General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Acceleration of Convergence of Vector Sequences

```
(NASA-TM-82931) ACCELERATICN OF CONVERGENCE
OF VECTOR SEQUENCES (NASA') 10 p N82-29075
HC A02/MF AO!
                                    CSCI 12A
```

Avram Sidi and William F. Ford
Lewis Research Center
Cleveland, Ohio
and
David A. Smith
Duke University
Durham, North Carolina

Prepared for the

Thirtieth Anniversary Meeting of the Society for Industrial and Applied Mathematics
Stanford, California, July 19-23, 1982

nnsn

ACCELERATION OF CONVERGENCE OF VECTOR SEQUENCES
 Avram Sidi* and William F. Ford National Aeronautics and Space Administration
 Lewis Research Center Cleveland, Ohio 44135

and

David A. Smith Duke University Durham, North Carolina 27706

ABSTRACT

A general aprroach to the sonstruction of acceleration of convergence methods for vector sequences is proposed. Using this approach one can generate some kiiown methods and some new ones. In this talk we shall concentrate on one new method. which turns out to be a simplified version of minimal polynomial extrapolation. We analyze the convergence of this method and show that it is especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively.

[^0](1.3) $\quad S_{n, k}=\left|\begin{array}{ccccc}S_{n} & S_{n}+1 & \cdots & S_{n} t_{k} \\ \Delta S_{n} & \Delta S_{n}+1 & \cdots & \cdot & \Delta S_{n}+k \\ \vdots & \vdots & & & \vdots \\ \Delta \dot{S}_{n}+_{k}-1 & \Delta \dot{S}_{n}+_{k} & \cdots & \cdot & \Delta \dot{S}_{n}+2 k-1\end{array}\right|$

Two equivalent formulations felnow from (1.3):
a) It is clear from (1.3) tha: $S_{n, k}$ along with the k parameters $\boldsymbol{A}_{\mathrm{i}}, \mathrm{i}=0,1$, . . . $k-1$, sclves the set of $k+1$ linear equations
(1.4) $\quad S_{m}=S_{n}, k+\sum_{i=0}^{k-1} \beta_{i} \Delta S_{m}+_{i}, n \leq m \leq n+k$.

By taking the differences of the equations in (1.4), we can see that the β_{i} satisfy
(1.5) $\quad \Delta S_{m}=\sum_{i=0}^{k-1} \beta_{i} \Delta^{2} S_{m}+i, n \leq m \leq r_{i}+k-1$,
and that once the β_{i} have been determined, $S_{n, k}$ can be computed from one of the equations in (1.4).
b) From (1.4) it follows that S_{n}, k along with the parameters $\gamma_{i}, i=0$, . . , k, satisfy the equations
(1.6)

$$
S_{n, k}=\sum_{i=0}^{k} r_{i} S_{m}++_{i}, n \leq m \leq n+k,
$$

subject to
(1.7) $\quad \sum_{i=0}^{k} r_{1}=1$.

By taking differences of the equations in (1.6), we can see that the r_{i} satisfy
(1.8)

$$
0=\sum_{i=0}^{k} r_{i} \Delta S_{m}+_{i}, n \leq m \leq n+k-1
$$

subject to (1.7). Once the γ_{i} have been determined, $S_{n, k}$ can be computed from one of the equations in (1.6). Furthermore, if $\gamma_{k} \neq 0$, then (1.7) and (1.8) are equivalent to
(1.9)

$$
\sum_{i=0}^{k-1} c_{i} \Delta S_{m}+_{i}=-\Delta S_{m}+_{k}, n \leq m \leq n+k-1,
$$

where
(1.10)

$$
\gamma_{1}=\frac{c_{i}}{\sum_{j=0}^{k} c_{j}}, 0 \leq i \leq k-1, c_{k} \equiv 1
$$

provided $\quad \sum_{j=0}^{k} c_{j} \neq 0$.
It has been proved by Wynn [4], that $S_{n, k}$, when applied to sequences $S_{m}, m=0,1$, . . , that are of the form given in (1.1), converges to S as n*e (k fixed), under certain conditions on the λ_{i}, faster than S_{n} itself. Wynn actually gives rates of convergence, and also analyzes the stability properties of the approximations $S_{n, k}$, when errors are introduced in the S_{m}.

In the next section we shall extend the two formulations (a and b) given above for deriving Shanks' transformations, to vector sequences, and shall obtain a class of vector acceleration methods that includes some of the known methods as well as some new ones. In Section 3 we shall analyze one of these methods, subject to an assumption on the vector sequence analogous to (1.1), and shall prove that it accelerates the convergence of the sequence, and give an actual rate of convergence for it.
2. DERIVATION OF VECTOR ACCELERATION METHODS

Let us now consider a sequence of vectors, $x_{m}, m=0$, 1, . . . , in a general space B, satisfying
(2.1)

$$
x_{m} \sim s+\sum_{i=1}^{\infty} v_{i} \lambda_{i}^{m} \text { as mes, }
$$

where s and the v_{i} are vectors, and the λ_{1} are scalars. Again S is the limit or anti-limit of this sequence, depending on tie λ_{i}. A very simple and practical example of such a sequence is that produced by matrix iterative technique for solving the equation
(2.2) $x=A x+b$,
where A is an $M \times M$ matrix, and b and x are M-dimensional column vectors. If s is the solution to (2.2) and for given x_{0}, the vectors x_{m} are generated by
(2.?: $\quad K_{m}+_{1}=A x_{m}+b, \quad m=0,1, . .$,
then
(2.4)

$$
x_{m}=s+\sum_{i=1}^{M} v_{i} \lambda_{i}^{m}, m=0,1, \ldots,
$$

where λ_{i} and v_{i} are the eigenvalues and corresponding eigenvectors respectively, of the matrix A, assuming that A has precisely M eigenvectors. The condition stated in (2.1) is analogous to that stated in (1.1) for scalar sequences. Since the Shanks' transformation accelerates the convergence of scalar sequences satisfying (1.1), we expect that its extensions to the vector case, through the formulations a) and b) in the previous rection, will also produce acceleration of convergence for vector sequences satisfying (2.1).

The extensions of the two formulations can be achicved as follows:
a) Let us start by writing (1.3)-(1.4) in terms of the vector sequence. We have
(2.5)

$$
S_{n, k}=x_{n}-\sum_{i=0}^{k-1} \theta_{i} \Delta x_{n}+i
$$

with B_{i} obtained from the overdetermined system
(2.6)

$$
\Delta x_{m}=\sum_{i=0}^{k} \beta_{i} \Delta^{2} x_{m}+i, n \leq m \leq n+k-1
$$

by some technique.
b) If we write (1.6)-(1.10) in terms of the vector
sequence, we find
(2.7) $S_{n, k}=\sum_{i=0}^{k} \gamma_{i} x_{n}+i$,
where γ_{i} are obtained from the overdetermined system
(2.8)

$$
\sum_{i=0}^{k-1} c_{i} \Delta x_{m}+i=-\Delta x_{m}+k, n \leq m \leq n+k-1,
$$

and
(2.9)

$$
\gamma_{i}=\frac{c_{i}}{\sum_{j=0}^{k}, 0 \leq i \leq k-1, c_{k} \equiv 1,}
$$

provided $\quad \sum_{j=0}^{k} c_{j} \neq 0$.
We see that for both approaches, we need to "solve" an overdetermined and, in general, inconsistent system of equations of the form

$$
\begin{equation*}
\sum_{i=0}^{k-1} d_{i} w_{m}+i=\tilde{w}_{m}, n \leq m \leq n+k-1 \tag{2.10}
\end{equation*}
$$

where w_{j} and \tilde{w}_{j} are members of the space B and d_{i} are unknown scalars. If r, the dimension of B, is greater than or equal to k, then even one of the equations in (2.10) gives rise to an overdetermined system. We can, however, propose various ways for obtaining a set of d_{i}, that "solves" (2.10) in some sense. In what follows, we give three such methods, with the understanding that other methods can also be proposed.

1) Assuming $n \geq k$, solve the overdetermined system leq. (2.10) with $m=n$ onlyl
(2.11) $\quad \sum_{i=0}^{k-1} d_{i} \omega_{n}+i=\omega_{n}$ OF POOR QUALITY
by least squares. For finite dimensional spaces B, this method gives us RRE for approach a), and it gives MPE for approach b).
2) Assuming $r \geq k$, solve the set of k equations

$$
\begin{equation*}
\sum_{i=0}^{k-1} d_{i} Q_{j}\left(w_{n}+i\right)=Q_{j}\left(\tilde{w}_{n}\right), j=0,1, \ldots, k-1, \tag{2.12}
\end{equation*}
$$

where Q_{j} are linearly independent operators in the dual space of B. For Hilbert spaces, we can take $Q_{j}(y)=(q ; y)$, where q_{j} are vectors and (. ,) is an inner product.
3) Solve the set of equations
(2.13)

$$
\sum_{i=0}^{k-1} d_{i} Q\left(w_{m}+_{i}\right)=Q\left(\tilde{w}_{m}\right), n \leq m \leq n+k-1
$$

where Q is an operator in the dual space of B. This method is similar to that introduced by Brezinski [2].
3. A CONVERGENCE RESULT

We now give a convergence result for the method that is obtained from approach b) using the procedure in 2) in the previous section. We shall state the result, but leave out its proof. The proof, along with several other new results will be included in the final version of this paper. For simplicity we shall assume that B is finite dimensional.

Theorem: Let the sequence $x_{m}, m=0,1$, . . . be as in (2.3)-(2.4). Let $S_{\text {: }}, k$ be obtained from (2.7)-(2.9) with the c_{i} obtained by solving the linear system

$$
\sum_{i=0}^{k-1} c_{i} Q_{j}\left(\Delta x_{n}+i\right)=-Q_{j}\left(\Delta x_{n}+_{k}\right), j=c, 1, \ldots, k-1
$$

where Q_{j} are k linearly independent operators in the dual space of B. (For example, $Q_{j}(y)=(j+l) s t$ component of y, $j=0,1,$. . . . $k-1$.$) If \left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots$. . $2\left|\lambda_{k}\right|>$
$\left|\lambda_{k}+1\right|>\left|\lambda_{k}+2\right| \geq$. . then, in general,
(3.1) $\quad S_{n, k}-S=O\left(\lambda_{k}^{n}+1\right)$ as $n=\infty$,

Recall that $x_{n}-S=O\left(\lambda_{1}^{n}\right)$ as $n-\infty$. Therefore, whenever the conditions of the theorem above ara satisfied, then S_{n}, k converges to S faster than x_{n} when the latter converges, and if $\left|\lambda_{k}+1\right|<1$, then $S_{n, k}$ converges to S even if x_{n} may diverge.

REFERENCES

[1] D. A. Smith, W. F. Ford, Extrapolation methods for vector sequences. Presented at the American Mathematical Society, Jan. 1980.
[2] C. Erezinski, A general extrapolation algorithm, Numer. Math., 35 (1980), pp. 175-187.
[3] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Physics, 34 (1955), pp. 1-42.
[4] P. Wynn, On the convergence and stability of the epsilon alyorithm, SIAM J. Numer. Anal., 3 (1966), PP. 91-122.

[^0]: - Technion - Israel Institute of Technology, Haifa, Israel and NRC-NASA Research Associate.

