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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-80/6154.

Contributors to this document include

Todd Welden	 (Computer Sciences Corporation)

Mike McClellan	 (Computer Sciences Corporation)

Paul Liebertz	 (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771
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ABSTRACT

Thka report concerns itself pr:Lmarily with the compatibility of the

Multimission Modular Spacecraft (MMS) Ground Supwrt Software System

(GSSS), currently operational on a .McdCcmp 1V/35, with the VAX

11/780 system. The compatibility is examined in various key areas

of the GSSS through the results of in-depth testing performed on

the VAX 11/780 and ModCcmp IV/35 systems. In addition, the ccm-

patibility of the GSSS with the ModComp CLASSIC is presented based

upon projections from ModComp-supplied literature.
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SECTICN 1 - INTROCUCTICN

The Multimission Modular Spacecraft (MM5) Ground Support Software

System ( GSSS) was developed and is currently operational in a

ModComp IV/35 hardware and software environment. The dependencies

.. of the GSSS upon this environment have previously been enumerated
.	 1

in the MMS/GSSS ModCcmp Device and :MAX IV Dependency Study. This

compatibility report concerns itself primarily with the compatibility

of the currently operational GSSS with two more advanced minicom-

puters with approximately the same capabilities as the ModComp IV/35:

the ModComp CLASSIC and the DEC 17AX 11/780. The compatibility is

examined through the results of in-depth testing in the various

key areas of the GSSS performed on both the yodComp IV/35 and

VAX 11/180 systems. In addition, the compatibility of the GSSS

with the ModComp CLASSIC is presented based upon projections from

ModComp-supplied literature and discussions with ModComp CLASSIC

users. The most significant portion of the compatibil',ty. study

involved the transporting of the STOL module and a few associated

"key-in" modules, from the ModComp to the VAX. It was through

this vehicle that the 'important areas of GSSS intertask communi-

cation and activation were investigated. Additional differences

in the FORT+IAN language implementations were also discovered during

the transport of the STOL .module. Since the STOL module has been

1
CSC Cccument# CSCM-1-80/6013, ",'du1=mission Modular Spacecraft Ground
Support Software System ('- S/GSSS) MOCCC14P Cevice and ,^W( :1 :ecerdenc r
Study", T. Welden and M. tMcC1ellan, Cecember 1979.
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successfully transported to the IM system, this can be used as

a nucleus of the VAX version of the C35S should the decision be

made to transport the entire system.

This report describes the Methods used in gathering the data, the

compatibility of the peripheral devices, the results of the testing,

the c=patibility of the application languages, and the compatibility

of the vendor supplied software, and annotates pertinent conclusions

based upon the data gathered.
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SECTICM 2 - tdE ocs usm m	 CAT.;

F

The compatibility of the uodComp implementation of the GSSS was

studied primarily through computer-based testing on the ModComa

IV/35 and VAX-11/780 computers. These tests consisted of small

•-	 specific benchmarks - to be referred to sim ply as the benchmarks -

•and a larger benchmark; the STCL module implementation.

The benchmarks tested three. general areas: 1/0 and file manipulation,

FCRTRAM programming language semantics, and timing the overhead of

common but sometimes crucial operations. The 1/0 and file manipula-

tion tests concerned sequential and random disk files, formatted and

unformatted tape files, and tape file positioning. The FCRTRAM pro-
t

•	 gramming language tests concerned the memory representation, manipu-

lation, and comparison of numbers and character strings, as dependent

on their definition in CATA statements, variable data types, array

ECUIVALENCEing, and compiler options. Also tested in the FCFd?.N

language was array storage organization.. Finally, the timing bench-

mks covered polynomial evaluation and the overhead involved in the

following operations: READ/WRITE for mailbonc s (message passing),

0PUI/CLOSE and PPMAMITE for files, FORTRAN subroutine calls, and

system services.

d	
^::e STCL module implementation, while using the <nowlecge± gained zrcn

R

the ^Cenclmarks, focused on developing the systems prograrnming tech-

nic-,:es needed to run GSSS processes t:asxs) under 	 ccnt_ol.
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The techniques are:

•	 Interprocess (intertask) communication

•	 Process (task) activation

•	 Shared (global) regions.

All three techniques employ system services and ut i l i ties. The first

two do so via a developer-written host-system GSSS library routines,

while the third uses the host system utilities. Table 2-1 summarizes

the info mation about the LNIGEMIP software (i.e., library routines,

and the REX services they reference) used to realize these techniques;

it also gives the corresponding VAX system services (o;: library rou-

tines) used. In this table the VAX terms process, is used in place of

the equivalent ModComp term, task.

ORIGINAL PAOX IS
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Table 2-1. Softgare for Process Communication/Activat ionvat_on and fdr
Shared Regions (1 of 2)

M0DCCMP & VAX
Routine :Name VAX

i Function (REX Service) System S+!rv_ce ;Teed

Send a message MOM CREM X: create a mailbox
to another process. (SEND) 010: write message to mail-,

box

Receive a message RECVMS GETJPI: ret_ieva! infomation
sent from another (RECEIVE) about a process (e.g.,
process by SZMMSG. process name).

ASSIGN: Assign 1/0 channel
to a mailbox.

010: read message from
mailbox.

Activate a process ACTIV8 CREPRC: create a process.
imnediate,ly. (ACT)

.1
Suspend a process WAIT SETIMR: set an event flag

" for a specified ( DELAY) . after a specified
period of time. period of time.

WAITER: place calling pro-
cess in wait state 	 '
until event flag is
set.

Retrieve information INF04 GET'JPI: retrieve informa-
about a process. (GETrASK) tion about a process.

(Not totally compati-
ble with t:cCCCr^P) .

Convert 3-character G3SS library :outing spec:
' ?SCII string to (ATUNj ally wr .tten Lor the
CMCCCE . VAX.

' Convert 6-character ISMAN G^-.	 iS5 l ibrary rcut:.ne szeci-
iSCII string to (ATCAN) ally written for "e
CANCOCE. VAX.

,
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Table 2-1. Software for Processing Communication/Activation and
for Shared Regions (2 of 2)

y
.^	 Funct_on

,MCDCCMP & VAX
Routine :lame
(PLC Service)

•JF,X

Sv3tem Serr_ce Used

i

;Convert 3-character OXCAN3 GSSS library routine speci-
jCANCODE to ASCII (CANTA) ally written for the
'string. Vax.	 (This function

not needed on MCCCCMP
GSSS).

r

!Convert 6-character DECAN6 GSSS library routine specs.-
CANCODE to ASCII (CANTA) ally written for the
string.	 ' VAX. (This function

• not needed on M.0DCCMP
CWS—)	 1

I
.	 i

I
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SECTSCN 3 - Ca-IPATIBILI T CF PE.RIPHEIRA6L CEVICES

The standard peripheral devices that are necessary to support the

GSSS in the MocComp IV/35 environment consist of a roving head disk,

a fixed head disk, two 9 tack magnetic tape drives, one KC= control

.. console, at least two KCM display consoles, a card reader and a

printer. In addition to these standard devices there are specialized

devices: four parallel 1/0 ports for telemetry and commanding, one A/C

input port, and 16 D/A output ports.

Since it was not expected that any other machine used for benchmark

testing would have the specialized devices attached, this report

addresses only the areas of standard peripheral devices.

3.1 'MAGNETIC TAPE CRIGES

The ModComp IV/35 system is cuarently configured with two 9 track,

75 inches per second magnetic tape drives. Cne o perates only at 800'

BPI. The other is dual density and operates at either 800 or 1600

BPI. The VAX is configured with one dual density tape drive. Any

I/O reference to any tape drive on the KodComp will cause I/O to be

attempted to that drive, to special Job Control Language jC:.) con

manes or cocdinq techniques are required to -accomplish this (other

t:^.an assigning the tape drive)

On the ,ModComp CLASSIC system the tape drives operate identzcalIt to

those on the ',IodCcmp ';V/35 fron the users standpoint.
j:
t

i

3-1	
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Cn the CEC VAX 11/780, however, tap^ access s accomplished w.th an

enti_ely different philosophy. Any tam is conssdered a new "volume",

just like mounting a different disk pack under supervisor control.

This philosophy forces the user (without special coding in assembler)

to issue a mount command in order to access the Cape drive. in

addition, the default  tape format is "standard ASCII labeled" Format

which is not expected or accepted by any ttwdule of the CSSS. The

WSS expects all tapes to be unl-ak*led. ttis can be accomplished on

the VAX by explicitly requesting "MMABELED" on the mount command.

Another aspect of the tape drive configuration than differs from the

todComp on the VAX is tape density ( 800 or 1600 BPI). Cn the McdComp

the density is set manually by a switch on the tape drive unit=
.

this removes the concern about tape density , f_om the program and its

assignments. However, on the VAX the tape density must be specified

on the mount command. This Lrplicates different sets of JCL commands

for any program accessing tapes that can be of either density. 	
It

There is one more difference implicated by the VAX tape philosophy.

Cn the McdComp any number of assignments from one or numerous pre y-

grams can be made to the sai„t tape drive using only assigrment state-

ents. -n the VAX this can he accompl. shed but rte:=,es a s.ecisl

JCL sequence as follows

$MCML /t60LASEL/CENSITY=800 XMO: FOR004 FOR004
$ASSIGi1 FOR004 FOR003

$ASSN{ FOR004 FOR006

$CFEIii`WRITE FOR004 '.ITA0;

3-2
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This sequence assigns the FORTRAN logical units 3, 4 and 6 to the

tape drive -1TA0. Note that this tape is opened for writing and

reading. If another process wishes to access it or later additional

assignments must be made, a $CLOSE JCL command must be issued and

,.	 a new JCL command sequence input. In addition, all processes access-

ing the tape must explicitly "OPEN" it as "shared".

3.2 KCRT DISPLAYS
r

The KCAT displays on both ModComp systems and VAX system appear to be

compatible when displaying information, However, due to the different

set up of the keyboard there is a compatibility problem. On the

tdodCcmp systems the keyboardis operate in .message mode, transmitting a

complete line of text on each transmission. On the VA: they operate

in character mode transmitting one character at a time as each is typed.

This mode of operation precludes updating display screens while an in-

c	 put request is pending on that device. This problem can probably be

overcome with some specialized coding techniques for K= input in-

volving queuing the characters until the entire string ds input.

Further analysis needs to be done in this area.

3.3 GISK FILES

The XodComp 177/35 i.s currently configured with one 24-megabyte moving

head disk and one 2-megabyte fixed head disk, each with a sector size

of 256 bytes. The XodComp CLASSIC can have disks of a similar nature,

^; e VAX 11/780 used for the bench„,ar., testing is ecuipped .lit^ ore

1 175 ceaabyte ^movinhead disk with a sector Si ze of 512' bytes

3-3 
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Accessing the disks on any or the machines requires no special coding

techniques. On the ModComp IV/35 disk files are a fixed partinoning

of the disk determined at "Sysgen" time. The disk files can also

be generated this way on the ModComp CLASSIC. On the 4AX 11/780, r

and optionally on the McdComp CLASSIC, disk files can be dynamically

allocated. This dynamic allocation of disk files is a desirable

feature. However, on the VAX system, di3k files are dynamically alloc-

ated automatically by simply opening a file for output. Without

special coding techniques to avo-d this, the prolifevation of files

could be colossal on a real-time system like the GSSS since many

tasks write to disk files and then exit (e.g. OBC dump collector). Cn

the VAX, each time one of these tasks ran, a new file would be created.

on the Modcomp IV/35 the access method used on any file can be se-

quential or random and the physical files can have any number of

end-of-file marks. Cn the VAX system random files cannot have any

end-cF-file marks. This may effect the command processing in

the GSSS. However, the VAX s ystem provides for automatic

record blocking to and deblocking from the disk files while the

cdComn IV/35 does not.

3.4  Li"' aE PRINTER

The ModComp IV/35 system is equipped With a 600 tine per minute

printer. The VAX 11/780, used for the benchmark tests, _a ecuicce'd

with a CECMTER III for printing which is much Zlow pr. Cther

than for speed, these two dev ces a ppear to +_-P totally cot„pat'_ le

3-4  ORIGI VAL PAGE IS
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for printing ASCII characters. However, to operate effectively

the GSSS will require a printer with at least the capability of

600 lines per minute (100 cols/line).

3.5 CARD READER

The ModDomp Nj35 system is equipped with a 30C card per minute

card reader. The VAX 11/780 is not equipped with a card reader.

Therefore no statement can be made other than that the fully oper-

ational GSSS requires a card reader in its current configuration

(e.g. for, OSPARS, OBXRU t BLDTAB, BLOHAZ, etc.).

3-6 ORIGINAL PAGE 1S
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SECI'ICN 4 - RESULTS OF TESTING

curing the course of the compatibility study, numerous tests have

been run on both the KodComp IV/35 and VAX 11/780 computer systems.

X11 of these benchmark tests have been accomplished using the

w
FOtR17M language. ;Many obstacles had to be overcome during the run-

ring of these 'tests, partially due to the differences in the two

systems, and partially due to incompatibilities in the FORTRAN lan-

guage. The VAX syster,, is a secure system, isolating each user from

the others, and coquiring privileges and quotas for each user. The

ModComp system requires no privileges for any user and any user can

do anything with the system. These-di,fferences'tetween the systems

impacted the testing greatly in the areas of task activation and

communication. The differences between the FORTRAN language i,-nple-

mented on both-machines impacted the testing in the areas of Input/

Cutput (I/0), file manipulation, and internal data organization,

representation and manipulation.

This section of the report describes these obstacles and annotates

the results of the terchmark tests.

4.1 1/0 EE =L4RK TESTS

The I/O Benchmark  Tests were run on both the 'McdComp IV/35 and VAX

11/780. They examined all of the areas of I,'O that are co,=onl,l

used by rodules in the OSSS. ;Many of t' a "normal" I/O methods used

on the iModCamp system did not operate in the same way on the V ti{

system. Tr,ese compatibility problems are accounted for in t^,e

1 
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following sections. vote that all the enchmark tests Caere done

using the FORTRAN language.

4.1.1 GENERAL, I/O INFORMATION

The ModComp IV/35 and VAX 11/780 differ greatly in their 's/o

philosophy. On the ModComp it is only necessary to assign a logical

name to a device or disk file name in Order to attempt accesses to

that device or file. If the device or file is not available for

access, an error message is output ^,y the supervisor and the program

is placed into a "held" state. However, on the VAX , access to a

device is denied unless the device is explicitly "mounted" in the

code or throVgh JCL commands (see section 3.1). If the device is not

mounted the program is aborted by the supervisor. On the ModComp,'

any or all programs can share any device or disk file by simply

assigning logical names to the same device or file name, and no pro

gram can guarantee that it has exclusive use of that device or file.

On the VAX, however, the opposite is true. Programs, by default,

obtain exclusive use of a device or file as long as they have it

"opened". Cnl_v by using special VAX coding techniques can more than

one process access the same device or =i.le at the same	 -.his

is accomplished by using the special VAX F CRMAN GPM statement fully

specifying the file name and specifying it as SH)knoc

(e.g., OPM ( 'NIT=3, NA ►IE- I FILE.CAT;l', SHARED))
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Even this method will worx only for input files to mult+ple crocesses.

Output files cannot be shared for output by n. re than one process.

The resulting data on the file is unpredictable using sequential

access. Some of the records are never written to the file. This

can have an effect on the dump collection modulas in t::e vSSS

4.1.2 SEQUENTIAL DISK FILE 1/0

Except for shareability and sector sizes, the sequentially organized

disk Files on both the ModComp and VAX rlystems operate in much the

same way:

•	 Both systems can have multiple end-of-file marks on

one physical disk file.

•	 Both systems can randomly read a sequentially created

disk file as long as the records are of fixed length.

•	 Both systems can add records at the end of the file.

0	 Logical record lengths of 250' bytes can be read

and written on Goth systems.

However there are some differences becJeen the two systems. Some

tyings that are done on the VAX system but not done on the ;iodComo

system are:

•	 Blocking and deb.lccking is automatically done by the

supervisor.

4-3  
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•	 File sizes are dynamically expanded as records are added

to the file.

•	 The Ij0 from one process is isolated from other processes

( unless sW ia.t JCL commands are used) ,

•	 Files are dynamically created when wretten to for the first

time.

•	 Evidence of the 'Gast updated version of a file is kept in

the file directory, including date and time.

In contrast there are some operations effecting sequential files that

can be performed on the ModComp system that cannot be done ::n the

VM:

•	 sequential 1/0 can update individual records on a disk file.

•	 Random writes can be made to a sequentially created file.

•	 File pointers (keys) can be positioned to any particular

record by either advancin;j 	 or backspacing over, end-of-

file marks or records (i.e. AVF, VR, SKF s SKR utilities).

•	 Files need not be ecalicit,ly ccened to indicate access mode

(i.e. sequential or random).

Some of these differences can have a great effect on the GSSS soft-

ware; others are of little consequence. Cnll; through attemptin g to

transport the CSSS to the VAX can all obstacles be found. T,",e VAC

4-4 ORIGINAL PAGE 15
OF POOR QUALITY

.



;hzlosophy of dynamicall y allocating. files may be the 3reatest ob-

stacle to overcome since none of the GSSS software expects this to

ever occur fee Section 3.3),

4.1.3 RAVIX♦M DISK FIL 1/0

Except for the sector sizes and automatic blcc!cirig and deolocking,

random access disk files operate in much the same way on both the

vloe(Comp and VAX system:

,o	 Both systems allow random u pdates anywhere in tbe file

using the same "key" values.

a	 Both systems allow sequential reads from a :randomly created

file (as long as the records are continuous).

e	 Logical records of 2S6 bytes can be accessed on both machines.

However, some things can to accomplished on the VAX system

that cannot on the ,ModComp are:

a	 Fixed record lengths of other than 256 byt*s can be accessed.

e	 Cue to automatic file size ex^ansion, records can b y added

cast the end of the
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n addition "ne VAX system has one limitat?.on that the XodComp

system does not:

•	 Any file used for random access can have ,ni,y one end-of-fUe

and this end-of-file must be after the last record in the file.

Conversely, there are things that can We done on the McdComp system

and not on the VAX system;

•	 Sequential updates can to made to a randomly created file.

•	 Randomly accessed files can have many erd-of-file marks.

a	 Record lengths are fixed at 256 bytes.

Probably only one of these differences will impact greatly the transport

of the GSSS. The allowance by the ModComp system for multiple eed-or-file

marks on a randomly accessed file. In many cases, in the GSSS, files

with more than one end-of-file mark are created sequentially but

input randonly. This can have an effect on the database and commanding

Modules of the GSS3.

4.1.4 FORMATTED '-CBE If0

Once a tape is mounted and pc.sitioned procwrly, the records written

to tape, or read from tape, with F'ORT;RA ►Y formatted reads and writes,

are totally compatible on both t: e ;!cdC--mz and AX s ystems. row$ver,

there are some problems with compatibility in the areas of tare

osit,oning and -nd-of-file -arks.

Y_a ORIGINALPAGE IS
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,ha FCJRTIRAN MCND command s not compatible:

•	 Cn the '4odComn system a Rfu= of any tape merely ;ros tt°ons

the tape at the "load point",

•	 :n the MX system d RZr'I.MD of a tape causes t'no end-of-fete

;narks to ce written at the teginnIng of tape and the tape

is positioned Lmradiately following them, if the tape is

"unlabeled".

There were other problems encountered during the formatted tare Ii0

testing on the VAX system:

•	 256 byte records have not teen successfully written to un-

labeled tapes using cM^; formatted writes.

e	 Tapes must be explicitly mounted using JCL commands before

they  can be accessed (see Section 3.1)

The physical end-of-file marks written to tapes are compatible to

'both systems, rcwever:

0	 End-of-file marks written by the MCKLE function on thle

7AX system are not always .recognized as end-of-C!.les on

MRTM4 read statements with "ENC=" s=ecified, on t;:e

VA,X. The end-of-file nark :s sometimes ignored ty the

'Jio stlstem iE it was the last thing ;Jrttten to the tape.

Any „modu,le of the GSSS that reads tapes `e g. PLBX,

SzOLPH) can be effected by this.

4	
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4.1.5 GNFCM%A7 "ED TAPE I,vO

When using standard FORTRAN :cads and omites on toth the ,40dcomp and

VAX systems, unformatted tape records are totally incompatible. :..".e

:')GRTRAN generated record headers are different as shown below;

,r	 Record headers for 36 byte records;

VAX	 ModComp

X 1 0022 1 , X 1 003'	 X107001, X10024'

In addition to the record headers and tape positioning problems pro-

viously mentioned in Section 4.1.4, there is a problem with end-of-

file marks on unformatted tapee on the VAX;

• r Unformatted, unlabeled tapes cannot have an end-of-file

mark written to them from FORTRAN using the ENDFILE function,

AttcsuF?ting to do so causes an 1/0 error and term. , nates the {

process.

4.1.6 FILE, POSITIONING FUNCTICNS

T::e McdComp system allows for all the file and record positioning,

functions using JCL connands:

a	 Advance rile (AVF)

•	 Advance Record (AVR)

•	 Backspace File (5KF)

is	 Backspace Record (MR)

4-8 ORIGINAL PAGE 15
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:he VAX. system does nor.  allow !or any of them. n addit:,on c crl :a

the REWIND problem stated previously in Section 4.1.4, Since ^any

,modules within the SSS (e.g CBGE ►̀ t, CaXPZF) use these functions this

can have a great impact on the transporting of the CSSS to the 11M.

However, all of. the above functions can vP accomplished with simple,

specialized library routines, or special $CIO cavils.

4.1.7 EVENT PR==

.. a philosophy of printing event messages differs between the iMcdComp

D1 and VAX 11/780 computer systems, On the ModComp system event mess-

ages are easily output in chronological K 1:Jer simply by closing ar

endf3.ling the output stream after each Line ; ;;Yen this is done tc.e

messages 'are sent to the spooler and concatenated with all other ;Hess-

ages and then actually printed. The McdComp makes no attempt to isol-

ate one task's printout fiom anther's when this method is used.

On the VAX system, the spooler groups each process' output separ-

• ately and prints the lines as separate listings for each process.

Using the ,McdComp method on the VAX results in each line baing out-

put to a "new'page" on the printer. Howover, there is a ;;ethcd

that can be used on &.e VM system to insure event messages are

neatly printed in chronological order.

This can be accomplished by routing all printer event ,,,essac ps to

one process through a mailbox. Once a -message is received by this

-,recess (through the ^ailbox) it can 'CP p r ,nted in tie no=a i ma#-.-er.

4-9 
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However, there is one more oddity of the VAX system print spooler.

Unless this process keeps count of Lines printed and closes its

spool file#-after each page of printout (approximately every 30

lines), or periodically, no lines will he actually printed until this

process exits. A preliminary version of this process already

' 	 exists on the VAX.

4.2 FORTRAN LANGUAGE BENCHMARK

The FORTRAN langweg* tests fall into three categories; arithmetic

and logical operations, array allocation, and the logical and physi-

cal organization of numbers and character strings. Some of these tests

established compatibilities, while others revealed serious and poten-

til1y widespread a-nm►+gitibi_1itios b@t- n the	 Comp I7/35

and-the VAX 11-780 with respect to the GSS.S.

4.2.1 ARITM4EFI.0 AND LOGICAL OPERATIC NS

•	 There exist integer arithmetic calculations which are valid
r

	

	 '
and which work on the ModComp but which cause over;low and

abort the process on the VAX (Set Section 5.1).

•	 The LQGICAVI (L*1) data type on the VAX works

Like any other integer date type for integer arithmetic

Eand logical operations, including conversion (i.e., sign
re
y	 extension, etc.). Note that this data tyre fines not

exist in ModComp FORTRAN and should not be used when
f

Z

transporting modules to the VAX.
f	 '
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e The F'OATM supplied lunc4ions ICR, LAM and ISHFT work

the same For integers on the iftdComp and the VAX. This was

verified by extensive bit extrartTon/insertion and shitting

tests. However, their use in character manipulation leads to

different results on the two computers (See Section 4.2.3).

e	 Any differences in the accuracy of floating point calculations

between the yodCamp and the VAX are too small to affect their

application in GSM. As an ewmple, least squares calculations

typical For GSSS were performed on the two machines and agreed	 1

to four to six decimal placestfor 6-term/11-5oint Formulas

thru 2-term/5-point formulas. This was two to four places

more accurate than the aCDLoximation fore—wila to the correct

solution.

4.2.2 ARRAY ALLOCATxCN

The assic,—ent of the elewnts of one-dimensional FORTRAN

arrays is in their i-gical order on both machines. For

example, the VAX FORTRAN data declarations:

WGICAL* 1 114(8)

ILV' MER*2 X(4)

LNTEGER*4 Y(2)
REAL*8 Z (1)
rEQU VALLWE (W(l),X(1)1Y(l)1Z(1))

assign these arrays to the same eight bytes of metroory with

the following element correspondence:
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Table 4-2. Array Elements Correspondence

Byte Addresses; a	 a+l	 a+2 a+3	 a+4	 r1+5	 a+6	 a+7

W W(1)	 W(2)	 x+1(3) W(4)	 W(5)	 W(6)	 W(7)	 W(8)

Xs X(1)	 X(2) X(3)	 X(4)

Y; Y(1) Y(2)

Z: z(1)

This memory correspondence also holds on the ModComp for arrays X,Y,

and 2, but not^for W since the L*l data type doesn ' t exist on the

ModComp. Note that on both the ModComp and the VAX the address of a

variable or an array is presented as the address of its lowest

addressed byte in memory even-though the ModComp is a word

addressing machine ( 16 bit words).

•	 On both machinos the allocation of the elements of two-
dimensional arrays is column major order (the FORTRAN Stan-

dard); that is the elements A(I,J) are taken by varying

the leftmost subscript (I) most fregwntly and the rightmost

subscript ( J) least frequently.

4.2.3 BYTE CCMPCITICN OF NUMBERS AND CHARACTER STRINGS

•	 The storage of alphanumeric character strings in arrays

by FORTRAN statements (i.e., DATA or READ) results in

the same physical ordering of bytes in memory for each

data type and for both the ModCcmp and the VAX computers.

4 - 12 
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As an example, consider the assignment of the character

string "ABCDEFIGH" to each of the arrays W, Xs Y, Z (declared

in Section 4.2.2) by the following FORTRAN statements:

DATA W/'A', 'B',...,., 'H'/
or READ (5, 10) W	 with 10 FORMAT (8A1)

IA A X/ I AB I , 1 CD 0 0 I EF I , IGH'/
or READ (5,10) X	 with 10	 R MAT (4A2)

DATA Y/ 'ABC', 'WMI/
or READ (5,10) Y	 with	 10 FORMAT (2A4)

DATA Z/ ' ABCAEMI /
or READ (5,10) Z	 with 10 FORMAT (A8)

The rewilt is summarized in Table 4-3. Recall that the LOGICAL *1

data type (e.g., array W), exists only on the VAX. Also, we are not

considering the CHARACTER data type, which exists only on the M.

Table 4-3. Byte Ordering for Character Strings
ModCcmp end VAX (Arrays 'A, X, Y, and Z)

ical Byte Order: A B C 0 E F G H

e Addresses: a a+1 a+2 a+3 a+4 a+5 a+6 a+7

Codes: 41 42 43 44 45 46 47 48

4-13	 or 
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e	 The storage of an integer at the byte addresses for

an integer variable differs on the ModComp and VAX

computers. Considering a FOKrW integer as a se-

quence of bytes, the bytes are stored in decreasing

order of significance on the ModComp (i.e., most

,significant byte at the lowest byte address) and in

increasing order of significance on the VAX (i.e.,

least significant byte at the lowest byte address).

For example, consider the Following integer

(hexadecimal) value assignments to the arrays W, X,

and Y from Section 4.2.2:

DATA W/241,, 6d2, Z43, Z44, Z45, Z46 1 Z47 1 Z48/
or	 READ (5,10') W	 with	 10 FORMAT (8Z2)

DATA X/Z4142 f A4344, 24546, 24748/
or	 READ (5,10) X	 with	 10 FORMAT (4Z4)

DATA Y/Z41424344, 245464748/
or	 READ (5,10) Y	 with	 10 FORMAT (228)

The READ refer to the hexadecimal string "4142434445464748".

Table 4-4 ccmpares the internal storage representations of these

integers for the ModComp and VRX computers and also shows the

bit-numbering conventions for the t<o computers (they are the

reverses of each other within data items). Note: The sign bit

of a data item is denoted by s. Also, the address of a data item

for both the ModComp and the VAX is its lowest byte address.
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Table 4-m4. Byte Ordering for integers

L*l array W (VAX only)

Array Element : W(l) W(2) W(3) 1,4(4) W(5) W(6) W(7) W(8)

Logical Byte Order : s41 s42 s43 s44 s45 s46 s47	 s48

Bit Numbering : 0-7 Owl 0-7 0-7 0-7 0-7 0-7	 0-7

Byte Addresses :	 a a+l a+2 a+3 a+4 a+5 a+6	 a+7

I*2 array X

Array Element X(1) x(2), X(3) X(4)

Logical Byte order :	 (s41 42) (s43 44) (s45 46) (s47	 48)

Bit Numbering MOD : 0-7 8-15 0-7 8-15 0-7 6-15. 0-7	 8-15
VAX :	 15-8 7-0 15-8 7-0 15-8 7-0 15=8 7-0

Byte Address	 MOD :	 a a+l a+2 a+3 a+4 a+5 a+6	 a+7
VAX : a+l a a+3 a+2 a+5 a+4 a+7	 a+6

h

I*4 array Y

Array Element Y(1) Y(2)

Logical Byte Order : (s41 42 43 44) (s45 46 47 48)

Bit Numbering !!OD	 : 0-7 8-15 15-23 23-31 0-7 8-15 16-23 24-31
VAX	 : 31-24 23-16 15-8 7-0 31-24 23-16 15-8 7-0

Byte Addresses MOD : a a+1 a+2 a+3 a+4 a+5 a+6 a+7
VAX : a+3 a+2 a+l a a+7 a+6 a+5 a+4

•	 These differences in the allocation of integer data types

are t-ransparent to the EOIMRAN programmer except when

4-15 ORIGINAL PAGE IS
OF POOR QUALITY



programming techniques are used which require operating with

only part of a data item. Cne such case is the manipulation

of parts of an integer (i.e., sign, most significant part,

least significant part, etc.) by equivalencing arrays and

variables of different data types. For example, suppose the

following equivalences are made for the arrays W,X, and Y,

EQMALENCE (W(1) ►X(1) ► Y(1))

Table 4-5 summarizes the semantic differences between the ModComp

and VAX computers which occur in the elements of array X. Clearly,

programs performing such manipulations will not work the same on

both machines.

Table 4-5. Byte Manipulation of Integers

Part of Y(l)	 ^ftdCcmp ref.	 VAX ref.

Most Significant Half:	 X(1)	 .Y(2)

Least Significant Half:	 X(2)	 X(l)

Sign:	 X(l).	 X(2), W(4)

Most Significant Byte:	 T,	 W(4)

Least Significant Bytes	 W(1)

0	 In a similar way, the difference in allocation of

floating point numbers, coupled with equivalencing

variables of other types with floating point type
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variables, can lead to semantic differences in

ModComp and VAX FORTRAN programs. Eor example,

consider setting the less significant part of

the mantissa of a double-precision floating point

number P via an equivalenced I*4 array Y(2): the

bytes of eliament Y(2) will not be in the same

order as tht)se of the less significant half of P.

•	 Another case of semantic differences due to the allocation

Of integers occurs in character manipulation. Character

strings can be constructed or modified in FORTRAN by arithmetic

or logical operations. The following FORTRAN statements

define the same string in I*2 variables X(l) X(2):

X(1) . 65*256 + 66 , X(2) •Y 67*256 +68
or

X(1) - IOR(ISHET(65,8), 66)), X(2) s I0R(ISHET(67,8),68)/

as do the following in Y(l):

Y(1) a ((65*256 + 66)*256 + 67)*256 + 68

Y(1)	 IOR(ISHET ( IOR(ISHET(IOR(ISHET(65,8),66)0

9),67),8),68)

However, the logical ordering of the characters within the integers

in memory differs:

•	 Cn the ModComp the above produce the equivalent of

the data statements:

DATA X/'AB', 'CD'/	 and

DATA 
Y/ ^'`!	 ORIGINAL PAGE IS
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a	 Cn the VAX they produce the equivalent of:

DATA V I DA', 'DC'/ and

.M Y/'DCBA'/

This results in different logical memory layouts as shown in Table

4-6, assuming that the arrays are aquivalenced. Mote that 65, 66,

67 and 68 are the decimal character codes for A, B, C and 0.

Table 4-6. Logical Character Strings Resulting from
Arithmetic and Logical Operations

ModComp	 VAX

Byte Address:	 a a+1 a+2 a+3	 a+3 a+2 a+l a

1*2 Y Character ;String: A	 B	 C	 D	 C	 D	 A B
Array Element: 	 X(1)	 X(2)	 X(2)	 Mli

I*4 Y Character String: A	 B, C	 D	 A	 B	 C D

In addition, the logical order of characters within integers (which

corresponds to the ordering of bytes in memory) is the same as A-format

input and differs on the two machines, as illustrated in Table 4-7,

Table 4-7. Character Strings by Input in A Format

lod._ _ CoCo=	 VAX

Byte Addresses	 a a+l a+2 a+3 a+3 a+2 a+l a

^1*2 X Character String: A	 B	 C	 D	 D	 C	 B	 A
Array Element	 X (1)	 X(2)	 X(2)	 X(1)

I*4 Y Character String: A	 B	 C	 D	 D	 C	 B	 A

ORIGINAL PAGE 1S
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The implications of these semantic differences between the ModComp

and the VAX are obvious. Since these kinds of programming techni-

ques are allowable in the FORTRAN language, they may be used any-

where in a program and, hence in a large program system like the GSSS

there may be numerous ModComp dependencies due to character and

number manipulation occurring throughout the soft-,vare.

4.3 TIMING BE NC34M TE5"TS

Several timing tests were performed on the VAX on common but impor-

tant code sequences. The purpose was to determine if any potential

timing problems might occur in the GS.SS due to these computations.

These tests along with their corresponding average times (over 100

to 100,000 executions as appropriate) are presented in Table 4-8.

Unless otherwise stated, the tests were coded in FORTRAN and the

times are in milliseconds (ms). In general these times are com-

parable to those on the ModComp. The only potential problems are,

die outrageously long time for the file OPEN/CLOSE sequence (314 ms),

and the time for the mailbox WRITE/READ sequence (.4 ms). We note

that the VAX microcoded MACRO instruction for polynomial evaluation

is five times as fast as efficient FORTRAN code.
r-

t

7
s
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Table 4-8. Timing Benchmarks

5-th Order Polynomial Evaluation

(Horner's Method):

-	 MYiTRAN DO-loop 0.11

- Special VAX microcoded 0.02

instruction (POLY)

FORTRAN subroutine Call Overhead 0.02

System Service Call Overhead 0.07

Blocked File I/0:

-	 READ 3.3

- WRITE 4.0

Mailbox Write/Read Sequence 0.40

File OPEN/CLCSE Sequence 314.0
;I



SECT.2CN 5 - COMPATIBILITY OF APPLICATICNS LANGUAGES

In the ModComp IV/35 version of the GSSS only two applications

(programming) languaAges are used: FORM M IV and MA Assembler.

The ModComp CLASSIC system is totally compatible with these two

programming languages. in fact, the object language frcam the

ModCcmp 1V/35 will execute on the ModComp CLASSIC. On the othor

hand, the VAX 11/780 system has a different implementation of FORTRAN

(FO1VM YV--PLUS) and its assembler language is entirely different.

5.1 FORTRAN

The difference in the implementation of the FORMM language on the

ModC'wq systems (IV/35 & CLASSIC) and the VAX 11/780 system are

varied. There are many things that are allowed and done by GSSS

modtLles on the ModComp system that cannot be done or don't work the

same in the VAX implementation of FORTM:
f

Modification of DO LCOP variables within the loop is ok on

the ModComp but not on the VAX.

•	 Using SHIFT, AIM and OR logic to manipulate , haracters works

F
differently on the two systems.

•

	

	 Attempting to convert X 'FFFFA8AA' to a 16 bit integer causes

overflow on the VAX.

e

r f

f ,
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•

	

	 CM I/Z2031/ and DATA I/' 1'/ are identical for 16 bit

variables on the ModComp but not on the VAX. On the VAX it

is OATH I/Z2031/ and DA=/'1 '/ that are equivalent.

•	 The MCODE and DECODE statements have a slightly different

format.

•	 The following code:

DIMENSION A(3)

DM A/ 1 12 C HARACTEM I/ is o k on the ModComp

but must be coded as follows on the VAX:

DIMMMICN A(3)

DATA A/' 12C8' , ' ARACV , ' TERS' /

•	 The VAX allows. for LXICAL *1 data type, the ModCcmp does

not.

•	 Tte VAX has a special, VAX, CHARACM data type which must'

be used to call many system services,

•	 The equivalencing of arrays is logically different on the

two systems (see Section 4.2).

in addition to the above mentioned compatibility problems, there is one

major "bug" in the implementation of FORMM on the VAX system when it

is optimized. The following code sequence produces a value other than

the zero for the variable J:

l;
5-2
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Jno
Bs.TRUE
M 100 I-1,l0
IF (B) coo 100
Jai

loo ccmn=
PRn m J

•	 The effect of this on the GS.SS software will remain unknown until each

and every MRMM module is thoroughly tested and debugged on the VAX

system.

5.2 ASSEMBLER

The ModComp IV/35 and ModComp CLASSIC can use the same Macro Assem-

bler (MU). The VAX 111780, by nature, uses a different Macro.	 M

Assembler (VAX-11 MACRO). If only the languages were different,

this compatibility problem could possibly be overcome by writing

a cross-assembler to assemble the M4A source code into VAX-11

MACH code. However, the hardware architecture and language logic

differences between the two vendors' machines precludes this approach:

•	 The VAX system has 21 different addressing modes. The ;4odcomp

systems have only 6 addressing modes.

•	 Data organizations within memory are logically reversed.

•	 The VAX uses stacks for register and argument save areas

extensively. The ModComp systems do not.

•	 Cn the ModComp systems, 15 of 16 general purpose registers

(R1 -- IRIS) can be used for any pu_*rose, at any time. The

5-3
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M system has 4 dedicated general purpose registers (R12 -

R),4) and 6 special use registers (Rd - R5) leaving only

6 registers that cart be used at any time, for any pose.

o	 The instruction logic is entirely dilferont on the ModComp

and VAX systems.

0	 The VAX is a byte addressing machine. The ModComps us*

word addressing.

This makes the two assemble_ languages totally incompatible.

Since over 33,000 lines of M4A assembler code exists in the

ModComp IV/35 version of the GSSS, this is a major compatibility

problem with the VAX system.

5.3 -LIBRARIES

Except for system service interfaces, the FCRrW libraries on the

ModComp and VAX systems appear to be totally compatible, However,

to transport. the GSSS to the VAX the entire user written library

(a large portion of which is written in MA assembler) must be

rewritten.

5-4  
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SECTICN 6 - CCMPATIBILTY'Y' OF VENDOR SUPPLIED SERVICES

Both ModComp systems appear to have similar, if not identical,

vendor supplied services in all areas including JCL cmamids and

system services. The VAX system has an entirely different set of

services. The JCL coaR W42 on the VAX are more complex and allow

the user to accomplish more Functions but do not include as a sub-

sot all the functions allow.0 in the ModComp systems. The system

services are entirely different but do allow for many of the same

functions.

6.1 JOB CCN WL LANGUAGE CCMMANDS
	

1

All three systems (ModComp IV/35, Mod6mp CLASSIC and DEC 7AX 11/780)

provide . the user with Job Control Language• (JCL) commands that give

the user the capability to control the execution of programs and

-maintain data files. Both ModComp systems provide almost identical

sets of JCI, aa►mands to the user. Hcwever, the VAX system provides

an entirely different set of JCL commands. Many of the differe!nc^s

are merely syntactical differences. Others operate in logically

different ways. The syntactical differences are easily overcome;

but the logical differences are difficult, if not impossible, in

some cases to resolve.
^t

Besides the ;previously mentioned problems with tape mounting and

assigning logical units for shared use (see Sections 3.1 and 4.1.1),

6-1
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there is one manor di ference in the JCL commands that will have a

substantial effect on the transportation of the GSSS.	 It is in the

area of the link-editor;

•	 Cn the ModComp systems logical unit assignments for a

"foreground" task can be specified when the program is

linked.

•	 On the VAX system there is no way of specifying

logical unit assignments when a program is linked.

R This incompatibility is of paramount Importance to the transporta-

tion of the GSSS.	 In the GSSS no standards for logical unit numbers

or names have been made and different units are used for the saw

devices and files throughout the system. 	 If. the GSSS is transported
k

without major changes in this area, special JCL command procedures.

would have to be run before the execution of each module. The neces-

sary changes in this area would involve:

•	 The examination of each program for tee logical units used.

•	 The examination of all the link decks for the physical

equivalents for the logical units.

•	 Cross referencing all references to the same physical devices.

•	 Changing all the logical, unit assignments to a physical

device to the same unit n=ber or name. This requires

coding changes within the prcgrams.

6-2
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6.2 SYSM SERVICES

Tte ModComp systems provide for FORTRAN interface routines in the

library for calling system services. The VAX system provides for

calling the system services directly from FORTRAN. Most of the

major system services available on the ModComp Systems have cor-

responding counterparts in the VAX system as shown in Table 6-1.

Some do not. Even sm, of the corresponding system services on

the VAX do not operate in the-same-way or provide the same

information:

1

e	 $CREPRC doesn't operate like ACT. A secondary

activation can be done on the ModComp but can't

using $CREFAC on.the VAX.

•	 $GETJPI doesn't return the same information as

GEPrMK.

W	 $GEITIM returns time in a different format than

GETTIME.

0	 $QIO requires channel number as an argument, not

logical name as do the ModComp services.

The total impact of this area on the GSSS software will remain

unknown until the transport of the system is attempted. How-

ever, secondary activations of tasks are com=n-place in the GSSS.

I

M
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Table 6-1. ModComp vs. VAX System Services (1 of 3)

1

r

Modcomp
System

Service

VAX
System

Service
ModComp
Purpose

EST none Establish a resident task.

CEES none De-establish a task.

ACT $CRWRC Start execution of a task.

KILL $FORCEX Abort another task.

A80RT 1FOEbCEX Abort this task.

HOLD none Suspend task until
resumed by operator.

WAIT $SCSPND Suspend task until
resumed by any resume.

FM $RESUME ' Resume a task in WAIT.

DELAY $SETIMR and Suspend a task for a
$WAITER specified period of time.

CCNNECT none Allocate timer to schedule
any above function at a
future time.

GETTASK $GETJPI Get information about a task.

SEND $QIO Send a message to another
to a mailbox task.

RECEM' $QIO Receive a message sent by a
from a mailbox SEND service.

ALLXATE $CRETVA Allocate a region of Private
memory to this task's space.

DFALLCCATE $DEMVA Deallocate region of private
memory from this task's space.

o-4
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Table $-1. ModCcmp vs. VAX System Services (2 of 3)

►ModComp	 VAX
System	 System	 ModComp

CREPRI none? Create shamed region from
this task's private space.

INSPRI none? Insert shared region into
this task's private space.

GETTI.'ME $GEMM Get time of day or elapsed
time.

am none Dump region of memory to
line printer

•	 COLLECT none Parse next parametror in
character string.

ATCAN none Convert ASCII string to
CAN-CODE.

CANM none Convert CAN-CODE to
ASCII string.

ATNUM none Convert ASCII string to
binary.

HTCEC none Convert binary to decimal
ASCII string.

9THEX none Convert binary to Hexa-
decimal ASCII string.

ASSI $CRELCG Assign logical name to
device or file.

TASSI $TRNLOG Test assignment of a logical
name.

REW $QIO Rewind a Logical device.

HCME $QIO Position a logical device at
beginning of media (i.e. Rewind)
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Table 6-1. Modcomp vs. VAX System Services (3 of 3)

Modcomp
System
Service

VAX
System
Service

Modcomp
Purpose

WEOF $QIO Write, an end-of-file mark
on a logical device.

TER410 $CANCEL Terminate an I/O request
to device.

IOWAIT none ? Wait for 1/0 to complete

BKA $QIO Backspace a record on a
logical unit.

AVR $QIO Advance a record on a
logical unit.

BU $010 Backspace One file on a
logical unit.

AVF $QIO Advance one file ^n a
logical unit.

READ $QIO Read a record from a
logical unit:

WRITE SQIO Write a record to a
logical unit.

MESSAGE $BRDCST ? Display a message on the
operators console.

MESSAGE/HOLD none Display a message on the
operator ' s console and
enter a hold state.
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SECTION 7 - CCNCLiJSICNS

This report has presented many interesting peculiarities of the VAX

11/780 system in relationship to the ModComp I7/35 implementation

of t:* GSSS. Some of the software yrithin the GSSS uses ModComp

unique coding techniques and logic sequences that are contributing

factors to the incompatibilities indicated. However, these incom-

patibilities still exist with relation to the ModComp version of

the GSSS. With this in mind the following conclusions about trans-

porting the GSSS to the VAX are presented:

I
•	 All of the tape I/O handling logic will require changes.

•	 All of the file and device sharing logic will need

modification.	 .

•	 All of the standard (256 byte) tape records will have

to be redesigned to a different'length.	 I

•	 The KCRT input handler will have to be redesigned and

rewritten.

•	 Logic and coding techniques will have to be developed

and implemented to avoid tie proliferation of disk files.

•	 All end-of-file logic on random access disk files will

have to be found and eliminated.

•	 Any use of FORTRAN unformatted tapes will have to be

eliminated.
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• Most I/O to ,files will have to use the OPEN statement.

• JCL logic sequences will require massive changes.

• All use of the MUM REWIND command for tapes will

have to be eliminated.

• All event messages will need to be routed through one

module (process).

• Timing problems, particularly in the area of file OPEN/

CLOSE sequences, will need to be investigated.
f

• Most, if not all, character CM statements in FOFCM

will have to be changed.

• All DATA statements in EORTM will have to be examined

for validity on the VAX.

• All use of SHIFT, AND and OR logic for character manipu-

lation will have to be eliminated.

• Conversions of 32 bit integers to 16 bits will have to

be examined and investigated.

• Most ENCODE and DECODE statements in FCFfl'M will need

modification.

• Array equivalencing will have to be closely examined

for validity on the VAX.
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•	 Any modification of DO LOOP variables within the loop

will have to be eliminated.

•	 Any conditionally executed statements within CO LOOPs

will have to be carefully examined for valid execution.

•	 ItWi generalized methods for character manipulations

will have to be developed.

W	 All of the assembler language modules will have to be

rewritten using different, logic sequences.

•	 Most of the user written GSSS library routines will have

to be recoded.

s	 A method for specifying logical unit assignments in real-

time will have to be developed.

•	 The inconsistancies between the sydten services will

have to be resolved.

Very few, if any, of the above conclusions will apply if the GSSS

is transported to the ModCcmp CLASSIC system. Therefore, the main

conclusion to be drawn from the State-of-the y-Art Computer Systems/

GSSS Compatibility Study is:

Transporting the GSSS to the ModComp CLASSIC	 will require

very few coding changes. However, attempting to transport the

GSSS to the VAX 11/780 will require massive changes, not only

in the coding of the modules but also in the design of many
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areas of the GSSS, particularly in the areas of I/O and task

activation.

In Fact, it may be a futile effort to attempt to implement any

real-time satellite ground support system like the GSSS on the

VAX 11/780, since the basic philosophy in the cam{ environment is

one of a multi-user, timesharing, interactive processor.

To summarize the ModComp-to-VAX compatibility analysis, recall the

conclusion from the MMS/GSSS MODCCMP Device and MAX IV Dependency

Study. Based on the hypxthesis of the compatibility of (1) FORTRAN
f

language and compiler, (2) data base structure, (3) CRT page library

and tables, (4) telemetry format tables, (5) command structures, and
1

(5) all other- internal tables, the approach to moving thi GSSS to the

target environment would be developed. This would entail at least
t

rewriting the 4odCcmp/FORrRM library routines (with the aid of a

cross-assembler) and moving the FORTRAN code with only the "obvious"'

changes made, followed by an iterative procedure of load/link/execute,
f

error isolation, and-error correction, until working code is produced.

With respect to the VAX as a target machine, this minimal transport

effort must, of course, be revised in light of the incompatibilities

revealed in this study. The FORTRAN language and compiler incom-

patibilities (in one case an outright bug in vendor software) obviate

hypothesis (1) above and point to vast, detailed, and sometimes obscure

changes in the GSSS FORTRAN code. Moreover, the FORTRAN semantic

incompatibilities also amply incompatibilities in areas (2) through

7-4
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(6) above. At the very least, GSSS internal structures involving

manipulations of characters and hexadecimal codes will (most ,likely)

be incompatible due to differences in internal byte and bit-string

operations (logical or arithmetic). Examples of areas probably af-

fected are the parsing software in the CAT page table and the command

structure areas, and data base handling (i.e., do creation and ex-

amination of structures "hide" differences between MCCC''CMP and 'VAX

in data item encoding?). These points can be resolved only by de-

tailed examination of the software in each of areas (2) through (6).

8

Also in the language area, the . significantly different philosophies

in the organization of the assembly languages for the MODC'CMP and

VAX machines makes the cross-assembler approach to MODCCMP/FCM7M

library translation unproductive. Hence, complete, individual re-

coding of these routines will have to be done. Furthermore, incom-

patibilities in the VAX operating system and 1/0 software (i.e.,

in JCL, system services, etc.) force re-coding and, in fact, re-

design of some areas of the GSSS. Examples we have seen from these

areas are: file and device sharing, 256-byte tape records, tape I/0,

KC:RT input handling, end-of-file handling for random access files,

and disk file proliferation as a result of multiple task activations.

A major problem lies in certain time-critical system actions: it is

almost definite that the large OPEN/CLOSE time will cause severe

degeneration of GSSS cerfoxmance on the VAX, since each task activ-

ation requires that the disk file containing the image be opened and

closed. Also, the mailbox write/read time may be a problem, since
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this will occur for all event messages. Still another major problem

is presented by secondary task act;ivations: there is no system-

supported method to do this on ttie VAX, and it appears that changes

will be needwi in eves such program (i.e., most programs).

- Thus, there are quite a few technical problems in the GSSS implement-

n	 ation on the VAX, with no clean, East solutions. Most can be solved

with detailed, item-by-item examination of the individual programs -

1	 a time-consuming and by no :Weans guaranteed method of generating error-

free software in one pass. Not surprisingly, the manpower estimates
R

presented in the Dependency Study (1 1/2 man-years) must be revised.

The best estimate at this stage is based on the STOL module implement-

ation experience. This was a 2-man, 1 1/2-month effort for the trans-

port of approximately 5000 limes of FOFMW code. Allowing 1/2-month

For learning the system, this amounts to a 2-man-month transport effort.

The t%MS/GSSS consists of approximately 100,000 lines of code, over

33,000 lines of which are Assembler. For Assembler code, doubling the

manpower effort per line of code, when compared to the STOL effort, is

appropriate. So by extrapolation GSSS transport should require about:

33.2 * 2-man-months - 66.4-man-months - 5.6 man-years.

Thus, as the latest rough estimate of human resources, the kNNS/GSSS

transport to the VAX-11/780 will require approximately 6-man-nears.

This programme= resource comnittment could be supported by the equivalent

of one terminal, 40 hours per week for up to three programmers, through

three. terminals, 40 hours per week for six or seven programmers, etc.
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Finally, consider the =hardware required to support the full WSS.

This is suam sized as follows:

^r
	

Type	 DEC Sumlied VAX Devices

Tape Drives	 Two TU45 (16001800 BPI, 9 t--k, 75 US)

Disk Drives	 one RNO3 (67 M18, 1200 KB/S)

KCRrs	 At least two (test conductor page display)

Printer.	 One LP11 (660 LPM)

Card Reader	 one CR11 (285 CPM adequate)

Main Memory	 1.MB,'600 nanosecond cycle time

(The GW on the VAX will require about

750 KB since task swapping is not done

as efficiently on the VAX due to the
'I

file C:.EN/=SE timing).

In addition, specialized devices will have to be procured to replace

the specialized devices that are in the current GSSS 4cdCcmp IV/35

environment.
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APPENDIX A - Obstacles on t`^e VAX and flow Thev Were or Can be Nercome

Obstacle 1: Character st ings in FOIE M DATA statements.

Cbstacle 2: FORMW ENCCDE and DECODE statement differences.

Obstacle 3; Hexadecimal, constants in FORTRAN arithmetic

expressions.

Cbstacle 4: Debug option character on FORMAN statements.

Solution ( For obstacles 1 thr:u 4) : Run the M=

command procedure on time FORTRAN source.

This procedure executee a combination of

text editor C.yD procedures aM a M-FLITAN

' program to modify the source code within

the FOICRAN source ( see GSSS/VAX Usfprs Guide).

Obstacle 5: Using the FORTFM REWIND statement to rewind

tapes.

Solution : Unknown

Cbstacle 6: lho proliferation of data files used for out-tout.

Solution : Ude the OPEN statement specifying TYPE-'OLD'.
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Obstacle 7: Formatted tape 1/0 positioning.

Solution s Use the JCL. command procedures, IMCUN'f, 18REW

f and @DISMOUNT

or

{ Use OPEN statements and $QIO system service

i, calls (exact method unknown).

Obstacle 8: Unformatted tape incompatibility.

Solution : Unknown

Cbstacle 9	 : Tape record lengths of 2S6 bytes.

uj Solution Possibly using CVEN Statement specifying
r

RECORDSIZE-256, RECORDTYP£='FIXED'.

Obstacle 10: Carriage Control byte to tape drives.

Solution Write a utility program to copy files

circumventing the VAX carriage control

to tape logic.

obstacle 11: Record and file positioning through JCL

commands.

Solution Write a utility program to accomplish

this using $Q1O system service calls.

I



Obstacle 12:	 Allowing wAny end-of-file marls; in

random access disk files.

Solution Unknown

Obstacle 13: Sharing output files between processes.

Solution Unknown - OPM4 statement specifying SHARED

doesn't work for output Liles.

Obstacle 14: Sharing input files between processes.

Solution Use OPEN statement fully specifying

file name and SHARED.

Obstacle 15: Integer overflow when converting 32 bit

integers to 16 bits.

Solution Compile EOFrW program with /NOCHECR

option..

Cbstacle 16: The use of SHIET, AND & OR logic for

character manipulation.

Solution E'!iminatr, all such logic and replace

with ENCODE and/or CECODE statements.
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Cbstacle 17:	 Modification of M LOOP variable within the loop.

Solution	 R,ecods DO LOOP using IF statement to terminate

the loop.

Obstacle 18:	 Incorrect execution of conditionally executed state-

ments within DO LOOPS when the FCRMM is optimized.

Solution	 Recode DO LOCPs using IF statement to terminate

`	 the loop.
Ir

Cbst:°? 19:	 DEBUG can't run with shareable image, making

testing while running in real-time very difficult.

Solution	 Unknown

Obstacle 20:	 Being denied task activation rights because

other tasks have already been activated.

Solution	 Any task (process) that activates another

task should receive all the necessary privi-

leges necessary and the maximum quotas allowed.

Obstacle 21:	 Retrieving the task status returns different

information on the two machines.

Solution	 Status returned is CK in many cases; but for

the others the solution is unknown. Some

information is not available.
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Cbstacle 22: KCRT input works in character mode on the VAX.

Solution Queue KC3T input until whole string is input

' (see Sill Mocarsky for exact details).

"	 Obstacle 23: Assembler languages totally incompatible.

Solution Other than redesigning and recoding all

assembler modules the solution is unknown.

Obstacle 24: specifying logical unit assignments when

linking a module.

Solution Unknown

Obstacle 25: Secondary activation of *Rules while they

are executing.

Solution Unknown, unless all modules hibernate or

• suspend themselves instead of exlting.

Obstacle 26: Printer output lines written directly

from different modules.

Solution:	 Modify them to route all printer output

through one process.
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Cbstacle 27:	 Differences in array equivalencing in FOI7ITM .

Solution	 One by one examination of the use of the

arrays equivalenced and modification where

necessary.	 In some cases there may be no

•^	 known solution.

Obstacle 28:	 The length of time it takes to accomplish an

OPEN/CLCSE sequence for a disk file on the VAX

'	 (314 }nls) .

Solution	 Unknown

Obstacle 29:	 The length of time it takes to pass messages	 •

'	 between processes on the VAX using mailboxes

(0.4 m1s).

Solution	 Unknown

Obstacle 30:	 The differences between data types in DATA

statements in FORTRAN: e.g. DATA I/22031/

MM I/' 1 1/ on the ModComp but not on the VAX.

Solution:	 One by one examination of hexadecimal constants

in DATA statements for validity and modification

where necessary.
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APPENDIX B - Benchmark Tests and Their Purpose

Benchmark
:Name ( number) Purpose

TSTAPF (1.1, 1.3) Test order of formatted character

transfers during I/0.

TSTAPU (1.2) Test order of unformatted character

transfers during I/0.

WGICALS (1.4) Test if logical unit assignments must

be the same for each process in the

group (JCL sequence).

`	 TSTFIL.S (2.1,	 2.3) Test sequential disk file access.

TSTAPF and Test effect of end-of-file on tape.
TSTAPU	 12.2)

TIMEOPEN (2.4) Time CFEN/CLASS sequence over-

head for disk files.	 (314 mis)

JCL sequence (2.5) Test need for tapes to be MCUNTed from

code.

TSTFILU (3.1,	 3.2,	 3.3) Test random disk File access.

TSTFILF and Test blocking and deblocking
TSTFILU	 (3.4)

of disk file records.
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Benchmark
Name (number)	 Purpose

EQUIV (5.1)	 Test effect of EQUIVALENCE statement

on I*2 and I*4 arrays in FORTRAN.

TWODIM (5.2)	 Test memory layout of 2 dimen-

sional arrays in FORTRAN.

BYTESIM (5.3)	 Test if VAX treats bytes as signed

integers.

STOL (5.4)	 Test if FORTRAN functions

recognize different data types.

DATOM (5.6, 6.7) 	 Test effect of DATA statements in

FORTRAN for HEX, ASCII & decimal data.

BUFFIO (5.8)	 Test if BUFFIO routine can be

'	 Britten for the VAX.

LLSQ (5.9)	 Test results of least squares polynomial

fit on both the ModComp and the VAX.

STOL etc. (6.1)	 Test compatibility of system services.

STOL etc. (6.2)	 Test use of shared regions.

ASIT (6.3)	 Test spooling of event messages

in chronological order,
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Benchmark
Name (Number,

7IMECVM (6.4)

S.WMSG and
REC'VMS	 (6.6)

TSTAPF (6.7)

TI2MEMBOX

TIMEIO (4.0)

TIMEPOLY

Purpose

Time system service call overhead:

(0.07 mis)

Test how mailboxes work on the VAX.

Test I/O error handling on the VAX.

TiATe mailbox read/write sequence.

1 (0.4 mis)

Time F'ORrM subroutine call overhead.

•	 (0.02 mis)

Time I/O to disk file

(read - 3.3 mis, write	 4.0 mis).	 .

Time 5th order polynomial evaluation

(Horner's method 0.11 mis,

POLY instruction 0.02 mis) .
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