NASA-CR-166366
19820021375

Pioneer 10/11 Data Analysis of the Magnetic Field Experiment

Doug1as E. Jones
Brigham Young University

HORARY BEPY

iii 8 198?

LANGLEY RESEARCM: INTER
LIEPARY NASA
hAMPTOF, VIFGINIA

CONTRACT NAS2-7358
June 1982
N/SN

Pioneer 10/11 Data Analysis of the Magnetic Field Experiment

Douglas E. Jones

Brigham Young University Provo, Utah

Prepared for
Ames Research Center under Contract NAS2-7358

N/ SN

National Aeronautics and Space Administration
Ames Research Center Moffett Field. California 94035

Summary
This final report covers work conducted by 3righam Young University personnel in support of the pioneer missions to Jupiter (10, 11) and Saturn (11) as well as the reduction, analysis and interpretation of magnetic field data obtained by the vector helium magnetometer (VHM) on the Pioneer 10 and 11 spacecraft. Inftially, our efforts concentrated primarily on the interplanetary data, and those aspects of the data of relevance to obtaining a better understanding of the interaction of the magnetized solar wind with the tertestrial magnetic field. However, after we paricipated in the encounters of Jupiter and Saturn, the emphasis of our research was directed primarily to an analysis of the planetary data. In particular, it soon becare clear that there was a need for modelling of the various candidate magnetospheric currents suggested by the data.

Over the period of this contract (7/1/73-12/31/81) we have supported the launch, cruise, and encouter phases of the Pioneer 10 and 11 missions, published 16 papers, presented ly papers, and had 19 abstracts of papers published. A listing of the papers and abstracts published is given in the "List of Publications." In the next sections we summarize the work conducted in various research areas conducted under this contract. Included are results not published as yet, but which we plan to publish.

The August 1972 Solar Flare Event
During August, 1972, considerable flaring activity occured on the sun, which in turn produced significant modification of the solar wind medium as measured at a number of spacecraft, including Pioneer 10. In addition, significant terrestrial effects were observed. We worked closely with E. J. Smith of JPL during this period and conducted some additional analysis of our own that were based upon the hypothesis that flare producing regions rather than specific flares are the causal source of interplanetary and terrestrial events. Although we did not complete the analysis of this event in terms of the flare region hypothesis because of pressures resulting from the encounter of Jupiter, nevertheless there were a number of characteristics of the data (both field and energetic particle) that were consistent with this latter hypothesis. That is, effects were seen in space and at earth when the flare producing region (region on the surface of the sun having a history of flaring) was at the proper angular relationship with respect to the earth considering the finice travel fime at nominal solar wind velocities, and it was not necessary to hypothesize that a flare erupted on the unseen portion of the sin. The results of a standard analysis and interpretation of these data has been published , although we are planning to develop and present our alternate hypothesis (:. Davis et al., 1973; E. Smith et al., 1977).

Tine Measurement of Weak Magneric Fields in Space
During the period of this research we studied a proposed method to measure weak magnetic fields using two magnetometers in a coorrelative mode purported to reduce the resultant gagnetometer sensor noise to an insignificant amount. We found that the basic premise of the paper was in serious error, and that in fact the method proposed would not work. The results of this brief study were published (Jones, et al., 1974).

Interior Source Magnetic Field Modelling: Jupiter
Our initial modelling efforts as applied to the pioneer 10 data consisted of the utilization of a function minimization approach to finding the field sources that best fit the data obtained within about 7 RJ (D. E. Jones and J. G. Melville, 1974 ; E. J. Smith, et al., 1974). When a single offset dipole was used as the interior source of the field, we found that as the radial range of the data used in the fitting was increased, equatorial projection of the end of the vector describing the offset of the equivalent dipole would tend to describe a circle. A more complicated field source configuration consisting of two dipoles plus a uniform field was then used, the latter being the dominant cera of an external ring current. The use of two dipoles was based upon the results of ground based radio astronomy interferometer mapping and polarization measurements which suggested the existence of a magnetic anomally near the surface of the planet near a System III longitude of 200°. For simplicity, we chose to represent this anomaly in our studies as a magnetic dipole. The other dipole was assumed to be the primary source of the planet's magnetic field.

A function minimization (FMFD) algorithm was developed which internally varied the location, orientation and strength of the two dipoles, as well as the parameters of the uniform field, until a best fit was obtained to the data ia a least squares sense. Jsing the Pioneer 10 data, it was found that the resulting residuals were smaller than those obtained using the conventional linear, or spherical harmonic, approach. We found that a plot of the residuals versus radial distance exhibited high values at about the orbital distance of Io. The Voyager later confirmed that the flux tube of Io contained currents, and suggested the presence of a plasua torus at this orbital distance. The second dipole was found to be located close to the equator in the hemisphere, close to the longitude of the radio astronomy polarization anomaly, and reasonably close to the surface.

A similar type of analysis was performed using the pioneer 11 data with results that were consistent with that obtained Erom Pioneer 10. The second dipole was located in the same longitudinal quadrant as that of oioneer lu and reasonably close to the surface, but in the southera hemispinere. iJe are not sure what effect the existence of tail and frontside aross sheet current fields will have on the location of the second dipole as むeteruined frou the Pioneer lo and ll data, but it is clear thã the use of such an analysis approcich nas aerit, pazticularly íz proper allowance for the Eields froin these other currents resules
in more consistent characteristics for the two interior dipole sources as derived from the two spacecraft data sets. An extension of this work, which included the pioneer ll results as well as a SHA analysis of data from both spacecraft, used a different weighting scheme, and derived more information concerning the ring current, was written up as an undergraduate thesis for the honors program by R. Steven Turley and has been included as Appendix A of this report.

Modelling the Jovian Magnetosphere
During the period of this contract we have studied the Jovian magnetosphere using two basic methods. The first involved the use of Euler potentials, a method which results in mathematical expressions that permit easy tracing of field lines. Some degree of success was achieved in obtaining functions describing the field which provided reasonable fits to the data, and which were useful when extrapolated a small distance beyond the region of fitting. As the result of a cooperative program with the energetic particle experiment tean at the University of Iowa, it was found that the outbound Pioneer 10 was periodically located on open field lines, this occurring while at fairly low magnetic latitudes (Goertz, et al., 1976). This result was obtained by comparing the spacecraft location in magnetic coordinates with the energetic particle measurements. The existence of an open/closed field line demarcation at such a low magnetic latitude (approximately 20°) was rather starting at the time, but this may be consistent with the general topology of the magnetic field in the sunward magnetosphere as inferred from the outbound Pioneer ll magnetic field measurements, which suggests that it is quite different from that of earth. We attempted to use an Euler potential approach in the study of the magnetosphere beyond $\pm 20^{\circ}$ magnetic latitude, with little success. We found that the unphysical magnetic fields and currents predicted at high latitudes by the functions that were tried far outweighed the advantages of these functions (Jones and Melville, l975). In addition, the deformations of the current disc evidentin the data could not be acconodated in a tractable manner with such a function. We tried several coordinate systems, with little success.

In order to facilitate a current disc clearly displaying twisting and bending, we subsequently developed an algorithm for the magnetic field of a double layer of circular rings of current which allowed the tilt and longitude of the axis of each ring making up the disc to be functions of the ring radius. In addition, we desired a model for the currents which could be used to extrapolate beyond the region of fitting with more reliability than the Euler function method. Excellenc agreement mas obtained between model predictions and the data, with parametric expressions being developed for the manner in which the current disc was deformed, pareicularly using Pioneer lo outoounc daEa. It was found that the disc reeded to be tivisted about the spin axis, and bent such as to approach parallelisa with the rotational equator. An additional deforaarion of tite current disc in the Eora of a small ridge or huap was ragatied in order
for the spacecraft to periodically penetrate the bent disc. Figures $1-6$ compare che current discs required to fit the pioneer 10 outbound data (Figs. l-3; twisted and bent, with spiralifng ridge) and the Voyager data (Figs. 4-6; twisted and bent only). The Pioneer 11 inbound data also suggested that some degree of bending improved the fits. The other data sets clearly required additional tail field and required discs displaying markedly different characteristics as to the amount and distribution of current, as well as the amount of tilting required (Melofile et al., 1975; Jones et al., 1975 ; Jones and Melville, 1975; Jones et al., 1976a,b; 1980; 1981; Jones and Thomas, 1981). An extreme case in point is the fact that in order to fit the strong current dip observed outbound at about $8 \mathrm{R}_{\mathrm{J}}$ by Pioneer 11 , a tilt of over 35° is required, whereas the inbound Pioneer 11 data require a thinner disc having a tilt of 11.2°. A study was also conducted to determine the radial current distribution required to produce a fit to the azimuthal field from both the outbound pioneer 10 and 11 data.

When the characteristics of the ring currents for the various data segments were compared, both the rho and phifield components displayed a local time dependence. As an alternate to local time dependent disc and radial currents, it was suggested the possibiliy of an azimuthally symmetric disc current plus a sheet of dusk to dawn current, the latter being the equatorial portion of a tail-like current configuration extending into the frontside magnetosphere (Jones, et al., l981; Jones and Thomas, 1981). Such a configurafion produces the observed maximum in the rho and phi components near the dawn line, and the decrease in these components near the noon meridian. A preliminary study of the fields of such a current configuration has resulted in fits to the data which are better than those obtained in terms of a local time dependent disc current and tail/magnetopause currents (Jones and Thomas, 1981).

Magnetic Field and Energetic Particle Fluz Studies
Several analysis efforts were conducted in an attempt to better understand the relationship between the energetic particle flux and the magnetic field. Using the model disc current which best fit the Pioneer 10 outbound data, we traced out field lines so determine the L values corresponding to important times related to observed characteristics of the energetic particles. As a result, a joint paper was presented ourlining the L dependence of the energetic paricicles in jupiter's magnetosphere (Jones and Mihalov, 1978). This study was based upon a adel disc current systeq fitting the outbound Pioneer 10 data, where good fits were obtained without tail and aagnetopause currents (these currents produce primarily positive and negative z fields, respectively, and they are apparently of the same nagnicude neaz the dawn meridian). Hence, the aagnetosphere was not terainated, and a reanalysis of the particle data usiaz L values darived fyom a terminated aagnetosphere, or using model patazeers derived Erom fitting other jata sagnents should modizy the resulas raporzed previously.

We have also explored the locations of ainiaun fieif reitons
that result when a magnetosphere is terminated by the solar wind. A model fitting the Pioneer 10 data has been combined with a systen of currents on the surface of a sphere to derive a terminated magnetosphere. The resulting magnetopause was blunt, and consistent with the derived shape of the magnetopause using minimum variance techniques. The field minima produced by the termination were shifted away from the magnetic equator, resulting in two surfaces orfented at a relatively large angle relative to the magnetic equator. When the Pioneer ll outbound trajectory was superimposed on the field line disgram derived from the model, it was found that the occurances of the field minima were reasonably consistent with the observed occurances of the energetic particle maxima (Jones, 1979). Other analyses of the Pioneer 11 outbound field data suggest several other possible explanations for the anomalously high flux counts at such a high latitude. One considers the possibility that the localized tilt of the current disc near the noon meridian was much greater (> 30°) (Jones et al., 1975; Jones et al., 1976a,b) while the other considers the possibility that the magnetospheric cleft is at a much lower latitude, the latter providing a region for the energetic particles to escape from the planet (Jones and Thonas, 1931).

Sacellite-Magnetosphere Interaction Studies at Saturn. When the 24 nour interval of data spanning the closest approach of Titan's orbit by Pioneer 11 was studied, it was found that thera were three periods in which the level of magnetic variability was enhanced: One of these occured spaning several hours before to one or two hours after closest approach to Titan, when the spacecraft was about $145 \mathrm{R}_{\mathrm{t}}$ (Titan radii) ahead of the satallite in the direction of orbital motion. The characteristics of these turbulent regions were studied and it was concluded that the Titan interval displayed a number of characteristics that are consistent with what would be expected should the spacecraft penetrate the satellites magnetic wake. Evidence for penetration of a shock so far "downstream" was weak, and marginal at best, but there was a field minimum almost precisely at closest approach to the extended tail axis, and the characteristics of the masnetic turbulence of tie Titan fnterval appeared to differ from those of the other two. As a result of this analysis, we suggested that the magnetic wake of Titan may have been detected (Jones et al., 1979; Jones et al., 1980). Preliminary studies of the magnetic data near the time of the energetic particle decreases attributed to the new satellite $1979 \mathrm{~S}-2$ suggested the possible existence of low ilfven mach number fans associated with the interaction of a satellite with corotating plasma. However, a closer inspection of the manner in which the various field components varied during this interval suggested this not to be the case. It was later determined that this was a data anomaly that resulted Eron the use of a despin function that did not properly take into account accelerazion of the spacecraft at Saturn and the nonlinear charactaristics ji an iaproper jespin function timing anomaly in the data producej zine false result (Jones et al., 1979a,b).

List of Publications and Papers Presented

1. E. J. Smith, L.Davis, Jr., D. E. Jones, P. J. Coleman, Jr., C. P. Sonett, P. Dyal, and D. S. Colburn, "The Distant Interplanetary Magnetic Field: Pioneer 10," Trans. Amer. Geophys. Union, 54, 438 (1973) (Abstract of paper presented at A.G.U. Meeting, April 1973).
2. L. Davis, Jr. E. J. Snith, D. E. Jones, P. J. Coleman, Jr., P. Dyal, and C.P. Sonett, "Pioneer 10 Observations of Interplanetary Shocks from the dugust 1972 Flares," Trans. Amer. Geophys. Union, 54, 438 (1973) (Abstract of paper presented at A.G.U. Meeting, April 1973).
3. E. J. Smith, L. Davis, Jr., D. E. Jones, P. J. Coleman, Jr., D. S. Colburn, P. Dyal, and C. P. Sonete, "Measurement of the Distant Interplanetary Magnetic Field on Pioneers 10 and 11 ," Trans. Amer. Geophys. Union, 54, 1197 (1973). (Abstract of paper presented at A.G.U. Meeting, December 1973).
4. E. J. Smith, L. Davis, Jr., D. E. Jones, D. S. Coliourn, P. J. Coleman, Jr., P. Dyal, and C. P. Sonete, "The Magnetic Fieid of Jupiter and its Interaction with the Solar wind," Science, 183, 305 (1974).
5. D. E. Jones, E. J. Smith, and J. G. Melville, "Discussion of the Paper:. A note on Signal Enhancement for Dual Magnetometer Systems' dy N. F. Ness," J. Geophys. Res., 79, 2927 (1974).
6. E. J. Saith, L. Davis, Jr., D. E. Jones, P. J. Coleaan, Jr., D. S. Colburn, P. Dyal, and C. P. Sonett, "The Ilagnetic Field of Jupiter and Its Interaction with the Solar wind," Trans. dmer. Geophys. Union, 55, 413(1974) (Abstract of paper presented at d.G.U. Meeting April, 1974).
7. D.E. Jones, E.J. Smith, L. Davis, Jr., J.S. Colbura, P.J. Coleman, Jr., P. Dyal, and C.P. Sonett, "Pioneer lo Aeasurements oE Jupiters Magnetic Field," Proc. Utah Acad. Sci. Arts and Letters, 51, 153 (1974).
8. D. E. Jones anc J. G. Melville, "A Study of Single and Dual Dipole Magnetic Field Xodels for Jupiter: Pioneer lo," Proc. Utah Acad. Sci., Arts and Letters, 51, 161 (1974).
9. E. J. Saith, L. Davis, Jr., D. E. Jones, P. J. Coleman, Jr., D. S. Colburn, P. Dyal, C. D. Sonete, ant A. X. d. Franisen, "The planetary iagnetic Field and Xagnetospinere of Jupíer: Pioneer 10," J.G.R., 79, $3501(1374)$.
10. D. ᄅ. Jones, E.J. Smíh ani L. Davis, Jr., "Yeasurenentof the magnetic Eield of Jupifer by Pioneers lo ani 11". (Paper presented at the Gordon Conference on Space Plasaa Physics, Fankiin Pierce Coliege, Ringge, A. 子., June $9-13,1975$.

1：．J．G．Melvilie，M．L．Blake，and D．E．Jones，＂Yodeling Jupiter＇s intense disc current，＂（Paper presented at the Fall Meeting of the Utah Acadeny of Sciences，Arts and Letters， November，1975．）

12．D．E．Jones and J．G．Melville，＂Preliminary model studies of the magnetosphere of Jupiter：Pioneer $10, "$ Proce of the Utah Acad．of Sci．，Arts and Letters，52，14，1975．（Abstract of paper presents at the Sping Meeting of the Utah Acadeny of Sciences，Arts and Letters，April，1975．）

13．E．J．Smith，L．Davis，Jr．，D．E．Jones，P．J．Coleman，Jr．， D．S．Colburn，P．Dyal，and C．D．Sonett，＂Jupiters Magnetic Field，Slagnetosphere，and Interaction with the Solar ifind，＂ Science，183， 451 （1975）．

14．L．Davis，Jre，E．J．Smith，and D．E．Jones，＂The Magnetic Field of Jupiter，＂Trans．Amer．Geophys．Union，56， 1041 （1975）（Abstract of paper presented at A．G．U．Meeting， December 1975）．

15．E．J．Snith，L．Davis，Jr．，D．E．Jones，P．J．Coleman，Jr．， D．S．Colburn，and C．P．Sonett，＂The ？lanetary Magnetic Field and dagnetosphere of Jupiter：Pioneer ll Vecror Helium Magnetometer，＂Bull．of Am．Astron．Soc．，7， 379 （1975）． （Abstract of paper presented at Planetary Sciences Div．of A．A．S．）．

16．C．K．Goertz，D．E．Jones，B．A．Randall，E．J．Smith，and M． E．Thomsen，＂Evidence for Open Field Lines on Jupiter＇s Magnetosphere，＂J．Geophys．Res．，81， 3393 （1976）．

17．E．J．Smith，L．Davis，Jr．，and D．E．Jones，＂Jupiter＇s Magnetic Field and ：agnetosphere，＂Chapter in jupitar； Studies of the Interior，Atmosphere，lagnetosphere and Satellites，University of Arizona ？ress，Tucson，Arizona， （1976）ed．by T．Gehrels．

13．J．G．Melville，II，（Comment made after＂Jupiters magnetic field and magnetosphere，＂by Smith et al．，pp．826，7）in Jupiter；Studies of the Interior，dtmospiere，Xagnetospiere and Satellites，Üaversity of Arizona 巳ress，Tucson，Arizona， （1976）ed．by i．Gehrels．

19．D．E．Jones and J．G．Helville II，＂Modeling Jupiter＇s aagnetospheric current disc：Pioneer 10 and $11, "$ Proc． in ah dcad．Sci．，Arts，and Letters，53，61，lo76．（Abstract if paper presented at Fail ieezing je the Utah dcacemy o三 Sciences，Arts and Letters，Lovemjer，lэ75．）

2j．2．ヨ．Jones，ミ．J．Jmith，I．Davis jr．，and j．G．亿elrilie，
 presented at COSPAR Yeeting，2hila．，？a．，Juna i7，197．ja． － 3 －

21．D．E．Jones，J．G．Melvilie，L．Davis，Jr．，and E．J．Smith， ＂Modeling Jupiters Magnetospheric Current Dise：Pioneers lo and 11，＂EOS Trans．AGU，57， 991 （1976）．（Abstract of paper presented at，Fall Meeting of the AGU，December，l976b．）

22．E．J．Smith，L．Davis，Jr．，D．E．Jones，P．J．Coleman，Jr．， D．S．Colburn，and P．Dyal，＂August 1972 Solar Terrestrial Events：Observations of Interplanetary Shocks at $2.2 \mathrm{AU}, \mathrm{\prime J} \mathrm{~J}$ ． Geophys．Res．，82， 1077 （1977）．

23．D．E．Jones and J．D．Mihalov，＂Study of Static Characteristics of Jupiter＇s Outer Magnetosphere，＂EOS Trans． AGU゙，58， 1218 （1977）．（Abstract of paper presentec at the Fall Neting of the AGU，December 1977）．

24．D E．Jones，＂Magnetopause currents，multiple trapping and energetic particle flux anomalies；pioneer 10 inbound，＂ Encyclia，54， 106 （1977）．（Abstract of paper presented at the Fall Meeting of the Utah Academy of Sciences Arts and Letters，Deceaber 1977．）

25．D．E．Jones，＂Oscillations of the giant current disc surrounding Jupiter：Pioneer 10 inbound，＂Encyclia，55，164， 1978．（Abstract of paper presented at the fall Meeting of the Utah Academy of Sciences，Arts，and Letters，November， 1973.

26．D．E．Jones，＂On the．phase relationship between the energetic particle flux modulation and current disc penetrations in the Jovian aagnetosphere：Pioneer 10 inbound，＂Geophys．Res． Letters，系， 45 （1979）．

27．D．E．Jones，＂Observations of Saturn＇s magnetic field and the magnetic interaction regions of Titan and the new sateliite $1979 \mathrm{~S}-1, "$ Encyclia， $56,156,1979$ ．（Abstract of paper presented at the Fall Meeting of the jtah Academy of Sciences，Arts and Latters，Soveコber，1979．）

28．E．J．Smith，L．Davis，Jr．，D．E．Jones，P．J．Coleaan，Jr．， P．Dyal and C．P．Sonett，＂Saturn＇s Magnetic Field and Magnetosphere：Pioneer 11，＂EOS Trans．AGU，60， 865 （1379）．（Abstract of paper presented at fali 保eting of the AGU，Decemoer，1979）．

29．D．E．Jones，B．T．Tsurutani，E．J．Snith，R．J．Nalker，and C．P．Sonete，＂Observations of Iitan＇s llagnetic ivake： Pioneer 11，＂EOS trans．AGU，万人，36ó（1979）．（ibstract oE paper presented at Fall Meeting of the AGU，Decemjer，1979）

3u．D．E．Jones，E．J．Smith，B．T．Tsurutani and L．Davis，Jr．， ＂：lagneiic Detection of che Satellite 1979 s－l（Satira）by
 paper presented at the Fall deesing oE＝ine iG！，Deceave＝， 1979）．
31. E. J. Saith, i. Davis Jr., D. E. Jones, P. J. Colemar, Jr., D. S. Colbura, P. Dyal, and C. P. Sonett, "Saturn's Magnetic Field anc iagnetosphere," Science, 207, 407 (1980).
32. D. E. Jones, J. G. Melville II, and M. L. Blake, Modeling Jupiter's Current Disc: Pioneer lo Outbound," J. Geophys. Res., 85, 3329, (1980).
33. D. E. Jones, B. I. Tsurutani, E. J. Smith, R.J. Walker, and C. P. Sonetr, "A Possible Magnetic Wake of Titan: Pioneer 11 Observations," J. Geophys. Res., 85, 5835, (1980).
34. E. J. Smith, L. Davis, Jr., D. E. Jones, P. J. Coleman, Jr., D. J. Coljurn, P. Dyal, and C. P. Sonete, "Saturn's Lagnetosphere and It's Interaction with the Solar Wind," J. Geophys. Res., 85, 5655, (1980).
35. L. Davis, Jr., E. J. Smith, D. E. Jones, P. J. Coleqan, Jr., D. S. Colburn, P. Dyal, and C. P. Sonett, "Saturn's magnetic field, magnetosphere, and fnteraction with the solar wind," EOS Trans AGU, 61, 333, (1980). (Abstract of paper presented at Spring Meeting of the $A G U, A p r i l, 1930)$.
36. D. E. Jones and L. G. Shirley, "Modulation of the Front Side Disc, Cross and Tail Currents in the Jovian Magnetosphere: Pioneers 10 and $11, "$ EOS Trans AGU, 61, 349, (1980).
37. D. E. Jones, B. T. Thoaas, and J. G. Melville II, "Equatorial Disk and Dawn-Dusk Currents in the Frontside Magnetosphere of Jupiter: Pioneers 10 and $11, " \mathrm{~J} . \mathrm{Geophys.Res.}, \mathrm{86}, \mathrm{1601}$, (1981).
38. D. E. Jones and B. T. Thomas, "lodeling of disc and Eail currents in both che front and back rezions of the magnetospiere of Jupiter: Pioneer results," EOS Trans AGU, 62, 999 , (1981). (Abstract of paper prasented at Eall Meeting $\overline{O F}$ the $A G U$, December, 1981.)
\dot{x} Copies of papers pubiishoc in the Ǔah Acadeä peoceecings have been included as Appendify ${ }^{2}$

Figures l-3. Three views of the current disc required to fit the pioneer 10 outbound data. Twisting, bending (towards parallelism with the jovigraphic equator) and a deformation in the form of a ridge having a spiralling symmetry line are required. The three views represeated in the figures differ by 45° in the direction of rotation.

Figures 4-6. Three views 45° apart in the direction of rotation of the current disc required to fit the Voyager magnetic field data based upon fitting of the outbound Pioneer 10 data. An additional deformation in the form of a sprialling ridge was not needed for the Voyager data.

Eigure 1
Figure 2

Figure 2

Figure 5

Eigure 6

Appendiz A
 Linear and Non-Linear Models
 of Jupiter's Magnetic Field Pioneers 10 and 11

R. Steven Turley

Brighan Young üniversity
June 13,1973

ASTRACT

iwo modeis have been usec to fit Pionear io and $1 i$ magnetic field data from jupiter. The first model consists of two offset dipoles with an exterior current ring or disc. The second model is based on a truncated spherical harmonic axpansion of the magnetic scalar potential within the region of inFerest. Data used in the fits was obtainec between 1.8 and 7.0%, 32° and -50° latitude, and 0° and 360° iongituje. Data for Pioneer 10 and 11 were run separately and togetner. In zerms of an cfiset dipole and ring, the fieid is best described as a dipoie with moment 4.1 Gauss-Ry tilted 9.5° with respect to the spin axis and offse: about $.14 R_{j}$ from the planet's center. The exterior current disc has an axis roughly coinciding with that of the main dipole and an inner radius of less than $9 \mathrm{R}_{\mathrm{j}}$.

ITMODUCTICG

We nave fitted two models to Jupiter's manetic field based on Pioneer 10 and 11 data between 1.8 and $7.0 \mathrm{Rg}_{\mathrm{I}}$. The first model is that of two offset, tilted dipoles, with an exterior arrent ring. Tine second model is a truncated spherical harmonic expansion of the magnetic scalar potential. Data for Fioneer io and 11 rave been ift soth separateiy and tegetner in the cases of totn models.

Tine first model was chosen because of how easy it is to visualize physicaily. Owens Valley Radio Astronomy data (Eerge and Gulkis, i976) and measurements by others inciuding Branson (1968), Warwick (1904) and Conway and Stannard (1972, 1976) suggest that the interior field sources are a main dipois, tilted about 10° with respect to the spin axis, and a possible anamoly at longitude 200°.

The ring current is an attempt to model the current disc which extends from abcut 10 to 80 Rg and its contribution to the magnetic field near the planet. It is acmitedly not as good a model as, say, a current disc would be, but the contribution to the field here is so small that the ring model does a sufficiently good job.

There is justification for including all three components in the physical model. The first justification is the evidence from other sources that there are at least thres contributions to the field in this region. The second justification is that there are obyious anamolies in the fit if any of these contributions are left out. Thirdly, addition of any of these three contrioutions to a model consisting of just the other two significantly improves the goodness of the fit.

The second rodel fiたこed to the field dãz is a zruncated sphericai narmanic expension of the scalar notential from with the rachetio field s octained. This modei has the disadvantase of being a litio rercer $=$
visualize orysically. its advantaces are that it is a more çenerai eporoacn, and that it is a inear formula, wich makes finding a ieast souares fit corisiderably easier. The details of this approach are explained in more detail in a later section.

In the cases of both models, we were abie to obtain fits to the date with from . 3° to $l_{\text {ce }}$ deviation from the experimental fields. fe found the fitted vaiues to be quite sensitive to the secment of the trajectories used in the fit and to the weighting factors which we used. we delieve the particuiar weighting function used for data reported in this paper to be tre most reliable one. Interpretation of the differences between the various its will be given in a later section.

The experimental magnetic field data was gatherod by a vector neli.:magnetometer aboard the Pioneer 10 and 11 spacecraft. A detailed discussior of the instrument and its associated errors can be found in Smith (1975). in this section we briefly cescribe the experimental uncertaincy in the measurements ojtained and its relationsnip to the value of $=^{=}$that is to be expected for eacn measurement range.

The magnetometer nas an absolute uncertainty of less than 5% based on inflignt calibration data. For the large fields measured in the experiment however, resolutions of at least ± 1 y were possible (. 0 \% uncertainty). In this case the primary source of error is due to digitization. The following table was taken from information supplied by Smith (1974) and gives an indication of the variance expected in each of the magnetometer's field ranges due to cuantization of the data.

Maximum Field	Digital Step Size r/bit	$c^{2}(\cdots)$
4%	0.015	1.88×10^{-5}
13%	0.052	2.25×10^{-6}
43%	0.167	2.32×10^{-3}
146%	0.509	. 027
632	2.46	. 504
3880 \%	15.1	19.0
0.227 G	88.2	642
1.376	531.0	235000

τ^{2} is found as follows. Let \equiv be the digital step size and B_{0} be the digital value of the field, B. If B is between $B_{0}-\varepsilon / 2$ and $B_{0}+\varepsilon / 2$, the reported value will be 3 . Assume equal probability of B being enywnere in the interval. Let x be the difference between \equiv and E_{0}.

$$
c^{2}=1 / \equiv \int_{-\varepsilon / 2}^{p / 2} x^{2} d x=e^{2} / 12
$$

Rote that on the average, a is of the orcer of .2\% of the mic-aine vaiue for each range. This should represent the lowest possibie value of o obtainable in any model fitting to the data.

MNTIS

This section describes the units used in the calcuiations and results. First the position coordinates then the magnetic field variables will be discussed.

Throughout this paper all position variables will be expressed in modified System III (epoch 1957.0) coordinates, unless noted otnerwise. Sohericai coordinates are expressed in terms oi radius, latituae, and longitude. The radius is in meters or in R_{t} (Jovian Racii). Throughout tinis paper the value of $1 R_{J}=7.08 \times 10^{7}$ meters has been assumed. The latituce measurements are identicai to System III latitudes. The longitudes are measured from the same exis as in Svstem III, but in a counter-clockwise direction as viewed from the North Pole rather than in a clockwise direction. The modified System III longitudes (e^{-}) used here are related to System III iongitudes (III $^{\text {I }}$) by the relation

$$
\hat{\theta}^{\prime}=360^{\circ}-\hat{\theta} \text { III }
$$

Dipole offsets are expressed in cartesian coordinates, using tine spin axis as the z axis and the line of 0° latitude and longitude as the x axis.

The magnetic field variables are needed to Express the dipole strencth, the field strengtin, and the arrent in the ring of Model III. The dipole strength. is expressed in Gauss-R J^{3}, with R_{j} defined as before

$$
\begin{aligned}
1 \text { Gauss-R } y^{2} & =3.55 \times 10^{23} \text { Gauss }-\mathrm{m}^{2} \\
& =3.55 \times 10^{19} \text { Weber }-\mathrm{m}
\end{aligned}
$$

Magnetic field data is in y, where $1 y=10^{-}$E Gauss. program calculations and outputs are in Gauss (1 Gauss $=10^{-1}$ neter/mi). The currents are measured in anps.

It will be noted that ar cnoice oi a fixed jianEtery coordinate system

dupiter-Sun line for the external sources was chosen. ine auter edges of ine external sources is prodably very strongly influenced by the solar winc. However, the cominant force shaping the near exterior field sources (whicn were of primary interest in this study) should be the strong planetary field. A partial justification of this assumption is in the improved fits we were able to obtain compared to those reported by Smith et al, (1976).

NOTH-LTEEAP MODEL CALCULATIG:S

In this section the formulas used to calculate the fields dus to an offset dipole, a current ring, and a current disc vere explained. The formuia for an offset dipole is well known and hence not derived. The formula for a current loop and a cirrent disc are derived in detail.

Didoie FiEld

The equation for the magnetic field due so a dipole centered at the origin is

$$
\overrightarrow{\mathrm{E}}=\mu_{0} / 4 \pi\left[\overrightarrow{\mathrm{~A}} /|\overrightarrow{\mathrm{r}}|^{3}-((\overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{r}}) /|\overrightarrow{\mathrm{r}}|^{\mathrm{s}}\right]
$$

where

$$
\begin{aligned}
& H_{0}=4 \pi \times 10^{-3} \text { (Gaussian units) } \\
& \vec{M} \text { is in Gauss- }-R_{j}^{3} \\
& \vec{r} \text { is in } R_{J}
\end{aligned}
$$

letting C be the offset of the dipole and $\overrightarrow{R C}=\vec{R}-\vec{C}$, the above equation can be expressed for an offset dipole as

$$
\begin{aligned}
& B_{z}=U_{0} / 4 \pi\left[M_{z} /\left\{\left.\overline{R C}\right|^{3}-\left((\bar{M} \cdot \overline{R C}) R C_{z}\right) /\{\overline{R C} \mid E]\right.\right.
\end{aligned}
$$

it is assume e that \bar{r}_{2} mas no \hat{i} component, since sumatra would seer io require that \bar{E} not depend on the : coordinate of x.

$$
d \hat{\hat{\imath}}=-\hat{c} \sin \hat{c} d \leq \hat{i}+a \cos =d \approx \hat{j}
$$

$$
d \vec{i} \times\left(\vec{r}_{2}-\vec{r}_{1}\right)=d \hat{a} \sin ^{2} \hat{k}+z \sin \hat{j}+\left(a \cos ^{2}=-r \cos a\right) \hat{k}+z \cos : \hat{i} \vdots
$$

$$
=\operatorname{ad} s\{z \cos \hat{\forall} \hat{i}+z \sin \hat{j}+(\hat{a}-r \cos \Rightarrow) \hat{k}\}
$$

$$
\vec{B}=\frac{\nu_{0}^{i a}}{4-} \int_{0}^{\frac{2-z}{z} \cos \hat{i}+z \sin =\hat{j}+(a-r \cos :) \hat{k}}\left(a^{2}+r^{2}+z^{2}-2 a r \cos \dot{y}\right)^{j / 2} d e
$$

Since the denominator is even and the $d B_{y}$ is odd, but $d B_{x}$ and $d B_{z}$ are even, this can be written as

$$
\vec{E}=\frac{u_{0} I a}{2 \pi} \int_{0}^{\pi} \frac{z \cos s \hat{i}+(\bar{c}-r \cos -\dot{k}}{\left(a^{2}+r^{2}+z^{2}-2 a r \cos \pi\right)^{3 / 2}} d=
$$

Let $==-/ 2$.

$$
\text { where } \quad i=\frac{i=r}{(a-r)^{2}+z}
$$

$$
G=\frac{G_{0}^{\vdots}}{-\bar{a}-r-z}
$$

$$
\begin{aligned}
& \text { d } \\
& \cos 2 \hat{z}=1-2 \sin ^{2} \hat{\theta} \\
& \vec{B}=\frac{u_{0}^{0} a}{\pi} \int_{0}^{-12} \frac{\left(z-2 z \sin ^{2} \theta\right) \hat{i}+\left(a-r+2 r \sin ^{2} \theta\right) \hat{k}}{\left(a^{2}+r^{2}+z^{2}-2 a r-4 a r \sin ^{2} \theta\right)^{z / 2}} d \approx
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}_{2}=\hat{r}+2 \hat{i} \quad \vec{r}_{1}=a \cos \hat{i} \hat{i}+a \sin \hat{j} \\
& \vec{r}_{2}-\vec{r}_{1}=(r-a \cos z) \hat{i}-a \sin x \hat{j}+2 \hat{k} \\
& \mid \vec{r}_{z}-\vec{r}_{:} \sum^{\Sigma}=\left(r^{2}-2 \operatorname{arcos}:+e^{2}+z^{2}\right)^{3 / 2} \\
& =\left(a^{2}+r^{2}+z^{2}-2 a r \cos : y^{2 / 2}\right.
\end{aligned}
$$

inis involves integrals of cim ioms

$\vec{B}=z G(A(z)-2 B(z)) \hat{i}+[G(a-r) A(i)+2 r G B(\hat{\imath})] \hat{k}$
To evaiuate $A(i)$ and $B(i)$ let $t=\sin \hat{c o s} \hat{z}=\sqrt{1-t^{2}}$

$$
\sin ^{2} ;=\frac{\frac{1}{l^{2}}+1}{1\left(\frac{1}{2^{2}}+1\right)} \quad \Rightarrow=\frac{\pi}{2} \quad k^{2}=\frac{1}{\frac{1}{\ell^{2}}+1}=\frac{l^{2}}{i^{2}+1}
$$

$$
A(i)=\frac{1}{2^{3}} E\left(\frac{\pi}{2} \frac{2}{i^{2}+1}\right\}\left[\left(\frac{1}{i^{2}}\right)\left(\frac{1}{i^{2}} \div 1\right)^{2 / 2}\right]=\frac{\left[E\left(i^{2} / i^{2}+1\right)\right]}{\sqrt{i^{2}+1}}
$$

$$
B(i)=\frac{1}{\ell^{3}} \int_{i}^{1} \frac{t^{2} d t}{\left(t^{2}+i^{-2}\right)\left[\left(t^{2}+i^{-2}\right)\left(1-t^{2}\right)\right]^{1 / 2}}=\frac{1}{i^{3}} \int_{0}^{1} \frac{d t}{\left[\left(t^{2} i^{-2}\right)\left(1-t^{2}\right)\right] 1 / 2}=\frac{A(i)}{i^{2}}
$$

With a, b, and x as before, this also corresponds to 17.4.5i in Abramowitz and Stegen (p. 596).

$$
\begin{aligned}
B(i)=\frac{1}{i^{3}} F & \left(\frac{\pi}{2} \frac{i^{2}}{i^{2}+1}\right)\left[\frac{1}{i^{2}}+1\right]^{-2 / 2}-\frac{A(i)}{i^{2}} \\
& =\frac{1}{i^{2} \sqrt{i^{2}+1}}\left[\left[K\left(\frac{i^{2}}{i^{2}+1}\right)\right]-\left[E\left(\frac{i^{2}}{i^{2}+1}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& d t=c o s=d=\quad d E=\frac{d t}{\sqrt{1-t^{2}}} \\
& A(\hat{i})=\int_{0}^{1} \frac{d t}{\left(1-t^{2}\right)^{1 / 2}\left(1+l^{2} t^{2}\right)^{\equiv / 2}} \quad B(i)=t^{2} \frac{t^{2} d t}{\left(1-t^{2}\right)^{1 / 2}\left(1+i^{2} t^{2}\right) \equiv / 2} \\
& A(i)=\frac{1}{i^{2}} \int_{0}^{2} \frac{d t}{\left(t^{2}+i^{-2}\right)\left[\left(t^{2}+i^{-2}\right)\left(1-t^{2}\right)\right]^{2 / 2}} \\
& \text { if } a=\frac{1}{l} \quad b=1 \quad x=? \quad \text { This corresponds to 17.4.51 in Abramowitz } \\
& \text { and Stegen (p. 596). }
\end{aligned}
$$

Wrere $E(i)=\int_{i}^{2}\left(1-t^{2}\right)^{-1 i z}\left(1-i t^{2}\right)^{i} d t$
is the complete elliptic integral of the second kind and

$$
K(\varepsilon)=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-\ell t^{2}\right)\right]^{-1 / 2} d t
$$

is the comolete eliiptic integral of the first kind.

The Current Cisc Field

Tine equation for the field due to a disc are found from those of the ring in a simple manner. The equation oi the ring current can be written as

$$
\begin{aligned}
& \vec{B}=I \vec{A}(r, \epsilon, p) \\
& \text { let } d I=\frac{J_{0}^{d r}}{r^{!. B}} \\
& \vec{B}=J_{0} \int_{r_{0}}^{r_{i}} \frac{\vec{A}(r, \theta, \vec{i}) d r}{r^{i} \cdot a}
\end{aligned}
$$

where r is the radius of the ring
r_{0} is the inner radius of the disc
r_{f} is the outer radius of the disc

The above integration was performed numerically, using the formula for \vec{A} derived frore the formula for \vec{B} derived in the previous section.

SPHERICAL MAMOHICS CALOULATICHS

If there are negligible currents in a region of interest, and if the electric field is slowly varying, $\nabla \times \vec{B} \sim 0$, and \vec{B} can be written as the gradient of a scalar, Let U represent the magnetic scalar potential defined by $\bar{E}=-\overline{\mathrm{V}}$. Since $\nabla \cdot \vec{B}=0$ requires that $\nabla^{2} J=0$, U must therefore satisfy Laplace's equation.

A solution to Laplace's equation in spherical polar coordinates is the familiar spnerical narmonic expansion:

$$
\begin{align*}
U= & \sum_{i=1 m=0}^{\infty} \sum_{i=0}^{i}\left[r^{-\hat{i}-1}\left(g_{i}^{m} \cos m \neq+n_{i}^{m} \sin m \neq\right)+r^{\ell}\left(g_{i}^{m} \cos m e+\bar{h}_{i}^{m} \sin m ;\right)\right] \\
& P_{i}^{m}(\cos \hat{i}) . \tag{1}
\end{align*}
$$

Here $P_{i}^{m}(\cos \hat{\theta})$ are the Schmidt normalized Associated Legendre Polynomiais defined by

$$
P_{\ell}^{m}(x)=\left[\frac{2(\ell-m)!}{(\hat{\ell}+m)!}\right]^{1 / 2}\left(1-x^{2}\right)^{m / 2} \quad \frac{d^{m}}{d x^{m}}\left[P_{\ell}(x)\right]
$$

Consider a region bounded by two concentric spheres. The contribution to the potential inside this region can be due to sources interior so the smaller sphere (interior scurces), or exterior to the larger sphere (exterior sources). The coefficients \bar{g}_{e}^{-m} and \bar{h}_{e}^{m} in the expansion of the potential due to interior scurces must be zero if the notential is to be finite as r aporoaches infinity. Likewise, the coefficients \underline{g}_{e}^{m} and n_{e}^{m} must be zero $i f$ the potential due to exterior sources is to remain finite at $r=0$. For this reason, ς_{e}^{m} and n_{e}^{m} will be refered to as interior coefficients and \bar{q}_{e}^{m} and $\bar{h}_{e}^{-m} w i l l$ be refered to as exterior coefficients. The terms with $i=1$ are cormonly callec cipoie tems, those with $2=2$ are called quadrupoie tems, and those with i=3 are reiered to as octupole terms.

Sonerical Hamonics

Many of the coefficients in spherical harmonic expansion can be reiated to parameters of our other model. In the following sections we will show how the coefficients are related to the parameters of a single offset dipole and of a current disc.

Offset Dipoie

The potential due to an offet dipoie of moment \vec{m}, at a disolacement \vec{r} from the dipole is: $U=\frac{\vec{m} \cdot \vec{r}}{4 \pi r^{\dot{i}}}$. let $\bar{M}=\frac{\vec{m}}{4-}$ (\bar{M} will be in Gauss-R, ${ }^{j}$). $U=\frac{\bar{M} \cdot \vec{r}}{r^{3}}$. Consider a coordinate system with an origin 0 which is different from the center of the dipole, 0^{-}. Let \vec{r}_{0} be the vector from 0^{-}to the point P where the potential is to be computed.

$$
\vec{r}_{0}=\vec{r}-\vec{r}
$$

Let $\quad \vec{r}^{-}=\hat{1}+5 \hat{j}+\bar{j}$

$$
\begin{aligned}
& \vec{M}=M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k} \\
& \vec{r}=r \sin \theta \cos \hat{i}+r \sin \hat{i} \sin \hat{\theta}+r \cos \theta \hat{k}
\end{aligned}
$$

Therefore,

The linear independence of the tems in the sonerical hamonic expansion require that coefficients of equal powers of r in both expressions of U (Equations 1 and 2) be equal. To enable this comparison, expand the denoriinator of equation 2 by the binomial theorem.

After a little recuction, $r_{0}{ }^{-\Xi}$ can be written as

$$
\begin{aligned}
& \text { letting } b=\eta^{2}+\zeta^{2}+\xi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& r_{0}^{-3}=\left[r^{2}+a r+b\right]^{-3 / 2}=\left[r^{2}+c\right]^{-3 / 2} \text { where } c=a r+b \\
& {\left[r^{2}+c\right]^{-3 / 2}=\frac{1}{r^{3}}-\frac{3 / 2 c}{r^{5}}+\frac{15 / 8 c^{2}}{r^{-}} \div \cdots \cdot} \\
& =\frac{1}{r^{3}}-\frac{3 / 2 a}{r^{4}}+\frac{15 / 8 a^{2}-3 / 2 b}{r^{5}}+\cdots .
\end{aligned}
$$

Since we are only interested in dipole and quadrupole terms in the expansion, only tems up to order $\frac{1}{1} r^{4}$ will be retained. Hence,

$$
\begin{aligned}
& U=\left\{\frac{1}{r^{3}}+\frac{3}{r^{7}}(\xi \cos s+n \sin \hat{c} \cos \varepsilon+5 \sin \equiv \sin \varphi)\right\} ; M_{x}(r \sin \hat{\cos } \cos -n)+ \\
& \left.M_{y}(r \sin \sin 0-5)+M_{z}(r \cos --5)\right)
\end{aligned}
$$

Ecuating $\frac{i}{r^{4}}$ terms gives

Therefore,

$$
\begin{aligned}
& M_{x}=g_{1}^{1} \\
& M_{y}=n^{1} \\
& M_{z}=g_{i}^{0}
\end{aligned}
$$

The terms in $\frac{1}{r}$ give

$$
\begin{align*}
& i^{\prime \frac{\overline{3}}{2} g_{2}^{2} \sin ^{2}-\cos 20 \div \frac{r^{\prime}}{\overline{3}} n_{2}-\sin ^{2} \equiv \sin 26} \tag{3}
\end{align*}
$$

This equality must hold for all θ and $\hat{\psi}$; therefore it must be valid when $\theta=0$. In this case

$$
g_{z}^{2}=-r M_{x}-5 M_{y}+2 \xi M_{z}
$$

or, in tems of $g_{2}^{0}, q_{:}^{i}$, and n_{2}^{2}

$$
g_{2}^{j}=-r g_{i}^{2}-5 h_{2}^{2}+25 g_{i}^{2} .
$$

The ccefficients of $\sin E \operatorname{cosecos}$ and of sinecosesine must aiso be equal, if the above expression is to be valid for alle and \ddagger. This yieids,

$$
\begin{aligned}
& g_{2}^{2}=\sqrt{3} \xi M_{x}+y^{3} n M_{z} \\
& \text { or } \\
& g_{2}^{2}=\sqrt{3}\left(\xi g_{2}^{1}+\pi g_{1}^{0}\right) \\
& \text { and } \\
& h_{2}^{2}=\sqrt{3} \xi M_{y}+\sqrt{3} \xi M_{z} \\
& \\
& =r^{\prime} \overline{3}\left(\xi h_{1}^{1}+5 g_{1}^{0}\right)
\end{aligned}
$$

Substituting these expressions intc equation (3) vielos

Solving for g_{2}^{2} and h_{2}^{2} yields

$$
\begin{aligned}
& \underline{q}_{2}^{2}=\sqrt{3}\left(r_{0}^{M} x^{-5 M_{y}}\right) \\
& h_{2}^{2}=\sqrt{3}\left(r, M_{y}+z M_{x}\right) \\
& \text { or } \quad g_{2}^{2}=r^{\prime}\left(\operatorname{nin}_{1}^{2}-5 n_{i}^{2}\right) \\
& n_{z}^{2}=v^{\prime} \overline{3}\left(r, r_{i}^{2}+z 0_{i}^{1}\right)
\end{aligned}
$$

Following the derivation oy Scmidt (1934) we will iind the vaiues of \bar{W} and \bar{r}_{0} which would best represent the spnerical hamonics expansion of a dipole field. Note that if the dipole were in a coordinate system with an origin at $0^{-}, \xi=\eta=\zeta=0$, and all g_{i}^{m} and h_{i}^{m} with $i>1$ would be zero. To best approximate an offset dipole field, we will require that in the coordinate system centered at $0^{-} \mid\left(U_{2}\right)^{2}$ be a minimum, where

$$
\begin{aligned}
& U_{2}=\frac{2}{m^{0}} 0\left(g_{2}^{m} \cos m \theta+n_{2}^{m} \sin m \phi\right) P_{2}^{m}(\cos \equiv) \\
& \|\left(U_{2}\right)^{2}=\frac{1}{5} \sum_{m=0}^{2}\left(g_{2}^{m}\right)+\left(h_{2}^{m}\right)
\end{aligned}
$$

minimizing $\left|\left(U_{2}\right)^{2}\right|$ requires that $\nabla\left|\left(U_{2}\right)^{2}\right|=0$.
In the new coordinate system

$$
\begin{aligned}
& g_{1}^{0-}=g_{1}^{0} \quad g_{1}^{1-}=g_{1}^{1} \quad h_{1}^{1-}=h_{1}^{1} \\
& g_{2}^{0-}=g_{2}^{1}-\left(2 \xi g_{1}^{0}-n g_{1}^{1}-\zeta h_{1}^{1}\right) \\
& g_{2}^{1-}=g_{2}^{1}-\sqrt{3}\left(\xi g_{1}^{1}+n g_{1}^{0}\right) \\
& h_{2}^{1-}=h_{2}^{1}-\sqrt{3}\left(5 n_{1}^{1}+59_{1}^{0}\right) \\
& g_{2}^{2-}=g_{2}^{2}-\sqrt{3}\left(n g_{1}^{2}-\zeta h_{1}^{1}\right) \\
& h_{2}^{2-}=h_{2}^{2}-\sqrt{3}\left(\eta \dot{n}_{1}^{1}+5 g_{1}^{1}\right) \\
& 5\left|\left(U_{2}\right)^{2}\right|=5!\left(U_{2}\right)^{2!}-25\left(2 g_{1}^{0} g_{2}^{0}+\sqrt{3} g_{1}^{1} g_{2}^{1}+\sqrt{3} n_{1}^{2} h_{2}^{2}\right) \\
& -2 n^{\left(-g_{1}^{1} g_{2}^{0}+\sqrt{3} g_{1}^{0} g_{2}^{1}+\sqrt{3} g_{1}^{1} g_{2}^{2}+\sqrt{3} h_{1}^{1} h_{2}^{2}\right)-25\left(-h_{1}^{2} g_{2}^{2}+\sqrt{3} g_{1}^{0} h_{2}^{2}-\sqrt{3} n_{i}^{2} g_{2}^{2}+\sqrt{3} g_{2}^{1} n_{2}^{1}\right) ; ~} \\
& +\left(25 g_{1}^{0}-n g_{1}^{1}-5 h_{1}^{2}\right) 2+3\left[\left(5 g_{1}^{1}+n g_{2}^{2}\right)^{2}+\left(5 h_{1}^{1}+5 g_{1}^{2}\right)^{2}+\left(n g_{1}^{1}-5 n_{1}^{1}\right)^{2}\right. \\
& \left.+\left(n h^{2}+59^{2}\right)^{2}\right] . \\
& \text { let } A=2 g_{2}^{0} g_{2}^{j}+\sqrt{3}\left(q_{2}^{2} a_{2}+n_{1}^{2} n_{2}^{\prime}\right. \\
& B=-g_{1}^{0} g_{2}^{2}+r^{\prime}\left(g_{1}^{2} g_{2}+g_{1}^{2} g_{2}^{2}+n_{1}^{2} n_{2}=\right. \\
& c=-h_{i}^{2} g_{2}^{2}+r^{\prime} \overline{3}\left(g_{1}^{0} h_{2}^{1}-n_{i}^{2} g_{2}^{2}+q_{i}^{2} h_{2}^{2}\right)
\end{aligned}
$$

Simplifying the aoove expression ieads so

$$
5\left(\left(U_{2}\right)^{2}=5\left(U_{2}\right)^{2}-25 A-2 n B-25 C-\left(59^{2}+n 0^{1}+5 n^{1}\right)^{2}+3 n^{2}\left(5^{2}-n_{1}^{2}+5^{2}\right)\right.
$$

Setting the gradient of the above expression to zero requires that

$$
\begin{align*}
& A=3 M^{2} \xi+g_{1}^{0}\left(\xi g_{1}^{0}+n g_{1}^{1}+\zeta h_{i}^{1}\right) \tag{4}\\
& E=3 M^{2} n+g_{1}^{2}\left(\xi g_{1}^{0}+n g_{1}^{1}+5 h_{1}^{2}\right) \tag{5}\\
& C=3 M^{2} \zeta+h_{1}^{1}\left(\xi q_{1}^{0}+n g_{1}^{1}+5 h_{1}^{2}\right) . \tag{6}
\end{align*}
$$

Since
then

$$
\xi Q_{1}^{0}+\pi G_{1}^{1}+5 h_{1}^{1}=\frac{g_{2}^{9} A+g_{1}^{1} E+h_{1}^{1} C}{4 M_{1}^{2}}=0 .
$$

With these definitions, ξ, π, and ζ can be solved from equations (4), (5), and (6).

$$
\xi=\frac{A-g_{1}^{2} D}{3 M^{2}} \quad \eta=\frac{B-Q_{1}^{1} D}{3 M^{2}} \quad \zeta=\frac{C-h_{1}^{1} D}{3 M^{2}}
$$

Disc
The spnerical harmonic expansion of a disc can be computed from the expression for the potential on the axis of a current ring. Let z te the distance along the ring axis, and a be the radius of the rinc. It is easy to show that

$$
U=I / 2\left\{1-\frac{z}{\sqrt{a^{2}+z^{2}}}\right\}
$$

Let I have a radial dependence, $d i=\frac{J_{0} a_{0}^{a} d a}{a^{2}}$

$$
d U=\frac{U_{0}^{a} a_{0}^{a} d z}{2 a^{z}}\left\{i-\frac{z}{\sqrt{a^{2}+z^{2}}}:\right.
$$

The bracketed tems can es expanded to give

$$
=\frac{a}{2} j_{0} a_{0}-\left(\frac{1-2}{2}\right) j_{0}^{2}+\frac{3-a}{4} Z u_{0} a_{0}^{-2}
$$

If the axis of the disc is parallei to a spnerical-polar axis, the spherical harmonic expansion becomes simply

$$
\begin{aligned}
& U=\sum_{i=1}^{\infty} r^{\dot{L}} A_{2} P_{i}(\cos \theta) \\
& \text { et } \theta=0 \\
& U=\sum_{i=1}^{\infty} i^{i} A_{\hat{i}}
\end{aligned}
$$

The coefficients of Z^{2} must be equal, therefore

$$
\begin{aligned}
& A_{0}=i_{0} a_{0} \\
& A_{1}=-\left(\frac{1+a}{2}\right) J_{0} \\
& A_{2}=0 \\
& A_{3}=\left(\frac{3+a}{4}\right) J_{0} a_{0}^{-2}
\end{aligned}
$$

To transform the coordinates into a system not with the ring, the Acdition Theorem is enployed. Using Schmidt-nomalized Legerdre Polynomials gives the simple form

$$
P_{\lambda}\left(\cos \epsilon^{-}\right)=\sum_{m=0}^{i} p_{\hat{i}}^{m}(\cos \epsilon) P_{\hat{2}}^{\pi_{1}} \cos (\eta) \cos m(0-\bar{\xi})
$$

where \exists^{\prime} is the angle made with the ring axis, and n and $;$ are the angular coordinates of the ring axis in the new coordinate systen. Tins

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \sum_{m=0}^{i} r^{i} A_{i} F_{i}^{m}(\cos \theta) P_{i}^{m}(\cos n)[\cos m \theta \cos \pi j-\sin m=\sin m j
\end{aligned}
$$

and $A_{i} z_{i}^{m}(\cos n) \cos m=\bar{\xi}_{i}^{-m}$

$$
A_{i} P_{i}^{\mu^{\prime \prime}}(\cos n) \sin m \xi=\bar{n}_{i}^{m}
$$

Comparing coefficients we obtain

$$
\begin{aligned}
& S_{1}^{P}=-\left(\frac{1+\alpha}{2}\right) J_{0} \cos n \\
& g_{1}^{1}=-\left(\frac{1+\alpha}{2}\right) u_{0} \sin n \cos 5 \\
& n_{1}^{1}=-\left(\frac{1+a}{2}\right) נ_{0} \sin n \sin \xi \\
& g_{3}^{0}=\left(\frac{3+\alpha}{4}\right) J_{0} a_{0}^{-2}\left(\frac{1}{2}\left(5 \cos ^{3} n-3 \cos n\right)\right)
\end{aligned}
$$

Solving for J_{0}, a_{c}, π, and ξ yields

$$
\begin{aligned}
& \xi=\tan ^{-1} \frac{\bar{n}}{\overline{1}} \overline{1} \\
& n=\tan ^{-1} \quad\left[\frac{\sqrt{n_{1}^{2}+\bar{g}_{1}^{2}}}{\overline{9}_{1}^{0}}\right] \\
& J_{0}=\frac{2}{1+\alpha} \sqrt{\overline{g_{i}^{2}}+\bar{G}_{i}^{1}+\bar{h}_{\bar{i}}^{2}} \\
& a_{0}=\left[\vdots \frac{(3+\alpha) J_{0}(5 \cos n-5 \cos n)}{89_{3}^{2}} i\right]^{1 / 2} \\
& a_{0} \text { will be in } R_{j} \\
& J_{0} \text { will be in Gauss }
\end{aligned}
$$

Conclusion

In conclusion, in a current free region with stationary fields, the potential can de expressed as a linear combination of sorericai ramenic functions. Vising the above formulas the coefficients of ese functions can be related to the mode i parameters of a single fest diazole and of a current disc.

DATA FITIING

Both the Non-iinear and Spherical Harmonic Models were fit to the data by the means of a least squares technique. This consisted of minimizing x^{2} in both cases. Define x^{2} as

$$
x^{2}=\sum_{j=1 i=1}^{3} \sum_{i}^{N} \frac{\left(B_{j i}-B_{j i}\right)^{2}}{\sigma_{i}^{2}}
$$

Where z_{i} is the uncertainty in the $i \frac{\text { th }}{}$ set of measurements, $E_{1 i}, B_{2 i}$, $E_{3 i}$ are the respective x, y, and z components of the model B-field, and $\bar{B}_{1 i}, \bar{B}_{2 i}, \bar{B}_{3 i}$ are the respective x, y, and z components of the experimental B-field.

The expected value of χ^{2} for N data points and with n parameters in the model is $3 N-n$. In our analyses we accepted this value as being essentially correct, and adjusted σ_{i} so that a correct value of x^{2} was obtained.

Uncertainty- We assumed the variance in each measurement was equal to the sum of a known variance due to digitizing error (see Instrumentation Uncertainties) and a second source of error due to uncertainty in the spacecraft's position, instrument noise, time variations in the field, and probably otner sources also. Although this second contribution to the error could not be detemined experimentally, we expected it to be roughly proportional to the magnitude of \bar{B} at each point. Thus

$$
\sigma_{i}^{2}=\sigma_{d}^{2} \div a B_{i}^{2}
$$

where σ_{d} is the standard deviation in measurements due to digitizing error. The paramezer a was adjusted until an appropriate value for \because^{2} was obtained.

Rinimization Routines

Two different types of least-sc̣uares fitting were used in the tiwo different modeis. The first method is exact, but only works if \bar{B} is a linear combination of the coefficients which are being fitted. The second method is an iterative method which we used to fit the dual dipole model, where the field was not a linear combination of the parameters we were fitting.

Linear- If $B_{j i}$ is a linear combination of the parameters to be fit, minimizing x^{2} is fairly straightforward. (See Mathews \& Waiker, pp. 391-2).

Let

$$
E_{j i}=\sum_{m=1}^{n} C_{j i m} A_{m}
$$

where \tilde{c}_{m} are the parameters to be fit. Define a data vector, \vec{x}, and a measurement matrix M as follows

$$
\begin{aligned}
& x_{m}=\sum_{j=1}^{3} \sum_{i=1}^{N} \frac{C_{j i m}}{C_{i}^{2}} B_{j i}^{-} \\
& M_{m i}=M_{m m}=\sum_{j=1}^{3} \sum_{i=1}^{N} \frac{C_{i m_{n}} C_{i i \lambda}}{\sigma_{i}^{2}}
\end{aligned}
$$

The vector of the parameters, \vec{A} is given by

$$
\bar{A}=M^{-1} \bar{X}
$$

The value σ_{m}^{2}, the variance in the m th parameter is given by x_{m}^{-2}.
Quadratic- If $E_{j i}$ is not a linear combination of the zarameters, \bar{a}_{m}, a more sophisticated approach must be used to find the mininum of x^{2}. r ' used a routine which provides second order convergence which was developed by Lavidon (1966) and modified by UEcker (? 976).

Goodness of Fit- ine gocdress of each fit was founc by semoutire the percent pMS (root mean souare) jeviction between the rode i ard exaerimerad Gields.

RMS- In terms of x^{2}, the RMS is definec as PMS $=\left[\frac{x^{2}}{3 \sum_{i=1}^{n} \sigma_{i}^{\frac{1}{2}}}\right]^{i /=}$

What we refer to as the \% RMS deviation, $\dot{0}$, is defined by

$$
\sigma=\frac{\sum_{i=1}^{3} \sum_{i=1}^{N}\left(B_{j i}-B_{j i}\right)^{2} / c_{i}^{2}}{\frac{3}{j=1} \sum_{i=1}^{N} B_{j i} / \sigma_{i}^{2}}
$$

It should be noted in conclusion that the interpretation of least squares curve fitting needs to be done very carefully. In the cases of both our models the fits we obtained are sensitive to which data points are included in the trajectory, and wich are not. In the case of Pioneer 10, for instance, the trajectory included a latitude rance of only $\pm 13^{\circ}$. In the higner order spherical harmonic fits, a very good fit was possible which included a large quadrupole and octupole tems. If the resultant fit is compared to the field along the Pioneer 11 trajectory, there is a good agreement with that part of the model winich is close to the Pioneer 10 trajectory, but a very poor fit in other regions.

The data used for these runs was 1 -minute averages from Pioneer 10 and 11. The Pioneer 10 data was obtained between 2.8 and 6.5 Ry . It included a latitude range of $=13^{\circ}$ and a longituce range of 33° to 206°. The Pioneer 11 data was obtained from $1.8 \mathrm{R}_{\mathrm{y}}=07.0 \mathrm{R}_{\mathrm{J}}, 32^{\circ}$ to -50° latitude and 0° to 360° longitude. Unfortunately farts of both trajeciories included data which appeared to have anomolies in it. Both of these anamolous segments occured during occultation by jupiter and resulted from an uncertainty in the spacecraft orientation. Unless noted otherwise, data was fitted with this occultation data removed.

RESULTS

The following results were obtained for the non-linear model:

Model:
Pioneer 10
Pioneer $11\left(R>2.8 R_{J}\right)$
MAIN DIPOLE
M (Gauss $\left.-R_{J}{ }^{3}\right)$
Lat.
Lon.
Offset $\left(R_{J}\right)$
C_{x}
C_{y}^{y}
C_{z}

$$
\begin{aligned}
3.705 & =.008 \\
80.71 & =.04 \\
120.3 & =.0 \\
-0.105 & =.002 \\
0.009 & =.002 \\
0.095 & =.003
\end{aligned}
$$

$$
3.902=.005
$$

$$
80.79=.07
$$

$$
145.6=.7
$$

$$
-.114=.002
$$

$$
-.004=.001
$$

$$
-.018=.001
$$

RING

Radius (R $)$	7.4	$=.04$	8.0
Current (x 10^{9} amps $)$.021	$=.001$.226
Lat.	81.0	$=.2$	68.
Lon.	217.	$=3$.	125.
			$=4$.

SECOND DIPOLE
Offset (R_{J})

\% RMS Deviation

$$
\begin{array}{rlrl}
.292 & =.006 & .306 & =.006 \\
65.6 & =.3 & 35.8 & =.6 \\
164.5 & =2.2 & 86 . & =1.4 \\
-.75 & \pm .02 & -.61 & =.03 \\
-.27 & =.00 & -.44 & =.02 \\
-.82 & =.02 & .25 & =.01
\end{array}
$$. 449

. 494

For comparison, Pioneer 10 data with just one dipoie and a ring, and with just one dipole are reported below.

「irlurn 1

Pioneer $10 x_{z}^{2}$, Dual Dipole with Ring

$$
x_{z i}^{2}=\frac{\left(B_{z i} i^{-\bar{B}} z i\right)^{2}}{\theta_{i}^{2}}
$$

Pioneer 10 Fits

Dipoie

M(Gauss $\left.-R_{j}{ }^{3}\right)$	4.25	$=.01$	3.936
Lat.	79.22	$=.04$	79.18
Lon.	140.13	$=.16$	134.0
Offset $\left(R_{j}\right)$	-.110	$=.09$	
C_{x}	-.002	-.133	$=.004$
C^{x}		.022	$=.003$
C_{z}^{y}			.006
			$.021=.003$

Ping

Radius (只)	8.2	$=.1$
Current (x $10 \equiv$ amps $)$.079	$=.00 \mathrm{E}$
Lat.	81.8	$=.4$
Lon.	172.3	$=2$.
Seviation	1.085	--

Figure 1 below shows the values of $x_{z i}$ as a function of the radius of Pioneer 10. The large values of χ^{2} near the end points indicate a systematic deficiency due to exclusion of the ring portion of the mode?, since the relative effect of the ring would be largest at larger r.

Figure 2 figure shows how this effect nas been eliminated in the dual dipole fit which includes the ring.

Soherical Harmonic Fit

Different numbers of interior and exterior Doles were tried using the spherical harmonic approach to find the pest description of the magnetic field. The results for separate runs of Pioneer 10 and 11 data are summerized in Table i.

Notice that the fits to Pioneer 10 data with more then two interior poles give values for $\overrightarrow{{\underset{F}{i}}_{i}^{m}}$ and $\overrightarrow{n_{i}}$ wnich are coviousiy inconsistsnt with the other fits as weli as with the nor-ifinear model. he telieve this is due se the linited latitude range in the fioneer 10 trajectory.

Table I

Table Ii shows now the values celculated in the sonerical narmonic expansions relate to the parameters in the other model.

The coefficients don't agree between the various fits in the table for a number of reasons.

1. We believe the higner order fits of Pioneer 10 data are not good because of the small latitude range in the cata. The best fits of Pioneer 10 data are mest likely the 2,1 and 2,2 fits.
2. Adding additional terms to a truncated series will affect the least squares fit of all of the terms in the series. We would expect the best values for g_{2}^{0} to be in the fits using three interior coefficients.
3. There may be some secular variations in Jupiter's magnetic fields which caused a difference between the Pioneer 10 and Fioneer 11 coefficients.

For the above three reasons we decided the best description of Jupiter's average field would be provided by a fit involving three interior and three exterior poies and using combined Pioneer 10 and Pioneer 11 data. We included the exterior octupole coefficients to lend the recessary significance to the exterior dipole coefficients. Because of the axial symetry of a disc field, we would expect the exterior quadrupole terms to be zerc. Hence, it is necessary to inciude the octupole terms to avoid gererating an asymetry in the series by the way we've truncated it. ine results of this fit are in the following tabie.

The computation of J_{0} assumes an of of 1.6 .

In/0ut: B=Both I = In $0=0$ ut
Oce: $: \mathrm{N}-\mathrm{No} \quad \mathrm{Y}=\mathrm{Yes} \mathrm{C}=\mathrm{C}$ lose data exluded
Table II

```
Interior Coefificients
        Gauss:
ga}=4.099=.00
g: = -.486 =.003
g0}=.034=.00
g}\mp@subsup{Q}{2}{1}=-.81=.0
ga}=.303=.00
g
g
g
g
h2}=.526=.00
n2 = -.084 =.007
h2}=-.404=.00
h1}=-.04=.0
n2= . 22 =.02
ha}=0.02=.0
```

Exserior Cosfificients
$\overline{0}=-i 21=5$
$-1=0=2$
$\bar{g}_{1}^{1}=\quad 9 \pm 2$
$\bar{g}_{2}^{0}=-1.1=.2$
$g_{2}^{2}=-.4=.2$
$\overline{\mathrm{a}}_{\mathrm{a}}^{2}=-.1=.2$
$g_{\underline{z}}^{0}=.13=.04$
$\bar{g}_{\substack{1 \\ \underset{a}{2}}}=-.35=.04$

$\bar{g}_{\bar{j}}^{\bar{\xi}}=-.05=.03$
$\hbar_{1}^{1}=-17 \pm 4$
$\hbar_{2}^{1}=2.1=.2$
$\hbar_{2}^{2}=.1=.2$
$\hbar_{i}^{i}=-.30=.07$
$\begin{gathered}\hbar^{2} \\ \vdots\end{gathered}=.27=.04$

Exferior Coefficient ()
$\mathrm{g}_{1}^{0}=-i 21=5$
$\bar{g}_{1}^{1}=\quad 9 \pm 2$
$\bar{g}_{2}^{0}=-1.1=.2$
$\underline{g}_{2}^{2}=-.4=.2$
$\underline{a}_{2}^{2}=-.1=.2$
$\bar{g}_{z}^{0}=.13=.04$
$\bar{g}_{3}^{1}=-.35=.04$
$\bar{g}_{3}^{2}=.12=.05$
$\overline{\mathrm{g}} \bar{z}_{\bar{z}}=-.05=.03$
$\hbar_{1}^{1}=-17 \pm 4$
$h_{2}^{1}=2.1=.2$
$\hbar_{2}^{2}=.1=.2$
$\hbar_{\vdots}^{1}=-.30=.07$
$\hbar^{2}=.27=.04$
$n_{3}^{3}=-.24=.03$

These correspond to an offset dipole of magnitude 4.16 Gauss-Ry with its axis at latitude $80.1^{\circ}=.90$, longitude $132.7^{\circ}=.4^{c}$. It corresponds to a ring with $J_{0}=93 \gamma$, with its axis at $80.7^{\circ}=2.3^{\circ}$ latitude, $118 \pm 10^{\circ}$ lonçitude. The percent RMS deviation was 1.1%. With $J_{0}=93 \gamma$, the arrent density would be . 06 amps/meter. Assuming the ring goes from $10 \mathrm{R}_{\mathrm{y}}$ to $80 \mathrm{R}_{\mathrm{j}}$ this would mean a total current of 7×10^{5} amps.

conclusions

The two different approaches show excellent agreement in the magnitude of the total vector dipole moment. The two values obtained with the nonlinear model were 3.94 and 4.166 Gauss $^{2} \mathrm{R}^{3}{ }^{3}$. The vaiue obtained in the spherical harmonic approach was 4.16 Gauss-R ${ }_{j}{ }^{\equiv}$. Tine dipole is tilted $9.3^{\circ}, 9.2^{\circ}$ and 9.7° from the spin axis in the three cases. The longitude of the dipole is $125.3^{\circ}, 145.5^{\circ}$, and 132.7=. The larger difference in the longitude values is due to the hign latizucs of the dipole axis, as well as the lack of high latituce data on eitner mission, especially Pioneer 10.

Tine placement of the second dipole or the exact nature of the external field sources is more uncertain. The disc current tends to roughly line up with the main dipole field. The fit given by the spherical narmenic analysis agrees fairly well with the fit obtained using just a single dipole and a ring with Pioneer 10 data. inis goes well with our intuitive feeling that the disc ought to line up fairly well with the main dipole field wich is containing the arrent.

The fact that we vere unable to get a consistent fit for the second dipole is probabiy an indication that the interior fieid is more compiex than was assumed in our simple dual-dipole approach. Further confimation of this is the fact that we were unable to find a good fit to the data if Pioneer 11 data with $R<2.8 \mathrm{Rg}$ was included in the runs. The iocation of the second divois may be further complicated by secular variations in the field sources within Jupiter. it shouid be noted in passing, however, that the iocation of the second dipoie in both fits is roughiy at the same longitude as the field anomolies reported by Eerge and Gulkis (1976), Conway and Stannard (1972,19? and cters.

An analysis of systematic errors in the fits of the sonerical narmonic anc dual dipole models reveal two interesting things about the rodel. The firs: conclusion is that the current disc probably starts within $9 R_{J}$ of jupiter. There are significant increases in the percent field deviation from the linear mocel between 6 and 7 Ry as would be expected in a truncated spherical harmonic expansion of the field. It would take many additional higher orjer terms to generate the larger increases in $\vec{\delta}$ one would expect near the edge of a current disc.

A second systematic anomoly in the data was noticed in both the dual dicole and spherical hemonic fits. There was a bad fit to the data at about $4.8 R_{y}$ that was particularly noticeable on both Pioneer 10 inbound and cutbound. The effect was also seen, though not cuite as pronounced, in the fioneer 11 data. Such a buige could be the result of some current flowing at about that radius since the initial assumptions in both the dual dipole and the spherical hamonic andiyses are thet there is no current within this region. If there is a current in this region, however, it would have to be a fairiy small current compared to that in the outer ring. The current would also nave to be such that the trajectory of both spacecrafts did not pass through it, since there is no evidence to support such a crossing in this region.

Sumen

The sest average description of jupiter's magnetic field is given by the data in iabie . Physically, the field corresponds roughly to a field due to a dipoie or moment $M=4.1$ Gauss-RJ ${ }^{3}$ tilted 9.5° with respect to the soin axis and at longitude 135°. The external field source is a current disc with an inner radius between 7 and 9 Rg and with an axis that rougily corresponds to the axis of the main dipole.

This type of analysis will pemit better resolution of the various fieid scurces as more field data is gathered during future jupiter missions.

REFERENCES

Berge, G.L. and Gulkis, S. "Earth-based Radio Observations of Jupiter Millimeter to Meter Wavelengths," Jupiter, T. Gehnels, ed., University of Arizona Press, Tucson, 1976.

Branson, N.J.B.A. "High Resolution Radio Observations of the olanet Jupiter," Mon. Nat. Astron. Soc., 139; 155-162, 1968.

Connely, R.G. and Stannard, D. "Non-dipole Tems in the Magnetic Fields of Jupiter and the Earth," Nature Phys. Sci., 239; 142-143, 1972.

Davidon, W.C. "Variable Metric Method for Minimization," Rep. 5590, revision 2, Argonne Nat. Lab., Lemont, Ill., 1966.

Decker, D., Brigham Young University, Personal Correspondence, 1976.

Mathews, J. and Walker, R.L. Mathematical Metnods of Physics, W.A. Benjamin, Inc., Menlo Park, Cal., 1970.

Schmidt, A. "Der magnetische Mittelpunkt der Ferde und seine Bedeutung," Gerlands Beitrage Zur Geophysik, 41, 346-358, 1934.

Smith, E.J., et al. "The planetary Magnetic Field and Magnetosphere of Jupiter: Pioneer 10," J. Geophys. Res., 79; 3501-3513, 1974.

Smith, E.J., et al. Measuring the Magnetic Fields of Jupiter and the Outer Solar System," JPL Technical Bulletin, Pasadena, Cal., 1975.

Warwick, J.'i. "Radio Emission from Uupiter," An. Rev. Astron. Astrophysics, 2;1-22, 1954.

Appendix B

Papers Published in the Proceedings of the Utan Academy of Sciences, Arts, and Letters

IIONEER 10 MIEASUREMENTS OF Juliter's macintetic fileld

II. I:. Jones, ${ }^{1}$ E. J. Smifli, ${ }^{2}$ L. Davis, Jr., ${ }^{3}$
I. S. Colburn, ${ }^{4}$ I. J. Coleman, Ir., ${ }^{5}$
P. Dyal, ${ }^{4}$ and C. I' Sonnetlo

After a llight of o42 days, Pioneer 10 passed the planet Jupiter at a distance of 284 Jupiter radii (RJ) at 02.13 U.T. (L.ocal Jupiter) on December 4, 1973. Duriag the period November 30 through December 12 a vector helimm magnetometer obtained measurements of the Jovian magnetic lied The purpose of this paper is to provide the preliminary results of these measurements.

Pioneer 10 apponached Jupiter at about 6.5° south planetocentic tatitude (November 30) at a Sun-Jupiter-Pioneer angle of 35°. A single bow shock crossing; was observal inbound at lot RJ (Figure I). The magnetic

Ifgure 1: IVve-minme averages of the lield magnilute through periapsis.

[^0]field jumped from 0.5 to 1.5γ (10^{-5} gauss), and the magnetosheath licids behind the shock varied irregularly in magnitude and direction. Waves were observed in the field propagating upstrean prior to the crossing of the shock. The interplanetary field direction outside the shock was such ihat energetic paticles could propagate upstrean to the spacecraft as observed by the radialion detectors.

The nagnetopanse was ohserved at 96 RJ , which was carlier than expected based upon a simple saaling of the corresponding latath geonetry (see ligure 2). This implies either a standoff distance that is telatively suall as compared to lath on else an outward motion of the maguetosphere. At the magnetopause the field jumped abruptly to $5 \boldsymbol{\gamma}$. The corresponding magnetic energy density just inside the magnetosphere (10^{-10} emgs cm^{3}) would appear to be insufficient to withstand the pressure of a nominal shocked solar wind (estimated to be $5 \times 10^{.10} \mathrm{ergs} / \mathrm{cm}^{3}$), or else the plasma density was much less than the nominal value of $0.2 \mathrm{~cm}^{-3}$. If the solar wind density was nominal, then this implies that the pincipal magnetosphere pressure was due to a $\beta \approx 4$ plasma inside the magnetosphere. A lower solar wind density implies an outward motion of the magnetospliere.

The field inside the magnetosphere exhibited a persistent southward component. Ilence, the field lines were probably closed and the orientio lion of the dipole source at the planet was roughly parallel to Jupiter's spin axis, as inferred from radio astronomy measurements. The fiedd magnitude remained near 5γ from 90 RJ $t o$ about 50 RJ, but was very irregular, with frequent dips to 1γ or below occurring.

The field in the oner magnetosphere was strongly distended such that its direction was elongated parallel to the equator. There was no welldefined orientation of the fied into magnetic meridian planes. Referring the field vector to a Solar-Jupiter (SJ) coordinate system ($\hat{\mathrm{X}}=\hat{\mathrm{S}}, \hat{\mathrm{S}}$ from Jupiter towards the sun; $\hat{\mathbf{Y}}=$ normalized $\hat{\mathbf{j}} \mathbf{X} \hat{\mathbf{S}}, \mathbf{j}$ parallel to the spin axis of Jupiter; and \hat{Z} completes the righ-handed system) it was noted that much of the time the X and Y components were of opposite polarity, suggesting a spiraling of the meridional planes of B due to plasma effects causing the fiedds in the outer magnetosphere to lag behind those closer to the rapidly otating planet. There was a frequent interchange of polarities, and occasionally there were periods when they were the same polarity. The X component was ustatly negalive and the Y componem ustally positive. Hence, the spacecraft was probably below the symmetry plane most of the time. The occasional coupled X and Y polarity reversals sug. gest that at times the symmetry plane passed underneath the spacecraft. These results and the abmomally thin inbound magnetosheath ane consistent with the existence of a relatively hat, "disclike" outer magheto-

Figute 2: Trajectory plot of the Sun-Jupiter-fioncer angle showing bow shock and magnetoprause crossings. Also shown are the relative positions of the cutrent slecet coossimgs.

10
sphere. Sinch a disclike fiehl requires the presence of a current sheet moughy in the symmetiy plane, and it is tempting to infer that the occasiomal dips in the fied magnitude to $\leqslant \boldsymbol{I}$ may have resulted fom the up and down movement of this shect current past lioneer 10, pethaps in te:ponse to datnges in the solar wind, efc.

The fiehd stompth began lo tise monotonically at about 25 RJ, and featomic valathons in fichal diection laving a 10 -hour period were noted, miticating enloy mionle inmer magnetosphere. Shorlly theteafter, perindic ellects in fich magnitnde became discemible, which appeared to correlate well wilh the dhanging magnetic latitude of lioncer based upon the mominal tato astmomy values for the longitude and inclination of the moth magnetic pole. The maximmon field strengils measmed was 0.18 L.anss, comespandmg to a magnetic moment of about 4 gauss- RJ 3.

Hac passape umbomad through the magmetosplere was at a Sun-

 Hiticosed lowats 90 RJ , the field again becante stongly extended -
 cunatosial plone. The licht lay nearly in the local metidian plane in the

BYRJ

B2RJ

Figure 3: A portion of the magnetic field data of day 342. The observed changes in magnitude and direction are consistent with the passage of the pacecraft into a current sheet.

Pigure 4: Platocontric R-Iatitude plot of the estmated pasition and extent at cach cuncont shect coossing.
developeal lowands the antisolar direction, again consistent with the apporent spiatiang of the fied seen inbound.
llips in the field strengeh with occasional partial reversals in the field components occurred at lo-hour intervals simitar to the one displayed in
 posthon of ilie estimated centroids and latitudinal and longitudinal extents of these dipu ate displayed in ligures 4 and 5 . ligute 6 shows an idealized reptesentathon ot the curtent sheet required to explain the field dips and reversals ob:cived during the oubound passage Pionecer consed the magnctopanse on the oulhomat pass at 98 kJ , a location comsistent with a cylimitically symutitic; disclike shape for the magnetosplese near the c位aterial cepon (ligure 2).

Ohservalions of Jupitea's magnetic field in the radial range 2.8 to to 6.0 RJ wete used wobtam a best least squares fit plametary dipole. During this ponton of the Iriatectory, the standard planelocentic (f(i) latitude

 dypole se chatactericed as folluws:

Mimbent
$M=3.867$ Cians; $\mathrm{R}^{3}{ }^{3}$
MII AJJ; $=78.00^{\circ}$
M11 ONJC; $=1.15 .18^{\circ}$
$=22.4 .42^{\circ}$ System III

Figure 5: Planctocentio R-I.ongitude plot of the estimated centrond position of each current shect corossing and the estimated average variation of the longitudnal extent of the taversal into the sliect.

Fifure a: An wealiaed symmetio current sheet model inferred from the wheread oblboumb liedd data.

$$
\begin{aligned}
& \text { 9/fict } \\
& \text { (} X=. .145 \mathrm{RJ} \\
& \mathrm{C} Y=+0.30 \mathrm{RI} \\
& (\%)=1.070 \mathrm{lRJ} \\
& \text { VARMXVZ }=1.08 \times 10^{2} \text { Causs }^{2} \\
& V A R H X Y Z=4.6 .3 \times 10^{6} \text { (Balliss }{ }^{2}
\end{aligned}
$$

か

 191.41

 whemed we lhas anpe to whllin abonl 3.5% of the field. The maximun subince tied paciticed by this model is nearly 12 Gamss, which is con-

Acknowledgments

We expess um fratitude to A. M. A. liamdsen, B. T. T'surmani, J.
 JPI. In dicin dedtation and suppost in ptepation for, and duting,
 opetatum's fiesommed for thein outstanding supponf daring some of the compmatmonal phases of thas work related in lle dipole montent af lipules.

Ihas watid was suppoled in pat by the National Acronamics and Sphe Almmatatmm muler NASA-Ames combati NASI-7.158.

Refereaces

Smith, E. J., L. Davis, Jr., D. E. Jones, D. S. Colburn, P. J. Colemati, Jr., P. Dyal, and C. P. Sonett. Science 183. 305 (1974).

Neprint from the Irocerdings of the Utah Acudemy of Sciences; Atrs, and Lethers, vol. 51, part 1, 1974

A STUIMY OF SINGLE AND DUAL DIIOLE
 MAGNETIC FIELD MODELS FOR JUPITER: PIONEER 10

Douglas E. Jones and John (i. Melville
Brigham Young University
The results of a nearly real time analysis of the magnetic field data from Promect 10 have been reported previously (Smith, et al., 1974). The parpose of this mote is to eeport an analysis of the near-Jupiter data covenng roughly the same cange of trajectory parameters bint using as much of the data in this interval as possible. In addition to recomputing a best f -panameter fil (mmimmen variance of M), we also computed best 6-parameter and 12 -parameter fits (minimum variance of II) to the data. In the 12 patameter, or dual, dipole model, we have followed a suggestion by Conway and Stannard (1972) which they proposed to explain ant anomaly seen in the radio astronomy linear polarization data at approximately System III longitude 220°. The second dipole is postulated to lie near the sublace of the planet.

The two basic technigues used to ohtain the best model parameters are ur related to the well-kinown egtuation for the mongetic fied of an offset dipule.

$$
\begin{equation*}
11=\cdot \frac{m}{(R C)^{3}}+3 \frac{m \cdot R C}{(R C)^{5}} R C \tag{I}
\end{equation*}
$$

whete RC = R $\cdot \mathbf{C}$
$R=$ posilion vector of Pioneer relative to a planet fixed ((owating) cowrdinate system
C- othee of dipole
llis cam le witlen in mathix formas

$$
\begin{equation*}
(B)=(A)(M) \tag{2}
\end{equation*}
$$

(11. alternatively

$$
\begin{equation*}
(A 1)=(A)^{-1}(B) \tag{3}
\end{equation*}
$$

where

In the \mathbf{M} method, the dipole offset \mathbf{C} is varied (i.e., 3 parameters) until the rms M variance is minimized using equation (3) above: The B method requires that both M and C be varied (i.e., 6 parameters) until the sums is variance is minimized using equation (2). If the measured field is due to a simple offset dipole, the two melhods should give nearly the sime "best fil" dipole. Ilowever, if the disagreement is outside of the expected experimental error, then the sonice cannot be a simple dipole and the ob parameter model should be the hest. The rms IB variance for cach model can be used as a quantitative means of determining the best model.

In computing the variances, we first transformed the measured it from a Pionecr luertial system (Pli) into a planet fixed rotating courdinate system (JG). Interpolation of the trajectory data accurate to at least four decimal places was used to obtaia the values of \mathbf{R} corresponding to the midtime of each data sample. The observations of Jupiter's magnetic field over the approximate radial range 2.84 to 6.0 Jovian radii (RJ), Ilte System III latitude range -13° to $+13^{\circ}$, and longitude range 181° to 314° were used in the present analysis as before.

Using the M method, the single offset dipole that gives the best least squares 3 -parameter fit to the lioneer 10 magnetometer data used has the following parameters:

```
            M=3.867 Gauss RJ }\mp@subsup{}{}{3
MI.ATJG = 78.64*
MLONJG = 1.35.14%
            CX=..145 RJ
            CY}=+.0301R
            CZ=+.070 RJ
mms var M = 1.08 < 10.2,
mims varr B=4.6.3\times10.0
```

The major difference between this dipole and that reported earlier (Stuith, et. al., 1974) results from the use of ten-minute averages which have leen corrected for all etor in the roll attitude of the spacecrali amd for an electronic phase lag occurring in the magnetometer.
The variable metric minimization program developed by Davidon (1906) was used in the model stmolies based upon the ims variance of is
(ie., the 6- and 12 -parameter models). The best least squares fit single oltset dipule model obtained using this method has the parameters:

Fonlowing the suggestion by Conway and Stanard (1972), we have micteaced the depree of complexity of the models by allowing fior a secomil dipole. The dual dipode model that fits the data best has the parameters:

$$
\text { MIATJ } ;=80.08^{\circ}
$$

First Difuli

$$
M=4.022 \text { Callass }^{2} / \mathrm{J}^{3}
$$

$$
\text { MIONIG; = } 133.60^{\circ}
$$

$$
\mathrm{CX}=-.200 \mathrm{RJ}
$$

$$
(' Y=-.0 .386 \mathrm{~kJ}
$$

$$
(\because Z=+.06812 R J
$$

Sicomal Inholl
$M=.0655$ Ciallss RJ ${ }^{3}$
MI.ATIG $=12.53^{\circ}$

MIUNJC $=141.5^{\circ}$
($\mathrm{X}=-.8221 \mathrm{RJ}$
($\mathrm{Y}=+.1609 \mathrm{RJ}$
C $Z=. .1184 \mathrm{RJ}$
ums var $11=7.97 \times 10^{-7}$

Onic notes llat the second dipole is at about .95 RJ, and the offset in the equalonal plane is al about System III longituch 209. 3°.

Hohli wh the If models fit the data significanlly hetter than does the first of Al madel. Howevet, the model which gives the best tit is cheaty the one which intlutes a second dipole. One botes that the tills of all of the modehs apece seanomably well with valaes derived foom ohservalions of the vatation in tadio intensity (lkerge 197.1) and lion observations al
 dipule mondel also appears to be comsistent with an imferpletation of the fulanalion anomaly smgested by Conway and Stamand (I972). This
model also has a System III longitude for the main dipole which is most consistent with predictions based upon the radio measurensens (llerge 1973), although there is still an apparent discrepancy of about 3°, or 1.3%

It is difficult to justify the presence of a dipole source so near the surface of the planet. Other more complicated, but plysically more reasonable, field configurations for the anomaly are possible, but most ate far more dificult to work with in studies of this kind. If subseguent ubservations by Pioncer 11 confirm the existence of an interiof tied source near the surface of the planet, considerable infornation repanding the dynamo origin of planetary fiedds in general, and the structure of the interior of Jupiter in parlicular, will be obtained from these data.

Acknowledgments

This rescarch was supposted in part by the National Aeronantics and Space Administration NASA-Ames conlract NAS2-7353.

Iteferences

Herge, G. E. "The Position and Stokes Parameters of the Integrated 21 em Radio Emission of Jupiter and their Variation with Epoch and (Central Meridian Longitude." Preprint No. 17 of the Owens Valley Radio Observatory, 1973.

Conway, R. G., and D. Stannard. Nature Phys. Sci. 239. 142 (1972).
Davidon, W. C. "Variabic Metric Method for Minimization." Report No 5990 (rev. 2), Argonne National Laboratories, 1966.

Roberts, J. A., and M. M. Komesaroff. Jcarus t. 127 (1965)

Smith, E. J., L. Davis, Jr., D. E.. Jones, D. S. Colburn, P. J. Colcman, Jr., P. Dyal, and C. P. Sonelt, Science 183, 305 (1974).

PRELIMIINARY MOIDEL STUIDIES OF THIE MAGNE:OSPIIEREOF JUPITER: PIONELER 10

Dometas I: Jones and John (i. Melville
Mrightum Young (Iniversit!)

Introduction

The Pioneer 10 spacecraft passed within 2.84 Jovian radii (n_{j}) of the planet Jupiter on December 4, 1!73. Extensive observations of the Jovian maphetic field and its interaction with the solar wind plasma were made while the spacecatil was within about low hy of the planet. The magnetoiphere was fomed to be severely stretched becanse of the presence of :an intense coment sheet, which was particularly rvident daring the outloman prassige of Piomear 10 near die dawn terminator (Smith, at al., 197.4). P'lots of the amgle between the orientation of the outhomad field and the malins veretor fionn the planee to the spacecraft showed a strong tembency for the field to berome radial at large distanes from the planel (sare lighere 8 , Smith, et al., 197.4). A similar thend has also been sem in - holl the inhenud and outbomed liomeer II data (Smith, et al., I975: fomers, it al., I!gas). We repert hero some pratiminary work on a mathematical medel of the magnelosphere of Jupiter which is baseed upon the

 in theor sendy. and it is also the perpose of this pipere to report a correere

The atediod

Since it is alwas tme that

$$
V \cdot B=0 .
$$

$$
B=V f \times V_{h} .
$$

$\mathrm{g}_{\mathrm{f}}=$ constant, his atfiords a direct method of evaluating the shape of the lines of force: For example, for a dipole in splacrical comelinates we hate

$$
f_{1}=\frac{\Lambda 1}{\sin ^{2} \theta} \frac{\rho}{\rho}
$$

where $\rho=R / R_{j}$, ind

$$
g=\phi
$$

(In cylindrical coordinates, ρ will represent the dimensionless component of if that is perpendicular to the uxis of the dipole.) ITwe f function can be easily manipulated into the well-known constamt I, weprescontation of a dipole fiedd lime, namely

$$
\rho=L \sin ^{2} \theta
$$

Although the law of superposition holds for magnetic fields, this is not generally true for the functions f und g, i.e.,

$$
\nabla F \times \nabla G=\nabla\left(\sum_{1} f_{1}\right) \times \nabla\left(\sum_{1} g_{1}\right) \neq \sum_{1}\left(\nabla f_{1} \times \nabla{h_{0}}_{0}\right)
$$

Alternatively, one notes that

$$
\nabla f \times \nabla_{g}=\nabla \times(f \nabla g)
$$

so that the vector potential \vec{A} is related to the f and g finetions through

$$
\vec{A}=f \nabla_{g}
$$

For axi-symmetric fields, f is independent of ϕ and $k^{\prime}=\phi$. The vector potential in spherical coordinates is then

$$
\dot{\Lambda}_{\text {shlur. }}=\frac{f(\rho, \theta)}{\rho \sin \theta} \phi,
$$

and in cylindrical coordinates.

$$
\dot{\Lambda}_{\mathrm{cy1}}=\frac{f(\rho, z)}{\rho} \phi
$$

For axi-symmetric fields, or f fimetions sharing the same a linetion. one writes

$$
\vec{\Lambda}=\sum_{i} f_{i} \nabla_{h}
$$

or, altematively.

$$
\vec{B}=\nabla \times\left(\sum_{1} f_{1} \nabla h\right)=\nabla\left(\sum_{1} f_{1}\right) \times \nabla_{f}
$$

We write with H_{b} being the dipole field,

$$
B=B_{D}+B_{1}+B_{2},
$$

or

$$
I I=\nabla\left(f_{1}+f_{1}\right) \times \nabla_{h_{1}}+\nabla f_{2} \times \nabla_{h_{2}}
$$

so that the perturb:ation fiedd \vec{B}_{n} is given by

$$
\begin{aligned}
B_{F} & =B-B_{1} \\
& =B_{1}+B_{2} \\
& =\nabla f_{1} \times \nabla H_{1}+\nabla f_{2} \times \nabla H_{2}
\end{aligned}
$$

I, represents the axi-symmetric portion of the perturbation field and B_{2} the component contributing to the spiraling.

Sphacrical Iolar Coordinate Model

In spherical coordinates we have
∞

$$
\begin{aligned}
& H_{1}=\frac{1}{\rho^{2} \sin \theta} \frac{\partial f_{1}}{\partial \theta} \hat{\gamma}-\frac{1}{\rho \sin \theta} \frac{\partial f_{1}}{\partial \rho} \hat{\theta} \\
& H_{2}==\frac{k}{\rho \sin \theta} \frac{\partial f_{2}}{\partial \theta} \dot{\phi} .
\end{aligned}
$$

Since there is dratly spinating of the field (Sinith, et al., 1974), we have written

$$
\begin{aligned}
\mu_{1} & =h_{1}+\mu_{2} \\
& =\phi+h_{p},
\end{aligned}
$$

where ho represents the spialing. Beeamse B_{1} and B_{1}, share the same ge finction, amd therefore superposition holds for the respective f fimetims, we will comeentrate on these compenemes of the field only. Thee linntion $F=f_{1}+f_{10}$ will then represent meridional plame projections of the me:nomed fich
In deriving an f_{1} fimetion, we start with a component of the perturbation fied whose finetional form may he casily dedneed from the data. Since the badial component of the field decreased and at thenes reversed, wher is comsestent with passigge into a thin cament sher (Smith, et al., I!R I), a finctional fiom for b, that is comsistent with these factors (see

$$
\begin{aligned}
J_{10} & =\frac{\Delta}{\rho^{4}} \tanh \frac{\cos \theta}{\cos \theta_{0}} \\
& =-\frac{1}{\rho^{2} \sin \theta} \frac{\partial f_{1}}{\partial \theta}
\end{aligned}
$$

Then

$$
f_{1}=-\frac{\Delta \cos \theta_{0}}{\rho^{\prime \prime}} \frac{2}{2}\left[\log \cosh \frac{\cos \theta}{\cos \theta_{0}}+C(\rho)\right]
$$

and

$$
\begin{aligned}
b_{0}= & -\frac{1}{\rho \sin \theta} \partial f_{1} \\
= & \frac{(a-2) A \cos \theta_{0}}{\rho^{2} \sin \theta}\left[\log \cosh \frac{\cos \theta}{\cos \theta_{11}}+C(\rho)\right] \\
& -\frac{A \cos \theta_{11}}{\rho^{4}-i \sin \theta} \frac{\partial C(\rho)}{\partial \rho} .
\end{aligned}
$$

At $\theta=\pi / 2$,

$$
b_{0}=\frac{(u-2) A \cos \theta_{0}}{\rho^{n}} c(\rho)-\frac{A \cos \theta_{0}}{\rho^{n-1}} \partial C \cdot
$$

For

$$
C(\rho)=\frac{C}{\rho^{\prime}}
$$

we have

$$
b_{n}=\underset{\rho^{\prime \prime}}{A C \cdot \cos \theta_{11}}(11-2+b)
$$

The j limelion comesponding to the axi-symuetrie pention of the pere Iurbation fird is then given ber:

$$
f_{1}=-\frac{A \cos \theta_{11}}{\rho^{\prime \prime} 2}\left[\log \cosh \cos \theta+\begin{array}{l}
C \\
\cos ^{\prime}
\end{array}\right]
$$

 are approximataly

$$
\begin{aligned}
& 1=1.70 \\
& 1=1.10 \\
& 1=7.70
\end{aligned}
$$

$$
\begin{aligned}
C & =770 \\
\cos 0_{01} & =0.025
\end{aligned}
$$

Althomph fitting the Pioneer 10 onthound datia quite well, this F function exhibited mather amomalous behavior at high latitudes. Since the expression lior b_{1} can inelade additional finnetions of 0 which are small near $0=\pi / 2$ (i.e., linactions of $\cos \theta$), ona could write

$$
b_{\omega}=\frac{A}{\rho^{a}} \tanh \frac{\cos \theta}{\cos \theta_{0}}+\cos \theta \operatorname{l}_{1}(\rho, \theta)
$$

Following this lead, alternnte finctions can be derived. One of several which fit the datu reasomatly well is

$$
f_{1}=-\frac{A \cos \theta_{0}}{\rho^{2}-2}\left[\log \cosh \frac{\cos \theta}{\cos \theta_{0}}+\frac{C e^{1-\sin \theta}}{\rho^{\prime \prime}}\right]
$$

where the comstants are the same as those listed above. The corresponding F^{F} fimetion is plotted in Figure 1 with $M=4 \times 10^{5}$ (Smith, et all, 1974; 1!75). Alhough this function exhibits bether behavior near the:
os magnetic axis, it is still msatisfactory here. Meplacing Ce' sinapo by - log cosh($1 / \cos \theta_{0}$) prodeces an f_{1} which matches the b_{3}, datat and is well behaved at 0°, but insufficient sombloward field results becanse - Hinets dae to magnetopanse currents have not bern included in the model. Clearly an additional f function is needed, but infinite series techmigues will likely be required.

Neglecting the presonce of the magnelopause, the last closed field line crosses the magnetic erguiter at $\rho_{c}=4.60$ lor the preceding models. Under these comditions magnetic field lines originating at higher latitudes would not cross the cymator and would therefore be considered as being "pen.

The C:ylindrical Coordinate Model

(©nertz, el al. (197.1) have developed a model in eylindrical comordinates. Fior this case the axi-symmetric portion of the perturbation field is given by

$$
A_{1}=-\frac{1}{\rho} \frac{\partial f_{1}}{\partial z} \hat{\rho}+\frac{1}{\rho} \frac{\partial f_{1}}{\partial \rho} \hat{k}
$$

As betone, a finnetional form for b_{0}, that is consistent with the current sheet duta, cle., is

$$
b_{1}=\underbrace{A}_{\mu^{\prime \prime}}\left(: m l_{1} z / l\right) .
$$

$$
I=I_{11} \rho /_{n_{0}}
$$

fir al comstint angular wielth sheret, or, in gerneral.

$$
I=D_{1}\left(\mu / \rho_{01}\right)^{\prime \prime}
$$

Since

$$
b_{1}=-\begin{gathered}
1 \\
\| \\
d z
\end{gathered}
$$

then

$$
f_{1}=-\frac{A D}{\rho^{a-1}} \log \cosh z l D+C(\rho)
$$

The correspomeling linction for b_{s} is then

$$
b_{z}=\frac{M /(a-1)}{\rho^{\prime \prime}} \log \cosh z / D-\frac{b A z}{\rho^{n+1}} \tanh z / D+\frac{\partial((\rho)}{\rho \partial \rho} .
$$

Note that for $z / D \geqq 3$, $\log \cosh z / D$ is very mearly $z / D-\ln 2$, so that

$$
\left.b_{z}\right|_{z / D \alpha 1}=\frac{A D}{\rho^{a+1}}(a-b-1) \frac{z}{D}-\frac{A D(a-1)}{\rho^{\alpha+2}} \ln 2+\frac{\partial C(\rho)}{\rho \partial \rho}
$$

Ploting b_{μ} versis ρ for all $z / D \geqq 3$, and b_{s} versas ρ for fixed values of z / D, allows oune to determine the constants in f_{1}. Goertz, et al. (1974) have plotted 1 , in this maner and find
$\stackrel{\circ}{\circ}$

$$
\begin{aligned}
a+b+1 & =2.77 \\
C(\rho) & =-\frac{15 \wedge D}{\rho^{a-1}}
\end{aligned}
$$

sothat

$$
f_{1}=-\frac{A D}{\rho^{n-1}}(\log \cosh z / D+15)
$$

However, Conert, el al. (1974) have ploted b, versus ρ, where

$$
b_{\rho}=b_{\rho} \sqrt{1+b_{\phi} / b_{\rho}}
$$

and

$$
b_{\phi}=-k \rho b_{\rho}
$$

As a asoult, Nacy obtain a power law representation of the component panalle: to the magnetic eguntor which lies in the curved surface represomed by

$$
\phi+k \rho=\text { constant. }
$$

However, the wombling fill be for such sumfaces, does not represent an asi-symuetric: bield, and therefore cammon apropriately be added to the dyoile \int lination, which is axi-symmetric. That is, the f functions to low adicd must shate the same g function. Goertz, et al. (197.1) found that

$$
\frac{b_{4}}{\rho_{0}}=-8 \times 10^{-1}
$$

and hence

$$
b_{1}=b_{\rho} \sqrt{1+\left(8 \times 10^{-3} \rho\right)^{2}}
$$

Since they found

$$
b_{0} \propto \rho^{-1.67}
$$

over the range $\rho=20$ to $\rho=80$, the corresponding ρ deperndence for b_{p} should be corrected by the factor $\rho^{0.11}$, or

$$
b_{\rho} \propto \rho^{-1.7 \hbar}
$$

so that

$$
\begin{aligned}
& a=1.78 \\
& b=-0.01
\end{aligned}
$$

As a check on this, we determined the power law dependence of b_{p} on ρ directly and obtained values for a, A, and b of $1.75,1.0 \times 10^{4}$, and +0.02 respectively for the range $\rho=30$ to 80 . Combining our ressilts with those of Goertz, et al. (1974) wed find that f_{1} is given by

$$
f_{1}=-\frac{1.0 \times 10^{4}}{\rho^{10.75}}(\log \cosh z / D+15) \quad(30 \leqq \rho \leqq 80)
$$

where b has been assumed eyual to zero, and, based upon one welldefined current dip, D_{0} has been set equal to 1 in units of Jovian radii. The total F function representing the axi-symmetric portion of the field is then

$$
F=\frac{M \rho^{2}}{\left(\rho^{2}+z^{2}\right)^{42}}-\frac{1.0 \times 10^{4}}{\rho^{11.75}}(\log \cosh z / D+15)
$$

A plot of F is shown in Figure 2. Applying the same conditions as for the spherical model, the above model prediets that the last closed field line will cross the magnetic eypuator at $\rho_{c} \cong 180$. Using $a=1 \%$ and, $A=$ 7.5×10^{3}, Coestz, et al. (1974) obtain $\rho_{c} \cong 150$.

The Currents

The current confyguration in the magnetosphere can be obtained simply from Ampere's law. Using the fiedd expressions derived from the several f_{1} functions one can ohtain the conliguration of the intense current sheet that exists at the magnetic equator as well as the volume corrents. The ϕ components of the internal mangetospheric current systen is fomed

$$
\left.J_{A}\right|_{N_{1}, \cdots, t}=\frac{A \sin \theta}{\mu_{1} A_{1} \rho^{\prime \prime}+1 \cos \theta_{0}} \operatorname{sech}^{2} \frac{\cos \theta}{\cos \theta_{0}}
$$

atud lom the cromadic:al modiel

$$
\left.\left.I_{\psi}\right|_{N_{1}+\cdots}=\frac{\mu_{1}}{} I_{1} I\right)_{1, i}\left(1 \cdot\left(l_{1}: z / I\right) .\right.
$$

Although the volume terms are negligible near the magntic exputar. they dominate near the magnetic polar axis. This is cleaty an antifact of each model which will disitppear when proper account of the magnerotopause corrents and of the inmer cutoff radius of the current shect or dise are included.

Mathematically terminating the field at the magnethpanse allows one to solve for the magnelopanse currents, and the correspoming twombary field direction can be determined for the several mondels and compared will the dita. For eximillice, a finction, $\left(\rho / \rho_{0}\right)$, which cinn terminate the field arbitrarily abruptly is

$$
t\left(\rho / \rho_{0}\right)=\frac{1+\tanh d\left(1-\rho / \rho_{0}\right)}{2}
$$

so that the terminated field, \bar{D}^{\prime}, is given by

$$
B^{\prime}=t\left(\rho / \rho_{0}\right) i \bar{B}
$$

Herc ρ_{0} is the raclial distance to the magnetopmuse (as a list approximation we assume the magnetopause boundary to be spherical) and drelates to the thickness of the lomendary. In principle, B shombld be the total fiedt. However, we still meglect the ϕ component of the perturbation field.
The above function terminates the preceding azimuthal currents at $\rho=\rho_{0}$ and in addition provides the magnetopanse currents, i.e., for the spherical model

$$
\left.J_{\downarrow}\right|_{m . p}=\frac{-d}{2 \mu_{1} h_{j} \rho_{0}}\left[\operatorname{sech}^{2} d\left(1-\rho / \rho_{0}\right)\right] B_{0}
$$

and for the cylindrical model (here $\rho=\sqrt{x^{2}+y^{2}}$, mormalized)

$$
\left.J_{\Delta}\right|_{\text {m.p. }}=\frac{-d}{2 \mu_{0} H_{t} \rho_{0}}\left[\operatorname{sech}^{2} d\left(1-\frac{\sqrt{\rho^{2}+z^{2}}}{\rho_{0}}\right)\right]\left[\begin{array}{c}
z B_{0}-\rho H_{z} \\
V_{\rho}^{2}+z^{2}
\end{array}\right] .
$$

We find that B, for the sphorical model is positive at all values of 0 , so that the corvesponding magnetopanse current is clockwise, as viewed from the magnetic pole, at all hatitudes. Hence, just prior to the magnetopanse bomudary the predicted field direction is sonthward, as is observed by both l'ionecers 10 and 11 (Smith, et al., 1974; 1975). On the other hanul. the bracketed term contained in the magnetopanser expression for the cylindrical model becomes negative at magnetic latitudes greater than ahout 20°, so that the direction of the magnetopatmse abrient llow reverses fiom a dockwise direction at lower latitudes to a comilerelock.
wise direction at higher latitudes. The comesponding liedd just inside the bounday is predicted to point northuearel at latitudes greater than 20° and sombloward at lower latitudes. Such a prediction appears to be in disagreroment with the data, although it is interesting to note that prior to the combonme magnetopanse crossings by liomerer 11 there were intervals approadhing t hours during which the magnetospheric fieds pointed moth of radial hy roughly 20°. However, these are likely transient features related to a (possihly) northward component of the solar wind flow velocity.

Discussion

Since the finctions plotted in Figures 1 and 2 were derived from the diomerer 10 outhound dati, they were developed from data taken within . .hent $2\left(0^{\prime \prime}\right.$ of the magnetic erpator and over the radial range $20 \leqq \rho \leqq 80$. and quatitatively represent the magnetospheric fiedd configuration in meridiomal plames that lie mar the dawn terminator. However, ome motes that the models also qualitatively fit the Pionerer 11 data quite well, which atands the latitude range of the finactions to perhaps 10° (the lionarer 11 inhomod data is qualitatively very similar to the Pioneer 10
Ts omblomed data) and to dhont 10° smavard of the dawn meridian. As is evident from the figures, both models should be considered unreliable at latitules gerater ham about 155°.

A basic diflerone betwero the two models is the fact that one is for a comstant ampular widh current sheot (the splacrial coordinate model, Figure i) while the wher is for a constant thiekness coment sheet (the
 whene hetwern these two coment shed eonfigerations. Buth permit the ament sheet to exist to the conter of the phanet, allhemph it must be cout off at sume mater radins $\rho \geqq 2$, since onne would mot expere the sheet to

Amother basie diflerane involves the direetion of flow of the mageretoprase cursents and the corresponding direction of the magnetopanse
 will tha mu:asmerournts.

I here ane alos a munter of factors regarding the comatants derived for the mededs dhat shombloe mentioned. For example, in the case of the alindical comedinate model, the value of e in f_{1} is determined from b_{2} versms p at comstant z / D, but this rempires a hatwhedge of D. The
 tate detommation of the athal power law dependence of D on ρ. The

dependence יpon ρ is particularly diflicult to detemine directly from the plots of if versus ρ. The constants contained in the exprossion fir f_{1} are self-consistent, and the model appears to establish the ρ independence of D. Similar comments can be made regarding the constant angular widh model as well. Unfortumately, a brief study of the variation of the widths of the fiedd dips hats nete shed mueh light on this ernecial point, except that the data tend to favor the constant angular width model.

In the study loy Goerte, et al. (1974), the determination of a and D (their b_{0}) from a plot of b_{0}, instead of b_{p} causes the resulting function that is to represent the shape of the field in meridional planes to be a mixture of f functions reguiring different g functions. On the other hand, in our determination of these constints for the cylindrieal model, we have used only f limetions that have the same ge function. Becanse the spiraling of the lield was not excessive, the disagreement with the ressults of Coerta, et al. (197.1) is not great, and a comparison of the plots of the field limes shows them to be quite similar.
Any interpretation regarding the value of $\operatorname{pr}_{\mathrm{c}}$ (where $B_{L}=0$) that is derived from the models should be viewed with cantion sinee the model fits the data only ont to alout 80 or $85 \mathrm{H}_{\mathrm{f}}$, and hence these cutult radia should be considered as possible artifacts of the models. An artifict of this kind is neaningless because the magnetopanse currents have been neglected in the derivalion of the f functions. As noted emilier, it is tempting to assume that field lines leaving the planet at higher magnetic latitudes than those related to ρ_{c} are open field lines and that they merge with the intepplanetary field. But the data show that the fied lines are sonthward at the magnetopamse, suggesting that they are closed by the magnetopanse currents. In the sense of field lines and particle trapping. these lines elearly will not have trapped partieles on them. The last closed fiedd lime which could contain trapped partieles should be elve one which erosses the eynator just prior to the magnetopanse Imondary
The partiches in the intense erputorial current sheet likely assult from plasma flow due to the combined action of a jovian "polar wind." mueli like that positulated for Eatith (Banks and IIolzer, ISGi!), plas the strong centrifugal force cansed hy the large size and rapid rotation of the mangnetosphere. The balance of pressures at the magnetopanse lihely must include that exerted by a radial llow of polar wind ions moving parallel to the essentially radial field lines in the magnetosphere. Jeahaps such a plasma flow also provides a significant stabiliaing influence for the large-scale magnetosphere configuration reported here, sither one would othervise expect the solar wind to blow the high latitude fiedd lines back into the tail beeanse of the relatively weak magnetic pressure

11 outbound data will provide some importiont information in this regard, although moel higher hatitude data are clearly needed.

Finther studies of the magnetosphere will likely require the use of perturbation leduigues (Stem, lex;7) in order to obtain more wellbehaved functions at high latitudes and to allow for a monspherical magnelop:anse boundary. Oher studies heing conducted at the present tine will merge models devoloped for the range $1 \leqq \preceq \rho \leqq 6$ with the magne:ospherie: models reported here. In this regard, magnetospheric studies establish reasomable estimutes of the magnetospheric current systems and detailed attempts at merging the two programs will establish, among other things, the inner cutoff radius of the current sheet.
This restameln was supperted in part by the National Aeronantics and Space Administration under NASA-Ames contract NAS2-7358.

List of lleferences

Manks, P. M., and T. E. Hultere. High latitude plasma trungert: the polar wind. J. Ccophoys. Hiss. 74, 03:317, 1989.
$\stackrel{\sim}{\omega}$ Bird, A. K. Solar wind necess to the phasma sheet nlong the flank of the mugnetotail. Ilanet. Space Science 23, 27, 1975.
 Pretrolotancer. 14, 270, 1769; reprinted in Leomhardi Euleri Opera Omain, series II, vol. 13. p. 73, Swiss Saciety fur Nutural Sciences, 1055.
(awtr, (: K., B. A. Itamdall, and MI. F. Thomsen. A model for the jovann magnetic field. Bipera pherintel at the fall 197 g meting of the American Cerophysical Union, 1)ee 12.17, 1974.

Jones, D. E., E. J. Smith, L. Duvis, Jr., P. J. Coleman, Jr., D. S. Collam, P. Dyal, und

 L.ellets, Alarch 28,1975 (alsutract this issure of the Proceeding').

- Milahiv, J. I), II. II. Collarl, D. D. Mr-Kibbin, J. II. Wolfe, and D. S. Intritigator. Pieliminany Pioneer 11 encometer resilts from the Anes Research Center plasma analyas rexproment. To be published in Science, I975.
 275. 24, 1931.

Smulh, E. J., I. Davis, Jr., D. E. Jomes, P. J. Coleman, Jr., D. S. Collourn, P. Dyul,

Smith, E. J., I.. Davis, Jr., D. E. Jomes, P. J. Coleman, Jr., D. S Collmin, P. Dy.al. C. P. Somett. Jupiter's magnetic fiedt, magnetonphere and interactuen with the solar wind. To be publishord in Sctemer, 1075.

Stern, 1). Geromugnelle Euler I'otentials. J. Ceophys. Res. 79, 3995, 19wit
Truesdifl, C: The kinemmiliv of vorticity, Indiana University I'ress, I!5,

[^1]
End of Document

[^0]: 1. Brafiam Yuhng University. Provo, UT
 2. Jet P'oputson I ahomatory. P'asalena, CA
 A. Cuhforma lissitute of Techmolopy, I'asadena, CA
 3. Ames Research Center, Molfett Iicld. C'A
 4. Hanvenoty al Coliforma, 1 os Angeles, CA
 a. Imwenally of Aitama, fucson, $A \%$
[^1]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

