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ABSTRACT

A simple, two-dimensional, incompressible and inviscid

model for the problem posed by a two-dimensional wing with a

jet issuing from its lower surface is considered and a par-

ametric analysis is carried out to observe how the aerody-

namic characteristics depend on the diiferent parameters..

The mathematical problem constitutes a boundary value prob-

lem where the position of part of the boundary is not known

a priori. A non-linear optimization approach is used to

solve the problem, and the analysis reveals interesting

characteristics that may help to better understand the phys-

ics involved in more complex situations in connection with

high-lift systems.
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NOMENCLATURE

SYMBOL QUANTITY DIMENSION

€ Chord of airfoil. L

C3 Class o1 function with continuous 0

second derivatives.

Ci Momentum coefficient of the jet. L

Ci Momentum coefficient of the jet 0

non-dimensionalized uith the chord.

F(q) Objective function. 0

G(s),H($) Weight functions. 0

Gi,H i Weight faotors. 0

J Momentum flux of the jet. MT -2

J Average momentum flux tensor of M_I_ 2

the jet.

L Lift. MLT _

Li Induced lift. ML_ 2

Truncation length. L

Lt Truncation length 0

non-dimensionalized with the chord.

p3 Class of third degree polynomials. 0

P2 Pressure on sides (I), (2) M_IT "2

of the jet.

P_ Pressure in the free stream. M_IT -2





SYMBOL QUANTITY DIMENSION

Qi Intensity of the source ith panel. L T-!

q Independent variable in the O

optimization process,

non-dimensionalized with the chord.

Rc Radius of rounding of L

internal corner.

R Radius of curvature of the jet. L

s Natural coordinate along the L

boundary.

O_ Velocity of the uniform stream. LT_

_i Velocity of the jet fluid. LT-!

v Average jet speed. LT-!

0 Velocity of the 11o_ field. LT-!

Jet angle _ith respect 0

the chord,

6 Jet thickness. L

_t i Non-dimensional length of ith panel. 0

€ Velocity potential of the field L2T -!

induced by the singularities.

Density of the jet fluid. M_ 3

P Density of the free flo_. M_ 3

_j Momentum flux tensor of the jet. M_IT _
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Chapter I

INTRODUCTION

The aerodynamic problems presented by V/STOL aircrait

are very complex in nature and in recent years extensive

work, both theoretical and experimental has been done in

this connection. One of the most important set of such
t

problems is motivated by the aerodynamics of powered lift, a

concept that aims at obtaining the very high lift coeffi-

cients needed in V/STOL flight.

The objective of this study is to pursue the analysis

of a simple inviscid model, originally proposed by Kar-

amcheti and Hu I, which may help in the understanding of the

physics involved in some powered high lift systems. Although

there is a great deal of idealization present in this model,

it is expected that some of the physical characteristics of

real problems will be captured.

Typically, a V/STOL aerodynamic problem includes some

formidable source of difficulties such as tridimensionality,

non-linearities, separated flows and turbulence-related phe-

nomena such as entrainment. In the present study a two

dimensional problem will be dealt with and entrainment _ill

not be considered. However the model does include the non-

linearities due to the boundary conditions and a very simple

representation of a wake type flow.
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In the concept of powered lilt, lift is produced by the

simultaneous operations of two different mechanisms: induced

pressure on the wing and ejection of momentum trom the air-

craft. Usually jets are arranged in the wing, ejecting

momentum in the surrounding medium. Part of that momentum

contributes to the lilt. At the same time the presence ol

such jet or jets can act on the wing in such a way as to

effectively alter the distribution of pressure around it,

thus increasing the lift. This additional lift will be

called induced lift. Figure I illustrates this idea. Con-

sider a two dimensional wing with a jet issuing from its

trailing edge. This system will produce a lift given by:

• L = Jsine+L i 1.1

Figure 1: Jet Flap

where Q is the rate of momentum outflow into the surrounding

medium.
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The dilferent arrangements of jets on the wing, their

origin, shape etc, give rise to the very large collection of

powered lift systems that has been studied, tested, and in

some cases applied to experimental aircrafts. The most thor-

oughly studied of all such systems is the one shown in Fig-

ure I, known as jet flap The jet flap is seldom used as

shown in Figure I, rather, configurations are used with

physical characteristics strongly related to the jet flap.

Such would be the case of the system shown in Figure 2

Figure 2: Augmentor Wing
i

This is known as augmentor wing, where the lift is augmented

through entrainment. The augmentor wing is an ejector-type

configuration where a thick jet exits at the rear end ol the

system. Such a thick jet results from the turbulente mixing

of the primary thin jet exiting at the trailing edge of the

wing with the entrained fluid. Althoug the jet is effec-

tively thick in this case, substantial understanding of the

aerodynamics of this system can be arrived at through the

analysis of the jet flap shown in Figure I, used as a sim-

pler model.

- 3 -
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The present study concerns itsell with furthering the

analysis of a model problem which may help in the under-

standing of the physics of the type of high lift system

shown in Figure 3.

\

Figure 3: Propulsion Wing

Here the operational principle is the same as the one shown

in Figure 2, only that now the ejector is located at a dif-

ferent position on the chord. The flow configuration in this

case is expected to be considerably more complicated than in

the previous case. In 1972 Galen Hu conducted flow visuali-

zation experiments of a configuration somewhat similar to

the one shown in Figure 3, but without suction on the upper

surface. This system, which is illustrated in Figure q

according to Hu's experiments, will be the central object of

this study and will be refered to as 'the airfoil with a

jet' or 'the airfoil-jet- free-streamline problem'.

From Hu's experiments one sees that the jet curves

backwards and that there is a vaguely defined wake behind

it. Such a wake is turbulent and closed. Experiments also

- 4 -



Figure 4: Wake in Airfoil with a Jet

indicate that the pressure inside such a wake is somewhat

less than the pressure in the Iree stream. In Hu's work, the

model sketched in Figure 5 was proposed for the study ol

such a system:

airfoil free-streamline

Figure 5: Simplified Inviscid Model

Here the jet is assumed to emerge Irom the lower surlace ol

the wing. It is also assumed that the jet is infinitely

thin, that the flo_ is incompressible and inviscid and that

there is a dead air region enclosed by the jet and a Iree-

stream line starting at the trailing edge. The pressure in

the dead air region was assumed to be constant and equal 1o

the pressure in the free stream. This leads to a semi-infi-

nite, open wake.
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In the current study this same model will be analyzed

further. A more realistic model should take into account the

fact that the wake is closed, this however, represents a

very great difficulty in the context of an inviscid model.

Different alternatives are considered in chapter 2, where

some consideration is given to the additional information

that would be needed to formulate a closed wake model. Using

this infinity wake model, Hu calculated the pressure dis-

tribution for different locations and strengths of the jet.

The mathematical problem posed by the model consists of

solving Laplace's equation in a two-dimensional exterior

domain whose boundaries are given by the airfoil, the jet

and the free-streamline. If the shapes of the jet and the

free-streamline were known, the problem could easily be

solved using some appropriate method for solving the

Laplace's equation in that particular domain. Those shapes,

however, are not known a priori, and they are, in fact, part

of the solution. The shape of the free-streamline should be

such that the pressure along it be a constant, equal to the

pressure in the wake. The shape of the jet should be such

that the centrifugal force due to its curvature be balanced

by the pressures acting on it.

Hu devised an approximate technique for solving this

problem consisting of using the method of singularities to

calculate the pressure distribution around the contour and

an iterative procedure to find the jet shape. In Hu's

- 6 -



approach the shape of the free-streamline was not actually

calculated, but rather it was assumed, drawn with the aid of

a french curve, and then incorporated in the problem. The

iterative procedure used to estimate the jet shape consisted

of replacing the jet shape with connected straight line seg-

ments and requiring that the pressure jump between both

sides of such segments be balanced at a discrete number of

points by the change of direction of the momentum vector of

the so represented jet shape. The shape of the jet shape is

then iterated upon, until the pressure and momentum change

are properly related. During this procedure the free-stre-

amline is assumed to be known and invariant, given by an

initial guess that satisfies the condition of tangency at

the separation point and behaves suitably at large distances

from the wing. Hu points out that, if the initially satis-

factory shape of the free-streamline is no longer acceptable

after the shape of the jet has been iterated upon, one can

repeat the procedure and make another guess for the free-

streamline shape. Using this technique, Hu calculated pres-

sure distributions on the airfoil for different jet loca-

tions, settings and strengths. However, no aerodynamic

coefficients were calculated.

In order to extract as much information as possible

from this simple mathematical model it is desirable to carry

out a parametric study of the effects on the aerodynamic

coefficients of quantities such as jet strength, jet angle

- 7 -
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and jet location. This requires the development ol a more

flexible technique capable ol computing the free-streamline

and jet shapes simultaneously. In this study such a techni-

que is developed in chapter 3. The basic idea underlying

this new procedure is that this boundary value problem can

be relormulated as a non-linear optimization problem, in

which the objective function is a convex function of parame-

ters characterizing the shapes ol the jet and the free-stre-

amline. The minimum of this function will occur for values

of the parameters corresponding to approximate jet and

free-streamline shapes.

The main difference between the method developed here

and the one used by Hu is the fact that the present method

is a general one capable ol treating a variety ol boundary

value problems where the position ol the boundary is unknown

a priori, and it is possible to construct an objective func-

tion such that the desired shape of the boundary corresponds

to the minimum ol the objective function. In this work the

formulation ol the method is executed in reference to the

particular type of cavity, or wake, that the inviscid model

for the airloil with the jet contains. However many ol the

considerations exemplilied in the airloil-jet-lreestreamline

problem will be valid in a different class of problems also.

In addition to its generality and greater flexibility,

the present technique also shows substantial improvements in

computing the boundary shape over Hu's results. Concerning

- 8 -



the jet shape, the improvement comes about through the rep-

resentation of the jet by cubic splines as opposed to con-

nected straight segments. Concerning the iree-streamline,

the improvement is due to the much greater accuracy with

which the boundary conditions are satisfied there. In iact,

a behaviour of the free-streamline shape in response to

changes in the jet parameters is exhibited, which wasn't

observable in Huts aork.

The parametric study reveals that, for the particular

case of the jet located at the trailing edge, the presence

of the wake produces a very large loss of induced lift. It

is also observed that for a given location of the jet for

the wing at zero angle of attack, the position of the center

of pressure is chiefly a function of the jet strength only,

thus independent of the jet angle. This result happens to

hold exacly for the classical linearized analysis of the jet

flap. It is also found that there is a remarkably linear

relation between quantities such as lift, jet penetration

and free-streamline displacement and the angle of the jet,

even for rather large values of such angle.

- 9 -
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Chapter II

THE NODEL AND THE MATHENATICAL PROBLEN

2.1 NATHENATICAL NODEL

As explained in chapter 1., the model depicted in Fig-

ure 5 will be solved using a new approach and studied param-

etrically. The following are important properties of the

model that will be explained in some detail:

1. The jet is idealized as being an iniinitely thin lamina

with finite momentum flux and zero mass flux.

This way of representing two-dimensional jets was

developed by Spence. z Hu followed Spencets development. The

following relationship relates the radius of curvature of

the jet to the momentum and the pressure difference between

across the jet.

J 2.1

Here J is the jet momentum flux and R is the radius of cur-

vature of the jet, see Figure 6.

- 10-
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Figure 6: Thin Jet

Spence arrives at this result assuming that the ilow

within the jet is irrotational and then letting the thick-

ness of the jet go to zero. However, the condition ol irro-

rationality is not necessary for equation 2.1 to apply. In

reality the jet is not irrotational, although it may still

be thougth to be thin. A simpler derivation of equation 2.1

that does not assume irrotationality goes as follows:

Consider a segment ol the jet of length _s as shown in

Figure 7. The equilibrium of iorces acting across the jet

requires

3 2.2•

where pivi_ is the momentum flux tensor. The average ol the

momentum ilux tensor delined by

: 2.3

where the integral is taken over the cross section ol the

control volume shown in Figure 7. In the coordinate system

shown in Figure 7 the average momentum ilux tensor is .

assumed to have the Iorm

-11-



2
where v is an average jet velocity. This form of the

momentum flux tensor amounts to the assumption that the

velocity of the fluid _ithin the jet is essentially normal

to the normal cross-section of the jet. The equation oi

force balance can then be rewritten

' (Pl-P2)n3 as = J'RI8 + _2 8 2.5

since nl R2:2_r_3 and _=As/2 R

(P_-P2)_s=.J_6--_ 3 2.6
hence

8
Pl- I)2 = Jl1"_" 2.7

2

1

'- jet

Figure 7: Thin Jet Analysis
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Hence, identifying J with J116, equation 2.1 is still

valid for rotational jets as long as they are sulfioiently

thin in order that R may be delined as the radius ol curva-

ture ol its trajectory.

2. The wake is assumed to have constant pressure, equal to

the pressure of the free stream, and be bounded by a free-

streamline starting at the trailing, edge.

This assumption implies a wake ol inlinite length. The

assumption that the free-streamline starts at the trailing

edge is supported by photos taken from experiments that led

to the sketch shown in Figure g. In reality the wake is

closed and it would be desirable to formulate a mathematical

model with a closed wake. This proves to be quite difficult

due to the following fact: It was shown by Birkholl and

Zarantonello 3 that "a closed wake with constant pressure

lower than the pressure at infinity is mathematically impos-

sible". This is shown to be a property ol wakes in inviscid

ideal flow. What this fact implies is that if the wake is

to be closed the pressure in it cannot be uniform and lower

than the pressure of the free-stream. II the pressure is

assumed to be less than the _ree-streamline pressure some-

where in the wake, then it will necessarily have to vary

inside the wake il a meaninglul solution is to be obtained.

This means that formulating a closed wake inviscid model

-13-



would require assumptions as to how the pressure varies, to

do this a great deal of yet unavalaible experimental data

ere needed.

If a thin jet is a boundary of a wake with constant

pressure equal to the pressure of the iree-stream, the jet

equation can be expressed in terms oi the velocity potential

as iollows: In the sketch in Figure ? it is assumed that

the wake exists in region 2 and that in region ] there

is a potential tlow field consisting oi a unilorm iield of

velocity U plus a disturbance field oi velocity V_ •

Bernoulli*s equation is

Pl: _- +½p(u_.-(v_+o.)') 2.s

on side 2

P2: p 2.9

hence equation 2. 1 becomes

Defining the momentum coeificient of the jet bY_i=_jI-6--- ,1 2

the jet equation becomes: TPU_°

'- (v_+O®)2- L 2.11
u_ R

3. The model ignores entrainment.

- lq -



Entrainment has _the effect of altering the flow field

in a way sketched in Figure 8, where the flow pattern shown

is due to entrainment alone. This effect is qualitatevely

similar to what would be obtained by distributing Sinks

along suitably chosen boundaries, this distribution of sinks

would give rise to an additional flow field, whose stream-

lines are sketched in Figure 8. This flow is superposed to

the flow free from entrainment, and can pressumably alter

the pressure distribution appreciably. Such distribution of

sinks to represent entrainment constitutes a standard proce-

dure, but requires experimental results indicating ho_ the

turbulent entrainment takes place for each configuration.

--......... -

Figure 8: Flow Field due to Entrainment

2.2 MATHEMATICAL PROBLEM

Figure 9 shows the domain where the problem is to be

solved.

Defining the velocity at an arbitrary point in £Z to be

given by

0 =_7_ + U_o 2.12

-15-



Fa(E)=O

Figure 9: Mathematical Model

the problem consists of solving haplace's equation

V2dp =0 in _ 2,13

subject to the following conditions:

Tangency at the boundary

V_R =-0ooR on Fs(_)=O , Fa(_)-O,Fj(R)=O 2.14

Constant pressure on free-streamline

I_+0ool = IUJ on Fs(_)=0 2,1S

This equation will also be called the 'free-streamline con-

dition'

Balance of forces across the jet

I - Iv_+oJ = _ 2.16
u_ R

This equation will also be called the 'jet condition'. The

method oi solution is discussed in the next chapter.

- 16-
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Chapter III

SOLUTION PROCEDURE

The method of solution presented in this chapter is of

application to a class of boundary value problems of which

the airfoil with the jet is a particular example. Among

such are problems involving boundaries of cavities bounded

free-streamlines, jets or both.

3.1 FINITE HAEE .REFORMULATION

The exact mathematical problem described in chapter 2

can be reformulated into one with a finite or truncated wake

as shown in Figure I0, where the part of the contour denoted

by "C" is assumed to either e×tend to infinity or to encir-

cle the airfoil at a large distance. Part of the domain

in Figure 10a overlaps with the domain _ in Figure 10b, and

so does part of the contour. Figure 10b shows a contour that

has a finite wake. The reformulated problem using the con-

tour shown in Figure 10b is then

Laplace's equation

V_ =0 in _ 3.1

- Tangency condition

V¢.n = - O_n on y=_(x) , _x_O , y=_(x) 3.2

- 17-
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Boundary condition on "C"

V_ :_(_) on C 3.3

Free-streamline condition

Iv,+02= laj o_v:_x) s.4

Jet condition

I - IV*+_o 12 : CJ on y=_(_) 3,5luj2 R

Yl F=(2)=O / C .

y==y,(_() _J )

Figure 10: Finite Nake Contour

The function _(R) in equation 3.3 iS taken to be identical

to the gradient of the solution of the exact mathematical

problem , evaluated at the part ot the contour denoted by

"C" in the finite wake problem. In this case the solution

- 18-



oi the problem above will be identical to the solution of

the exact mathematical problem in the overlapping part of

the domains, By virtue of this iact an approximate solution

oi the so reiormulated problem will also provide an approxi-

mation to the solution of the exact mathematical problem on

the contours that both have in common, The steps that !ol-

loM shoM ho_ the construction of such an approximate solu-

tion is achieved. Since in this process the spline functions

will be used, the concept of spline interpolation will be

briefly described first.

3.2 SPLINE _HTERPOLATION

A cubic spline function S_;x) is defined in the following

way : given the ordinates ql' q2' qn and the slope _.1

detine S(q;x) such that

s(q;_ = vo 3.6

S(q;xi_ = Yi 3.7

d x Jxn qn+l 3.8

s(qlx)_ c2 in [_x.] 3.,

S!q;x) E P3(x) in ]Xi,Xi+l[ 3.10

-.19 -



as shown in Figure 11.

n+]

Y

q,

x0 x1 x2 Xn x

Figure II: Spline Function

Cubic splines have been studied in great detail and found to

have striking convergence characteristics _

3.3 FINITE WAKE PROBLEM. WITH APPROXIMATE CONTOUR

If spline functions are used to approximate the free-

streamline and the jet part of the contour shown in Figure

10b, the problem can be expressed as follows, with the con-

tour described in Figure 12

q'; q:, ,€_n,+l 3,1 1

qi : qi1, JJqni+l 3.1 2

q : qiUqs 3.13

_V_:O in _q 3,14

_dp.R :-O&R on Y:Ss(C_;x) , Fa(x):O , Y:S{qi) x) 3.15

_74p : _(E) on C 3.16

F(q) minimum 3.17

F(q):/lllVdp+Oaol-IO+olil+ [[1-1YdP+Oool2-u_++11}+.'+ "
_LI on y=sS(_.x) on y:Si(qiix )

- 20-



Y an-lq:s+I

q_ IFa(i)'O $

q:$

i .

! q; qini

Q

y--si(qi x

Figure 12: Approximate Contour

In this problem the parameters q characterize the

boundary shape and conditions 3.4 and 3.5 have been

replaced by the requirement that the function F(q) be mini-

mized. F(q) is constructed adding the norm of the inbalance

of the free-streamline condition, eq. 3.4, to the norm of

the inbalance of the jet condition, eq. 3.5. These norms

will be discussed in detail in chapter 4.
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Since the q's characterize the contour, they also char-

acterize the flow field and hence F is a tunction of q. The

rationale behind this approach is that the better y (x) and

y (x) in Figure lOb are approximated, the more closely the

free-streamline and the jet conditions will be satisfied on

the approximate boundary. By taking an accurate enough

description of the boundary it should be possible in princi-

ple to make F(q) arbitrarily small for the right value ol

the q's.

3.g THE NON-LINEAR OPTIMIZATION APPROACH

A crucial step in setting up the problem for solution

consists in recognizing the fact that the boundary condition

on the "C" part of the boundary can be dropped, namely that

the fact that

V*= _E) on C 3.19

can be ignored and still an approximate solution to the

truncated wake problem can be obtained. The justification

for doing so lies mainly in computational experience and on

the fact that sufficiently far behind the airfoil the exter-

nal flow iield remains relatively unperturbed. Some of the

calculations that will be shown in chapter 4 confirm this

assumption. If this is done, the problem can be viewed as

follows:
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Minimize the Junction F(q) where the inlormation needed

ior its evaluation is obtained from the solution of the

boundary value problem

V2d) = 0 in _ 3.20

V = -0_ on r 3.21

(__ const at oo 3.22'

in the domain shown in Figure 13.

1"

0oo

Figure 13: Truncated Contour for B.V. Problem

This constitutes an unconstrained non-linear optimization

problem _here the objective Junction is F(q). For each eval-

uation ol the objective function there is a boundary value

problem to be solved.

3.q.I Solution of the Boundary Value Problem

The method used ior the solution o_ the boundary value

problem needed in the evaluation of F(q) is the method ol

singularities using source panels ol constant strength dis-

tributed on the boundary s, as shown in Figure lq.
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Qi

Figure 14: Source Panels on the Boundary

By enforcing the boundary conditions at the center of

the panels a set ol algebraic equations for the intensities

ol the sources Q is obtained. Once these are known, the

velocity field can be computed at once.

3,4.2 Solution of the Minimization Problem

The task ol finding the value of the variables q that

minimize the function F(q) is acomplished using a Quasi-Hew-

ton algorithm for non-linear unconstrained optimization 6 The

optimization procedure is started with an initial estimate

ol the independent variables q. After this initial estimate

is provided, a systematic search in q space is carried out

until an approximate estimation ol the minimum is reached.

A description ol the method of minimization will be given

next.

The systematic search for the minimum in q space con-

sists of the following steps:

i) If qk denotes the present value of the variables q, a

direction of search in q space, denoted by Pk is,found.
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if) A search along the direction Pk is conducted to

approximately locate the minimum of F(q) along such direc-
/

lion. The value of q for which that approximate minimum is

found is denoted by qk+;

iii) Starting at position qk+l in q space, steps i and ii are

repeated until a satisfactory approximation to the minimum

of F(q) is reached. Each sequence of steps i and ii consti-

tutes an iteration.

3.#.2.1 Direction of Search

To illustrate how the direction of search Pk in q space

is found, consider a quadratic expansion of F(q) about qk :

F(_s) = F(_k),_, , _C_s 3.23

where gk is the gradient of r(q) at q = qk and Gk is the

Hessian matrix of F(q) evaluated at q = qk " The expression

for the quadratic expansion of F(q) has a stationary point

at _+{ qk + _ determined by solving the system of equations=

c_k=-% 3.24

This formula provides the direction Pk in which a stationary

point ol the local approximation is to be found. The Quasi-

Newton method utilizes a similar formula to determine the

" direction of search, in which an approximate Hessian is

used. An exact expression for the Hessian matrix cannot be
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used here because the exact derivatives of the function F(q)

are not available.

The approximation to the Hessian matrix at iteration k

is denoted by Bk and the direction of search at iteration k

is obtained from the solution of the system of equations

Sk%=-% 3.2,

The matrix Bk is updated at each iteration in a way that, as

the calculation moves in q space, it acquires progressively

more information about the curvature of F(q). At the first

iteration the approximation to the Hessian is taken to be

the identity matrix,

!
_:-gk 3.26 .

which means that the first direction of search will coincide

with the opposite direction of the gradient of F(q) at qk"

In the first iteration then, the direction of search is the

steepest descent direction. To update Bk after the first

iteration, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

update formula is used, given by

Bk+l = Bk - _ BkSkS[Bk + -_-= YkYk 3.27
Y_Sk

where s k = _k+l - qk an Yk = gk+l - gk The gradient of F(q)

is computed using finite dif£erences. This is believed to be

the most effective way of computing the direction o5 search

in the (_uasi-Hewton method.
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3.4.2.2 Univariate Search

Once the direction Pk is determined, an approximate

minimum of F(q) _long it is found. This is acomplished using

the so-called safeguarded parabolic interpolation along Pk '

in which the minimum is found within a prescribed accuracy.
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Chapter IV

IMPLEMENTATION OF THE METHOD

In this chapter the general method described in chapter

3 is applied to free-streamlines and to the problem of a jet

issuing from a plane into a uniform stream. For the latter

analytical results are available, which are used for compar-

ison with the presente method.

4.1 .DEFINITION OF F(_)

In chapter 3 the objective function F(q) was defined as

a norm of the imbalance of the free-streamline condition

plus the norm of the imbalance of the jet condition. Refer-

ing back to Figure 12, and if the boundary value problem

3.11 to 3.18 were to be solved exacly, a suitable defini-

tion for F(q) would be:

free- streamline iet "_

where the integrals in eq. 4.1 are line integrals and G(s)

- and H(s) are positive weight functions. With this definition

F(q) is a smooth function, on which the Quasi-Newton algor-

ithm can be applied.
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In implementing the method, a discrete form ol eq. q.1

is used, the objective function is given by=

2 _. 2

FIq)='_ Hi('+_+O+'-'O+')_'i + '_+1(1-1+_1;o¢_'12--"I _+i4.2R1,
free-streamline im

_here Gi Hi are _eight lactors, V_i is the gradient of the

perturbation potential evaluated at the control point ol

panel i and R is the radius of curvature ol the jet at the

absisa of the control point of panel i. The interval A_| is

the lenght of panel i, as sketched in Figure 15

Figure 15: Geometrical Data in F(q)

Height lactors are included in order in order to investigate

the flexibility of the definition of F(q).

4.2 ,INDEPENDENT VARIABLES AND PANEk ,SPACING

As explained in the previous chapter the variables q

are ordinates describing the position of the points of the

Iree-streamline and the jet _here the interpolating polyno-

mials match. In order to achieve a good description ol the

boundary the points characterized by q are taken to be more
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closely spaced in parts of the boundary where the curvature

is higher. Once the characterization of the boundary

through the variables q is established, the panels have to

be arranged in a way that changes in the flow field due to

'wiggles' that may exist in the interpolating polynomials be

properly captured. This means that a minimum number of pan-

els must exist in between points characterized by the q's.

It was found by computational experimentation that there

should be at least three panels in between such points. They

may or may not be equally spaced. In all the problems dealt

with here, the part ol the contour that is to be computed is

such that its curvature decreases very rapidly downstream,

thus allowing for the panels to be much longer in the down-

stream part of the contour. It was found that a convenient

way ol distributing the panels is by specifying that their

projection on the horizontal axis be given by the expres-

sion:

_ic°s_i = bi-l_l 4.3

with b > I and j the index characterizing the panel of

lenght A_i' in the way shown in Figure 16

_i .

Figure 16: Panel Distribution
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This arrangement has the advantage that slight changes in

the constant b allow for rather large changes in the lenght

of the contour so described keeping the number of panels

constant. If the number of panels in between the points on

the boundary characterized by the q's is kept constant, eq.

4.3 will also give the distribution of absisae where the

q's are specified. This is found to be quite a satisfactory

way o_ describing the contour.

g.3 TRUNCATION LENGTH

The reformulation of the problem with a semi-infinite

boundary into one with a finite boundary explained in chap-

ter 3 leads to a problem with a truncated boundary. The

overall length ol the resultant contour will be called trun-

cation length, as shown in Figure 17

It
Figure 17: Truncation Length

The interest here is to determine with reasonable accuracy

the flow field in the proximity of the body from which jets

are ejected or free-streamlines originate. The truncation

length has to be chosen in a way that such accuracy is
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isured. In this regard each particular problem has to be

considered individually.

4.4 FREE-STREAMLINES

4.4.1 Mathematical Properties

The following are properties of free-streamlines given

by the mathematical theory of wakes and cavities.

i) Slope at the point ol separation: This slope equals the

slope ol the solid contour from which the free-streamline

separates.

ii) Radius of curvature at the point of separation: This

radius is equal to infinity or zero, depending on wether the

separation point is an inflexion point of the boundary or

not. This means that, unless the separation point is an

inflexion point, the Iree-streamline will have singular

behaviour at the point of separation.

iii) Behaviour at inlinity: Inlinitely Jar downstream, the

free-streamline will be paralell to the direction o_ the

velocity ol %he unperturbed Slow _ield.
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q.q.2 Computation of Free-streamlines

A practical example ol Iree-streamline computation

using the minimization approach is shown in Figure 18. The

Iree-streamline is assumed to separate at point (a) on the

boundary of the semi-inlinite barrier. In this case the

point ol separation is clearly an in!lexion point on the

boundary, indicating that the curvature of the Iree-stream-

line there is zero. In this problem the spline interpolation

behaves very well chose to the separation point. With a

rather crude distribution ol panels the boundary condition

for the velocity on the Iree-streamline is satisfied to

_ithin a few per thousand. This example serves as a test

ior accuracy showing ho_ closely the constant-pressure con-

dition on a free-stremline can be satisfied using the pres-

ent procedure.

/

/

Figure 18: Computed Free-streamline_
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4.5 JET TRAJECTORIES

4.5.1 Mathematical Properties

In this section general properties of 2-D infinitely

thin jets issuing from bodies inmersed in a uniform stream

are pointed out. The description of the jet in the vicinity

of its exit and infinitely far downstream should be inde-

pendent of the particuar shape of the body Irom which it

issues. This idea is illustrated in Figure 19, where, il the

jet exit region is magnilied, the jet is seen as emerging

Irom a plane.

I
\

\

Figure 19: Jet Exit Region

Knowledge of this asymptotic behaviour is ol use in the

implementation of this method, since it allows one to

replace the interpolating polynomials with analytic expres-

sions in regions where the polynomials are likely to behave

poorly. Such will be the case ol a jet issuing Irom a hori-

zontal plane normal to a uniform stream. The sptine interpo-

lation will behave poorly close to the exit, where the slope

ol the jet is large, and higher density ol variables q would
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be needed to improve the behaviour of the interpolation. It

will explained later how this, in its turn, would affect

adversely the scaling of the objective iunction. It is then

desirable 1o have an analytic expression ior the jet in the

neighbourhood of the exit. I1 is also plausible that in

improved versions of this method, the asymptotic behaviour

of jets at infinity could be incorporated, bF assuming that

the jet far downstream has the correct mathematical behav-

iour, as opposed to the simplified form assumed in this

study, as will be shown later.

4.5.1.1 The Jet Shape Close to the Exit

As discussed in Chapter 2 the equation of the jet tra-

jectory is given by

: 4.4

where Pl- _ is the pressure jump across the jet. This

quantities are illustrated in Figure 20, picturing a 2-D jet

emerging from a slot in a horizontal plane and into a uni-

form stream.

U_ I jet
Y

2

x

Figure 20: Two Dimensional Jet into a Uniform Stream

- 35-



If the pressure jump across the jet were known, equa-

tion q.q could be solved for the trajectory. In general the

pressure on side (1) in Figure 20 is a function of the tra-

jectory itself. This is not the case at the exit, where it

is physically clear that a stagnation point exists, and the

pressure on side (I) of the jet equals the stagnation pres-

sure. This fact allows to integrate equation q.q and find an

approximate form for the jet valid close to the exit. In

terms o5 the velocity on side (I) o5 the jet, equation _.4

can be rewritten:

u2 _ (,+y,2_)ci'- 4.s
where y denotes the position of the jet. If the exit is

located at the origin of coordinates and exits vertically

we have that, as x--_-Oand y-_O, u--_-O and y'-4_=oand equa-

tion g.5 becomes

(y,13 . 4.6: y" Ci

which admits the solution

y : 24_jjx 4.7

this being the form of the trajectory very close ,to the

exit. For a jet exiting at an angle_ as shown in Figure 20

we have

_"_ /2x c:i !+c°t213 -2 €ot2_
Y xcot_ 4-

1sin _ + , . + C_
4.8

These expressions :[or the jet close to the exit can be used

to suplement the spline interpolation, which for the case o5
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very large slopes may not produce a good description of the

jet there. From equation 4.5 it is seen that the radius ol

curvature at the exit is given by

]

Rexit : _i 4.9

which is of course finite fo all Ci >O

q.5.1.2 Shape of the Jet at Infinity

In the airfoil with a jet problem, the information

about how the jet behaves far away from the exit can be

taken from the problem depicted in Figure 20. The reason for

this is that even if the jet is in a different configura-

tion, at sufficiently far away distances from the exit the

only disturbance produced on the flow field is due to the

jet alone. Ackerberg 7 solved the problem shown in Figure 20

using matched assymptotic expansions and gave the following

expression for the jet at infinity

2x ,,, 2 • 2 A 1 A21n 4.

\. ./ .o(,) ,o
A " const.

This behaviour indicates that infinitely far downstream the

jet will be infinitely far ap_rt.

q.6 COMPARISON _ITH ANALYTICAL RESULTS

The analytical results obtained by Aokerberg 7 for the

jet issuing normally into a uniform stream is compared with
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the results obtained using the minimization approach. The

computations presented next were performed using Ci = 0.5.

The way the problem was solved was by assuming a refletion

oi the jet on the plane from which it exits and thus obtain-

ing a symmetric contour. As it was the case with the free-

streamline discussed in section q, a rather crude distrib-

ution oi panel was used. The panels _ere assumed to be

equally spaced between the q's and the splines were extended

to the very end of the contour. Figure 21 shows the trajec-

tories obtained for two different lengths of the resulting

truncated symmetric body. It is observed that close to the

rear end the jet exhibits the wrong curvature, having an

inflection point. This phenomenon is due to end effects and

doesn't appear to disturb the shape of the jet at closer

distances from the exit. The fact that this occurs can be

attributed to the small influece that such a distortion of

the jet far downstream exerts close to the exit. This means

that the velocity field in the forward part of the jet is

not substantially altered by the change in truncation

length.

Figure 22 compares the present results with the ones given

by Ackerberg. It is seen that, even with a crude distrib-

ution of panels there is satisfactory agreament.
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Figure 21: Calculated Jet Trayectories
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Figure 22: Comparison with Analytical Calculation
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Chapter V

THE AIRFOIL-JET-FREESTREAMLINE PROBLEM

In this chapter the method oi solution is applied to a

computational model. The organization oi the parametric

study is sketched and considerations regarding accuracy are

discussed.

5.1 COMPUTATIONAL _ODEL

The main objective of this parametric analysis is to

isolate the effects of a fe_ parameters related to the jet

and not to the airfoil per se. It is then convenient to use

a very simple airfoil aith no camber such that only proper-

ties related to the jet will be exhibited. Figure 23 sho_s

the air£oil chosen lot the calculations. It is a symmetric

airloil with a maximum thickness ol I0_, an elliptical nose

extending to 25Z of the chord and a blunt trailing edge.

Figure 23: Computational Airioil
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Such an airloil provides a particularly simple boundary to

treat, The lact that it has a blunt trailing edge is ol no

concern here since no Kutta condition is satislied in this

case. Using this airloil the problem in question will look

as shown in Figure 24

C

Figure 2g: Computational Model

5.2 PANEL DISTRIBUTION, INDEPENDEN_ VARIABLES,WAKE LENGTH

The panel distribution and the location ol the inde-

pendent variables on the computational model are shown in

Figure 25 . On the jet and Iree-streamline the distribution

is laid out according to the description given in section

4.2. A suitable number of panels was found to be about 60,

and the total number of independent variables q about 10.

The free-streamline has a more easily describable shape,

hence the number ol independent variables needed to charac-

terize it is lower than the number of independent variables

needed to characterize the jet.
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Figure 25: Distribution oi Panels and Independent Variables

The truncation length is determined by observing ho_

the aerodynamic coefficients vary as the truncation length

varies. Figure 26 sho_s a typical variation of the lift

coefficient as a function ol the truncation length measured

in multiples ol chord length. It is clear Irom the Figure

that beyond a certain length the change in the aerodynamic

coefiicients is quite small. Such a change is less than one

percent _hen the truncatione length varies between 6 to I0

chord lengths. The length chosen ior the parametric analysis

is about 8.5 chord lengths.

1.2

CLi I.I
1.0 I i i i i

2 4 6 8 10 12
Lt

Figure 26: Lift vs. Truncation Length
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5.3 THE PARAMETRIC ANALYSIS

5.3.1 ,Initial Guess

As mentioned in 3.q.2, in order to start the search for

the minimum of the objective function an initial estimate of

the value of the independent variables at the minimum has to

be provided. This amounts to a guess about the shape of the

free-streamline and the jet. A first guess for the shape of

the free-streamline is to assume that it is a straight line

parallel to the airfoil. A first guess for the jet shape can

be taken from the trajectory of a jet ejecting from a hori-

zontal plane into a uniform stream as discussed in 4.6.1.

With this initial guess for the unknown part of the boundary

a series of minimization problems is solved, one for each of

the several values of jet strength, jet angle and jet loca-

tion. The output of each problem serves as initial guess to

the next, in the way shown in the following chart.

The motivation for this particular arrangement is that

a given relative change in the jet strength produces much

_ess alteration in the shape of the wake that the same rela-

tive change in the jet angle. Once the parametric analysis

is completed for one position of the jet along the chord,

the available results become excellent initial guesses for

the jet at different positions. The reason for this is

that, all other parameters remaining constant, the geometry

of the jet is very slightly modified as a result of changing
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I first guess J

I set location I

I set angle I
&

I reset guess _--_ change strength
t

I so'veI
' n° J completed strength? I

yes

change angle I

no , i completed angle? J
yes

change location I
Figure 27: Series of Minimization Problems

the position of the jet exit along the chord, except for the

coresponding chordwise translation of the jet shape.

5.3.2 Local Minima

If the initial guess is not reasonably close to the

final answer, the procedure may converge to a physically

meaningless result. Figure 28 shous such a case.

Figure 28: Non-physical Solution



The implication of this fact is that, in general, the

minimum of interest is a local one. Non-physical results are

readily identiliable since the minimum value of the objec-

tive Junction there is considerably larger than in normal

cases. This phenomenon seldom occurs, and i1 was never

observed when the initial guessed where obtained as

described in the previous section.

5.3.3 Characteristics o._!th_._eeOptimizatio_ Problem

i) Size ol the Problem: This is determined by the number

ol independent variables. A typical such number is 10, which

means that the problem is of rather small size.

ii) Cost of Function Evaluation: This is a measure of the

amount ol computation involved in evaluating the objective

function at a given point in q space, In this case this cost

is high, ol the order of 0.8 sec. ol CPU time on the IBM

3033 processor. Lowering this cost would be a considerable

improvement on this method, as will be discussed later.

iii) Scaling: A measure ol the scaling of an optimization

problem is given by the relative magnitude ol the different

components ol the gradient of the objective function and it

has considerable importance in the number ol iterations

needed to reach a solution. In this case the scaling is

poor, some components ol the gradient being much larger than

others.
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iv) Typical Number of Iterations: Between 8 and 15.

v) Typical Number of Function Evaluations: Between 70 and

150.

vi) Number ol Stationary Points: More than one, however the

one ol interest is readily identiliable.

5.q COMPUTATION OF THE AERODyNAMiC COEFFICIENTS

Once the pressure distribution around the airfoil is

known, the aerodynamic coefficients are calculated by inte-

grating the pressure coefficient around the airfoil. If the

pressure coelficient is defined as

Cp- P-P s.11 2
pU_

The lift coefficient is given by:

CLs= - _ pRd$ 5.2

The moment coefficient is given by:

Cmi : -! [ _--CpRdS 5.3¢J€

In these formulas the integrals are taken over the surface

of the airfoil, as shown in Figure 29

The position of the center of pressure:

Cm 5.4Xcp : c
CL
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Figure 29: Computation of Aerodynamic Coefficients

5.5 ACCURACy CONSIDERATIONS

The accuracy of the final results is expected to be

within 10 percent for the aerodynamic coefficients. Some of

the aspects affecting accuracy are discussed next.

5.6 EFFECT OF THE DEFINITION OF [(_)

As pointed out in section 4.1 %he delinition ol F(q) is

not unique. The %_o most relevant factors in its definition

are:

i) Choice of the _eight factors Gi , Hi : If these factors

are set equal to unity, the discrete form of F(q) becomes:

- '- %/
free-streamline jet

If the _eigh% factors are chosen to be the inverse of the

! ]
panel length, namely Gi =-- , Hi - , the definition/ of

_i _i
r(q) becomes:
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free-streamline, jet

Also a combination of those alternatives can be used to

define r(q).

if) Length of the Boundary Involved: The discrete form

for F(q) does not need to be calculated including for the

contributions of all the panels that describe the jet or the

free-streamline. Some can be omitted without substantially

altering the final result. The fact that this is possible

allows one to leave out panels in areas where the calcula-

tion is inaccurate, such as close to the exit of the jet.

Figure 30 shows how the free-streamline and the jet enter

the computation of F(q). Only the panels lying on the solid

line are used.

\
\

\

Figure 30: Part of Boundary Used in Computation of F(q)

The last 2 or 3 panels in both the free-streamline and the

jet are not included in order to avoid end effects. The

• first few panels close to the exit oi the jet are not
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included for two reasons: On one hand, because, as mentioned

belore, the calculation ol the velocities is inaccurate

there, and on the other hand the scaling ol the objective

function is considerably improved if those panels are omit-

ted, which allows to reach a solution with a lower number ol

iterations. The reason ior this improvement lies in the lact

that, ior changes in the independent variables q which are

closer to the jet exit, the corresponding changes in the

curvature ol the jet are much larger than the changes asso-

ciated with variables Jar away Irom the jet exit.

The following table shows the typical behaviour of the

aerodynamic coelficients ior different delinitions ol F(q)

and lot dillerent number ol panels omitted close to the

exit.

TABLE ]

Delinition and Evaluation of F(q)

panels not
counted 3 3 3 5 7

CLi 1.152 1.152 1.158 1.150 1.152

Cmi -0.330 -0.330 -0.332 -0.329 -0.330
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5.7 EFFECT OF THE IHPLENENTAT_ON OF THE _ NETHOD

The t_o main aspeats of the panel method implementation

that concern accuracy are the treatment ol internal sharp

corners and the density of panels.

5.7.1 Roundina ol Internal Corners

As pointed out by Hess s if the boundary uhere the pan-

els are laid out has internal sharp corners the solution is

inaccurate there. In this case it was found that unrealisti-

cally high velocities are computed close to such corners•

This drawback is a property of the singularity representa-

tion of the solution and cannot be eliminated by increasing

the density of panels close to the corner. The standard pro-

cedure is to introduce a rounding o1 such corners. In the

case of the airfoil-jet-freestreamline problem an internal

corner exists right at the exit of the jet. A rounding is

introduced as sho_n in Figure 31

Figure 31: Rounding of Znternal Corner

The effect of the sharp corner is localized and affects

the shape of the uake very little. It does hoMever affect
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the aerodynamic coeflicients. Figure 32 shows how the lilt

coelficient for a typical case varies as the radius of the

rounding ol the corner changes. This shows that, once the

corner is slightly rounded, further increase in the radius

of rounding will not allect signilicatly the results.

CL i Cm i

1.15 34 _ CLI

('m i
1.14 ,33

1.12 .31_f
L t f ,,

0 10 20 30 Rc'_chord

Figure 32: Effect ol Radius of Rounding .,

5.7.2 Effect of Density of Panels

i) Density of panels in the wake area: This density

aflects the accuracy with which the jet and the free-stream-

line shapes are computed. Most of the calculations where run

with about 20 panels on the jet and about 15 panels on the

free-streamline. If this number is doubled, it is observed

that the lift and moment coefficients undergo a change ol

less than 5_. Hence the density ol panels used in the wake

area can be considered acceptable.

if) Density of Panels on the Airloil: As shown in section

q.8, the aerodynamic coefficients are obtained by integral-
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ing the pressure coefficient around the airfoil, hence the

density of panels on the airfoil is expected to affect the

accuracy. The region where the density of panels is the most

important is the nose, since it is there that the steepest

gradients of pressure occur. Figure 33a shows the paneliza-

tion of the airfoil nose that was used in most of the calcu-

lations. Figure 33b shows a much mode dense ditribution of

panels on the airfoil nose. The difference of the aerody-

namic coefficients between the two cases is less than lZ.

I I
f t
I I
t I
t I

o b

Figure 33: Distribution of Panels on Airfoil

5.8 EFFECT OF THE JET pARANETERS

For the sake of computational simplicity the number of

independent variables g and the number of panels was kept

constant in the process of the parametric study. This means

that there is different accuracy between the results corre-

sponding to different values o1 jet strength and jet angle.

one measure of accuracy is the minimum of the objective

function. The closer to zero it is, the more closely the

free-streamline and the jet conditions are satisfied. Fig-

ure 34 shows such minimum for different intensities and jet
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angles. The procedure is less accurate ior weak shallow

jets, due to the inability of the spline function to prop-

erly capture the great change o_ curvature in such jets.

-_ =LIO"

8

6

F(q )min)_102
_,-.60°

4

-2o-2

I I I I

0 1 2 3 4 5
c i

Figure 34: The Minimum ol the Objective Function
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Chapter VI

ANALYSIS OF THE RESULTS

In this chapter %he aerodynamic properties of the air-

foil with the jet are analyzed and compared with the proper-

ties of two other related systems. The analysis is carried

out for the airfoil at zero angle of attack and for differ-

ent values of the jet intensity, angle and location.

6.1 RELATED SYSTEMS

Figure 35 shows, in addition to the airfoil with a jet

studied here, two other systems that have some characteris-

tics in common. Those are the jet flap and the supercavi-

taring jet-flapped hydroloil. The linearized form of these

two problems have been solved analytically z_, the lineariza-

tion having been obtained assuming that the angle of ejec-

tion is small. Figure 35c shows the system object of study

here when the jet is located at the trailing edge. This can

also be thought of as the jet flap problem with a separation

region starting at the trailing edge. Although this case

would not occur in practice because the jet would prevent

separation, insight in the physics can be gained by compar-

ing these two systems. The supercavitating hydrofoil differs

from the airfoil with the jet in that the free-streamline
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bounding the cavity is assumed to start at the leading edge.

This system has application in high speed ships, where such

assumption is plausible. Its comparison with the present

case will reveal remarkable similarities. In the analysis

that follow a comparison between the three systems will be

made.

6.2 WAK_ SHAPE AND VELOCITY DISTRIBUTION

Selected wake shapes for the case of the jet at the

trailing edge are shown in Figure 36 and 37. Here it is

clearly seen that a relative change in the angle of the jet

produces greater change in the shape ol the wake and the

velocity distribution that the same relative change in the

strength of the jet. It is observed that' as the strength

or the angle of the jet increase, both the penetration ot

the jet and the departure of the free-streamline from the

horizontal axis increase. This departure ol the free-stre-

amline had not been observed in Hu's calculation because ol

the way he estimated the position ol the Iree-streamline.

Figures 38 and 39 show similar results lot the jet at 50M ol

the chord. It is observed that the shape of the jet and ol

the free-streamline are only slightly dillerent from the

case with the jet at the trailing edge, the jet trajectory

just being displaced towards the leading edge by 50Z of the

chord,
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Selected velocity distributions are shown in Figures q0, 41,

42 and 43.

6.3 AERODYNAMIC COEFFICIENTS AND CENTER OF PRESSURE

As mentioned in chapter I, the forces acting on the

airfoil as a result ol the presence of the jet are caused by

two diflerent factors: asymmetric distribution ol pressure

and momentum ejected from the airloil in the jet. The lift

due to the pressure distribution alone will be called

induced lift, denoted by CLi The total lift coefficient is

then given by

.Ct = CLi. CJ sinOc

where 0 is the angle formed by the jet at the point of exit

with the direction of the free-stream.

6.3.1 Jet at 100 _ of the Chord

In Figure 44 it is shown how the induced lift coeffi-

cient varies as a function ol the jet strength for different

values of the jet angle. Figure 45 compares the induced lift

with the induced lift produced by the jet flap. The differ-

ence between the two can be viewed as the loss that a jet

flap system would suffer due to the presence of a wake

starting at the trailing edge. Such a loss is quite consid-

erable, being o1 the order of 2/3 of the jet flap induced

lift.
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Figure q6 shows the total lilt coefficient as function

of the jet angle, for different jet strengths. This Figure

shows a remarkably linear relation, even for rather large

angles of the jet.

The position of the center of pressure, which is

defined as the point of intersection between the resultant

force acting on the airfoil and the chord, is sketched in

Figure q7 as a function of the jet intensity for two very

different values of the jet angle. It is seen that the jet

angle has very little effect on the location of the center

of pressure. In the linearized analysis of the jet flap and

the superoavitating jet-flapped hydrofoil the position of

the center of pressure turns out to be strictly independent

of the jet angle. The center of pressure for the airfoil

with the jet, oalculated at a representative angle _ =qO

is compared with the center of pressure of the jet flap in

Figure qa. As the strength of the jet increases, the center

of pressure in the airfoil with a jet moves towards the

trailing edge much more quickly than in the case of the jet

flap.

6.3.2 Jet at Othe.!_r Locations on the Cho__h2_r_

The change undergone by the induced lift as the jet is

moved 1o different chord locations is shown in Figure qg.

The most important fact about this result is that the rela-

tive change in induced lift as the jet position changes is
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rather small, and for shallow jets it is almost negligible.

This means that the total lift is very weakly alfected by

the jet location. Regarding the position o£ the center of

pressure, the characteristics observed in the previous sub-

section still exist for the jet at different locations.

This is shown in Figure 50. When the jet is located at the

quarter of the chord the position of the center of pressure

remains almost independent of the jet strength and angle.

6.q EFFECTIVENESS OF THE JET

A measure of the capability of the jet to produce lift

is given by _8ct , called jet effectiveness. Figure 51 shows

the effectiveness of the jet for the three related systems.

The present case, for a shallo_ jet is very close to the

supercavitating hydroloil in this respect, the jet in the

jet flap system, on the other hand, is much more effective

than the jets in the other two systems. In view of what was

pointed out in the previous section, the effectiveness ol

the jet _ill be almost independent of the jet location along

the chord. Figure 52 sho_s how the derivative of the moment

coefficient with respect to the jet angle varies for differ-

ent jet intensities and jet locations. Once again, a close

similarity with the supercavitating hydrofoil exists.
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6.5 LINEARITY

In a linearized analysis ol the airloil-jet-freestream-

line problem the penetration ol the jet and the departure ol

the Iree-streamline from the plane ol the airloil would be

considered to be linear Junctions ol a suitably chosen small

parameter. The obvious parameter in this case would be the

jet angle, which was used to obtain the linearized expres-

sions ior the jet flap and the supercavitating hydroloil.

The results ol the present study, which account ior non-lin-

ear ellects, can be used to asses to what extent a linear-

ized analysis would capture the physics ol the problem. A

strong suggestion that a linear analysis would be successful

has already been indicated by the linearity in the jet angle

pointed out in the previous sections. Figure 53 shows how

the jet penetration and the free-streamline departure depend

on the jet angle. This values are taken at fixed location on

the wake. This linearity strongly suggests that a linear

analysis will be successful even ior large angles of the

jet, as it was the case in the jet flap analysis.
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Chapter VII

CONCLUSIONS AND RECONENDATIONS

7.1 CONCLUSIONS

7.1.1 Physics Revealed by the Inviscid Node_

i) The use ol the inviscid model described in chapter I

leads to results that have some similarity to results

obtained by the use ol linear theories for the jet flap and

supercavitating jet-flapped hydrofoil problems. The t_o

more important such similarities are the linear dependence

ol the geometry and aerodynamic coeflicients on the angle of

the jet, and the fact that the location ol the center of

pressure is almost independent ol the jet angle, and a func-

tion of the jet intensity only.

if) The lilt is almost independent ol the position of the

jet exit on the chord. As the jet is moved forward the

decrease in %he decrease of the high pressure region on the

lower surface of the airfoil is almost balanced by the

increase of suction on the upper surface, close to the nose,

in a way that the resultant lift coefficient remains almost

constant.
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7.1.2 9haracteristics of the _ethod o_jL _olution

i) Improvement over previous method= Aside from being much

more flexible, the present method computes the unknown parts

of the boundary as a whole, as opposed to the method in Ref-

ference 1 where the jet and the free-streamline are dealt

with separately.

if) Flexibility: the method developed here requires little

or no outside intervention in the process of computation and

is relatively easy to implement. The method constitutes also

a general procedure for the solution of a type of boundary

value problems in which the position of the boundary is not

known a priory. Although entrainment was not included in

the model used here, the method will in principle be able to

handle a model for entrainement which would involve just a

modification of the boundary conditions on the jet.

iii) Expensive in its present form: since nothing else but

the value ol the objective _unction is provided to the

optimization algorithm, and the objective function is expen-

sive to evaluate, the method is in general rather costly in

its present form.
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" 7.2 RECOMENDATIONS

?.2.1 The Physical Problem

Very little experimental data are available on this

lifting system, and much more is needed to understand some

of the most important aspects, Such is the case of the wake

bounded by the airfoil and the jet, and the entrainment

process. A clear picture of _hat happens in the wake is

essential if a more realistic model is to be constructed,

and an understanding of how the entrainment process occurs

would be needed to model the entrainment in some simple

form. Precisely because of the importance of these factors,

the results given here are only expected to give qualitative

agreament aith experiments.

7.2.2 The Mathematical Model

In order to better understand the mathematical model

the following aspects can be considered:

i) Modification to Include Entrainment: this modifications

consist in changing the boundary conditions in a _ay that

the additional velocity field produced by entrainment is

accounted for.

if) Analysis of the Linearized Solution: the potential use-

fulness of the linearized approach is one of the conclusions
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oi the non-linear study done here. A linearized approach

would allow one to investigate the bahaviour ol the system

for very small values of jet strength and jet angle, which

are aspects that the this study fails to capture.

iii) Further Analysis of Related Problems: A whole family of

airfoil-jet-freestreamline problems could be considered, in

which both the position of the jet and the position of the

separation point ol the free-streamline are varied along the

airfoil, as opposed to just varying the position of the jet.

Such a family of problems is likely to have interesting aer-

odynamic properties.

7.2.3 .Improvements on The Hethod ol Solution

In order to lower the cost of the method and improve

the accuracy, the following steps are suggested, all of

which constitute substantial areas of research:

i) Scaling Improvement: This aspect will affect the cost.

Scaling is a subject ol great concern in non-linear program-

ming, and substantial research is being invested in the

development of algorithms capable of changing the scaling as

the calculation proceeds.

if) Increase Information on Objective Function= This aspect

will also allect the cost. The next most important piece of
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information of a function next to the value of the function

itself is its gradient. If a way of computing the gradient

of F(q) is developed which does not consist of a straight

application of finite differences as it is done in the pres-

ent code, a substantial amount of computational time can be

saved. The developement of such a way of computing the gra-

dient would imply to exploit the fact that a very small

change in the independent variables q produces a change in

the imbalance of the jet condition and the free-streamline

condition which is to some extent localized in an area of

the boundary.

iii) Include "C" Part of the Boundary: As discussed in sec-

tion 3.1 this part of the boundary was ignored on the

assumption that if the wake is long enough it is still pos-

sible to obtain an approximate solution with a truncated

wake. Including the "C" part of the boundary will affect the

accuracy and would allow one to work with a much shorter

wake, permitting a very accurate resolution of the wake

shape.

- 64 -



PRESENT CASE

JET FLAP (SPENCE_!g$6)

SUPERCAVITATING JET-FLAPPED HYDROFOIL (HUNG-TA HO 1964)

Figure 35: Related Systems
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Figure 40: Velocity Distribution, Jet at 100Z of the Chord

- 68 -



2.0 .... I '" ' ' ' '1 .... I ' ' ' '' I ....

_=20 °

1.5 _

v/Uoo 1.0 Cj-3 _"--_-..._p_per surface •

0.5

f

o.o _
.... I .... I .... I .... I ....

0 0._ 0.4 0.6 0.8 1

X

Figure 41: Velocity Distribution, Jet at IOOZ of the Chord

- 69 -



2.0 I ' " I " " I I ' ' " "

Cj=3

1.5 \\g=40 °
\ \

. /_=20 °
v/U_ 1.0

0.5 - _ -
lowersurface

o.o
.... I .... l .... l . • , ,. I , , ,.,

0 0.2 0.4 0.6 0.8 1

X

Figure 42: Velocity Distribution, Jet at 50Y_ of the Chord
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