@ https://ntrs.nasa.gov/search.jsp?R=19820021166 2020-03-21T07:58:29+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



}NAZ&'TF-HQYHJ) MULTIMISSION MODULAR NEZ2-29042
SPACFCRAFT GROUND SUPPORT >OFTWARE SYSTEM o

(hﬂﬁ/uﬁﬂj) STATE-UF-THE=-A 4T CCMPUTER
SYSTEMS/ COMPATIBILITY STUDY (NASA) o8 Uncla:
HC AO4/MF AO1 Gi/o1 "b;‘)‘IJ

w 4 .
2 R
[ x ‘ :
v, i
: :
Ao ?
: X ’ A :
, =
— A
= -
: ; <, s . :
L] . .(
.
3 o
f— -« o - ! A
7 |
%
~
- 4 ;
: =4
- -
;
2
: X
.
: -
.
» . 5
- . =
o v 1 .
L L] .
-
’
Bl e
L]
& °
2 14
'y
. * T 2
- . :
§
. » ’
/ . »
' e ‘ :
N 1
| .
&
» < L] »
> .
as £ . .
% ; e .Il - . . £ :
> M b3
be . : Y ’
- 2 ¥
v 2 g
W, | »
f .
A iy '
{ - ; : : :
. )
: o :
-
: . =S s
' -
\ :
p
' » :
.



SOFTWARE ENGINEERING LABORATORY SERIES SEL-80-003

MULTHAISSION MODULAR SPACECRAFT
GROUND SUPPORT SOFTWARE SYSTEM
(MMS/GSSS) STATE-OF-THE-ART COMPUTER
SYSTEMS/COMPATIBILITY STUDY

Godadard Space Flight Center



FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering techn¢logies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members: '

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The gnals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Computer Sciences Corporation document '
CsSC/TM-80/6154.

Contributors'to this document include

Todd Welden (Computer Sciences Corporation)
Mike McClellan (Computer Sciences Corporation)
Paul Liebertz (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

ii ORIGINAL PAGE IS
OF POOR QUALITY



ABSTRACT

Thia report concerns itself primarily with the compatibility of the
Multimission Modular Spacecrarft (MMS) Ground Support Software Svstem
(G3SS), curreantly operational on a MedCemp IV/35, with the YAX
11/780 system. The compatibility is axamined in various key areas
of the GSSS through the results of in-depth testing performed on

the VAX 11/780 and ModCcmp IV/35 systems. In addition, the com=
patibility of the GSSS with the ModComp CLASSIC is presented based
upon projections from ModComp-supplied literature.

5
ORIGINAL PAGE |
OF POOR QUALITY



TABLE CF CCNTENTS

Smtionl-rntxoduction LRI O B B B BN I [ R R NN R

Section 2 -~ Methodn Used in Gathering Bata@ .cvvvsvsvessnvsosssenors 2

Saction 3 - Compatibillty of Peripheral Cavices ...,. i viensenvsrens

)

3.1. c‘&?ﬂ&tic ra? Cri"es R R R R R R R E Il N N T N O N YN B N U BN S I )
3'2 Kcm Displays [ NEREEREEERENI NI BN I A N SN I T S I I B I R B I O B I I I O B L
3.3 DiSk Files T TR R R R R R I N e
3.8 Line Primer . ivveeserersrnsoroorriater ottt tinesnanirrees
3.5 Card ROAAET ... iviereirtsesstonsestssastosersssasnssacsnsssseos

Section 4 - RESU.I.tS of Testiﬂq I N I IS B S S R SR R 2 BN L U I I U I

4'L I/OBenChmarkTestS IR NI IR R S R NN BN RE NI I I I B I A

4.1.1 General I/0 Information .vveeeersrvscraronsnsnvoatos
4,1.2 Sequential Disk File I/0 ,.vivvvnrvevocrsnnnassrinnns
4,1.3 Random Disk File I/0 vevvvrsvorvavorrnonsonassnnnens
4'1.4 ch‘tt“'rap I/o '""."""l"".“‘..l.!‘)l!‘l'
431%5 unfamﬂgg& gég I/Q PRSI SR S SO BN N S I I S B I IR N B B B A )
4.1.6
4.1.7

FilEPOSitioning Punctions L A R A I N R R R A O B A A N L
Eve,nt Prmting lll.lII.."OOtl'01'!!0!40!0'000‘000!..

4,2 FORTRAN Language Benchmark Tests ......covvivvevnanserrionnns

§.2. Arithmetic and Logical CperationsS.....veeseisvrness
4'2
4.2

.
.

4'3 Timmq aenchmrk Tests R I I I NI SR S A SN BN BRI AL T R BN B R

Section 5 - Commatibility of Acvlication Languages .......osivsveve 3

—0 3

01. :m‘l R R R R R I I N R R I IR I B N B I L R A
92 Assemler R EEEE R R N R B R O R O R N A B R I B O O N D 2 O B A O O
-
e

s 4
u.".b!.'a'.':.es R R I I I e e I N O R R N I R R I N NI L L L LA B

U Ur U

Section 6 - Compatibility of Vendor Supplied SRrvVICES ovssirnsiens

6.1 Job Control Language COMMANAS «vevevvrversnssrasissrnsnsnonsns
5.2 System ServiCes .. iiiiiiiiiir ittt i

Section 7 = ConClUSIONS tvirienevtar it iatio et st i ey

Apcendix A - Cbstacles on the VAaX and How Thev wera or Can ke Cverce

1
2 Array AllccatioleQIQOCl!ltIll‘llli.."i'l‘l"'lil"" 4
3 Byte Composition of Wumbers and Character Strings...

3=3
3=3
3-4
3-5

4-1

e

Aprendix 3 - Senchmark Tests and Their Purpose

ORIGINAL PAGE IS
OF POOR QUALITY




SECTICN 1 - INTROCUCTICN

The Multimission Modular Spacecraft (MMS) Ground Support Software
System (GSSS) was developed and is currently operational in a
ModCemp IV/35 hardware and software .environment. The cdependencies

of the GSSS upon this envircnment have praviously teen enumerated

in the MMS/GSSS MédCcmp Cevice and YAX IV Cependency St:t.xciy.l This
compatibility report concerns itself primarily with the cempatibility
of the currently operational GSSS with two more advanced minicom-
gputers with approximately the same capabilities as the ModComp IV/35:
the ModComp CLASSIC and the CEC VAX 11/780. The compatibility is
examined through the results of in-depth testing in the various

key areas of the GSSS performed on both the ModComp IV/35 and

VAX 11/980 systems. In addition, the compatibility of the GSSS

with the ModComp CLASSIC is presented based upon orojections from
ModComp~supplied literature and discussions with ModComp CLASSIC '
usets. The most significant portion of the compatibility study

* involved the transporting of the STOL module and a few associated
"kay=-in" modules, from the ModComp to the VAX., It was through .

this vehicle that the important areas of GSSS intertask communi-
cation and activation were investigated, Additional diZferences

in the FORTRAN language irplementations were also discovered during

the transport of the STCL module., Since the STOL module has been

1 .

C35C Cecument# CSC/TM=-80/6013, "Multimission Modular Spacecraft Ground
Support Software System (MMS/GSSS) MCOCCCHP Cevice and MAX IV Cegendency
Study", T. Welden and M. dcClellan, Cecemker 1979.

-1 ORIGINAL PAGE s
OF POOR QUALITY



successfully transported to the VAX system, this can be used as
a nucleus of the VAX version of the (3SS should the decision ce

made to transport the entire system.

This éeport descrikbes the methods used i{n gathering the data, the
compatibility of the cecipheral devices, the rasults of the testing,
the compatibility of the appilcation larguages, and the compatibility
of the vendor supplied software, and annotates pertinent conclusions

based upon the data gathered.

ORIGINAL pa
GE |3
1-2 OF POOR QuaLjty



SECTICN 2 - METHOCS USED IN GATHERING DATA

The compatibility of the “odComp implementation of the GSSS was
studied primarily through computer-cased testing on the McdComp
IV/35 and VAX~11/780 computers, These tests consisted of small
specific tenchmarks - to te referred to simply as the benchmarks -

and a largey benchmark: the STOL module implementation.,

The benchmarks tested three general areas: I/0 and file manipulation,
FORTRAN programming language semantics, and timing the overhead of
common but sometimes crucial operations. The I/0 and file manipula-
tion tests concerned sequential and random disk files, formatted and
unformatted tape files, and tape file zositioning. The FORTRAN pro-
gramming language tests concerned the memory representation, manipu=-
lation, and comparison of numbers and character strings, as dependent
on their definition in CATA statements, variable data types, array '
EQUIVALENCEing, and compiler options. Also tested in the FCRITRAN
language was array storage organization. Finally, the timing tench-
marks covered nolynomial evaluation and the overhead involved in the
following operations: READ/WRITE for mailboxes (message cassing),
CPEN/CLCSE and READ/WRITE for files, FORTRAN suproutine calls, anc

system services,

The STOL module implementation, while using the knowledgm gained frcm
the tenchmarks, Zocused on develoring the systems programming tech-

nicues needed to run CSSS grecesses (tasks) under real-~cime cenezol,

2-1  ORIGINAL PAGE lv
OF POOR QUALITY




The technigues are: '
e Interprocess (intertask) communication
e  Process (task) activation

o Shared {global) regions.

All three techniques employ svstem services and utilities. The first
wo do So via a developer-written nhost-system GSSS library routines,
while the third uses the host system utilities, Table 2~1 summarizes

the infor:mat:i.on about the MCCCGHP software (i.e., library routines,
and the REX services they refereance) used to realize these techniques;
it also gives the corresponding VAX system services (o library rou-
tines) used. In this table the VAX term, process, is used in place of

the equivalent ModComp term, task, ’

w2 IS
ORIGINAL PARE |
oF POOR QUALITY



=

Table 2-1, Software for Process Communication/Activation and for
Shared Regions (1l of 2)

Function

b,
St

MODCCMP & VAX
Routine Name
(REX Service)

VAX
Svstem Service Usad *

Send a message
to another process.

Receive a message
sent from another
progess by SNLCMSG.

Activata § process
immediately,

Suspend a process
for a specified
pericd of time.

Retrieve information
atout a process.

Convert 3=character
ASCII string to
CANCCECE,

Convert 6=-character
ASCII string %o
} CANCCEE.

SNEMSG
(SEND)

RECVMS
(RECEIVE)

ACTIVS
(ACT)
WAIT
( DELAY)

INFO4
(GETTASK)

ISCAN
(ATCANJ

ISCCAN
(ATCAN)

CREMBX: create a mailbox

QIO: write message to mail-.

box

GETJPI: retrieve infomation
about. a process (e.q., :

process name),
ASSIGN: Assign I/0 channel
to a mailbox.
QIO: read message from
mailbox, .

CREPRC: create a process,

*

SETIMR: set an event flag
.after a specified
period of time,

WAITFR: place calling pro-
cess ‘in wait state
until event flag is
set,

GETJPI: retrieve informa=-
tion about a process.
(Not totally compati-
ole with HCCCCMP),

G355 likrarv routine sgeci-
ally written for the
Vax.

GSSS library routine sceci-
ally written for the
vax.

[0 ]
5

ORIGINAL PAGE 15
OF POOR QUALITY



=

Table 2-1. Software for Processing Communication/Activation and
for Shared Regions (2 of 2)

R

function

MOCDCCMP & VAX
routine Name
(PEX Service)

VAKX :
Svatem Service Uzad

i
3
!
IConvert 3-character

[CANCODE to ASCII
:st:ing.

e a2

!Convert g-character
CANCOLUE to ASCII
stzing.

LECAN3
(CANTA)

DECANG
(CANTA)

GSsS

GSSS

library routine speci-

ally written for the
Vax. (This function
ot needed on MCCCCMP
GSSs) .

library routine speci-
ally written for the
VAX. (This function

not reeded on MODCCMP

GSSS) .

»

|

2-4  OQRIGINAL PAGE :

OF POOR QUALITY

:
!
i
H
i
¥
i
|



am

SECTICN 3 - CCHMPATIBILITY OF PERIPHERAL CEVICES

The standard peripheral devices that are necessary to support the 1
GSSS in the Moclomp IV/35 environment consist of a moving head disk, %
a fixed head disk, two 9 track magnetic tape drives, one KCRI' control
console, at least two ACRT display consoles, a card reader and a |
printer, In addition to these standard cevices there are specialized
devices: four parallel I/O ports for telemetry and commanding, one A/D

input port, and 16 D/A output ports,

Since {t was not expected that any other machine used for benchmark

testing would have the specialized devices attached, this report

addresses only the areas of standard peripheral devices. f |

2

3.1 MAGNETIC TAPE DRIVES

[ ] )

The ModComp IV/35 system i3 cuurently configured with two 9 track,
75 inches per second magnetic tape drives, Cne operates only at 800 :
B8PI. The other is dual density and operates at either 890 or 16G0
BPI., The VAX is configured with one dual density tape drive, Any
I/0 reference to any tape drive on the ModComp will cause I/C to ke
actempted to bhat drive, No special Job Control Language (JCL) com=

mands or ccdinyg techniques are required to accomplish this {other

than assigning the tape drive).

Cn the MedComp CLASSIC system the tape drives cgerate identically ko

those on the iledCemp IV/35 freom the users standecint.

3-1  ORIGINAL PAGE IS
OF POOR QUALITY




<n the CEC YAX 11/780, however, tape access 13 actomplished with an
antirely different philoscrhy, Any tape is considerad a new "volume”,
just like mounking a different disk pack under supervisor control,
This philosophy forces the user (without special coding in assembler)
to issue a mount command in order to access the tape drive, In
addition, the default tape format is "standard ASCII laceled" format
which is not expected or accepted by any module of the GSSS. The
GSSS expects all tapes to te unlabeled. fthis can be accomplished on
the VAX by explicitly requesting "UNLABELED" on the mount command.
Another aspect of the tape drive configuration that differs from the
¥edComp on the VAX is tape density (800 or 1600 BPI). Cn the lodComp
the density is set manually by a switch on the tape drive uniga

this removes the concern about tape density from the procgram and its
assignments. However, on the VAX the tape density must be specified

on the mount command., This imdlicates different sets of JCL cermands

o

for any program accessing tapes that can be of either:density,

. There is one more diffgrence implicated by the VAX tape hiloscchy.
Cn the iodComp any number of assignments from one or numerous prije
grams can te made to the sa tape drive using only assignment state-
ments, Cn the VAX this can te accomplished sut zecquizes a sgecizl
JCL sequence as follows:

SHCUNT/NOLABEL/CENSITY=800 MTAQ: FORU04 FOR0O4

$ASSIGN FCROO04 FCROO3

SASSIGN FORG04 FOR006
$CPRN/WRITE FCRO04 MTAO:

"2 ORIGINAL PRCR
OF POCR QUA™™" -




-

This sequence assigns the FORTRAN logical units 3, 4 and § to the
tape drive MTAO, Note that this tape is opened for writing and
reading. If another proccess wishes to access it or later additional
asgignments must te made, a $CLCSE JCL comnand must te issued and

a new JCL command sequence input. In addition, all processes access-

ing the tape must expmlicitly "CPEN" it as "shared".

4

3.2 KCRT DISPLAYS

The KCRT displays on coth ModComp systems and VAX system appear to te
compatible when displaying information, However, due to the different
set up of the keyboard there is a compatibility problem. On the
MoGComp systems the keyboards operate in .message mode, transmitting a
complete line of text on each transmission. On the VAX they operute
in character mode transmitting one character at a time as each is typed.
This mode of operation precludes updating display screens while an in=-

put request is pending on that device. This problem can probably be

overcome with some specialized coding techniques for XCRT input in-

volving queuing tche characters until the entire string is input.

Further analysis reeds to te done in this area.

+

3.3 CISK FILZS

e ModComp TV/35 is currently configurad with cone 24-megabyte moving
head disk and one 2-megabyte fixed nead disk, each with a sectcr size
of 256 bytes. The ModComp CLASSIC can have disks of a similar nature.
The VAX 11/780 used for the tenchmark testing is equigped with cnre

175 meqabvte moving head disk with a sector size of 512'bytes.

3=3 ORIGINAL PAGE IS
OF POOR OllALITY



Accessing the disks on any of the machines requires no special coding
techniques. Cn the ModComp IV/35 disk filas are a fixed partitioning
of the disk determined at "Sysgen" time. The disk files can also

be generated this way on the ModComp CLASSIC. On the VAX 11/780,

and optionally on the !fcdComp CLASSIC, disk files can e dynamically
allocated. This dynamic allocation of disk filas is a desirable
feature, Howaver, on the VAX system, disk files are dymamically alloc-
ated autcmatically by simply opening a file for output. Without

* special coding techniques to avo.d this, the prolifezation of files
could be colossal on a real-time system like the GSSS since many

tasks write to disk files and then exit (e.g. OBC dump collector). Cn

the VAX, each time one of these tasks ran, a new file would te created.

Cn the ModComp IV/35 the access method used on any file can be se-
quential or random and the physical files can have any numbé: of
end-of-file marks. Cn the VAX system random files cannot have any :
end=of=Ffile marks. This may effect the command processing in

- the GSSS. However, the VAX system orovides for automatic

record blocking to and deblocking from the disk files while the

vedCemp IV/35 does not.
3.4 LIJE PRINTER

The ModComp IV/35 system is squizped with a 600 line ger minute
printer. The VAX 11/780, used for the benchmark tests, 1s aguipged
with a CECWRITER III for orinting which Is much slower. Cther

than for speed, these two devices aggear ko te kotally compatitle

ORIGINAL PAGE 15
OE POOR QUALITY

Sals e

|



for printing ASCII characters, iowever, to operate affactively
the GSSS will require a printer with at least the capability of
600 lines per 'minute (100 mls/line),

]

3.5 CARD READER :

The MocComp IV/35 system Ls equipped with a 30C card per minute
card reader. The VAX 11/780 is not equipped with a card’ reader,
Therefore no statement can be made other than that the fully oper-
ational GSSS requires a card reader in its current configuraticn

(e.g. for, DBPARS, CBXREF, BLDTAB, BLLHAZ, etc,).

3-5  ORIGINAL PAGE IS
QF POOR QUALITY



SECTICN 4 - RESULTS OF TESTING

Curing the course of the compatibility study, numerous tests have
teen run on both the ModComp IV/35 and VAX 11/780 computer systems,
All of these tenchmark tests have teen accomplished using the
FCRTRAN language. Many obstacles had to te overcome during the run-
ning of these tests, partlally due to the differences in the two
systems, and cartially due to incompatibilities in the FORTRAN lan-
guage. The VAX system is a secure system, isolating each user from
the others, and requiring privileges and quotas for each user. The
ModiComp system raquires no privileges for any user and any user can
do anything with the system. These:differences’between the systems
impacted the testing greatly in the areas of task activation and .
communication. The difference$ between the FORTRAN language imple-
mented on both‘machines impacted the testing in the areas of Input/
Cutput (I/0), file manipulation, and internal data organization,

representation and manipulation.

This section of the report describes these obstacles and annotates

the results of the tenchmark tests,

4.1 I/C BENCHMARK TESTS

The I/0 Benchmark Tests were run on toth the MedComp IV/35 and VAX
11/780. They examined all of the areas of I,/J that ars commonly
used by rodules iLn the GSSS. Many of the "normal" I/0 methods used
on the tlodComp systam did not Qgerate in the same way on the ¥ax
system. These compatibility croblems are accounted for in the

=1 ORIGINAL PAGE 13
e D OLIALITY



following sections. Note that all the tenchmark tests were done

using the FORTRAN language.
4.1.1 GENERAL I/O INFORMATICN

The ModComp IV/35 and VAX 11/780 differ greatly in their I/0Q
shilosophy. On the ModCemp it is only necessary to assign a logical
name to a device or disk file name in order to attempt accesses to
that device or file, If the device or file is not available for
access, an error message is output by the supervisor and the program
is‘placed into a "held" state, However, on the VAX , access to a
device is denied unless the device is explicitly "mounted" in the
code or throwygh JCL commands (ses section 3.1). If the device is not
moun::ed the program is aborted by the supervisor. On the ModComp,'
any or all programs can share any device or disk file by simply
assigning logical names to the same device or file name, and no pro- :
gram can guarantee that it has exclusive use of that device or file.

' Cn the VAX, however, the opposite is true. Programs, oy default,
obtain exclusive use of a device or file as long as they have it
"opened". Cnly by using special VAX ceding technigues can more than
one process access the same device or file at the szame time. This

is accomplished by using the special VAKX FCRIRAN CPEN statement fully

Y

specifying the file name and srecifying it as SHARED:

(e.g., CPEN (UNIT=3, NAIE='FILE.CAT;1', SHARED))

1-2 ORIGINAL PAGE .
OF POOR QUALITY



Zven this method will work only for input files to multiple crocesses.
Cutput files cannot ce shared for output by mora than one grocess,
The resulting data on the file is unpredictable using sequential
access, Some of the records are never written to the file. This

can have an affect on the dump collection modules in the GSSS.
4.,1.,2 SEQUENTIAL DISK FILE I/0

Except for shareability and sector sizes, the saquentially organized
disk files on both the ModComp and VAX systems operate in much the

same way:

. Both systems can have multiple end-of-file marks on

one physical disk file.

° Both systems can randomly read a sequentially created

disk file as long as the records are of fixed length.

° Both systems can add records at the end of the file.

-

o Logical record lengths of 256 bytes can be raad

and written on toth systems.

tiowaver there are some differences between the two systems. Some
things that are cdone on the VAX system buZ not done on the !edComp

system are:

° Blocking and declceking i3 automatically done by the

superyisor.

"3 SRIGINAL PAGE IS
Ar POOR OUALIFY



File sizes are dynamically exganded as records are added

ko the file,

The I/0 from one process is isolated from other processes

(unless special JC commands are used),

files are dynamically created when written to for the first

time,

Evidence of the tast updated version of a £ile is kept in

the file directory, including date and time.

In contrast thers are some operations effecting sequential files that

can be performed on the ModComp system that cannot be done cn the

VAX:

L] . »
.

Sequential I/O can update individual records on a disk file.
Random writes can be made to a sequentially created file. !

File pointers (keys) can be positioned to any particular
record by either advancing *9, or backsgpacing over, end-of-

file marks or records {i.a. AVF, AVR, 3KF & BKR utilities).

Ffiles need not ke explicitly ocvened to indicate access mece

(i.e. sequential or randem).

Some of these differences can have a great effect on the GSSS sofi-

ware; others are of little consequence. <Cnlvy through attempting to

transport the G383 to the VAX can all obstacles be found. The VaX

4=4  ORIGINAL PAGE I8
OF POOR QUALITY



chilosophy of dynamically allocating files may te the jreatest ob-
stacle to overcome since none of the GSSS softwara axpects this to

ayer occur {cee Section 3.3),
4.1.3 RANCCM DISK FILE IO

Except for the sector sizes and autcmatic blecking and deslocking,
random access disk f£iles operate in much the same way on both the

ModComp and VAX system:

® Both systems allow random urdates anywhere in the file

using the same "key" values,

9 Both systems allow sequential reads from a sandomly created

file (as long as the records are continuous).
) Logical records of 256 bytes can te accessed on toth machines.

However, some :hings can be accomplished on the VAX system

that cannot on the ModComp are:
s  Fixed record lengths of other than 258 bytas can ce accessed.

) Cue to automatic f£ile size expansion, records can ze added

cast the end of the file,

4-5 ORIGINAL PAGE IS
OF POOR QUALITY



In addition tne VAX system has one limitation that the ModComp

system cdoes not:

[ Any file used for random access can have onjy one end-of-file

and this end-of-file must te after thé last record in the filae,

Conversely, there are things that can ze done on the ModComp system

and not on the VAX system:

° Sequential updates can te made to a randomly created file,
° Randomly accessed f£iles can have pany end-of-file marks.

? Record lengths are fixed at 256 bytes,

Probably only one of these differences will impact greatly the transport
of the GSSS. The allowance by the MedComp system for multiple efid-of-file
marks on a randomly accessed file. In many cases, in the GSSS, files
with more than one end-of-file mark are created sequentially but :

input randomly. This can have an effect on the database and commanding

" modules of the GSSS.
4.1.4 FORMATTED TAPE IO

Cnce a tape is mounted and positioned zroverly, the racords written
to tape, or read from tape, with FORTRAN formatted reads and writes,
are totally compatible on toth the llcdComp ané vaX svstems. However,
there ars some groblems with compatibility in the areas of tape

rositioning and end-of-file marks.

3-5  ORIGINAL PAGE |s
QE POOR QUALITY



The FCRIRAN REWIND command &8s not compatibla:

e Cn the ModComp system a REWINC of any tape meraly cositions

the tape at the "load point”,

° Cn the VAX system 3 REWIND of a tape causes twe and-of-file
marks to te written at the teginning of tape andd the tape
ls positioned Lmmediately following them, if the tape is
"unlabeled".

There were other problems encountered during the formatted tare I,0

testing on the VAX system:

) 256 byte records have not teen successfully written to un-

laceled tapes using FORTRAN formatcted writes, .

» Tapes must be explicitly mounted using JCL commands tefore

‘they can be accessed (see Section 3.1),

The physical end-of-file marks written to tapes are compatible to

" both systems, however:

o End-of-file marks written by the ENCFILE function on th
YAX system are not alwavs raccgnized as end-of-files on
FORTRAN read statements with "ZND=" sgecified, on the
VAX. The end-of-file mark is sometimes ignorad oy the
I/0 svstem if it was the last thing written t5 the tage.
Any module of the GSSS that r=aads tapes ‘».g. PLEXK,

STOLPH) can bte effected by this.

=" ORIGINAL PAGE 15

OF POOR QUALITY




4.1.5 CNPORMATTED TAPE I,0

When using standard FORTRAN reads and writes on toth the ModCemp and

VAX systems, unformatted kape records ara totally incompatibla, The

FORTRAN generated record headers are differant as shown below:

]

Record headers for 36 bvte racords:
VAX ModComp
X'0022', X'003' X'0700', X'0024'

In addition to the record headers and tape positioning groblems pru-

viously mentioned in Section 4.1.4, there is a problem with end-of-

file marks on unformatted taper on the VAX:

Unformatted, unlabeled tapes cannot have an end-of-file
mark written to them from FORTRAN using the ENDFILE function.
Attempting £o do so causes an I/0 error and terminaces the

process.,

'4,1.6 FILE POSITIONING FUNCTICNS

The MedComp system allows for all the file and record cositicning

funceions using JCL cormands:

¢

advance Pile {(AVE)
Advance Record (AVR)
Backspace File (BKF)

Sackspace Record (3KR)

1-3 GE 18
ORIGINAL PAG
OF POOR QUAL_‘TY



sa

The VAL system dces non allow for any of them. In addition chers .3
the REWIND problem stated previously in Section 4.1.4, Since many
modules within the GSSS (e.g. CBGEN, CBXREF) use these funcsions this
can have a great impact on the transporting of the GSSS to the VAX,
fowever, all of the akbove functions can te accomplished with simple,

specialized library routines, or sgecial $CIO calls.
4,1.7 EVENT PRINTING

The philosophy of printing event messages differs between the ModComp
IV and VaX l1/780 computer systems, On the ModComp system avent mess-
ages are easily output in chronological ovder simply by closing or
andfiling the output stream after each line, When this is done the
ressages are sent to the spooler and concatenated with all other mess-
ages and then actually printed, The McdComp makes no attempt to isol-

ate one task's printout from another's when this method is used.

On the VAX system, the spooler groups each grocess' output separ-
ately and prints the lines as separate listings for each process.
Using the MedComp methed on the VAX results In sach line teing out-
cut t2 2 "new tace" on the crinter., However, thera i3z a methed

nat can te used on the VAX system to insurs avent neszages are

neatly crinted in chronological order.,

This can ke accomplished by routing all printer sevent messaces &o
one gsrocess thrcugh a mailkox. COnce a message is received by this

crocess (through the mailtox) it can ze printed in the normal manner.

=% ORIGINAL PAGE IS

OF POOR QUALITY




Howaver, there is one more oddity of the VAX system print spooler.
Unless this process keeps count of lines printed and closes its
spool file, after each page of printout (approximately every 30
lines), or periodically, no lines will be actually printed until this
process exits., A preliminary version of thils process already

exists on the VAX.

4.2 FORIRAN LANGUAGE BENCHMARK TESTS

The FORTRAN language tests fall into three categories: arithmetic

and logical operations, array allocation, and the logical and physi-
cal organization of numbers and character strings. Some of thesd tests
established compatibilities, while others revealed serious and poten-
tially widespread incompatibilities betwsen the ModComp IV/1S

and ‘the VAX 11-780 with respect to the GSSS.

4.2.1 ARITHMETTC AND LOGICAL CPERATICNS

L
)

¢ There exist integer arithmetic calculations which are valid
and which work on the ModComp but which cause overflow and '
abort the process on the VAX (Sew Section 5.1).

® The LOGICAL*. (L*l) data type on the VAX works
like any other integer date type for integer arithmetic
and logical operations, including conversion (i.e., sign
axtension, etc.). Note that this data type does not
exist in McdComp FORTRAN and should not te used when

transporting modules to the VAX.

4=-10 \ g |
ICINAL PAGE &
g? POOR QUALITY

-




e The FCRIRAN supplied functions ICR, IAND, and ISHET work
the same for integers on the ModComp and the VAX. This was
verified by extensive bit extraction/insertion and shifting
tests., However, their use in character manipulation leads to '

different results on the two computers (See Section 4.2.3).

e  Any differences in the accuracy of floating point calculations
between the ModComp and the VAX are toc small to affect their
application in GSSS, As an example, least squares calculations
typical for GSSS were performed on the two machines and agreed
to four to six decimal places ¥or 6-term/ll-goint formulas
thru 2-term/Sepoint formulas, This was two to four places
more accurate than the approximation formula to the correct

solution.

4.2.2 ARRAY ALLOCATION

~—

e The assi¢grment of the elenunts of one-dimensional FORTRAN
arrays is in their i.gical order on both machines. For
example, the VAX FORTRAN dava declarations:

LOGICAL*L  W(8)
INTEGER*2  X(4)
INTEGER*4 ¥(2)
REAL*8 2(1)
EQUIVALENCE (W(1),X(1),¥(1),2(1))

assign these arrays to the same aight bytes of memory with

the "following element correspondence:

4-11  QRIGINAL PAGE IS




Table 4=2. Array Elements Correspondence

Byte Addresses: a a+l  a+2 a+3 a+d +5 a+é a+7?

W W(l) W(2) W(3) W(4) W(5) W(8) W(7) W(8)

£ %(1) £(2) X(3) X(4)
¥: Y1) ¥(2)
Z2: (1)

This memory correspondence also holds on the ModComp for arrays X,Y,
and 2, but pot,for W since the L*l data type doesn't exist on the
ModComp. Note that on both the ModComp and the VAX the address of a
variable or an array is prasented as the address of its lowest
addressed byte in memory even. though the ModComp is a word

acdldressing machine (16 bhit words).

v

) Cn both machinns the allocation of the elements of two-
dimensional arrays is column major order (the FORTRAN stan-
dard); that is the elements A(I,J) are taken by varying
the leftmost subscript (I) most frequently and the rightmost

subscript (J) least frequently.
4,2.3 BYTE CCMPCSITICN OF NUMBERS AND CHARACTER STRINGS

° The storage of alphanumeric character strings in arrays
by FORTRAN statements (i.e., DATA or READ) results in
the same physical ordering of bytes in memory for each
data type and for both the ModComp and the VAX computers,

4-12 JoIGINAL PAGE I8

OF POOR QUALITY



As an example, consider the assignment of the character
string “ABCDEFGH" to each of the arrays W, X, ¥, Z (declared
in Section 4.2.2) by the following FORTRAN statements:

DATA W/'A', 'B',....., 'HY/
or READ (5, 10) W with 10 FORMAT (8Al)

UATA X/'AB', 'CD', 'EF', 'GH'/

or READ (5,10) X with 10 FURMAT (4A2)
DATA Y/ 'ABCD', 'EFGH'/

or READ (5,10) ¥ with 10 FORMAT (2A4)
DATA Z/ 'ABCDEFGH'/

or READ (5,10) 2 with 10 FORMAT (A8)

The regult i3 summarized in Table 4-3. Recall that the LOGICAL *l

data type (e.g., array W) exists only on the VAX. Also, we are not

considering the CHARACTER data type, which exists only on the VAX.

Table 4-3. Byte Ordering for Character Strings
ModComp and VAX (Arrays W, X, ¥, and 2)

., |[Logical Byte Ordexr: A B C D E F G B

Byte Addregses: a a+l a+2 a+3 a+d a+5 a+6 a+7

Hex Codes: 41 42 43 44 45 46 47 48

|GINAL PAGE |3
4-13 %‘é POOR QUALITY




° The storage of an integer at the byte addresses for

an integer variable differs on the ModComp and VAX

computers, Considering a FCRTRAN intager as a se-

quence of bytes, the bytes are stored in decreasing

order of significance on the ModComp (i.e., most

, significant byte at the lowest byte address) and in

increasing order of significance on the VAX (i.e.,

least significant byte at the lowest byte address).

For example, consider the following integer

(hexadecimal) value assignments to the arrays W, X,

and Y from Section 4.2.2:

EY

or

or

or

DATA W/Z41, 442, 243, 244, 245, 246, 247, 248/
READ (5,10) W with 10 FORMAT (822)

DATA X/Z4142, Ad344, 24546, 24748/
READ (5,10) X with 10 FORMAT (424)

DATA Y/T41424344, 245464748/
READ (5,10) ¥ with 10 FORMAT (228)

The READS refer to the hexadecimal string "4142434445464748".

Table 4-4 compares the internal storage representations of these

integers for the ModComp and VAX computers and also shows the

bit-numbering conventions for the two cocmputers (they are the

reverses of each other within data items). Note: The sign bit

of a data item is denoted by s. Also, the address of a data item

for both the ModComp and the VAX is its lowest byte address.

4-14  ORIGINAL PAGE IS
~r AN NLIALLITY



Table

4=q,

Byte Ordering for Integers

L*l array W (VAX only)

L}

Array Element W(l) W(2) W(3) W(d4) W(5) W(8) W(7) W(8)
Logical Byte Order : sdl $42 s43 s44 s45 s46 sd47 s4d8
Bit Numbering : 0=7 0=7 0=7 0=7 0-7 0=7 0=7 0-7
Byte Addresses :a atl a+2 a+d atd a+d a+6 a7
I*2 array X
Array Element: X(1) X(2) X(3) X(4) .
Logical Byte Order : (s4l 42) (sd43 44) (sd45 46) (s47 48)
Bit Numbering MOD : 0-7 8<15 0=7 8-l5 0=7 §-15, 0~7 8-15
VAX : 15-8 7-0 15-8 7=0 15-8 7-0 15-8 7=0
Byte Address MOD : a a+*l a+2 a+t3 ad a+tdS a6 a+7
VAX :a+l a . a+tld a+2 a+5 a+d a+7 a+b '
I*4 array ¥
Array Element Y(1) Y(2)
Logical Byte Order : (sd4l 42 43 44)  (s45 46 47 48)
Bit Numbering MOD : 0-7 8=15 16=-23 23-31 0-7 8=15 16=23 2¢4=31
vaX : 31-24 23-15 135-8 7-0 31-24 23-16 15-8 7-0
Byte Addresses MCD : a atl a+2  at+3 a+d a+3  a+é  a+?
VAX : a+3 a+2 a+l a a+7 a+6 a+5  a+d

° These differences in the allocation of integer data tyves

ara transparent to the FORTRAN programmer exceot when

=15 ORIGINAL PAGE [s
OF POOR QUALITY




programming techniques are used which require operating with
only part of a data item. Cne such case is the manipulation
of parts of an integer (i.e., sign, most significant part,
least significant part, etc.) by equivalencing arrays and
variables of different data types. for example, suppose the
following equivalences are made for the arrays W,X, and Y,

BQUIVALENCE (W(1),X(1),¥(1))

Table 4-5 summarizes the semantic differences between the ModComp
and VAX computers which occur in the elements of array X. Clearly,
programs performing such manipulations will not work the same on

both machines.

Table 4-5. BRyte Manipulation of Integers

Part of ¥(1) ModComp ref. VAX ref. '
Most Significant Half: X(1) X(2)

Least Significant Half: X(2) (1)

Sign: X(1) X(2), W(4)

Most Significant Byte: — W(d)

Least Significant Byte: —_ - W)

° In a similar way, the difference in allocation of
floating point numbers, coupled with equivalencing

variables of other types with floating point type

1=-15 ORIGINAL PAGE (s
OF POOR QUALITY



variables, can lead to semantic differences in
ModComp and VAX FORTRAN programs. For example,
consider setting the less significant part of '
the mantissa of a double-precision floating point
number P via an equivalenced I*¢ array Y(2): the
bytes of element Y(2) will not be in the same

order as those of the less significant half of P.

Another case of semantic differences due to the allocation
of integers occurs in character manipulation. Character
strings can be constructed or modified in FORTRAN by arithmetic
or logical operations. The following FORTRAN statements
define the same string in I*2 variables X(l), X(2):

X(1) = 65256 + 66 , X(2) = 67%256 +68

or
X(1) = IOR(ISHFT(65,8), 66)), X(2) = IOR(ISHFT(67,8),68)

as do the following in Y(1): '
Y(1l) = ({65%256 + 66)*256 + 67)*256 + 68
¥(1l) = IOR(ISHFT(ICR(ISHFT(IOR(ISHFT(65,8),66),

8),67),8),68)

However, the logical ordering of the characters within the integers

in memory differs:

Cn the ModComp the above produce the eguivalent of
the data statements:
DATA X/'AB', 'CD'/ and
CATA ¥/'AECD'/

ORIGINAL PAGE IS

1ol OF POOR QUALITY



) Cn the VAX they produce the aquivalent of:
DATA X/'BA', 'DC'/ and
CATA ¥/'DCBA'/

This rasults in different logical memory layouts as shown in Table
§-6, assuming that the arrays are equivalenced. Note that 63, 86,
67 and 68 are the decimal character codes for A, B, C and D.

Table 4-6, Logical Character Strings Resulting from
Arithmetic and Logical Operations ‘

YodComp YRX
Byte Address: a atl a+2 a+3 a+l a+2 atl a
I*2 X Character Htring: A B C D ¢ b A B .
Array Element: X(1) X(2) X(2) X(1)
I*4 Y Character String: A B C D A B ¢ D

+

In addition, the logical order of characters within integers (which
' corresponds to the ordering of bytes in memory) is the same as A-format

input and differs on the two machines, as illustrated in Table d4-7.

Table 4=7. Character Strings by Input in A Tormat

MedComp VAX
Byte Addresses : a atl a+2 a+3 a+3 a+2 atl  a

I*2 X Character String: A B C D D ¢ 3 A
Array Element :  X(1) X{2) X(2) X(1)

I*4 ¥ Character String: A B C D D c 3 A

ORIGINAL PAGE 1S
OF POOR QUALITY



The implications of these semantic differences between the ModComp
and the VAX are obvious. Since these kinds of programming techni-
ques are allowable in the FORTRAN language, they may te used any-
where in a program and, hence in a large program system like the GSSS
there may te numerous ModCemp dependencies due to character and

number manipulation occurring throughout the software,

4.3 TIMING BENCHMARK TESTS

Several timing tests were performed on the VAX on common but impez-
tant code sequences. The purpose was to determine if any potential
timing problems might occur in the GSSS due to these computations.
These tests along with their corresponding average times (over 100

to 100,000 executions as appropr':'.ata) are presented in Table 4-8.

Unless otherwise stated, the tests were coded in FORTRAN and the
times are in milliseconds (ms). In gereral these times are com- '
parable to those on the ModComp. The cnly potential ‘problems are, ‘
, the outragecusly long time for the file OPEN/CLOSE sequence (314 ms),
and the time for the mailbox WRITE/READ sequence (.4 ms). We note
that the VAX microcoded MACRO instructicon for polynemial evaluation

is five times as fast as efficient FORTRAN ccde.

4-19 ORIGINAL PAGE IS
OF POOR QUALITY



Table 4-8. Timing 3enchmarks

Test Performad Time (ms)

S-th Order Polynmomial Evaluation

(Horner's Method):

- [URTRAN DO-loop 0.11
- Special VAX microcoded 0.02

instruction (POLY)

FORTRAN subroutine Call Overchead 0.02
System Service Call Cverhead 0.07
Blocked File I/O:

. - READ 3.3
- WRITE 4,0
Mailbox Write/Read Sequence 0.40
File OPEN/CICSE Sequence ' 314.0

4=20

ORIGINAL PAGE IS ORGINAL 1aaut 1S
OF POOR QUALITY QE POOR QUALITY



.

SECTION 5 - CCMPATIBILITY CF APPLICATICNS LANGUAGES

In the ModCamp IV/35 version of the GSSS only two applications
(programming) languzges are used: FORTRAN IV and M4A Assembler.

The ModComp CLASSIC system is totally compatible with these two
pregramming lanqguages. In fack, the object language ;f::cm the
ModComp IV/35 will execute on the ModComp CLASSIC. Cn the nther
hand, the VAX 11/780 system has a different implementatjon of FORTRAN
(FORTRAN IV-PLUS) and its assembler language is entirely different.

5.1 FCRTRAN

The difference in the imp}ementation of the FORTRAN language on the
ModCamp systems (IV/35 & CLASSIC) and the VAX 11/780 system are
varied. There are many things that are allowed and done by GSSS
modules on the ModComp system that cannot be done or don't work the |

same in the VAX implementation of FORTRAN:

e  Modification of DO LOOP variables within the loop is ok on
the ModComp but not on the VAX.

) Using SHIFT, AND and CR logic to manipulate characters works

differently on the two systems.

) Attempting to convert X 'FFFFASAA' to a 16 bit integer causes

overflow on the VAX.

5-1

ORIGINAL PAGE |5
OF POOR QUALITY

e A g e



CATA I/22031/ and DATA I/' 1'/ are identical for 16 bit
variables on the ModComp but not on the VAX. On the VAX it
is DATA I/22031/ and DATA/'l '/ that are equivalent.

The ENCODE and DECCDE statements have a slightly different

format.

The following code:

DIMENSION A(3)

CATA A/'12 CHARACTERS'/ is ok on the ModComp
but must be coded as follows on the VAX:
DIMENSION A(3)

DATA A/'l2CH', 'ARAC',‘ '"TERS'/

The VAX allows for LOGICAL *1 data type, the ModCocmp does

not.

']

The VAX has a special, VAX, CHARACTER data type which must’
be used to call many system cervices.

The equivalencing of arrays 1s logically different on the

two systems (see Section 4.2).

In addition to the above mentioned ccmpatibility problems, there is one
major "bug" in the implementation of FORTRAN on the VAX system when it
is optimized. The following ccde sequence produces a value other than

the zero for the variable J:

5«2
ORIGINAL PAGE IS
QFE POOR QUALITY




J=Q
B= ,TRUE
D0 100 I=1,10
IF (B) GOTO 100
J=I

100 CONTINUE
PRINT J

The effect of this on the GSSS software will remain unknown until each
and every FORTRAN module is thoroughly tested and debugged on the VAX
system.

5.2 ASSEMBLER

The ModComp IV/35 and ModComp CLASSIC can use the same Macro Assem—
bler (M4A). The VAX 11/780, by nature, uses a di!fe:ent_Macm
Assembler (VAX-1l MACRO). If only the languages were different,
this compatibility problem could possibly be overcome by writing

a cross-assembler to assemble the M4A source code into VAX-1l

MACRO coce., However, the hardware architecture and language logic

[J

differences between the two vendors' machines precludes this approach:

e The VAX system has 21 different addressing modes. The ModComp
systems have only 6 addressing mcdes.,

° Data organizations within memory are lcgically reversed,

. The VAX uses stacks for ragister and argument save areas

extensively. The ModComp systems do not.

) Cn the ModComp systems, 13 of 16 general purpose registers

(RL -~ R15) can te used for any curpose, at any time. Tﬁe

5-3

NAL PAQE 1S
%‘;:“?OOR QUALITY

R



VAX system has 4 dedicated general purpose registers (RL2 -
R14) and 6 special use registers (RO - RS) leaving only
6 registers that cam be used at any time, for any purpose.

e  The instruction logic is entirely different on the ModComp
and VAX systems.

° The VAX is a byte addressing machine, The ModComps use
word addressing.

This makes the two assembler languages totally incompatible.
Since over 33,000 lines of M4A assembler code exists in the
ModComp IV/35 version of the GSSS, this is a major compatibility
problem with the VAX system,

5.3 LIBRARIES

Except for system service interfaces, the FCRTRAN libraries on the '
ModComp and VAX systems appear to te totally ccmpatible. However,

+ to trangport. the GSSS to the VAX the entire user written library

(a large portion of which is written in M4A assembler) must be

rawritten,

>~ ORIGINAL page g

OF POOR QuALITY

e aa e e



*

SECTICN 6 ~ CCMPATIAILITY OF VENDCR SUPPLIED SERVICES

Both ModComp systems appear to have similar, 1f not identical,
vendor supplied services in all areas including JCL commands and
system services, The VAX system has an entirely different set of
services. The JCL commands on the VAX are more complex and allow
the user to accomplish more functions but do not include as a sub-
set all the functions allow in the ModComp systems. The system
services are entirely different but do allow for many of the same

functions.

6.1 JOB CONTROL LANGUAGE COMMANDS ’

All three systems (ModComp IV/35, ModComp CLASSIC and CEC VAX 11,/780)
provide the us¢r with Job Control Language (JCL) commands that give
the user the capability to control the execution of programs and
‘maintain data files. Both ModComp systems provide almost identical
sets of JCI, conmands to the user. Hcwever, the VAX system provides
an entirely different set of JCL commands. Many of the differences
are merely syntactical diff.erenées. Cthers operate in logically
different ways. The syntactical differences are easily overcome;

but the logiczl diffarences are difficult, if not impossible, in

some cases to rasolve.

Besides the previously mentioned problems with tape mounting and

assigning logical units for shared use (see Sections 3.1 ard 4.1.1),

6~-1

ORIGINAL PAGE IS
OF POOR QUALITY




PSR-

S

[3

thers is one major difference in the JCL commands that will have a
substantial effect on the transportation of the GSSS. It is in the
area of the link-editor:

° Cn the ModComp systems logical unit assignments for a
"foreground” task can te specified when the program is
linked.

° On the VAX system there is no way of specifying
logical unit assignments when a program is linked.

This incompatibility is of paramount H.mportance to the transporta-
tion of the GSSS. In the GSSS no standards for logical unit numbers
or names have been made and different units are used for the same
devices and files throughout the system. If the Gss:s is transported
without major changes in this area, special JCL command procedures.
would have to be run before the execution of each module. The neces-

]
sary changes in this area would involve:

® The examination of each program for the logical units used.

° The examination of all the link decks for the physical

equivalents for the logical units.
. Cross referencing all references to the same physical devices.

° Changing all the logical unit assignments to a physical
device to the same unit number or name. This requires

coding changes within the pregrams.
6=2

ORIGINAL PAGE IS
OF POOR QUALITY



6.2 SYSTEM SERVICES

The ModComp systems provide for FORTRAN interface routines in the
library for calling system services. The VAX system provides for
calling the system services directly from FORTRAN. Most of the
major system services available on the ModComp systems have cor-
responding counterparts in the VAX system as shown in Table 6-1.
Some do not. Even some of the corresponding system services on
the VAX do not operate in the same way or provide the same

information:

L)
° SCREPRC doesn't operate like ACT. A secondary

activation can be dene on the ModComp but can't
using SCREPRC cn.the VAX.

° SGETJPI doesn't return the same information as

GETTASK.

'Y SGETTIM returns time in a different format than

GETTIME.

] §QIO requires channel number as an argument, not

'logical name as do the ModComp services,

The total impact of this area on the GSSS software will remain
unknown until the transport of the system is attempted. How=

ever , secondary activations of tasks are common-place in the GSSS.

(o))

ORIGINAL PAGE |5
OF POOR QUALITY



Table 6-1.

»

ModComp vs. VAX System Services (1 of 3)

ModComp VAX
System System ModComp
Service Service Purcose ’
EST none Establish a resident task.
. CEES none De—establish a task.
ACT _SCREPRC Start execution of a task.
RILL $FORCEX Abort another task.
ABCRT § FORCEX- Abort this task.
HOLD none Suspend task until
resumed by operator.
WAIT $SUSEND Suspend task until
resumed by any resume,
RES $RESUME ° Resume a task in WAIT.
CELAY $SETIMR and Suspend a task for a
SWAITFR specified period of time.
! 1
CONNECT none Allccate timer to schedule
any above function at a
future time.
GETTASK SGETJPI Get information about a task.
SEND $QIO Send a message to another
to a mailbox task.
RECEIVE $QI0 Receive a message sent by a
, from a mailbox SEND service.
ALLOCATE SCRETVA Allocate a region of private
memory to this task's space.
DEALLCCATE SDELTVA Ceallocate region of private

memory from this task's space.

ORIGINAL PAGE |8
OF POOR QUALITY




Table G-l *

ModComp vs. VAX Svstem Services (2 of 3)

ModComp VAX

System System ModComp

Service Service Purpose

CREPRI none? Create shared region from
this task's private space.

INSPRI none? Insert shared cegion into
this task's private space.

GETTIME $GETTIM Get time of day or elapsed
time.

CUMP none tump region of memory bo
line printer

COLLECT none Parse next parametrr in
character string.

ATCAN none Convert ASCII strirg to
CAN~-CQDE.

CANTA none Convert CAN-CODE to
ASCII string. .

ATNUM none Convert ASCII string to
binary.

BTCEC none Convert binary to decimal
ASCII string.

STHEX none Convert binary to Hexa-
decimal ASCII string.

ASSI SCRELCG Assign logical name to
device or file,

TASSI STRNLOG Test assignment of a logical
name.

REW $QIO Rewind a logical device,

HCME $QIO0 Position a lcgical device at

beginning of media (i.e. Rewind)

6-5

ORIGINAL PAGE IS
OF POOR QUALITY




Table 6-1. ModComp vs, VAX System Services (3 of 3)

ModComp VAX

System System ModComp

Service Service Purpose

WEOF $QID Write an end-of-file mark
on a logical device.

TERMIO $CANCEL Terminate an I/0 request
to device,

IOWAIT none ? Wait for I/0 to complete

BKR $QIO Backspace a record on a
logical unit, ¥

AVR SQIO Advance a record on a
logical unit.

BKF $QI0 Backspace one file on a .
logical unit.

AVF $QIO Advance one file 4n a
logical unit.

READ $QIO Read a record from a
logical unit.

WRITE $QIO Write a record to a

] logical unit.

MESSAGE $BRDCST ? Display a message on the
operators console,

MESSAGE/HOLD none Display a message on the

operator's console and
enter a nold state.

6-6 ,
ORIGINAL PAGE _\5

OF POOR QUALITY




SECTICN 7 ~ CONCLUSICNS

This report has presented many interesting peculiarities of the VAX
11/780 system in relationship to the ModComp IV/3S implementation
of the GSSS. Scme of the software yithin the GSSS uses ModCemp
unique coding techniques and logic sequences that are contributing
factors to the incampatibilities indicated. However, these incom-
patibilities still exist with relation to the ModComp version of
t:he GSSS. With this in mind the following conclusions about trana-
porting the GSSS to the VAX are presented:
v
° All of the tape I/O handling logic will require changes.
° All of the file and device sharing Logic will need
modification.

° All of the standard (256 byte) tape records will have
to be redesigned to a different’length.

° The KCRT input handler will have to be redesigned and

rewritten.

° Logic and coding technigques will have to be developed

and implemented to avoid tile oroliferation of disk files.

® All end-of-file logic on random access disk files will

have to be found and eliminated.

° Any use of FORTRAN unformatted tapes will have to be
eliminated.

~1
|
! aaad

ORIGINAL PAGE iS .
OF POOR QUALITY



Most I/0 to files will have to use é:he CPEN statement.
JCL logic sequences will require massive changes.

All use ¢f the FORTRAN REWIND command for tapes will
have to be eliminatad.

All event messages will need to be routed through one
module (process), |

Timing problems, particularly in the area of file OPEN/
CICSE sequences, will need to ke investigated.

Most, if not all, character [CATA statements in FORTRAN
will have to be changed. «

All DA'J:'A statements in FORTRAN will have to be ejtamined
for validity on the VAX.

All use of SHIFT, AND and CR logic for char;cter manipu= ’

lation will have to be eliminated.

Conversions of 32 bit integers to 16 bits will have to

be examined and investigated.

Most ENCODE and DECODE statements in FCRIRAN will need

modification.

Array equivalencing will have to te closely examined

for validity on the VAX.

7=2

ORIGINAL PAGE it
OF. POOR QUALITY




° Any modification of DO LOOP variables within the lcop
will have to be eliminated,

° Any conditionally executed statements within DO LOOPs
will have to be carefully examined for valid execution.

. Neyt generalized methods for character manipulations

will have to be developed,

- All of the assembler language modules will have to be
rewritten using different logic sequences.

° Most of the user written GSSS library routines will have
to be recoded.

o A method for specifying logical unit assignments in real-
time will have to be developed.

° The inconsistancies between the system services will !

have to be resolved.

Very few, if any, of the above conclusions will apply if the GSSS
1s transported to the ModCcmp CLASSIC system. Therafore, the main
cenclusion to be drawn from the State-of-the-Art Computer Systems/

GSSS Compatibility Study is:

Transporting the GSSS to the ModComp CLASSIC system will requi.e
very few coding changes. However, attempting to transpor: the
GSSS to the VAX 11/780 will require massive changes, not only

in the coding of the modules but also in the design of many

7-3

ORIGINAL PAGE |8
OF POOR QUALIY




areas of the GSSS, particularly in the areas of I/0 and task

activation.

In Fact, it may be a futile effort to attempt to implement any
real-time satellite ground support system like the GSSS on the
VAX 11/780, since the basic philosophy in the VAX anvironment is

cne of a multi-user, timesharing, interactive processor.

To summarize the ModComp-to-VAX compatibility analysis, recall the
conclusion from the MMS/GSSS MODCOMP Device and MAX IV Dependency
Study. Based on the hypothesis of the compatibility of (1) FORTRAN
language and compiler, (2) data base structure, (3) CRT page library
and tables, (4) telemetry format tables, (5) command structures, and
(6) all other ir;ternal tables, the approach to moving the GSSS to the
target envirorment would be develcped. This would entail at least
rewriting the ModComp/FORTRAN library routines (with the aid of a
cross-assembler) and moving the FORTRAN code with only the "obvicus" "
changes made, followed by an iterative procedure of load/link/execute,

error isolation, and error correction, until working code is produced.

With respect to the VAX as a target machine, this minimal transport
effort must, of course, be revised in light of the inccmpatibilities
ravealed in this study. The FORTRAN language and compiler incom-

patibilities (in one case an outright bug in vendor software) obviate

hypothesis (1) above and pcint to vast, detailed, and sometimes obscure

changes in the GSSS FORTRAN code. Moreover, the FORTRAN semantic
incompatibilities also imply incompatibilities in areas (2) through
7-4

ORIGINAL PAGE IS
OF POOR QUALITY




.

(6) above, At the very least, GSSS internal structures involving
manipulations of characters and hexadecimal ccdes will (most likely)
be incompatible due to dif:erenc:s‘in internal byte and bit-string
operations (logical or arithmetic). Examples of areas probably af-
fected are the parsing software in the CRT page table and the command
structure areas, and data base handling (i.e., do creation and ex-
amination of strustures "hide" differences between MCCCCMP and VAX
in data item encoding?). Thesa points can be resolved only by de-
tailed examination of the software in each of areas (2) through (6).

Also in the ianguage area, the significantly different ghilosoghies
in the organization of the assembly languages for the MODCCMP and
VAX machines makes the cross-assembler approach to MODCOMP/FORTRAN
library translation unproductive. Hence, complete, individual re=-
coding of these routines will have to be done. Furthermre', incom=
patibilities in the VAX operating 'system and 1/0 software (i.e., '
in JCL, system services, etc.) force re-coding and, in fact, re=-

' design of some areas of the GSSS. Examples we have seen from these
areag are: file and device sharing, 25é-byte tape records, tape I/0,
KCRT input handling, end-of-file handling for random access files,
and disk file proliferation as a result of multiple task activations.
A major problem lies in certain time-critical system actions: it is
almost definite that the large CPEN/CIOSE time will cause severe
degeneration of GSSS performance on the VAX, since each task activ=
ation requires that the disk file containing the image ke opened and
closed. Also, the mailbox write/read time may be a problem, since

=2

ORIGINAL PAGE J
- S
OF POOR QUALITY



this will occur for all event messages. Still another major problem
is presented by secondary task actiivations: there is no system-
supported method to do this on tle VAX and it appears that changes

will be needed in everv such program (i.e,, most procgrams).

Thus, there are quite a few technical problems in the G335 implement-
ation on the VAX, with no clean, fast solutions. Most can be solved
with detailed, item-by-item examination of the individual programs -

a time-consuming and by no means guaranteed methcd of generating error-
free software in one pass. Not surprisingly, the manpéwer estimates
presented in the Dependency Study (1 1/2 man-years) must be revised.
The best estimate at this stage is based on the STOL module implement-
ation experience. This was a 2-man, 1 1/2-month effort for the trans-
port of approximately 5000 lines of FORTRAN code. Allowing l/2-month
for learning the system, this amounts to a 2-man-month transport effort.
The MMS/GSSS consists of approximately 100,000 lines of code, over
33,000 lines of which are Assembler, For Assembler code, doubling the
' manpower effort per line of code, when compared to the STOL effort, is

appropriate, So by extrapolation GSSS transport should :equir'e about:
33.2 * 2-man-months = 66.4-man-months = 5.6 man-vears.

Thus, as the latest rough estimate of human resources, the MMS/GSSS
transport to the VAX-11/780 will require approximately 6=-man-vears,

This programmer rasource committment could Ce supported by the equivalent
of one terminal, 40 hours per week for up to three programmers, through

three terminals, 40 hours per week for six or seven programmers, etc.

7-6 ORIGINAL
PAGE |3
OF POOR QUALITY




Finally, consider the VAX hardware required to support the full GSSS.

This (s summarized as follows:

Tvpe DEC Surplied YAX Devices

Tape Drives Two TU45 (1600/800 BPI, 9 trk, 75 IPS)

Disk Drives One RMO3 (67 M8, 1200 KB/S)

KCRT's At least two (test conductor & page display)

Printer. One LP1l (660 LPM) |

Card Reader Cne CR11 (285 CPH adequate) ‘

Main Memory ’ "1 MB,”600 nanosecond cycle time 1

- (The GSSS on the VAX will require about ;
750 KB since task swapping is not done i

as efficiently on the VAX due to the .
file CPEN/CLOSE timing).

In addition, specialized devices will have to be procured to replace
the specialized devices that are in the current GSSS McdComp IV/35

environment.

ORIGINAL PAGE IS
OF. POOR QUALITY

T L e i e i NS L ey 5 TR . T v A s S e




APPENDIX A ~ Cbstacles on the VAX and How Thev Were or Can be Overcome

Chstacle 1: Character strings in FORTRAN DATA statements.

Cbstacle 2: FORTRAN ENCCDE and DECODE statement differences,

L}

Cbstacle 3; Hexadecimal conscants in FORTRAN arithmetic

expressions,
Cbstacle 4: Debug option character on FORTRAN statements,

Solution (For obstacles 1 thru 4): Run the MIOV

command procedure on ti®e FORTRAN source,

This procedure executes a combination of .
program to modify the source code within

the FCRITRAN sourre (see GSSS/VAX Usprs Guide),

»

Obstacle 5: Using the FORTRAN REWIND statement to rawind

tapes,

Solution

Unknown
Chstacle 6: ‘he proliferation of data files used for output.

Solution : Use the OPEN statement specifying TYPE='QLD'.

a-1 ORIGINAL PAGE I8
OF POOR QUALITY




Cbatacle 7:

Solution :

Obastacle 8:

sclution ¢

Ckstacle 9

Solution

.s

Obstacle 10:

Solution

Cbstacle 11:

Solution

Formatted tape I/0 positioning.

Use the JCL command procedures, SMCUNT, QREW
and @DISMOUNT

or
Use CPEN statements and $QIO system service
calls (exact method unkncwn).

Unformatted tape inccmpatibility.
Unknown
Tape record lengths of 256 bytes.

Possibly using CPEN statement specifying
RECORDSIZE=256, RECORDIYPE='FIXED', ‘

Carriage Contrcl byte to tape drives,

Write a utility program to copy files
circumventing the VAX carriage control

to tape logic.

Record and file positioning through JCL

commands.

Write a utility program to accomplish

this using SQIO system service calls.

a-2 " ORIGINAL PAGF 13
OF POOR QUALITY




Ckstacle

Solution

Chstacle

Solution

Obstacle

Solution

Cbstacle

Solution

Cbstacle

Solution

13:

14:

16:

Allowing many end-of-file marks wn

random access disk files,
Unkrown
Sharing output files between processes.

Unknown = CPEN statement specifying SHARED
doesn't work for cutput files.

4

Sharing input files between processes.
Use CPEN statement fully specifying
file name and SHARED.

Integer overflow when converting 32 bit

integers to 16 bits.

Compile FORTRAN program with /NOCHECXK

option.

The use of SHIFT, AND & CR logic for

character manipulation.

Eliminate all such legic and replace

with ENCCDE and/or CECODE statements.

ORIGINAL PAGE |
OF POOR QuUALITY



Cbstacle 17: Modification of DO LOCP variable within the lcop.

Solution Recode DO LOCP using IF statement to terminate

the loop.

Cbstacle 138: Incorrect execution of conditionally executed state-

ments within DO LOCPS when the FORTRAN is optimized.

Solution : Recode DO LOCPs using IF statement to terminate

the loop.

Cbst #:'a 19: DEBUG can't run with shareable image, making
testing while running in real-time very difficult.

Solution Unknown

Cbstacle 20: Being denied task activation rights because
other tasks have already been activated.

Solution Any task (process) that activates another
task should receive all the necegsary privi-

leges necessary and the maximum quotas allowed.

QObstacle 21: Retrieving the task status returns different

infcrmation on the two machines.

Solution Status raturned is K in many cases; but for
the others the solution is unkiiown. Some

information is not available.

A-4  ORIGINAL PARE IS
OF POOR QUALITY



Cbstacle 22: XCRT input works in character mcde on the VAX,

Solution : Queue KCRT input until whole string is input
(see Bill Mocarsky for exact details).

Obstacle 23: Assembler languages totally inccmpatible.

Solution : Cther than redesigning and reccding all

assembler modules the solution is unknown.

Cbhstacle 24: Specifying logical unit assignments when
linking a module.

Solution Unknown

Chstacle 25: Secondary activation of mwsdules while they

are executing.

Solution : Unknown, unless all modules hibernate or

suspend themselves instead of exiting.

Cbstacle 26: Printer output lines written directly

from different modules.

Solution: Medify them to route all printer output

through one process.

ORIQINAL PAGE IS
OF POOR QUALITY



Cbstacle 27:

Solution :

Cbstacle 28:

Solution

Obstacle 29:

Solution

. Obstacle 30:

Solution:

Differences in array equivalencing in FCRIRAN.

Cne by cne examination of the use of the
arrays equivalenced and medification where
necessary. In some cases there may be no

known solution.

The lergth of time it takes to accomplish an
CPEN/CIOSE sequence for a disk file on the VAX
(314 mls).

Unknown

The length of time it takes to pass messages
between processes on the VAX using mailboxes
(0.4 mls).

Unknown

The differences between data types in DATA
statements in FORTRAN: e.g. DATA I/22031/ =
CATA I/' 1'/ on the ModComp but not on the VAX.

One by one examination of hexadecimal constants
in DATA statements for validity and medification

where necessary,

A-6  QRIGINAL PAGE 13
OF POOR QUALITY



i

APPENDIX B = Benchmark Tests and Their Purpose

Benchmark
Name (number)

TSTAPF (1.1, 1.3)

TSTARU (1.2)

LOGICALS (1.4)

TSTFILS (2.1, 2.3)

TSTAPF and
TSTAPU 12.2)

TIMEOPEN (2.4)

JCL sequence (2.5)

TSTPILU (3.1, 3.2, 3.3)

TSTFILF and
TSTFILU (3.4)

Purpose

Test order of formatted character

transfers during I/0.

Test order of unformatted character

transfers during I/0.

Test i1f logical unit assignments must
be the same for each process in the

group (JCL sequence).

Test sequential disk file access.
Test effect of end-of-file on tape.
Time CPEN/CLCOSE sequence over-
head for disk files. (314 mls)

Test need for tapes to be MCUNTad from
code.

Test random disk file access.

Test blocking and deblocking

of disk file records.

ORIGINAL PAGE |s
OF POOR QUALITY




Benchmark
Name (number)

EQUIV (5.1)

TWODIM (5.2)

BYTESIMN (5.3)

STCL (5.4)

DATCCOM (5.6, 5.7)

BUFFIO (5.8)

LISQ (5.9)

STOL ete. (6.1)
STOL etc. (6.2)

ASIT (6.3)

Purrose

Test effect of EQUIVALENCE statement
on I*2 and I*4 arrays in FORTRAN.

Test memory layout of 2 dimen-
sional arrays in FORTRAN.

Test if VAX treats bytes as signed

integers.

Test if FORTRAN functions . .

recognize different data types.

Test effect of DATA statements in

FORTRAN for HEX, ASCII & decimal data.

Test if BUFFIO routine can be

viritten for the VAX.

Test results of least sguares polynomial

£it on both the ModComp and the VAX.
Test compatibility of system services.
Test use of shared regions.

Test spooling of event messages

in chronological order.

B-2
ORIGINAL PAGE 15

OF POOR QUALITY



Benchmark
Name (Number)

TIMECVER (6.4)

SNDMSG and
RECVMS (6.6)

TSTAPF (6.7)

TIMEMBOX

TIMEIO (4.0)

TIMEPOLY

Purpose

Time system service call overhead.
(0.07 mis)

Test how mailboxes work on the VAX.

Test I/0 error handling on the VAX.

Time mailbox read/write sequence.
(0.4 mls)

Time FORTRAN subroutine call overhead.
(0.02 mls) .

Time I/0 to disk file
(read = 3.3 mls, write = 4.0 mls).

Time Sth order polynomial evaluation
(Horner's method = 9.11 mls,

POLY instruction = 0.02 mls).

ORIGINAL PAGE IS
OF POOR QUALITY

BESENES & T e



BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
icienceSvTechnicolor Associates, Technical Memorandum, June
980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer Socletlies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Yodels and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-’
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Mndels and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008) .

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

B-1
ORIGINAL PAGE IS
OF POOR QUALITY

et e 3 s S e e e b



Basili, V. R., and R. Reiter, "Evaluating Automatable Meas~-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978
Basili, V. R., and M. V. Zelkowitz, "Measuring Software De~-

velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societlies Press, 1978

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societlies Press, 1981

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (papér
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 3977 (also
designated SEL-~77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

B~2

ORIGINAL PAGE 1S
OF POOR QUALITY




National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity"” (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977 .

Software Engineering Laboratory, SEL-76-00l1, Proceedings
From the First Summer Software Engineering Workshop,
August 1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Scftware
Engineering Workshop, September 1977

-~-, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Langquages
Study, P. A. Scheffer and C. E. Velez, October 1977

-=-, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78~002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

--, SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

B-3 ORIGINAL PAGE Is
OF POOR QUALITY



--, SEL~78~004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S, Wilson, B, Chu, and G. Page,
September 1978 .

-~, SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL~78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

»

-~, SEL-78-007, Applicability of the Rayleigh Curve to the
SEL Environment, T. E. Mapp, December 1978

--, SEL-79-(01, 'SIMPL~D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

-

-=, SEL-79-002, The Software Engineering Laboratory: Rela~-
tionship Equations, K. Freburger and V. R. Basili, May 1979

-=, SEL-79-003, Common Software Module Repository (CSMR)

System Description and User's Guide, C. E. Goorevich,
S. R. wallgora, and A. L. Green, August 1979

-~, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Lanquage (PDL) in the Goddard Space Flight

Center (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and F. E, McGarry, september
1979

--, SEL-79-005, Proceedings From the Fourﬁh Summer Software
Engineering Workshop, November 1979 ,

--, SEL-80~001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
C. E. Goorevich, and A. L. Green, February 1980

--, SEL-80~-002, Multi-Level Expression Design Language-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker,

C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port Software System (MMS/GSSS) State-of-the-Art Computer
Systems/Compatibility Study, T. Welden, M. McClellan,

P. Liebertz, et al., May 1980

~-, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A Study of ~“he Musa Reliability Model,
A. M. Miller, November 1964

'

ORIGINA’. PAGE :
OF POOR QUALITY



~=, SEL-80~006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-«
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1950

--, SEL=-81-001, Guide to Data Collection, V. E. Church;
D. N. Card, F. E. McGarry, et al., September 1981

-=-, SEL~81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance §ystem ZDEAMS Useris ﬁuide and system De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

-~-, SEL-81-004, The Software Engineering Laboratocy,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

-~-, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

-, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendlum of Tools, W. J. Decker, E. J. Smlth, A. L. Green.
et al., February 1981 ,

--, SEL-81-008, Cost and Reliability Estimation Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
1981

-=-, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
. BE. McGarry, Marc

--, SEL-81-0)0, Performance and Evaluation of an Independent
Software Verificatlon and lntegration Process, G. Page and
F. E. McGarry, May 1981

-~-, SEL-81-011, Evaluating Software Development by Analysis
of Change Data, D. M. Weiss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

B~
> ORIGINAL PAGE i8

OF POOR QUALITY




--, SEL~81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering_yaboratorx (SEL) ,

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981
Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen~

dium, " Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and.-Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

ORIGINAL PAQE 1S
OF POOR QUAL{TY



	GeneralDisclaimer.pdf
	1982021166.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf


