 

conditions at the origin for a symmetric function are: 

l)'(O) = $"' (0) = 0 (4.42) 

and the conditions for an antisymmetric function are: 

4m = o"(O) = 0 (4.43) 

An initial value of w is assumed, and then the fourth-order differ- 

ential equation is changed to a system of four first-order equations. A 

shooting method is used to estimate the complete set of initial condi- 

tions, after which a Runge-Kutta scheme is used to determine the solu- 

tion of the initial value problem. The value of the solution of the 

initial value problem at y = R is compared with the boundary conditions 

at Y = R for the two-point boundary value problem. The estimate of the 

complete set of initial conditions is improved. The process is repeated 

until the ini tial value problem has the correct value for the boundary 

condition at y = I.. The system of four first-order equations: 

d 
dy 

\ $1 '0 1 0 0 

$2 0 0 1 0 
= 

43 0 0 0 1 

‘) , 

\ 
/ 

$1 

92 

93 

94 / 
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has a vector base, EF1'!=,, of its solution. Each solution: 

(4.45) 

of Equation 4.43 is a linear combination of the base solution, i.e., 

For {pi I;=, to be a complete base, there should be four linearly inde- 

pendent intial conditions. A simple choice of linearly independent 

initial conditions is: 

'1 

0 
T,(o) = 

0 

\O 

'0 

1 
; T2(o) = 

0 

,O 

'0' 

0 
; F3(0) = 

1 
; T4(o) = 

,O, 

'0' 

0 
(4.46) 

0 

1, 

The boundary conditions are used to determine the constants (Cily=,. 

In the case of the even mode, we have the system of equations: 

'$12(O) +22(O) +32(O) $42(O) 

94(O) +24(O) @34(O) $44(O) 

J113(~) $23(R) $330) $43(E) 

+14(R) $24(R) $34(R) +44(R) 

(4.47) 

To have a nontrivial solution of the above equation, the determinant of 

the coefficient matrix must vanish. This determinant: 
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0 1 0 0 

0 0 1 0 
D(w) = = 

$3(") $23(R) $33(E) $43(E) 

54(R) $24(R) @34(E) +44(g) 

+,3(g) +43(t) 
(4.48) 

$,4(R) $44(E) 

is a function of W, the unspecified parameter of the differential equa- 

tion. This characteristic determinant vanishes when the correct values 

of the natural frequencies, wi) of the wing are found. 

Now, we summarize the preceding numerical procedure. First, the 

eigenvalue is estimated; then the fundamental solutions are determined 

by a Runge-Kutta/Fehlberg order seven scheme. The value of the charac- 

teristic determinant is calculated from the fundamental solutions. A 

search routine checks if the natural frequency is bracketed between the 

current estimate and the previous estimate. In this case, the program 

is directed to a bisection routine to improve brackets or continues, 

taking another step along the frequency domain and using this as its 

next estimate of the frequency. After the frequency has been deter- 

mined, the natural mode is normalized by a unit displacement at the 

right wing tip. The new mode is integrated with previous modes deter- 

mined to calculate the aerodynamic cross terms. The program then steps 

along the frequency domain for its first and second estimates of the 

next frequency. 

The second subroutine of the program solves the system of linear 

algebraic equations, Equation 4.34. This system is solved by Gaussian 

elimination for 38 gust locations evenly spaced along the wing. 

The third subroutine calculates the output power spectrum. It 

integrates Equation 3.19 numerically using the trapezoidal rule: 
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= +p(O,m) ,f, HjHj* + 
N-l 

$$I ,d 
-= 

1 @p(jAd2Re 
j=l 

(4.49) 

where N is the number of gust stations and A is the gust station width. 

The spectrum program determines the wing tip velocity spectrum; there- 

fore, Hi must represent the velocity at the right wing tip due to a 

sinusoidal gust at station i. The frequency response function is 

defined as: 

Hi (4.50) 

where NM is the number of elastic modes considered. The summation 

includes the response of only the elastic modes because, as mentioned 

earlier, the navigation system located at the airplane's center of 

gravity allows subtraction of the ri'gid body motions from the turbulence 

data taken at the wing tip. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

In the spectrum analysis section, a mathematical treatment of 

stationary processes was shown. In order to apply these techniques to 

problems dealing with atmospheric turbulence, the turbulence was assumed 

to be homogeneous. In general, most types of turbulence tend to be 

homogeneous, except those at low altitudes which may be influenced by 

the configuration of the ground and those in thunderstorms. 

The assumption of isotropy simplifies the expressions of two- 

dimensional correlation functions because in this case a correlation 

function can be expressed as one-dimensional correlation function of the 

separation distance. For sufficiently short wavelengths, all turbulence 

is isotropic [lo], but for long wavelengths it is isotropic only if it 

is homogeneous. 

Taylor's hypothesis permits time correlation functions to be 

expressed as space correlation functions. This is so because the gust 

intensities remain the same until the airplane traverses this region of 

turbulence. The speed of the airplane plays an important role in 

_ validating this hypothesis. At very low speeds, Taylor's hypothesis 

becomes less valid and the results calculated may be less accurate 

A quantity of great importance is the turbulence length scale L. 

Roughly speaking, L is a measure of the minimum separation distance for 

which there is no correlation between two velocity components of the 

gust. Many factors, such as weather conditions, altitude, and ground 

configurations (for low altitudes) play a role in determining L. The 
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estimates for L range between a few tens of feet to thousands of feet, 

In this study, two turbulence length scales of 132 feet and 2,112 feet 

were considered. Figures 9 and 10 show the turbulence spectrum and the 

wing tip velocity spectrum of a standard wing and a stiff wing for these 

two turbulence scales. 

The relative errors in the atmospheric spectrum due to wing tip 

vibration are shown in Figures 11 through 14. These were calculated 

using the following reasoning: The wind velocity measured at the wing 

tip is an apparent velocity since in reality it is the sum of the wing 

tip velocity and the true velocity of the wind. This can be expressed 

by the equation: 

urn = up + ur (5.1) 

where U, is the measured velocity, Up is the true velocity of the turbu- 

lence, and U, is the wing tip velocity. From Equation 5.1 the correla- 

tion function of the measured velocity can be expressed by the following 

equation: 

T 

R,(T) Um(t)Um(t+T)dt 

T 

f 
[u$)uG(t+T) + u,(t)u,(t+d + uJtNp(t+d 

-T 

+ Up(t)UO(t+T)]dt 

= Ro(r) + Rp(~) + ROp(.r) + Rp@ 

Taking the Fourier transform of the above equation we get: 

(5.2) 

(5.3) 
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Reduced Frequency (wbR/V) 

Figure 9 Spectra of wing tip velocity for standard and stiff wings 
in atmospheric turbulence having spectrum illustrated 
(length scale = 132 feet). 
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Figure 10 Spectra of wing tip velocity for standard and stiff wings 
in atmospheric turbulence having spectrum illustrated 
(length scale = 2,112 feet). 
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Figure 11 Relative error in measuring turbulence with length 
scale 132 ft for standard wing. 
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gure 12 Relative error in measuring turbulence with length scale 
2,112 ft for standard wing. 
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Figure 13 Relative error in measuring turbulence with length scale 
132 ftfor stiff wing. 
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Using the relation Q,P = I$;,, Equation 5.3 becomes: 

$rn 
= +a + +p + 2Rwup (5.4) 

where (p 
P 

is the turbulence spectrum at the wing tip and $r is the power 

spectrum of the wing tip velocity. The equation for $ap can be written 

as: 

The relative error due to the wing tip velocity can be written as: 

(5.5) 

(5.6) 

Figure 11 shows the relative error as a function of frequency for a 

standard wing and turbulence scale of 132 feet for two cases: (1) the 

rigid-body motion is restricted to vertical motion and (2) the rigid- 

body rolling is taken into account. This wing shows a large relative 

error close to its fundamental frequency. This error reaches a maximum 

of about 115 percent when the wing is restricted to vertical motion. 

This maximum is reduced to about 94 percent when the rolling motion is 

taken into account. The true error is believed to lie within these 

limits (see Chapter II, page 5). The range in which this maximum occurs 

falls within the frequency range which contains significant turbulence 

energy. For a turbulence length scale equal to '2,112 feet, the maximum 

relative error (see Figure 12) for the standard wing is reduced to about 

50 percent when rolling is not considered and to about 38 percent when 

rolling is added. But, this time the maximum relative error falls 

within a range which is out of the frequency range that contributes sig- 
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nificant turbulence energy. The stiff wing shows a smaller relative 

error than the standard wing and the range of the maximum error is 

slightly shifted to higher frequency. The addition of rolling motion 

reduces this maximum from about 50 to 36 percent. For smaller turbu- 

lence scales, this maximum error is very close to the range of frequen- 

cies which contribute significant turbulence energy. But, for larger 

scales this error is outside the range of frequencies of interest. 

From the preceding discussion it can be seen that a stiff wing is 

the best wing to measure turbulence and but even then in order to measure 

accurately the whole range of the atmospheric spectrum depending on the 

length scale, accelerometers mounted on the wing tips are required. 
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APPENDIX 

DOCUMENTATION OF THE COMPUTER PROGRAM VIB.FOR 

The purpose of this appendix is to document the computer program 

VIB.FOR used in [1] and, with modifications, in the text. Flowcharts 

illustrating the complete computer code are given in [l]. An explana- 

tion of the subroutines and parameters appearing in the program will 

follow. 

VIB.FOR is essentially divided into three subprograms: (1) the 

free-vibration subroutine, Dl, (2) the forced-vibration subroutine, D2, 

and (3) the spectrum-analysis subroutine, D3. Each of Dl, D2, and D3 

has a number of subroutines and functions arranged in the following order: 

1. 

2. 

3. 

4. 

5. 

6. 

-7. 

8. 

9. 

10. 

11. 

12. 

I. SUBROUTINE.Dl 

Subroutine SZERO(W,H,N,NC,NN) 

Subroutine RUN(W,F,EL,EU,NC,NN) 

Subroutine BISEC(Xl,Fl,X2,F2,NC,NN) 

Subroutine FUNEV(K,X,Y,F) 

Function SEI(X) 

Subroutine SECANT(Xl,Fl,X2,F2,NC,NN) 

Subroutine DMODE(YY,NN) 

Function RM(X) 

Function SIMP(Y,H,N) 

Subroutine COF(N,YY,W2,NN,Il) 

Subroutine STRK(NN) 

Subroutine RK7(NS,NN,EL,EU) 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

II. SUBROUTINE D2 

Subroutine DO(NN,N2) 

Subroutine COEF(RK,X,DEL,N2M,NN) 

Function RPH( I,Y,N) 

Function RA(Y) 

Function RYl(X) 

Complex Function CC(RK) 

Complex Function RKK(RK) 

Function RJl(X) 

Function RYO(X) 

Subroutine GAUSS(N,N2) 

Subroutine BACKS(Nl,N2) 

III. SUBROUTINE D3 

1. Subroutine SPEC(RK,RR,TL,N2,IC,RP) 

2. Function TSPEC(SS,RNU,lJ,TL) 

3. Subroutine COEFl 

4. Function BSLl(Z) 

5. Function POLY(A,N;Z) 

6. Function BSL2(Z) 

7. Subroutine COEF2 

A.1 Subroutine Dl --SW--_ 

In this subroutine the first four frequencies and elastic modes are 

calculated. Frequencies are calculated by starting with an initial 

guess after which the differential equation representing the free 

vibration is solved. From this solution the value of the characteristic 
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determinant is calculated. The first frequency is incremented and the 

differential equation is solved for this new va lue of the frequency. 

Then the value of the characteristic determinan t is calculated and is 

compared with the previously calculated value. If these two values 

have the same sign, the frequency is incremented again and the differ- 

ential equation is solved and the characteristic determinant is calcu- 

lated. This process is done repeatedly until the value of the 

characteristic determinant changes sign, after which a bisection method 

and a secant method are used to approximate the frequency that makes 

the characteristic determinant vanish. The mode shape corresponding 

to this frequency is calculated, and then the generalized mass and the 

aerodynamic cross terms of all previously determined modes are calcu- 

lated. The same procedure is used until the first four natural frequen- . 

ties and the corresponding elastic modes are determined together with 

all generalized masses and aerodynamic cross terms. 

Parameters. NC is the number of the mode to be calculated (the 

first value of NC is two because model number one is considered to be 

the rigid body translation mode which has zero frequency and a constant 

normalized value equal to unity. Modes number two, three, four, and 

five are the first four elastic modes. Mode number six is taken in 

this program to be the rigid body rolling mode). H is the step size 

in the frequency domain. W is the initial guess of the natural 

frequency. N = 4 is the number of elastic modes to be calculated. 

NN = 151 is the number of nodes on a semi-span at which the values of 

the modes are calculated. 
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COflHON/EDAT/EEE 
CALL Di 

E’Lk E 
STOP 
END 
SUBROUTINE 111 

EM THIS YROGRAH IS USED FOR DETEKIIING WING’S N4TURAL 
FREQUENCY AND HODE. 

c” 

E 

IT USES A BISECTION LIKE HETHOD TO IPIFROVE THE GUESS 
;;N:;; FREQUENCY AND IiAKES THE CHARACTERISTIC DETERflINANT 

. 
C c RUNGE-KUTTA FEHLPERG 7x8 IS USED TO DETERklINE SOLUTION 

TO DIFFERENTIAL EQN IT HAS VAIRARLE SIZING PETWEEN 
FIXED NODES. 

c 
SIHFSONS METHOD IS USED TO INTEGRATE FOR THE AREODYNAMIC 
CROSS TERMS AND GENERALIZED IIASS. 

TO 

..- - 
H=l.5DO 

Ko4* lDO 
NN=151 
CALL STRK(NN) 
~~~~~~ZERO(W,HIN,NCINN) 

END 

A.2 Subroutine SZERO(W,H,N,NC,NN) 

Description. This subroutine starts with an initial guess of the 

natural frequency and calls subroutine FUN which fixes the initial 

values of the differential equation. Then FUN calls subroutine RK7 

which solves the differential equation for the given frequency using 

Runge-Kutta-Fehlberg method of order seven. After obtaining the solu- 

tion of th;! differential equation, FUN calculates the value of the 

characteristic determinant and returns it to SZERO. Then, SZERO steps 

along the frequency domain and repeats the above procedure to calculate 

a second value of the characteristic determinant. SZERO checks for a 

change in sign of the calculated values of the determinant. If there is 

no change of sign, it steps again along the frequency domain and calcu- 

lates a new value of the characteristic determinant, and then it checks 

47 



for a change in sign of the last calculated values. If there is a 

change in sign, SZERO calls subroutine BISECTION to approximate the 

frequency that makes the characteristic determinant vanish. Then, SZERO 

calls subroutine SECANT to improve the approximation found by BISECTION, 

after which it calls subroutine DMODE to calculate the normalized values 

of the mode at 151 points of the semi-span. Finally, SZERO calls sub- 

routine COF to calculate the generalized mass of the mode and the aero- 

dynamic cross terms of the mode with the other modes. The frequency 

which was calculated last is used as an initial guess for the next 

frequency and the whole process is repeated until the first four fre- 

quencies are calculated. 

Parameters. I is a counter which gives the number of calculated 

modes. EL and EU are error bounds for Runge-Kutta method. Wl and W2 

are two consecutive values in the frequency domain. Fl and F2 are the 

corresponding values of the characteristic determinant. 

::: 

102 

w1=w 
EL=.0001nO 
EU=.OOlDO 
~~L~l~~N(W1,Fl,EL,EU, 

CiiL FUN(W~~F~~ELYEUI 
IF(Fl$F2.LT.O.O) GO 1 
Wl=Y2 
Fl=F2 
GO TO 101 
CONTINUE 
CALL PISEC(UlrFl,W2,F 
CALL SECANT(UlrFlrW2r 
;M&DHODE(YY,NN) 

ws=u2 
C4LL COF(NC,YY,WSrNN, 
NC=NCtl 

NC 

.“o” 

‘2, NC,NN) 
F2 rNCrNN) 

I) 

rNN) 

rNN) 
102 

ION 
PKACKE 

MODES 

‘El:““’ 

.TS. 
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- 

104 
8710 

A.3 

IF(I.GE.N)GO TO 
Ul=WPtH 
GO TO 103 
DO 8710 I=l.NN 
YY(I)=(I-1)/150 
~~~~R~OF~~~YYIO 

END 

104 

: rNN,S) 

Subroutine FUN(W F EL EU NC,NN) ------,,-,-I 

Description. This subroutine estimates the initial conditions for 

the even and odd modes and then calls RK7 to solve the differential 

equation. Finally, it determines the characteristic determinant and 

returns it to SZERO. 

Parameters. EL and EU are error bounds for Runge-Kutta method. NC _~- 

is the number of mode being determined. W is the frequency. F is the 

value of the characteristic determinant. Y is the matrix of the solu- 

C INI 

100 

C INI 

"12 

500 

of the system of differential equations solved in RK7. 

SUHROUTINE FUN(WvF,ELvEUpNCsNN) 
THIS SUBROUTINE FIXES THE INITIAL VALUE FOR THE SOLUTION 
AND THEN CALLS SUH.. RK7(RUNGE KUTTA ROUTINE) TO DETERBINE SOLUTION 
AFTER WHICH THIS SUR CALCULATES THE VALUE OF THE CHARACTERISTIC 
DETERMINANT. 

EL L EU =ERROR BOUNDS FOR RUNGE KUTTA 
NC=WHICH IIODE WORKING ON DETERHING 
Y-FUNDAMENTAL SOLUTIONS TO DIFFERENTIAL EON OUTPUT FROtl RK7 
F=VALUE OF CHARACTERISTIC DETERMINTE 

REALS8 RK,W,F,EL.EU,Y,X 
COMMON/FACT/Y(8rl51)rX(151) 
COHMON/EGNVL/RK -.. . 

I ELIEU) 
, NN)-Y(~PNN)$Y(~PNN) 

TEST FOR EVEN OR ODD MODE 

NC.EQ.4) GO TO 101 
FOR ODD HODE 

FOR EVEN MODE 

A.4 Subroutine BISEC(Xl,Fl,X2,F2,NC,NN) 

Description. This subroutine approximates the frequency after 

finding an upper and a lower bound. 
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Parameters. Xl is the lower bound of the frequency and X2 is the 

upper bound. Fl and F2 are the values of the characteristic determinant. 

.NC is the mode number of the frequency being determined. 

102 
.,EUPNCPNN) 

GO TO 100 

100 

101 

SUBROUTINE PISECt 
;;M~*;lXlrX2,F1,F 

EU=.hOlDO 
EL=.0001110 
XH=(XltX2)/2.D0 
CALL FUN(XH~Ffl~EL 
IF(FlXFH.LE.O.DO) 
Xl=XM 
Fl=FH 
GO TO 101 
x2=xn 
F2=FH 
RE=DABS(Xl-X2)/X1 
IF(RE.GT.CCB) GO 

KPRN 

TO 102 

A.5 Subroutine FUNEV(K,X,Y,F) 

Xl~FlvX2rF2 
‘2,FllrXK,EL, 

Description. This subroutine is called by RK7. It describes the 

system of differential equations for the different orders of the Taylor 

series. 

Parameters. K is the order of the Taylor series term. F is the 

matrix of the derivative values. Y is the matrix of the fundamental 

solution. W is the frequency. 

SUBROUTINE FUNEV(KIX,YIF) 
THIS SUBROUTINE 
DIFFERENTIAL EON 

SUPPORTS THE RUNGE KUTTA AND DESCRIBES THE 

THIS SUB WILL NEED CHANGING IF SE1 
OR IF THE TORSIONAL MODES ARE BEIN 
K=ORDER OF THE TAYLOR SERIS TERHS 
F=DERIUATIVES VALUES 
Y=FUNDAMENTAL SOLUTION 
N=FREQUENCY 
REAL*8 F,YvDRHvW,SEI,X 
.DItiENSION F(Erl3)~Y(8) 
COKHON/EGNVL/W 
F(l,K)=Y(2) 
F(2,K)=Y(3) 
F(3rK)=Y(4) 
F(4~K)=DRH(X)tW*t2*Y(l)/SEI(X) 
F(S,K)=Y(6) 
F(6rK)=Y(7) 
F(7rK)=Y(E) 
~:~;~~=DRH(X)$W*f2*Y(5)/SEI(X) 

END 

IS 1 '0 HAVE DER 
'G DE1 'ERMINE11 

I'JATIVES 
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A.6 Function SEI(X) 

Description. This funct 

wing at any point of its span 

wing. 

ion determines the bending stiffness of the 

. SE1 can be changed to fit any kind of 

Parameters. X is the distance from the semi-span. 

FUNCTION SEI(X) 
C*$* X=DISTANCE FROH SEHI SPAN 

It4PLICIT REAL*8 (A-HIO-Z) 
SE1=900000000.D0 

IF(X.GE.ll.DO) SE1=90000000.D0 

%TDURN 

A.7 Subroutine SECANT(Xl,Fl,X2,F2,NC,NN) 

Description. This subroutine improves on the approximation given 

by BISECTION by decreasing the error bound on two successive values of 

the characteristic determinant. 

Parameters. Xl and X2 are two consecutive values in the frequency 

domain; Fl and F2 are the corresponding values of the characteristic 

determinant. EL and EU are the error bounds on the values of the calcu- 

lated solution of RK7. 

!rNC,NN) 
XH,FHrCCSvEU,EL 

103 

xn=xitDx 
CALL FUN~XHPFH~ELPEUPNCPNN) 
IF((DABS(XH-Xlil)/XH).LT.CCS) GO TO 101 
IF(DABS(FH).LT.CCS) GO TO 101 
IF(FHSFl.LE.O.DO) GO TO 500 

500 

101 

x1=xn 
Fl=Fll 
xn1=xn 

% iOn lo3 
F2:FH 
xn1=xn 

%=i"n lo3 
F2=FH 

KY" 

51 



A.8 Subroutine DMODE(YY,NN) 

Description. This subroutine calculates the values of the modes at 

151 points of the semi-span. These values are normalized such that the 

value of the mode at the wing tip is unity. 

Parameters. YY is the matrix of the values of the mode at NN = 151 

points of the semi-span. 

SUBROUTINE DfiODE(YY,NN) 
REALS8 Y.XvClrC2rD 
COflHON/FACT/Y(8,151),X(i51) 
DIMENSION YY(151) 
D=Y(l,NN)*Y(7,NN)-Y(SrNN)SY(3,NN)*Yf3~NN) 
Cl=Y(7rNN)/D 
C2=-Y(3rNN)/D 

100 
DO 100 I=l,NN 
YY(I)=Cl*Y(lrI)tC2*Y(5rI) 

KU"" 

A.9 Function DRM(X) 

Description. This function gives the mass distribution along the 

semi-span as given in Figure 3. 

Parameters. X is the distance from the semi-span. 

- 

A.10 

FUNCTION DRH(X) 
IMPLICIT REAL%8 (A-HIO-Z) 
DRH=130.D0 
IF(X.LE.4.DO) DRH=2205.DO 
IF(X.LE.ll.DO.AND.X.GE.E.DO) DRH=2600.D0 

KG""" 

Function RM(X) 

This function is the same as DRM(X). 

;lJEJ;;ON RH(X) 

IF(X.Li.4.) Rfl=2205. 
IF(X.LE.ll ..AND.X.GE.E.) RH=2600. 

KEURN 
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A.11 Function SIMP(Y,H,N) 

Description. This function is called by COF to integrate the 

functions to calculate the generalized masses and the aerodynamic cross 

terms of the modes. 

Parameters. Y is the mode matrix, H is the distance between two 

consecutive nodes, and N is the number of nodes. 

FUNCTION SIHP(YIH,N) 
DIMENSION Y(N) 
Tl-0. 
Jl=N-2 
T2=0. 

100 
DO 100 1=3,J1.2 
Tl=TltY(I) 
DO 200 1=2,N12 

200 T2=Y(I)tT2 
~:~~~~*(Y(l)tY(N)t2.tT1+9.IT2)/6. 

E N D 

A.12 Subroutine COF(N,YY,WZ,NN,Il) 

Description. This subroutine calculates the generalized masses and 

the aerodynamic cross terms of the modes. The rigid-body translation 

and rolling and the first four elastic modes are taken into account. 

Parameters. RP is the array of the six modes dealt with here. 

RP(l,I) represents the rigid-body translation and RP(6,I) represents 

the rigid-body rolling. A and B are matrices for the aerodynamic 

cross terms. RA is a matrix representing the semi-chord distribution 

along the semi-span. 

E*** 
EXf:: 
Ettt 
KX c*** c*** 

c*:** 

601 

SUBROUTINE COF(N,YYsW2,NN,Il) 
THIS SUFROUTINE SETS UP THE FUNCTIONS FOR INTEGR 
YY=NEU IlODE THEN LATER USED AS SCRATCHED ARRAY 
RP=ARRAY OF MODES 
U=FREOUENCY 
GH=GENERALIZED MASS 
A t P=AREODYNAHHIC CROSS TERHS 
RA=WING PLAN 
N=NUHHER OF HODE REING WROKED ON 
NN=NUHDER OF NODES 
Il=NUHPER OF TIMES COF CALLED 
COHtlON/DATARA/RA( 151) 
COHliON/TRAN1/W(6)~GH~6~~RP(6~lSl~~A~6~6)~D~6~6~ 
DIHENSION YY(lSl).XX(lSl)~RR(I51) 

READ DATA 
H=33./(NN-1) 
IF(Il.GT.1) GO TO 500 
DO 601 I=l,NN 
xX(1)=(1-l)*H 

AT ION 



600 

tZ**t 
500 

101 

102 

400 

103 

105 

108 

107 
104 

NH=N-1 
W(l)=O. 
Gli(1)=40000.0 
DO 600 I=l,NN 
RP(ltI)=l. 
A(lrl)=45.038925 
B(l,l)=52.939763 
EFLCULATE NEU DATA 

rNN 
(I) 
rNN 

iiP(N,I) 
:1 

'(YY,H,NN 

P1 
Ei 
i:N,=W2 

)$2. 

DO 104 J=l,N 
IF(N.EO.6)GOTO 105 

NR2=N/2. 
NRl=J/2. 
N2=N-2SNR2 
Nl=J-2*NRl 
IF(N2.EG.O.AND.Nl.EG.O) GO TO 400 
IF(J.EO.l) GO TO 400 
IF(N2.EQ.l.AND.Nl.EQ.l) GO TO 400 
A(NIJ)=O.O 
;;N;@d;O 

CONTINUE 
DO 103 T=1 .UU a a-.... 

:RA(I)SRP(JII)SRP(N,I) 

:.6)GOTO 107 

- - . 
~=RA(I)*RP(J,I)*R~(N~I) Leaw..L .,.,, w. RR(I>=KR(I~*TT~II 

A(~,J)=SIHP(RRIH,NN) 
B(~,J)=SIIIP(YYIH,NN) 
CONTINUE 
kE;Ct;;UE 

END 

A.13 Subroutine STRK(NN) 

Description. This subroutine sets up all the coefficients needed 

in RK7 to solve the system of differential equations using Runge-Kutta 

method of order seven. It also describes the semi-chord distribution 

along the semi-span. The semi-chord distribution is illustrated in 

Figure 4. 

Parameters. A, B, and C are the coefficient matrices. RA is a 

matrix representing the semi-chord distribution at 151 points. X is 

the abscissa matrix of the mode values. 
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iAIRHE COEFICI 

X(1)=(1-l)*DEL 
RA(I)=l.O 
IF(I.GT.ND)RA(I)=l.-.02 
CONTINUE 
A~l~=O.ODO 
A(2)=2.DO/27.D0 
A(3)=1.DO/9.D0 
A(4)=1.D0/6.00 
A(5)=5.DO/12.D0 
A(6)=l.D0/2,DO 
A(7)=5.DO/6.D0 
A(8)=1.D0/6,DO 
A(9)=2.D0/3,DO 
A(lO)=l.DO/3.D0 
A(ll)=l.DO 
A\(12)=O.D0 
A(13)=l.D0 
B(lrl)=O.ODO 
B(2,1)=2.DO/27.D0 
E(3,1)=l.DO/36.D0 
B(3~2)=1.DO/12.D0 
E(4rl)=l.DO/24.D0 
B(4rZ)=O.D0 
B(4~3)=1.DO/8.D0 
E(5,1)=5.DO/12.D0 
E(5r2)=0,0DO 
E(5,3)=-25.DO/lb.D0 
Ef.5~4)=25.DO/lb.D0 
B(6rl)=l.D0/20,DO 
E(6rZ)=O.D0 
E'.6r3)=O.D0 
B(6,4)=1.D0/4.110 
E(6s5)=1.DO/S.D0 
B(7rl)=-25.DO/108.D0 
B(7r2)=O.D0 
B(7r3)=0.ODO 
B(7r4)=12S.D0/108,DO 
Bt7~5)=-65.DO/27.D0 
E(7~6)=125.D0/54.00 
B(8rl)=31.D0/30O.D0 
E(8r2)=0.ODO 
E(Gr3)=0.D0 
E(8r4)=0.D0 
B(8r5)=61.DO/225.D0 
E(~P~)=-~.DO/~.DO 
E(8.7)=13.D0/90O.D0 
B(9,1)=2.D0 
E(9~2)=0.D0 
B(9,3)=O.D0 
Bt9*4)=-53.DO/b.D0 
B(9r5)=704.D0/45,DO 
B(9r6)=-107.DO/9.D0 
Bt9r7)=67.00/90.D0 
B(9r8)=3.D0 
E(10~1)=-91.D0/108.D0 
B(lOr2)=0.ODO 
B(lOs3)=O.D0 
B(10~4)=23.DO/108.D0 
E(10~5)=-976.DO/135.D0 
B(10~6)=311.DO/S4.D0 
E(lov7)=-19.D0/60.D0 
E(l0~8)=17.DO/6.D0 
E(l0,9)=-l.DO/12.D0 
B(ll,l)=2383.D0/410O.D0 
B(lls2)=0.D0 
E(llr3)=O.D0 
E(llr4)=-341.D0/164.D0 
B(llr5)=4496.00/1025.D0 
E(11.6)=-301.D0/82.D0 
B(llr7)=2133.D0/4100.DO 
B(llr8)=4S.DO/82.D0 
B(llr9)=45.D0/164.DO 
B(llrl0)=18.D0/41.DO 
B(l2rl)=3.DO/205.D0 
R(12.2)=0.D0 

7$(1 -RHl)SDEL2 

B(l2,3)=O.D0 
B(12,4)=O.D0 
B(12,5)=O.D0 
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A.14 Subroutine RK7(NS,NN,EL,EU) 

Description. This subroutine is used to calculate the solution of 

the differential equation for a given frequency. It uses the Runge- 

Kutta-Fehlberg method seven and eight order. 

Parameters. EL and EU are lower bound and upper bound for the 

error. NS is the number system of the equations. Y is the solution 

matrix. 

CtSS 
c**Y. 

Et 
c**# 

Krs:: 

101 

SUEROUTINE RY~~u‘z.uu.~, me,,\ ’ 
RUNGE KUTTA 
EL=ERROR LOL 
EU=ERROR UPF 
NS=NUflPER OF 
Y=SOLUTION 
NN’NUMEER OF 

. . . . . .,.‘.....,LL.L”, 

FEHLRERG SEVENTH ORDER 
IER ROUND 
:ER POUND 

SYSTEfl OF ERN 

TO DETERHINE THE SOL 

‘131 .YY(Rl 
lrDY5(8)rY1(8) 
‘,E(13,12),C(13),CH(l 
*=-. 1X(151) 

vTHrArE,C,F,DDl, 

.UTION 

3) 

DD~PHYYI~YOPCHIEL,EIJ,X,Y 

56 



c*** &it DG LOOP INCREAHENT TO EACH NODE 
DO 100 II-1rNT 
NC-O 

207 

206 

z: 

c*** 

csss 

lii"~~'~~~-""" 

L-L-1 
p,',; 203 
NC=1 
DO 201 I=lrNS 
Yl(I)=YO(I) 
l-Id=",, . . . .., - 

DO LOOP FOR STEPS HETUEEN NODES 
0 12=1,L 
INE THE NEEDED FUNCTION EVALURATION 

10 300 K=lrll 

z:: 
301 
300 

C&X& 

so0 

DO 201 
DETERH 

ii Y=Y-4 
,1-m. * 

10 301 J=lrNS 
i "=~~~~~~~~""2-"'"'""'" 
YY(. 
IF(K ;H.EQ.O) GO TO 303 

F 
0 302 13=1,KH 
uCJ1=TH*E(KII3,tF(JrI3)tYY(J) 

CONTINUE 
CONTINUE 
CALL FUNEU(KIXXIYYIF) 

DETERHINE SOLUTION VALUE FOR END 
DO SO0 I=l,NS 
DY4(1)=0.0 
DYS(I)=O.O 

t:: 
c*** 

202 F(i~lf6i.EL.AND.DD2.GT.EL) GO TO 204 
1) GO TO 204 

204 

205 
200 

:8% 

F(NC.;;;l) GO TO 204 

HUE 
5 I=lrNS 
;;$CI,tDYSCI, 

60 TO 
g”;;! 
Yl(I)I 
CONTIL.,, 
DO 102 I 
;:;I;;;; 

CONiINUE 

KiTDURN 

‘j;;NS 

)=YO(I) 

A.15 Subroutine D2 

NT=NN-1 

L 
Y4(1 

‘I%” 

OF STEP 

)tYl(l))) 
)tY1(5))) 
TO 202 

Description. This program solves the forced vibration program. It 

calculates the amplitudes of the different modes due to sinusoidal gust 

at different stations of the wing and for different gust frequencies. 

First, it sets the input data and then it solves.the system of algebraic 

equations for different gust locations. 

Parameters. NN is the number of modes at which modes are calcu- 

lated and N2 is the number of gust locations. 
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SUEROUTINE 112 
THIS PROGRAH DETERIIINES THE AKPLITUDES OF THE DIFFERENT-- 
HODES TO A SINUSODAL GUST AT THE DIFFERENT STATIONS ALONG 
THE WING. SUB...DO TAKES CARE OF INPUT AND OUTPUT PLUS 
SETS UP THE COEEFICIENTS THAT ARE DRIVING FREQUENCY INDEPENDENT. 
SUBROUTINE COEF SET UP THE COEFFICIENT HATRIX FOR EACH DRIVING 
FREQUENCY. WHILE SUE...GAUSS DOES HALF OF THE REDUCTION AND 
SUB...EACKS FINISHES THE REDUCTION AND DOES BACK SUBSITUTION 
FOR THE DIFFERENT NON-HOti@GENOUS VECTORS CORRESYONDING TO 
DIFFERENT GUST LOCATIONS. 
NN=NUHEER OF NODES THE HODES ARE DETERMINE ON 
N;Z!M;ER OF GUST LOCATION 

N2=20 

A.16 Subroutine DO(NN,N2) 

Description. This subroutine sets the constants needed later in 

calculations of the mode amplitudes. Then it normalizes the generalized 

masses and the aerodvnamic cross terms, after which different gust 

frequencies are considered. For each of these frequencies, the coeffi- 

cient matrix of the unknowns and the nonhomogeneous vectors for 19 gust 

stations along the semi-span are calculated by calling subroutine COEF. 

Subroutine GAUSS is called to perform reduction of the coefficient's 

matrix of the unknowns. Finally, subroutine BACKS is called to perform 

reduction on the nonhomogeneous vectors and to perform back substitution. 

Parameters. Y is the solution of the system of equations, i.e., 

the amplitudes of modes. RP is the array of the six modes considered. 

X is the gust location. A and B were arrays of the aerodynamic cross 

terms and now become the arrays of the normalized aerodynamic cross 

terms. W is the array of the natural frequencies of modes. GM was the 

array of the generalized masses of the modes; these values are normal- 

ized and transferred to the array GAMA. OMEG is the reduced natural 

frequency; these frequencies are reduced with respect to the semi-root 

chord BR and flight speed of the airplane U = 575 ft/sec. RRK(37) is 
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the matrix of reduced frequencies of the gust. RO = 0.0765 is the air 

density. S = 960 ft2 is the wing area. 

E 

k: c*** 
KS:: 
EffX c*** 

c*** 

602 
601 

AND 0 IUTPUT 
IVING FRERUENCY 

.&“,“I 

‘W(b)rGfl(b),RP(6~1Sl)rA(6,6) 
?AN2/RRK(37) 
qAN3/SYt37r19,6) 

lN/EDAT/EEE 
~N/FAC/PIYERIS~RO,U 

--..-.rlSION X(20) 
COHPLEX Y,SY 
COflPLEX CHPLX 

IN/DAT/GAHA(6) ,OHEG(b) 

.14159 

:*oo’2*o 
if;5 

;: ;,:T;“ATIC 

(I)=GH~I)/(PISROtSSRR) 
I)=W(I)SBR/U 

1B(6?6) 

'0. 
10) RK=(I-9)/100. 
19) RK=(I-18)/10. 

'1 

;ifjfj,x,DEL1N2HvNN) .I.-.., . 

DO 1 J=lrN2fl 
DO 2 J2=lr6 
SY(I,J,JP)=Y(JIJP) 
CONTINUE 
CONTINUE 

CONTINUE 
CONTINUE 

K1”“” 

A.17 Subroutine COEF(RK,X,DEL,N2M,NN) 

Description. This subroutine calculates the matrix of coefficients 

of the system of linear algebraic equations. The coefficients of the 

homogeneous system are calculated only once since they do not change for 

all the gust locations. The nonhomogeneous vector has to be calculated 

for 38 gust stations along the entire wing. 
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Parameters. C is the coefficient matrix of the homogeneous system. 

D is the array of the nonhomogeneous vectors. RK is the reduced fre- 

quency of the gust. X is the matrix of locations of the gust. DEL is 

the distance between two gust locations. N2M is the number of gust 

locations. 

SUBROUTINE COEF(RKrX,DEL,N2flrNN) 

E 
THIS SUBROUTINE SETS UP COEFFICIENT HATRIX AND THE DIFFERENT 
NON HOHOGENOUS VECTORS. 

CX* C=COEFFICIENT HATRIX 
C$* D=ARRAY OF NON HOHOGENOUS VECTOR 
CStS C=COEFICIENT ARRAY 
C&&S RK=REDUCED FREGUENCY 
C&&l: X=LOCATION OF GUST 

COnnON/LS/C(6r6),11(20,6) 
COHKON/DAT/GAH4(6)rOnEGo 
COHtlON/TRAN1/W(6),GN(6)~RP(6,6)~B~6~6~ 
COtiMON/FAC/PI,BRtS~RO~U 
DIHENSION X(2O),S1(6,6) 
COHPLEX CICI,D~CCIRKK 
COHPLEX CHPLX 

C&S& READ DATA 

901 
104 
103 

13 

-CI=CflPLX(O.rl.) 
DO 103 I=116 
DO 104 J=1,6 
C(IpJ)=-RK&S2*A(IvJ)t 
IF(1.NE.J) GO TO 901 
C(I,J)=C(IrJ)tGAHA(I) 
Sl(IrJ)=CABS(C(I,J)) 
CONTINUE 
CONTINUE 

GOT0 13 
CONTINUE 

DO 106 J=lrN2H 
DO 105 I=lr6 
D(J,I)=28BR/SSRA(X(J) 
CONTINUE 
CONTINUE 
RETURN 
END 

(RK)SDEL 
105 
106 

A.18 Complex Function CC(RK) 

Description. This function calculates the Theodorsen function in 

terms of the Bessel functions RJO, RJl, RYO, and RYl. 

Parameters. CC(RK) is a function of reduced gust frequency RK. 

COKPLEX FUNCTION CC(RK) 
C THIS FUNCTION CALCULATES 

COHPLEX CI 
COtlPLEX CHPLX 
CI=CHPLX(O.rl.) 
PJl=RJl(RK) 
PJO=RJO(RK) 
PYl=RYl(RK) 
PYO=RYO(RK) 
F=PJlS(PJltPYO)tPYl*(PYl 
G=PYltPYOtPJlSPJO 
H=(PJltPYO)*&2t(PYl-PJO) 
EE;M;;CISG)/H 

END 

THE THEODORSEN FUNCTIONS 

-PYO) 

St? 
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A.19 Function RPH(I,Y,N) 

Description. This function calculates an average value for the 

modes stored in RP at a certain gust location. 

Parameters. I is the mode number, Y is the gust location, and N is 

the number of modes. 

FUNCTION RPH(I,YvN) 
COliflON/TRAN1/U(6)rGtl(6),RPorA(6,6)~E~6~6~ 

DEL=33./(N-1) 
NN=ABS(Y)/DELtl 
RS=ABS(Y)/DELtl.-NN 
RPH=RP(I~NN)tRS%(RP(I~NNtl~-RP(IrNN))/DEL 
IF(Y.LT.O.0) GO TO 500 
GO TO 600 

so0 CONTINUE 
IF(I.EP.3.0R.I.EQ.S) RPH=-RPH 

IF(I.EP.6)RPH=-RPH 
600 RETURN 

END 

A.20 Function RA(Y) 

Description. This function describes the semi-chord distribution 

along the semi-span. 

Parameters. Y is the distance from mid-span. 

;;J;TION RACY) 
-.027t(AES(Y)-Il.) 

IF(ARS(Y).LE.ll) RA=l. 
RETURN 
END 

A.21 Function RYl(X) 

Description. This function is the Bessel function of the second 

kind order one. 

Parameters. X is the reduced frequency of the gust. 
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A.22 Complex Function RKK(RK) 

Description. This function is the Kussner function. It is calcu- 

lated from Theodorsen function CC(RK) and Bessel functions RJO and RJl. 

Parameters. RKK(RK) is a function of reduced gust frequency RK. 

COtlPLEX FUNCTION RKKfRK) 
C FUNCTION DETERIIINES THE GUST FORCE FUNCTION 

COHPLEX CI,CC 
COtiPLEX CHPLX 
CI=CHPLX(O.,l.) 
PJl=RJl(RK) 
~~~tG~~(RK)&(RJO(RK)-CI&PJl)tCI&PJl 

END 

A.23 Function RJl(X) 

Description. This function is the Bessel function of first kind 

order one. 

Parameters. RJl is a function of reduced gust frequency RK. 

FUNCTION RJl(X) 
Z=(X/3.)$&2 
RJl=((((((.OOOOllO9&Z- .00031761)82+.00443319~%Z-.03954289)&Z 

++.21093573)tZ-.56249985)*Zt.S)&X 

XURN 

A.24 Function RJO(X) 

Description. This function is the Bessel function of first kind 

order zero. 

Parameters. RJO is a function of reduced gust frequency RK. 

FUNCTION RJO(X) 
RJ0=~~~~~.00021SZ-.0O39444~&Zt.O444479~&Z-.3l63866~&Ztl~26562O8~& 

+;;~~;~99997)*2+1.0 

END 

A.25 Function RYO(X) 

Description. This function is the Bessel function of second kind 

of order zero. 

Parameters. RYO is a function of reduced gust frequency RK. 
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FUNCTION RYO<X) 
Z=(X/3.)&&2 
RYO=(((((- .0002484682t.00427916~8Z-.04261214~&Zt.2S300117~8Z 

+~~~~~~0384~~2+.60936~8Zt.36746691t.6366198~RJ0~X~&AL0G~X/2.~ 

END 

A.26 Subroutine GAUSS(N,N2) 

Description. This subroutine performs Gaussian elimination on the 

coefficients matrix of the homogeneous system. 

Parameters. N. is the number of equations and N2 is the number of 

SUBROUTINE GAUSS(N,N2) 
f-if-I;UBROUTINE DOES GAUSSIAN ELIMINATION FOR ONLY THE COEFFICIENT 

SCALED PARTIAL PIVOTING IS USED. 
COHKO~/LS/C(6,6)rD(20.6~ 
COHtlON/PIVOT/IPEN(6) 
DIHENSION S(6) 
COMPLEX cln 

Eff c*** c*** 

K=PIUOT INDEX Czr."CCTP'CUT APPh" 

104 
103 

_ -LYrrICAL,., nnrrn, 

D=INHOHOGENOUS VECTOR 
N=NUHDER OF EQN 

DO 103 I=l.N 
IPEN(I)=I 
i(I)=O. 
IO 104 J=l,N 
:F(CABS(C(I,J)l.GT.S(I)) S(Il=CARS(C(IvJ)) 

E 
I 

CONTINUE 
NU=N-1 
DO 100 KK=l.Nfl 
IS=KKtl 
IP=IPEN(KK) I-Y" 
J--RR 
CFI=CARS(C(IPIKK))/S(IP) 
DO 105 I=ISvN 
IP=IPEN(I) 
T=CARS(C(IP~KK))/S(IP) 
IF(T.LE.Cfl) GO TO 105 
CM=1 
.I=1 

105 

:"o: 
100 

CONTINUE 
IPK=IPEN(J) 
IPEN(J)=IPEN(KK) 
IPEN(KK)=IPK 
DO 101 II=IS,N 

I=IPEN(II) Y-TUCLI~YYI 

ks 
CONiIrwe. 
CONTINUE 

HEENTDURN 

,\-a, L,.\l\,\, 

:(IIK~)s~:~~~K)/C(KIKK) 

)=C(I,j)-C(I,KK)&C(K,J) . . ..- 

A.27 Subroutine BACKS(Nl,N2) 

Description. This subroutine performs reduction on all the non- 

homogeneous vectors corresponding to the gust locations on the semi- 

span. Then it makes back substitution and calculates the unknowns. 
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Parameters. Nl = 19 is the number of the nonhomogeneous vectors 

each corresponding to a gust location along the semi-span. N2 = 6 is 

the dimension of the nonhomogeneous vectors. 

E c*** C&S& 

c*** C&S& 

102 
101. 

c*** 

::z 
100 

A.28 

wing 

tine 

SUBROUTINE EACKS(Nl,N2) 
DOES REDUCTION ON THE NON HOflOGENOUS VECTOR AND THEN DOES 
BACK SUBSITUTION. 
Nl=NUMBER OF NON HOMOGENOUS VECTOR 
N2=DItiENSION OF NON HOKOGENOUS VECTOR 

COHHON/PIUOT/IPEN(6) 
COHHON/LS/C(6,6)rD(20~6) 
COHliON/SOL/Y(20r6) 
COtiPLEX CID~Y 

Kl=SOLUTION INDEX 
REDUCTION ON NON HOMOGENOUS VECTOR 

DO 1QQ Kl=l,Nl 
IP=IPEN(l) 
Y(Kl,l)=D(Kl,IP) 
DO 101 KK=2,N2 
F:;PgN(KK) 

JN=l?K-1 
DO 102 J=lrJN 
T=C(K.J)SY(KlrJ)tT yru, ~YYI-nlYI -w\-T 
j 

I.l.*,l.l.l-V\I\~,I\, -I 

I(KlrN2)=Y(KlrN2)/C(K1N2) 
B~~IW(~~UBSITUTION 

;;-533 K=2,N2 

JJ=JJ-1 
;#;EN(JJ) 

DO iO4 J=JS,N2 
T=C(KKpJ)SY(KlrJ)tT 
Y(Kl,JJ)=(Y(Kl,JJ)-T)/C(KK,JJ) 
CONTINUE 

K6""" 

Subroutine D3 

Description. This program calculates the power spectrum of the 

tip velocity. After assigning a turbulence scale it calls subrou- 

SPEC to calculate the output spectrum corresponding to this scale. 

Parameters. N2 is the number of gust locations and N is the number 

of gust frequencies. TL is the turbulence length scale. 

E 

k: c*** 

TO DETERIIINE UING TIF 
PERFORHS THE CALCULATION 
TURBULENCE SPECTRUII. 

BR=19./2. 
N=37 
N22=20 
N22=N22-1 

64 



1000 

1001 

1002 

%: 

EC 

,U~TL) 
)GOTO 1000 
)GOTO 1001 
.)GOTO 1000 
)RK,TS 

)RK,TS 

)RKvTS 

,) 
‘rTL,N2,I,RP) 

A.29 Subroutine SPEC(RK,RR,TL,N2,IC,RP) 

Description. This subroutine determines the output spectrum. The 

cross spectrum between the output and the input is also calculated. 

Parameters. RR is the output spectrum; RK is the reduced natural 

frequency, RK = kBR/V; Z is the response to the gust at one station; 

SS is the separation distance nondimensionalized by the turbulence scale; 

RNU is a reduced gust frequency, RNU = RKxTL/BR where RK is the gust 

frequency. 

c” 
c*** 
c*** 

EZZX 

SUER OUTINE SPEC(RK,RR,TL,N2,ICvRP) 
THIS --~ SUBROUTINE DETERHINES THE SPECTRUH 
TIP VELOCITY. 
RR=TOTAL AIRPLANE RESPONSE 
Rk=REDUCED FRERUENCY bJR/U 
Z=RESPONSE TO GUST AT ONE STATION 
N2=NUtlHER OF GUST STkTIONS 

C,,,,,,ON/TRANP/RRKt37, 

COflflON/l 
.  .  .  .  .  .  ^, .  .  .  .  .  .  . - -  _ 

:RAN3/SY(37*19t6) 
-NSION Y(20r6).2(40) 
:LEX Y~CIYZIT,T?,SY,H,Z~~Z~,H~,H~~Z 

c*** 

2 
100 

c*** 

102 

101 
C&&X 

EG 
READ DATA 

cI=ctlPLx(o.,1.) 
BR=l9./2. 
N22=N2/2 
;E\;;“.‘N’ 

110 lOi, J=lrN22 
DO 2 J2=lr6 
Y(JvJ2)=SY(ICvJ 
CONTINUE PnYTTUllC 

,J2) 

L-.-. 
DO I 
T=O< 
T2=( 
y:=; 
I?(1 
T=Y(JvI: 
Z(J)=T21 
Z( JtN22: 

D;;L;H;Nf 

no 360 I=l,N2 
IS=I-1 

_“I. I II.“L 

[IETFRHINE PLANES RESFONSE 
!81 J=l,N22 

:GJ I=795 
f(J,I):TZ 
[.EO;&OR.I,E0.5) T2=T2-2.*Y(JvI) 

kRKSC1 
)=CI*RK*T 
I FLANES TOTAL RESONSE 

OF THE WING 

3*z4 
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T=O.O 
JN=NZ-IS 
00 301 J=l,JN 

301 T=2*REAL(Z(J)$CONJG(Z(JtIS)))tT 
SS=IS$DEL/TL 
RNU=RK*TL/HR 
IF(IS.EQ.O)T=T/2. 

300 ;;~M;PEC(SSrRNUdJrTL)ST+TT 

7 

8 

zo40 
c*** 

600 

E”“” 
18 

::50 

. . . . . . 
IF(TL .EQ.l32.) GOT0 7 
IF< TL .EQ.660.) GOT0 8 
IF(TL .EQ.2112. 
URITE (3lrl7644 iGRiTiR7 I 

"UK" k::&7644)RK,RR 
bT0 3040 

i: IITE(41rl7644)RKrRR 
CONTINUE 

"";~",I",' PHASE OF PLANES 

DO 606 J=lrN2 
IS=N2-J 
SS=JS$DEL/TL 
RNU=RK*TL/BR 
T=TSPEC(SS,RNU,UvTL)*2$R 

CONTINUE 
T)P=T m.. -. 
IF(TL.EQ.l32.)GOTO 17 
IF(TL.EQ.660.)GOTO 18 
IF(TL.EQ.2112.)GOTO 17 
FORMAT(2E13.6) 
YRITE(32,17644)RKvRP 
GOT0 3050 
UR1TE(7,176441RK1T 
GOT0 3050 
URITE(42rl7644)RKvT 
CONTINUE 

KZURN 

RE SPONSE 

‘EAL .(Z(J)) tT 

A.30 Function TSPEC(SS,RNU,U,TL) 

Description. This function calculates power spectrum and cross- 

power spectrum from von Karman spectrum functions. This function is 

called in SPEC in 

between the input 

Parameters. 

order to calculate the output and the cross spectrum 

and the output. 

SS is a separation distance divided by turbulence 

scale. RNU = WxTL/BR is the reduced frequency of turbulence. TL is 

the turbulence length scale. 

FUNCTION TSPEC(SS 
THIS FUNCTION DETE 
SF’ECTRUtl FROM 
SS=SEPERATION 
RNU= W$TL/U TH 
y;F+;;HT SF’EED 

IF(SS 
CROSS 

%Ec* 

C 

E*** 
Eff c*** 
C 

500 
C 

RfiINES TURBULENCE CROSS AND POWER 
THE VON KARHAN SF’ECTRUH FUNCTION. 
DIVIDED BY TL(TURHLUNCE LENGTH SCALE) 
E REIlUCEIl FRQUENCY OF TURBULENCE 

OR tIEAN WIND SPEED 
BULENCE LENGTH SCALE 
.EQ.O.O) GO TO 500 
SPECTRUti 
SQRT(l.t(1.339%RNU)**2)/1.339 -. -- t-ss** =TL~.10853/Ut~4.78112*SStSo/Z$S~5./3.~/Z%~~5./6.~~ESil~Z~ 
(11./3.)/Zt$(11./6.)*HSL20) 

RETURN 
CONTINUE 

POWER SF’ECTRUH 
Z=(1.339%RNU)ft? 
TSPEC=TLt(1+(8./3.)tZ)/(1tZ~~*~11./6.~/3.14159/U 

SiE""" 
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A.31 Subroutine COEFl 

Description. This subroutine is needed in order to calculate the 

coefficients of the polynomial that approximates the modified Bessel 

function of the second kind of order 5/6. 

SUBROUTINE COEFl 
THIS SUBROUTINE SETS UP THE COEFFIENETS FOR THE POLYNOHIAL 
APPROXIHATION FOR THE HODIFRIEII BESSEL FUNCTION OF THE 
SECOND KIND 5/6 ORDER. 

~~~N~~/K13/A~1O~~B~lO~,A2(10~ 

Atli=l:O/.9405612296 

100 
DO 100 1=1.9 
;~;t;);A(I)/I/(FtI) 

B(l;=i.0/5.56756615 

101 
DO 101 I=199 
F(Itl)=B(I)/I/(FtI-1.0) 
S=4.*(5./6.)*$2 
A2(1)=1. 

200 
DO 200 1=1.9 
~~:~~~)=A2(I)$(S-(2$1-1)*~2)/8./1 

END 

A.32 Function BSLl(Z) 

Description. This function calculates the modified Bessel function 

of the second kind of order 5/6. 

Parameters. Z is a function of the reduced frequency of the turbu- 

lence, z = (SS/1.339)41 + (1.339RNU)z. 

E 

100 

FUNCTION BSLl(Z) 
THIS FUNCTION EVALUATES THE HODIFRIED RESSEL 
OF THE SECOND KIND 516 ORDER 

COHtlON/K13/A(lO)rH(lO),A2(10) 
IFfiZ.LE.2) GO TO 100 
Y=l./Z 
~~lm~;~RRT(1.5707SY)~EXP~-Z~~POLY~A2~lO~Y~ 

Y=(Z/2.0)**2.0 
RIP=(Z/2.0)Xt(5./6.)XPOLY(A,IO,Y) 
RIN=POLY~B~lO~Y~/~~Z/2.0)$*(5./6.)~ 
EW;~3.141/2/SIN(5.OSJ.141/6.0))*(RIN-RIP~ 

END 

FUNCTION 

A.33 Function POLY(A,N,Z) 

Description. This function performs polynomial evaluations. These 

polynomials are used in BSLl or BSL2. The coefficients of these poly- 

nomials are calculated in COEFl and COEF2. 
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Parameters. A is the matrix of coefficients of the polynomial. N 

is the number of terms in the polynomial. Y is either l/2 or (Z/Z)* 

depending on whether Z is less than or greater than 2. 

c 

100 

.YNOtlIAL EVALUATIONS 

A.34 Function BSL2(Z) 

Description. This function evaluates the modified Bessel function 

of the second kind of order 11/6. 

Parameters. Z is a function of the reduced frequency of the turbu- 

lence, Z = (S.S/1.339)41 + (1.339RNU)p. 

FUNCTION BSL2(2) 

E 
THIS FUNCTION EVALUATES THE HODIFIED BESSEL FUNCTION OF THE 
SECOND KIND 11/6 ORDER. 

COHHON/K23/E(10),G(1O)~E2(lO) 
IF(Z.LE.2) GO TO 100 

A.35 Subroutine COEF2 

Description. This subroutine calculates the coefficients for the 

polynomial approximation of the modified Bessel function of the second 

kind of order 11/6. 

SUBROUTINE COEF2 

E 
THIS SUHROUTINE SETS UP THE COEFFICIENTS FOR THE FOLYNOnIAL 
AFFROXItlATIONS OF THE tiODIFIED BESSEL FUNCTION OF THE 

C SECOND KIND 11/6 ORDER. 
COHfiON/K23/E(lO),G(1O)rE2(10) 
F=11./6. 

ix%*** ONE OVER THE GAtlliA VALUE OF 1tORDER $***%** 
E(l)=1.0/1.724362254 
DO 100 I=199 

100 E(It1)=E(I)/I/(FtI) 
C%$tS$F=~N;-;INUs THE ORDER OF THE nODFLED BESSEL j* 

. 
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6(1)=1.0/f-6.68107938) 

101 
DO 101 I=lr9 
G(Itl)=G(I)/I/(FtI-1.0) 
5=4*(11./6.)882 

E2Yr1 l 

200 ~q::gE,!;:(~,*(S-(2S~-l~*j2~,8.,~ 

* 
END 

69 





1. REPORT NO. 2. GOVERN-NT ACCESSION NO. 

NASA CR-3571 
4. TITLE AND SUBTITLE 

Analysis of Vibration Induced Error in 
Turbulence Velocity Measurements from an 
Aircraft Wing Tip Boom 

7. AUTHOR(S) 

Safwan H. Akkari and Walter Frost 
9. PERFORMING ORGANIZATION NAME AND ADDRESS 

University of Tennessee Space Institute 
Tullahoma, Tennessee 37388 

12. SPONSORING AGENCY NAMk AND ADDRESS 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

IS. SUPPLEMENTARY NOTES 

Marshall Technical Monitor: Dennis W. Camp 
Final Report 
Extension No. 1 

3. RECIPIENT’S CATALOG NO. 

5. REPORT DATE 

June 1982 
6. PERFORMING ORGANIZATION CODE 

G.PERFORMING ORGANIZATION REPORT # 

7.’ KEY WORDS 

Aviation Meteorology 
Aviation Safety 
Aircraft Motions 
Aircraft Measurements 
Turbulence 
Spectra 

IO. WORK UNIT NO. I 

M-383 
11. CONTRACT OR GRANT NO. I 

NAS8-34627 
13. TYPE OF REPORi’ 8 PERIOD COVERED 

1.1. SPONSORING AGENCY CODE 

16. ABSTRACT 

The effect of rolling motion of a wing on the magnitude of error 
induced due to the wing vibration when measuring atmospheric turbulence 
with a wind probe mounted on the wing tip is investigated. The wing 
considered has characteristics similar to that of a B-57 Cambera 
aircraft, and Von Karman's cross spectrum function is used to estimate 
the cross-correlation of atmospheric turbulence. Although the error 
calculated is found to be less than that calculated when only elastic 
bendings and vertical motions of the wing are considered, it is still 
relatively large in the frequency's range close to the natural 
frequencies of the wing. Therefore, it is concluded that accelero- 
meters mounted on the.wing tip are needed to correct for this error, 
or the atmospheric velocity data must be appropriately filtered. 

16. DISTRIBUTION STATEMENT 

Unclassified - Unlimited 

3. SECURITY CLASSIF. (of thlm r.pcet, 20. SECURITY CLASSIF. (of thlm page) 21. NO. OF PAGES 22. PRICE 

Unclassified Unclassified 71 A04 
For uie by National Technical Information Service. SprWfield. ViMhh 12 16 1 

Subject Category 47 

NASA-Langley, 1982 


