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COMPUTATION OF HIGH REYNOLDS NUMBER INTERNAL/ EXTERNAL FLOWS

Michael Co Cline
'theoretical Division, Group T-3

University of California
Los Alamos National Laboratory

Los Alamos, NM 87545

Richard G. Wilmoth
NAf'A Langley Research Center

Hampton, VA 23665

Abstract

A general, user oriented computer program, called VNAP2, has been de-

veloped to calculate high Reynolds number, internal/external flows. VWAP2

solves the two-dimensional, time-dependent Navier-Stokes equations. The

turbulence is modeled with Either a mixing-length, a one transport equation,

or a two transport equation model.. Interior grid points are computed using

the explicit MacCormack scheme with special procedures to speed up the cal-

culation in the fine grid. All boundary conditions are calculated using a

reference plane characteristic scheme with the viscous terms treated as

source terms. Several internal, external, and internal/external flow calcu-

lations are presented.

Introduction

The computation of high Reynolds number flows has become a major tool

in the analysis and design of aerospace vehicles. While Navier-Stokes solu-

tions for complete vehicle configurations are still beyond the limits of

present-day computers, computational techniques are used routinely in the

analysis and design of various individual components, e.g., airfoils, wing-

body combinations, inlets and nozzles. Most of these analyses use either

purely inviscid or the so-called patched viscous-inviscid techniques due to

their greater computational efficiency and ease of use over the more exact

Navier-Stokes solution methods. These approximate techniques often yield
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results of surprisingly high accuracy.` However, their use is generally

limited to problems involving weak viscous-inviscid interactions or to

strong interactions that are sufficiently well understood to be modeled em-

pirically.	
t

Navier-Stokes (N-S) solution methods, on the other hand, are not sub-

ject to these fundamental limitations and are applicable to more general

classes of flow problems. However, the N-S methods have not found wide-

spread use for design purposes due primarily to their expense and difficulty

of use. computer run times of several hours are not uncommon in solving a

high-Reynolds number problem in which the viscous layer must be well re-

solved. Furthermore, application of N-S methods is often viewed by the en-

gineer as an art requiring extensive knowledge of the numerical algorithm

and considerable trial and error to obtain a correct, converged solution.

The latter is often the result of attempting to use a N-S computer code

which has been written to solve a very specific class of problems and may
'r.

not be sufficiently general, well-documented, and user-oriented. Clearly,

as more efficient N-S algorithms and larger, faster computers become

available, more attention must be given to the development of user-oriented

N-S codes if they are to receive practical application.

The purpose of this paper is to describe a N-S computer program,

VNAP2, 2 which has evolved over a period of several years for solving a rela-

tively wide class of steady and unsteady, internal and external flow prob

lems. VNAP2 is a modified version of VNAP 3 and solves the two-dimensional

(axisymmetric), time-dependent, compressible Navier-Stokes equations. Both

single and dual flowing streams may be solved. The flow boundaries may be



arbitrary curved solid waLks, inflow/outflow boundaries, or free-jet enve-

lopes. Turbulent as well as laminar and inviscid flows may be treated.

Some typical internal and external flow geometries that may be solved are

shown in Fig. 1. Although the VNAP2 code has been applied mainly to nozzle

and inlet flows, the relatively general treatment of geometries and flow
f

boundaries allows a variety of other problems to be solved, e.g., airfoils,

flow-through nacelles, free-shear :flows and Free-jet expansions.

In this paper, the methodology used in developing VNAP2 as a user-ori-

ented, production-type computer program is presented and some results ob-

tained in solving a variety of .flow problems are shown. The problems se
1

lected represent those of engineering interest for which VNAP2 is primarily

intended. The purpose of the results shown here is not to demonstrate the
F'

"best" or most accurate Navier-Stokes calculation that may be 'possible for

each case separately, but to demonstrates collectively the application of a

single Navier-Stokes code to several different, highly-complex, high

Reynolds number flows.	 Thus, while some of the results could likely be im-

proved by refinements in the numerical and physical modeling, they do illus-

trate, to a great extent, that engineering applications of Navier-Stokes so-

lutions are possible.

Descrintion of the Method

Overall Methodology

The different techniques employed here were selected to provide a do-

pendable and robust solution procedure. As a result, the use of new and

somewhat untested techniques were avoided where possible.

..



Governing EQUat.ions

The VNAp2 code solves the two-dimensional (axisymmetric), time-depend-

ent, Navier-Stokes equations. The turbulence is modeled using either a mix--

ing-length, a one transport equation or a two transport equation model. The

mixing-length model employs the Launder et a1 4 model for free shear layers

and the Cebeci-Smith s model for boundary layers. The one equation model is

that of Daly 6 while the two equation model is the Jones-Launder -l0 model.

For details of these turbulence models, including boundary conditions, see

Ref. 2. VNAP2 employs an explicit artificial viscosity co stabilize the

calculations for shock waves. The artificial, viscosity is divided into a

first coefficient which multiplies the normal velocity gradients and a sec-

ond coefficient which multiplies the cross stream or shear gradients. The

first coefficient is the main contribution of the artificial viscosity while

the second coefficient is kept as small as possible. In addition, both co-

efficients are multiplied, by the Mach number squared, when the Mach number

is less than 1.0 to drive the artificial viscosity to zero in the boundary

layer of a supersonic flow. This helps to insure that the molp nilar and

turbulent viscosities dominate the solution near the wall, as well as away

from the shock. This artificial viscosity is employed only in the vicinity

of shock waves and is used in place of the fourth- order smoothing usually

employed by MacCormack. 11 For details of the governing equations see Ref. 2.

Physical and Computational Flow Spaces.

The Physical flow space geometry is shown in Fig. 2. The flow is from

left to right. The upper boundary, called the wall, can be either a solid

boundary, a free jet boundary, or an arbitrary subsonic (normal to the



boundary) inflow/outflow boundary. The lower boundary, called the center —

body, can be either a solid boundary or a plane (line) of symmetry. The ge-

ometry can be either a single flowing stream or, if the dual flow space

walls are present, a dual flowing stream. The dual flow space walls, shown

in Fig. 2, may begin in the interior and continue to the exit (inlet geome -

try), may begin at the inlet and terminate in the interior (afterbody geome —	 ►

try), as shown in Fig. 2, or may begin and end in the interior (airfoil geo -

metry). All of the above boundaries may be arbitrary curved boundaries pro -

vided the y coordinate is a single value function of x. This single value

function of x requires dual flow space walls, that begirt or terminate in the

interior, do so with pointed ends. The points can be very blunt, but cannot

be vertical walls. The left boundary io a -subsonic, supersonic, or Mixed

inflow boundary while the right boundary is a subsonic, supersonic, or mixed

outflow boundary or a subsonic inflow boundary.

The physical space grid has the following properties: one set of grid

lines are straight and in the y direction with arbitrary spacing in the x

direction; the second set of grid lines approximately follow the wall and

centerbody contours; the Ay spacing of these grid lines is arbitrary at one

x location and is proportional to those values at any other x location.

The x, y physical space i,s mapped into a rectangular ^, n computational

space as shown in Fig. 2. The mapping is carried out in two parts ° the

first part maps the physical space to a rectangular computational space

while the second maps the variable grid computational space to a uniform r,

grid computational space. Both the upper and lower dual flow space walls
r

collapse to the the same grid line in the computational space, as shown {n 	 Y

f



Fig. 2	 The flow variables at the grid points on the upper dual flow space

wall are stored in the regular solution array while the variables at the

lower dual flow space wall are stored in a dummy array.	 These flow varia-

bles are continually switched between these two arrays during the calcula-

tion.	 For details of the transformations, see Ref. 2.

Interior Grid Points
k.

The	 grid points are computed using the unsplit MacCormack1 interior y,2

scheme.	 The governing equations are left in nonconservation form. 	 In or- r.

der to improve the computational efficiency for high Reynolds number flows,

the grid points in fine part of the grid may be subcycled. 	 This is accom-

plished by first comp:`{ng the grid points in the coarse part of the grid

for one time step At. 	 Next, the grid points in the fine grid are calculated
f

k times, where k is an integer, with a time step lit/k. 	 The grid points at

the edge of the fine grid require a special procedure, because one of their
w

neighboring points is calculated as part of the coarse grid. 	 Except for the

first subcycled time step, this point Is unknown. 	 However, the values at t

and t+Lit are known from the coarse grid solution and, so, the values between s.

t and t+pt are determined by linear interpolation.

In order to further improve the computational efficiency, a special

procedure is employed to increase the allowable time step in the subcycled

part of the grid.	 This procedure allows the removal of the sound speed from

the time step C-F-L condition.	 Procedures that accomplished this have been

proposed by Harlow and Amsden 13 and MacCormack. 14	The procedure of Harlow

and Amsden is an implicit scheme that removes the sound speed, in both the x ,

and y directions, by an implicit treatment of the mass equation and the



pressure gradient terms in the momentum equations. MacCormack's procedure

is explicit and removes the sound speed in only one direction.

(MacCormack's procedure also includes an implicit procedure to remove the

viscous diffusion restriction from the time step C-R-L condition.) Because

explicit schemes are easier to program for efficient computation on vector

computers and because high Reynolds number flows usually required fine grid

spacing in only one direction, it was decided to use a procedure similar to

that of MacCormack.

MacCormack l u procedure is based on the assumption that the velocity

component, in the coordinate direction with the fine grid spacing, is negli-

gible compared to the sound speed. This allows the governing equations to

be simplified. MacCormack then applies the 1ethod of Characteristics to

these simplified equations. however, for flows over bodies with large

amounts of curvature as well as many free shear flows this assumption is

gisestionable. Because VNAP2 is intended to be a general code for solving a

wide variety of problems, this assumption was felt to be too restrictive.

Therefore, this procedure differs from that of Ref. 14 in that the velocity

component, in the coordinate direction with the fine grid spacing, is not

assumed to be small. The numerical algorithm, however, does assume that the

flow in the y direction is subsonic.

The procedure here is to separate the governing equations into two

parts. The first part consists of the Mach line characteristic compatibili-

ty equations while the streamline compatibility equations and all viscous

terms make up the second part. Because the sound speed limitation is due to

the first part, the second part can be computed by the standard MacCormack

scheme. The first part of the governing equations is solved by a special
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procedure. This special procedure consists of selecting an increased time

stop based on Ay/Ivl instead of Ay /( Ivl+a) where v is the velocity component

in the y direction and a is the sound speed. The Mach line characteristics

are then extended back from the s4 f',ution point at the increased time step.

These characteristics will intersect the previous solution plane outside the

computation star of the MacCormack scheme. By calculating these character-

istic intersecting points, special differences using this increased domain

of dependence can be determined and used in the first part of the governing

equations. These special differences use a larger Ay than the MacCormack

scheme and, therefore, are less accurate. However, this procedure is only

used in boundary or free shear layers where the viscous terms dominate the

solution. This special procedure decreases the computational time for high

Reynolds number flows by factors of 5 to 10 over flows that are not subcy-

cled. For details of this procedure, see Ref. 2.

Left Boundary Grid Points

The left boundary (see Fig. 2) can only be an inflow boundary. For su-

personic inflow all flow variables are specified. For subsonic inflow,

there are two different boundary condition options. The first specifies the

total pressure pT , total. temperature TT , and flow angle 8 as proposed by

Serra. 
15 

The secor;d condition specifies the x and y velocity components u

and v, respectively, along with the density p and was shown to be correct

for a well-posed problem by Oliger and Sundstr8m. 16 For a discussion of the

relative merits of these two boundary conditions, see Ref. 2. Following the

ideas of Moretti, and Abbett, 17 all the unspecified dependent variables are

computed using a reference plane characteristic scheme. The viscous terms



are treated as source terms. For mixed subsonic-sopersonic inflow, VNAP2

checks the Mach number at each grid point to determine t'he correct boundary

condition. The u, v, and p boundary condition includes ^a nonreflecting op-

tion to eliminate the trapping of waves in subsonic, steady flows ( see Re!

2 for details).

Right Boundary Grid Points

The night boundary (see Fig. 2) can be a supersonic outflow boundary or

a subsonic inflow/outflow boundary. The subsonic inflow option is required

for cases with flow separation at the right boundary. For supersonic out-

flow, all the variables are extrapolated. For subsonic outflow, the static

pressure, p is specified and 0,W remaining variables are calculated using a

reference plane characteristic scheme. If subsonic reverse flow occurs at

the right boundary, inflow boundary conditions must be specified. This is

accomplished by leaving p equal to the specified exit pressure and specify-

ing p and v. This inflow boundary condition is also discussed by Oliger and

Sundstrom. 16 These boundary conditions include the nonreflecting procedure

of Rudy and Strikwerda. ig For mixed subsonic-supersonic outflow, VNAP2

checks the Mach number to determine the correct boundary condition.

Wall Grid Points

The wall boundary (see Fig. 2) can be a free-slip boundary, a free-jet

boundary, a no-slip boundary, or a arbitrary inflow/outflow boundary. For

the free-slip option, the wall, slope is the boundary condition and the re-

maining variables are calculated using a reference plane characteristic

scheme. For the free-jet boundary option, the static pressure is specified

and the code determines the free-jet boundary. For the no-slip boundary,



the velocity components are set to zero while either the temperature is

specified or the taiiperature gradient is set to zero (adiabatic wall). The

density is calculated by the reference plane characteristic scheme. For the

arbitrary inflowl4utflow boundary, the static pressure to specified. If the

flow across the boundary is outflow, the remaining variable are determined

by the reference plane characteristic scheme. If inflow occurs, the veloci-

ty component tangent to the boundary and the density are specified while the

normal velocity component is determined using the reference plane character-

istic scheme. A nonreflecting boundary condition option is included.

Centerbody Grid Points

The centerbody boundary (see Fig. 2) can be a free-slip boundary, a no-

slip boundary, or a plane (axis) of symmetry. The free-slip and no-slip

boundary calculations follow the wall procedure. For flows where the cen-

terbody is a plane of symmetry, the grid points are computed by the interior

point scheme. The boundary condition is the requirement of flow symmetry.

Dual Flow Space Wall Grid Points

The dual flow space walls (see Fig. 2) can be either a freeslip or no-

slip boundary. The calculations follow the wall and centerbody procedures.

Steady State Acceleration for Subsonic Flow

Because signals propagate in all directions in subsonic flows, disturb-

ances can reflect arTAnd inside the computational grid for many time steps.

This reflection of disturbances can significantly prolong the convergence to

steady state. Several different procedures for accelerating the convergence

to steady state for both the pT, TT, 9 and u, v, p inflow boundary condi-

tions are presented in Ref. 2, One technique that works well for very _ant':;-

t

tF
i
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plan flows is an extended interval tine smoothing procedure. Nere, the so—

lution for all dependent variables on the first time step is stored. The

pressure at a specified grid point is then monitored on each time step.

When this pressure changes direction, the solution at the current time stop

is averaged with the solution at the ,first time step. This averaged solu-

tion replaces the current time step solution. and, in addition, is stored in

placee of the first time step solution. This averaging procedure is contin-

ued until the flow is steady. The results for subsonic, steady flow in a

converging duct are shown in Figs 3. The top curvi is for a calculation in

which the initial-data surface consisted of stationary flow at the stagna-

tion pressure and temperature. At time equal to zero, the outflow pressure

was dropped from the stagnation value to the desired value, thus simulating

a bursting diaphragm. The middle curve is for a calculation in which the

initial-data surface was the I-D solution generated by the VNAP2 coder The

bottom curve shows the calculation Imploying the 1-D initial-„;ata surface

and the extended interval time smootoing. All three solutions employed the

pT , TT , and 9 inflow boundary condition. From Fig. 3, we see that both im-

proving the accuracy of the initial-data surface and employing the extended

interval time smoothing significantly improved the convergence to a steady

state. As a result, both proced-,.res are utilized in the following results.

Results

The results presented here are for six high Reynolds number flows; one

internal, two external and three internal/external cases. One case in each

category has flow separation, the first case concerns a shock wave/boundary

layer interaction, and the last case includes transition from laminar to
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turbulent flow. These cases represent very complex flows and were selected

to illustrate the wide variety of flows that VNAP2 is capable of solving.

Because of this wide variety of flows, there is not space to describe each

of these flows in extensive detail. In addition to the flows presented

here, there is a considerable number of less complex viscous as well as in-

viscid flows than VNAP2 can solve more accurately and with significantly

less amounts of computer time. All cases were run with the unmodified VNAP2

code utilizing only a small data file. At this time, very few parametric

studies to determine the optimum turbulence model parameters, initial-data

surface quantities and grid point distributions, have been carried out. As

a result, the accuracy and efficiency of these results do not necessarily

represent the optinm! use of the VNAP2 codes

Internal Flow

The internal flow case is nozzle B-3 of Ref. 19 and is the planar, con-

verging-diverging nozzle shown in Fig. 4. The flow is from left to right
i

with the physica,14 space grid enclosed by the dashed line. The Reynolds num-

ber based on the throat height is 7.7 x 10 5 . At the left boundary, PT is

set equal to 200.6 kPa (29.1 psis), T T is set equal to 300 K and a is set

equal to 0. At the right boundary, extrapolation is used when the flow is

supersonic. When the flow is subsonic outflow, p is set equal. to 101.4 kPa

(14.7 psia). For subsonic inflow, in addition to specifying p^ the flow an-

gle and p are specified. The flow angle is linearly interpolated between

the wall and centerline values while p is the value on the wall. The wall 	 }±

is a no-slip boundary and the results presented here employed the two equa-

tion turbulence model. The initial conditions consisted of 1-D, inviscid



flow that was sonic at the throat and subsonic downstream. Artificial vis-

cosity was employed in the vincinity of the shock wave caused by the bounda-

ry layer separation.

The physical space grid, Mach number and turbulence energy contours are

shown in Fig. 5. The experimental data are from Ref. 196 From Fig. 5, we

see that at this pressure ratio, the flow separated creating a reverse flow

region. The wall and midplane pressures are shown in 'Fig. 6. This calcula-

tion used a 45 by 21 grid and required 3000 time steps (30 0 000 subcycled

time steps) and 2.1 hours of cpu time (CDC-7600) to reach steady state.

External Flow

The external flow cases are configs. 1 and 3 of Ref. 20 and are the ax-

isymmetric, boattail afterbody flows, with solid bodies simulating the ex-

haust jet, shown in Fig. 7. The flow is from left to right with the physi-

cal space grid enclosed by the dashed line. The Reynolds number based on x

at the left boundary is 1.05 x 10 7 . The first case (R - 27.0 cm) is config,

3 while the second (R - 12.2 cm) is config. 1. Both cases consisted of the

same flow conditions. The left boundary inflow profiles of PT 
and TT for a

free stream Mach number of 0.8 were determined using the same inviscid/

boundary layer procedure employed by Ref. 21. The flow angle 6 was set

equal to 0. At the right boundary p was set equal to the free stream value.

The wall is an arbitrary inflow/outflow boundary. For outflow, p is set

equal to the free stream value. When inflow occurs, in addition to specify-

ing p, u and p are set equal to their free stream values. The centerbody is

a no-slip boundary. Both calculations employed the extended interval time

smoothing. The initial conditions consisted of extending the inflow pro-

files downstream to the right boundary.



The physical space grid, pressure and Mich number contours for config.

3 (Z . 27.0 cm), employing the mixing-length turbulence model, are shown in

Fig. 8 while the surface pressure is shown in Fig. 9. 	 The Mach number and

turbulence energy contours for config. 1 (t w 12.2 cm), employing the two

equation turbulence model, are shown in Fig. 10 while the surface pressure

is shown in Fig. 11.	 The experimental data, for both cases, are from Ref.

20.	 From these figures, we see that the flow for config. 3 remained at-

tached while separation occured for config. I.	 The mixing-length model pro-

:
duced slightly better results for config. 3. 	 However, the two equation mod-

.

el more accurately predicted the pressure plateau in config. 	 1, but under-

t predicted the amount of upstream expansion. 	 Swanson21 found that a relaxa-

tion or lag model improved the pressure plateau prediction of the mixing-

(
length model, but at the expense of also underpredicting the amount of up-

stteam expansion. 	 The first grid point off of the wall was located at a
y`

y 	 y VT31u) of 15 for both cases.	 Grid studies have shown this to be ad
w

?f equate for the mixing-length turbulence model, but questionable for the two

`t
equation model.	 The config. 3 calculation, employing the mixing-length mod-

el, used a 40 by 25 grid and required 750 time steps (15,000 subcycled time

steps) and 1.0 hours of CPU time (CDC-7600).to reach steady state.	 The

config.	 1 calculation, employing the mixing-length model, used a 47 by 29
}3'

F

k grid and required 750 time steps (17 0 000 subcycled time steps) and 2.1 hours

of CPU time (CDC-7:00) to reach steady state. 	 The two equation model compu-

tational times were 1.4 hours for config. 3 and 3.7 hours for config.	 I.
5
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Internal/External Flow

The first two cases are the two external flow cases presented above,

but with the solid simulators replaced by the exhaust gets. The geometry is

shown in Fig. 12 with the physical, space grid enclosed by the dashed lines.

The left external boundary, wall and right boundary are the same as the ex-

ternal cases. At the left internal boundary, PT is set equal to 132.4 kPa

(19.2 psia), TT is set equal to 300 K and 6 is set equal to 0. The free

stream pressure is 65.2 kPa (9.45 psia). The centerbody is the flow center-

line, while the dual flow space walls are no-slip boundaries. Again, both

calculations employed the extended interval time smoothing. Only the two

equation turbulence model was employed for these two cases. The initial

conditions for these cases consisted of the external flow solutions pre-

sented above along with the 1-D, inviscid flow solution for the nozzle.

The physical space grid and Mach number contours for config. 3 (X

27.0 cm) are shown in Fig. 13. The external surface pressure is shown in

ii
Fig. 14 while the total pressure profiles for the shear layer, produced by

4
the interaction between the exhaust jet and the external flow, are shown in

Fig. 15. The Mach number contours for config. 1 (R = 12.2 cm) are shown in

Fig. 16. The external surface pressure is shown in Fig. 17 while the total

pressure profiles for the shear layer are shown in Fig. 18. The experimen-

tal data, for both cases, are from Refs. 20 and 22. From Figs. 14 and 17,

we see that the computed solutions, for both cases, underpredicted the shear

layer spreading rate. The same trends were found in results generated by a

patched method. 
23 

The config. 3 calculation used a 40 by 38 grid and re-

quired 300 time steps (40,000 subcycled time steps) and 5.6 hours of CPU

E
time to reach steady state. The config. 1 calculation used a 47 by 42 grid

Jk
C
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and required 300 time steps (40 0 000 subcycled time steps) and 9.0 hours of

CPU time (CDC-7600) to reach steady state. The rather len,,t" l y CPU times

for these two cases are due to the large viscous terms in the center of the

shear layer, where the grid is very fine, severely limiting the time step.

This problem is less severe near a wall where the turbulent viscosity is

small. The authors are currently investigating ways of removing this sta-

bility limit on the time step.

The last case is the NACA 1-89-100 inlet of Ref. 24 and is shown in

Fig. 19. The flow is from left to right with the physical space grid en-

closed by the dashed line. The Reynolds number based on the maximum exter-,

nal diameter is 6.1 x 106. At the left boundary, 
PT 

was set equal to 10144

kPa (14.7 psia), TT was set equal to 294.4 K and 8 was set equal to 0. The

free stream pressure is 66.5 kPa (9.64 p.sia) which produces a free stream

Mach number of 0.8. The wall is the arbitrary inflow/outflow boundary and

uses the same boundary conditions as the previous two cases. At the right

external boundary, the pressure was set equal to the measured values. In

the experiments of Ref. 24, the internal flow rate was controlled by a

throttling mechanism well downstream of the right boundary. In order not to

compute this rather extensive flow region, a value of pressure was specified

at the right internal boundary such that the inviscid, 1-D mass flow

equalled the experimental value. The centerbody is the flow centerline,

while the dual flow space walls are no-slip boundaries. The extended inter-

val time smoothing was employed. The initial conditions consisted of 1-D,

inviscid flow.
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The physical space grid, Mach number and turbulence energy contours are

shown in Fig. 20, while the surface pressure is shown in Fig. 21. The ex-

perimental data are from Ref. 24. From the turbulence energy contours in

Fig. 20, we see that the flow over the inlet is initially laminar, but

quickly becomes turbulent. The flow transitions first on the interior sur-

face. Reference 24 did not give the transition locations. The surface

pressures in Fig. 21, are for the first 6% of the inlet. This small area of

interest, combined with the thin laminar boundary layer, required a very

fine grid spacing in both coordinate directions. Because of the fine grid

spacing in the x direction, the subcying option was not used. The differ-

ences in surface pressure, between theory and experiment, at the inlet tip

are probably the result of too coarse a grid. The difference, between theo-

ry and experiment, near the internal, right boundary is most likely due to

the, approximate treatment of the internal flow at this boundary. This cal-

culation was also made using the mixing-length turbulence model, however,

i;
	 this model, significantly overpredicts the level of turbulence upstream of

the inlet. This is because the downstream blockage due to the ,presence of

the inlet creates a weak shear layer profile upstream of the inlet that ex-

tends a large distance in the cross stream direction. Therefore, the mixing

length model predicts very large mixing lengths. This produces turbulent

viscosities, upstream of the inlet, that are several orders of magnitude

larger than the molecular value. As a result, the mixing-length model solu-

tion is not presented here. This calculation used a 53 by 44 grid and re-

quired 3000 time steps and 1.0 hours of CPU time (CDC-7600) to reach steady

state.



Conclusions

A general, user oriented computer program for computing high Reynolds

number flows has been presented. Six high Reynolds number, flow calculations

were described. These computed results show that practleal Navier-Stokes

appl con ions are possible. Aowever, these results also indicate the need

for better turbulence modeling for separated flows and more efficient solu-

tion algorithms for very nonuniform grid point distributions.
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