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ABSTRACT

A simple, two-dimensional, incompressibhle and inviscid
model for thé problem posed by a two-dimensional wing with a
jet issuing from its lower surface is considered and a par-
ametric analysis is carried out to observe how the aerody-
namic characteristics depend on the different parameters. .
The mathematical problem constitutes a boundary value prob-
lem where the position of part of the boundary is not knoun
a priori. A non-linear optimizatibn approach is used to
solve the problem, and the analysis reveals interesting
characteristics that may help to better understand the phys-
ics involved in more complex situatipns in connection with

high-1lift systems.
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SYMBOL
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G(s) H(s)
G; , H;
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J
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Chord of airfoil.

Class of function with continuous
second derivatives.

Momentum coefficient of the jet.
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non-dimensionalized with the chord.
Objective function.
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Weight factors.

Momentum flux of the jet.

Average momentum £flux tensor of
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Pressure in the free stream.

DIMENSION

MT™2

nelr2

MLT2

MLT2







SYMBOL

Re

QUANTITY

Intensity of the source ith panel.
Independent variable in the
optimization process,
non-dimensionalized with the chord.
Radius of rounding of

internal corner.

Radius of curvature of the jet.
Natural coordinate along the
boundary.

Velocity of the uniform stream.
Velocity of the jet fluid.

Average jet speed.

Velocity of the flow field.

Jet angle with respect

the chord.

Jet thickness.

Non—-dimensional length of ith panel.

Velocity potential of the field
induced by the singularities.
Density of the jet fluid.
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Chapter 1

INTRODUCTION

The aerodynamic problems presented by V/STOL aircrait
are very complex in nature and in recent years extensive
work, both theoretical and experimental has been done in
this connection. One of the most important set of such
problems is motivated by the aerodynamics of powered liit,‘a
concept that aims at obtaining the very high lift coetfi-
cients needed in V/STOL flight.

The objective of this study is to pursue the analysis
of a simple inviscid model, originally proposed by Kar-
amcheti and Hu', which may help in the understanding of the
physics involved in some powered high lift systems. Although
there is a great deal of idealization present in this model,
it is expected thét some of the physical characteristics of
real problems will be captured.

Typically, a V/STOL aercdynamic problem includes some
formidable source of difficulties such as tridimensionality,
non-linearities, separated flows and turbulence-related phe-
nomena such as entrainment. In the present study a two
dimensional problem will be dealt with and entrainment will
not be considered. However the model does include the non-
linearities due to the boundary conditions and_a very simple

representation of a wake type flou.




In the concept of powered lift, lift is produced by the
simultaneous operations of two different mechanisms: induced
pressure on the wing and ejection of momentum from the air-
craft. Usually jets are arranged in the wing, ejecting
momentum in the surrounding medium. Part of that momentum
contributes to the lift. At the same time the presence of
such jet or jets can act on the wing in such a way as to
effectively alter the distribution of pressure around it,
thus increasing the lift. This additional lift will be
called induced lift. Figure 1 illustrates this idea. Con-
sider a two dimensional wing with a jet issuing from its

trailing edge. This system will produce a lift given by:

L= Jsin® +L; ‘ 1.1

Figure 1: Jet Flap

where Q is the rate of momentum outflow into the surrounding

medium.




The different arrangements of jets on the wing, their
origin, shape etc, give rise to the very large collection of
powered lift systems that has been studied, tested, and in
some cases applied to experimental aircrafts. The most thor-
oughly studied of all such systems is the one shown in Fig-
ure 1, knouwn as jet flap . The jet flap is seldom used as
shown in Figure 1, rather, configurations are used with
physical characteristics strongly related to the jet flap.

Such would be the case of the system shoun in Figure 2

Figure 2: Augmentor Wing

This is known as augmentor wing, where the lift is augmented
‘through entrainment. The augmentor wing is an ejector-type
configuration where a thick jet exits at the rear end of the
system. Such a thick jet results from the turbulente mixing
of the primary thin jet exiting at the trailing edge of the
wing with the entrained fluid. Althoug the jet is effec-
tively thick in this case, substantial understanding of the
aerodynamics»oi this system can be arrived at through the
analysis of the jet flap shouwn in Figure 1, used as a sim-

pler model.




The present study concerns itself with furthering the
analysis of a model problem which may help in the under-
standing of the physics of the type of high lift systen

shown in Figure 3,

Figure 3: Propulsion Wing

Here the operational principLe is the same as the one shoun
in Figure 2, only that now the ejector is located at a dif-
ferent position on the chord. The flow configuration in this
case is expected to be considerably more complicated than in
the previous case. In 1972 Galen Hu conducted flow visuali-
zation experiments of a configuration somewhat similar to
the one shoun in Figure 3, but without suction on the upper
surface. This system, which is illustrated in Figure 4
according to Hu's experiments, will be the central object of
this study and will be refered to as 'the airfoil with a
jet' or 'the airfoil-jet- free-streamline problem'.

From Hu's experiments one sees that the jet curves
backwards and that there is a vaguely definéd wake behind

it. Such a wake is turbulent and closed. Experiments also
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Figure 4: Wake in Airfoil with a Jet

indicate that the pressure inside such a wake is somewhat
less than the pressure in the free stream. In Hu's work, the
model sketched in Figure 5 was proposed for the study of

such a system:

airfoil free-streamline

wake

Figure 5: Simplified Inviscid Model

Here the jet is assumed to emerge from the lower surface of
the wing. It is also assumed that the jet is infinitely
thin, that the flow is incompressible and inviscid and that
there is a dead air region enclosed by the jet and a free-
stream line starting at the trailing edge. The pressure in
the dead air region was assumed to be constant and equal to
the pressure in the free stream. This leads to a semi~-infi-

nite, open wake.




In the current study this same model will be analyzed
further. A more realistic model should take into account the
fact that the wake is closed, this however, represents a
very great difficulty iﬁ the context of an inviscid model.
Different alternatives are considered in chapter 2, where
some consideration is given to the additional information
that would be needed to formulate a closed wake model. Using
this infinity wake model, Hu calculated the pressure dis~
tribution for different locations and.strengths of the jet.
The mathematical problem posed by the model consists oi
solving Laplace's equation in a two-dimensional exterior
domain whose boundaries are given by the airfoil, the jet
and the free-streamline. If the shapes of the jet and the
free-streamline were known, the problem_could easily be
solved using some appropriate method for sclving the
Laplace's equation in that particular domain. Those shapes,
however, are not known a priori, and they are, in fact, part
of the solution. The shape of the free-streamline should be
such that the pressure along it be a constant, equal to the
pressure in the wake. The shape of the jet should be such
that the centrifugal force due to its curvature be balanced
by the pressures acting on it.

Hu devised an approximate technique for solving this
problem consisting of using the method of singularities to
calculate the pressure distribution around the contour and

an iterative procedure to find the jet shape. In Hu's




approach the shape of the free-streamline was not actually
calculated, but rather it was assumed, drawn with the aid of
a french curve, and then incorporated in the problem. The
iterative procedure used to estimate the jet shape consisted
of replacing the jet shape with connected straight line seg-
ments and requiring that the pressure jump between both
sides of such segments be balanced at a discrete number of
points by the change of direction of the momentum vector of
the so represented jet shape. The shape of the jet shape is
then iterated upon, until the pressure and momentum change
are properly related. During fhis procedure the free-stre-
amline is assumed to be gnown and invariant, given by an
initial guess that satisfies the condition of tangency at
the separation point and behaves suitab}y at large distances
from the wing. Hu points out that, if the initially satis—
factory shape of the free-streamline is no longer acceptable
after the shape of the jet has been iterated upon, one can
repeat the procedure and make another guess for the free-
streamline shape. Using this technique, Hu calculated pres-
sure distributions on the airfoil for different jet loca-~
tions, settings and strengths. However, no aerodynanmic
coefficients were calculated.

In order to extract as much information as possible
from this simple mathematical model it is desirable to carry
out a parametric study of the effects on the aerodynanmic

coefficients of quantities such as jet strength, jet angle




and jet location. This requires the development of a more
flexible technique capable of computing the free-streamline
and jet shapes simultaneously. In this study such a techni-
que is developed in chapter 3. The basic idea underlying
this new procedure is that this boundary value problem can
be reformulated as a non-~linear optimization problem, in
which the objective function is a convex function of parame-
ters characterizing the shapes of the jet and the free-stre-
amline. The minimum of this function will occur for values
of the parameters corresponding to approximate jet and
free-streamline shapes.

The main difference between the method developed here
and the one used by Hu is the fact that the present method
is a general one capable of treating a‘variety of boundary
value problems where the position of the boundary is unknoun
a priori, and it is possible to construct an objective func-
tion such that the desired shape of the boundary corresponds
to the minimum of the objective function. In this work the
formulation of the method is executed in reference to the
particular type of cavity, or wake, that the inviscid model
for the airfoil with the jet contains. However many of the
considerations exemplified in the airfoil-jet-freestreamline
problem will be valid in a different class of problems also.

In addition to its generality and greater flexibility,
the present technique also shows substantial improvements in

computing the boundary shape over Hu's results. Concerning




the jet shape,.the improvement comes about through the rep-
resentation of the jet by cubic splines as opposed to con-
nected straight segments. Concerning the free-streamline,
the improvement is due to the much greater accuracy with
which the boundary conditions are satisfied there. In fact,
a behaviour of the free-streamline shape in response to
changes in the jet parameters is exhibited, which wasn't
observable in Hu's work.

The parametric study reveals that, for the particular
case 0of the jet located at the trailing edge, the presence
of the wake produces a very large loss of induced lift. 1It
is also observed that for a given location of the jet for
the wing at zero angle of attack, the position of the center
of pressure is chiefly a function of the jet strength only,
thus independent of the jet angle. This result happens to
hold exacly for the classical linearized analysis of the jet
flap. It is also found that there is a remarkably linear
relation between quantities such as lift, jet penetration
and free-streamline displacement and the angle of the jet,

even for rather large values of such angle.
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Chapter 11

THE MODEL AND THE MATHEMATICAL PROBLEM

2.1 MATHEMATICAL MODEL

As explained in chapter 1., the model depicted in Fig-
ure 5 will be solved using a new approach and studied param-
etrically. The following are important properties of the

model that will be explained in some detail:

1. The jet is idealized as being an infinitely thin lamina

with finite momentum flux and zero mass flux.

This way of representing two-dimensional jets was
developed by Spence.? Hu followed Spence's development. The
following relationship relates the radius of curvature of
the jet to the momentum and the pressure difference between

across the jet.
J
"R o

Here J is the jet momentum flux and R is the radius of cur-

vature of the jet, see Figure 6.




Figure 6: Thin Jet

Spence arrives at this result assuming that the flow
within the jet is irrotational and then letting the thick-
ness of the jet go to =zero. However, the condition of irro-
tationality is not necessary for equation 2.1 to apply. In
reality the jet is not irrotational, although it may still
be thougth to be thin. A simpler derivation of equation 2.1
that does not assume irrotationality goes as follows:

Consider a segment of the jet of lengthAs as shown in
Figure 7. The equilibrium of forces acting across the jet

requires
(P]-Pz)Ast =‘/éviviﬁdA 2.2

where AAA is the momentum flux tensor. The average of the

momentum flux tensor defined by

JA 6= fpivivir'ldA 2.3

where the integral is taken over the cross section of the
control volume shown in Figure 7. In the coordinate system
shown in Figure 7 the average momentum flux tensor is

assumed to have the form




where v is an average jet velocity. This form of the
momentum flux tensor amounts to the assumption that the
velocity of the fluid within the jet is essentially normal
to the normal cross-section of the jet. The eduation of
force balance can then be rewritten

(Py=Py)R3As = Jihy 8+ 3 5 2.5
and az=Aspp

since ﬁ ﬁz:2aﬁ3

(R -B)RsAs = 4, 5 A8, 2.6

hence

- = ) '
=R 7w 2,7

Figure 7: Thin Jet Analysis




Hence, identifying J with oo equation 2.1 is still
valid for rotational jéts as long as they are sufficiently
thin in order that R may be defined as the radius of curva-

ture of its trajectory.

2. The wake is assumed to have constant pressure, equal to
the pressure of the free stream, and be bounded by a free-

streamline starting at the trailing edge.

This assumption implies a wake of infinite length. The
assumption that the iree-stréamliné starts ét the trailing
edge is supported by photos taken from experiments that led
to the sketch shown in Figure 4. In reality the wake is
closed and it would be desirable to iormulate a mathematical
model with a closed wake. This proves to be quite difficult
due to the following fact: It was shown by Birkhoif and
Zarantonello3 that "a closed wake with constant pressure
lower than the pressure at infinity is mathematically impos-
sible". This is shown to be a property of wakes in inviscid
ideal flow. What this fact implies is that if the wake is
{o be closed the pressufe in it cannot be uniform and lower
than the pressure of the free-strean. If the pressure is
assumed to be less than the free-streamline pressure some-
where in the wake, then it will necessarily have to vary
inside the wake if a.méaningiul_solution is to be obtained.

This means that formulating a closed wake inviscid model




would require assumptions as to how the pressure varies, to
do this a great deal of yet unavalaible experimental data
are needed,

It a thin jef is a boundary of a wake with constant
pressure equal to the pressure of the free-stream, the jet
equation can be expressed in terms of the velocity potential
~as follows: 1In the sketch in Figure 7 it is assumed that
the wake exists in region 2 and that in region 1 there
is a potential flow field consisting of a uniform field ot
velocity U plus a disturbance field of velocity V¢ .

Bernoulli's equation is

\J

2 -
P= Py, + %p(u.,-(vmu,o)’) 2.8
on side 2
p2 = Poo 2.9

hence equation 2.1 becomes

1 2 0.)2)= J,,6 .
FP(U%-(V6+0.)") = I 2.10
C . .. . & -dyd
Defining the momentum coefficient of the jet by it 7
the jet equation becomes:
2 -
1 (V¢+U°°) = £L 2.11
u2 R
00

3. The model ignores entrainment.




Entrainment has the effect of altering the flouw field
in a way sketched in Figure 8, where the flow pattern shoun
is due to entrainmentAalone. This eflect is qualitatevely
similar to what would be obtained by distributing sinks
along suitably chosen boundaries, this distribution of sinks
would give rise to an additional flow field, whose stream-
lines are sketched in Figure 8. This flow is superposed to
the flow free from entrainment, and can pressumably alter
the pressure distribution appreciably. Such distribution of
sinks to represent entrainment constitutes a standard proce-
dure, but requires experimental results indicating how the

turbulent entrainment takes place for each configuration.

> ™

—
~

Figure 8: Flouw Eield due to Entrainment

2.2 MATHEMATICAL PROBLEM
Figure 9 shows the domain where the problem is to be

solved.

Defining the velocity at an arbitrary point in € to be

given by




0

FolX)

Figure 9: Mathematical Model

the problem consists of solving Laplace's equation
2 .
Ve =0 in @ 2,13
subject to the following conditions:

Tangency at thg boundary
Véi =-JA on E(X)=0 , g,(i'):o,si(z)=o 2,14
Constant pressure on free-streamline
IV + Unol = IUml on F(X)=0 ' 2.15

This equation will also be called the 'free~streamline con-
dition'.

Balance of forces across the jet

- 2 -~
1 IV¢+U°°I = SL 2.16
u2 R
This equation will also be called the 'jet condition'. The

method of solution is discussed in the next chapter.
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Chapter 11I

SOLUTION PROCEDURE

The method of solution presented in this chapter is of
application to a class of boundary value problems of which
the airfoil with the jet is a particular example. Among
such are problems involving boundaries of cavities bounded

free-streamlines, jets or both.

3.1 FINITE WAKE REFORMULATION

The exact mathematical problem described in chapter 2
can be reformulated into one with a finite or truncated wake
as shown in Figure 10, where the part Qf the contour denoted
by "C" is assumed to either exteﬁd to infinity or to encir-
¢cle the airfoil at a large distance,. Part of the domain
in Figure 10a overlaps with the domain © in Figure 10b, and
so does part of the contour. Figure 10b shows a contour that
has a finite wake. The reformulated problem using the con-
tour shown in Figure 10b is then

Laplace's equation

Tangency condition

VoA = -Qa" on yzy(x), E(x)}0 , y:yi(x) 3.2




Boundary condition on "“C"

Vbdzgx) on C 3.3

Free—-streamline condition

Ive+00= 1Q) or y=y(x) 3.4
Jet condition
- 2 ". :
1 - 1ve+Q” - S oon yzy(x) 3.5
luj2 R ! '

Figure 10: Finite Wake Contour

The function €X)in equation 3.3 is taken to be identical
to the gradient of the solution of the exact mathematical
problem , evaluated at the part of the contour denoted by

"c* in the finite wake problen. In this case the solution




.of the problem above will be identical to the solution of
the exact mathematical problem in the overlapping part of
the domains. By virtue of this fact an approximate solution
of the so reformulated problem will also provide an approxi-
mation to the solution of the exact mathematical problem on
the contours that both have in common. The steps that fol-
low show houw the constéuction 0of such an approximate solu-
tion is achieved. Since in this process the spline functions
will be used, the concept of spline interpolation will be

brieily described first.

3.2 SPLINE INTERPOLATION

A cubic spline functionS@m) is defined in the following

way : given the ordinates q‘. qz. 9, and the slope e

define S(g;x) such that

S(;n) = ¥ 3.6

S@;x) = v, ' 3.7

‘_’_f’(“x_“‘)]: Gy 3.8
Xn

Sai%) € @ in f,%]

5@;x) € B(x) in Pixinl 3.10




as shown in Figure 11.

Figure 11: Spline Function

Cubic splines have been studied in great detail and found to

have striking convergence characteristics"

3.3 FINITE WAKE PROBLEM WITH APPROXIMATE CONTOUR

If splineviunctions are used to approximate the free-
streamline and the'jet part of the contour shown in Figure

10b, the problem can be expressed as follows, with the con-

tour described in Figure 12

Q*: a3, Gns+ 3.11
ai:ql, ol
N L) ni+] 3.12
q:4quUq® 3.13
2 . '
Yéb=0 in 3.14

VoA =-Ugh  on yz§y(dix) , F{x)=0 | y= Sl(qi-,X) 3.15

vVeé=¢e(X) on C

3.16
F(q) minimum 3.17
= i Ivo+el’_ &
F@) = 1V +Usl -1 | +  fI1 - e - —RL 3,18
on yz s%ax) on y:s)i(qiix)

- 20 -




Fa(%)=0

e
NS :

i
an qr'i+l

Figure 12: Approximate Contour

In this problem the parameters q characterize the
boundary shape and conditions 3.4 and 3.5 have bheen
replaced by the requirement that the function F(gq) be mini-
mized. F(q) is constructed adding the norm of the inbalance
0of the free-streamline condition, eq. 3.%, to the norm of
the inbalance of the jet condition, eq. 3.5. These norms

will be discussed in detail in chapter 4,




Since the q's characterize the contour, they also char-
acterize tﬁe flow field and hence F is a function of q. The
rationale behind this approach is that the better y (x) and
y (®) in Figure 10b are approximated, the more closely the
free-streamline and the jet conditions will be satisfied on
the approximate boundary. By taking an accurate enough
description of the boundary it should be possible in princi-
ple to make F(gq) arbitrarily small for the right value of

the q's.

3.4 THE NON-LINEAR OPTIMIZATION APPROACH

A crucial step in setting up the problem for solution
consists in recognizing the fact that the boundary condition
on the "C" part of the boundary can be dropped, namely that

the fact that

vVéz&X) on C 3.19

can be ignored and still an approximate solution to the
truncated wake problem can be obtained. The justification
for doing 50 lies mainly in computational experience and on
the fact that sufficiently far behind the airfoil the exter-
nal flow field remains relatively unperturbed. Some of the
calculations that will be shoun in chapter 4 confirm this.
assumption.  If this is done, the problem can be viewed as

follous:




Minimize the function F(q) where the information needed
for its evaluation is obtained from the solution of the

boundary value problen

V%b= 0 in 3.20
Vo = - éﬁ' on I’ 3.21
¢ —» const atoeo 3.22

in the domain shown in Figure 13.

4]

Figure 13: Truncated Contour for B.V., Problem

This constitutes an unconstrained non-linear optimization
problem where the objective function is F(gq). For each eval-
uation 0f the objective function there is a boundary value

problem to be solved.

3.4.1 Solution of the Boundary Value Problem

The method used for the solution»oi the boundary value
problem needed in the evaluation of F(q) is the method of
singularities using source panels of constant strength dis-
tributed on the boundaryS, as shown in Figure 14.
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Figure 14: Source Panels on the Boundary

By enforcing the boundary conditions at the center of
the panels a set of algebraic equations for the intensities
of the sources @ is obtained. Once these are knoun, the

velocity field can be computed at once.

3.4.2 Solution of the Minimization Problem

The task of finding the value of the variabies q that
minimize the function F(g) is acomplished using a Quasi-Neuw-
ton algorithm for non-linear unconstrained optimization® The
optimization procedure is started with an initial estimate
of the independent variables q. After this initial estimate
is provided, a systematic search in q space is carried out
until an approximate estimation of the minimum is reached.
A description of the method of minimization will be given
next.

The systematic search for the minimum in g space con-

sists of the following steps:

i) 1t ik denotes the present value of the variables g, a

direction of search in g space, denoted by Ek is. found.




ii) A search along the direction Ek is conducted to
approximately locate the minimum of F(gq) along such direc-
tion. The value of q for which that approximate minimum is
found is denoted by qhq
iii) Starting at position EHI in q space, steps i and ii are
repeated until a satisfactory approximation to the minimum

of F(q) is reached. Each sequence of steps i and ii consti-

tutes an iteration.

3.4.2.1 Direction of Search
To illustrate how the direction of search 5k in q space

is found, consider a quadratic expansion of F(q) about Ek :

F@#s) = F@) +gs + 1dGs 3.23

q, and Gy, is the

where gk is the gradient of F(q) at q

Hessian matrix of F(q) evaluated at q ﬁk. The expression
for the quadratic expansion of F(g) has a stationary point

at g = Ek+ E( determined by solving the system of equations:

Gy = -9, | 3.24

This formula provides the direction Bk in which a stationary
point of the local approximation is to be found. The Quasi-
Newton method utilizes a similar formula to determine the
direction of search, in which an approximate Hessian is

used. An exact expression for the Hessian matrix cannot be




used here because the exact derivatives of the function F(q)
are not available.

The approximation to the Hessian matrix at iteration k
is denoted by By and the direction of search at iteration Kk

is obtained from the solution of the system of equations
By Ry =-9, 3.25

The matrix B, is updated at each iteration in a way that, as
the calculation moves in q space, it acquires progressively
more information about the curvature of F(q). At the first
iteration the approximation to the Hessian is taken to be

the identity matrix,
1 'k=- 9, 3.26

which means that the first direction of search will coincide
with the opposite direction of the gradient of F(q) at ﬁk.
In thé first iteration then, the direction of search is the
steepest descent direction. To update B after the first
iteration, the Broyden—-Fletcher-Goldfarb-Shanno (BFGS)

update formula is used, given by

' T
Bk+l = Bk - __]._Bks sIB, + .l_.Y y 27
k ¥k k k "k 3.
sk Bk Y S

where s, = q“q - g i The gradient of F(q)

., an y =

9lw-l
is computed using finite differences. This is believed to be
the most effective way of computing the direction of search

in the Quasi-Newton method.




3.4.2.2 Univariate Search

Once the direction ﬁk is determined, an approximate
minimum of F(q) dlong it is found. This is acomplished using
the so-called safeguarded parabolic interpolation along'x‘:k ’

in which the minimum is found within a prescribed acguracy.
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Chapter 1V

IMPLEMENTATION OF THE METHOD

In this chapter the general method described in chapter
3 is applied to free-streamlines and to the problenm of a jet
issuing from a plane into a uniform stream. For the latter
analytical results are available, which are used for compar-
ison with the presente method.

A}

4.1 DEFINITION OF F(Q)

In chapter 3 the objective function F(gq) was defined as
a norm of the imbalance of the iree-streamline condition
plus the norm of the imbalance of the jet condition. Refer-
ing back to Figure AZ. and if the boundary value problem
3.11 to 3.18 were to bhe solved exacly, a suitable defini-

tion for F(gq) would be:

2 = 2 =2
F{a) = fH(s)(IV¢+U,°I-IU°°I)ds + fe(s)(p% - %ds a1

free-streamline jet

where the integrals in eq. 4.1 are line integrals and G(s)
and H(s) are positive weight functions. With this definition
F(q) is a smooth function, on which the Quasi-Newton algor-

ithm can be applied.




In implementing the method, a discrete form of eq. 4.1

is used, the objective function is given by:

o0

2 - ~ 2
F(q):Z Hi( |v¢‘+0w|-|ﬁ°,,|) N ZG;(I - 'V"’Ii* lz._'f - (;i')M; 4,2
. !
jet

free-streamline

where G, H, are weight factors, V¢; is the gradient of the
perturbation potential evaluated at the control point of
panel i and R is the radius of curvature of the jet at the

absisa of the control point of panel i. The interval Af is

the lenght of panel i, as sketched in Figure 15

Figure 15: Geometrical Data in F(q)

Weight factors are included in order in order to investigate

the flexibility of the definition of F(q).

y.2 INDEPENDENT VARIABLES AND PANEL SPACING

As explained in the previous chapter the variables q
are ordinates describing the position of the points of the
free-streamline and the jet where the interpolating polyno-
mials match. In order to achieve a good description of the

boundary the points characterized by q are taken to be more




closely spaced in parts of the boundary where the curvature
is higher. Once the characterization of the boundary
through the variables q is established, the panels have to
be arranged in a way that changes in the flow field due to
‘wiggles' that may exist in the interpolating polynomials be
properly captured. This means that a minimum number of pan-
els must exist in between points characterized by the q's.
It was found by computational experimentation that there
should be at least three panels in between such points. They
may or may not be equally spaced. In all the problems dealt
with here, the part of the contour that is to be computed is
such that its curvature decreases very rapidly dowunstream,
thus allowing for the panels to be much longer in the down-
stream part of the contour. It was found that a convenient
way of distributing the panels is by specifying that their
projection on the horizontal axis be given by the expres-

sion:

-—] )
Alcosa; = Ia| AL 4.3

with b > 1 and j the index characterizing the panel of
lenght Afj » in the way shoun in Figure 16

AL

Al

Figure 16: Panel Distribution
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This arrangement has the advantage that slight changes in
the constant b allow for rather large changes in the lenght
of the contour so described keeping the number of panels
constant. If the number of panels in between the points on
the boundary characterized by the q's is kept constant, eq.
4.3 will also give the distribution of absisae where the
q's are specified. This is found to be Quite a satisfactory

way of describing the contour.

4.3 TRUNCATION LENGTH

The reformulation of the ptﬁblem with a semi-infinite
boundary into one with a finite boundary explained in chap-
ter 3 leads to a problem with a truncated boundary. The
overall length of the resultant contour will be called trun-

cation length, as showun in Figure 17

. T -

Figure 17: Truncation Length

The interest here is to determine with reasonable accuracy
the flow field in the proximity of the body from which jets
are ejected or free~streamlines originate. The truncation

length has to be chosen in a way that such accuracy is




isured. in this regard each particular problem has to be

considered individually.

4.4 FREE-STREAMLINES

4.4.1 Mathematical Properties

The following are properties of free-streamlines given

by the mathematical theory of wakes and cavities.

i) Slope at the point of separation: This slope equals the
slope of the solid contour from which the iree-streamline

separates.

ii) Radius of curvature at the point qf separation: This
radius is equal to infinity or zero, depending on wether the
separation point is an inflexion point of the boundary or
not. This means that, unless the separation point is an
inflexion point, the free-streamline will have singular

behaviour at the point of separation.

iii) Behaviour at infinity: Infinitely far downstream, the
free-streamline will be paralell to the direction of the

velocity of the unperturbed flow field.




4.4.2 Computation of Free-streamlines

A practical example of free-streamline computation
using the minimization approach is shown in Figure 18. The
free-streamline is assumed to separate at point (a) on the
boundary of the semi-infinite barrier. In this case the
point of separation is clearly an inflexion point on the
boundary, indicating tgat the curvature of the free-stream-
line there is zero. In this problem the spline interpolation
behaves very well chose to the separation point. With a
rather crude distribution of panels the boundary condition
for the velocity on the free-streamline is satisfied to
within a feuw per thousand. This example serves as a test
for accuracy showing how closely the constant-pressure con-
dition on a free-stremline can be satisfied using the pres-

ent procedure.

Figure 18: Computed Free-streamline.




4.5 JET TRAJECTORIES

4.5.1 Mathematical Properties

In this section general properties of 2-D infinitely
thin jets issuing from bodies inmersed in a uniform stream
are pointed out. The description of the jet in the vicinity
of its exit and infinitely far dowunstream should be inde-
pendent of the particuar shape of the body from which it
issues. This idea is illustrated in Figure 19, where, if the
jet exit region is magnified, the jet is seen as emerging

from a plane.

Figure 19: Jet Exit Region

Knowledge of this asymptotic behaviour is of use in the
implementation of this method, since it allows one to
replace the interpolating polynomials with analytic expres-
sions in regions where the polynomials are likely to behave
poorly. Such will be the case of a jet issuing from a hori-
2zontal plane normal to a uniform stream. The spline interpo-

lation will behave poorly close to the exit, where the slope

'oi the jet is large, and higher density of variables q would




be needed to improve the behaviour of the interpolation. It
will explained later how this, in its turn, uwould affect
adversely the scaling of the objective function. It is then
desirable to have an analytic expression for the jet in the
neighbourhood of the exit. It is also plausible that in
improved versions of this method, the asymptotic behaviour
of jets at infinity could be incorporated, by assuming that
the jet far downstream has the correct mathematical behav-
iour, as opposed to the simplified form assumed in this
study, as will be shown later.
4.5.1.1 The Jet Shape élose to the Exit

As discussed in Chapter 2 the equétion of the jet tra-

jectory is given by

4.4

o Ot

% "3 =

where pl_p2 is the pressure jump across the jet. This
quantities are illustrated in Figure 20, picturing a 2-D jet
emerging from a slot in a horizontal plane and into a uni-

form stream.

Ueo 1 iet
Yy
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B
X
Figure 20: Two Dimensional Jet into a Uniform Stream




If the preséure jump across the jet were known, equa-
tion 4.4 could be solved for the trajectory. In general the
pressure on side (1) in Figure 20 is & function of the tra-
jectory itself. This is not the case at the exit, where it
is physically clear that a stagnation point exists, and the
pressure on side (1) of the jet equals the stagnation pres-
sure. This fact allows to integrate equation 4.4 and find an
approximate form for the jet valid close to the exit. In
terms of the velocity on side (1) of the jet, equation 4.4
can be rewritten:

1 - 2 (1+y‘25%
u2 y"

éi : 4.5

where y denotes the position of the jet. If the exit is
located at the origin of coordinates and exits vertically
we have that, as %0 and y—» 0, v—=20 .and y'—» o0 and equa-
tion 4.5 becomes

)= v
which admits the solution

Y =/3?T;_ 4.7
this being the form of the trajectory very close .to the
exit. For a jet exiting at an angle B as shown in Figure 20

we have

2 2
= C, cot ;. T+ecot' P =2 cof
e xcom-‘-c';i—"—g v 26 sing " i sv'mg 48

These expressions for the jet close to the exit can be used

to suplement the spline interpolation, which for the case of




very large slopes may not produce a good description of the
jet there. From equation 4.5 it is seen that the radius of
curvature at the exit is given by
R , 4.9
exit = TZ .
é|
which is of course finite fo all q >0

4.5.1.2 Shape of the Jet at Infinity

In the airfoil with a jet problem, the information
about how the jet behaves far away from the exit can be
taken from the problem depicted in Figure 20. The reason for
this is that even if the jet is in a different configura-
tion, at sufficiently far away distances from the exit the
only disturbance produced on the flow field is due to the
jet alone. Ackerberg? solved the problem shown in Figure 20
using matched assymptotic expansions and gave the following

expression for the jet at infinity

2
2

sl I 2
2% ~ M - l.A2|n g.y_/__c'-+_2_t + o(1) 4,10
Cl 2A 2 2A
A= const.

This behaviour indicates that infinitely far downstream the

jet will be infinitely far apart.

4.6 COMPARISON WITH ANALYTICAL RESULTS
The analytical results obtained by Ackerberg’? for the

jet issuing normally into a uniform stream is compared with




the results obtained using the minimization approach. The
computations presentgd next were performed using Ei = 0.5,
The way the problem was solved was by assuming a refletion
of the jet on the plane from which it exits and thus obtain-
ing a symmetric contour. As it was the case with the free-
streamline discussed in section 4, a rather crude distrib-
ution of panel was used. The panels were assumed to be
equally spaced between the q's and the splines were extended
to the very end of the contour. Figure 21 shows the trajec-
tories obtained for two different lengths of the resulting
truncated symmetric body. It is observed that close to the
rear end the jet exhibits the wrong curvature, having an
inflection point. This phenomenon is due to end effects and
doesn't appear to disturb the shape of the jet at closer
distances from the exit. The fact that this occurs can be
attributed fo the small influece that such a distortion of
the jet far downstream exerts close to the exit. This means
that the velocity field in the forward part of the jet is
not substantially altered by the change in truncation
length.

Figure 22 compares the present results with the ones given
by Ackerberg. It is seen that, even with a crude distrib-

ution of panels there is satisfactory agreament.




Figure 21: Calculated Jet Trayectories
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Figure 22: Comparison with Analytical Calculation




Chapter V

THE ARIRFOIL-JET-FREESTREAMLINE PROBLEM

In this chapter the method of solution is applied to s
computational model. The organization of the parametric
study is sketched and considerations regarding accuracy are

discussed.

5.1 COMPUTATIONAL MODEL

The main objective of this parametric analysis is to
isolate the effects of a few parameters related to the jet
and not to the airfoil per se. It is then convenient to use
a very simple airfoil with no camber sﬁch that only proper-
ties related to the jet will be exhibited. Figure 23 shous
the airfoil chosen for the calculations. It is a symmetric
airfoil with a maximum thickness of 10%, an elliptical nose

extending to 25% of the chord and a blunt trailing edge.

-

Figure 23: Computational Airfoil




Such an airfoil provides a particularly simple boundary to
treat. The fact that it has a blunt trailing edge is of no
concern here since no Kutta condition is satisfied in this
case. Using this airfoil the problem in question will look

as shown in Figure 24

Figure 24: Computational Model

5.2 PANEL DISTRIBUTION, INDEPENDENT VARIABLES,WAKE LENGTH
The panel distribution and the location of the inde-
pendent variables on the computational model are shouwn in
Figure 25 . On the jet and free-streamline the distribution
is laid out according to the description given in section
4.2. A suitable number of panels was found to be about 60,
and the total number of independent variables q about 10.
The free-streamline has a more easily describable shape,
hence the number of independent variables needed to charac-
terize it is lower than the number of independent variables

needed to characterize the jet.




=1
t
an’q,

Figure 25: Distribution of Panels and Independent Variables

The truncation length is determined by observing hou
the aerodynamic coefficients vary as the truncation length
varies. Figure 26 shows a typical variation of the lift
coefficient as a function of the truncation length measured
in multiples of chord length. It is clear from the Figure
that beyond a certain length the change in the aerodynanmic
coefficients is quite small. Such a change is less than one
percent when the truncatione length varies between 6 to 10
chord lengths. The length chosen for the parametric analysis

is about 8.5 chord lengths.

1.2
c'_i 1.1F /
1 i A A A
R 1.0 2 3 6 8 10 2

Figure 26: Lift vs. Truncation Length
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5.3 THE PARAMETRIC ANALYSIS

5.3.1 Initial Guess

As mentioned in 3.4%4.2, in order to start the search for
the minimum of the objective function an initial estimate of
the value of the independent variables at the minimum has to
be provided. This amounts to a guess about the shape of the
free-streamline and the jet. A first guess for the shape of
the free-streamline is to assume that it is a straight line
parallel to the airfoil. A first guess for the jet shape can
be taken from the trajectory of a jet ejecting from a hori-
zontal plane into a uniform st;eam as discussed in 4.6.1.
With this initial guess for the unknown part of the boundary
a series of minimization problems is solved, one for each of
the several values of jet strength, jet angle and jet loca-
tion. The output of each problem serves as initial guess to
the next, in the way shown in the follouwing chart.

The motivation for this particular arrangement is that
a given relative change in the jet strength produces much
less alteration in the shape of the wake that the same rela-
tive change in the jet angle. Once the parametric analysis
is completed for one position of the jet along the chord,
the available results become excellent initial guesses for
the jet at different positions. The reason for this is
that, all other parameters remaining constant, the geometry

of the jet is very slightly modified as a result of changing




first guess
¥
set location
1Y
set angle
1)
reset guess change strength
|
solve

1
N no completed strength?

yes

change angle

4

L completed angle?

1 yes

change location

Figure 27: Series of Minimization Problems

the position o0f the jet exit along the chord, except for the

coresponding chordwise translation of the jet shape.

5.3.2 Local Minima

If the initial guess is not reasonably close to the
final ansuwer, the procedure may converge to a physically

meaningless result. Figure 28 shows such a case.

Figure 28: Non-physical Solution




The implication of this fact is that, in general, the
minimum of interest is a local one. Non-physical results are
readily identifiable since the minimum value of the objec-
tive iunction there is considerably larger than in normal
cases. This phenomenon seldom occurs, and it was never
observed when the initial guessed where obtained as

described in the previous section.

5.3.3 Characteristics of the Optimization Problem

i) Size of the Problem: This is determined by the number
of independent variables. A typical such number is 108, which
means that the problem is of rather small size.

ii) Cost of Function Evaluation: This is a measure of the
amount of computation involved in evaluating the objective
function at a given point in g space. In this case this cost
is high, of the order of 0.8 sec. of CPU time on the IBM
3033 processor. Lowering this cost would be a considerable

improvement on this method, as will be discussed later.

iii) Scaling: A measure of the scaling of an optimization
problem is given by the relative magnitude of the different
components of the gradient of the objective function and it
has considerable importance in the number of iterations
needed to reach a solution. In this case the scaling is
poor, some components of the gtadienf bein§ much larger than

others.




iv) Typical Number of Iterations: Between 8 and 15.

v) Typical Number of Function Evaluations: Between 70 and

150.

vi) Number of Stationary Points: More than one, however the

one of interest is readily identifiable.

5.4 COMPUTATION OF THE AERODYNAMIC COEFFICIENTS
Once the pressure distribution around the airfoil is
known, the aerodynamic coeiiicienfs are calculated by inte-
grating.the pressure coefficient around the airfoil. If the

pressure coefficient is defined as

The lift coefficient is given by:

Q= -1 fconds 5.2

The moment coefficient is given by:
. Cmi - —.!.. .g_cpﬁds 5.3

In these formulas the integrals are taken over the surface
of the airfoil, as shown in Figure 29

The position of the center of pressure:
Xep = ¢ Cm 5.4
CL
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Figure 29: Computation of Aerodynamic Coefficients

5.5 ACCURACY CONSIDERATIONS
The accuracy of the final results is expected to be
within 10 percent for the aerodynamic coefficients. Some of

the aspects affecting accuracy are discussed next.

5.6 EFFECT OF THE DEFINITION OF F(Q)

~ AR M Al S

As pointed out in section 4.1 the definition of F(q) is
not unique., The two most relevant factors in its definition

are:

i) Choice of the weight factors G; , H, : If these factors

are set equal to unity, the discrete form of F(q) becomes:

_F(Q)=VZ(|V¢+U°°I-|U |)i +E( 'V‘M“’J %—)2&-“; 5.5

1
free-streamline

If the weight factors are chosen to be the inverse of the
panel length, namely G; =~J— » H = — , the definition of
. £ Al

F(q) becomes:




2 a2
F(@) =Z( 1VS;+ Uy _|'Gw|-) . 2( - |vd>,:u,°| _ %L) 5.6
free-streamline jot

Also a combination of those alternatives can be used to

define F(q).

ii) Length of the Boundary Involved: The discrete form

for F(q) does not need to be calculated including for the
contributions of all the panels that describe the jet or the
free~streamline. Some can be omitted without substantially
altering the final result. The fact that this is possible
allows one to leave out panels in areas where the calcula-
tion is inaccurate, such as close to the exit of the jet.
Figure 30 shows hou the free—streamling and the jet enter
the computation of F(q). Only the panels lying on the solid

line are used.

C

Figure 30: Part of Boundary Used in Computation of F(q)

The last 2 or 3 panels in both the free-streamline and the
jet are not included in order to avoid end effects. The

first few panels tclose to the exit of the jet are not




included for two reasons: On one hand, because, as mentioned
before, the calculation of the velocities is inaccurate
there, and on the other hand the scaling of the objective

function is considerably improved if those panels are omit-
ted, which allows to reach a solution with a lower number of
iterations. The reason for this improvement lies in the fact
that, for changes in the independent variables g which are

closer to the jet exit, the corresponding changes in the
curvature of the jet are much larger than the changes asso-
ciated with variables far away from the jet exit.

The following table shows the typical behaviour of the
aerodynamic coefficients‘ior different definitions of F(q)
and for different number of panels omitted close to the

exit.

TABLE 1

Definition and Evaluation of F(q)

toomed |3 3 3 | s 7
Gi .}4&ﬁ }4&& 1 54&& 548@
H; Vas 1 1 YL, | Ay
€y, 1152 | 1152 | 1158 | 1150 | 1152
Cm; |(-0.330 | -0.330 | -0.332 | -0.329 | -0.330




5.7 EFFECT OF THE IMPLEMENTATION OF THE PANEL METHOD

The two main aspects of the panel method implementation
that concern accuracy are the treatment of internal sharp

corners and the density of panels.

5.7.1 Rounding of Internal Corners

As pointed out by HessS if the boundary where the pan-
els are laid out has internal sharp corners the solution is
inaccuraie there. In this case it was found that unrealisti-
cally high velocities are computed close to such corners.
This drawback is a property of the singularity representa-
tion of the solution and cannot be eliminated by increasing
the density of panels close to the corner. The standard pro-
cedure is to introduce a rounding oi such corners. In the
case of the airfoil-jet-freestreamline problem an internal
corner exists right at the exit of the jet. A rounding is

introduced as shoun in Figure 31

Figure 31: Rounding of Internal Corner

The effect of the sharp corner is localized and affects

the shape of the wake very little. It does however affect




the aerodynamic coefficients. Figure 32 shows how the lift
coefficient for a typical case varies as the radius of the
rounding of the corner changes. This shows that, once the
corner is slightly rounded, further increase in the radius

of rounding will not affect significatly the results.
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Figure 32: Effect of Radius of Rounding

5;7.2 Effect of Density of Panels

i) Density of panels in the wake area: This density
affects the accuracy with which the jet and the free-stream-
line shapes are computed. Most of the calculations where run
with about 20 panels on the jet and about 15 panels on the
free-streamline. 1If this number is doubled, it is observed
that the lift and moment coefficients undergo a change of
less than 5%. Hence the density of panels used in the uake

area can be considered acceptable.

ii) Density of Panels on the Airfoil: As shoun in section

4.8, the aerodynanmic coefficients are obtained by integrat-




ing the pressure coefficient around the airfoil, hence the
density of panels on the airfoil is expected to affect the
accuracy. The region where the density of panels is the most
important is the nose, since it is there that the steepest
gradients of pressure occur. Figure 33a shows the paneliza-
tion of the airfoil nose that was used in most of the calcu-
lations. Figure 33b shows a much morne dehse ditribution of
panels on the airfoil nose. The difference of the aerody-

namic coefficients between the two cases is less than 1%.

Figure 33: Distribution of Panels on Airfoil

5.8 EFFECT OF THE JET PARAMETERS

For the sake of computational simplicity the number of
independent variables q and the number of panels was kept
constant in the process of the parametric study. This means
that there is different accuracy between the results corre-
sponding to different values of jet strength and jet angle.
One measure of accuracy is the minimum of the objective
function. The closer to zero it is, the more closely the

free-streamline and the jet conditions are satisfied. Fig-

ure 34 shows such minimum for different intensities and jet




angles. The procedure is less accurate for weak shallow
jets, due to the inability of the spline function to prop-

erly capture the great change of curvature in such jets.
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Figure 34: The Minimum of the Objective Function.
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Chapter VI

ANALYSIS OF THE RESULTS

In this chapter the aerodynamic properties of the air-
foil with the jet are analyzed and compared with the proper-
ties of two other related systems. The analysis is carried
out for the airfoil at zero angle of attack and for differ-

ent values 0of the jet intensity, angle and location.

6.1 RELATED SYSTEMS

Figure 35 shows, in addition to the airfoil with a jet
studied here, two other systems that have some characteris-
ties in common. Those are the jet flap and the supercavi-
tating jet-filapped hydrofoil. The linearized form of these
two problems have been solved analytica11y25. the lineariza-
tion having been obtained assuming that the angle of ejec-
tion is small. Figure 35¢ shous the system object of study
here when the jet is located at the trailing edge. This can
| also be thought of as the jet flap problem with a separation
region starting at the trailing edge. Although this case
would not occur in practice because the jet would prevent
separation, insight in the physics can be gained by compar-
ing these two systems. The supercavitating hydrofoil differs

from the airfoil with the jet in that the free-streamline




bounding the cavity is assumed to start at the leading edge.
This system has application in high speed ships, where such
assumption is plausible. Its comparison with the present
case will reveal remarkable similarities. In the analysis
that follow a comparison between<the three systems will be

made.

6.2 WAKE SHAPE AND VELOCITY DISTRIBUTION

Selected wake shapes for the case of the jet at the
trailing edge are shown in Figure 36 and 37. Here it is
clearly seen that a relative change in the angle of the jet
produces greater change in the shape of the wake and the
velocity distribution that the same relative change in the
strength of the jet. It is observed that, as the strength
or the angle of the jet increase, both the penetration ot
the jet and the deﬁarture of the free-streamline from the
horizontal axis increase. This departure of the free-stre-
amline had not been observed in Hu's calculation because of
the way he estimated the position of the free-streamline.
Figures 38 and 39 show similar results for the jet at 50% of
the chord. It is observed that the shape of the jet and of
the free-streamline are only slightly different from the
case with the jet at the trailing edge, the jet trajectory
just being displaced towards the leading edge by 50% of the

chord.




Selected velocity distributions are shown in Figures 40, u4t,

42 and 43.

6.3 AERODYNAMIC COEFFICIENTS AND CENTER OF PRESSURE

As mentioned in chapter 1, the forces acting on the
airfoil as a result of the presence of the jet are caused by
tuo different factors: asymmetric distribution of pressure
and momentum ejected from the airfoil in the jet. The lift
due to the pressure distribution alone will be called
induced lift, denoted by CH . The total lift coefficient is

then given by

.C|_ = CLi + Eclsine
where 6 1is the angle formed by the jet at the point of exit

with the direction of the free-stream.

6.3.1 Jet at 100 % of the Chord

In Figure 44 it is shown how the induced lift coeffi-
cient varies as a function of the jet strength for different
values of the jet angle. Figure 45 compares the induced 1lift
with the induced lift produced by the jet flap. The differ-
ence between the two can be viewed as the loss that a jet
flap system would suffer due to the presence of a wake
starting at the trailing edge. Such a loss is quite consid-

erable, being of the order of 2/3 of the jet flap induced

lift.




Figure 46 shows the total liit coefficient as function
of the jet angle, for different jet strengths. This Figure
shows a remarkably linear relation, even for rather large
angles of the jet.

The position of the center of pressure, which is
defined as the point of intersection between the resultant
force acting on the airfoil and the chord, is sketched in
Figure 47 as a function of the jet intensity for tuo very
different values of the jet angle. It is seen that the jet
angle has very little effect on the location of the center
of pressure. In the linearized analysis of the jet flap and
the supercavitating jet-flapped hydrofoil the position of
the center of pressure turns out to be strictly independent
of the jet angle. The center of pressure for the airfoil
with the jet, calculated at a representative angle B =40
is compared with the center of pressure of the jet flap in
Figure 48. As the strength of the jet increases, the center
of pressure in the airfoil with a jet moves towards the
trailing edge much more quickly than in the case of the jet
flap.

6.3.2 Jet at Other Locations on the Chord

The change undergone by the induced lift as the jet is
moved to different chord locations is shown in Figure 49.
The most important fact about this result is that the rela-

tive change in induced lift as the jet position changes is




rather small, and for shallow jets it is almost negligible.
This means that the total lift is very weakly affected by
the jet location. Regarding the position of the center of
pressure, the characteristics observed in the previous sub-
section still exist for the jet at different locations.
This is shown in Figure 50. When the jet is located at the
quarter of the chord the position of the center of pressure

remains almost independent of the jet strength and anglé.

6.4 EFFECTIVENESS OF THE JET

A measure of the capability of the jet to produce 1lift
is given by §g=, called jet effectiveness. Figure 51 shous
the effectiveness of the jet for the three related systems.
The present case, for a shallow jet is very close to the
supercavitating hydrofoil in this respect, the jet in the
jet flap system, on the other hand, is much more effective
than the jets in the other two systems. In view of what was
pointed out in the previous section, the effectiveness of
the jet will be almost independent of the jet location along
the chord. Figure 52 shows how the derivative of the moment
coefficient with respect to the jet angle varies for differ-

ent jet intensities and jet locations. Once again, a close

similarity with the supercavitating hydrofoil exists.




6.5 LINEARITY

In a linearized analysis of the airfoil-jet-freestream-
line problem the penetration of the jet and the departure of
the free-streamline from the plane of the airfoil would be
considered to be linear functions of a suitably chosen small
parameter. The obvious parameter in this case would be the
jet angle, which was used to obtain the linearized expres-
sions for the jet flap and the supercavitating hydrofoil.
The results of the present study, which account for non-lin-
ear effects, can be used to asses to what extent a linear-
ized analysis would capture the physics of the problem. A
strong suggestion that a linear analysis would be successful
has already been indicated by the linearity in the jet angle
pointed out in the previous sections. Figure 53 shows how
the jet penetration and the free-streamline departure depend
on the jet angle. This values are taken at fixed location on
the wake. This linearity strongly suggests that a linear
analysis will be successful even for large angles of the

jet, as it was the case in the jet flap analysis.




Chapter VII

CONCLUSIONS AND RECOMENDATIONS

7.1 CONCLUSIONS

7.1.1 Physics Revealed by the Inviscid Model

i) The use of the inviscid model described in chapter 1
leads to results that have some similarity to results
obtained by the use of linear theories for the jet flap and
" supercavitating jet-flapped hydrofoil problems. The two
more important such similarities are the linear dependence
of the geometry and aerodynamic coefficients on the angle of
the jet, and the fact that the location of the center of
pressure is almost independent of the jet angle, and a func-

tion of the jet intensity only.

ii) The lift is almost independent of the position of the
jet exit on the chord. As the jet is moved forward the
decrease in the decrease of the high pressure region on the
lower surface of the airfoil is almost balanced by the
increase of suction on the upper surface, close to the nose;
in a way that the resultant lift coefficient remains almost

constant.




7.1.2 Characteristics of the Method of Solution

i) Improvement over previous method: Aside from being much
more flexible, the present method computes the unknown parts
of the boundary as a whole, as opposed to the method in Ref-
terence 1 where the jet and the free-streamline are dealt

with separately.

ii) Flexibility: the method developed here requires little
or no outside intervention in the process of computation and
is relatively easy to implement. The method constitutes also
a general procedure for the solution of a typre of boundary
value problems in which the position of the boundary is not .
known a priory. Although entrainment was not included in
the model used here, the method will in principle be able to
handle a model for entrainement which would involve just a

modification of the boundary conditions on the Jet.

iii) Expensive in its present form: since nothing else but
the value of the objective function is provided to the
optimization algorithm, and the objective function is expen-
sive to evaluate, the method is in general rather costly in

its present form.




7.2 RECOMENDATIONS

7.2.1 The Physical Problem

Very little experimental data are available on this
lifting system, and much more is needed to understand some
of the most important aspects. Such is the case of the wake
bounded by the airfoil and the jet, and the entrainment
process. A clear picture of what happens in the wake is
essential if a more realistic model is to be constructed,
and an understanding of how the entrainment process occurs
would be needed to model the entrainment in some simple
form. Precisely because of the importance of these factors,
the results given here are only expected to give qualitative

agreament with experiments.

7.2.2 The Mathematical Model

In order to bhetter understand the mathematical model

the following aspects can be considered:

i) Modification to Include Entrainment: this modifications
consist in changing the boundary conditions in a way that
the additional velocity field produced by entrainment is

accounted for.

ii) Analysis of the Linearized Solution: the potential use-

fulness of the linearized approach is one of the conclusions




of the non-linear study done here. R linearized approach
would allow one to investigate the bahaviour of the system
for very small values of jet strength and jet angle, which

are aspects that the this study fails to capture.

iii) Further Analysis of Related Problems: A whole family of
airfoil-jet-freestreamline problems could be considered, in
which both the position of the jet and the position of the
separation point of the free-streamline are varied along the
airfoil, as opposed to just varying the position of the jet.
Such a family of problems is likely to have interesting aer-

1

odynamic properties.

7.2.3 Improvements on The Method of Solution

In order to lower the cost of the method and improve
the accuracy, the following steps are suggested, all of

which constitute substantial areas of research:

i) Scaling Improvement: This aspect will affect the cost.
Scaling is a subject of great concern in non-linear program-—
ming, and substantial research is being invested in the
development of algorithms capable of changing the scaling as

the calculation proceeds.

ii) Increase Information on Objective Function: This aspect

will also affect the cost. The next most important piece of




information of a function next to the value of the function
itself is its gradient. If{ a way of computing the gradient
of F(q) is developed which does not consist of a straight
application of finite differences as it is done in the pres-
ent code, a substantial amount of computational time can be
saved. The developement of such a way of computing the gra-
dient would imply to exploit the fact that a very small
change in the independent variables q produces a change in
the imbalance of the jet condition and the free-streamline
condition which is to some extent localized in an area of

the boundary.

iii) Include "C" Part of the Boundary: As discussed in sec-
tion 3.1 this part of the boundary uas_ignored on the
assumption that if the wake is long enough it is still pos-
sible to obtain an approximate solution with a truncated
wake. Including the "C" part of the boundary will affect the
accuracy and would allow one to work with a much shorter
wake, permitting a very accurate resolution of the wake

shape.
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Figure u43: Velocity Distribution, Jet at 50% oif the Chord
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